
DAML SDK Documentation

Digital Asset

Version : 2019-12-19

Copyright 2019 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,

duplication or distribution is strictly prohibited.

Table of contents

Table of contents i

1 Getting started 1

1.1 Installing the SDK . 1

1.1.1 1. Install the dependencies . 1

1.1.2 2. Install the SDK . 1

1.1.3 Next steps . 1

1.1.4 Alternative: manual download . 1

1.2 Quickstart guide . 3

1.2.1 Download the quickstart application . 3

1.2.2 Overview of what an IOU is . 4

1.2.3 Run the application using prototyping tools . 5

1.2.4 Try out the application . 6

1.2.5 Get started with DAML . 10

1.2.6 Integrate with the ledger . 15

1.2.7 Next steps . 18

2 Writing DAML 19

2.1 An introduction to DAML . 19

2.1.1 1 Basic contracts . 19

2.1.2 2 Testing templates using scenarios . 21

2.1.3 3 Data types . 26

2.1.4 4 Transforming data using choices . 41

2.1.5 5 Adding constraints to a contract . 47

2.1.6 6 Parties and authority . 56

2.1.7 7 Composing choices . 65

2.2 Language reference docs . 73

2.2.1 Overview: template structure . 73

2.2.2 Reference: templates . 76

2.2.3 Reference: choices . 79

2.2.4 Reference: updates . 81

2.2.5 Reference: data types . 85

2.2.6 Reference: built-in functions . 91

2.2.7 Reference: expressions . 93

2.2.8 Reference: functions . 95

2.2.9 Reference: scenarios . 98

2.2.10 Reference: DAML file structure . 99

2.2.11 Reference: DAML packages . 100

2.2.12 Contract keys . 102

2.3 DAML Studio . 104

i

2.3.1 Installing . 104

2.3.2 Creating your first DAML file . 104

2.3.3 Supported features . 106

2.3.4 Common scenario errors . 108

2.4 Testing using scenarios . 111

2.4.1 Scenario syntax . 112

2.4.2 Running scenarios in DAML Studio . 113

2.4.3 Examples . 113

2.5 Troubleshooting . 114

2.5.1 Error: <X> is not authorized to commit an update . 115

2.5.2 Error Argument is not of serializable type . 115

2.5.3 Modelling questions . 115

2.5.4 Testing questions . 117

2.6 Writing good DAML . 118

2.6.1 Good design patterns . 118

2.6.2 Anti-patterns . 136

2.6.3 What functionality belongs in DAML models versus application code? 140

3 Building applications 142

3.1 Writing applications using the Ledger API . 142

3.1.1 The Ledger API services . 142

3.1.2 How DAML types are translated to DAML-LF . 146

3.1.3 Resources available to you . 150

3.1.4 What’s in the Ledger API . 151

3.1.5 DAML-LF . 151

3.2 Java bindings . 152

3.2.1 Generate Java code from DAML . 152

3.2.2 Example project . 164

3.2.3 Overview . 166

3.2.4 Reference documentation . 168

3.2.5 Getting started . 168

3.2.6 Example project . 169

3.3 Scala bindings . 169

3.3.1 Introduction . 169

3.3.2 Getting started . 170

3.3.3 Generating Scala code . 170

3.3.4 Example code . 171

3.3.5 Authentication . 172

3.4 Node.js bindings . 173

3.5 The Ledger API using gRPC . 173

3.5.1 Ledger API Reference . 173

3.5.2 How DAML types are translated to protobuf . 205

3.5.3 Getting started . 211

3.5.4 Protobuf reference documentation . 211

3.5.5 Example project . 211

3.5.6 DAML types and protobuf . 212

3.5.7 Error handling . 212

3.6 Creating your own bindings . 212

3.6.1 Introduction . 213

3.6.2 Building Ledger Commands . 213

3.6.3 Summary . 215

3.6.4 Links . 215

3.7 Application architecture guide . 215

3.7.1 Categories of application . 216

3.7.2 Structuring an application . 217

3.7.3 Application libraries . 219

3.7.4 Architecture guidance . 219

3.7.5 Commonly used types . 221

3.7.6 Test the business logic with a ledger . 222

3.7.7 Share the ledger . 222

3.7.8 Reset if you need to . 222

3.8 Authentication . 223

3.8.1 Introduction . 223

3.8.2 Access tokens and claims . 224

3.8.3 Getting access tokens . 225

3.8.4 Using access tokens . 225

4 SDK tools 226

4.1 DAML Assistant (daml) . 226

4.1.1 Moving to the daml assistant . 226

4.1.2 Full help for commands . 226

4.1.3 Configuration files . 227

4.1.4 Building DAML projects . 228

4.1.5 Managing SDK releases . 229

4.2 DAML Sandbox . 229

4.2.1 Running with persistence . 230

4.2.2 Running with authentication . 230

4.2.3 Command-line reference . 232

4.3 Navigator . 232

4.3.1 Navigator functionality . 232

4.3.2 Installing and starting Navigator . 232

4.3.3 Choosing a party / changing the party . 232

4.3.4 Logging out . 233

4.3.5 Viewing templates or contracts . 233

4.3.6 Using Navigator . 237

4.3.7 Authenticating Navigator . 240

4.3.8 Advanced usage . 240

5 Background concepts 244

5.1 Glossary of concepts . 244

5.1.1 DAML . 244

5.1.2 SDK tools . 248

5.1.3 Building applications . 249

5.1.4 General concepts . 251

5.2 DA Ledger Model . 251

5.2.1 Structure . 252

5.2.2 Integrity . 259

5.2.3 Privacy . 271

5.2.4 DAML: Defining Contract Models Compactly . 279

6 Deploying 281

6.1 Deploying to DAML Ledgers . 281

6.1.1 How to Deploy . 281

6.1.2 Available DAML Products . 282

6.1.3 Open Source Integrations . 282

6.1.4 DAML Ledgers in Development . 283

7 Examples 284

7.1 DAML examples . 284

8 Experimental features 285

8.1 WARNING . 285

8.1.1 Navigator Console . 285

8.1.2 Extractor . 296

8.2 DAML Integration Kit - ALPHA . 307

8.2.1 Ledger API Test Tool . 307

8.2.2 DAML Integration Kit status and roadmap . 310

8.2.3 Implementing your own DAML Ledger . 310

8.2.4 Deploying a DAML Ledger . 314

8.2.5 Testing a DAML Ledger . 315

8.2.6 Benchmarking a DAML Ledger . 315

8.3 HTTP JSON API Service . 315

8.3.1 DAML-LF JSON Encoding . 316

8.3.2 /contracts/search query language . 322

8.3.3 How to start . 324

8.3.4 Example session . 326

8.4 DAML Triggers - Off-Ledger Automation in DAML . 332

8.4.1 DAML Trigger Library . 332

8.4.2 Usage . 341

8.4.3 When not to use DAML triggers . 345

8.5 DAML Script . 345

8.5.1 DAML Script Library . 345

8.5.2 Usage . 346

8.5.3 Using DAML Script in Distributed Topologies . 349

8.6 Visualizing DAML Contracts . 350

8.6.1 Example: Visualizing the Quickstart project . 350

8.6.2 Visualizing DAML Contracts - Within IDE . 351

8.6.3 Visualizing DAML Contracts - Interactive Graphs . 351

9 Support and updates 352

9.1 Support . 352

9.1.1 Support expectations . 352

9.2 Release notes . 353

9.2.1 0.13.41 - 2019-12-18 . 353

9.2.2 0.13.40 - 2019-12-10 . 354

9.2.3 0.13.39 - 2019-12-05 . 354

9.2.4 0.13.38 - 2019-11-29 . 355

9.2.5 0.13.37 - 2019-11-20 . 357

9.2.6 0.13.36 - 2019-11-14 . 358

9.2.7 Ledger . 358

9.2.8 DAML Compiler . 358

9.2.9 Sandbox . 358

9.2.10 DAML Stdlib . 358

9.2.11 DAML Triggers . 358

9.2.12 JSON API - Experimental . 358

9.2.13 Extractor - Experimental . 358

9.2.14 0.13.34 - 2019-11-07 . 358

9.2.15 0.13.33 - 2019-11-06 . 359

9.2.16 0.13.32 - 2019-10-29 . 360

9.2.17 0.13.31 - 2019-10-18 . 360

9.2.18 0.13.30 - 2019-10-15 . 361

9.2.19 0.13.29 - 2019-10-04 . 363

9.2.20 0.13.28 - 2019-10-04 . 363

9.2.21 0.13.27 - 2019-09-25 . 364

9.2.22 0.13.26 - 2019-09-24 . 364

9.2.23 0.13.25 - 2019-09-18 . 364

9.2.24 0.13.24 - 2019-09-16 . 365

9.2.25 0.13.23 - 2019-09-11 . 365

9.2.26 0.13.22 - 2019-09-04 . 366

9.2.27 0.13.21 - 2019-08-29 . 367

9.2.28 0.13.20 - 2019-08-22 . 367

9.2.29 0.13.19 - 2019-08-14 . 368

9.2.30 0.13.18 - 2019-08-07 . 368

9.2.31 0.13.17 - 2019-08-07 . 368

9.2.32 0.13.16 - 2019-08-01 . 369

9.2.33 0.13.15 - 2019-07-25 . 369

9.2.34 0.13.14 - 2019-07-22 . 370

9.2.35 0.13.13 - 2019-07-16 . 370

9.2.36 0.13.12 - 2019-07-09 . 372

9.2.37 0.13.11 - 2019-07-08 . 372

9.2.38 0.13.10 - 2019-06-28 . 373

9.2.39 0.13.9 - 2019-06-28 . 373

9.2.40 0.13.8 - 2019-06-27 . 374

9.2.41 0.13.7 - 2019-06-26 . 374

9.2.42 0.13.6 - 2019-06-25 . 374

9.2.43 0.13.5 - 2019-06-19 . 375

9.2.44 0.13.4 - 2019-06-19 . 376

9.2.45 0.13.3 - 2019-06-18 . 376

9.2.46 0.13.2 - 2019-06-18 . 376

9.2.47 0.13.1 - 2019-06-17 . 377

9.2.48 0.13.0 - 2019-06-17 . 377

9.2.49 0.12.25 — 2019-06-13 . 377

9.2.50 0.12.24 - 2019-06-06 . 378

9.2.51 0.12.23 - 2019-06-05 . 378

9.2.52 0.12.22 - 2019-05-29 . 379

9.2.53 0.12.21 - 2019-05-28 . 380

9.2.54 0.12.20 - 2019-05-23 . 380

9.2.55 0.12.19 - 2019-05-22 . 380

9.2.56 0.12.18 - 2019-05-20 . 381

9.2.57 0.12.17 - 2019-05-10 . 385

9.2.58 0.12.16 - 2019-05-07 . 385

9.2.59 0.12.15 - 2019-05-06 . 385

9.2.60 0.12.14 - 2019-05-03 . 386

9.2.61 0.12.13 - 2019-05-02 . 386

9.2.62 0.12.12 - 2019-04-30 . 386

9.2.63 0.12.11 - 2019-04-26 . 386

9.2.64 0.12.10 — 2019-04-25 . 386

9.2.65 0.12.9 — 2019-04-23 . 386

9.2.66 0.12.7 — 2019-04-17 . 387

9.2.67 0.12.6 — 2019-04-16 . 387

9.2.68 0.12.5 — 2019-04-15 . 387

9.2.69 0.12.4 — 2019-04-15 . 387

9.2.70 0.12.3 — 2019-04-12 . 387

9.2.71 0.12.2 — 2019-04-12 . 387

9.2.72 0.12.1 — 2019-04-04 . 388

9.2.73 0.12.0 — 2019-04-04 . 388

9.2.74 0.11.32 . 388

9.2.75 0.11.3 - 2019-02-07 . 388

9.2.76 0.11.2 - 2019-01-31 . 388

9.2.77 0.11.1 - 2019-01-24 . 389

9.2.78 0.11.0 - 2019-01-17 . 389

9.3 DAML roadmap (as of September 2019) . 393

Chapter 1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies

The SDK currently runs on Windows, MacOS or Linux.

You need to install:

1. Visual Studio Code.

2. JDK 8 or greater.

You can get the JDK from Zulu 8 JDK or Oracle 8 JDK (requires you to accept Oracle’s license).

1.1.2 2. Install the SDK

1.1.2.1 Mac and Linux

To install the SDK on Mac or Linux:

1. Run:

curl -sSL https://get.daml.com/ | sh

2. If prompted, add ~/.daml/bin to your PATH.

If youdon’t knowhow todo this, try following these instructions forMacOSor these instructions

for Windows.

1.1.2.2 Windows

We support running the SDK on Windows 10. To install the SDK on Windows, download and run the

installer from github.com/digital-asset/daml/releases/latest.

1.1.3 Next steps

Follow the quickstart guide.

Use daml --help to see all the commands that the DAML assistant (daml) provides.

If you run into any problems, use the support page to get in touch with us.

1.1.4 Alternative: manual download

The cURL command above will automatically download and run the DAML installation script from

GitHub (using TLS). If you require a higher level of security, you can instead install the SDK bymanu-

1

https://code.visualstudio.com/download
https://www.azul.com/downloads/zulu/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://hathaway.cc/2008/06/how-to-edit-your-path-environment-variables-on-mac/
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml
https://github.com/digital-asset/daml/releases/latest

DAML SDK Documentation, 2019-12-19

ally downloading the compressed tarball, verifying its signature, extracting it andmanually running

the install script.

Note that the Windows installer is already signed (within the binary itself), and that signature is

checked byWindows before starting it. Nevertheless, you can still follow the steps below to check its

external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-

tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the

corresponding signature file. For example, if you are on macOS and want to install release

0.13.27, you would download the files daml-sdk-0.13.27-macos.tar.gz and daml-sdk-0.

13.27-macos.tar.gz.asc. Note that forWindows you can choose between the tarball, which

follows the same instructions as the Linux and macOS ones (but assumes you have a number

of typical Unix tools installed), or the installer, which ends with .exe. Regardless, the steps to

verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once

you have gpg installed, you can import the key by running:

gpg --keyserver pgp.key-server.io --search

↪→4911A8DFE976ACDFA07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC

<security@digitalasset.com>, created on 2019-05-16 and expiring on 2021-05-15. If

any of those details are different, something is wrong. In that case please contact Digital Asset

immediately.

4. Once the key is imported, you canaskgpg to verify that the file youhavedownloadedhas indeed

been signed by that key. Continuing with our example of v0.13.27 on macOS, you should have

both files in the current directory and run:

gpg --verify daml-sdk-0.13.27-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-0.13.27-macos.tar.gz'

gpg: Signature made Wed Sep 25 11:57:28 2019 BST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC

↪→<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the

↪→owner.

Primary key fingerprint: 4911 A8DF E976 ACDF A071 30DB E837 2C0C 1C73

↪→4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to

Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web

of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have

verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

DAML SDK Documentation, 2019-12-19

tar xzf daml-sdl-0.13.27-macos.tar.gz

cd sdk-0.13.27

./install.sh

6. Just like for themore automated install procedure, youmay want to add ~/.daml/bin to your

$PATH.

1.2 Quickstart guide

In this guide, you will learn about the SDK tools and DAML applications by:

developing a simple ledger application for issuing, managing, transferring and trading IOUs (I

Owe You!)

developing an integration layer that exposes some of the functionality via custom REST ser-

vices

Prerequisites:

You understand what an IOU is. If you are not sure, read the IOU tutorial overview.

You have installed the DAML SDK. See Installing the SDK.

On this page:

Download the quickstart application

– Folder structure

Overview of what an IOU is

Run the application using prototyping tools

Try out the application

Get started with DAML

– Develop with DAML Studio

– Test using scenarios

Integrate with the ledger

Next steps

1.2.1 Download the quickstart application

You can get the quickstart application using the DAML assistant (daml):

1. Run daml new quickstart quickstart-java

This creates the quickstart-java application into a new folder called quickstart.

2. Run cd quickstart to change into the new directory.

1.2.1.1 Folder structure

The project contains the following files:

.

├── daml

│ ├── Iou.daml

│ ├── IouTrade.daml

│ ├── Main.daml

│ └── Tests

(continues on next page)

1.2. Quickstart guide 3

DAML SDK Documentation, 2019-12-19

(continued from previous page)

│ ├── Iou.daml

│ └── Trade.daml

├── daml.yaml

├── frontend-config.js

├── pom.xml

└── src

└── main

├── java

│ └── com

│ └── digitalasset

│ └── quickstart

│ └── iou

│ └── IouMain.java

└── resources

└── logback.xml

daml.yaml is a DAML project config file used by the SDK to find out how to build the DAML

project and how to run it.

daml contains the DAML code specifying the contract model for the ledger.

daml/Tests contains test scenarios for the DAML model.

frontend-config.js and ui-backend.conf are configuration files for the Navigator fron-

tend.

pom.xml and src/main/java constitute a Java application that provides REST services to in-

teract with the ledger.

You will explore these in more detail through the rest of this guide.

1.2.2 Overview of what an IOU is

To run through this guide, you will need to understand what an IOU is. This section describes the

properties of an IOU like a bank bill that make it useful as a representation and transfer of value.

A bank bill represents a contract between the owner of the bill and its issuer, the central bank. His-

torically, it is a bearer instrument - it gives anyone who holds it the right to demand a fixed amount

of material value, often gold, from the issuer in exchange for the note.

To do this, the note must have certain properties. In particular, the British pound note shown below

illustrates the key elements that are needed to describe money in DAML:

1) The Legal Agreement

For a long time, money was backed by physical gold or silver stored in a central bank. The British

pound note, for example, represented a promise by the central bank to provide a certain amount of

gold or silver in exchange for the note. This historical artifact is still represented by the following

statement:

I promise to pay the bearer on demand the sum of five pounds.

The true value of the note comes from the fact that it physically represents a bearer right that is

matched by an obligation on the issuer.

2) The Signature of the Counterparty

4 Chapter 1. Getting started

DAML SDK Documentation, 2019-12-19

The value of a right described in a legal agreement is based on a matching obligation for a counter-

party. The British pound note would be worthless if the central bank, as the issuer, did not recognize

its obligation to provide a certain amount of gold or silver in exchange for the note. The chief cashier

confirms this obligation by signing the note as a delegate for the Bank of England. In general, deter-

mining the parties that are involved in a contract is key to understanding its true value.

3) The Security Token

Another feature of the poundnote is the security token embeddedwithin the physical paper. It allows

the note to be authenticatedwith limited effort by holding it against a light source. Even a third party

can verify the note without requiring explicit confirmation from the issuer that it still acknowledges

the associated obligations.

4) The Unique Identifier

Every note has a unique registration number that allows the issuer to track their obligations and

detect duplicate bills. Once the issuer has fulfilled the obligations associated with a particular note,

duplicates with the same identifier automatically become invalid.

5) The Distribution Mechanism

The note itself is printed on paper, and its legal owner is the person holding it. The physical form of

the note allows the rights associated with it to be transferred to other parties that are not explicitly

mentioned in the contract.

1.2.3 Run the application using prototyping tools

In this section, you will run the quickstart application and get introduced to the main tools for pro-

totyping DAML:

1. To compile the DAML model, run daml build

This creates a DAR file (DAR is just the format that DAML compiles to) called .daml/dist/

quickstart-0.0.1.dar. The output should look like this:

1.2. Quickstart guide 5

DAML SDK Documentation, 2019-12-19

Created .daml/dist/quickstart-0.0.1.dar.

2. To run the sandbox (a lightweight local version of the ledger), run daml sandbox --scenario

Main:setup .daml/dist/quickstart-0.0.1.dar

The output should look like this:

DAML LF Engine supports LF versions: 0, 1.0, 1.1, 1.2, 1.3; Transaction

↪→versions: 1, 2, 3, 4, 5; Value versions: 1, 2, 3, 4

Starting plainText server

listening on localhost:6865

____ ____

/ __/__ ____ ___/ / / ___ __ __

_\ \/ _ `/ _ \/ _ / _ \/ _ \\ \ /

/___/_,_/_//_/_,_/_.__/___/__\

Initialized sandbox version 100.13.10 with ledger-id = sandbox-

↪→5e12e502-817e-41f9-ad40-1c57b8845f9d, port = 6865, dar file =

↪→DamlPackageContainer(List(target/daml/iou.dar),false), time mode =

↪→Static, ledger = in-memory, daml-engine = {}

The sandbox is now running, and you can access its ledger API on port 6865.

Note: The parameter --scenario Main:setup loaded the sandbox ledger with some initial

data. Only the sandbox has this prototyping feature - it’s not available on the full ledger server.

More on scenarios later.

3. Open a new terminal window and navigate to your project directory, quickstart.

4. Start the Navigator, a browser-based leger front-end, by running daml navigator server

The Navigator automatically connects the sandbox. You can access it on port 4000.

1.2.4 Try out the application

Now everything is running, you can try out the quickstart application:

1. Go to http://localhost:4000/. This is the Navigator, which you launched earlier.

2. On the login screen, select Alice from the dropdown. This logs you in as Alice.

(The list of available parties is specified in the ui-backend.conf file.)

This takes you to the contracts view:

This is showing you what contracts are currently active on the sandbox ledger and visible to

Alice. You can see that there is a single such contract, with Id #2:1, created from a template

called Iou:Iou@ffb....

3. On the left-hand side, you can see what the pages the Navigator contains:

Contracts

Templates

Issued Ious

Owned Ious

Iou Transfers

Trades

Contracts and Templates are standard views, available in any application. The others are cre-

ated just for this application, specified in the frontend-config.js file.

For information on creating custom Navigator views, see Customizable table views.

4. Click Templates to open the Templates page.

This displays all available contract templates. Instances of contracts (or just contracts) are

6 Chapter 1. Getting started

http://localhost:4000/

DAML SDK Documentation, 2019-12-19

created from these templates. The names of the templates are of the format module.tem-

plate@hash. Including the hash disambiguates templates, even when identical module and

template names are used between packages.

On the far right, you see the number of contract instances that you can see for each template.

5. Try creating a contract from a template. Issue an Iou to yourself by clicking on the Iou:Iou

row, filling it out as shown below and clicking Submit.

6. On the left-hand side, click Issued Ious to go to that page. You can see the Iou you just issued

yourself.

7. Now, try transferring this Iou to someone else. Click on your Iou, select Iou_Transfer, enter Bob

as the new owner and hit Submit.

8. Go to the Owned Ious page.

The screen shows the same contract #2:1 that you already saw on the Contracts page. It is an

Iou for 100, issued by EUR_Bank.

9. Go to the Iou Transfers page. It shows the transfer of your recently issued Iou to Bob, but Bob

has not accepted the transfer, so it is not settled.

This is an important part of DAML: nobody can be forced into owning an Iou, or indeed agreeing

to any other contract. They must explicitly consent.

You could cancel the transfer by using the IouTransfer_Cancel choice within it, but for this walk-

through, leave it alone for the time being.

10. Try asking Bob to exchange your 100 for $110. To do so, you first have to show your Iou to Bob so

that he can verify the settlement transaction, should he accept the proposal.

Go back to Owned Ious, open the Iou for 100 and click on the button Iou_AddObserver. Submit Bob

as the newObserver.

Contracts in DAML are immutable,meaning they cannot be changed, only created and archived.

If you head back to the Owned Ious screen, you can see that the Iou now has a new Contract ID

#6:1.

11. To propose the trade, go to the Templates screen. Click on the IouTrade:IouTrade template, fill in

the form as shown below and submit the transaction.

12. Go to the Trades page. It shows the just-proposed trade.

1.2. Quickstart guide 7

DAML SDK Documentation, 2019-12-19

13. You are now going to switch user to Bob, so you can accept the trades you have just proposed.

Start by clicking on the logout button next to the username, at the top of the screen. On the

login page, select Bob from the dropdown.

14. First, accept the transfer of the AliceCoin. Go to the Iou Transfers page, click on the row of the

transfer, and click IouTransfer_Accept, then Submit.

15. Go to the Owned Ious page. It now shows the AliceCoin.

It also shows an Iou for $110 issued by USD_Bank. This matches the trade proposal you made

earlier as Alice.

Note its Contract Id #3:1.

16. Settle the trade. Go to the Trades page, and click on the row of the proposal. Accept the trade

by clicking IouTrade_Accept. In the popup, enter #3:1 as the quoteIouCid, then click Submit.

The two legs of the transfer are now settled atomically in a single transaction. The trade either

fails or succeeds as a whole.

17. Privacy is an important feature of DAML. You can check that Alice and Bob’s privacy relative to

the Banks was preserved.

To do this, log out, then log in as USD_Bank.

On the Contracts page, select Include archived. The page now shows all the contracts that

USD_Bank has ever known about.

There are just three contracts:

An IouTransfer that was part of the scenario during sandbox startup.

Bob’s original Iou for $110.

The new $110 Iou owned by Alice. This is the only active contract.

USD_Bank does not know anything about the trade or the EUR-leg. For more information on

privacy, refer to the DA Ledger Model.

Note: USD_Bank does know about an intermediate IouTransfer contract that was created and

consumed as part of the atomic settlement in the previous step. Since that contract was never

active on the ledger, it is not shown in Navigator. You will see how to view a complete transac-

8 Chapter 1. Getting started

DAML SDK Documentation, 2019-12-19

1.2. Quickstart guide 9

DAML SDK Documentation, 2019-12-19

tion graph, including who knows what, in Test using scenarios below.

1.2.5 Get started with DAML

The contractmodel specifies the possible contracts, as well as the allowed transactions on the ledger,

and is written in DAML.

The core concept in DAML is a contract template - you used them earlier to create contracts. Contract

templates specify:

a type of contract that may exist on the ledger, including a corresponding data type

the signatories, who need to agree to the creation of a contract instance of that type

the rights or choices given to parties by a contract of that type

constraints or conditions on the data on a contract instance

additional parties, called observers, who can see the contract instance

For more information about the DA Ledger, consult DA Ledger Model for an in-depth technical descrip-

tion.

1.2.5.1 Develop with DAML Studio

Take a look at the DAML that specifies the contract model in the quickstart application. The core

template is Iou.

1. Open DAML Studio, a DAML IDE based on VS Code, by running daml studio from the root of your

project.

2. Using the explorer on the left, open daml/Iou.daml.

The first two lines specify language version and module name:

daml 1.2

module Iou where

Next, a template called Iou is declared together with its datatype. This template has five fields:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

Conditions for the creation of a contract instance are specified using the ensure and signatory key-

words:

ensure amount > 0.0

signatory issuer, owner

In this case, there are two conditions:

An Iou can only be created if it is authorized by both issuer and owner.

The amount needs to be positive.

10 Chapter 1. Getting started

DAML SDK Documentation, 2019-12-19

Earlier, as Alice, you authorized the creation of an Iou. The amount was 100.0, and Alice as both

issuerandowner, so both conditionswere satisfied, and youcould successfully create the contract.

To see this in action, go back to the Navigator and try to create the same Iou again, but with Bob as

owner. It will not work.

Observers are specified using the observer keyword:

observer observers

Next, rights or choices are given to owner:

controller owner can

Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

do create IouTransfer with iou = this; newOwner

controller owner can starts the block. In this case, owner has the right to:

split the Iou

merge it with another one differing only on amount

initiate a transfer

add and remove observers

The Iou_Transfer choice above takes a parameter called newOwner and creates a new

IouTransfer contract and returns itsContractId. It is important to know that, by default, choices

consume the contract on which they are exercised. Consuming, or archiving, makes the contract no

longer active. So the IouTransfer replaces the Iou.

A more interesting choice is IouTrade_Accept. To look at it, open IouTrade.daml.

controller seller can

IouTrade_Accept : (IouCid, IouCid)

with

quoteIouCid : IouCid

do

baseIou <- fetch baseIouCid

baseIssuer === baseIou.issuer

baseCurrency === baseIou.currency

baseAmount === baseIou.amount

buyer === baseIou.owner

quoteIou <- fetch quoteIouCid

quoteIssuer === quoteIou.issuer

quoteCurrency === quoteIou.currency

quoteAmount === quoteIou.amount

seller === quoteIou.owner

quoteIouTransferCid <- exercise quoteIouCid Iou_Transfer with

newOwner = buyer

transferredQuoteIouCid <- exercise quoteIouTransferCid

↪→IouTransfer_Accept

baseIouTransferCid <- exercise baseIouCid Iou_Transfer with

newOwner = seller

(continues on next page)

1.2. Quickstart guide 11

DAML SDK Documentation, 2019-12-19

(continued from previous page)

transferredBaseIouCid <- exercise baseIouTransferCid IouTransfer_

↪→Accept

return (transferredQuoteIouCid, transferredBaseIouCid)

This choice uses the === operator from the DAML Standard Library to check pre-conditions. The

standard library is imported using import DA.Assert at the top of the module.

Then, it composes the Iou_Transfer and IouTransfer_Accept choices to build one big transac-

tion. In this transaction, buyer and seller exchange their Ious atomically, without disclosing the

entire transaction to all parties involved.

The Issuers of the two Ious, which are involved in the transaction because they are signatories on the

Iou and IouTransfer contracts, only get to see the sub-transactions that concern them, as we saw

earlier.

For a deeper introduction to DAML, consult the DAML Reference.

1.2.5.2 Test using scenarios

You can check the correct authorization and privacy of a contract model using scenarios: tests that

are written in DAML.

Scenarios are a linear sequence of transactions that is evaluated using the same consistency, con-

formance and authorization rules as it would be on the full ledger server or the sandbox ledger. They

are integrated into DAML Studio, which can show you the resulting transaction graph, making them

a powerful tool to test and troubleshoot the contract model.

To take a look at the scenarios in the quickstart application, open daml/Tests/Trade.daml in

DAML Studio.

A scenario test is defined with trade_test = scenario do. The submit function takes a sub-

mitting party and a transaction, which is specified the same way as in contract choices.

The following block, for example, issues an Iou and transfers it to Alice:

iouTransferAliceCid <- submit eurBank do

iouCid <- create Iou with

issuer = eurBank

owner = eurBank

currency = "EUR"

amount = 100.0

observers = []

exercise iouCid Iou_Transfer with newOwner = alice

Compare the scenario with the setup scenario in daml/Main.daml. You will see that the scenario

you used to initialize the sandbox is an initial segment of the trade_test scenario. The latter adds

transactions to perform the trade you performed through Navigator, and a couple of transactions in

which expectations are verified.

After a short time, the text Scenario results should appear above the test. Click on it to open the

visualization of the resulting ledger state.

Each row shows a contract on the ledger. The first four columns show which parties know of which

contracts. The remaining columns show the data on the contracts. You can see past contracts by

12 Chapter 1. Getting started

DAML SDK Documentation, 2019-12-19

checking the Show archived box at the top. Click the adjacent Show transaction view button to

switch to a view of the entire transaction tree.

In the transaction view, transaction #6 is of particular interest, as it shows how the Ious are ex-

changed atomically in one transaction. The lines starting known to (since) show that the Banks

do indeed not know anything they should not:

TX #6 1970-01-01T00:00:00Z (Tests.Trade:61:14)

#6:0

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> 'Bob' exercises IouTrade_Accept on #5:0 (IouTrade:IouTrade)

with

quoteIouCid = #3:1

children:

#6:1

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> fetch #4:1 (Iou:Iou)

#6:2

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> fetch #3:1 (Iou:Iou)

#6:3

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> 'Bob' exercises Iou_Transfer on #3:1 (Iou:Iou)

with

newOwner = 'Alice'

children:

#6:4

│ consumed by: #6:5

│ referenced by #6:5

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

(continues on next page)

1.2. Quickstart guide 13

DAML SDK Documentation, 2019-12-19

(continued from previous page)

issuer = 'USD_Bank';

owner = 'Bob';

currency = "USD";

amount = 110.0;

observers = []);

newOwner = 'Alice'

#6:5

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> 'Alice' exercises IouTransfer_Accept on #6:4 (Iou:IouTransfer)

with

children:

#6:6

│ referenced by #7:0

│ known to (since): 'Alice' (#6), 'USD_Bank' (#6), 'Bob' (#6)

└─> create Iou:Iou

with

issuer = 'USD_Bank';

owner = 'Alice';

currency = "USD";

amount = 110.0;

observers = []

#6:7

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> 'Alice' exercises Iou_Transfer on #4:1 (Iou:Iou)

with

newOwner = 'Bob'

children:

#6:8

│ consumed by: #6:9

│ referenced by #6:9

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer = 'EUR_Bank';

owner = 'Alice';

currency = "EUR";

amount = 100.0;

observers = ['Bob']);

newOwner = 'Bob'

#6:9

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> 'Bob' exercises IouTransfer_Accept on #6:8 (Iou:IouTransfer)

with

children:

(continues on next page)

14 Chapter 1. Getting started

DAML SDK Documentation, 2019-12-19

(continued from previous page)

#6:10

│ referenced by #8:0

│ known to (since): 'Bob' (#6), 'EUR_Bank' (#6), 'Alice' (#6)

└─> create Iou:Iou

with

issuer = 'EUR_Bank'; owner = 'Bob'; currency = "EUR"; amount

↪→= 100.0; observers = []

The submit function used in this scenario tries to perform a transaction and fails if any of the ledger

integrity rules are violated. There is also a submitMustFail function, which checks that certain

transactions are not possible. This is used in daml/Tests/Iou.daml, for example, to confirm that

the ledger model prevents double spends.

1.2.6 Integrate with the ledger

A distributed ledger only forms the core of a full DA Platform application.

To build automations and integrations around the ledger, theSDKhas languagebindings for the Ledger

API in several programming languages.

To compile the Java integration for the quickstart application, run mvn compile.

Now start the Java integration with mvn exec:java@run-quickstart. Note that this step re-

quires that the sandbox started earlier is running.

The application provides REST services on port8080 to performbasic operations on behalf onAlice.

Note: To start the same application on another port, use the command-line parameter -

Drestport=PORT. To start it for another party, use -Dparty=PARTY.

For example, to start the application for Bob on 8081, run mvn exec:java@run-quickstart -

Drestport=8081 -Dparty=Bob

The following REST services are included:

GET on http://localhost:8080/iou lists all active Ious, and their Ids.

Note that the Ids exposed by the REST API are not the ledger contract Ids, but integers. You can

open the address in your browser or run curl -X GET http://localhost:8080/iou.

GET on http://localhost:8080/iou/ID returns the Iou with Id ID.

For example, to get the content of the Iou with Id 0, run:

curl -X GET http://localhost:8080/iou/0

PUT on http://localhost:8080/iou creates a new Iou on the ledger.

To create another AliceCoin, run:

curl -X PUT -d '{"issuer":"Alice","owner":"Alice",

"currency":"AliceCoin","amount":1.0,"observers":[]}' http://

localhost:8080/iou

POST on http://localhost:8080/iou/ID/transfer transfers the Iou with Id ID.

Check the Id of your new AliceCoin by listing all active Ious. If you have followed this guide, it

will be 0 so you can run:

curl -X POST -d '{ "newOwner":"Bob" }' http://localhost:8080/iou/0/

transfer

to transfer it to Bob. If it’s not 0, just replace the 0 in iou/0 in the above command.

1.2. Quickstart guide 15

DAML SDK Documentation, 2019-12-19

The automation is based on the Java bindings and the output of the Java code generator, which are

included as a Maven dependency and Maven plugin respectively:

<dependency>

<groupId>com.daml.ledger</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>__VERSION__</version>

<exclusions>

<exclusion>

<groupId>com.google.protobuf</groupId>

<artifactId>protobuf-lite</artifactId>

</exclusion>

</exclusions>

</dependency>

It consists of the application in file IouMain.java. It uses the class Iou from Iou.java, which is

generated from the DAML model with the Java code generator. The Iou class provides better serial-

ization and de-serialization to JSON via gson.

1. A connection to the ledger is established using a LedgerClient object.

// Create a client object to access services on the ledger.

DamlLedgerClient client = DamlLedgerClient.

↪→forHostWithLedgerIdDiscovery(ledgerhost, ledgerport, Optional.

↪→empty());

// Connects to the ledger and runs initial validation.

client.connect();

2. An in-memory contract store is initialized. This is intended to provide a live view of all active

contracts, with mappings between ledger and external Ids.

AtomicLong idCounter = new AtomicLong(0);

ConcurrentHashMap<Long, Iou> contracts = new ConcurrentHashMap<>();

BiMap<Long, Iou.ContractId> idMap = Maps.synchronizedBiMap(HashBiMap.

↪→create());

3. The Active Contracts Service (ACS) is used to quickly build up the contract store to a recent

state.

client.getActiveContractSetClient().getActiveContracts(iouFilter, true)

.blockingForEach(response -> {

response.getOffset().ifPresent(offset -> acsOffset.set(new

↪→LedgerOffset.Absolute(offset)));

response.getCreatedEvents().stream()

.map(Iou.Contract::fromCreatedEvent)

.forEach(contract -> {

long id = idCounter.getAndIncrement();

contracts.put(id, contract.data);

idMap.put(id, contract.id);

});

});

Note theuseofblockingForEach to ensure that the contract store is fully built and the ledger-

16 Chapter 1. Getting started

https://github.com/google/gson

DAML SDK Documentation, 2019-12-19

offset up to which the ACS provides data is known before moving on.

4. The Transaction Service is wired up to update the contract store on occurrences of

ArchiveEvent and CreateEvent for Ious. Since getTransactions is called without end

offset, it will stream transactions indefinitely, until the application is terminated.

Disposable ignore = client.getTransactionsClient().

↪→getTransactions(acsOffset.get(), iouFilter, true)

.forEach(t -> {

for (Event event : t.getEvents()) {

if (event instanceof CreatedEvent) {

CreatedEvent createdEvent = (CreatedEvent) event;

long id = idCounter.getAndIncrement();

Iou.Contract contract = Iou.Contract.

↪→fromCreatedEvent(createdEvent);

contracts.put(id, contract.data);

idMap.put(id, contract.id);

} else if (event instanceof ArchivedEvent) {

ArchivedEvent archivedEvent = (ArchivedEvent)

↪→event;

long id = idMap.inverse().get(new Iou.

↪→ContractId(archivedEvent.getContractId()));

contracts.remove(id);

idMap.remove(id);

}

}

});

5. Commands are submitted via the Command Submission Service.

private static Empty submit(LedgerClient client, String party, Command

↪→c) {

return client.getCommandSubmissionClient().submit(

UUID.randomUUID().toString(),

"IouApp",

UUID.randomUUID().toString(),

party,

Instant.EPOCH,

Instant.EPOCH.plusSeconds(10),

Collections.singletonList(c))

.blockingGet();

}

You can find examples of ExerciseCommand and CreateCommand instantiation in the bodies

of the transfer and iou endpoints, respectively.

Listing 1: ExerciseCommand

Iou.ContractId contractId = idMap.get(Long.parseLong(req.params("id

↪→")));

ExerciseCommand exerciseCommand = contractId.exerciseIou_Transfer(m.

↪→get("newOwner").toString());

1.2. Quickstart guide 17

DAML SDK Documentation, 2019-12-19

Listing 2: CreateCommand

Iou iou = g.fromJson(req.body(), Iou.class);

CreateCommand iouCreate = iou.create();

The rest of the application sets up the REST services using Spark Java, and does dynamic package

Id detection using the Package Service. The latter is useful during development when package Ids

change frequently.

For a discussion of ledger application design and architecture, take a look at Application Architecture

Guide.

1.2.7 Next steps

Great - you’ve completed the quickstart guide!

Some steps you could take next include:

Explore examples for guidance and inspiration.

Learn DAML.

Language reference.

Learn more about application development.

Learn about the conceptual models behind DAML and platform.

18 Chapter 1. Getting started

http://sparkjava.com/

Chapter 2

Writing DAML

2.1 An introduction to DAML

DAML is a smart contract language designed to build composable applications on an abstract DA

Ledger Model.

In this introduction, you will learn about the structure of a DAML Ledger, and how to write DAML

applications that runonanyDAML Ledger implementation, by building anasset-holding and -trading

application. You will gain an overview over most important language features, how they relate to the

DA Ledger Model and how to use the DAML SDK Tools to write, test, compile, package and ship your

application.

This introduction is structured such that each section presents a new self-contained application

with more functionality than that from the previous section. You can find the DAML code for each

section here or download them using the DAML assistant. For example, to download the sources for

section 1 into a folder called 1_Token, run daml new 1_Token daml-intro-1.

Prerequisites:

You have installed the DAML SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small DAML template, which represents a self-issued, non-

transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make

it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

DAML Modules and Files

Templates

Contracts

Signatories

2.1.1.1 DAML ledger basics

Like most structures called ledgers, a DAML Ledger is just a list of commits. When we say commit, we

mean the final result of when a party successfully submits a transaction to the ledger.

19

https://github.com/digital-asset/daml/tree/master/docs/source/daml/intro/daml

DAML SDK Documentation, 2019-12-19

Transaction is a conceptwe’ll cover inmore detail through this introduction. Themost basic examples

are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the

point where there is a committed transaction that archives it again.

DAML specifies what transactions are legal on a DAML Ledger. The rules the DAML code specifies are

collectively called a DAML model or contract model.

2.1.1.2 DAML files and modules

Each .daml file defines a DAML Module. At the top of each DAML file is a pragma informing the com-

piler of the language version and the module name:

daml 1.2

module Token where

Code comments in DAML are introduced with –:

-- The first line of a DAML file is a pragma telling the compiler the

↪→language

-- version to use.

daml 1.2

-- A DAML file defines a module. The second line of a DAML file gives the

-- module a name.

module Token where

2.1.1.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts

are instances of templates.

Listing 1: A simple template

template Token

with

owner : Party

where

signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

DAML is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line

is indented, and thus part of the template’s body.

Contracts containdata, referred to as the create argumentsor simply arguments. Thewithblockdefines

the data type of the create arguments by listing field names and their types. The single colon :

means of type, so you can read this as template Token with a field owner of type Party.

Token contracts have a single field owner of type Party. The fields declared in a template’s with

block are in scope in the rest of the template body, which is contained in a where block.

2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract instance. These are the parties whose

authority is required to create the contract or archive it again – just like a real contract. Every contract

20 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

must have at least one signatory.

Furthermore, DAML ledgers guarantee that parties see all transactions where their authority is used.

This means that signatories of a contract are guaranteed to see the creation and archival of that

contract.

2.1.1.5 Next up

In 2 Testing templates using scenarios, you’ll learn about how to try out the Token contract template in

DAML’s inbuilt scenario testing language.

2.1.2 2 Testing templates using scenarios

In this section you will test the Token model from 1 Basic contracts using DAML’s inbuilt scenario

language. You’ll learn about the basic features of scenarios:

Getting parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

2.1.2.1 Scenario basics

A Scenario is like a recipe for a test, where you can script different parties submitting a series of

transactions, to check that your templates behave as you’d expect. You can also script some some

external information like party identities, and ledger time.

Below is a basic scenario that creates a Token for a party called Alice.

token_test_1 = scenario do

alice <- getParty "Alice"

submit alice do

create Token with owner = alice

You declare a Scenario a top-level variable and introduce it using scenario do. do always starts

a block, so the rest of the scenario is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above

scenario uses the function getParty to put a party called Alice in a variable alice. There are two

things of note there:

Use of <- instead of =.

The reason for that is getParty is an Action that can only be performed once the Scenario

is run in the context of a ledger. <-means run the action and bind the result. It can only be run

in that context because, depending on the ledger the scenario is running on, getParty may

have to look up a party identity or create a new party.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quitemake sense yet, for the time being you can think of this arrow as extracting

the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to getParty does not have to be enclosed in brackets. Functions in

DAML are called using the syntax fn arg1 arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,

you do this using the submit function. submit takes two arguments: a Party and an Update.

2.1. An introduction to DAML 21

DAML SDK Documentation, 2019-12-19

Just like Scenario is a recipe for a test, Update is a recipe for a transaction. create Token with

owner = alice is an Update, which translates to the transaction creating a Token with owner

Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You could write this as submit alice (create Token with owner = alice), but just like

scenarios, you can assemble updates using do blocks. A do block always takes the value of the last

statement within it so the syntax shown in the scenario above gives the same result, whilst being

easier to read.

2.1.2.2 Running scenarios

There are two ways to run scenarios:

In DAML Studio, providing visualizations of the resulting ledger

Using the command line, useful for continuous integration

In DAML Studio, you should see the text Scenario results just above the line token_test_1 = do.

Click on it to display the outcome of the scenario.

This opens the scenario view in a separate column in VS Code. The default view is a tabular repre-

sentation of the final state of the ledger:

What this display means:

The big title reading Token_Test:Token is the identifier of the type of contract that’s listed

below. Token_Test is the module name, Token the template name.

The first columns, labelled vertically, show which parties know about which contracts. In this

simple scenario, the sole party Alice knows about the contract she created.

The second column shows the ID of the contract. This will be explained later.

The third column shows the status of the contract, either active or archived.

22 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

The remaining columns show the contract arguments, with one column per field. As expected,

field owner is 'Alice'. The single quotation marks indicate that Alice is a party.

To run the same test from the command line, save your module in a file Token_Test.daml and run

daml damlc -- test --files Token_Test.daml. If your file containsmore than one scenario,

all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other

words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-

able attempt to test that would be:

failing_test_1 = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

submit alice do

create Token with owner = bob

submit bob do

create Token with owner = alice

However, if you open the scenario view for that scenario, you see the following message:

The scenario failed, as expected, but scenarios abort at the first failure. Thismeans that it only tested

that Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the scenario running thereafter, or fail if the submission suc-

ceeds, you can use the submitMustFail function:

token_test_2 = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

submitMustFail alice do

create Token with owner = bob

submitMustFail bob do

create Token with owner = alice

(continues on next page)

2.1. An introduction to DAML 23

DAML SDK Documentation, 2019-12-19

(continued from previous page)

submit alice do

create Token with owner = alice

submit bob do

create Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular scenario view just

shows the two Tokens resulting from the successful submit statements. Note the new column for

Bob as well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archive instead of create. Where

create takes an instance of a template, archive takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the

type of contract that the ID refers to. For example, a reference to a Token would be a ContractId

Token.

To archive the Token Alice has created, you need to get a handle on its contract ID. In scenarios, you

do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger. How

this works is discussed in 5 Adding constraints to a contract.

This scenario first checks that Bob cannot archive Alice’s Token and then Alice successfully archives

it:

token_test_3 = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

alice_token <- submit alice do

create Token with owner = alice

submitMustFail bob do

archive alice_token

submit alice do

archive alice_token

2.1.2.5 Exploring the ledger

The resulting scenario view is empty, because there are no contracts left on the ledger. However, if

you want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived

box at the top of the ledger view:

You can see that there was a Token contract, which is now archived, indicated both by the archived

value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the DAML Studio scenario runner, committed transactions are numbered sequentially. The lines

starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These

correspond to the three submit and submitMustFail statements in the scenario.

24 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.1. An introduction to DAML 25

DAML SDK Documentation, 2019-12-19

Transaction #0has one sub-transaction #0:0, which the arrow indicates is a create of a Token. Iden-

tifiers #X:Ymean commit X, sub-transaction Y. All transactions have this format in the sce-

nario runner. However, this format is a testing feature. In general, you should consider Transaction

and Contract IDs to be opaque.

The lines above and below create Token_Test:Token give additional information:

consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit 2.

referenced by #2:0 tells you that the contract was used in other transactions, and lists

their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that

'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the

additional information that Alice learned about the contract in commit #0.

Everything following with shows the create arguments.

2.1.2.6 Exercises

To get a better understanding of scenarios, try the following exercises:

1. Write a template for a second type of Token.

2. Write a scenario with two parties and two types of tokens, creating one token of each type for

each party and archiving one token for each party, leaving one token of each type in the final

ledger view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the

submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing

submit.

2.1.2.7 Next up

In 3 Data types you will learn about DAML’s type system, and how you can think of templates as tables

and contracts as database rows.

2.1.3 3 Data types

In 1 Basic contracts, you learnt about contract templates, which specify the types of contracts that can

be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using scenarios, you learnt about the scenario view in DAML Studio, which dis-

plays the current ledger state. It shows one table per template, with one row per contract of that type

and one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates

specify a data schema for the ledger:

each template corresponds to a table

each field in the with block of a template corresponds to a column in that table

each contract instance of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn

about:

DAML’s built-in and native data types

Record types

26 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Derivation of standard properties

Variants

Manipulating immutable data

Contract keys

After this section, you should be able to use a DAML ledger as a simple database where individual

parties can write, read and delete complex data.

2.1.3.1 Native types

You have already encountered a few native DAML types: Party in 1 Basic contracts, and Text and

ContractId in 2 Testing templates using scenarios. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they

can sign contracts and submit transactions. In general, Party is Oblique.

Text Stores a unicode character string like "Alice".

ContractId a Stores a reference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.

For example, 0.0000000001 or -9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below scenario instantiates each one of these types,manipulates it where appropriate, and tests

the result.

import DA.Time

import DA.Date

native_test = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

let

my_int = -123

my_dec = 0.001 : Decimal

my_text = "Alice"

my_bool = False

my_date = date 2020 Jan 01

my_time = time my_date 00 00 00

my_rel_time = hours 24

assert (alice /= bob)

assert (-my_int == 123)

assert (1000.0 * my_dec == 1.0)

assert (not my_bool)

assert (addDays my_date 1 == date 2020 Jan 02)

assert (addRelTime my_time my_rel_time == time (addDays my_date 1) 00 00

↪→00)

Despite its simplicity, there are quite a few things to note in this scenario:

The import statements at the top import two packages from theDAML Standard Library, which

2.1. An introduction to DAML 27

DAML SDK Documentation, 2019-12-19

contain all the date and time related functions we use here. More on packages, imports and

the standard library later.

Most of the variables are declared inside a let block.

That’s because the scenario do block expects scenario actions like submit or getParty. An

integer like 123 is not an action, it’s a pure expression, something we can evaluate without any

ledger. You can think of the let as turning variable declaration into an action.

None of the variables have annotations to say what type they are.

That’s because DAML is very good at inferring types. The compiler knows that 123 is an Int, so

if you declare my_int = 123, it can infer that my_int is also an Int. This means you don’t

have to write the type annotation my_int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type

annotation. And you can always choose to add them to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails

with False.

Try putting assert False somewhere in a scenario and see what happens to the scenario

result.

With templates and these native types, it’s already possible to write a schema akin to a table in a

relational database. Below, Token is extended into a simple CashBalance, administered by a party

in the role of an accountant.

template CashBalance

with

accountant : Party

currency : Text

amount : Decimal

owner : Party

account_number : Text

bank : Party

bank_address : Text

bank_telephone : Text

where

signatory accountant

cash_balance_test = scenario do

accountant <- getParty "Bob"

alice <- getParty "Alice"

bob <- getParty "Bank of Bob"

submit accountant do

create CashBalance with

accountant

currency = "USD"

amount = 100.0

owner = alice

account_number = "ABC123"

bank = bob

bank_address = "High Street"

bank_telephone = "012 3456 789"

28 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.1.3.2 Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give

that data more structure. Fortunately, DAML’s type system has a number of ways to assemble these

native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text

key and an Int value. In DAML, you could use a two-tuple of type (Text, Int) to do so. If you

wanted to express a coordinate in three dimensions, you could group three Decimal values using a

three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple

tuple_test = scenario do

let

my_key_value = ("Key", 1)

my_coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)

assert (fst my_key_value == "Key")

assert (snd my_key_value == 1)

assert (my_key_value._1 == "Key")

assert (my_key_value._2 == 1)

assert (my_coordinate == (fst3 my_coordinate, snd3 my_coordinate, thd3

↪→my_coordinate))

assert (my_coordinate == (my_coordinate._1, my_coordinate._2, my_

↪→coordinate._3))

You can access the data in the tuples using:

functions fst, snd, fst3, snd3, thd3

a dot-syntax with field names _1, _2, _3, etc.

DAML supports tuples with up to 20 elements, but accessor functions like fst are only included for

2- and 3-tuples.

Lists

Lists in DAML take a single type parameter defining the type of thing in the list. So you can have a

list of integers [Int] or a list of strings [Text], but not a list mixing integers and strings.

That’s because DAML is statically and strongly typed. When you get an element out of a list, the

compiler needs to know what type that element has.

The below scenario instantiates a few lists of integers and demonstrates the most important list

functions.

import DA.List

list_test = scenario do

let

empty : [Int] = []

(continues on next page)

2.1. An introduction to DAML 29

DAML SDK Documentation, 2019-12-19

(continued from previous page)

one = [1]

two = [2]

many = [3, 4, 5]

-- `head` gets the first element of a list

assert (head one == 1)

assert (head many == 3)

-- `tail` gets the remainder after head

assert (tail one == empty)

assert (tail many == [4, 5])

-- `++` concatenates lists

assert (one ++ two ++ many == [1, 2, 3, 4, 5])

assert (empty ++ many ++ empty == many)

-- `::` adds an element to the beginning of a list.

assert (1 :: 2 :: 3 :: 4 :: 5 :: empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It’s necessary because [] is ambiguous. It

could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:

data T = C with, where T is the type name and C is the data constructor. In practice, it’s a good

idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

-- Fields of same type can be declared in one line

data Coordinate = Coordinate with

x, y, z : Decimal

-- Custom data types can also have variables

data KeyValue k v = KeyValue with

my_key : k

my_val : v

data Nested = Nested with

my_coord : Coordinate

my_record : MyRecord

my_kv : KeyValue Text Int

record_test = scenario do

(continues on next page)

30 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

let

my_record = MyRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_coord = Coordinate with

x = 1.0

y = 2.0

z = 3.0

-- `my_text_int` has type `KeyValue Text Int`

my_text_int = KeyValue with

my_key = "Key"

my_val = 1

-- `my_int_decimal` has type `KeyValue Int Decimal`

my_int_decimal = KeyValue with

my_key = 2

my_val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick them

↪→up

-- implicitly, writing just `my_coord` instead of `my_coord = my_

↪→coord`.

my_nested = Nested with

my_coord

my_record

my_kv = my_text_int

-- Fields can be accessed with dot syntax

assert (my_coord.x == 1.0)

assert (my_text_int.my_key == "Key")

assert (my_nested.my_record.my_dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.

That’s no accident because a template is really just a special record. When you write template

Token with, one of the things that happens in the background is that this becomes a data Token

= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert

(my_record == my_record) in the scenario, you may be surprised to get an error message No

instance for (Eq MyRecord) arising from a use of ‘==’. Equality in DAML is always

value equality and we haven’t written a function to check value equality for MyRecord values. But

don’t worry, you don’t have to implement this rather obvious function yourself. The compiler is smart

enough to do it for you, if you use deriving (Eq):

data EqRecord = EqRecord with

my_txt : Text

(continues on next page)

2.1. An introduction to DAML 31

DAML SDK Documentation, 2019-12-19

(continued from previous page)

my_int : Int

my_dec : Decimal

my_list : [Text]

deriving (Eq)

data MyContainer a = MyContainer with

contents : a

deriving (Eq)

eq_test = scenario do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_container = MyContainer with

contents = eq_record

other_container = MyContainer with

contents = eq_record

assert(my_container.contents == eq_record)

assert(my_container == other_container)

Eq is what is called a type-class. You can think of a type-class as being like an interface in other

languages: it is the mechanism by which you can define a set of functions (for example, == and /=

in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.

There are some other type-classes that the compiler can derive automatically. Most prominently,

Show to get access to the functionshow (equivalent totoString inmany languages) andOrd, which

gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-

ated using template T with do this automatically.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

owner : Party

number : Text

bank : Bank

deriving (Eq, Show)

(continues on next page)

32 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : Account

where

signatory accountant

cash_balance_test = scenario do

accountant <- getParty "Bob"

owner <- getParty "Alice"

bank_party <- getParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

owner

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

create CashBalance with

accountant

cash

account

If you look at the resulting scenario view, you’ll see that this still gives rise to one table. The records

are expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,

but you can’t just leave bank empty. DAML doesn’t have an equivalent to null. Variants can express

that cash can either be in hand or at a bank.

data Bank = Bank with

party : Party

address: Text

telephone : Text

(continues on next page)

2.1. An introduction to DAML 33

DAML SDK Documentation, 2019-12-19

(continued from previous page)

deriving (Eq, Show)

data Account = Account with

number : Text

bank : Bank

deriving (Eq, Show)

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

data Location

= InHand

| InAccount Account

deriving (Eq, Show)

template CashBalance

with

accountant : Party

owner : Party

cash : Cash

location : Location

where

signatory accountant

cash_balance_test = scenario do

accountant <- getParty "Bob"

owner <- getParty "Alice"

bank_party <- getParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

create CashBalance with

accountant

owner

cash

location = InHand

(continues on next page)

34 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

submit accountant do

create CashBalance with

accountant

owner

cash

location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value

InAccount a where a is of type Account. This is quite an explicit way to say that theremay ormay not

be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest DAML has to a null value:

data Optional a

= None

| Some a

deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek

= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you

can no longer access the account number of a Location directly, because if it is InHand, theremay

be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all

cases:

{-

-- Commented out as `Either` is defined in the standard library.

data Either a b

= Left a

| Right b

-}

variant_access_test = scenario do

let

l : Either Int Text = Left 1

r : Either Int Text = Right "r"

-- If we know that `l` is a `Left`, we can error on the `Right` case.

(continues on next page)

2.1. An introduction to DAML 35

DAML SDK Documentation, 2019-12-19

(continued from previous page)

l_value = case l of

Left i -> i

Right i -> error "Expecting Left"

-- Comment out at your own peril

{-

r_value = case r of

Left i -> i

Right i -> error "Expecting Left"

-}

-- If we are unsure, we can return an `Optional` in both cases

ol_value = case l of

Left i -> Some i

Right i -> None

or_value = case r of

Left i -> Some i

Right i -> None

-- If we don't care about values or even constructors, we can use

↪→wildcards

l_value2 = case l of

Left i -> i

Right _ -> error "Expecting Left"

l_value3 = case l of

Left i -> i

_ -> error "Expecting Left"

day = Sunday

weekend = case day of

Saturday -> True

Sunday -> True

_ -> False

assert (l_value == 1)

assert (l_value2 == 1)

assert (l_value3 == 1)

assert (ol_value == Some 1)

assert (or_value == None)

assert weekend

2.1.3.3 Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to

the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in DAML is immutable, meaning once a value is created, it will never change. Rather than

changing values, you create new values based on old ones with some changes applied:

36 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

manipulation_demo = scenario do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

-- A verbose way to change `eq_record`

changed_record = EqRecord with

my_txt = eq_record.my_txt

my_int = 3

my_dec = eq_record.my_dec

my_list = eq_record.my_list

-- A better way

better_changed_record = eq_record with

my_int = 3

record_with_changed_list = eq_record with

my_list = "Zero" :: eq_record.my_list

assert (eq_record.my_int == 2)

assert (changed_record == better_changed_record)

-- The list on `eq_record` can't be changed.

assert (eq_record.my_list == ["One", "Two", "Three"])

-- The list on `record_with_changed_list` is a new one.

assert (record_with_changed_list.my_list == ["Zero", "One", "Two", "Three

↪→"])

changed_record and better_changed_record are each a copy of eq_record with the field

my_int changed. better_changed_record shows the recommended way to change fields on a

record. The syntax is almost the same as for a new record, but the record name is replaced with the

old value: eq_record with instead of EqRecord with. The with block no longer needs to give

values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the scenario, eq_record never changes. The expression "Zero" :: eq_record.

my_list doesn’t change the list in-place, but creates a new list, which is eq_record.my_list

with an extra element in the beginning.

2.1.3.4 Contract keys

DAML’s type system lets you store richly structured data on DAML templates, but just like most

database schemas have more than one table, DAML contract models often have multiple templates

that reference each other. For example, youmaynotwant to store your bankandaccount information

on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below

shows a contract model where Account is split out into a separate template and referenced by

ContractId, but it also highlights a big problem with that kind of reference: just like data, con-

tracts are immutable. They can only be created and archived, so if you want to change the data on a

2.1. An introduction to DAML 37

DAML SDK Documentation, 2019-12-19

contract, you end up archiving the original contract and creating a new one with the changed data.

That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : ContractId Account

where

signatory accountant

id_ref_test = scenario do

accountant <- getParty "Bob"

owner <- getParty "Alice"

bank_party <- getParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do

create Account with

accountant

owner

bank

number = "ABC123"

(continues on next page)

38 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

balanceCid <- submit accountant do

create CashBalance with

accountant

cash

account = accountCid

-- Now the accountant updates the telephone number for the bank on the

↪→account

new_account <- submit accountant do

account <- fetch accountCid

archive accountCid

create account with

bank = account.bank with

telephone = "098 7654 321"

-- The `account` field on the balance now refers to the archived

-- contract, so this will fail.

submitMustFail accountant do

balance <- fetch balanceCid

fetch balance.account

The scenario above uses the fetch function, which retrieves the arguments of an active contract

using its contract ID.

Note that, for the first time, the party submitting a transaction is doing more than one thing as

part of that transaction. To create new_account, the accountant fetches the arguments of the old

account, archives the old account and creates a newaccount, all in one transaction. More on building

transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the

primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

in the sense that only one contract of a given template and with a given key value can be active at a

time.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data AccountKey = AccountKey with

accountant : Party

number : Text

bank_party : Party

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

(continues on next page)

2.1. An introduction to DAML 39

DAML SDK Documentation, 2019-12-19

(continued from previous page)

number : Text

bank : Bank

where

signatory accountant

key AccountKey with

accountant

number

bank_party = bank.party

: AccountKey

maintainer key.accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : AccountKey

where

signatory accountant

id_ref_test = scenario do

accountant <- getParty "Bob"

owner <- getParty "Alice"

bank_party <- getParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do

create Account with

accountant

owner

bank

number = "ABC123"

balanceCid <- submit accountant do

account <- fetch accountCid

create CashBalance with

accountant

(continues on next page)

40 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

cash

account = key account

-- Now the accountant updates the telephone number for the bank on the

↪→account

new_accountCid <- submit accountant do

account <- fetch accountCid

archive accountCid

create account with

bank = account.bank with

telephone = "098 7654 321"

-- Thanks to contract keys, the current account contract is fetched

submit accountant do

balance <- fetch balanceCid

(cid, account) <- fetchByKey @Account balance.account

assert (cid == new_accountCid)

Since DAML is designed to run on distributed systems, you have to assume that there is no

global entity that can guarantee uniqueness, which is why each key expression must come with

a maintainer expression. maintainer takes one or several parties, all of which have to be signa-

tories of the contract and be part of the key. That way the index can be partitioned amongst sets

of maintainers, and each set of maintainers can independently ensure the uniqueness constraint

on their piece of the index. The constraint that maintainters are part of the key is ensured by only

having the variable key

Note how the fetch in the final submit block has become a fetchByKey @Account. fetchByKey

@Account takes a value of type AccountKey and returns a tuple (ContractId Account,

Account) if the lookup was successful or fails the transaction otherwise.

Since a single type could be used as the key for multiple templates, you need to tell the compiler

what type of contract is being fetched by using the @Account notation.

2.1.3.5 Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use

keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other

parties the right to manipulate data in restricted ways.

2.1.4 4 Transforming data using choices

In the example in Contract keys the accountant party wanted to change some data on a contract. They

did so by archiving the contract and re-creating it with the updated data. That works because the

accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what

if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how

to delegate the right to exercise these choices to other parties.

2.1. An introduction to DAML 41

DAML SDK Documentation, 2019-12-19

2.1.4.1 Choices as methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the

telephone number, just like on the Account in Contract keys. Rather than requiring them tomanually

look up the contract, archive the old one and create a new one, you can provide them a convenience

method on Contact:

template Contact

with

owner : Party

party : Party

address : Text

telephone : Text

where

signatory owner

controller owner can

UpdateTelephone

: ContractId Contact

with

newTelephone : Text

do

create this with

telephone = newTelephone

The abovedefines a choice calledUpdateTelephone. Choices are part of a contract template. They’re

permissioned functions that result in an Update. Using choices, authority can be passed around,

allowing the construction of complex transactions.

Let’s unpack the code snippet above:

The first line, controller owner can says that the following choices are controlled by owner,

meaning owner is the only party that is allowed to exercise them. The line starts a new block in

which multiple choices can be defined.

UpdateTelephone is thenameof a choice. It starts anewblock inwhich that choice is defined.

: ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because

choices are consuming by default. Thatmeans when the above choice is exercised on a contract, that

contract is archived.

If you paid a lot of attention in 3 Data types, youmay have noticed that the create statement returns

an Update (ContractId Contact), not a ContractId Contact. As a do block always returns

the value of the last statementwithin it, thewholedo block returns anUpdate, but the return type on

42 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

the choice is just a ContractId Contact. This is a convenience. Choices always return an Update

so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a scenario:

choice_test = scenario do

owner <- getParty "Alice"

party <- getParty "Bob"

contactCid <- submit owner do

create Contact with

owner

party

address = "1 Bobstreet"

telephone = "012 345 6789"

-- The bank can't change its own telephone number as the accountant

↪→controls

-- that choice.

submitMustFail party do

exercise contactCid UpdateTelephone with

newTelephone = "098 7654 321"

newContactCid <- submit owner do

exercise contactCid UpdateTelephone with

newTelephone = "098 7654 321"

submit owner do

newContact <- fetch newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of

type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice

parameters using the with syntax you are already familiar with.

exercise returns an Update rwhere r is the return type specified on the choice, allowing the new

ContractId Contact to be stored in the variable new_contactCid.

2.1.4.2 Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party

field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,

nor change them in any way. It would be reasonable for the party for which a Contact is stored to

be able to update their own address and telephone number. In other words, the owner of a Contact

should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the

scenario:

controller party can

UpdateAddress

: ContractId Contact

with

(continues on next page)

2.1. An introduction to DAML 43

DAML SDK Documentation, 2019-12-19

(continued from previous page)

newAddress : Text

do

create this with

address = newAddress

newContactCid <- submit party do

exercise newContactCid UpdateAddress with

newAddress = "1-10 Bobstreet"

submit owner do

newContact <- fetch newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the scenario view in the IDE, you will notice that Bob sees the Contact. Controllers spec-

ified via controller c can syntax become observers of the contract. More on observers later, but

in short, they get to see any changes to the contract.

2.1.4.3 Choices in the Ledger Model

In 1 Basic contracts you learned about the high-level structure of a DAML ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger

and transactions.

A transaction is a list of actions, and there are just three kinds of action: create, exercise and

fetch. All actions are performed on a contract.

A create action contains the contract arguments and changes the contract’s status from non-

existent to active.

A fetch action checks the existence and activeness of a contract.

An exercise action contains the choice arguments and a transaction called the consequences.

Exercises come in two kinds called consuming and nonconsuming. consuming is the default

kind and changes the contract’s status from active to archived.

The consequences of exercise nodes turn each transaction into an ordered tree of (sub-) transac-

tions, or, equivalently, a forest of actions. Actions are in one-to-one correspondence with proper

sub-transactions. You can see the action and their consequences in the transaction view of the

above scenario:

Transactions:

TX #0 1970-01-01T00:00:00Z (Contact:43:17)

#0:0

│ consumed by: #2:0

│ referenced by #2:0

│ known to (since): 'Alice' (#0), 'Bob' (#0)

└─> create Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone

↪→= "012 345 6789"

TX #1 1970-01-01T00:00:00Z

mustFailAt 'Bob' (Contact:52:3)

(continues on next page)

44 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)

#2:0

│ known to (since): 'Alice' (#2), 'Bob' (#2)

└─> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)

with

newTelephone = "098 7654 321"

children:

#2:1

│ consumed by: #4:0

│ referenced by #3:0, #4:0

│ known to (since): 'Alice' (#2), 'Bob' (#2)

└─> create Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";

↪→telephone = "098 7654 321"

TX #3 1970-01-01T00:00:00Z (Contact:60:3)

#3:0

└─> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)

#4:0

│ known to (since): 'Alice' (#4), 'Bob' (#4)

└─> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)

with

newAddress = "1-10 Bobstreet"

children:

#4:1

│ referenced by #5:0

│ known to (since): 'Alice' (#4), 'Bob' (#4)

└─> create Contact:Contact

with

owner = 'Alice';

party = 'Bob';

address = "1-10 Bobstreet";

telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)

#5:0

└─> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four submit statements in the sce-

nario. Within each commit, we see that it’s actually actions that have IDs of the form

#commit_number:action_number. Contract IDs are just the ID of their create action.

2.1. An introduction to DAML 45

DAML SDK Documentation, 2019-12-19

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions

of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading

children:, making the tree structure apparent.

The Archive choice

Youmayhave noticed that there is no archive action. That’s becausearchive cid is just shorthand

forexercise cid Archive, whereArchive is a choice implicitly added to every template, with the

signatories as controllers.

2.1.4.4 A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash IOUs (I owe

you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the

location of the physical cash, but merely with liabilities:

-- Copyright (c) 2019 The DAML Authors. All rights reserved.

-- SPDX-License-Identifier: Apache-2.0

daml 1.2

module SimpleIou where

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

controller owner can

Transfer

: ContractId SimpleIou

with

newOwner : Party

do

create this with owner = newOwner

test_iou = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

charlie <- getParty "Charlie"

dora <- getParty "Dora"

-- The bank issues an Iou for $100 to Alice.

iou <- submit dora do

(continues on next page)

46 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- Alice transfers it to Bob.

iou2 <- submit alice do

exercise iou Transfer with

newOwner = bob

-- Bob transfers it to Charlie.

submit bob do

exercise iou2 Transfer with

newOwner = charlie

The abovemodel is fine as long as everyone trusts Dora. Dora could revoke the SimpleIou at any point

by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

2.1.4.5 Next up

You can now store and transform data on the ledger, even giving other parties specific write access

through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In

that context, you will also learn about time on DAML ledgers, do blocks and <- notation within those.

2.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract

models. In this section, you will learn about the two main mechanisms provided in DAML:

The ensure keyword.

The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Scenario types and do

blocks, which will be good preparation for 7 Composing choices, where you will use do blocks to com-

pose choices into complex transactions.

Lastly, you will learn about time on the ledger and in scenarios.

2.1.5.1 Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-

conditions. These are simply restrictions on the data that can be stored on a contract from that

template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to

store positive amounts. You can enforce this using the ensure keyword:

2.1. An introduction to DAML 47

DAML SDK Documentation, 2019-12-19

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

ensure cash.amount > 0.0

Theensure keyword takes a single expression of type Bool. If youwant to addmore restrictions, use

logical operators &&, || and not to build up expressions. The below shows the additional restriction

that currencies are three capital letters:

&& T.length cash.currency == 3

&& T.isUpper cash.currency

test_restrictions = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

dora <- getParty "Dora"

-- Dora can't issue negative Ious.

submitMustFail dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = -100.0

currency = "USD"

-- Or even zero Ious.

submitMustFail dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 0.0

currency = "USD"

-- Nor positive Ious with invalid currencies.

submitMustFail dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "Swiss Francs"

-- But positive Ious still work, of course.

(continues on next page)

48 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

iou <- submit dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

2.1.5.2 Assertions

A second common kind of restriction is one on data transformations.

For example, the simple Iou in A simple cash model allowed the no-op where the owner transfers to

themselves. You can prevent that using an assert statement, which you have already encountered

in the context of scenarios.

assert does not return an informative error so often it’s better to use the function assertMsg,

which takes a custom error message:

controller owner can

Transfer

: ContractId SimpleIou

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=

↪→newOwner)

create this with owner = newOwner

-- Alice can't transfer to herself...

submitMustFail alice do

exercise iou Transfer with

newOwner = alice

-- ... but can transfer to Bob.

iou2 <- submit alice do

exercise iou Transfer with

newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-

ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This

assumes that actual cash changes hands off-ledger.)

controller owner can

Redeem

: ()

do

now <- getTime

let

today = toDateUTC now

(continues on next page)

2.1. An introduction to DAML 49

DAML SDK Documentation, 2019-12-19

(continued from previous page)

dow = dayOfWeek today

timeofday = now `subTime` time today 0 0 0

hrs = convertRelTimeToMicroseconds timeofday / 3600000000

assertMsg

("Cannot redeem outside business hours. Current time: " <> show

↪→timeofday)

(hrs >= 8 && hrs <= 18)

case dow of

Saturday -> abort "Cannot redeem on a Saturday."

Sunday -> abort "Cannot redeem on a Sunday."

_ -> return ()

-- June 1st 2019 is a Saturday.

passToDate (date 2019 Jun 1)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exercise iou2 Redeem

-- Not even at mid-day.

pass (hours 12)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exercise iou2 Redeem

-- Bob also cannot redeem at 6am on a Monday.

pass (hours 42)

submitMustFail bob do

exercise iou2 Redeem

-- Bob can redeem at 8am on Monday.

pass (hours 2)

submit bob do

exercise iou2 Redeem

There are quite a fewnew time-related functions from theDA.Time andDA.Date libraries here. Their

names should be reasonably descriptive so how theyworkwon’t be covered here, but given that DAML

assumes it is run in a distributed setting, we will still discuss time in DAML.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the

<- operator. do blocks and <- deserve a proper explanation at this point.

2.1.5.3 Time on DAML ledgers

Each transaction on a DAML ledger has two timestamps called the ledger effective time (LET) and the

record time (RT). The ledger effective time is set by the submitter of a transaction, the record time is

set by the consensus protocol.

Each DAML ledger has a policy on the allowed difference between LET and RT called the skew. The

submitter has to take a good guess at what the record time will be. If it’s too far off, the transaction

will be rejected.

getTime is an action that gets the LET from the ledger. In the above example, that time is taken apart

50 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

into day of week and hour of day using standard library functions from DA.Date and DA.Time. The

hour of the day is checked to be in the range from 8 to 18.

Suppose now that the ledger had a skew of 10 seconds, but a submission took less than 4 seconds

to commit. At 18:00:05, Alice could submit a transaction with a LET of 17:59:59 to redeem an Iou. It

would be a valid transaction and be committed successfully as getTime will return 17:59:59 so hrs

== 17. Since RT will be before 18:00:09, LET - RT < 10 seconds and the transaction won’t be

rejected.

Time therefore has to be considered slightly fuzzy in DAML, with the fuzziness depending on the skew

parameter.

Time in scenarios

In scenarios, record and ledger effective time are always equal. You can set them using the following

functions:

passToDate, which takes a date and sets the time to midnight (UTC) of that date

pass, which takes a RelTime (a relative time) and moves the ledger by that much

Time on ledgers

On a distributed DAML ledger, there are no guarantees that ledger effective time or relative time are

strictly increasing. The only guarantee is that ledger effective time is increasing with causality. That

is, if a transaction TX2 depends on a transaction TX1, then the ledger enforces that the LET of TX2 is

greater than or equal to that of TX1:

iou3 <- submit dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

pass (days (-3))

submitMustFail alice do

exercise iou3 Redeem

2.1.5.4 Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Scenario and Update.

Both of these are examples of an Action, also called a Monad in functional programming. You can

construct Actions conveniently using do notation.

UnderstandingActionsanddoblocks is therefore crucial to beingable to construct correct contract

models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressions in DAML are pure in the sense that they have no side-effects: they neither read normod-

ify any external state. If you know the value of all variables in scope and write an expression, you can

work out the value of that expression on pen and paper.

2.1. An introduction to DAML 51

DAML SDK Documentation, 2019-12-19

However, the expressions you’ve seen that used the <- notation are not like that. For example, take

getTime, which is an Action. Here’s the example we used earlier:

getTime is a good example of an Action. Here’s the example we used earlier

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there

is no expression expr that you could put on the right hand side of now = expr. To get the ledger

effective time, you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you

come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write

account = fetch cid. To do so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single param-

eter a, and Update and Scenario are instances of Action. A value of such a type m a where m is

an instance of Action can be interpreted as a recipe for an action of type m, which, when executed,

returns a value a.

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in

the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have

an effect – you change the state of the kitchen – and a return value – the thing you leave the kitchen

with.

An Update a is a recipe to update a DAML ledger, which, when committed, has the effect of

changing the ledger, and returns a value of type a. An update to a DAML ledger is a transaction

so equivalently, an Update a is a recipe to construct a transaction, which, when executed in

the context of a ledger, returns a value of type a.

A Scenario a is a recipe for a test, which, when performed against a ledger, has the effect of

changing the ledger in ways analogous to those available via the API, and returns a value of

type a.

Expressions like getTime, getParty party, pass time, submit party update, create

contract and exercise choice should make more sense in that light. For example:

getTime : Update Time is the recipe for an empty transaction that also happens to return

a value of type Time.

pass (days 10) : Scenario () is a recipe for a transaction that doesn’t submit any

transactions, but has the side-effect of changing the LET of the test ledger. It returns (), also

called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou), where iou : Iou is a recipe for a transaction

consisting of a single create action, and returns the contract id of the created contract if

successful.

submit alice (create iou) : Scenario (ContractId Iou) is a recipe for a scenario

in which Alice evaluates the result of create iou to get a transaction and a return value of

type ContractId Iou, and then submits that transaction to the ledger.

Any DAML ledger knows how to perform actions of type Update a. Only some know how to run sce-

narios, meaning they can perform actions of type Scenario a.

52 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just

another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a

transaction.

A scenario is a list of interactions with the ledger (submit, getParty, pass, etc). So a scenario

followed by another scenario is again a scenario.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,

using the results of earlier actions in later ones.

sub_scenario1 : Scenario (ContractId SimpleIou) = scenario do

alice <- getParty "Alice"

dora <- getParty "Dora"

submit dora do

create SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

sub_scenario2 : Scenario Int = scenario do

getParty "Nobody"

pass (days 1)

pass (days (-1))

return 42

sub_scenario3 : Scenario (ContractId SimpleIou) = scenario do

bob <- getParty "Bob"

dora <- getParty "Dora"

submit dora do

create SimpleIou with

issuer = dora

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

main_scenario : Scenario () = scenario do

dora <- getParty "Dora"

iou1 <- sub_scenario1

sub_scenario2

iou2 <- sub_scenario3

submit dora do

archive iou1

(continues on next page)

2.1. An introduction to DAML 53

DAML SDK Documentation, 2019-12-19

(continued from previous page)

archive iou2

Above, we see do blocks in action for both Scenario and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return x is a no-op action

which returns value x so return 42 : Update Int. Since do blocks always return the value of

their last action, sub_scenario2 : Scenario Int.

2.1.5.5 Failing actions

Not only are Update and Scenario examples of Action, they are both examples of actions that

can fail, e.g. because a transaction is illegal or the party retrieved via getParty doesn’t exist on the

ledger.

Each has a special action abort txt that represents failure, and that takes on type Update () or

Scenario () depending on context .

Transactions andscenarios succeedor fail atomicallyasawhole. So anoccurrence of anabortaction

will always fail the entire evaluation of the current Scenario or Update.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.

It has type Update () and is either an abort or return depending on the day of week. So during

the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of

transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails

the entire transaction.

2.1.5.6 A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more

generally, by creating a new type that is also an action. CoinGame a is an Action a in which a Coin

is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing

the random number generator’s state. Based on the Heads and Tails results, a return value of type

a is calulated.

data Face = Heads | Tails

deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with

play : Coin -> (Coin, a)

flipCoin : CoinGame Face

getCoin : Scenario Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.

More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get

your hands on aCoin in aScenario context and an actionflipCoinwhich represents the simplest

possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write

down a script or recipe for a game:

54 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

coin_test = scenario do

-- The coin is pseudo-random on LET so change the parameter to change the

↪→game.

passToDate (date 2019 Jun 1)

pass (seconds 2)

coin <- getCoin

let

game = do

f1r <- flipCoin

f2r <- flipCoin

f3r <- flipCoin

if all (== Heads) [f1r, f2r, f3r]

then return "Win"

else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return

Heads, the result is "Win", or else "Loss".

In a Scenario context you can get a Coin using the getCoin action, which uses the LET to calculate

a seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-

ing glass and understand in-depth what’s going on, you can look at the source file to see how the

CoinGame action is implemented, though be warned that the implementation uses a lot of DAML

features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general

course on functional programming, and Haskell in particular. For example:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)

Learn You a Haskell for Great Good! (Miran Lipovaa)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

2.1.5.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-

tions only have an effect when they are performed, so the following scenario succeeds or fails de-

pending on the value of abortScenario:

nonPerformedAbort = scenario do

let abortScenario = False

let failingAction : Scenario () = abort "Foo"

let successfulAction : Scenario () = return ()

if abortScenario then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a

function pow that takes an integer to the power of another positive integer. How do we handle that

2.1. An introduction to DAML 55

https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

DAML SDK Documentation, 2019-12-19

the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int

optPow x y

| y == 0 = Some 1

| y > 0 = let Some z = optPow x (y - 1)

in Some (y * z)

| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always

handle it as we need to extract the result from an Optional. We can see the impact on convenience

in the definition of the above function. In cases, like division by zero or the above function, it can

therefore be preferrable to fail catastrophically instead:

errPow : Int -> Int -> Int

errPow x y

| y == 0 = 1

| y > 0 = y * errPow x (y - 1)

| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following scenario will fail,

because failingComputation is evaluated:

nonPerformedError = scenario do

let causeError = False

let failingComputation = errPow 1 (-1)

let successfulComputation = errPow 1 1

return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and

where explicit partiality would unduly impact usability of the function.

2.1.5.8 Next up

You can now specify a precise data and data-transformationmodel for DAML ledgers. In 6 Parties and

authority, you will learn how to properly involve multiple parties in contracts, how authority works in

DAML, and how to build contract models with strong guarantees in contexts with mutually distrust-

ing entities.

2.1.6 6 Parties and authority

DAML is designed for distributed applications involving mutually distrusting parties. In a well-

constructed contract model, all parties have strong guarantees that nobody cheats or circumvents

the rules laid out by templates and choices.

In this section you will learn about DAML’s authorization rules and how to develop contract models

that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another

Write advanced choices

Reason through DAML’s Authorization model

56 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.1.6.1 Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract

has one major problem: The contract is only signed by the issuer. The signatories are the parties

with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange

for some goods, she could just archive it again after receiving the goods. Bob would have a record of

such actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

simple_iou_test = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice transfers the payment as a SimpleIou.

iou <- submit alice do

create SimpleIou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

pass (days 1)

-- Bob delivers the goods.

pass (minutes 10)

-- Alice just deletes the payment again.

submit alice do

archive iou

For a party to have any guarantees that only those transformations specified in the choices are actu-

ally followed, they either need tobea signatory themselves, or trust oneof the signatories tonot agree

to transactions that archive and re-create contracts in unexpected ways. To make the SimpleIou

safe for Bob, you need to add him as a signatory.

template Iou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer, owner

(continues on next page)

2.1. An introduction to DAML 57

DAML SDK Documentation, 2019-12-19

(continued from previous page)

controller owner can

Transfer

: ContractId Iou

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=

↪→newOwner)

create this with

owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Iou to Bob. To get an

Iou with Bob’s signature as owner onto the ledger, his authority is needed.

iou_test = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice wants to give Bob an Iou, but she can't without Bob's authority.

submitMustFail alice do

create Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

-- She can issue herself an Iou.

iou <- submit alice do

create Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- However, she can't transfer it to Bob.

submitMustFail alice do

exercise iou Transfer with

newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above

Iou can contain negative values so Bob should be glad that Alice cannot put his signature on any

Iou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above

Iou, before diving into the authorization model in full.

58 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.1.6.2 Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an Iou to

Bob, givinghim the choice to accept. You candosoby introducingaproposal contractIouProposal:

template IouProposal

with

iou : Iou

where

signatory iou.issuer

controller iou.owner can

IouProposal_Accept

: ContractId Iou

do

create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do

create IouProposal with

iou = Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

submit bob do

exercise iouProposal IouProposal_Accept

The IouProposal contract carries the authorithy of iou.issuer by virtue of them being a signa-

tory. By exercising the IouProposal_Accept choice, Bob adds his authority to that of Alice, which

is why an Iou with both signatories can be created in the context of that choice.

The choice is called IouProposal_Accept, not Accept, because propose-accept patterns are very

common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure

uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,

by creating a TransferProposal:

template IouTransferProposal

with

iou : Iou

newOwner : Party

where

signatory (signatory iou)

controller iou.owner can

IouTransferProposal_Cancel

: ContractId Iou

(continues on next page)

2.1. An introduction to DAML 59

DAML SDK Documentation, 2019-12-19

(continued from previous page)

do

create iou

controller newOwner can

IouTransferProposal_Reject

: ContractId Iou

do

create iou

IouTransferProposal_Accept

: ContractId Iou

do

create iou with

owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the

signatories from another contract. Instead of writing signatory (signatory iou), you could

write signatory iou.issuer, iou.owner.

Note also how newOwner is given multiple choices using a single controller newOwner can

block. The IouProposal had a single signatory so it could be cancelled easily by archiving it. With-

out a Cancel choice, the newOwner could abuse an open TransferProposal as an option. The triple

Accept, Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a

transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a

IouTransferProposal is created instead of an Iou:

ProposeTransfer

: ContractId IouTransferProposal

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=

↪→newOwner)

create IouTransferProposal with

iou = this

newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- getParty "Charlie"

-- Alice issues an Iou using a transfer proposal.

tpab <- submit alice do

create IouTransferProposal with

newOwner = bob

iou = Iou with

issuer = alice

owner = alice

cash = Cash with

(continues on next page)

60 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

amount = 100.0

currency = "USD"

-- Bob accepts the transfer from Alice.

iou2 <- submit bob do

exercise tpab IouTransferProposal_Accept

-- Bob offers Charlie a transfer.

tpbc <- submit bob do

exercise iou2 ProposeTransfer with

newOwner = charlie

-- Charlie accepts the transfer from Bob.

submit charlie do

exercise tpbc IouTransferProposal_Accept

2.1.6.3 Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this

succinctly in DAML through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the scenrario

above. In 7 Composing choices, you will see how to compose the ProposeTransfer and

IouTransferProposal_Accept choices into a single new choice, but for now, here is a different

way. You can give them the joint right to transfer an IOU:

choice Mutual_Transfer

: ContractId Iou

with

newOwner : Party

controller owner, newOwner

do

create this with

owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner

variable is part of the choice arguments, not the Iou.

The above syntax is an alternative to controller c can, which allows for this. Such choices live

outside any controller c can block. They declared using the choice keyword, and have an extra

clause controller c, which takes the place of controller c can, and has access to the choice

arguments.

This is also the first time we have shown a choice with more than one controller. If multiple con-

trollers are specified, the authority of all the controllers is needed. Here, neitherowner, nornewOwner

can execute a transfer unilaterally, hence the name Mutual_Transfer.

template IouSender

with

sender : Party

receiver : Party

(continues on next page)

2.1. An introduction to DAML 61

DAML SDK Documentation, 2019-12-19

(continued from previous page)

where

signatory receiver

controller sender can

nonconsuming Send_Iou

: ContractId Iou

with

iouCid : ContractId Iou

do

iou <- fetch iouCid

assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)

exercise iouCid Mutual_Transfer with

newOwner = receiver

The above IouSender contract now gives one party, the sender the right to send Iou contracts with

positive amounts to a receiver. The nonconsuming keyword on the choice Send_Iou changes the

behaviour of the choice so that the contract it’s exercised on does not get archived when the choice

is exercised. That way the sender can use the contract to send multiple Ious.

Here it is in action:

-- Bob allows Alice to send him Ious.

sab <- submit bob do

create IouSender with

sender = alice

receiver = bob

-- Charlie allows Bob to send him Ious.

sbc <- submit charlie do

create IouSender with

sender = bob

receiver = charlie

-- Alice can now send the Iou she issued herself earlier.

iou4 <- submit alice do

exercise sab Send_Iou with

iouCid = iou

-- Bob sends it on to Charlie.

submit bob do

exercise sbc Send_Iou with

iouCid = iou4

2.1.6.4 DAML’s authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in DAML.

In this section you’ll learn about the formal authorizationmodel to allow you to reason through your

contract models. This will allow you to construct them in such a way that you don’t run into autho-

rization errors at runtime, or, worse still, allow malicious transactions.

62 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

In Choices in the LedgerModel you learned that a transaction is, equivalently, a tree of transactions, or a

forest of actions, where each transaction is a list of actions, and each action has a child-transaction

called its consequences.

Each action has a set of required authorizers – the parties that must authorize that action – and each

transaction has a set of authorizers – the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers

of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.

Remember that Archive and archive are just an implicit choice with the signatories as con-

trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat

dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.

The consequences of an exercise action are authorized by the actors of that action plus the

signatories of the contract on which the action was taken.

An authorization example

The final transaction in the scenario of the the source file for this section is authorized as follows,

ignoring fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send_Iou on a IouSender con-

tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the

sender, Bob is the required authorizer.

The consequences of the Send_Iou action are authorized by its actors, Bob, as well as signa-

tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-

quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual_Exercise with Charlie as

newOwner on an Iou with issuer alice and owner Bob. The required authorizers of the ac-

tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.

The consequences ofMutual_Transfer are authorized by the actors (Bob andCharlie), aswell

as the signatories on the Iou (Alice and Bob).

The single action on the consequences, the creation of an Iou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s

authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX #12 1970-01-01T00:00:00Z (Parties:269:3)

#12:0

│ known to (since): 'Bob' (#12), 'Charlie' (#12)

└─> 'Bob' exercises Send_Iou on #10:0 (Parties:IouSender)

with

iouCid = #11:3

children:

(continues on next page)

2.1. An introduction to DAML 63

DAML SDK Documentation, 2019-12-19

(continued from previous page)

#12:1

│ known to (since): 'Bob' (#12), 'Charlie' (#12)

└─> fetch #11:3 (Parties:Iou)

#12:2

│ known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)

└─> 'Bob', 'Charlie' exercises Mutual_Transfer on #11:3 (Parties:Iou)

with

newOwner = 'Charlie'

children:

#12:3

│ known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)

└─> create Parties:Iou

with

issuer = 'Alice';

owner = 'Charlie';

cash =

(Parties:Cash with

currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive

with

partyA : Party

partyB : Party

where

signatory partyA

controller partyA can

TryA

: ContractId NonTransitive

do

create NonTransitive with

partyA = partyB

partyB = partyA

controller partyB can

TryB

: ContractId NonTransitive

with

other : ContractId NonTransitive

do

exercise other TryA

nt1 <- submit alice do

create NonTransitive with

partyA = alice

partyB = bob

(continues on next page)

64 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

nt2 <- submit alice do

create NonTransitive with

partyA = alice

partyB = bob

submitMustFail bob do

exercise nt1 TryB with

other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action TryA only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

2.1.6.5 Next up

In 7 Composing choices youwill finally put everything you have learned together to build a simple asset

holding and trading model akin to that in the Quickstart guide. In that context you’ll learn a bit more

about the Update action and how to use it to compose transactions, as well as about privacy on

DAML ledgers.

2.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure DAML model for

asset issuance, management, transfer, and trading. This application will have capabilities similar

to the one in Quickstart guide. In the process you will learn about a few more concepts:

DAML projects, packages and modules

Composition of transactions

Observers and stakeholders

DAML’s execution model

Privacy

Themodel in this section is not a single DAML file, but a DAML project consisting of several files that

depend on each other.

2.1.7.1 DAML projects

DAML is organized in packages andmodules. A DAML project is specified using a single daml.yaml

file, and compiles into a package. Each DAML file within a project becomes a DAML module. You can

start a new project with a skeleton structure using daml new project_name in the terminal.

Each DAML project has a main source file, which is the entry point for the compiler. A common pat-

tern is to have a main file called LibraryModules.daml, which simply lists all the other modules

to include.

A minimal project would contain just two files: daml.yaml and daml/LibraryModules.daml.

Take a look at the daml.yaml for this project:

sdk-version: __VERSION__

name: __PROJECT_NAME__

source: daml/LibraryModules.daml

(continues on next page)

2.1. An introduction to DAML 65

DAML SDK Documentation, 2019-12-19

(continued from previous page)

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

You can generally set name and version freely to describe your project. dependencies lists pack-

age dependencies: you should always include daml-prim, and daml-stdlib gives access to the

DAML standard library.

You compile a DAML project by running daml build from the project root directory. This creates a

dar package in dist/project_name.dar. A dar file is DAML’s equivalent of a JAR file in Java: it’s

the artifact that gets deployed to a ledger to load the contract model.

2.1.7.2 Project structure

This project contains an asset holdingmodel for transferrable, fungible assets and a separate trade

workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and

Intro.Asset.Trade.

In addition, there are tests inmodules Test.Intro.Asset, Test.Intro.Asset.Role, and Test.

Intro.Asset.Trade.

All but the last .-separated segment inmodule names correspond to paths, and the last one to a file

name. The folder structure therefore looks like this:

.

├── daml

│ ├── Intro

│ │ ├── Asset

│ │ │ ├── Role.daml

│ │ │ └── Trade.daml

│ │ └── Asset.daml

│ ├── LibraryModules.daml

│ └── Test

│ └── Intro

│ ├── Asset

│ │ ├── Role.daml

│ │ └── Trade.daml

│ └── Asset.daml

└── daml.yaml

Each file contains the DAML pragma and module header. For example, daml/Intro/Asset/Role.

daml:

daml 1.2

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModulesmodule

imports all six modules:

import Intro.Asset ()

import Intro.Asset.Role ()

(continues on next page)

66 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

import Intro.Asset.Trade ()

import Test.Intro.Asset ()

import Test.Intro.Asset.Role ()

import Test.Intro.Asset.Trade ()

Imports always have to appear just below themodule declaration. The () behind each import above

is optional, and lets you only import selected names.

In this case, it suppresses an unused import warning. LibraryModules is not actually using any

of the imports in LibraryModules. The () tells the compiler that this is intentional.

A more typical import statement is import Intro.Asset as found in Test.Intro.Asset.

2.1.7.3 Project overview

The project both changes and adds to the Ioumodel presented in 6 Parties and authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner

to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This

makes Asset safer than Iou from the issuer’s point of view.

With the Iou model, an issuer could end up owing cash to anyone as transfers were autho-

rized by just owner and newOwner. In this project, only parties having an AssetHolder con-

tract can end up owning assets. This allows the issuer to determine which parties may own

their assets.

The Trade template adds a swap of two assets to the model.

2.1.7.4 Composed choices and scenarios

This project showcases how you can put the Update and Scenario actions you learnt about in 6

Parties and authority to good use. For example, the Merge and Split choices each perform several

actions in their consequences.

Two create actions in case of Split

One create and one archive action in case of Merge

Split

: SplitResult

with

splitQuantity : Decimal

do

splitAsset <- create this with

quantity = splitQuantity

remainder <- create this with

quantity = quantity - splitQuantity

return SplitResult with

splitAsset

remainder

Merge

: ContractId Asset

(continues on next page)

2.1. An introduction to DAML 67

DAML SDK Documentation, 2019-12-19

(continued from previous page)

with

otherCid : ContractId Asset

do

other <- fetch otherCid

assertMsg

"Merge failed: issuer does not match"

(issuer == other.issuer)

assertMsg

"Merge failed: owner does not match"

(owner == other.owner)

assertMsg

"Merge failed: symbol does not match"

(symbol == other.symbol)

archive otherCid

create this with

quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return x is a

no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a

value with side-effects. The return namemakes sense when it’s used as the last statement in a do

block as its argument is indeed the return-value of the do block in that case.

Taking transaction composition a step further, the Trade_Settle choice on Trade composes two

exercise actions:

Trade_Settle

: (ContractId Asset, ContractId Asset)

with

quoteAssetCid : ContractId Asset

baseApprovalCid : ContractId TransferApproval

do

fetchedBaseAsset <- fetch baseAssetCid

assertMsg

"Base asset mismatch"

(baseAsset == fetchedBaseAsset with

observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg

"Quote asset mismatch"

(quoteAsset == fetchedQuoteAsset with

observers = quoteAsset.observers)

transferredBaseCid <- exercise

baseApprovalCid TransferApproval_Transfer with

assetCid = baseAssetCid

transferredQuoteCid <- exercise

quoteApprovalCid TransferApproval_Transfer with

assetCid = quoteAssetCid

(continues on next page)

68 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the

test_trade scenario in Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)

#15:0

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> 'Bob' exercises Trade_Settle on #13:1 (Intro.Asset.Trade:Trade)

with

quoteAssetCid = #10:1; baseApprovalCid = #14:2

children:

#15:1

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:2

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:3

│ known to (since): 'USD_Bank' (#15), 'Bob' (#15), 'Alice' (#15)

└─> 'Alice',

'Bob' exercises TransferApproval_Transfer on #14:2 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #11:1

children:

#15:4

│ known to (since): 'USD_Bank' (#15), 'Bob' (#15), 'Alice' (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:5

│ known to (since): 'Alice' (#15), 'USD_Bank' (#15), 'Bob' (#15)

└─> 'Alice', 'USD_Bank' exercises Archive on #11:1 (Intro.

↪→Asset:Asset)

#15:6

│ referenced by #17:0

│ known to (since): 'Bob' (#15), 'USD_Bank' (#15), 'Alice' (#15)

└─> create Intro.Asset:Asset

with

issuer = 'USD_Bank'; owner = 'Bob'; symbol = "USD"; quantity

↪→= 100.0; observers = []

#15:7

│ known to (since): 'EUR_Bank' (#15), 'Alice' (#15), 'Bob' (#15)

└─> 'Bob',

(continues on next page)

2.1. An introduction to DAML 69

DAML SDK Documentation, 2019-12-19

(continued from previous page)

'Alice' exercises TransferApproval_Transfer on #12:1 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #10:1

children:

#15:8

│ known to (since): 'EUR_Bank' (#15), 'Alice' (#15), 'Bob' (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:9

│ known to (since): 'Bob' (#15), 'EUR_Bank' (#15), 'Alice' (#15)

└─> 'Bob', 'EUR_Bank' exercises Archive on #10:1 (Intro.

↪→Asset:Asset)

#15:10

│ referenced by #16:0

│ known to (since): 'Alice' (#15), 'EUR_Bank' (#15), 'Bob' (#15)

└─> create Intro.Asset:Asset

with

issuer = 'EUR_Bank'; owner = 'Alice'; symbol = "EUR";

↪→quantity = 90.0; observers = []

Similar to choices, you can see how the scenarios in this project are built up from each other:

test_issuance = scenario do

setupResult@(alice, bob, bank, aha, ahb) <- setupRoles

assetCid <- submit bank do

exercise aha Issue_Asset

with

symbol = "USD"

quantity = 100.0

submit bank do

asset <- fetch assetCid

assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

return (setupResult, assetCid)

In the above, the test_issuance scenario in Test.Intro.Asset.Role uses the output of the

setupRoles scenario in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResults <-

setupRoles and then accessing the components of setupResults using _1, _2, etc., you can give

them names. It’s equivalent to writing

70 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

setupResults <- setupRoles

case setupResults of

(alice, bob, bank, aha, ahb) -> ...

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but

setupResults is used in the return value of test_issuance so it makes sense to give it a name,

too. The notation with @ allows you to give both the whole value as well as its constituents names in

one go.

2.1.7.5 DAML’s execution model

DAML’s execution model is fairly easy to understand, but has some important consequences. You

can imagine the life of a transaction as follows:

1. A party submits a transaction. Remember, a transaction is just a list of actions.

2. The transaction is interpreted, meaning the Update corresponding to each action is evaluated

in the context of the ledger to calculate all consequences, including transitive ones (conse-

quences of consequences, etc.).

3. The views of the transaction that parties get to see (see Privacy) are calculated in a process

called blinding, or projecting.

4. The blinded views are distributed to the parties.

5. The transaction is validated based on the blinded views and a consensus protocol depending

on the underlying infrastructure.

6. If validation succeeds, the transaction is committed.

The first important consequence of the above is that all transactions are committed atomically. Ei-

ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade_Settle choice shown above. The choice transfers a

baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no

chance that either party is left out of pocket.

The second consequence, due to 2., is that the submitter of a transaction knows all consequences

of their submitted transaction – there are no surprises in DAML. However, it also means that the

submitter must have all the information to interpret the transaction.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that

transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about

some way for Alice to accept a transfer – remember, accepting a transfer needs the authority of

issuer in this example.

2.1.7.6 Observers

Observers are DAML’s mechanism to disclose contracts to other parties. They are declared just like

signatories, but using the observer keyword, as shown in the Asset template:

template Asset

with

issuer : Party

owner : Party

symbol : Text

quantity : Decimal

observers : [Party]

(continues on next page)

2.1. An introduction to DAML 71

DAML SDK Documentation, 2019-12-19

(continued from previous page)

where

signatory issuer, owner

ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice

uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if

she didn’t do that by removing that transaction.

usdCid <- submit alice do

exercise usdCid SetObservers with

newObservers = [bob]

Observers have guarantees in DAML. In particular, they are guaranteed to see actions that create and

archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each

other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and

using that to authorize the transfer in Trade_Settle, Alice creates a one-time authorization in the

form of a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up

leaking them to each other.

Controllers declared via the controller cs can syntax are automatically made observers. Con-

trollers declared in the choice syntax are not, as they can only be calculated at the point in time

when the choice arguments are known.

2.1.7.7 Privacy

DAML’s privacy model is based on two principles:

1. Parties see those actions that they have a stake in.

2. Every party that sees an action sees its (transitive) consequences.

Item 2. is necessary to ensure that every party can independently verify the validity of every trans-

action they see.

A party has a stake in an action if

they are a required authorizer of it

they are a signatory of the contract on which the action is performed

they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade_Settle action from test_trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade_Settled action,

so both of them see it. According to rule 2. above, that means they get to see everything in the

transaction.

The consequences contain, next to some fetch actions, two exercise actions of the choice

TransferApproval_Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see

the action on their contract. So the EUR_Bank sees the TransferApproval_Transfer action

for the EUR Asset and the USD_Bank sees the TransferApproval_Transfer action for the USD

Asset.

72 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Some DAML ledgers, like the scenario runner and the Sandbox, work on the principle of data mini-

mization, meaning nothingmore than the above information is distributed. That is, the projection of

the overall transaction that gets distributed to EUR_Bank in step 4 of DAML’s execution model would

consist only of the TransferApproval_Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-

straints.

Divulgence

Note that principle 2. of the privacy model means that sometimes parties see contracts that they

are not signatories or observers on. If you look at the final ledger state of the test_trade scenario,

for example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in

their respective columns:

This is because the create action of these contracts are in the transitive consequences of the

Trade_Settle action both of them have a stake in. This kind of disclosure is often called divul-

gence and needs to be considered when designing DAML models for privacy sensitive applications.

2.2 Language reference docs

This section contains a reference to writing templates for DAML contracts. It includes:

2.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a DAML file outside a template, see Reference: DAML file structure.

2.2.1.1 Template outline structure

Here’s the structure of a DAML template:

template NameOfTemplate

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParameter : Text

(continues on next page)

2.2. Language reference docs 73

DAML SDK Documentation, 2019-12-19

(continued from previous page)

-- more parameters here

where

signatory exampleParty

observer exampleParty2

agreement

-- some text

""

ensure

-- boolean condition

True

key (exampleParty, exampleParameter) : (Party, Text)

maintainer (exampleFunction key)

-- a choice goes here; see next section

template name template keyword

parameters with followed by the names of parameters and their types

template body where keyword

Can include:

signatories signatory keyword

Required. The parties (see the Party type) whomust consent to the creation of an instance

of this contract. You won’t be able to create an instance of this contract until all of these

parties have authorized it.

observers observer keyword

Optional. Parties that aren’t signatories but who you still want to be able to see this con-

tract.

an agreement agreement keyword

Optional. Text that describes the agreement that this contract represents.

a precondition ensure keyword

Only create the contract if the conditions after ensure evaluate to true.

a contract key key keyword

Optional. Lets you specify a combination of a party and other data that uniquely identifies

an instance of this contract template. See Contract keys.

maintainers maintainer keyword

Required if you have specified a key. Keys are only unique to a maintainer. See Contract

keys.

choices choice NameOfChoice : ReturnType controller nameOfParty do

or

controller nameOfParty can NameOfChoice : ReturnType do

Defines choices that can be exercised. See Choice structure for what can go in a choice.

2.2.1.2 Choice structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

start with the choice keyword

start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

(continues on next page)

74 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

a controller (or controllers) controller keyword

Who can exercise the choice.

consumability nonconsuming keyword

By default, contracts are archived when a choice on them is exercised, which means that

choices can no longer be exercised on them. If you include nonconsuming, this choice can

be exercised over and over.

a name Must begin with a capital letter. Must be unique - choices in different templates can’t have

the same name.

a return type after a :, the return type of the choice

choice arguments with keyword

If you start your choice with choice and include a Party as a parameter, you can make that

Party the controller of the choice. This is a feature called flexible controllers, and it means

you don’t have to specify the controller when you create the contract - you can specify it when

you exercise the choice. To exercise a choice, the party needs to be a signatory or an observer

of the contract and must be explicitly declared as such.

a choice body After do keyword

What happens when someone exercises the choice. A choice body can contain update state-

ments: see Choice body structure below.

2.2.1.3 Choice body structure

A choice body contains Update expressions, wrapped in a do block.

The update expressions are:

create Create a new contract instance of this template.

create NameOfContract with contractArgument1 = value1;

contractArgument2 = value2; ...

exercise Exercise a choice on a particular contract.

exercise idOfContract NameOfChoiceOnContract with choiceArgument1 =

value1; choiceArgument2 = value 2; ...

fetch Fetch a contract instance using its ID. Often used with assert to check conditions on the con-

tract’s content.

fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.

fetchedContract <- fetchByKey @ContractType contractKey

2.2. Language reference docs 75

DAML SDK Documentation, 2019-12-19

lookupByKey Confirm that a contract with the given contract key exists.

fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.

if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be

supplied to a contract choice.

assert (amount > 0)

getTime Gets the ledger effective time. Usually used to restrict when a choice can be exercised.

currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.

This means you only need to use return if you want to return something else.

return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch

someContractId

2.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

2.2.2.1 Template name

template NameOfTemplate

This is the name of the template. It’s preceded bytemplate keyword. Must beginwith a capital

letter.

This is the highest level of nesting.

The name is used when creating a contract instance of this template (usually, from within a

choice).

2.2.2.2 Template parameters

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParam : Text

-- more parameters here

with keyword. The parameters are in the form of a record type.

Passed in when creating a contract instance from this template. These are then in scope inside

the template body.

A template parameter can’t have the same name as any choice arguments inside the template.

For all parties involved in the contract (whether they’re a signatory, observer, or

controller) youmust pass them in as parameters to the contract, whether individually or as

a list ([Party]).

76 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.2.2.3 Signatory parties

where

signatory exampleParty

signatory keyword. After where. Followed by at least one Party.

Signatories are the parties (see the Party type) who must consent to the creation of an in-

stance of this contract. They are the parties who would be put into an obligable position when

this contract is created.

DAML won’t let you put someone into an obligable position without their consent. So if the

contract will cause obligations for a party, theymust be a signatory. If they haven’t authorized

it, you won’t be able to create the contract. In this situation, you may see errors like:

NameOfTemplate requires authorizers Party1,Party2,Party, but only

Party1 were given.

When a signatory consents to the contract creation, this means they also authorize the conse-

quences of choices that can be exercised on this contract.

The contract instance is visible to all signatories (as well as the other stakeholders of the con-

tract). That is, the compiler automatically adds signatories as observers.

You must have least one signatory per template. You can have many, either as a comma-

separated list or reusing the keyword. You could pass in a list (of type [Party]).

2.2.2.4 Observers

observer exampleParty2

observer keyword. After where. Followed by at least one Party.

Observers are additional stakeholders, so the contract instance is visible to these parties (see

the Party type).

Optional. You can have many, either as a comma-separated list or reusing the keyword. You

could pass in a list (of type [Party]).

Use when a party needs visibility on a contract, or be informed or contract events, but is not a

signatory or controller.

If you start your choice with choice rather than controller (see Choices below), you must

make sure to add any potential controller as an observer. Otherwise, they will not be able to

exercise the choice, because they won’t be able to see the contract.

2.2.2.5 Choices

-- option 1 for specifying choices: choice name first

choice NameOfChoice1

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

controller exampleParty

do

return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first

controller exampleParty can

NameOfChoice2

: () -- replace () with the actual return type

(continues on next page)

2.2. Language reference docs 77

DAML SDK Documentation, 2019-12-19

(continued from previous page)

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

nonconsuming NameOfChoice3

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

A right that the contract gives the controlling party. Can be exercised.

This is essentially where all the logic of the template goes.

By default, choices are consuming: that is, exercising the choice archives the contract, so

no further choices can be exercised on it. You can make a choice non-consuming using the

nonconsuming keyword.

There are two ways of specifying a choice: start with the choice keyword or start with the

controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure

to add that party as an observer.

See Reference: choices for full reference information.

2.2.2.6 Agreements

agreement

-- text representing the contract

""

agreement keyword, followed by text.

Represents what the contract means in text. They’re usually the boundary between on-ledger

and off-ledger rights and obligations.

Usually, they look like agreement tx, where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenatewith

<> .

2.2.2.7 Preconditions

ensure

True -- a boolean condition goes here

ensure keyword, followed by a boolean condition.

Used on contract creation. ensure limits the values on parameters that can be passed to the

contract: the contract can only be created if the boolean condition is true.

2.2.2.8 Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)

maintainer (exampleFunction key)

key and maintainer keywords.

78 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

This feature lets you specify a key that you can use to uniquely identify an instance of this

contract template.

If you specify a key, you must also specify a maintainer. This is a Party that will ensure the

uniqueness of all the keys it is aware of.

Because of this, the keymust include the maintainer Party or parties (for example, as part

of a tuple or record), and the maintainermust be a signatory.

For a full explanation, see Contract keys.

2.2.3 Reference: choices

This page gives reference information on choices:

choice first or controller first

Choice name

Controllers

– Non-consuming choices

– Return type

Choice arguments

Choice body

For information on the high-level structure of a choice, see Overview: template structure.

2.2.3.1 choice first or controller first

There are two ways you can start a choice:

start with the choice keyword

start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a

controller. If you do this, you must make sure that you add that party as an observer, otherwise

they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer

2.2. Language reference docs 79

DAML SDK Documentation, 2019-12-19

when you compile your DAML files.

2.2.3.2 Choice name

Listing 2: Option 1 for specifying choices: choice name first

choice ExampleChoice1

: () -- replace () with the actual return type

Listing 3: Option 2 for specifying choices: controller first

ExampleChoice2

: () -- replace () with the actual return type

The name of the choice. Must begin with a capital letter.

If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

Must be unique in your project. Choices in different templates can’t have the same name.

If you’re using controller-first, you can have multiple choices after one can, for tidiness.

2.2.3.3 Controllers

Listing 4: Option 1 for specifying choices: choice name first

controller exampleParty

Listing 5: Option 2 for specifying choices: controller first

controller exampleParty can

controller keyword

The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.

Non-consuming choices

Listing 6: Option 1 for specifying choices: choice name first

nonconsuming choice ExampleChoice3

: () -- replace () with the actual return type

Listing 7: Option 2 for specifying choices: controller first

nonconsuming ExampleChoice4

: () -- replace () with the actual return type

nonconsuming keyword. Optional.

Makes a choice non-consuming: that is, exercising the choice does not archive the contract.

By default, choices are consuming: when a choice on a contract is exercised, that contract in-

stance is archived. Archivedmeans that it’s permanentlymarked asbeing inactive, andnomore

choices can be exercised on it, though it still exists on the ledger.

80 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

This is useful in the many situations when you want to be able to exercise a choice more than

once.

Return type

Return type is written immediately after choice name.

All choices have a return type. A contract returning nothing should be marked as returning a

unit, ie ().

If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

2.2.3.4 Choice arguments

with

exampleParameter : Text

with keyword.

Choice arguments are similar in structure to Template parameters: a record type.

A choice argument can’t have the same name as any parameter to the template the choice is in.

Optional - only if you need extra information passed in to exercise the choice.

2.2.3.5 Choice body

Introduced with do

The logic in this section is what is executed when the choice gets exercised.

The choice body contains Update expressions. For detail on this, see Reference: updates.

By default, the last expression in the choice is returned. You can return multiple updates in

tuple form or in a custom data type. To return something that isn’t of type Update, use the

return keyword.

2.2.4 Reference: updates

This page gives reference information on Updates:

Background

Binding variables

do

create

exercise

exerciseByKey

fetch

fetchByKey

lookupByKey

abort

assert

getTime

return

let

this

For the structure around them, see Overview: template structure.

2.2. Language reference docs 81

DAML SDK Documentation, 2019-12-19

2.2.4.1 Background

An Update is ledger update. There are many different kinds of these, and they’re listed below.

They are what can go in a choice body.

2.2.4.2 Binding variables

boundVariable <- UpdateExpression1

Oneof the things youcando in a choice body is bind (assign) anUpdate expression to a variable.

This works for any of the Updates below.

2.2.4.3 do

do

updateExpression1

updateExpression2

do can be used to group Update expressions. You can only have one update expression in a

choice, so any choice beyond the very simple will use a do block.

Anything you can put into a choice body, you can put into a do block.

By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an

example.

2.2.4.4 create

create NameOfTemplate with exampleParameters

create function.

Creates an instance of that contract on the ledger. When a contract is committed to the ledger,

it is given a unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

Use with to specify the template parameters.

Requires authorization from the signatories of the contract being created. This is given by

being signatories of the contract fromwhich the other contract is created, being the controller,

or explicitly creating the contract itself.

If the required authorization is not given, the transaction fails. Formore detail on authorization,

see Signatory parties.

2.2.4.5 exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgument1 = value1

exercise function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice. If the authorization is not given,

the transaction fails.

82 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.2.4.6 exerciseByKey

exerciseByKey @ContractType contractKey NameOfChoiceOnContract with

↪→choiceArgument1 = value1

exerciseByKey function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice and from at least one of the main-

tainers of the key. If the authorization is not given, the transaction fails.

2.2.4.7 fetch

fetchedContract <- fetch IdOfContract

fetch function.

Fetches the contract instance with that ID. Usually used with a bound variable, as in the exam-

ple above.

Often used to check the details of a contract before exercising a choice on that contract. Also

used when referring to some reference data.

fetch cid fails if cid is not the contract id of an active contract, and thus causes the entire

transaction to abort.

The submitting party must be an observer or signatory on the contract, otherwise fetch fails,

and similarly causes the entire transaction to abort.

2.2.4.8 fetchByKey

fetchedContract <- fetchByKey @ContractType contractKey

fetchByKey function.

The same as fetch, but fetches the contract instance with that contract key, instead of the

contract ID.

As well as the authorization that fetch requires, you also need authorization from one of the

maintainers of the key.

2.2.4.9 lookupByKey

fetchedContractId <- lookupByKey @ContractType contractKey

lookupByKey function.

Use this to confirm that a contract with the given contract key exists.

If it does exist, lookupByKey returns the ContractId of the contract; otherwise, it returns

None. If it returns None, this guarantees that no contract has this key. This does not cause the

transaction to abort.

All of the maintainers of the key must authorize the lookup (by either being signatories or by

submitting the command to lookup), otherwise this will fail.

2.2.4.10 abort

abort errorMessage

abort function.

2.2. Language reference docs 83

DAML SDK Documentation, 2019-12-19

Fails the transaction - nothing in it will be committed to the ledger.

errorMessage is of type Text. Use the error message to provide more context to an external

system (e.g., it gets displayed in DAML Studio scenario results).

You could use assert False as an alternative.

2.2.4.11 assert

assert (condition == True)

assert keyword.

Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.

Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a

parameter is on a blacklist:

Transfer : ContractId RestrictedPayout

with newReceiver : Party

do

assert (newReceiver /= blacklisted)

create RestrictedPayout with receiver = newReceiver; giver;

↪→blacklisted; qty

2.2.4.12 getTime

currentTime <- getTime

getTime keyword.

Gets the ledger effective time. (You will usually want to immediately bind it to a variable in

order to be able to access the value.)

Used to restrict when a choice can bemade. For example, with an assert that the time is later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

Complete : ()

do

-- bind the ledger effective time to the tchoose variable using

↪→getTime

tchoose <- getTime

2.2.4.13 return

return ()

return keyword.

Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a

tuple:

84 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

do

firstContract <- create SomeContractTemplate with arg1; arg2

secondContract <- create SomeContractTemplate with arg1; arg2

return (firstContract, secondContract)

2.2.4.14 let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument that

↪→when

-- called _will_ create the new contract using argument for issuer and

↪→owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract party1

createContract party2

2.2.4.15 this

this lets you refer to the current contract from within the choice body. This refers to the contract,

not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the

template.

2.2.5 Reference: data types

This page gives reference information on DAML’s data types:

Built-in types

– Table of built-in primitive types

– Escaping characters

– Time

Lists

– Summing a list

Records and record types

– Data constructors

– Accessing record fields

– Updating record fields

– Parameterized data types

Type synonyms

– Function types

Algebraic data types

– Product types

– Sum types

– Pattern matching

2.2. Language reference docs 85

DAML SDK Documentation, 2019-12-19

2.2.5.1 Built-in types

Table of built-in primitive types

Type For Example Notes

Int integers 1, 1000000,

1_000_000

Int values are signed 64-bit integers which

represent numbers between -9,223,372,

036,854,775,808 and 9,223,372,036,

854,775,807 inclusive. Arithmetic opera-

tions raise an error on overflows and divi-

sion by0. Tomake longnumbersmore read-

able you can optionally add underscores.

Decimal short for Numeric

10

1.0 Decimal values are rational numbers with

precision 38 and scale 10.

Numeric n fixed point decimal

numbers

1.0 Numeric n values are rational numbers with

up to 38 digits. The scale parameter n con-

trols the number of digits after the decimal

point, so for example, Numeric 10 values

have 10 decimal places, and Numeric 20

values have 20 decimal places. The value of

nmust be between 0 and 37 inclusive.

Text strings "hello" Text values are strings of characters en-

closed by double quotes.

Bool boolean values True, False

Party unicode string rep-

resenting a party

alice <-

getParty

"Alice"

Every party in a DAML system has a unique

identifier of type Party. To create a value

of type Party, use binding on the result of

calling getParty. The party text can only

contain alphanumeric characters, -, _ and

spaces.

Date models dates date 2007

Apr 5

To create a value of type Date, use the func-

tion date (to get this function, import DA.

Date).

Time models absolute

time (UTC)

time

(date

2007 Apr

5) 14 30

05

Time values have microsecond precision.

To create a value of type Time, use a Date

and the function time (to get this function,

import DA.Time).

RelTime models differences

between time values

seconds 1,

seconds

(-2)

seconds 1 and seconds (-2) represent

the values for 1 and -2 seconds. There are

no literals for RelTime. Instead they are

created using one of days, hours, minutes

and seconds (to get these functions, im-

port DA.Time).

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

86 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Time

Definition of time on the ledger is a property of the execution environment. DAML assumes there is

a shared understanding of what time is among the stakeholders of contracts.

2.2.5.2 Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,

3, 2] is an example of a list of type [Int].

You can also construct lists using [] (the empty list) and :: (which is an operator that appends an

element to the front of a list). For example:

twoEquivalentListConstructions =

scenario do

assert ([1, 2, 3] == 1 :: 2 :: 3 :: [])

Summing a list

To sum a list, use a fold (because there are no loops in DAML). See Folding for details.

2.2.5.3 Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord

with

label1 : type1

label2 : type2

...

labelN : typeN

deriving (Eq, Show)

where:

label1, label2, , labelN are labels, which must be unique in the record type

type1, type2, , typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { label1 : type1; label2 : type2; ...; labelN :

↪→typeN }

deriving (Eq, Show)

The format using with and the format using { } are exactly the same syntactically. Themain differ-

ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting

semicolons.

The deriving (Eq, Show) ensures the data type can be compared (using ==) and displayed (us-

ing show). The line starting deriving is required for data types used in fields of a template.

In general, add thederivingunless the data type contains function types (e.g. Int -> Int), which

cannot be compared or shown.

For example:

2.2. Language reference docs 87

DAML SDK Documentation, 2019-12-19

-- This is a record type with two fields, called first and second,

-- both of type `Int`

data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type is:

newRecord = MyRecord with first = 1; second = 2

-- You can also write:

newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for

some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that

can be used to specify values of the Floor Int type: for example, Floor 0, Floor 1.

In DAML, data constructors may take at most one argument.

An example of a data constructor with zero arguments is data Empty = Empty {}. The only value

of the Empty type is Empty.

Note: In data Confusing = Int, the Int is a data constructor with no arguments. It has nothing

to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

-- Access the value of the field `first`

val.first

-- Access the value of the field `second`

val.second

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select

fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, DAML lets you use this without assigning it

to make things look nicer:

88 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

-- if you have a variable called `second` equal to 5

second = 5

-- you could construct the same value as before with

myRecord2 = myRecord with second = second

-- or with

myRecord3 = MyRecord with first = 1; second = second

-- but DAML has a nicer way of putting this:

myRecord4 = MyRecord with first = 1; second

-- or even

myRecord5 = r with second

Note: The with keyword binds more strongly than function application. So for a function, say

return, either write return IntegerCoordinate with first = 1; second = 5 or return

(IntegerCoordinate {first = 1; second = 5}), where the latter expression is enclosed in

parentheses.

Parameterized data types

DAML supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-- Here, a and b are type parameters.

-- The Coordinate after the data keyword is a type constructor.

data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

2.2.5.4 Type synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used

interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has

type ParamType1 -> ParamType2 -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type

FooType = ParamType1 -> ParamType2 -> ReturnType.

2.2. Language reference docs 89

DAML SDK Documentation, 2019-12-19

2.2.5.5 Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The

enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in DAML: data AlternativeCoordinate a b =

AlternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:

a; second: b}.

These kinds of types are called product types.

Awayof thinkingabout this is that theCoordinate Int Int typehasa first andseconddimension

(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and

so on.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False, where

True and False are data constructors with zero arguments . Thismeans that a Bool value is either

True or False and cannot be instantiated with any other value.

A very useful sum type is data Optional a = None | Some a. It is part of the DAML standard

library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined

by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.

Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

optionalIntegerToText (x : Optional Int) : Text =

case x of

None -> "Box is empty"

Some val -> "The content of the box is " <> show val

optionalIntegerToTextTest =

scenario do

let

x = Some 3

assert (optionalIntegerToText x == "The content of the box is 3")

In the optionalIntegerToText function, the case construct first tries to match the x argument

against the None data constructor, and in case of amatch, the "Box is empty" text is returned. In

case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some

90 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

data constructor. In case of a match, the content of the value attached to the Some label is bound to

the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least

one pattern that matches. The patterns are tested from top to bottom, and the expression for the

first pattern that matches will be executed. Note that _ can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and

achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

let

l = [1, 2, 3]

in case l of

[] -> "List is empty"

_ :: [] -> "List has one element"

_ :: _ :: _ -> "List has at least two elements"

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that DAML Studio

produces a warning for all variables that are not being used. This is useful in detecting unused

variables. You can suppress the warning by naming the variable with an initial underscore.

2.2.6 Reference: built-in functions

This page gives reference information on functions for:

Working with time

Working with numbers

Working with text

Working with lists

– Folding

2.2.6.1 Working with time

DAML has these built-in functions for working with time:

datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.

subTime: subtracts one time from another. Returns the RelTime difference between time1

and time2.

addRelTime: add times. Takes a Time and RelTime and adds the RelTime to the Time.

days, hours, minutes, seconds: constructs a RelTime of the specified length.

pass: (in scenario tests only) use pass : RelTime -> Scenario Time to advance the

ledger effective time by the argument amount. Returns the new time.

2.2.6.2 Working with numbers

DAML has these built-in functions for working with numbers:

round: rounds a Decimal number to Int.

2.2. Language reference docs 91

DAML SDK Documentation, 2019-12-19

round d is the nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:

round 2.5 == 3 round (-2.5) == -3

round 3.4 == 3 round (-3.7) == -4

truncate: converts aDecimalnumber toInt, truncating the value towards zero, for example:

truncate 2.2 == 2 truncate (-2.2) == -2

truncate 4.9 == 4 v (-4.9) == -4

intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require

more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational

number, but not a Decimal.

2.2.6.3 Working with text

DAML has these built-in functions for working with text:

<> operator: concatenates two Text values.

show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to

a Text.

To escape text in DAML strings, use \:

Character How to escape it

\ \\

" \"

' \'

Newline \n

Tab \t

Carriage return \r

Unicode (using ! as an example)
Decimal code: \33

Octal code: \o41

Hexadecimal code: \x21

2.2.6.4 Working with lists

DAML has these built-in functions for working with lists:

foldl and foldr: see Folding below.

Folding

A fold takes:

a binary operator

a first accumulator value

a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a

foldr).

92 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs

to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.

This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the

list. This produces a third accumulator value.

3. This continues until there are nomore elements in the list. Then, the last accumulator value is

returned.

As an example, to sum up a list of integers in DAML:

sumList =

scenario do

assert (foldl (+) 0 [1, 2, 3] == 6)

2.2.7 Reference: expressions

This page gives reference information for DAML expressions that are not updates:

Definitions

– Values

– Functions

Arithmetic operators

Comparison operators

Logical operators

If-then-else

Let

2.2.7.1 Definitions

Use assignement to bind values or functions at the top level of a DAML file or in a contract template

body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention

it after a colon following the variable name:

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

2.2. Language reference docs 93

DAML SDK Documentation, 2019-12-19

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

Here you see:

the name of the function

the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

the definition = 2.0 * pi * r * h (which uses the previously defined pi)

2.2.7.2 Arithmetic operators

Operator Works for

+ Int, Decimal, RelTime

- Int, Decimal, RelTime

* Int, Decimal

/ (integer division) Int

% (integer remainder opera-

tion)

Int

^ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

7 / 3 and (-7) / (-3) evaluate to 2

(-7) / 3 and 7 / (-3) evaluate to -2

7 % 3 and 7 % (-3) evaluate to 1

(-7) % 3 and (-7) % (-3) evaluate to -1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2

is another way of writing 1 + 2.

2.2.7.3 Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-

tract instances stemming from the same contract template

2.2.7.4 Logical operators

The logical operators in DAML are:

not for negation, e.g., not True == False

&& for conjunction, where a && b == and a b

|| for disjunction, where a || b == or a b

for Bool variables a and b.

2.2.7.5 If-then-else

You can use conditional if-then-else expressions, for example:

94 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

if owner == scroogeMcDuck then "sell" else "buy"

2.2.7.6 Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =

-- let binds values or functions to be in scope beneath the expression

let

double (x : Int) = 2 * x

up = 5

in double up

You can use let inside do and scenario blocks:

blah = scenario

do

let

x = 1

y = 2

-- x and y are in scope for all subsequent expressions of the do

↪→block,

-- so can be used in expression1 and expression2.

expression1

expression2

Lastly, a templatemay contain a single let block.

template Iou

with

issuer : Party

owner : Party

where

signatory issuer

let updateOwner o = create this with owner = o

updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced

-- from any and all of the signatory, consuming, ensure and

-- agreement expressions and from within any choice do blocks.

controller owner can

Transfer : ContractId Iou

with newOwner : Party

do

updateOwner newOwner

2.2.8 Reference: functions

This page gives reference information on functions in DAML:

2.2. Language reference docs 95

DAML SDK Documentation, 2019-12-19

Defining functions

Partial application

Functions are values

Generic functions

DAML is a functional language. It lets you apply functions partially and also have functions that take

other functions as arguments. This page discusses these higher-order functions.

2.2.8.1 Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

You can define this function equivalently using lambdas, involving ‘, a sequence of parameters, and

an arrow -> as:

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.2.8.2 Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->

Decimal. An equivalent, but more instructive, way to read its type is: Decmial -> (Decimal -

> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns

another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type

Decimal -> Decimal. In other words, this function returns another function. Only the last appli-

cation of an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a

function that takes just a single argument and returns another function. In DAML, all functions are

curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to

all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a

function with partially defined arguments. For example:

multiplyThreeNumbers : Int -> Int -> Int -> Int

multiplyThreeNumbers xx yy zz =

xx * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21 = multiplyTwoNumbersWith7 3

multiplyWith18 = multiplyThreeNumbers 3 6

96 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

You could also define equivalent lambda functions:

multiplyWith18_v2 : Int -> Int

multiplyWith18_v2 xx =

multiplyThreeNumbers 3 6 xx

2.2.8.3 Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with

the lambda notation):

-- Type synonym for Decimal -> Decimal -> Decimal

type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as

when binding values, e.g., pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In

fact, in DAML, functions are values.

This means a function can take another function as an argument. For example, define a function

applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first ar-

gument, a higher-order function, to the second and the third arguments to yield the result.

applyFilter (filter : Int -> Int -> Bool)

(x : Int)

(y : Int) = filter x y

compute = scenario do

assert (applyFilter (<) 3 2 == False)

assert (applyFilter (/=) 3 2 == True)

assert (round (2.5 : Decimal) == 3)

assert (round (3.5 : Decimal) == 4)

assert (explode "me" == ["m", "e"])

assert (applyFilter (\a b -> a /= b) 3 2 == True)

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-

tion as an argument.

Note: DAML does not allow functions as parameters of contract templates and contract choices.

However, a follow up of a choice can use built-in functions, defined at the top level or in the contract

template body.

2.2. Language reference docs 97

DAML SDK Documentation, 2019-12-19

2.2.8.4 Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type

parameters. For example, you can define function composition as follows:

compose (f : b -> c) (g : a -> b) (x : a) : c = f (g x)

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose

not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas

not has type Bool -> Bool.

You can find many other generic functions including this one in the DAML standard library.

Note: DAML currently does not support generic functions for a specific set of types, such as Int

and Decimal numbers. For example, sum (x: a) (y: a) = x + y is undefined when a equals

the type Party. Bounded polymorphism might be added to DAML in a later version.

2.2.9 Reference: scenarios

This page gives reference information on scenario syntax, used for testing templates:

Scenario keyword

Submit

submitMustFail

Scenario body

– Updates

– Passing time

– Binding variables

For an introduction to scenarios, see Testing using scenarios.

2.2.9.1 Scenario keyword

scenario function. Introduces a series of transactions to be submitted to the ledger.

2.2.9.2 Submit

submit keyword.

Submits an action (a create or an exercise) to the ledger.

Takes two arguments, the party submitting followed by the expression, for example: submit

bankOfEngland do create ...

2.2.9.3 submitMustFail

submitMustFail keyword.

Like submit, but you’re asserting it should fail.

Takes two arguments, the party submitting followed by the expression by a party, for example:

submitMustFail bankOfEngland do create ...

2.2.9.4 Scenario body

98 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Updates

Usually create and exercise. But you can also use other updates, like assert and fetch.

Parties can only be named explicitly in scenarios.

Passing time

In a scenario, you may want time to pass so you can test something properly. You can do this with

pass.

Here’s an example of passing time:

timeTravel =

scenario do

-- Get current ledger effective time

t1 <- getTime

assert (t1 == datetime 1970 Jan 1 0 0 0)

-- Pass 1 day

pass (days 1)

-- Get new ledger effective time

t2 <- getTime

assert (t2 == datetime 1970 Jan 2 0 0 0)

Binding variables

As in choices, you can bind to variables. Usually, you’d bind commits to variables in order to get the

returned value (usually the contract).

2.2.10 Reference: DAML file structure

This page gives reference information on the structure of DAML files outside of templates:

File structure

Imports

Libraries

Comments

Contract identifiers

2.2.10.1 File structure

Language version (daml 1.2).

This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the DAML

file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, use module Scenarios.Demo where.

2.2.10.2 Imports

You can import other modules (import OtherModuleName), including qualified

imports (import qualified AndYetOtherModuleName, import qualified

2.2. Language reference docs 99

DAML SDK Documentation, 2019-12-19

AndYetOtherModuleName as Signifier). Can’t have circular import references.

To import the Preludemodule of ./Prelude.daml, use import Prelude.

To import a module of ./Scenarios/Demo.daml, use import Scenarios.Demo.

If you leave out qualified, and a module alias is specified, top-level declarations of the im-

portedmodule are imported into themodule’s namespace as well as the namespace specified

by the given alias.

2.2.10.3 Libraries

A DAML library is a collection of related DAML modules.

Define a DAML library using a LibraryModules.daml file: a normal DAML file that imports the root

modules of the library. The library consists of the LibraryModules.daml file and all its dependen-

cies, found by recursively following the imports of each module.

Errors are reported in DAML Studio on a per-library basis. This means that breaking changes on

shared DAML modules are displayed even when the files are not explicitly open.

2.2.10.4 Comments

Use -- for a single line comment. Use {- and -} for a comment extending over multiple lines.

2.2.10.5 Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique

identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract

identifier from the Sandbox looks different to one on the DA Platform.

You can use == and /= on contract identifiers of the same type.

2.2.11 Reference: DAML packages

This page gives reference information on DAML package dependencies:

DAML archives

Importing DAML archives

Importing archives compiled with different SDK’s

2.2.11.1 DAML archives

When a DAML project is build with daml build, build artifacts are generated in the hidden directory

.daml/dist/ relative to the project root directory. The main build artifact of a project is the DAML

archive, recognized by the .dar file ending. DAML archives are platform independent. They can be

deployed on a ledger (see deploy) or can be imported into other projects as a package dependency.

2.2.11.2 Importing DAML archives

A DAML project can import DAML archive dependencies. Note that currently there is no tooling for

DAML package management. To import a package Bar in project Foo, add the file path of the Bar

DAML archive to the dependencies section of the daml.yaml project file:

100 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

sdk-version: 0.0.0

name: foo

source: daml

version: 1.0.0

exposed-modules:

- Some.Module

- Some.Other.Module

dependencies:

- daml-prim

- daml-stdlib

- /home/johndoe/bar/.daml/dist/bar-1.0.0.dar

The import path needs to be the relative or absolute path pointing to the created DAML archive of the

bar project. The archive can reside anywhere on the local file system. Note that the SDK versions

of the packages foo and bar need to match, i.e. it is an error to import a package that was created

with an older SDK.

Once a package has been added to the dependencies of the foo project, modules of bar can be

imported as usual with the import Some.Module directive (see Imports). If both projects foo as

well as bar contain a module with the same name, the import can be disambiguated by adding the

package name in front of the module name, e.g. import "bar" Some.Module.

Note that all modules of package foo that should be available as imports of other packages need to

be exposed by adding them to the exposed-modules stanza of the daml.yaml file. If the exposed-

modules stanza is omitted, all modules of the project are exposed by default.

2.2.11.3 Importing archives compiled with different SDK’s

All DAML archive dependencies of a project need to be compiled with the same SDK as the project

itself. However, it is possible to import templates and data types of an archive compiled with an

older SDK, by listing them under the data-dependencies stanza:

sdk-version: 0.0.0

name: foo

source: daml

version: 1.0.0

exposed-modules:

- Some.Module

- Some.Other.Module

dependencies:

- daml-prim

- daml-stdlib

- /home/johndoe/bar/.daml/dist/bar.dar

data-dependencies:

- /home/jondoe/bar-0.0.0/.daml/dist/bar-0.0.0.dar

Modules from data dependencies can be imported as usual, but need to be qualified by the (gener-

ated) instances package:

import "instances-bar" Foo

2.2. Language reference docs 101

DAML SDK Documentation, 2019-12-19

2.2.12 Contract keys

Contract keys are an optional addition to templates. They let you specify away of uniquely identifying

contract instances, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with

bank : Party

number : Text

owner : Party

balance : Decimal

observers : [Party]

where

signatory [bank, owner]

observer observers

key (bank, number) : AccountKey

maintainer key._1

2.2.12.1 What can be a contract key

The key can be an arbitrary expression but it must include every party that you want to use as a

maintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

2.2.12.2 Specifying maintainers

If you specify a contract key for a template, you must also specify a maintainer or maintainers, in

a similar way to specifying signatories or observers. However, maintainers are computed from the

key instead of the template arguments. In the example above, the bank is ultimately themaintainer

of the key. Maintainers are the parties that know about all of the keys that they are party to, and are

used by the engine to guarantee uniqueness of contract keys. The maintainersmust be signatories

of the contract.

Keys are unique to their maintainers. For example, say you have a key that you’re using as the iden-

tifer for a BankAccount contract. You might have key (bank, accountId) : (Party, Text).

When you create a new bank account, the contract key ensures that no-one else can have an account

with the same accountID at that bank. But that doesn’t apply to other banks: for a contract with a

different bank as maintainer, you could happily re-use that accountID.

When you’re writing DAML models, the maintainers matter since they affect authorization – much

like signatories and observers. You don’t need to do anything to maintain the keys.

Checking of the keys is done automatically at execution time, by theDAML exeuction engine: if some-

one tries to create a new contract that duplicates an existing contract key, the execution engine will

cause that creation to fail.

2.2.12.3 Contract keys functions

Contract keys introduce several new functions.

102 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType

contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative

to the currently-used fetch.

It returns a tuple of the ID and the contract object (containing all its data).

fetchByKey is authorized like fetch so it needs to be authorized by at least one stakeholder. There

are no restrictions on the submitter.

fetchByKey fails and aborts the transaction if:

Missing authorization, i.e., no authorization from a stakeholder of the contract you are trying

to fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that

you can’t see one.

Moreover, future versions of DAML will enforce that when using fetchByKey the submitter of the

transaction is one of the maintainers. It’s therefore advised to write your contract key workflows

with this future limitation in mind.

Because different templates can use the same key type, you need to specify the type of the contract

you are trying to fetch using the @ContractType syntax.

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

Use lookupByKey to check whether a contract with the specified key exists. If it does exist,

lookupByKey returns the Some contractId, where contractId is the ID of the contract; oth-

erwise, it returns None.

lookupByKey needs to be authorized by all maintainers of the contract you are trying to lookup.

There are no restrictions on the submitter.

If the lookup fails (ie returns None), this guarantees that no contract has this key.

Unlike fetchByKey, the transaction does not fail if a contract with the key doesn’t exist: instead,

lookupByKey just returns None.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

Moreover, like fetchByKey, future versions of DAML will enforce the submitter of the transaction is

one of the maintainers. It’s therefore advised to write your contract key workflows with this future

limitation in mind.

Because different templates can use the same key type, you need to specify the type of the contract

you are trying to fetch using the @ContractType syntax.

exerciseByKey

exerciseByKey @ContractType contractKey

UseexerciseByKey to exercise a choice on a contract identified by itskey (compared toexercise,

which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need

authorization from the controllers of the choice and at least one of the key maintainers.

2.2. Language reference docs 103

DAML SDK Documentation, 2019-12-19

Because different templates can use the same key type, you need to specify the type of the contract

you are trying to fetch using the @ContractType syntax.

2.3 DAML Studio

DAML Studio is an integrated development environment (IDE) for DAML. It is an extension on top

of Visual Studio Code (VS Code), a cross-platform, open-source editor providing a rich code editing

experience.

2.3.1 Installing

To install DAML Studio, install the SDK. DAML Studio isn’t currently available in the Visual Studio Mar-

ketplace.

2.3.2 Creating your first DAML file

1. Start DAML Studio by running daml studio in the current project.

This command starts Visual Studio Code and (if needs be) installs the DAML Studio extension,

or upgrades it to the latest version.

2. Make sure the DAML Studio extension is installed:

1. Click on the Extensions icon at the bottom of the VS Code sidebar.

2. Click on the DAML Studio extension that should be listed on the pane.

3. Open a new file (N) and save it (S) as Test.daml.

4. Copy the following code into your file:

-- Copyright (c) 2019 The DAML Authors. All rights reserved.

-- SPDX-License-Identifier: Apache-2.0

daml 1.2

module Test where

(continues on next page)

104 Chapter 2. Writing DAML

https://code.visualstudio.com
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/editingevolved

DAML SDK Documentation, 2019-12-19

(continued from previous page)

double : Int -> Int

double x = 2 * x

Your screen should now look like the image below.

5. Introduce a parse error by deleting the = sign and then clicking the symbol on the lower-left

corner. Your screen should now look like the image below.

6. Remove the parse error by restoring the = sign.

We recommend reviewing the Visual Studio Code documentation to learn more about how to use it.

To learn more about DAML, see Language reference docs.

2.3. DAML Studio 105

https://code.visualstudio.com/docs/editor/codebasics

DAML SDK Documentation, 2019-12-19

2.3.3 Supported features

Visual Studio Code provides many helpful features for editing DAML files and Digital Asset recom-

mends reviewing Visual Studio Code Basics and Visual Studio Code Keyboard Shortcuts for OS X. The

DAML Studio extension for Visual Studio Code provides the following DAML-specific features:

2.3.3.1 Symbols and problem reporting

Use the commands listed below to navigate between symbols, rename them, and inspect any prob-

lems detected in your DAML files. Symbols are identifiers such as template names, lambda argu-

ments, variables, and so on.

Command Shortcut (OS X)

Go to Definition F12

Peek Definition F12

Rename Symbol F2

Go to Symbol in File O

Go to Symbol in Workspace T

Find all References F12

Problems Panel M

Note: You can also start a command by typing its name into the command palette (press P or F1).

The command palette is also handy for looking up keyboard shortcuts.

Note:

Rename Symbol, Go to Symbol in File, Go to Symbol inWorkspace, and Find all References work

on: choices, record fields, top-level definitions, let-bound variables, lambda arguments, and

modules

Go to Definition and Peek Definition work on: top-level definitions, let-bound variables, lambda

arguments, and modules

2.3.3.2 Hover tooltips

You can hover over most symbols in the code to display additional information such as its type.

2.3.3.3 Scenario results

Top-level declarations of type Scenario are decorated with a Scenario results code lens. You

can click on the Scenario results code lens to inspect the transaction graph or an error resulting

from running that scenario.

The scenario results present a simplified view of a ledger, in the form of a transaction graph, after

execution of the scenario. The transaction graph consists of transactions, each of which contain

one or more updates to the ledger, that is creates and exercises. The transaction graph also records

fetches of contracts.

For example a scenario for the Ioumodule looks as follows:

106 Chapter 2. Writing DAML

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_hover

DAML SDK Documentation, 2019-12-19

Fig. 1: Scenario results (click to zoom)

Each transaction is the result of executing a step in the scenario. In the image below, the transaction

#0 is the result of executing the first line of the scenario (line 20), where the Iou is createdby thebank.

The following information can be gathered from the transaction:

The result of the first scenario transaction #0 was the creation of the Iou contract with the

arguments bank, 10, and "USD".

The created contract is referenced in transaction #1, step 0.

The created contract was consumed in transaction #1, step 0.

A new contract was created in transaction #1, step 1, and has been divulged to parties ‘Alice’,

‘Bob’, and ‘Bank’.

At the end of the scenario only the contract created in #1:1 remains.

The return value from running the scenario is the contract identifier #1:1.

And finally, the contract identifiers assigned in scenario execution correspond to the scenario

step that created them (e.g. #1).

You can navigate to the corresponding source code by clicking on the location shown in parenthesis

(e.g. Iou:20:12, whichmeans theIoumodule, line 20 and column 1). You can also navigate between

transactions by clicking on the transaction and contract ids (e.g. #1:0).

2.3.3.4 DAML snippets

You can automatically complete a number of snippets when editing a DAML source file. By default,

hitting ^-Space after typing a DAML keyword displays available snippets that you can insert.

To define your own workflow around DAML snippets, adjust your user settings in Visual Studio Code

to include the following options:

{

"editor.tabCompletion": true,

"editor.quickSuggestions": false

}

2.3. DAML Studio 107

DAML SDK Documentation, 2019-12-19

With those changes in place, you can simply hit Tab after a keyword to insert the code pattern.

You can develop your own snippets by following the instructions in Creating your own Snippets to

create an appropriate daml.json snippet file.

2.3.4 Common scenario errors

During DAML execution, errors can occur due to exceptions (e.g. use of abort, or division by zero), or

due to authorization failures. You can expect to run into the following errors when writing DAML.

When a runtime error occurs in a scenario execution, the scenario result view shows the error to-

gether with the following additional information, if available:

Last source location A link to the last source code location encountered before the error occurred.

Environment The variables that are in scope when the error occurred. Note that contract identifiers

are links that lead you to the transaction in which the contract was created.

Ledger time The ledger time at which the error occurred.

Call stack Call stack shows the function calls leading to the failing function. Updates and scenarios

that do not take parameters are not included in the call stack.

Partial transaction The transaction that is being constructed, but not yet committed to the ledger.

Committed transaction Transactions that were successfully committed to the ledger prior to the

error.

2.3.4.1 Abort, assert, and debug

The abort, assert and debug inbuilt functions can be used in updates and scenarios. All three can

be used to output messages, but abort and assert can additionally halt the execution:

abortTest = scenario do

debug "hello, world!"

abort "stop"

Scenario execution failed:

Aborted: stop

(continues on next page)

108 Chapter 2. Writing DAML

https://code.visualstudio.com/docs/editor/userdefinedsnippets

DAML SDK Documentation, 2019-12-19

(continued from previous page)

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Trace:

"hello, world!"

2.3.4.2 Missing authorization on create

If a contract is being created without approval from all authorizing parties the commit will fail. For

example:

template Example

with

party1 : Party; party2 : Party

where

signatory party1

signatory party2

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

submit alice (create Example with party1=alice; party2=bob)

Execution of the example scenario fails due to ‘Bob’ being a signatory in the contract, but not autho-

rizing the create:

Scenario execution failed:

#0: create of CreateAuthFailure:Example at unknown source

failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Sub-transactions:

#0

└─> create CreateAuthFailure:Example

with

party1 = 'Alice'; party2 = 'Bob'

To create the Example contract one would need to bring both parties to authorize the creation via

a choice, for example ‘Alice’ could create a contract giving ‘Bob’ the choice to create the ‘Example’

contract.

2.3.4.3 Missing authorization on exercise

Similarly to creates, exercises can also fail due to missing authorizations when a party that is not a

controller of a choice exercises it.

2.3. DAML Studio 109

DAML SDK Documentation, 2019-12-19

template Example

with

owner : Party

friend : Party

where

signatory owner

controller owner can

Consume : ()

do return ()

controller friend can

Hello : ()

do return ()

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

cid <- submit alice (create Example with owner=alice; friend=bob)

submit bob do exercise cid Consume

The execution of the example scenario failswhen ‘Bob’ tries to exercise the choice ‘Consume’ ofwhich

he is not a controller

Scenario execution failed:

#1: exercise of Consume in ExerciseAuthFailure:Example at unknown source

failed due to a missing authorization from 'Alice'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Sub-transactions:

#0

└─> fetch #0:0 (ExerciseAuthFailure:Example)

#1

└─> 'Alice' exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since): 'Alice' (#0), 'Bob' (#0)

└─> create ExerciseAuthFailure:Example

with

owner = 'Alice'; friend = 'Bob'

From the error we can see that the parties authorizing the exercise (‘Bob’) is not a subset of the

required controlling parties.

110 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.3.4.4 Contract not visible

Contract not being visible is another common error that can occur when a contract that is being

fetched or exercised has not been disclosed to the committing party. For example:

template Example

with owner: Party

where

signatory owner

controller owner can

Consume : ()

do return ()

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

cid <- submit alice (create Example with owner=alice)

submit bob do exercise cid Consume

In the above scenario the ‘Example’ contract is created by ‘Alice’ and makes no mention of the party

‘Bob’ and hence does not cause the contract to be disclosed to ‘Bob’. When ‘Bob’ tries to exercise the

contract the following error would occur:

Scenario execution failed:

Attempt to fetch or exercise a contract not visible to the committer.

Contract: #0:0 (NotVisibleFailure:Example)

Committer: 'Bob'

Disclosed to: 'Alice'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since): 'Alice' (#0)

└─> create NotVisibleFailure:Example

with

owner = 'Alice'

To fix this issue the party ‘Bob’ should be made a controlling party in one of the choices.

2.4 Testing using scenarios

DAML has a built-in mechanism for testing templates called scenarios.

Scenarios emulate the ledger. You can specify a linear sequence of actions that various parties take,

and these are evaluated in order, according to the same consistency, authorization, andprivacy rules

as they would be on the sandbox ledger or ledger server. DAML Studio shows you the resulting Trans-

action graph.

2.4. Testing using scenarios 111

DAML SDK Documentation, 2019-12-19

For more on how scenarios work, see the Examples below.

On this page:

Scenario syntax

– Scenarios

– Transaction submission

– Asserting transaction failure

– Full syntax

Running scenarios in DAML Studio

Examples

– Simple example

– Example with two updates

– Example with submitMustFail

2.4.1 Scenario syntax

2.4.1.1 Scenarios

example =

scenario do

A scenario emulates the ledger, in order to test that a DAML template or sequence of templates are

working as they should.

It consists of a sequence of transactions to be submitted to the ledger (after do), together with suc-

cess or failure assertions.

2.4.1.2 Transaction submission

-- Creates an instance of the Payout contract, authorized by "Alice"

submit alice do

The submit function attempts to submit a transaction to the ledger on behalf of a Party.

For example, a transaction could be creating a contract instance on the ledger, or exercising a choice

on an existing contract.

2.4.1.3 Asserting transaction failure

submitMustFail alice do

exercise payAlice Call

The submitMustFail function asserts that submitting a transaction to the ledger would fail.

This is essentially the same as submit, except that the scenario tests that the action doesn’t work.

2.4.1.4 Full syntax

For detailed syntax, see Reference: scenarios.

112 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.4.2 Running scenarios in DAML Studio

When you load a file that includes scenarios intoDAMLStudio, it displays a Scenario results link above

the scenario. Click the link to see a representation of the ledger after the scenario has run.

2.4.3 Examples

2.4.3.1 Simple example

A very simple scenario looks like this:

example =

scenario do

-- Creates the party Alice

alice <- getParty "Alice"

-- Creates an instance of the Payout contract, authorized by "Alice"

submit alice do

create Payout

-- There’s only one party: "Alice" is both the receiver and giver.

with receiver = alice; giver = alice

In this example, there is only one transaction, authorized by the party Alice (created using

getParty "Alice"). The ledger update is a create, and has to include the arguments for the tem-

plate (Payout with receiver = alice; giver = alice).

2.4.3.2 Example with two updates

This example tests a contract that gives both parties an explicit opportunity to agree to their obli-

gations.

example =

scenario do

-- Bank of England creates a contract giving Alice the option

-- to be paid.

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.

submit alice do

exercise payAlice Call

In the first transaction of the scenario, party bankOfEngland (created using getParty "Bank of

England") creates an instance of the CallablePayout contract with alice as the receiver and

bankOfEngland as the giver.

When the contract is submitted to the ledger, it is given a unique contract identifier of type

ContractId CallablePayout. payAlice <- assigns that identifier to the variable payAlice.

In the second statement, exercise payAlice Call, is an exercise of the Call choice on the con-

tract instance identified by payAlice. This causes a Payout agreement with her as the receiver

to be written to the ledger.

2.4. Testing using scenarios 113

DAML SDK Documentation, 2019-12-19

The workflow described by the above scenario models both parties explicitly exercising their rights

and accepting their obligations:

Party "Bank of England" is assumed to know the definition of the CallablePayout con-

tract template and the consequences of submitting a contract instance to the ledger.

Party "Alice" is assumed to know the definition of the contract template, as well as the con-

sequences of exercising the Call choice on it. If "Alice" does not want to receive five pounds,

she can simply not exercise that choice.

2.4.3.3 Example with submitMustFail

Because exercising a contract (by default) archives a contract, once party "Alice" exercises the

Call choice, she will be unable to exercise it again.

To test this expectation, use the submitMustFail function:

exampleDoubleCall =

scenario do

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

-- Bank of England creates a contract giving Alice the option

-- to be paid.

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.

submit alice do

exercise payAlice Call

-- If Alice tries to exercise the contract again, it must

-- fail.

submitMustFail alice do

exercise payAlice Call

When the Call choice is exercised, the contract instance is archived. The fails keyword checks

that if 'Alice' submits exercise payAlice Call again, it would fail.

2.5 Troubleshooting

Error: <X> is not authorized to commit an update

Error Argument is not of serializable type

Modelling questions

– How to model an agreement with another party

– How to model rights

– How to void a contract

– How to represent off-ledger parties

– How to limit a choice by time

– How to model a mandatory action

– When to use Optional

Testing questions

114 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

– How to test that a contract is visible to a party

– How to test that an update action cannot be committed

2.5.1 Error: “<X> is not authorized to commit an update”

This error occurs when there are multiple obligables on a contract.

A cornerstoneofDAML is that you cannot create a contract thatwill force someother party (or parties)

into an obligation. This error means that a party is trying to do something that would force another

parties into an agreement without their consent.

To solve this, make sure each party is entering into the contract freely by exercising a choice. A good

way of ensuring this is the initial and accept pattern: see the DAML patterns for more details.

2.5.2 Error “Argument is not of serializable type”

This error occurs when you’re using a function as a parameter to a template. For example, here is a

contract that creates a Payout controller by a receiver’s supervisor:

template SupervisedPayout

with

supervisor : Party -> Party

receiver : Party

giver : Party

amount : Decimal

where

controller (supervisor receiver) can

SupervisedPayout_Call

returning ContractId Payout

to create Payout with giver; receiver; amount

Hovering over the compilation error displays:

[Type checker] Argument expands to non-serializable type Party -> Party.

2.5.3 Modelling questions

2.5.3.1 How to model an agreement with another party

To enter into an agreement, create a contract instance from a template that has explicit signatory

and agreement statements.

You’ll need to use a series of contracts that give each party the chance to consent, via a contract

choice.

Because of the rules that DAML enforces, it is not possible for a single party to create an instance

of a multi-party agreement. This is because such a creation would force the other parties into that

agreement, without giving them a choice to enter it or not.

2.5.3.2 How to model rights

Use a contract choice to model a right. A party exercises that right by exercising the choice.

2.5. Troubleshooting 115

DAML SDK Documentation, 2019-12-19

2.5.3.3 How to void a contract

To allow voiding a contract, provide a choice that does not create any new contracts. DAML contracts

are archived (but not deleted)when a consuming choice ismade - so exercising the choice effectively

voids the contract.

However, you should bear inmind who is allowed to void a contract, especially without the re-sought

consent of the other signatories.

2.5.3.4 How to represent off-ledger parties

You’d need to do this if you can’t set up all parties as ledger participants, because the DAML Party

type gets associated with a cryptographic key and can so only be used with parties that have been

set up accordingly.

To model off-ledger parties in DAML, they must be represented on-ledger by a participant who can

sign on their behalf. You could represent them with an ordinary Text argument.

This isn’t very private, so you could use a numeric ID/an accountId to identify the off-ledger client.

2.5.3.5 How to limit a choice by time

Some rights have a time limit: either a time by which it must be exercised or a time before which it

cannot be exercised.

You can use getTime to get the current time, and compare your desired time to it. Use assert to

abort the choice if your time condition is not met.

2.5.3.6 How to model a mandatory action

If you want to ensure that a party takes some action within a given time period. Might want to incur

a penalty if they don’t - because that would breach the contract.

For example: an Invoice that must be paid by a certain date, with a penalty (could be something like

an added interest charge or a penalty fee). To do this, you could have a time-limited Penalty choice

that can only be exercised after the time period has expired.

However, note that the penalty action can only ever create another contract on the ledger, which

represents an agreement between all parties that the initial contract has been breached. Ultimately,

the recourse for any breach is legal action of some kind. What DAML provides is provable violation

of the agreement.

2.5.3.7 When to use Optional

The Optional type, from the standard library, to indicate that a value is optional, i.e, that in some

cases it may be missing.

In functional languages, Optional is a better way of indicating amissing value than using themore

familiar value NULL, present in imperative languages like Java.

To use Optional, include Optional.daml from the standard library:

import DA.Optional

Then, you can create Optional values like this:

116 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Some "Some text" -- Optional value exists.

None -- Optional value does not exist.

You can test for existence in various ways:

-- isSome returns True if there is a value.

if isSome m

then "Yes"

else "No"

-- The inverse is isNone.

if isNone m

then "No"

else "Yes"

If you need to extract the value, use the optional function.

It returns a value of a defined type, and takes a Optional value and a function that can transform

the value contained in a Some value of the Optional to that type. If it is missing optional also

takes a value of the return type (the default value), which will be returned if the Optional value is

None

let f = \ (i : Int) -> "The number is " <> (show i)

let t = optional "No number" f someValue

If optionalValue is Some 5, the value of twould be "The number is 5". If it was None, twould

be "No number". Note that with optional, it is possible to return a different type from that con-

tained in the Optional value. This makes the Optional type very flexible.

There are many other functions in Optional.daml that let you perform familiar functional operations

on structures that contain Optional values – such as map, filter, etc. on Lists of Optional

values.

2.5.4 Testing questions

2.5.4.1 How to test that a contract is visible to a party

Use a submit block and a fetch operation. The submit block tests that the contract (as a

ContractId) is visible to that party, and the fetch tests that it is valid, i.e., that the contract does

exist.

For example, if we wanted to test for the existence and visibility of an Invoice, visible to ‘Alice’,

whose ContractId is bound to invoiceCid, we could say:

submit alice do

result <- fetch invoiceCid

You could also check (in the submit block) that the contract has some expected values:

assert (result == (Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0))

2.5. Troubleshooting 117

DAML SDK Documentation, 2019-12-19

using an equality test and an assert:

submit alice do

result <- fetch invoiceCid

assert (result == (Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0))

2.5.4.2 How to test that an update action cannot be committed

Use the submitMustFail function. This is similar in form to the submit function, but is an asser-

tion that an update will fail if attempted by some Party.

2.6 Writing good DAML

2.6.1 Good design patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a

document of gooddesign practices. This document is a catalog of DAMLpatterns intended to provide

the same facility in the DA/DAML application world.

Download all the example code

Initiate and Accept The Initiate and Accept pattern demonstrates how to start a bilateral workflow.

One party initiates by creating a proposal or an invite contract. This gives another party the

chance to accept, reject or renegotiate.

Multiple party agreement The Multiple Party Agreement pattern uses a Pending contract as a wrap-

per for the Agreement contract. Any one of the signatory parties can kick off the workflow by

creating a Pending contract on the ledger, filling in themselves in all the signatory fields. The

Agreement contract is not created on the ledger until all parties have agreed to the Pending

contract, and replaced the initiator’s signature with their own.

Delegation The Delegation pattern gives one party the right to exercise a choice on behalf of another

party. The agent can control a contract instance on the ledger without the principal explicitly

committing the action.

Authorization The Authorization pattern demonstrates how to make sure a controlling party is au-

thorized before they take certain actions.

Locking The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the

specified locking party can lock the asset through an active and authorized action. When a

contract is locked, some or all choices specified on that contract may not be exercised.

2.6.1.1 Initiate and Accept

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates

by creating a proposal or an invite contract. This gives another party the chance to accept, reject or

renegotiate.

Motivation

It takes two to tango, but one party has to initiate. There is no difference in business world. The

contractual relationship between two businesses often starts with an invite, a business proposal, a

118 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an on-boarding

process, in which they invite participants to sign master service agreements and fulfill differ-

ent roles in themarket. Receiving participants need to evaluate the rights and responsibilities

of each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The

proposal lays out what is expected frombuyers, andwhat they can expect from the issuer. Buy-

ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before

making a decision.

The Initiate and Accept pattern demonstrates how to write a DAML program to model the initiation

of an inter-company contractual relationship. DAML modelers often have to follow this pattern to

ensure no participants are forced into an obligation.

Implementation

The Initiate and Accept pattern in general involves 2 contracts:

Initiate contract The Initiate contract can be created from a role contract or any other point in the

workflow. In this example, initiate contract is the proposal contract CoinIssueProposal the issuer

created from from the master contract CoinMaster.

template CoinMaster

with

issuer: Party

where

signatory issuer

controller issuer can

nonconsuming Invite : ContractId CoinIssueProposal

with owner: Party

do create CoinIssueProposal

with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinIssueProposal contract has Issuer as the signatory, and Owner as the controller to the

Accept choice. In its complete form, the CoinIssueProposal contract should define all choices

available to the owner, i.e. Accept, Reject or Counter (e.g. re-negotiate terms).

template CoinIssueProposal

with

coinAgreement: CoinIssueAgreement

where

signatory coinAgreement.issuer

controller coinAgreement.owner can

AcceptCoinProposal

: ContractId CoinIssueAgreement

do create coinAgreement

Result contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to

express their consent, it returns a result contract representing the agreement between the two

parties. In this example, the result contract is of type CoinIssueAgreement. Note, it has both

issuer and owner as the signatories, implying they both need to consent to the creation of this

2.6. Writing good DAML 119

DAML SDK Documentation, 2019-12-19

contract. Both parties could be controller(s) on the result contract, depending on the business

case.

template CoinIssueAgreement

with

issuer: Party

owner: Party

where

signatory issuer, owner

controller issuer can

nonconsuming Issue : ContractId Coin

with amount: Decimal

do create Coin with issuer; owner; amount; delegates = []

Fig. 2: Initiate and Accept pattern diagram

Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to

progress the workflow.

2.6.1.2 Multiple party agreement

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-

tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on

the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on

the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature

with their own.

Motivation

The Initiate and Accept shows how to create bilateral agreements in DAML. However, a project or a

workflow often requires more than two parties to reach a consensus and put their signatures on

a multi-party contract. For example, in a large construction project, there are at least three major

stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on key

responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure

if there are conflicts between their two contracts and the third contract between their partners. If

120 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

the Initiate and Acceptwere used to collect three signatures on amulti-party agreement, unnecessary

restrictions would be put on the order of consensus and a number of additional contract templates

would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-

tiple signatories and have each party accept explicitly.

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of

stakeholders. Its content can vary per business case, but in this pattern, it always has mul-

tiple signatories.

template ContractPlaceholder

with

signatories: [Party]

where

signatory signatories

ensure

unique signatories

-- The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so

that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to

sign it. If you add these lists together, it has to be the same set of parties as the signatories

of the Agreement contract.

All of the toSign parties have the choice to Sign. This choice checks that the party is indeed

amember of toSign, then creates a new instance of the Pending conract where they have been

moved to the signed list.

template Pending

with

finalContract: ContractPlaceholder

alreadySigned: [Party]

where

signatory alreadySigned

observer finalContract.signatories

ensure

-- Can't have duplicate signatories

unique alreadySigned

-- The parties who need to sign is the finalContract.signatories

↪→with alreadySigned filtered out

let toSign = filter (`notElem` alreadySigned) finalContract.

↪→signatories

choice Sign : ContractId Pending with

signer : Party

controller signer

do

(continues on next page)

2.6. Writing good DAML 121

DAML SDK Documentation, 2019-12-19

(continued from previous page)

-- Check the controller is in the toSign list, and if they

↪→are, sign the Pending contract

assert (signer `elem` toSign)

create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using

the Finalize choice. This checks that all of the signatories for the Agreement have signed the

Pending contract.

choice Finalize : ContractId ContractPlaceholder with

signer : Party

controller signer

do

-- Check that all the required signatories have signed

↪→Pending

assert (sort alreadySigned == sort finalContract.signatories)

create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it

cannot be created in that state by any one stakeholder.

However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[person1, person2, person3, person4] <- makePartiesFrom [

↪→"Alice", "Bob", "Clare", "Dave"]

let finalContract = ContractPlaceholder with signatories = parties

-- Parties cannot create a contract already signed by someone else

initialFailTest <- person1 `submitMustFail` do

create Pending with finalContract; alreadySigned = [person1,

↪→person2]

-- Any party can create a Pending contract provided they list

↪→themselves as the only signatory

pending <- person1 `submit` do

create Pending with finalContract; alreadySigned = [person1]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example

code only has choices to express consensus (but you might want to add choices to Accept,

Reject, or Negotiate).

-- Each signatory of the finalContract can Sign the Pending contract

pending <- person2 `submit` do

exercise pending Sign with signer = person2

pending <- person3 `submit` do

exercise pending Sign with signer = person3

pending <- person4 `submit` do

exercise pending Sign with signer = person4

-- A party can't sign the Pending contract twice

pendingFailTest <- person3 `submitMustFail` do

exercise pending Sign with signer = person3

(continues on next page)

122 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

-- A party can't sign on behalf of someone else

pendingFailTest <- person3 `submitMustFail` do

exercise pending Sign with signer = person4

Once all of the parties have signed the Pending contract, any of them can then exercise the

Finalize choice. This creates the Agreement contract on the ledger.

person1 `submit` do

exercise pending Finalize with signer = person1

Fig. 3: Multiple Party Agreement Diagram

2.6.1.3 Delegation

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The

agent can control a contract instance on the ledger without the principal explicitly committing the

action.

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on

delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to

hold their securities and settle transactions on their behalf. The securities are not legally possessed

by the custodian banks, but the banks should have full rights to performactions in the client’s name,

such as making payments or changing investments.

The Delegation pattern enables DAMLmodelers to model the real-world business contractual agree-

ments between custodian banks and their customers. Ownership and administration rights can be

segregated easily and clearly.

2.6. Writing good DAML 123

DAML SDK Documentation, 2019-12-19

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-

egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to

delegate the Transfer choice.

--the original contract

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition that

↪→the issuer is the owner of the coin. This ensures the issuer cannot

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

Delegation Contract

Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-

natory is required to authorize the Transfer choice on coin.

template CoinPoA

with

attorney: Party

principal: Party

where

signatory principal

(continues on next page)

124 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

controller principal can

WithdrawPoA

: ()

do return ()

Whether or not the Attorneyparty should be a signatory of CoinPoA is subject to the business

agreements between Principal and Attorney. For simplicity, in this example, Attorney is not

a signatory.

Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-

cipal exercises the choice Transfer on the Coin contract.

controller attorney can

nonconsuming TransferCoin

: ContractId TransferProposal

with

coinId: ContractId Coin

newOwner: Party

do

exercise coinId Transfer with newOwner

Coin contracts need to be disclosed to Attorney before they can be used in an exercise of

Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done

dynamically, for any specific Coin, by making the observers a List, and adding a choice to

add a party to that List:

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. DA is actively researching future language

features for contract disclosure.

Fig. 4: Delegation pattern diagram

2.6. Writing good DAML 125

DAML SDK Documentation, 2019-12-19

2.6.1.4 Authorization

The Authorization pattern demonstrates how to make sure a controlling party is authorized before

they take certain actions.

Motivation

Authorization is an universal concept in the business world as access tomost business resources is

a privilege, and not given freely. For example, security tradingmay seem to be a plain bilateral agree-

ment between the two trading counterparties, but this could not be further from truth. To be able to

trade, the trading parties need go through a series of authorization processes and gain permission

from a list of service providers such as exchanges, market data streaming services, clearing houses

and security registrars etc.

The Authorization pattern shows how tomodel these authorization checks prior to a business trans-

action.

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition that

↪→the issuer is the owner of the coin. This ensures the issuer cannot

↪→archive coins at will.

controller issuer can

Archives

(continues on next page)

126 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

: ()

do assert (issuer == owner)

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited

company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this

example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an

observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization

with

owner: Party

issuer: Party

where

signatory issuer

observer owner

controller issuer can

WithdrawAuthorization

: ()

do return ()

Authorization contracts canhavemuchmoreadvancedbusiness logic, but in its simplest form,

CoinOwnerAuthorization serves itsmain purpose, which is to prove the owner is a warranted coin

owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that

newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-

plied and is checkedby the twoassert statements in the choice before a coin canbe transferred.

controller newOwner can

AcceptTransfer

: ContractId Coin

with token: ContractId CoinOwnerAuthorization

do

t <- fetch token

assert (coin.issuer == t.issuer)

assert (newOwner == t.owner)

create coin with owner = newOwner

2.6.1.5 Locking

The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the specified

locking party can lock the asset through an active and authorized action. When a contract is locked,

some or all choices specified on that contract may not be exercised.

Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-

tlement process, once a trade is registered and novated to a central Clearing House, the trade is

considered locked-in. This means the securities under the ownership of seller need to be locked so

2.6. Writing good DAML 127

DAML SDK Documentation, 2019-12-19

Fig. 5: Authorization Diagram

they cannot be used for other purposes, and so should be the funds on the buyer’s account. The

locked state should remain throughout the settlement Payment versus Delivery process. Once the

ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation

There are three ways to achieve locking:

Locking by archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is

used as the original contract to demonstrate locking and unlocking.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

(continues on next page)

128 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

--a coin can only be archived by the issuer under the condition that

↪→the issuer is the owner of the coin. This ensures the issuer cannot

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

Archiving is a straightforward choice for locking because once a contract is archived, all choices

on the contract become unavailable. Archiving can be done either through consuming choice or

archiving contract.

Consuming choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

The controller party on the Lockmay vary depending on business context. In this example, owner

is a good choice.

The parameters to this choice are also subject to business use case. Normally, it should have

at least locking terms (eg. lock expiry time) and a party authorized to unlock.

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-

teristics, all in order to be able to recreate the original Coin:

– The signatories are the same as the original contract.

– It has all data of Coin, either through having a Coin as a field, or by replicating all data of

Coin.

– It has an Unlock choice to lift the lock.

template LockedCoin

with

coin: Coin

maturity: Time

locker: Party

where

signatory coin.issuer, coin.owner

controller locker can

Unlock

: ContractId Coin

do create coin

Archiving contract

In the event that changing the original contract is not desirable and assuming the original contract

already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin

2.6. Writing good DAML 129

DAML SDK Documentation, 2019-12-19

Fig. 6: Locking By Consuming Choice Diagram

and create LockedCoin.

Examine the controller party and archiving logic in the Archives choice on the Coin contract. A

coin can only be archived by the issuer under the condition that the issuer is the owner of the

coin. This ensures the issuer cannot archive any coin at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment

with

owner: Party

issuer: Party

amount: Decimal

where

signatory issuer

The controller party and parameters on the Lock choice are the same as described in locking by

consuming choice. The additional logic required is to transfer the asset to the issuer, and then

explicitly call the Archive choice on the Coin contract.

Once a Coin is archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

controller owner can

nonconsuming LockCoin

: ContractId LockedCoin

with coinCid: ContractId Coin

maturity: Time

locker: Party

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&

↪→inputCoin.amount == amount)

--the original coin firstly transferred to issuer and then

↪→archivaed

prop <- exercise coinCid Transfer with newOwner = issuer

(continues on next page)

130 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

do

id <- exercise prop AcceptTransfer

exercise id Archives

--create a lockedCoin to represent the coin in locked state

create LockedCoin with

coin=inputCoin with owner; issuer; amount

maturity; locker

Fig. 7: Locking By Archiving Contract Diagram

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

Locking by archiving disables all choices on the original contract. Usually for consuming

choices this is exactly what is required. But if a party needs to selectively lock only some

choices, remaining active choices need to be replicated on the LockedCoin contract, which can

lead to code duplication.

The choices on the original contract need to be altered for the lock choice to be added. If this

contract is shared across multiple participants, it will require agreement from all involved.

Locking by state

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

(continues on next page)

2.6. Writing good DAML 131

DAML SDK Documentation, 2019-12-19

(continued from previous page)

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that

↪→the issuer is the owner of the coin. This ensures the issuer cannot

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State

requires introducing fields to track state. This allows for the creation of an active contract in two

possible states: locked or unlocked. A DAMLmodeler can selectivelymake certain choices actionable

only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin

through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag

or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

Add a locker party to the template parameters.

Define the states.

– if owner == locker, the coin is unlocked

– if owner != locker, the coin is in a locked state

The contract state is checked on choices.

– Transfer choice is only actionable if the coin is unlocked

– Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied

– Unlock is available to the locker party only if the coin is locked

template LockableCoin

with

owner: Party

issuer: Party

amount: Decimal

locker: Party

where

signatory issuer

signatory owner

ensure amount > 0.0

(continues on next page)

132 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

--Transfer can happen only if it is not locked

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

assert (locker == owner)

create TransferProposal

with coin=this; newOwner

--Lock can be done if owner decides to bring a locker on board

Lock : ContractId LockableCoin

with newLocker: Party

do

assert (newLocker /= owner)

create this with locker = newLocker

--Unlock only makes sense if the coin is in locked state

controller locker can

Unlock

: ContractId LockableCoin

do

assert (locker /= owner)

create this with locker = owner

Locking By State Diagram

Trade-offs

It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to

the template parameters to track the state change, the template can get overloaded.

2.6. Writing good DAML 133

DAML SDK Documentation, 2019-12-19

Locking by safekeeping

Safekeeping is a realistic way tomodel locking as it is a commonpractice inmany industries. For ex-

ample, during a real estate transaction, purchase funds are transferred to the sellers lawyer’s escrow

account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that

↪→the issuer is the owner of the coin. This ensures the issuer cannot

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can

transfer the Coin ownership to a locker party.

Introduce a separate contract template LockRequest with the following features:

– LockRequest has a locker party as the single signatory, allowing the locker party to unilat-

erally initiate the process and specify locking terms.

– Once owner exercises Accept on the lock request, the ownership of coin is transferred to

the locker.

– The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest

with

locker: Party

maturity: Time

coin: Coin

where

signatory locker

controller coin.owner can
(continues on next page)

134 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

(continued from previous page)

Accept : LockResult

with coinCid : ContractId Coin

do

inputCoin <- fetch coinCid

assert (inputCoin == coin)

tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer

lockCid <- create LockedCoinV2 with locker; maturity; coin

return LockResult {coinCid; lockCid}

LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described

in Consuming choice. The additional logic is to transfer ownership from the locker back to the

owner when Unlock or Clawback is called.

template LockedCoinV2

with

coin: Coin

maturity: Time

locker: Party

where

signatory locker, coin.owner

controller locker can

UnlockV2

: ContractId Coin

with coinCid : ContractId Coin

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

controller coin.owner can

ClawbackV2

: ContractId Coin

with coinCid : ContractId Coin

do

currTime <- getTime

assert (currTime >= maturity)

inputCoin <- fetch coinCid

assert (inputCoin == coin with owner=locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer

could run away with the funds. In a similar fashion, a malicious locker party could introduce code to

transfer assets away while they are under their ownership.

2.6. Writing good DAML 135

DAML SDK Documentation, 2019-12-19

Fig. 8: Locking By Safekeeping Diagram

2.6.1.6 Diagram legends

2.6.2 Anti-patterns

This documents DLT anti-patterns, their drawbacks and more robust ways of achieving the same

outcome.

Don’t use the ledger for orchestration

Avoid race conditions in smart contracts

Don’t use status variables in smart contracts

2.6.2.1 Don’t use the ledger for orchestration

Applications often need to orchestrate calculations at specific times or in a long-running sequence

of steps. Examples are:

Committing assets to a settlement cycle at 10:00 am

Starting a netting calculation after trade registration has finished

Triggering the optimization of a portfolio

At first, creating a contract triggering this request might seem convenient:

template OptimizePortfolio

with

self: Party

where

signatory self

However, this is a case of using a database [ledger] for interprocess communication. This contract is

a computational request from the orchestration unit to a particular program. But the ledger repre-

sents the legal rights and obligations associated with a business process: computational requests

are a separate concern and shouldn’t be mixed into this. Having them on-ledger has the following

136 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

2.6. Writing good DAML 137

DAML SDK Documentation, 2019-12-19

drawbacks:

Code bloat in shared models: introduces more things which need to be agreed upon

Limited ability to send complicated requests since they first have to be projected into smart

contracts

High latency since intermediate variables have to be committed to the ledger

Changing the orchestration of a production system has a very high barrier since it may require

DAML model upgrades

Orchestration contracts have no business meaning and contaminate the ledger holding

business-oriented legal rights and obligations

Instead, lightweight remote procedure calls (RPC) would bemore appropriate. A systemdesigner can

consider triggering the application waiting to execute a task with RPC mechanism like:

An HTTP request

A general message bus

A scheduler starting the calculation at a specific time

Notification contracts, which draw a line in the sand and have a real business meaning, don’t fall

under this categorization. These are persistent contracts with real meaning to the business process

and not an ephemeral computational request as described above.

2.6.2.2 Avoid race conditions in smart contracts

The DLT domain lends itself to race conditions. How? Multiple parties are concurrently updating

shared resources (contracts). Here’s an example that’s vulnerable to race conditions: a DvP where a

payer allocates their asset, a receiver has to allocate their cash and then an operator does the final

settlement.

template DvP

with

operator: Party

payer: Party

receiver: Party

assetCid: Optional (ContractId Asset)

cashIouCid: Optional (ContractId CashIou)

--

controller payer can

PayerAllocate: ContractId DvP

--

controller receiver can

ReceiverAllocate: ContractId DvP

--

controller operator can

Settle: (ContractId Asset, ContractId CashIou)

If the payer and receiver react to the creation of this contract and try to exercise their respective

choices, one will succeed and the other will result in an attempted double-spend. Double-spends

create additional work on the systembecausewhen an exception is returned, a new command needs

to be subsequently generated and reprocessed. In addition, the application developer has to imple-

ment careful error handling associatedwith the failed commandsubmission. It shouldbe everyone’s

138 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

goal to write double-spend free code as needless exceptions dirty logs and can be a distraction when

debugging other problems.

To write your code in a way that avoids race conditions, you should explicitly break up the updating

of the state into a workflow of contracts which collect up information from each participant and

is deterministic in execution. For the above example, deterministic execution can be achieved by

refactoring the DvP into three templates:

1. DvPRequest created by the operator, which only has a choice for the payer to allocate.

2. DvP which is the result of the previous step and only has a choice for the receiver to allocate.

3. SettlementInstruction which is the result of the previous step. It has all the information

required for settlement and can be advanced by the operator

Alternatively, if asynchronicity is required, the workflow can be broken up as follows:

1. Create a PayerAllocation contract to collect up the asset.

2. Create a ReceiverAllocation contract to collect up the cashIou.

3. Have the Settle choice on the DvP which takes the previous two contracts as arguments.

2.6.2.3 Don’t use status variables in smart contracts

When orchestrating the processing of an obligation, the obligation may go through a set of states.

The simplest example is locking an asset where the states are locked versus unlocked. A more com-

plex example is the states of insurance claim:

1. Claim Requested

2. Cleared Fraud Detection

3. Approved

4. Sent for Payment

Initially, it might seem that a convenient way to represent this is with a status variable like below:

data ObligationStatus = ClaimRequested | ClearedFraudDetection | Approved |

↪→SentForPayment deriving (Eq, Show)

template Obligation

with

insuranceUnderwriter: Party

claimer: Party

status : ObligationStatus

Instead, you can break up the obligation into separate contracts for each of the different states.

template ClaimRequest

with

insuranceUnderwriter: Party

claimer: Party

template ClaimClearedFraudDetection

with

insuranceUnderwriter: Party

claimer: Party

The drawbacks of maintaining status variables in contracts are:

It is harder to understand the state of the ledger since you have to inspect contracts

2.6. Writing good DAML 139

DAML SDK Documentation, 2019-12-19

More complex application code is required since it has to condition on the state of the contract

Within the contract code, havingmany choices on a contract canmake it ambiguous as to how

to advance the workflow forward

The contract code can become complex supporting all the various ways to update its internal

state

Information can be leaked to parties who are not involved in the exercising of a choice

It is harder to update the ledger/models/application if a new state is introduced

Increased error checking code required to verify the state transitions are correct

Makes the code harder to reason about

By breaking the contract up and removing the status variable, it eliminates the above drawbacks

and makes the system transparent in its state and how to evolve forward.

2.6.3 What functionality belongs in DAML models versus application code?

The answer to this question depends on how you’re using your ledger and what is important to you.

Consider two different use cases: a ledger encoding legal rights and obligations between companies

versus using a ledger as a conduit for internal data synchronization. Each of these solutions would

be deployed in very different environments and are on either end of the trust and coordination spec-

trums. Internally to a company, trust is high and the ability to coordinate change is high. External

to a company, the opposite is true.

The rest of this pagewill talk about how to organize things in either case. For your particular solution,

it is important to similarly identify the what factors are important to you, then separate along those

lines.

Looking at the ledger from a legal perspective

Looking at the ledger from a data synchronization perspective

2.6.3.1 Looking at the ledger from a legal perspective

When the ledger is encoding legal rights and obligations between external counterparties, a defen-

sive/minimalistic approach to functionality in DAML models may be prudent. The reasons for this

are:

It is a litigious environment where the ledger’s state may require examination in court

The ledger is a valuable source of legal information and shouldn’t be contaminated with non-

business oriented logic

The more functionality in shared models, the more which needs to be agreed upon upfront by

all companies involved. Further updating shared models is hard since all companies need to

coordinate

As a result, shared functionality in DAMLmodels needs careful scrutiny. Thisminimalistic approach

might only include:

Contracts representing, and going into the servicing of, traditional legal contracts

Contracts narrowly associated with the business process such as obligations for payment/de-

livery

Contractual eligibility checks prior to obligation creation - e.g. prerequisites for creating an

insurance claim

Operations requiring atomicity such as swapping of ownership

Calculations resulting in legal obligations such as the payout of a call option

140 Chapter 2. Writing DAML

DAML SDK Documentation, 2019-12-19

Functionality not going into theDAMLmodels thenmust go into the application. These non-business

oriented items may include:

Commonly available libraries like calendars or date calculations

Code to parse messages - e.g. FIX trade confirmation messages

Code to orchestrate a batch calculation

Calculations specific to a participant

2.6.3.2 Looking at the ledger from a data synchronization perspective

On the other hand, when doing data synchronization most of the inter-process communication be-

tween parties belongs on the ledger. This perspective is grounded in the fact that DA’s platform acts

as a messaging bus where the messages are subject to certain guarantees:

The initiating party is authentic

Messages conform to DAML model specification

Messages are approved by all participants hosting stakeholders of the message

Therefore, when doing data synchronization all of the above functionality is eligible to go into the

DAML models and have the application be a lightweight router. However, there are still some things

for which it isn’t sensible to put on the ledger. For examples of these, see the section on Anti-patterns.

2.6. Writing good DAML 141

Chapter 3

Building applications

3.1 Writing applications using the Ledger API

3.1.1 The Ledger API services

The Ledger API is structured as a set of services. The core services are implemented using gRPC and

Protobuf, but most applications access this API through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way

you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

3.1.1.1 Overview

The API is structured as two separate data streams:

A stream of commands TO the ledger that allow an application to submit transactions and

change state.

A stream of transactions and corresponding events FROM the ledger that indicate all state

changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events

are the only mechanism to read those changes.

For an application, themost important consequence of these architectural decisions and implemen-

tation is that the ledger API is asynchronous. This means:

The outcome of commands is only known some time after they are submitted.

The application must deal with successful and erroneous command completions separately

from command submission.

Ledger state changes are indicated by events received asynchronously from the command sub-

missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding

the consequences of the API characteristics is important for a successful application design.

For more help understanding these issues so you can build correct, performant and maintainable

applications, read the application architecture guide.

142

https://grpc.io/
https://developers.google.com/protocol-buffers/

DAML SDK Documentation, 2019-12-19

Glossary

The ledger is a list of transactions. The transaction service returns these

A transaction is a tree of actions, also called events, which are of type create, exercise

or archive. The transaction service can return the whole tree, or a flattened list.

A submission is a proposed transaction, consisting of a list of commands, which correspond

to the top-level actions in that transaction.

A completion indicates the success or failure of a submission.

3.1.1.2 Submitting commands to the ledger

Command submission service

Use the command submission service to submit commands to the ledger. Commands either create

a new contract instance, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the

command, and has either accepted or rejected it. This does not mean the command has been exe-

cuted, only that the server has looked at the command and decided that its format is acceptable, or

has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described

below. The completion status of the command is reported via the command completion service. Your

application should receive completions, correlate them with command submission, and handle er-

rors and failed commands. Alternatively, you can use the command service, which conveniently wraps

the command submission and completion services.

Commands can be labeled with two application-specific IDs, both of which are returned in comple-

tion events:

A commandId, returned to the submitting application only. It is generally used to implement

this correlation between commands and completions.

A workflowId, returned as part of the resulting transaction to all applications receiving it. It can

be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command completion service

Use the command completion service to find out the completion status of commands you have

submitted.

Completions contain the commandId of the completed command, and the completion status of the

command. This status indicates failure or success, and your application should use it to update

what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. This

service is similar to the command submission service, but also receives completions andwaits until

it knows whether or not the submitted command has completed. It returns the completion status

of the command execution.

3.1. Writing applications using the Ledger API 143

DAML SDK Documentation, 2019-12-19

You can use either the command or command submission services to submit commands to effect

a ledger change. The command service is useful for simple applications, as it handles a basic form

of coordination between command submission and completion, correlating submissions with com-

pletions, and returning a success or failure status. This allow simple applications to be completely

stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

3.1.1.3 Reading from the ledger

Transaction service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-

actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive

of contracts) that had an effect in that transaction.

Transactions contain a transactionId (assigned by the server), the workflowId, the commandId, and

the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This is

important when starting or restarting and application, and to work in conjunction with the active

contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction trees

TransactionService offers several different subscriptions. The most commonly used is

GetTransactions. If you need more details, you can use GetTransactionTrees instead, which

returns transactions as flattened trees, represented as amap of event IDs to events and a list of root

event IDs.

Verbosity

The service works in a non-verbosemode by default, whichmeans that some identifiers are omitted:

Record IDs

Record field labels

Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-

sage GetTransactionsRequest or GetActiveContractsRequest to true.

Active contracts service

Use the active contracts service to obtain a party-specific view of all contracts currently active on

the ledger.

The active contracts service returns the current contract set as a set of created events that would

re-create the state being reported. Each created event has a ledger offset where it occurs. You can

infer the ledger offset of the contract set from the ledger offset of the last event you receive.

This is most important at application start, if the application needs to synchronize its initial state

with a known view of the ledger. Without this service, the only way to do this would be to read the

144 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a

large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

3.1.1.4 Utility services

Package service

Use the package service to obtain information about DAML packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in

a more useful way.

For full details, see the proto documentation for the service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to.

You need to include this identity string when submitting commands. Commands with an incorrect

identity string are rejected.

For full details, see the proto documentation for the service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes maximum and minimum values for the difference in Ledger Effective

Time and Maximum Record Time (see Time Service for details of these).

For full details, see the proto documentation for the service.

3.1.1.5 Testing services

These are only for use for testing with the Sandbox, not for on production ledgers.

Time service

Use the time service to obtain the time as known by the ledger server.

This is important because you have to include two timestamps when you submit a command - the

Ledger Effective Time (LET), and the Maximum Record Time (MRT). For the command to be accepted, LET

must be greater than the current ledger time.

MRT is used in the detection of lost commands.

For full details, see the proto documentation for the service.

3.1. Writing applications using the Ledger API 145

DAML SDK Documentation, 2019-12-19

Reset service

Use the reset service to reset the ledger state, as a quicker alternative to restarting the whole ledger

application.

This resets all state in the ledger, including the ledger ID, so clients will have to re-fetch the ledger ID

from the identity service after hitting this endpoint.

For full details, see the proto documentation for the service.

3.1.1.6 Services diagram

3.1.2 How DAML types are translated to DAML-LF

This page shows how types in DAML are translated into DAML-LF. It should help you understand and

predict the generated client interfaces, which is useful when you’re building a DAML-based applica-

tion that uses the Ledger API or client bindings in other languages.

For an introduction to DAML-LF, see DAML-LF.

3.1.2.1 Primitive types

Built-in data types in DAML have straightforward mappings to DAML-LF.

This section only covers the serializable types, as these are what client applications can interact

with via the generated DAML-LF. (Serializable types are ones whose values can be written in a text

or binary format. So not function types, Update and Scenario types, as well as any types built up

from those.)

Most built-in types have the same name in DAML-LF as in DAML. These are the exact mappings:

146 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

DAML primitive type DAML-LF primitive type

Int Int64

Time Timestamp

() Unit

[] List

Decimal Decimal

Text Text

Date Date

Party Party

Optional Optional

ContractId ContractId

Be aware that only the DAML primitive types exported by the Prelude module map to the DAML-LF

primitive types above. Thatmeans that, if you define your own type namedParty, it will not translate

to the DAML-LF primitive Party.

3.1.2.2 Tuple types

DAML tuple type constructors take types T1, T2, …, TN to the type (T1, T2, …, TN). These are

exposed in the DAML surface language through the Prelude module.

The equivalent DAML-LF type constructors are daml-prim:DA.Types:TupleN, for each particular

N (where 2 <= N <= 20). This qualified name refers to the package name (ghc-prim) and the module

name (GHC.Tuple).

For example: the DAML pair type (Int, Text) is translated to daml-prim:DA.Types:Tuple2

Int64 Text.

3.1.2.3 Data types

DAML-LF has three kinds of data declarations:

Record types, which define a collection of data

Variant or sum types, which define a number of alternatives

Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in DAML (starting with the data keyword) are translated to record, variant or

enum types. It’s sometimes not obvious what they will be translated to, so this section lists many

examples of data types in DAML and their translations in DAML-LF.

Record declarations

This section uses the syntax for DAML records with curly braces.

DAML declaration DAML-LF translation

data Foo = Foo { foo1: Int;

foo2: Text }

record Foo { foo1: Int64; foo2: Text }

data Foo = Bar { bar1: Int;

bar2: Text }

record Foo { bar1: Int64; bar2: Text }

data Foo = Foo { foo: Int } record Foo { foo: Int64 }

data Foo = Bar { foo: Int } record Foo { foo: Int64 }

data Foo = Foo {} record Foo {}

data Foo = Bar {} record Foo {}

3.1. Writing applications using the Ledger API 147

DAML SDK Documentation, 2019-12-19

Variant declarations

DAML declaration DAML-LF translation

data Foo = Bar Int | Baz

Text

variant Foo Bar Int64 | Baz Text

data Foo a = Bar a | Baz

Text

variant Foo a Bar a | Baz Text

data Foo = Bar Unit | Baz

Text

variant Foo Bar Unit | Baz Text

data Foo = Bar Unit | Baz variant Foo Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a Bar Unit | Baz Unit

data Foo = Foo Int variant Foo Foo Int64

data Foo = Bar Int variant Foo Bar Int64

data Foo = Foo () variant Foo Foo Unit

data Foo = Bar () variant Foo Bar Unit

data Foo = Bar { bar: Int }

| Baz Text

variant Foo Bar Foo.Bar | Baz Text, record

Foo.Bar { bar: Int64 }

data Foo = Foo { foo: Int }

| Baz Text

variant Foo Foo Foo.Foo | Baz Text, record

Foo.Foo { foo: Int64 }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz Text

variant Foo Bar Foo.Bar | Baz Text, record

Foo.Bar { bar1: Int64; bar2: Decimal }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz {

baz1: Text; baz2: Date }

data Foo Bar Foo.Bar | Baz Foo.Baz, record

Foo.Bar { bar1: Int64; bar2: Decimal },

record Foo.Baz { baz1: Text; baz2: Date }

Enum declarations

DAML declaration DAML-LF declaration

data Foo = Bar | Baz enum Foo Bar | Baz

data Color = Red | Green |

Blue

enum Color Red | Green | Blue

Banned declarations

There are two gotchas to be aware of: things youmight expect to be able to do in DAML that you can’t

because of DAML-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or

a variant type. Concretely, the data type declaration data Foo = Foo causes a compile-time error,

because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} to declare a record

type with no fields, or data Foo = Foo () for a variant with a single constructor taking unit argu-

ment.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled

argument type. This restriction is so that we can provide a straight-forward encoding of DAML-LF

types in a variety of client languages.

148 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} to produce record Foo {} OR

data Foo = Foo () to produce variant Foo Foo

Unit

data Foo = Bar data Foo = Bar {} to produce record Foo {}

OR data Foo = Bar () to produce variant Foo

Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,

for example data Foo = Foo { x: Int; y: Text }

data Foo = Bar Int Text Name constructor arguments using a record declaration,

for example data Foo = Bar { x: Int; y: Text }

data Foo = Bar | Baz Int

Text

Name arguments to the Baz constructor, for example

data Foo = Bar | Baz { x: Int; y: Text }

3.1.2.4 Type synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to DAML-LF. The

body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following DAML type declarations.

type Username = Text

data User = User { name: Username }

The Username type is eliminated in the DAML-LF translation, as follows:

record User { name: Text }

3.1.2.5 Template types

A template declaration in DAML results in one ormore data type declarations behind the scenes. These

data types, detailed in this section, are not written explicitly in the DAML program but are created by

the compiler.

They are translated to DAML-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

Template data types

Every contract template defines a record type for the parameters of the contract. For example, the

template declaration:

template Iou

with

issuer: Party

owner: Party

currency: Text

amount: Decimal

where

results in this record declaration:

3.1. Writing applications using the Ledger API 149

DAML SDK Documentation, 2019-12-19

data Iou = Iou { issuer: Party; owner: Party; currency: Text; amount:

↪→Decimal }

This translates to the DAML-LF record declaration:

record Iou { issuer: Party; owner: Party; currency: Text; amount: Decimal

↪→}

Choice data types

Every choice within a contract template results in a record type for the parameters of that choice.

For example, let’s suppose the earlier Iou template has the following choices:

controller owner can

nonconsuming DoNothing: ()

do

return ()

Transfer: ContractId Iou

with newOwner: Party

do

updateOwner newOwner

This results in these two record types:

data DoNothing = DoNothing {}

data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The

data type is a record even if there are no fields.

These translate to the DAML-LF record declarations:

record DoNothing {}

record Transfer { newOwner: Party }

DAML contracts are stored on a ledger. In order to exercise choices on those contracts, create new

ones, or read from the ledger, you need to use the Ledger API. (Every ledger that DAML can run on

exposes this same API.) To write an application around a DAML ledger, you’ll need to interact with the

Ledger API from another language.

3.1.3 Resources available to you

The Java bindings: a library to help you write idiomatic applications using the Ledger API in

Java.

Read the documentation for the Java bindings

The experimental Node.js bindings: a library to help you write idiomatic applications using

the Ledger API in JavaScript. Information about the Node.js bindings isn’t available in this doc-

umentation, but is on GitHub.

Read the documentation for the Node.js bindings

The underlying gRPC API: if youwant to interact with the ledger API fromother languages, you’ll

need to use gRPC directly.

150 Chapter 3. Building applications

http://www.github.com/digital-asset/daml-js
https://grpc.io

DAML SDK Documentation, 2019-12-19

Read the documentation for the gRPC API

The application architecture guide: this documentation gives high-level guidance on design-

ing DAML Ledger applications.

Read the application architecture guide

3.1.4 What’s in the Ledger API

Nomatter how you’re accessing it (Java bindings, Node.js bindings, or gRPC), the Ledger API exposes

the same services:

Submitting commands to the ledger

– Use the command submission service to submit commands (create a contract or exercise a

choice) to the ledger.

– Use the command completion service to track the status of submitted commands.

– Use the command service for a convenient service that combines the command submission

and completion services.

Reading from the ledger

– Use the transaction service to stream committed transactions and the resulting events

(choices exercised, and contracts created or archived), and to look up transactions.

– Use the active contracts service to quickly bootstrap an application with the currently active

contracts. It saves you the work to process the ledger from the beginning to obtain its

current state.

Utility services

– Use the package service to query the DAML packages deployed to the ledger.

– Use the ledger identity service to retrieve the Ledger ID of the ledger the application is con-

nected to.

– Use the ledger configuration service to retrieve some dynamic properties of the ledger, like

minimum and maximum TTL for commands.

Testing services (on Sandbox only, not for production ledgers)

– Use the time service to obtain the time as known by the ledger.

– Use the reset service to reset the ledger state, as a quicker alternative to restarting the

whole ledger application.

For full information on the services see The Ledger API services.

You may also want to read the protobuf documentation, which explains how each service is defined as

protobuf messages.

3.1.5 DAML-LF

When you compile DAML source into a .dar file, the underlying format is DAML-LF. DAML-LF is similar

to DAML, but is stripped down to a core set of features. The relationship between the surface DAML

syntax and DAML-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with DAML-LF directly. But inside the DAML SDK, it’s used for:

Executing DAML code on the Sandbox or on another platform

Sending and receiving values via the Ledger API (using a protocol such as gRPC)

Generating code in other languages for interacting with DAML models (often called codegen)

3.1.5.1 When you need to know about DAML-LF

DAML-LF is only really relevant when you’re dealing with the objects you send to or receive from the

ledger. If you use code generation, you don’t need to know about DAML-LF at all, because this generates

idiomatic representations of DAML for you.

3.1. Writing applications using the Ledger API 151

DAML SDK Documentation, 2019-12-19

Otherwise, it can be helpful to know what the types in your DAML code look like at the DAML-LF level,

so you know what to expect from the Ledger API.

For example, if you are writing an application that creates some DAML contracts, you need to con-

struct values to pass as parameters to the contract. These values are determined by the DAML-LF

types in that contract template. This means you need an idea of how the DAML-LF types correspond

to the types in the original DAML model.

For the most part the translation of types from DAML to DAML-LF should not be surprising. This page

goes through all the cases in detail.

For the bindings to your specific programming language, you should refer to the language-specific

documentation.

3.2 Java bindings

3.2.1 Generate Java code from DAML

3.2.1.1 Introduction

When writing applications for the ledger in Java, you want to work with a representation of DAML

templates and data types in Java that closely resemble the original DAML code while still being as

true to the native types in Java as possible. To achieve this, you can use DAML to Java code generator

(Java codegen) to generate Java types based on a DAMLmodel. You can then use these types in your

Java code when reading information from and sending data to the ledger.

3.2.1.2 Download

You can download the latest version of the Java codegen. Make sure that the following versions are

aligned:

the downloaded Java codegen jar file, eg. 10x.y.z

the dependency to bindings-java, eg. 10x.y.z

the sdk-version attribute in the daml.yaml file, eg. x.y.z

3.2.1.3 Run the Java codegen

The Java codegen takes DAML archive (DAR) files as input and generates Java files for DAML tem-

plates, records, and variants. For information on creating DAR files see Building DAML projects. To use

the Java codegen, run this command in a terminal:

java -jar <path-to-codegen-jar>

Use this command to display the help text:

java -jar codegen.jar --help

Generate Java code from DAR files

Pass one or more DAR files as arguments to the Java codegen. Use the -o or --output-directory

parameter for specifying the directory for the generated Java files.

152 Chapter 3. Building applications

https://bintray.com/api/v1/content/digitalassetsdk/DigitalAssetSDK/com/daml/java/codegen/\protect \TU\textdollar latest/codegen-\protect \TU\textdollar latest.jar?bt_package=sdk-components

DAML SDK Documentation, 2019-12-19

java -jar java-codegen.jar -o target/generated-sources/daml daml/my-

↪→project.dar

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To avoid possible name clashes in the generated Java sources, you should specify a Java package

prefix for each input file:

java -jar java-codegen.jar -o target/generated-sources/daml \

daml/project1.dar=com.example.daml.project1 \

^^^^^^^^^^^^^^^^^^^^^^^^^^

daml/project2.dar=com.example.daml.project2

^^^^^^^^^^^^^^^^^^^^^^^^^^

Generate the decoder utility class

When reading transactions from the ledger, you typically want to convert a CreatedEvent from the

Ledger API to the corresponding generated Contract class. The Java codegen can optionally gener-

ate a decoder class based on the input DAR files that calls the fromCreatedEvent method of the

respective generated Contract class (see Templates). The decoder class can do this for all templates

in the input DAR files.

To generate such a decoder class, provide the command line parameter -d or --decoderClasswith

a fully qualified class name:

java -jar java-codegen.jar -o target/generated-sources/daml \

-d com.myproject.DamModelDecoder daml/my-project.dar

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Receive feedback

By default, the logging is configured so that you’ll only see error messages.

If you want to change this behavior, you can ask to receive more extensive feedback using the -V or

--verbosity command-line option. This option takes a numeric parameter from 0 to 4, where 0

corresponds to the default quiet behavior and 4 represents the most verbose output possible.

In the following example the logging is set to print most of the output with detailed debugging in-

formation:

java -jar java-codegen.jar -o target/generated-sources/daml -V 3

^^^^

Integrate with build tools

While we currently don’t provide direct integration with Maven, Groovy, SBT, etc., you can run the

Java codegen as described in Run the Java codegen just like any other external process (for example

the protobuf compiler). Alternatively you can integrate it as a runnable dependency in your pom.xml

file for Maven.

The following snippet is an excerpt from the pom.xml that is part of the Quickstart guide guide.

3.2. Java bindings 153

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

DAML SDK Documentation, 2019-12-19

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>exec-maven-plugin</artifactId>

<version>1.6.0</version>

<dependencies>

<dependency>

<groupId>com.daml.java</groupId>

<artifactId>codegen</artifactId>

<version>__VERSION__</version>

<type>jar</type>

</dependency>

</dependencies>

<executions>

<execution>

<id>daml-codegen-java</id>

<phase>generate-sources</phase>

<goals>

<goal>java</goal>

</goals>

<configuration>

<includeProjectDependencies>false</

↪→includeProjectDependencies>

<includePluginDependencies>true</

↪→includePluginDependencies>

<mainClass>com.digitalasset.daml.lf.codegen.Main</

↪→mainClass>

<arguments>

<argument>-o</argument>

<argument>${daml-codegen-java.output}</

↪→argument>

<argument>-d</argument>

<argument>com.digitalasset.quickstart.iou.

↪→TemplateDecoder</argument>

<argument>${project.basedir}/.daml/dist/

↪→quickstart-0.0.1.dar=com.digitalasset.quickstart.model</argument>

</arguments>

</configuration>

</execution>

</executions>

</plugin>

3.2.1.4 Compile the generated Java code

To compile the generated Java code, add the Java Bindings library with the same version as the Java

codegen to the classpath.

With Maven you can do this by adding a dependency to the pom.xml file:

<dependency>

<groupId>com.daml.ledger</groupId>

(continues on next page)

154 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

<artifactId>bindings-rxjava</artifactId>

<version>x.y.z</version>

</dependency>

3.2.1.5 Understand the generated Java model

The Java codegen generates source files in a directory tree under the output directory specified on

the command line.

Map DAML primitives to Java types

DAML built-in types are translated to the following equivalent types in Java:

DAML

type

Java type Java Bind-

ings Value

Type

Int java.lang.Long Int64

Numeric java.math.BigDecimal Numeric

Text java.lang.String Text

Bool java.util.Boolean Bool

Party java.lang.String Party

Date java.time.LocalDate Date

Time java.time.Instant Timestamp

List or [] java.util.List DamlList

TextMap java.util.Map Restricted to using String keys. Daml-

TextMap

Optional java.util.Optional DamlOp-

tional

() (Unit) None since the Java language doesn’t have a direct equivalent of

DAML’s Unit type (), the generated code uses the Java Bindings

value type.

Unit

ContractId Fields of type ContractId X refer to the generated ContractId

class of the respective template X.

ContractId

Understand escaping rules

To avoid clashes with Java keywords, the Java codegen applies escaping rules to the following DAML

identifiers:

Type names (except the already mapped built-in types)

Constructor names

Type parameters

Module names

Field names

If any of these identifiers match one of the Java reserved keywords, the Java codegen appends a

dollar sign $ to the name. For example, a field with the name import will be generated as a Java

field with the name import$.

3.2. Java bindings 155

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Int64.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Numeric.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Text.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Bool.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Party.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Date.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Timestamp.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlList.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Unit.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/ContractId.html
https://docs.oracle.com/javase/specs/jls/se12/html/jls-3.html#jls-3.9

DAML SDK Documentation, 2019-12-19

Understand the generated classes

Every user-defined data type in DAML (template, record, and variant) is represented by one or more

Java classes as described in this section.

The Java package for the generated classes is the equivalent of the lowercase DAML module name.

Listing 1: DAML

module Foo.Bar.Baz where

Listing 2: Java

package foo.bar.baz;

Records (a.k.a product types)

A DAML record is represented by a Java class with fields that have the same name as the DAML record

fields. A DAML field having the type of another record is represented as a field having the type of the

generated class for that record.

Listing 3: Com/Acme.daml

daml 1.2

module Com.Acme where

data Person = Person with name : Name; age : Decimal

data Name = Name with firstName : Text; lastName : Text

A Java file is generated that defines the class for the type Person:

Listing 4: com/acme/Person.java

package com.acme;

public class Person {

public final Name name;

public final BigDecimal age;

public static Person fromValue(Value value$) { /* ... */ }

public Person(Name name, BigDecimal age) { /* ... */ }

public Record toValue() { /* ... */ }

}

A Java file is generated that defines the class for the type Name:

Listing 5: com/acme/Name.java

package com.acme;

public class Name {

public final String fistName;

(continues on next page)

156 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

public final String lastName;

public static Person fromValue(Value value$) { /* ... */ }

public Name(String fistName, String lastName) { /* ... */ }

public Record toValue() { /* ... */ }

}

Templates

The Java codegen generates three classes for a DAML template:

TemplateName Represents the contract data or the template fields.

TemplateName.ContractId Used whenever a contract ID of the corresponding

template is used in another template or record, for example: data Foo =

Foo (ContractId Bar). This class also provides methods to generate an

ExerciseCommand for each choice that can be sent to the ledger with the Java

Bindings. .. TODO: refer to another section explaining exactly that, when we have it.

TemplateName.Contract Represents an actual contract on the ledger. It contains a

field for the contract ID (of type TemplateName.ContractId) and a field for the

template data (of type TemplateName). With the static method TemplateName.

Contract.fromCreatedEvent, you can deserialize a CreatedEvent to an instance

of TemplateName.Contract.

Listing 6: Com/Acme.daml

daml 1.2

module Com.Acme where

data BarKey =

BarKey

with

p : Party

t : Text

template Bar

with

owner: Party

name: Text

where

signatory owner

key BarKey owner name : BarKey

maintainer key.p

controller owner can

Bar_SomeChoice: Bool

with

aName: Text

do return True

3.2. Java bindings 157

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

DAML SDK Documentation, 2019-12-19

A file is generated that defines three Java classes:

1. Bar

2. Bar.ContractId

3. Bar.Contract

Listing 7: com/acme/Bar.java

package com.acme;

public class Bar extends Template {

public static final Identifier TEMPLATE_ID = new Identifier("some-

↪→package-id", "Com.Acme", "Bar");

public final String owner;

public final String name;

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey

↪→key, Bar_SomeChoice arg) { /* ... */ }

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey

↪→key, String aName) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(Bar_

↪→SomeChoice arg) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(String

↪→aName) { /* ... */ }

public static class ContractId {

public final String contractId;

public ExerciseCommand exerciseArchive(Unit arg) { /* ... */ }

public ExerciseCommand exerciseBar_SomeChoice(Bar_SomeChoice arg) { /*

↪→... */ }

public ExerciseCommand exerciseBar_SomeChoice(String aName) { /* ... */

↪→}

}

public static class Contract {

public final ContractId id;

public final Bar data;

public static Contract fromCreatedEvent(CreatedEvent event) { /* ... */

↪→}

}

}

Note that the static methods returning an ExerciseByKeyCommand will only be generated for tem-

158 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

plates that define a key.

Variants (a.k.a sum types)

A variant or sum type is a type with multiple constructors, where each constructor wraps a value of

another type. The generated code is comprised of an abstract class for the variant type itself and

a subclass thereof for each constructor. Classes for variant constructors are similar to classes for

records.

Listing 8: Com/Acme.daml

daml 1.2

module Com.Acme where

data BookAttribute = Pages Int

| Authors [Text]

| Title Text

| Published with year: Int; publisher: Text

The Java code generated for this variant is:

Listing 9: com/acme/BookAttribute.java

package com.acme;

public class BookAttribute {

public static BookAttribute fromValue(Value value) { /* ... */ }

public static BookAttribute fromValue(Value value) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 10: com/acme/bookattribute/Pages.java

package com.acme.bookattribute;

public class Pages extends BookAttribute {

public final Long longValue;

public static Pages fromValue(Value value) { /* ... */ }

public Pages(Long longValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 11: com/acme/bookattribute/Authors.java

package com.acme.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

(continues on next page)

3.2. Java bindings 159

DAML SDK Documentation, 2019-12-19

(continued from previous page)

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 12: com/acme/bookattribute/Title.java

package com.acme.bookattribute;

public class Title extends BookAttribute {

public final String stringValue;

public static Title fromValue(Value value) { /* ... */ }

public Title(String stringValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 13: com/acme/bookattribute/Published.java

package com.acme.bookattribute;

public class Published extends BookAttribute {

public final Long year;

public final String publisher;

public static Published fromValue(Value value) { /* ... */ }

public Published(Long year, String publisher) { /* ... */ }

public Record toValue() { /* ... */ }

}

Parameterized types

Note: This section is only included for completeness: we don’t expect users to make use of

the fromValue and toValue methods, because they would typically come from a template that

doesn’t have any unbound type parameters.

The Java codegen uses Java Generic types to represent DAML parameterized types.

This DAML fragment defines the parameterized type Attribute, used by the BookAttribute type

for modeling the characteristics of the book:

160 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Listing 14: Com/Acme.daml

daml 1.2

module Com.Acme where

data Attribute a = Attribute

with v : a

data BookAttributes = BookAttributes with

pages : (Attribute Int)

authors : (Attribute [Text])

title : (Attribute Text)

The Java codegen generates a Java file with a generic class for the Attribute a data type:

Listing 15: com/acme/Attribute.java

package com.acme;

public class Attribute<a> {

public final a value;

public Attribute(a value) { /* ... */ }

public Record toValue(Function<a, Value> toValuea) { /* ... */ }

public static <a> Attribute<a> fromValue(Value value$, Function<Value, a>

↪→fromValuea) { /* ... */ }

}

Enums

An enum type is a simplified sum typewithmultiple constructors but without argument nor type pa-

rameters. The generated code is standard java Enumwhose constantsmap enum type constructors.

Listing 16: Com/Acme.daml

daml 1.2

module Com.Acme where

data Color = Red | Blue | Green

The Java code generated for this variant is:

Listing 17: com/acme/Color.java

package com.acme;

public enum Color {

RED,

(continues on next page)

3.2. Java bindings 161

DAML SDK Documentation, 2019-12-19

(continued from previous page)

GREEN,

BLUE;

/* ... */

public static final Color fromValue(Value value$) { /* ... */ }

public final DamlEnum toValue() { /* ... */ }

}

Listing 18: com/acme/bookattribute/Authors.java

package com.acme.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Convert a value of a generated type to a Java Bindings value

To convert an instance of the generic type Attribute<a> to a Java Bindings Value, call the toValue

method and pass a function as the toValuea argument for converting the field of type a to the

respective Java Bindings Value. The name of the parameter consists of toValue and the name of

the type parameter, in this case a, to form the name toValuea.

Below is a Java fragment that converts an attribute with a java.lang.Long value to the Java Bind-

ings representation using the method reference Int64::new.

Attribute<Long> pagesAttribute = new Attributes<>(42L);

Value serializedPages = pagesAttribute.toValue(Int64::new);

See DAML To Java Type Mapping for an overview of the Java Bindings Value types.

Note: If the DAML type is a record or variant with more than one type parameter, you need to pass a

conversion function to the toValuemethod for each type parameter.

Create a value of a generated type from a Java Bindings value

Analogous to the toValuemethod, to create a value of a generated type, call themethod fromValue

and pass conversion functions from a Java Bindings Value type to the expected Java type.

162 Chapter 3. Building applications

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/Value.html

DAML SDK Documentation, 2019-12-19

Attribute<Long> pagesAttribute = Attribute.<Long>fromValue(serializedPages,

f -> f.asInt64().getOrElseThrow(() -> throw new

↪→IllegalArgumentException("Expected Int field").getValue());

See Java Bindings Value class for themethods to transform the Java Bindings types into correspond-

ing Java types.

Non-exposed parameterized types

If the parameterized type is contained in a type where the actual type is specified (as in the

BookAttributes type above), then the conversion methods of the enclosing type provides the re-

quired conversion function parameters automatically.

Convert Optional values

The conversion of the Java Optional requires two steps. The Optionalmust be mapped in order

to convert its contains before to be passed to DamlOptional::of function.

Attribute<Optional<Long>> idAttribute = new Attribute<List<Long>>(Optional.

↪→of(42));

val serializedId = DamlOptional.of(idAttribute.map(Int64::new));

To convert back DamlOptional to Java Optional, onemust use the containersmethod toOptional.

This method expects a function to convert back the value possibiy contains in the container.

Attribute<Optional<Long>> idAttribute2 =

serializedId.toOptional(v -> v.asInt64().orElseThrow(() -> new

↪→IllegalArgumentException("Expected Int64 element")));

Convert Collection values

DamlCollectors provides collectors to converted Java collection containers such as List and Map to

DamlValues in one pass. The builders for those collectors require functions to convert the element

of the container.

Attribute<List<String>> authorsAttribute =

new Attribute<List<String>>(Arrays.asList("Homer", "Ovid", "Vergil"));

Value serializedAuthors =

authorsAttribute.toValue(f -> f.stream().collect(DamlCollector.

↪→toList(Text::new));

To convert back DAML containers to Java ones, one must use the containers methods toList or

toMap. Those methods expect functions to convert back the container’s entries.

Attribute<List<String>> authorsAttribute2 =

Attribute.<List<String>>fromValue(

serializedAuthors,

f0 -> f0.asList().orElseThrow(() -> new IllegalArgumentException(

↪→"Expected DamlList field"))

(continues on next page)

3.2. Java bindings 163

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlCollectors.html

DAML SDK Documentation, 2019-12-19

(continued from previous page)

.toList(

f1 -> f1.asText().orElseThrow(() -> new

↪→IllegalArgumentException("Expected Text element"))

.getValue()

)

);

3.2.2 Example project

To try out the Java bindings library, use the examples on GitHub: PingPongReactive or

PingPongComponents.

The former example does not use the Reactive Components, and the latter example does. Both ex-

amples implement the PingPong application, which consists of:

a DAML model with two contract templates, Ping and Pong

two parties, Alice and Bob

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the DAML is

reached.

3.2.2.1 Setting up the example projects

To set up the example projects, clone the public GitHub repository at github.com/digital-asset/ex-

java-bindings and follow the setup instruction in the README file.

This project contains three examples of the PingPong application, built with gRPC (non-reactive),

Reactive and Reactive Component bindings respectively.

3.2.2.2 Example project – Ping Pong without reactive components

PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/

PingPongMain.java. Look at this class to see:

how to connect to and interact with the DAML Ledger via the Java bindings

how to use the Reactive layer to build an automation for both parties.

At high level, the code does the following steps:

creates an instance of DamlLedgerClient connecting to an existing Ledger

connect this instance to the Ledger with DamlLedgerClient.connect()

create two instances of PingPongProcessor, which contain the logic of the automation

(This is where the application reacts to the new Ping or Pong contracts.)

run the PingPongProcessor forever by connecting them to the incoming transactions

inject some contracts for each party of both templates

wait until the application is done

164 Chapter 3. Building applications

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

DAML SDK Documentation, 2019-12-19

PingPongProcessor.runIndefinitely()

The core of the application is the PingPongProcessor.runIndefinitely().

The PingPongProcessor queries the transactions first via the TransactionsClient of the

DamlLedgerClient. Then, for each transaction, it produces Commands that will be sent to the

Ledger via the CommandSubmissionClient of the DamlLedgerClient.

Output

The application prints statements similar to these:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count

↪→9

The first line shows that:

Bob is exercising theRespondPong choice on the contract with ID#1:0 for theworkflowPing-

Alice-1.

Count 0means that this is the first choice after the initial Ping contract.

Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

The second line is analogous to the first one.

3.2.2.3 Example project – Ping Pong with reactive components

PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/

PingPongMain.java. Look at this class to see:

how to connect to and interact with the DAML Ledger via the Java bindings

how to use the Reactive Components to build an automation for both parties

PingPongBot

At high level, this application follows the same steps as the one without Reactive Components ex-

cept for the PingPongProcessor. In this application, the PingPongProcessor is replaced by the

PingPongBot.

The PingPongBot has two important methods:

getContractInfo(Record record, TransactionContext context) which is used to

get the information useful to the application from a created contract and the context

process(LedgerView<ContractInfo> ledgerView) which implements the logic of the

application by converting the local view of the Ledger into a stream of Commands

Output

The application prints statements similar to the ones seen in the section above.

The Java bindings is a client implementation of the Ledger API based on RxJava, a library for compos-

ing asynchronous and event-based programs using observable sequences for the Java VM. It pro-

vides an idiomatic way to write DAML Ledger applications.

3.2. Java bindings 165

https://github.com/ReactiveX/RxJava

DAML SDK Documentation, 2019-12-19

See also:

This documentation for the Java bindings API includes the JavaDoc reference documentation.

3.2.3 Overview

The Java bindings library is composed of:

The Data Layer A Java-idiomatic layer based on the Ledger API generated classes. This layer

simplifies the code required to work with the Ledger API.

Can be found in the java package com.daml.ledger.javaapi.data.

The Reactive Layer A thin layer built on top of the Ledger API services generated classes.

For each Ledger API service, there is a reactive counterpart with a matching

name. For instance, the reactive counterpart of ActiveContractsServiceGrpc is

ActiveContractsClient.

The Reactive Layer also exposes the main interface representing a client connecting via

the Ledger API. This interface is calledLedgerClient and themain implementationwork-

ing against the DAML Ledger is the DamlLedgerClient.

Can be found in the java package com.daml.ledger.rxjava.

The Reactive Components A set of optional components you can use to assemble DAML

Ledger applications.

The most important components are:

– the LedgerView, which provides a local view of the Ledger

– the Bot, which provides utility methods to assemble automation logic for the Ledger

Can be found in the java package com.daml.ledger.rxjava.components.

3.2.3.1 Code generation

When writing applications for the ledger in Java, you want to work with a representation of DAML

templates and data types in Java that closely resemble the original DAML code while still being as

true to the native types in Java as possible.

To achieve this, you canuseDAML to Java code generator (Java codegen) to generate Java types based

on a DAML model. You can then use these types in your Java code when reading information from

and sending data to the ledger.

For more information on Java code generation, see Generate Java code from DAML.

3.2.3.2 Connecting to the ledger: LedgerClient

Connections to the ledger are made by creating instance of classes that implement the interface

LedgerClient. The class DamlLedgerClient implements this interface, and is used to connect

to a DA ledger.

This class provides access to the ledgerId, and all clients that give access to the various ledger ser-

vices, such as the active contract set, the transaction service, the time service, etc. This is described

below. Consult the JavaDoc for DamlLedgerClient for full details.

3.2.3.3 Accessing data on the ledger: LedgerView

The LedgerView of an application is the copy of the ledger that the application has locally. You can

query it to obtain the contracts that are active on the Ledger and not pending.

Note:

166 Chapter 3. Building applications

javadocs/index.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html

DAML SDK Documentation, 2019-12-19

A contract is active if it exists in the Ledger and has not yet been archived.

A contract is pending if the application has sent a consuming command to the Ledger and has

yet to receive an completion for the command (that is, if the command has succeeded or not).

The LedgerView is updated every time:

a new event is received from the Ledger

new commands are sent to the Ledger

a command has failed to be processed

For instance, if an incoming transaction is received with a create event for a contract that is relevant

for the application, the application LedgerView is updated to contain that contract too.

3.2.3.4 Writing automations: Bot

The Bot is an abstraction used to write automation for the DAML Ledger. It is conceptually defined

by two aspects:

the LedgerView

the logic that produces commands, given a LedgerView

When the LedgerView is updated, to see if the bot has new commands to submit based on the

updated view, the logic of the bot is run.

The logic of the bot is a Java function from the bot’s LedgerView to a

Flowable<CommandsAndPendingSet>. Each CommandsAndPendingSet contains:

the commands to send to the Ledger

the set of contractIds that should be considered pending while the command is in-flight (that

is, sent by the client but not yet processed by the Ledger)

You can wire a Bot to a LedgerClient implementation using Bot.wire:

Bot.wire(String applicationId,

LedgerClient ledgerClient,

TransactionFilter transactionFilter,

Function<LedgerViewFlowable.LedgerView<R>, Flowable

↪→<CommandsAndPendingSet>> bot,

Function<CreatedContract, R> transform)

In the above:

applicationId The id used by the Ledger to identify all the queries from the same applica-

tion.

ledgerClient The connection to the Ledger.

transactionFilter The server-side filter to the incoming transactions. Used to reduce the

traffic between Ledger and application and make an application more efficient.

bot The logic of the application,

transform The function that, given a new contract, returns which information for that con-

tracts are useful for the application. Can be used to reduce space used by discard-

ing all the info not required by the application. The input to the function contains the

templateId, the arguments of the contract created and the context of the created con-

tract. The context contains the workflowId.

3.2. Java bindings 167

DAML SDK Documentation, 2019-12-19

3.2.4 Reference documentation

Click here for the JavaDoc reference documentation.

3.2.5 Getting started

The Java bindings library can be added to a Maven project.

3.2.5.1 Set up a Maven project

To use the Java bindings library, add the following dependencies to your project’s pom.xml:

<dependencies>

<dependency>

<groupId>com.daml.ledger</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>x.y.z</version>

</dependency>

</dependencies>

Replace x.y.z for both dependencies with the version that you want to use. You can find the avail-

able versions by checking the Maven Central Repository.

Note: As of DAML SDK release 0.13.3, the Java Bindings libraries are available via the public Maven

Central repository. Earlier releases are available from the DAML Bintray repository.

You can also take a look at the pom.xml file from the quickstart project.

3.2.5.2 Connecting to the ledger

Before any ledger services can be accessed, a connection to the ledger must be estab-

lished. This is done by creating a instance of a DamlLedgerClient using one of the

factory methods DamlLedgerClient.forLedgerIdAndHost and DamlLedgerClient.

forHostWithLedgerIdDiscovery. This instance can then be used to access service clients

directly, or passed to a call to Bot.wire to connect a Bot instance to the ledger.

3.2.5.3 Authenticating

Some ledgers will require you to send an access token along with each request.

To learn more about authentication, read the Authentication overview.

To use the same token for all Ledger API requests, the DamlLedgerClient builders expose a

withAccessTokenmethod. This will allow you to not pass a token explicitly for every call.

If your application is long-lived and your tokens are bound to expire, you can reload the necessary

token when needed and pass it explicitly for every call. Every client method has an overload that

allows a token to be passed, as in the following example:

transactionClient.getLedgerEnd(); // Uses the token specified when

↪→constructing the client

transactionClient.getLedgerEnd(accessToken); // Override the token for this

↪→call exclusively

168 Chapter 3. Building applications

javadocs/index.html
https://maven.apache.org/
https://search.maven.org/search?q=g:com.daml.ledger
https://digitalassetsdk.bintray.com

DAML SDK Documentation, 2019-12-19

If you’re communicating with a ledger protected by authentication it’s very important to secure the

communication channel to prevent your tokens to be exposed to man-in-the-middle attacks. The

next chapter describes how to enable TLS.

3.2.5.4 Connecting securely

The Java bindings library lets you connect to a DAML Ledger via a secure connection. The builders

created by DamlLedgerClient.newBuilder default to a plaintext connection, but you can invoke

withSslContext` to pass an ``SslContext. Using the default plaintext connection is useful

only when connecting to a locally running Sandbox for development purposes.

Secure connections to a DAML Ledger must be configured to use client authentication certificates,

which can be provided by a Ledger Operator.

For information on how to set up an SslContextwith the provided certificates for client authentica-

tion, please consult the gRPC documentation on TLS with OpenSSL as well as the HelloWorldClientTls

example of the grpc-java project.

3.2.5.5 Advanced connection settings

Sometimes the default settings for gRPC connections/channels are not suitable for a given situation.

These use cases are supported by creating a a custom NettyChannelBuilder object and passing the

it to the newBuilder static method defined over DamlLedgerClient.

3.2.6 Example project

Example projects using the Java bindings are available on GitHub. Read more about them here.

3.3 Scala bindings

This page provides a basic Scala programmer’s introduction to working with Digital Asset dis-

tributed ledger, using the Scala programming language and the Ledger API.

3.3.1 Introduction

The Scala bindings is a client implementation of the Ledger API. The Scala bindings library lets you

write applications that connect to the Digital Asset distributed ledger using the Scala programming

language.

There are two main components:

Scala codegen DAML to Scala code generator. Use this to generate Scala classes from DAML

models. The generated Scala code provides a type safe way of creating contracts (Create-

Command) and exercising contract choices (ExerciseCommand).

Akka Streams-based API The API that you use to send commands to the ledger and receive

transactions back.

In order to use the Scala bindings, you should be familiar with:

DAML language

Ledger API

Akka Streams API

Scala programming language

Building DAML projects

DAML codegen

3.3. Scala bindings 169

https://github.com/grpc/grpc-java/blob/master/SECURITY.md#tls-with-openssl
https://github.com/grpc/grpc-java/blob/70b1b1696a258ffe042c7124217e3a7894821444/examples/src/main/java/io/grpc/examples/helloworldtls/HelloWorldClientTls.java#L46-L57
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyChannelBuilder.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
https://github.com/digital-asset/ex-java-bindings
https://doc.akka.io/docs/akka/current/stream/index.html
https://www.scala-lang.org

DAML SDK Documentation, 2019-12-19

3.3.2 Getting started

If this is your first experiencewith theScala bindings library, we recommend that you start by looking

at the quickstart-scala example.

To use the Scala bindings, set up the following dependencies in your project:

lazy val codeGenDependencies = Seq(

"com.daml.scala" %% "bindings" % daSdkVersion,

)

lazy val applicationDependencies = Seq(

"com.daml.scala" %% "bindings-akka" % daSdkVersion,

)

We recommend separating generated code and application code into different modules. There are

two modules in the quickstart-scala example:

scala-codegen This module will contain only generated Scala classes.

application This is the application code that makes use of the generated Scala classes.

lazy val `scala-codegen` = project

.in(file("scala-codegen"))

.settings(

name := "scala-codegen",

commonSettings,

libraryDependencies ++= codeGenDependencies,

)

lazy val `application` = project

.in(file("application"))

.settings(

name := "application",

commonSettings,

libraryDependencies ++= codeGenDependencies ++ applicationDependencies,

)

.dependsOn(`scala-codegen`)

3.3.3 Generating Scala code

1) Install the latest version of the DAML SDK.

2) Build a DAR file from a DAMLmodel. Refer to Building DAML projects for more instructions.

3) Configure codegen in the daml.yaml (for more details see DAML codegen documentation).

codegen:

scala:

package-prefix: com.digitalasset.quickstart.iou.model

output-directory: scala-codegen/src/main/scala

verbosity: 2

4) Run Scala codegen:

170 Chapter 3. Building applications

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala

DAML SDK Documentation, 2019-12-19

$ daml codegen scala

If the command is successful, it should print:

Scala codegen

Reading configuration from project configuration file

[INFO] Scala Codegen verbosity: INFO

[INFO] decoding archive with Package ID:

↪→5c96aa21d5f38386833ff47fe1a7562afb5b3fe5be520f289c42892dfb0ef42b

[INFO] decoding archive with Package ID:

↪→748d55be531976e941076a44fe8c06ad4a7bdb36160711dd0204b5ab8dc77e44

[INFO] decoding archive with Package ID:

↪→d841a5e45897aea965ab7699f3e51613c9d00b9fbd1bb09658d7fb00486f5b57

[INFO] Scala Codegen result:

Number of generated templates: 3

Number of not generated templates: 0

Details:

The output above tells that Scala codegen read configuration from daml.yaml and produced Scala

classes for 3 templates without errors (empty Details: line).

3.3.4 Example code

In this section we will demonstrate how to use the Scala bindings library.

This section refers to the IOU DAML example from the Quickstart guide and quickstart-scala example

that we already mentioned above.

Please keep in mind that quickstart-scala example compiles with -Xsource:2.13 scalac option,

this is to activate the fix for a Scala bug that forced users to add extra imports for implicits that

should not be needed.

3.3.4.1 Create a contract and send a CreateCommand

To create a Scala class representing an IOU contract, you need the following imports:

import com.digitalasset.ledger.client.binding.{Primitive => P}

import com.digitalasset.quickstart.iou.model.{Iou => M}

the definition of the issuer Party:

private val issuer = P.Party("Alice")

and the following code to create an instance of the M.Iou class:

val iou = M.Iou(

issuer = issuer,

owner = issuer,

currency = "USD",

amount = BigDecimal("1000.00"),

observers = List())

To send a CreateCommand (keep inmind the following code snippet is part of the Scala for comprehen-

sion expression):

3.3. Scala bindings 171

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala

DAML SDK Documentation, 2019-12-19

createCmd = iou.create

_ <- clientUtil.submitCommand(issuer, issuerWorkflowId, createCmd)

_ = logger.info(s"$issuer created IOU: $iou")

_ = logger.info(s"$issuer sent create command: $createCmd")

For more details on how to submit a command, please refer to the implementation of com.digitalas-

set.quickstart.iou.ClientUtil#submitCommand.

3.3.4.2 Receive a transaction, exercise a choice and send an ExerciseCommand

To receive a transaction as a newOwner and decode a CreatedEvent for IouTransfer contract, you

need the definition of the newOwner Party:

private val newOwner = P.Party("Bob")

and the following code that handles subscription and decoding:

_ <- clientUtil.subscribe(newOwner, offset0, None) { tx =>

logger.info(s"$newOwner received transaction: $tx")

decodeCreated[M.IouTransfer](tx).foreach { contract: Contract[M.

↪→IouTransfer] =>

logger.info(s"$newOwner received contract: $contract")

To exercise IouTransfer_Accept choice on the IouTransfer contract that you received and send

a corresponding ExerciseCommand:

val exerciseCmd = contract.contractId.exerciseIouTransfer_

↪→Accept(actor = newOwner)

clientUtil.submitCommand(newOwner, newOwnerWorkflowId, exerciseCmd)

↪→onComplete {

case Success(_) =>

logger.info(s"$newOwner sent exercise command: $exerciseCmd")

logger.info(s"$newOwner accepted IOU Transfer: $contract")

case Failure(e) =>

logger.error(s"$newOwner failed to send exercise command:

↪→$exerciseCmd", e)

}

Fore more details on how to subscribe to receive events for a particular party, please refer to the

implementation of com.digitalasset.quickstart.iou.IouMain#newOwnerAcceptsAllTransfers.

3.3.5 Authentication

Some ledgers will require you to send an access token along with each request. To learn more about

authentication, read the Authentication overview.

To use the same token for all ledger API requests, use the token field of

LedgerClientConfiguration:

private val clientConfig = LedgerClientConfiguration(

applicationId = ApplicationId.unwrap(applicationId),

ledgerIdRequirement = LedgerIdRequirement("", enabled = false),

(continues on next page)

172 Chapter 3. Building applications

https://github.com/digital-asset/daml/blob/master/language-support/scala/examples/quickstart-scala/application/src/main/scala/com/digitalasset/quickstart/iou/ClientUtil.scala
https://github.com/digital-asset/daml/blob/master/language-support/scala/examples/quickstart-scala/application/src/main/scala/com/digitalasset/quickstart/iou/ClientUtil.scala
https://github.com/digital-asset/daml/blob/master/language-support/scala/examples/quickstart-scala/application/src/main/scala/com/digitalasset/quickstart/iou/IouMain.scala

DAML SDK Documentation, 2019-12-19

(continued from previous page)

commandClient = CommandClientConfiguration.default,

sslContext = None,

token = None

)

To specify the token for an individual call, use the token parameter:

transactionClient.getLedgerEnd() // Uses the token specified in

↪→LedgerClientConfiguration

transactionClient.getLedgerEnd(token = acessToken) // Uses the given token

Note that if your tokens can change at run time (e.g., because they expire or because you switch

users), you will need to specify them on a per-call basis as shown above.

3.4 Node.js bindings

The documentation for the Node.js bindings has been moved to digital-asset.github.io/daml-js.

You can also try the Node.js bindings tutorial, which is at github.com/digital-asset/ex-tutorial-

nodejs.

3.5 The Ledger API using gRPC

3.5.1 Ledger API Reference

3.5.1.1 com/digitalasset/ledger/api/v1/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

filter
Transaction-

Filter

Templates to include in the served snapshot, per party. Re-

quired

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

3.4. Node.js bindings 173

http://digital-asset.github.io/daml-js/
https://github.com/digital-asset/ex-tutorial-nodejs
https://github.com/digital-asset/ex-tutorial-nodejs

DAML SDK Documentation, 2019-12-19

GetActiveContractsResponse

Field Type Label Description

offset
string Included in the last message. The client should start

consuming the transactions endpoint with this offset.

The format of this field is described in ledger_offset.

proto. Required

work-

flow_id

string The workflow that created the contracts. Must be a valid

LedgerString (as described in value.proto). Optional

ac-

tive_con-

tracts

CreatedE-

vent

repeated The list of contracts that were introduced by theworkflow

with workflow_id at the offset. Must be a valid Ledger-

String (as described in value.proto). Optional

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without reading

through all transactions that were committed since the ledger’s creation.

Method

name

Request

type

Response

type

Description

GetActive-

Contracts

GetActive-

ContractsRe-

quest

GetActive-

ContractsRe-

sponse

Returns a stream of the latest snapshot of active con-

tracts. If there are no active contracts, the stream re-

turns a single GetActiveContractsResponse message

with the offset at which the snapshot has been taken.

Clients SHOULD use the offset in the last GetActive-

ContractsResponse message to continue streaming

transactions with the transaction service. Clients

SHOULD NOT assume that the set of active contracts

they receive reflects the state at the ledger end.

3.5.1.2 com/digitalasset/ledger/api/v1/admin/config_management_service.proto

GetTimeModelRequest

GetTimeModelResponse

Field Type Label Description

configura-

tion_gener-

ation

int64 The current configuration generation. The generation is a

monotonically increasing integer that is incremented on each

change. Used when setting the time model.

time_model
TimeModel The current ledger time model.

174 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

SetTimeModelRequest

Field Type Label Description

submis-

sion_id

string Submission identifier used for tracking the request and to

reject duplicate submissions. Required.

maxi-

mum_record_time

google.pro-

to-

buf.Times-

tamp

Deadline for the configuration change after which the

change is rejected.

configura-

tion_gener-

ation

int64 The current configuration generation which we’re submit-

ting the change against. This is used to perform a compare-

and-swap of the configuration to safeguard against concur-

rent modifications. Required.

new_time_model
TimeModel The new timemodel that replaces the current one. Required.

SetTimeModelResponse

Field Type Label Description

configuration_genera-

tion

int64 The configuration generation of the committed time

model.

TimeModel

Field Type Label Description

min_trans-

action_la-

tency

google.pro-

tobuf.Dura-

tion

The expectedminimum latency of a transaction. Required.

max_clock_skew
google.pro-

tobuf.Dura-

tion

The maximum allowed clock skew between the ledger and

clients. Required.

max_ttl
google.pro-

tobuf.Dura-

tion

The maximum allowed time to live for a transaction. Must

be greater than the derived minimum time to live. Re-

quired.

ConfigManagementService

Ledger configurationmanagement service providesmethods for the ledger administrator to change

the current ledger configuration. The services provides methods to modify different aspects of the

configuration.

3.5. The Ledger API using gRPC 175

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 2019-12-19

Method

name

Request

type

Response

type

Description

GetTimeM-

odel

GetTimeMo-

delRequest

GetTimeMo-

delResponse

Return the currently active time model and the cur-

rent configuration generation.

SetTimeM-

odel

SetTimeMod-

elRequest

SetTimeMod-

elResponse

Set the ledger time model. In case of failure this

method responds with: - INVALID_ARGUMENT if argu-

ments are invalid, or the provided configuration gen-

eration does not match the current active configu-

ration generation. The caller is expected to retry by

again fetching current timemodel using ‘GetTimeMo-

del’, applying changes and resubmitting. - ABORTED

if the request is rejected or times out. Note that a

timed out request may have still been committed to

the ledger. Application should re-query the current

time model before retrying. - UNIMPLEMENTED if this

method is not supported by the backing ledger.

3.5.1.3 com/digitalasset/ledger/api/v1/admin/package_management_service.proto

ListKnownPackagesRequest

ListKnownPackagesResponse

Field Type Label Description

pack-

age_details

PackageDe-

tails

repeated The details of all DAML-LF packages known to backing

participant. Required

PackageDetails

Field Type Label Description

pack-

age_id

string The identity of the DAML-LF package. Must be a valid Pack-

ageIdString (as describe in value.proto). Required

pack-

age_size

uint64 Size of the package in bytes. The size of the package is given

by the size of the daml_lf ArchivePayload. See further de-

tails in daml_lf.proto. Required

known_since
google.pro-

to-

buf.Times-

tamp

Indicates since when the package is known to the backing

participant. Required

source_de-

scription

string Description provided by the backing participant describing

where it got the package from. Optional

176 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 2019-12-19

UploadDarFileRequest

Field Type Label Description

dar_file
bytes Contains a DAML archive DAR file, which in turn is a jar like zipped

container for daml_lf archives. See further details in daml_lf.

proto. Required

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier.

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Query the DAML-LF packages supported by the ledger participant and uploadDAR files. We use ‘back-

ing participant’ to refer to this specific participant in the methods of this API. When the participant

is run inmode requiring authentication, all the calls in this interface will respond with UNAUTHENTI-

CATED, if the caller fails to provide a valid access token, and will respond with PERMISSION_DENIED,

if the claims in the token are insufficient to perform a given operation. Subsequently, only specific

errors of individual calls not related to authorization will be described.

Method

name

Request

type

Response

type

Description

ListKnown-

Packages

ListKnown-

PackagesRe-

quest

ListKnown-

PackagesRe-

sponse

Returns the details of all DAML-LF packages known to

the backing participant. This request will always suc-

ceed.

Upload-

DarFile

Upload-

DarFil-

eRequest

Upload-

DarFileRe-

sponse

Upload a DAR file to the backing participant. De-

pendingon the ledger implementation thismight also

make the package available on the whole ledger. This

call might not be supported by some ledger imple-

mentations. Canton could be an example, where up-

loading a DAR is not sufficient to render it usable,

it must be activated first. This call may: - Succeed,

if the package was successfully uploaded, or if the

same package was already uploaded before. - Re-

spond with UNIMPLEMENTED, if DAR package upload-

ing is not supported by the backing participant. - Re-

spond with INVALID_ARGUMENT, if the DAR file is too

big or malformed. The maximum supported size is

implementation specific.

3.5.1.4 com/digitalasset/ledger/api/v1/admin/party_management_service.proto

3.5. The Ledger API using gRPC 177

DAML SDK Documentation, 2019-12-19

AllocatePartyRequest

Field Type Label Description

party_id_hint
string A hint to the backing participant what party id to allocate. It can

be ignored. Must be a valid PartyIdString (as describe in value.

proto). Optional

dis-

play_name

string Human readable name of the party to be added to the participant.

It doesn’t have to be unique. Optional

AllocatePartyResponse

Field Type Label Description

party_details
PartyDetails

GetParticipantIdRequest

GetParticipantIdResponse

Field Type Label Description

partici-

pant_id

string Identifier of the participant, which SHOULD be globally unique.

Must be a valid LedgerString (as describe in value.proto).

ListKnownPartiesRequest

ListKnownPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of all DAML parties hosted by the participant.

Required

PartyDetails

Field Type Label Description

party
string The stable unique identifier of a DAML party. Must be a valid Par-

tyIdString (as described in value.proto). Required

dis-

play_name

string Human readable nameassociatedwith the party. Caution, itmight

not be unique. Optional

is_local
bool true if party is hosted by the backing participant. Required

PartyManagementService

Inspect the partymanagement state of a ledger participant andmodify the parts that aremodifiable.

We use ‘backing participant’ to refer to this specific participant in themethods of this API. When the

participant is run in mode requiring authentication, all the calls in this interface will respond with

178 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

UNAUTHENTICATED, if the caller fails to provide a valid access token, and will respond with PERMIS-

SION_DENIED, if the claims in the token are insufficient to perform a given operation. Subsequently,

only specific errors of individual calls not related to authorization will be described.

Method

name

Request

type

Response

type

Description

GetPartici-

pantId

GetPar-

ticipan-

tIdRequest

GetPar-

ticipan-

tIdResponse

Return the identifier of the backing participant. All

horizontally scaled replicas should return the same

id. This method is expected to succeed provided the

backing participant is healthy, otherwise it responds

with INTERNAL grpc error. daml-on-sql: returns an

identifier supplied on command line at launch time

daml-on-kv-ledger: as above canton: returns globally

unique identifier of the backing participant

ListKnown-

Parties

ListKnown-

PartiesRe-

quest

ListKnown-

PartiesRe-

sponse

List the parties known by the backing participant. The

list returned contains parties whose ledger access is

facilitated by backing participant and the onesmain-

tained elsewhere. This request will always succeed.

Allo-

cateParty

AllocatePar-

tyRequest

AllocatePar-

tyResponse

Adds a new party to the set managed by the backing

participant. Caller specifies a party identifier sugges-

tion, the actual identifier allocated might be differ-

ent and is implementation specific. This call may: -

Succeed, in which case the actual allocated identifier

is visible in the response. - Respond with UNIMPLE-

MENTED if synchronous party allocation is not sup-

ported by the backing participant. - Respond with IN-

VALID_ARGUMENT if the provided hint and/or display

name is invalid on the given ledger (see below). daml-

on-sql: suggestion’s uniqueness is checked and call

rejected if the identifier is already present daml-on-

kv-ledger: suggestion’s uniqueness is checked by the

validators in the consensus layer and call rejected if

the identifier is already present. canton: completely

different globally unique identifier is allocated. Be-

hind the scenes calls to an internal protocol aremade.

As that protocol is richer than the the surface proto-

col, the arguments take implicit values

3.5.1.5 com/digitalasset/ledger/api/v1/command_completion_service.proto

Checkpoint

Checkpoints may be used to:

detect time out of commands.

provide an offset which can be used to restart consumption.

3.5. The Ledger API using gRPC 179

DAML SDK Documentation, 2019-12-19

Field Type Label Description

record_time
google.pro-

to-

buf.Times-

tamp

All commands with a maximum record time below this

value MUST be considered lost if their completion has not

arrived before this checkpoint. Required

offset
LedgerOffset May be used in a subsequent CompletionStreamRequest to

resume the consumption of this stream at a later time. Re-

quired

CompletionEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Required Must be a valid Ledger-

String (as described in value.proto).

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CompletionEndResponse

Field Type Label Description

offset
LedgerOffset This offset can be used in a CompletionStreamRequest message.

Required

CompletionStreamRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger id reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

applica-

tion_id

string Only completions of commands submitted with the same

application_id will be visible in the stream. Must be a

valid LedgerString (as described in value.proto). Re-

quired

parties
string repeated Non-empty list of parties whose data should be included.

Must be a valid PartyIdString (as described in value.

proto). Required

offset
LedgerOffset This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.

Optional, if not set the ledger uses the current ledger end

offset instead.

180 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 2019-12-19

CompletionStreamResponse

Field Type Label Description

checkpoint
Checkpoint This checkpoint may be used to restart consumption. The

checkpoint is after any completions in this response. Op-

tional

comple-

tions

Completion repeated If set, one or more completions.

CommandCompletionService

Allows clients to observe the status of their submissions. Commandsmaybe submitted via theCom-

mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-

tion Service. Commands may fail in 4 distinct manners:

1. INVALID_PARAMETER gRPC error on malformed payloads and missing required fields.

2. Failure communicated in the gRPC error.

3. Failure communicated in a Completion.

4. A Checkpoint with record_time > command mrt arrives through the Completion Stream, and

the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the

trace_context field. The server will return a child context of the submitted one, (or a new one

if the context was missing) on both the Completion and Transaction streams.

Method

name

Request type Response type Description

Completion-

Stream

CompletionStream-

Request

CompletionStreamRe-

sponse

Subscribe to command completion

events.

Completio-

nEnd

CompletionEn-

dRequest

CompletionEn-

dResponse

Returns the offset after the latest

completion.

3.5.1.6 com/digitalasset/ledger/api/v1/command_service.proto

SubmitAndWaitForTransactionIdResponse

Field Type Label Description

transac-

tion_id

string The id of the transaction that resulted from the submitted com-

mand. Must be a valid LedgerString (as described in value.

proto). Required

SubmitAndWaitForTransactionResponse

Field Type Label Description

transaction
Transaction The flat transaction that resulted from the submitted com-

mand. Required

3.5. The Ledger API using gRPC 181

DAML SDK Documentation, 2019-12-19

SubmitAndWaitForTransactionTreeResponse

Field Type Label Description

transaction
Transaction-

Tree

The transaction tree that resulted from the submitted com-

mand. Required

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label Description

commands
Commands The commands to be submitted. Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CommandService

CommandService is able to correlate submitted commandswith completiondata, identify timeouts,

and return contextual information with each tracking result. This supports the implementation of

stateless clients.

Method

name

Request

type

Response

type

Description

Submi-

tAndWait

SubmitAnd-

WaitRequest

.google.pro-

to-

buf.Empty

Submits a single composite command and waits for

its result. Returns RESOURCE_EXHAUSTED if the num-

ber of in-flight commands reached the maximum (if

a limit is configured). Propagates the gRPC error of

failed submissions including DAML interpretation er-

rors.

Submi-

tAndWait-

ForTransac-

tionId

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

IdResponse

Submits a single composite command, waits for

its result, and returns the transaction id. Returns

RESOURCE_EXHAUSTED if the number of in-flight

commands reached the maximum (if a limit is con-

figured). Propagates the gRPC error of failed submis-

sions including DAML interpretation errors.

Submi-

tAndWait-

ForTransac-

tion

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

Response

Submits a single composite command, waits for

its result, and returns the transaction. Returns

RESOURCE_EXHAUSTED if the number of in-flight

commands reached the maximum (if a limit is con-

figured). Propagates the gRPC error of failed submis-

sions including DAML interpretation errors.

Submi-

tAndWait-

ForTransac-

tionTree

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transac-

tionTreeRe-

sponse

Submits a single composite command, waits for

its result, and returns the transaction tree. Re-

turns RESOURCE_EXHAUSTED if the number of in-

flight commands reached the maximum (if a limit is

configured). Propagates the gRPC error of failed sub-

missions including DAML interpretation errors.

182 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 2019-12-19

3.5.1.7 com/digitalasset/ledger/api/v1/command_submission_service.proto

SubmitRequest

The submitted commands will be processed atomically in a single transaction. Moreover, each

Command in commands will be executed in the order specified by the request.

Field Type Label Description

commands
Commands The commands to be submitted in a single transaction. Re-

quired

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of

their submissions are disclosed by the Command Completion Service. The on-ledger effects of their

submissions are disclosed by the Transaction Service. Commands may fail in 4 distinct manners:

1) INVALID_PARAMETER gRPC error on malformed payloads and missing required fields.

2) Failure communicated in the gRPC error.

3) Failure communicated in a Completion.

4) A Checkpoint with record_time > command mrt arrives through the Completion Stream, and

the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the

trace_context field. The server will return a child context of the submitted one, (or a new one

if the context was missing) on both the Completion and Transaction streams.

Method

name

Request

type

Response type Description

Submit SubmitRequest .google.proto-

buf.Empty

Submit a single composite com-

mand.

3.5.1.8 com/digitalasset/ledger/api/v1/commands.proto

Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label Description

create
CreateCommand

exercise
ExerciseCommand

exerciseByKey
ExerciseByKeyCommand

createAndExercise
CreateAndExerciseCommand

3.5. The Ledger API using gRPC 183

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 2019-12-19

Commands

A composite command that groups multiple commands together.

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

work-

flow_id

string Identifier of the on-ledger workflow that this command

is a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application (or its part) that is-

sued the command. This is used in tracing across dif-

ferent components and to let applications subscribe to

their own submissions only. Must be a valid LedgerString

(as described in value.proto). Required

com-

mand_id

string Uniquely identified the command. This identifier should

be unique for each new command within an applica-

tion domain, i.e., the triple (application_id, party, com-

mand_id) must be unique. It can be used for matching

the requests with their respective completions. Must be

a valid LedgerString (as described in value.proto). Re-

quired

party
string Party on whose behalf the command should be executed.

It is up to the server to verify that theauthorisation canbe

granted and that the connection has been authenticated

for that party. Must be a valid PartyIdString (as described

in value.proto). Required

ledger_ef-

fec-

tive_time

google.pro-

to-

buf.Times-

tamp

MUST be an approximation of the wall clock time on the

ledger server. Required

maxi-

mum_record_time

google.pro-

to-

buf.Times-

tamp

The deadline for observing this command in the comple-

tion streambefore it canbe considered to have timedout.

Required

commands
Command repeated Individual elements of this atomic command. Must be

non-empty. Required

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

184 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 2019-12-19

Field Type Label Description

tem-

plate_id

Identifier The template of the contract the clientwants to create. Required

create_ar-

guments

Record The arguments required for creating a contract from this tem-

plate. Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto). Required

choice_ar-

gument

Value The argument for this choice. Required

CreateCommand

Create a new contract instance based on a template.

Field Type Label Description

template_id
Identifier The template of contract the client wants to create. Required

create_argu-

ments

Record The arguments required for creating a contract from this

template. Required

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_key

Value The key of the contract the client wants to exercise upon. Re-

quired

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

ExerciseCommand

Exercise a choice on an existing contract.

3.5. The Ledger API using gRPC 185

DAML SDK Documentation, 2019-12-19

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_id

string The ID of the contract the client wants to exercise upon. Must be

a valid LedgerString (as described in value.proto). Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

3.5.1.9 com/digitalasset/ledger/api/v1/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.

Field Type Label Description

com-

mand_id

string The ID of the succeeded or failed command. Must be a valid

LedgerString (as described in value.proto). Required

status
google.rpc.Sta-

tus

Identifies the exact type of the error. For example, mal-

formed or double spend transactions will result in a

INVALID_ARGUMENT status. Transactions with invalid time

time windows (whichmay be valid at a later date) will result

in an ABORTED error. Optional

transac-

tion_id

string The transaction_id of the transaction that resulted from the

command with command_id. Only set for successfully ex-

ecuted commands. Must be a valid LedgerString (as de-

scribed in value.proto). Optional

trace_con-

text

TraceContext The trace context submitted with the command. This field

is a future extension point and is currently not supported.

Optional

3.5.1.10 com/digitalasset/ledger/api/v1/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

186 Chapter 3. Building applications

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status

DAML SDK Documentation, 2019-12-19

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the archived contract. Must be a valid LedgerString

(as described in value.proto). Required

tem-

plate_id

Identifier The template of the archived contract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. For ArchivedEvent‘s,

these are the intersection of the stakeholders of the contract in

question and the parties specified in the ‘TransactionFilter. The

stakeholders are the union of the signatories and the ob-

servers of the contract. Each one of its elements must be a

valid PartyIdString (as descibed in value.proto). Required

CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid Ledger-

String (as described in value.proto). Required

con-

tract_id

string The ID of the created contract. Must be a valid Ledger-

String (as described in value.proto). Required

tem-

plate_id

Identifier The template of the created contract. Required

con-

tract_key

Value The key of the created contract, if defined. Optional

create_ar-

guments

Record The arguments that have been used to create the con-

tract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. For CreatedE-

vent‘s, these are the intersection of the stakeholders of the con-

tract in question and the parties specified in the ‘Transaction-

Filter. The stakeholders are the union of the signatories

and the observers of the contract. Required

signatories
string repeated The signatories for this contract as specified by the tem-

plate. Required

observers
string repeated The observers for this contract as specified explicitly by

the template or implicitly as choice controllers. Required

agree-

ment_text

google.pro-

to-

buf.String-

Value

The agreement text of the contract. We use StringValue

to properly reflect optionality on the wire for backwards

compatibility. This is necessary since the empty string

is an acceptable (and in fact the default) agreement text,

but also the default string in protobuf. This means a

newer client works with an older sandbox seamlessly.

Optional

3.5. The Ledger API using gRPC 187

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue

DAML SDK Documentation, 2019-12-19

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in

the transaction filter. Each event message type below contains a witness_parties field which in-

dicates the subset of the requested parties that can see the event in question. In the flat transaction

stream you’ll only receive events that have witnesses.

Field Type Label Description

created
CreatedEvent

archived
ArchivedEvent

ExercisedEvent

Records that a choice has been exercised on a target contract.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the target contract. Must be a valid LedgerString (as

described in value.proto). Required

tem-

plate_id

Identifier The template of the target contract. Required

choice
string The choice that’s been exercised on the target contract. Must

be a valid NameString (as described in value.proto). Re-

quired

choice_ar-

gument

Value The argument the choice was made with. Required

act-

ing_parties

string repeated The parties that made the choice. Each element must be

a valid PartyIdString (as described in value.proto). Re-

quired

consuming
bool If true, the target contract may no longer be exercised. Re-

quired

wit-

ness_par-

ties

string repeated Theparties that are notified of this event. Thewitnesses of an

exercise node will depend on whether the exercise was con-

suming or not.

If consuming, the witnesses are the union of the stakeholders and the actors.

If not consuming, the witnesses are the union of the signatories and the actors. Note that the actors

might not necessarily be observers and thus signatories. This is the case when the controllers of a

choice are specified using flexible controllers, using the choice controller syntax, and said controllers

are not explicitly marked as observers.

Each element must be a valid PartyIdString (as described in value.proto).

Required

– child_event_ids

188 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

– string

– repeated

– References to further events in the same transaction that appeared as a result of this

ExercisedEvent. It contains only the immediate children of this event, not all mem-

bers of the subtree rooted at this node.

Each element must be a valid LedgerString (as described in value.proto).

Optional

– exercise_result

– Value

–

– The result of exercising the choice Required

3.5.1.11 com/digitalasset/ledger/api/v1/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetLedgerConfigurationResponse

Field Type Label Description

ledger_configuration
LedgerConfiguration The latest ledger configuration.

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label Description

min_ttl
google.proto-

buf.Duration

Minimumdifference between ledger effective time andmax-

imum record time in submitted commands.

max_ttl
google.proto-

buf.Duration

Maximumdifference between ledger effective time andmax-

imum record time in submitted commands.

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration.

Method

name

Request

type

Response

type

Description

GetLedger-

Configura-

tion

GetLedger-

Configura-

tionRequest

GetLedgerCon-

figurationRe-

sponse

Returns the latest configuration as the first re-

sponse, and publishes configuration updates in

the same stream.

3.5. The Ledger API using gRPC 189

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 2019-12-19

3.5.1.12 com/digitalasset/ledger/api/v1/ledger_identity_service.proto

GetLedgerIdentityRequest

Field Type Label Description

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetLedgerIdentityResponse

Field Type Label Description

ledger_id
string The ID of the ledger exposed by the server. Requests submitted with

the wrong ledger ID will result in NOT_FOUND gRPC errors. Must be a

valid LedgerString (as described in value.proto). Required

LedgerIdentityService

Allows clients to verify that the server they are communicating with exposes the ledger they wish to

operate on. Note that every ledger has a unique ID.

Method

name

Request

type

Response

type

Description

GetLedgerI-

dentity

GetLedgerIden-

tityRequest

GetLedgerIden-

tityResponse

Clients may call this RPC to return the identifier

of the ledger they are connected to.

3.5.1.13 com/digitalasset/ledger/api/v1/ledger_offset.proto

LedgerOffset

Describes a specific point on the ledger.

Field Type Label Description

absolute
string Absolute values are acquired by reading the transactions in

the stream. The offsets can be compared. The format may

vary between implementations. It is either a string represent-

ing an ever-increasing integer, or a composite string contain-

ing <block-hash>-<block-height>-<event-id>; order-

ing requires comparing numerical values of the second, then

the third element.

boundary
LedgerOff-

set.Ledger-

Boundary

190 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

LedgerOffset.LedgerBoundary

Name Number Description

LEDGER_BEGIN
0 Refers to the first transaction.

LEDGER_END
1 Refers to the currently last transaction, which is a moving target.

3.5.1.14 com/digitalasset/ledger/api/v1/package_service.proto

GetPackageRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

pack-

age_id

string The ID of the requested package. Must be a valid PackageId-

String (as described in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetPackageResponse

Field Type Label Description

hash_func-

tion

HashFunc-

tion

The hash function we use to calculate the hash. Required

archive_pay-

load

bytes Contains a daml_lf ArchivePayload. See further details in

daml_lf.proto. Required

hash
string The hash of the archive payload, can also used as a

package_id. Must be a valid PackageIdString (as de-

scribed in value.proto). Required

GetPackageStatusRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

pack-

age_id

string The ID of the requested package. Must be a valid PackageId-

String (as described in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

3.5. The Ledger API using gRPC 191

DAML SDK Documentation, 2019-12-19

GetPackageStatusResponse

Field Type Label Description

package_status
PackageStatus The status of the package.

ListPackagesRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

ListPackagesResponse

Field Type Label Description

pack-

age_ids

string repeated The IDs of all DAML-LF packages supported by the server. Each

element must be a valid PackageIdString (as described in

value.proto). Required

HashFunction

Name Number Description

SHA256
0

PackageStatus

Name Number Description

UNKNOWN
0 The server is not aware of such a package.

REGISTERED
1 The server is able to execute DAML commands operating on this pack-

age.

PackageService

Allows clients to query the DAML-LF packages that are supported by the server.

192 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Method

name

Request

type

Response

type

Description

ListPack-

ages

ListPack-

agesRequest

ListPackages-

Response

Returns the identifiers of all supported packages.

GetPackage GetPack-

ageRequest

GetPack-

ageResponse

Returns the contents of a single package, or a

NOT_FOUND error if the requested package is un-

known.

GetPack-

ageStatus

GetPack-

ageStatusRe-

quest

GetPack-

ageStatusRe-

sponse

Returns the status of a single package.

3.5.1.15 com/digitalasset/ledger/api/v1/testing/reset_service.proto

ResetRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Required

ResetService

Service to reset the ledger state. The goal here is to be able to reset the state in a way that’s much

faster compared to restarting the whole ledger application (be it a sandbox or the real ledger server).

Note that all state present in the ledger implementation will be reset, most importantly including the

ledger ID. This means that clients will have to re-fetch the ledger ID from the identity service after

hitting this endpoint.

The semantics are as follows:

When the reset service returns the reset is initiated, but not completed;

While the reset is performed, the ledger will not accept new requests. In fact we guarantee that

ledger stops accepting new requests by the time the response to Reset is delivered;

In-flight requests might be aborted, we make no guarantees on when or how quickly this hap-

pens;

The ledger might be unavailable for a period of time before the reset is complete.

Given the above, the recommended mode of operation for clients of the reset endpoint is to call it,

then call the ledger identity endpoint in a retry loop that will tolerate a brief window when the ledger

is down, and resume operation as soon as the new ledger ID is delivered.

Note that this service will be available on the sandbox and might be available in some other testing

environments, but will never be available in production.

Method

name

Request

type

Response

type

Description

Reset ResetRe-

quest

.google.pro-

to-

buf.Empty

Resets the ledger state. Note that loaded DARs won’t

be removed – this only rolls back the ledger to genesis.

3.5. The Ledger API using gRPC 193

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 2019-12-19

3.5.1.16 com/digitalasset/ledger/api/v1/testing/time_service.proto

GetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Required

GetTimeResponse

Field Type Label Description

cur-

rent_time

google.protobuf.Times-

tamp

The current time according to the ledger

server.

SetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Required

cur-

rent_time

google.pro-

to-

buf.Times-

tamp

MUST precisely match the current time as it’s known to the

ledger server. Onmismatch, an INVALID_PARAMETER gRPC

error will be returned.

new_time
google.pro-

to-

buf.Times-

tamp

The time the client wants to set on the ledger. MUST be a

point int time after current_time.

TimeService

Optional service, exposed for testing static time scenarios.

Method

name

Request

type

Response

type

Description

GetTime Get-

TimeRequest

GetTimeRe-

sponse

Returns a stream of time updates. Always returns at

least one response, where the first one is the current

time. Subsequent responses are emitted whenever

the ledger server’s time is updated.

SetTime Set-

TimeRequest

.google.pro-

to-

buf.Empty

Allows clients to change the ledger’s clock in an

atomic get-and-set operation.

3.5.1.17 com/digitalasset/ledger/api/v1/trace_context.proto

194 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 2019-12-19

TraceContext

Data structure to propagate Zipkin trace information. See https://github.com/openzipkin/

b3-propagation Trace identifiers are 64 or 128-bit, but all span identifiers within a trace are 64-bit.

All identifiers are opaque.

Field Type Label Description

trace_id_high
uint64 If present, this is the high 64 bits of the 128-bit identifier.

Otherwise the trace ID is 64 bits long.

trace_id
uint64 The TraceId is 64 or 128-bit in length and indicates the over-

all ID of the trace. Every span in a trace shares this ID.

span_id
uint64 The SpanId is 64-bit in length and indicates the position of

the current operation in the trace tree. The value should not

be interpreted: it may or may not be derived from the value

of the TraceId.

par-

ent_span_id

google.pro-

to-

buf.UInt64Value

The ParentSpanId is 64-bit in length and indicates the posi-

tion of the parent operation in the trace tree. When the span

is the root of the trace tree, the ParentSpanId is absent.

sampled
bool When the sampled decision is accept, report this span to

the tracing system. When it is reject, do not. When B3 at-

tributes are sent without a sampled decision, the receiver

should make one. Once the sampling decision is made, the

same value should be consistently sent downstream.

3.5.1.18 com/digitalasset/ledger/api/v1/transaction.proto

Transaction

Filtered view of an on-ledger transaction.

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Must be a valid LedgerString (as

described in value.proto). Required

events
Event repeated The collection of events. Only contains CreatedEvent or

ArchivedEvent. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

3.5. The Ledger API using gRPC 195

https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/b3-propagation
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 2019-12-19

TransactionTree

Complete view of an on-ledger transaction.

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Only set

if the workflow_id for the command was set. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

events_by_id
Transaction-

Tree.Events-

ByIdEntry

repeated Changes to the ledger that were caused by this transac-

tion. Nodes of the transaction tree. Each key be a valid

LedgerString (as describe in value.proto). Required

root_event_ids
string repeated Roots of the transaction tree. Each element must be a

valid LedgerString (as describe in value.proto). The

elements are in the same order as the commands in

the corresponding Commands object that triggerd this

transaction. Required

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

TransactionTree.EventsByIdEntry

Field Type Label Description

key
string

value
TreeEvent

TreeEvent

Each tree event message type below contains a witness_parties field which indicates the subset

of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included

simply because they were children of events which have witnesses.

196 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 2019-12-19

Field Type Label Description

created
CreatedEvent

exercised
ExercisedEvent

3.5.1.19 com/digitalasset/ledger/api/v1/transaction_filter.proto

Filters

Field Type Label Description

inclusive
InclusiveFilters If not set, no filters will be applied. Optional

InclusiveFilters

If no internal fields are set, no data will be returned.

Field Type Label Description

tem-

plate_ids

Identifier repeated A collection of templates. SHOULD NOT contain duplicates.

Required

TransactionFilter

Used for filtering Transaction and Active Contract Set streams. Determines which on-ledger events

will be served to the client.

Field Type Label Description

fil-

ters_by_party

Transaction-

Filter.Filters-

ByPartyEntry

repeated Keys of the map determine which parties’ on-ledger

transactions are being queried. Values of the map deter-

mine which events are disclosed in the stream per party.

At the minimum, a party needs to set an empty Filters

message to receive any events. Each key must be a valid

PartyIdString (as described in value.proto). Required

TransactionFilter.FiltersByPartyEntry

Field Type Label Description

key
string

value
Filters

3.5.1.20 com/digitalasset/ledger/api/v1/transaction_service.proto

GetFlatTransactionResponse

Field Type Label Description

transaction
Transaction

3.5. The Ledger API using gRPC 197

DAML SDK Documentation, 2019-12-19

GetLedgerEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetLedgerEndResponse

Field Type Label Description

offset
LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

event_id
string The ID of a particular event. Must be a valid LedgerString

(as described in value.proto). Required

request-

ing_parties

string repeated The partieswhose events the client expects to see. Events

that are not visible for the parties in this collection will

not be present in the response. Each element must be a

valid PartyIdString (as described in value.proto). Re-

quired

trace_con-

text

TraceContext Server side tracingwill be registered as a child of the sub-

mitted context. This field is a future extension point and

is currently not supported. Optional

GetTransactionByIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

describe in value.proto). Required

transac-

tion_id

string The ID of a particular transaction. Must be a valid Ledger-

String (as describe in value.proto). Required

request-

ing_parties

string repeated The partieswhose events the client expects to see. Events

that are not visible for the parties in this collection will

not be present in the response. Each element be a valid

PartyIdString (as describe in value.proto). Required

trace_con-

text

TraceContext Server side tracingwill be registered as a child of the sub-

mitted context. This field is a future extension point and

is currently not supported. Optional

198 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

GetTransactionResponse

Field Type Label Description

transaction
TransactionTree

GetTransactionTreesResponse

Field Type Label Description

transac-

tions

Transaction-

Tree

repeated The list of transaction trees that matches the

filter in GetTransactionsRequest for the

GetTransactionTreesmethod.

GetTransactionsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

begin
LedgerOffset Beginning of the requested ledger section. Required

end
LedgerOffset End of the requested ledger section. Optional, if not set, the

stream will not terminate.

filter
Transaction-

Filter

Requesting parties with template filters. Required

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetTransactionsResponse

Field Type Label Description

transac-

tions

Transaction repeated The list of transactions thatmatches the filter in GetTrans-

actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger.

3.5. The Ledger API using gRPC 199

DAML SDK Documentation, 2019-12-19

Method

name

Request

type

Response

type

Description

GetTransac-

tions

GetTransac-

tionsRequest

GetTrans-

actionsRe-

sponse

Read the ledger’s filtered transaction stream for a set

of parties.

GetTransac-

tionTrees

GetTransac-

tionsRequest

GetTransac-

tionTreesRe-

sponse

Read the ledger’s complete transaction tree stream

for a set of parties.

GetTransac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetTrans-

actionRe-

sponse

Lookupa transaction tree by the ID of an event that ap-

pears within it. Returns NOT_FOUND if no such trans-

action exists. For looking up a transaction instead

of a transaction tree, please see GetFlatTransaction-

ByEventId

GetTransac-

tionById

GetTrans-

action-

ByIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction tree by its ID. Returns

NOT_FOUND if no such transaction exists. For

looking up a transaction instead of a transaction

tree, please see GetFlatTransactionById

GetFlat-

Transac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by the ID of an event that ap-

pears within it. Returns NOT_FOUND if no such trans-

action exists.

GetFlat-

Transac-

tionById

GetTrans-

action-

ByIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by its ID. Returns NOT_FOUND if

no such transaction exists.

Ge-

tLedgerEnd

GetLedgerEn-

dRequest

GetLedgerEn-

dResponse

Get the current ledger end. Subscriptions startedwith

the returned offset will serve transactions created af-

ter this RPC was called.

3.5.1.21 com/digitalasset/ledger/api/v1/value.proto

Enum

A value with finite set of alternative representations.

Field Type Label Description

enum_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

GenMap

Field Type Label Description

entries
GenMap.Entry repeated

200 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

GenMap.Entry

Field Type Label Description

key
Value

value
Value

Identifier

Unique identifier of an entity.

Field Type Label Description

pack-

age_id

string The identifier of the DAML package that contains the entity. Must

be a valid PackageIdString. Required

mod-

ule_name

string The dot-separated module name of the identifier. Required

en-

tity_name

string The dot-separated name of the entity (e.g. record, template,)

within the module. Required

List

A homogenous collection of values.

Field Type Label Description

elements
Value repeated The elements must all be of the same concrete value type. Op-

tional

Map

Field Type Label Description

entries
Map.Entry repeated

Map.Entry

Field Type Label Description

key
string

value
Value

Optional

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to

wrap this in an additional message is that we need to be able to encode the None case in the Value

oneof.

3.5. The Ledger API using gRPC 201

DAML SDK Documentation, 2019-12-19

Field Type Label Description

value
Value optional

Record

Contains nested values.

Field Type Label Description

record_id
Identifier Omitted from the transaction streamwhen verbose stream-

ing is not enabled. Optional when submitting commands.

fields
RecordField repeated The nested values of the record. Required

RecordField

A named nested value within a record.

Field Type Label Description

label
string When reading a transaction stream, it’s omitted if verbose streaming

is not enabled. When submitting a commmand, it’s optional: - if all

keys within a single record are present, the order in which fields appear

does not matter. however, each key must appear exactly once. - if any

of the keys within a single record are omitted, the order of fields MUST

match the order of declaration in the DAML template. Must be a valid

NameString

value
Value A nested value of a record. Required

Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different four classes of strings as identifiers. Those classes are defined as

follow: - NameStrings are strings that match the regexp [A-Za-z\$_][A-Za-z0-9\$_]*. - Pack-

ageIdStrings are strings that match the regexp [A-Za-z0-9\-_]+. - PartyIdStrings are strings

thatmatch the regexp [A-Za-z0-9:\-_]+. - LedgerStrings are strings thatmatch the regexp [A-

Za-z0-9#:\-_/]+.

202 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Field Type Label Description

record
Record

variant
Variant

con-

tract_id

string Identifier of an on-ledger contract. Commands which ref-

erence an unknown or already archived contract ID will fail.

Must be a valid LedgerString.

list
List Represents a homogeneous list of values.

int64
sint64

numeric
string A Numeric, that is a decimal value with precision 38 (at

most 38 significant digits) and a scale between 0 and 37

(significant digits on the right of the decimal point). The

field has to match the regex [+-]?d{1,38}(.d{0,37})? and

should be representable by a Numeric without loss of pre-

cision.

text
string A string.

timestamp
sfixed64 Microseconds since the UNIX epoch. Can go backwards.

Fixed since the vast majority of values will be greater than

2^28, since currently the number ofmicroseconds since the

epoch is greater than that. Range: 0001-01-01T00:00:00Z

to 9999-12-31T23:59:59.999999Z, so that we can convert

to/from https://www.ietf.org/rfc/rfc3339.txt

party
string An agent operating on the ledger. Must be a valid PartyId-

String.

bool
bool True or false.

unit
google.pro-

to-

buf.Empty

This value is used for example for choices that don’t take

any arguments.

date
int32 Days since the unix epoch. Can go backwards. Limited from

0001-01-01 to 9999-12-31, also to be compatible with https:

//www.ietf.org/rfc/rfc3339.txt

optional
Optional The Optional type, None or Some

map
Map The Map type

enum
Enum The Enum type

gen_map
GenMap The GenMap type

Variant

A value with alternative representations.

3.5. The Ledger API using gRPC 203

https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

DAML SDK Documentation, 2019-12-19

Field Type Label Description

variant_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

value
Value The value encoded within the Variant. Required

3.5.1.22 Scalar Value Types

.proto type Notes C++ type Java type Python

type

double
double double float

float
float float float

int32
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint32 instead.

int32 int int

int64
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint64 instead.

int64 long int/long

uint32
Uses variable-length encoding. uint32 int int/long

uint64
Uses variable-length encoding. uint64 long int/long

sint32
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int32s.

int32 int int

sint64
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int64s.

int64 long int/long

fixed32
Always four bytes. More efficient than

uint32 if values are often greater than

2^28.

uint32 int int

fixed64
Always eight bytes. More efficient than

uint64 if values are often greater than2^56.

uint64 long int/long

sfixed32
Always four bytes. int32 int int

sfixed64
Always eight bytes. int64 long int/long

bool
bool boolean boolean

string
A string must always contain UTF-8 en-

coded or 7-bit ASCII text.

string String str/unicode

bytes
May contain any arbitrary sequence of

bytes.

string ByteString str

204 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

3.5.2 How DAML types are translated to protobuf

This page gives an overview and reference on how DAML types and contracts are represented by the

Ledger API as protobuf messages, most notably:

in the stream of transactions from the TransactionService

as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and

CommandService.

The DAML code in the examples below is written in DAML 1.1.

3.5.2.1 Notation

Thenotationusedon thispage for theprotobufmessages is the sameas youget if you invokeprotoc

--decode=Foo < some_payload.bin. To illustrate the notation, here is a simple definition of the

messages Foo and Bar:

message Foo {

string field_with_primitive_type = 1;

Bar field_with_message_type = 2;

}

message Bar {

repeated int64 repeated_field_inside_bar = 1;

}

A particular value of Foo is then represented by the Ledger API in this way:

{ // Foo

field_with_primitive_type: "some string"

field_with_message_type { // Bar

repeated_field_inside_bar: 17

repeated_field_inside_bar: 42

repeated_field_inside_bar: 3

}

}

The name of messages is added as a comment after the opening curly brace.

3.5.2.2 Records and primitive types

Records or product types are translated to Record. Here’s an example DAML record type that contains

a field for each primitive type:

data MyProductType = MyProductType {

intField: Int;

textField: Text;

decimalField: Decimal;

boolField: Bool;

partyField: Party;

timeField: Time;

listField: List Int;

contractIdField: ContractId SomeTemplate

}

3.5. The Ledger API using gRPC 205

DAML SDK Documentation, 2019-12-19

And here’s an example of creating a value of type MyProductType:

alice <- getParty "Alice"

someCid <- submit alice do create SomeTemplate with owner=alice

let myProduct = MyProductType with

intField = 17

textField = "some text"

decimalField = 17.42

boolField = False

partyField = bob

timeField = datetime 2018 May 16 0 0 0

listField = [1,2,3]

contractIdField = someCid

For this data, the respective data on the Ledger API is shown below. Note that this value would be

enclosed by a particular contract containing a field of type MyProductType. See Contract templates for

the translation of DAML contracts to the representation by the Ledger API.

{ // Record

record_id { // Identifier

package_id: "some-hash"

name: "Types.MyProductType"

}

fields { // RecordField

label: "intField"

value { // Value

int64: 17

}

}

fields { // RecordField

label: "textField"

value { // Value

text: "some text"

}

}

fields { // RecordField

label: "decimalField"

value { // Value

decimal: "17.42"

}

}

fields { // RecordField

label: "boolField"

value { // Value

bool: false

}

}

fields { // RecordField

label: "partyField"

value { // Value

party: "Bob"

(continues on next page)

206 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

}

}

fields { // RecordField

label: "timeField"

value { // Value

timestamp: 1526428800000000

}

}

fields { // RecordField

label: "listField"

value { // Value

list { // List

elements { // Value

int64: 1

}

elements { // Value

int64: 2

}

elements { // Value

int64: 3

}

}

}

}

fields { // RecordField

label: "contractIdField"

value { // Value

contract_id: "some-contract-id"

}

}

}

3.5.2.3 Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant

type with two constructors:

data MySumType = MySumConstructor1 Int |

MySumConstructor2 (Text, Bool)

The constructor MyConstructor1 takes a single parameter of type Integer, whereas the construc-

tor MyConstructor2 takes a record with two fields as parameter. The snippet below shows how you

can create values with either of the constructors.

let mySum1 = MySumConstructor1 17

let mySum2 = MySumConstructor2 ("it's a sum", True)

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySum1 and mySum2 respectively as they would be transmit-

ted on the Ledger API within a contract.

3.5. The Ledger API using gRPC 207

DAML SDK Documentation, 2019-12-19

Listing 19: mySum1

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor1"

value { // Value

int64: 17

}

}

}

Listing 20: mySum2

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor2"

value { // Value

record { // Record

fields { // RecordField

label: "sumTextField"

value { // Value

text: "it's a sum"

}

}

fields { // RecordField

label: "sumBoolField"

value { // Value

bool: true

}

}

}

}

}

}

3.5.2.4 Contract templates

Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =

(continues on next page)

208 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

MySimpleTemplateKey

with

party: Party

template MySimpleTemplate

with

owner: Party

where

signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey

Creating a contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-

mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown

below:

{ // CreateCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

}

Receiving a contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained

in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent

event_id: "some-event-id"

contract_id: "some-contract-id"

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

(continues on next page)

3.5. The Ledger API using gRPC 209

DAML SDK Documentation, 2019-12-19

(continued from previous page)

party: "Alice"

}

}

}

witness_parties: "Alice"

}

Exercising a choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,

exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_id: "some-contract-id"

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as

ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The

example above could be rewritten as follows:

{ // ExerciseByKeyCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_key { // Value

record { // Record

fields { // RecordField

label: "party"

value { // Value

party: "Alice"

}

}

(continues on next page)

210 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

}

}

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

If you want to write an application for the ledger API in other languages, you’ll need to use gRPC

directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart

and gRPC tutorials. This documentation is written assuming you already have an understanding of

gRPC.

3.5.3 Getting started

You can either get the protobufs from Bintray here, or from the daml repository here.

3.5.4 Protobuf reference documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger API Reference.

3.5.5 Example project

We have an example project demonstrating the use of the Ledger API with gRPC. To get the example

project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set up a Maven

project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.

PingPongGrpcMain as the main class.

3.5.5.1 About the example project

The example shows very simply how two parties can interact via a ledger, using two DAML contract

templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

3.5. The Ledger API using gRPC 211

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://bintray.com/digitalassetsdk/DigitalAssetSDK/sdk-components#files/com%2Fdigitalasset%2Fledger-api-protos
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

DAML SDK Documentation, 2019-12-19

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the DAML is

reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongGrpcMain.java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count

↪→9

The first line shows:

Bob is exercising theRespondPong choice on the contract with ID#1:0 for theworkflowPing-

Alice-1.

Count 0means that this is the first choice after the initial Ping contract.

Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-

ferent participant nodes. However, if you have multiple parties registered on the same node, or are

running an application against the Sandbox, you can subscribe to transactions for multiple par-

ties in a single subscription by putting multiple entries into the filters_by_party field of the

TransactionFiltermessage. Subscribing to transactions for an unknown party will result in an

error.

3.5.6 DAML types and protobuf

For information on how DAML types and contracts are represented by the Ledger API as protobuf

messages, see How DAML types are translated to protobuf.

3.5.7 Error handling

Tor the standard error codes that the server or the client might return, see the gRPC documentation .

For submitted commands, there are these response codes:

ABORTED The platform failed to record the result of the command due to a transient server-side

error or a time constraint violation. You can retry the submission with updated Ledger Effective

Time (LET) and Maximum Record Time (MRT) values.

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely

reject resubmissions of the same command even with updated LET and MRT values.

OK, INTERNAL, UNKNOWN (when returned by the Command Submission Service) Assume that

the command was accepted, and wait for the resulting completion or a timeout from the

Command Completion Service.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) Resubmit the command with

the same command_id.

3.6 Creating your own bindings

This page gets you started with creating custom bindings for the Digital Asset distributed ledger.

212 Chapter 3. Building applications

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

DAML SDK Documentation, 2019-12-19

3.6.1 Introduction

Digital Asset currently provides bindings for the following programming languages:

Java

Scala

JavaScript (Node.js)

You can create bindings for any programming language supported by gRPC.

What do we mean by bindings? Bindings for a language consist of two main components:

Ledger API Client stubs for the programming language, – the remote API that allows sending

ledger commandsand receiving ledger transactions. Youhave to generate Ledger API from

the gRPC protobuf definitions in the daml repository on GitHub. Ledger API is documented

on this page: The Ledger API using gRPC. The gRPC tutorial explains how to generate client

stubs.

Codegen A code generator is a program that generates classes representing DAML contract

templates in the language. These classes incorporate all boilerplate code for constructing:

CreateCommand and ExerciseCommand corresponding for each DAML contract template.

Technically codegen is optional. Youcanconstruct the commandsmanually fromtheauto-generated

Ledger API classes. However, it is very tedious and error-prone. If you are creating ad hoc bindings

for a project with a few contract templates, writing a proper codegen may be overkill. On the other

hand, if you have hundreds of contract templates in your project or are planning to build language

bindings that you will share across multiple projects, we recommend including a codegen in your

bindings. It will save you and your users time in the long run.

Note that for different reasons we chose codegen, but that is not the only option. There is really a

broad category of metaprogramming features that can solve this problem just as well or even better

than codegen; they are language-specific, but often much easier to maintain (i.e. no need to add a

build step). Some examples are:

F# Type Providers

Template Haskell

Scala macro annotations (not future-proof enough to use when implementing the last Scala

codegen)

3.6.2 Building Ledger Commands

No matter what approach you take, either manually building commands or writing a codegen to do

this, you need to understand how ledger commands are structured. This section demonstrates how

to build create and exercise commands manually and how it can be done using contract classes

generated by Scala codegen.

3.6.2.1 Create Command

Let’s recall an IOU example from the Quickstart guide, where Iou template is defined like this:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

3.6. Creating your own bindings 213

https://grpc.io/docs/
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://grpc.io/docs/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider#a-type-provider-that-is-backed-by-local-data
https://wiki.haskell.org/Template_Haskell

DAML SDK Documentation, 2019-12-19

Here is how to manually build a CreateCommand for the above contract template in Scala:

def iouCreateCommand(

templateId: Identifier,

issuer: String,

owner: String,

currency: String,

amount: BigDecimal): Command.Create = {

val fields = Seq(

RecordField("issuer", Some(Value(Value.Sum.Party(issuer)))),

RecordField("owner", Some(Value(Value.Sum.Party(owner)))),

RecordField("currency", Some(Value(Value.Sum.Text(currency)))),

RecordField("amount", Some(Value(Value.Sum.Numeric(amount.

↪→toString)))),

RecordField("observers", Some(Value(Value.Sum.List(List())))),

)

Command.Create(

CreateCommand(

templateId = Some(templateId),

createArguments = Some(Record(Some(templateId), fields))))

}

If you do not specify any of the above fields or type their names or values incorrectly, or do not or-

der them exactly as they are in the DAML template, the above code will compile but fail at run-time

because you did not structure your create command correctly.

Codegen should simplify the command construction by providing auto-generated utilities to help

you construct commands. For example, when you use Scala codegen to generate contract classes, a

similar contract instantiation would look like this:

val iou = M.Iou(

issuer = issuer,

owner = issuer,

currency = "USD",

amount = BigDecimal("1000.00"),

observers = List())

3.6.2.2 Exercise Command

To build ExerciseCommand for Iou_Transfer:

controller owner can

Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

do create IouTransfer with iou = this; newOwner

manually in Scala:

def iouTransferExerciseCommand(

templateId: Identifier,

contractId: String,

(continues on next page)

214 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

(continued from previous page)

newOwner: String): Command.Exercise = {

val transferTemplateId = Identifier(

packageId = templateId.packageId,

moduleName = templateId.moduleName,

entityName = "Iou_Transfer")

val fields = Seq(RecordField("newOwner", Some(Value(Value.Sum.

↪→Party(newOwner)))))

Command.Exercise(

ExerciseCommand(

templateId = Some(templateId),

contractId = contractId,

choice = "Iou_Transfer",

choiceArgument = Some(Value(Value.Sum.

↪→Record(Record(Some(transferTemplateId), fields))))

))

}

versus creating the same command using a value class generated by Scala codegen:

exerciseCmd = iouContract.contractId.exerciseIou_Transfer(actor =

↪→issuer, newOwner = newOwner)

3.6.3 Summary

When creating custom bindings for the Digital Asset distributed ledger, you will need to:

generate Ledger API from the gRPC definitions

decide whether to write a codegen to generate ledger commands ormanually build them for all

contracts defined in your DAML model.

The above examples should help you get started. If you are creating custom binding or have any

questions, see the Support page for how to get in touch with us.

3.6.4 Links

A Scala example that demonstrates how to manually construct ledger commands:

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/

iou-no-codegen

A Scala codegen example: https://github.com/digital-asset/daml/tree/master/

language-support/scala/examples/quickstart-scala

gRPC documentation: https://grpc.io/docs/

Digital Asset Ledger API gRPC protobuf definitions: https://github.com/digital-asset/daml/

tree/master/ledger-api/grpc-definitions

3.7 Application architecture guide

This document is a guide to building applications that interact with a DA ledger deployment (the

‘ledger’). It:

describes the characteristics of the ledger API, how this affects the way an application is built

(the ‘application architecture’), and why it is important to understand this when building ap-

plications

3.7. Application architecture guide 215

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/iou-no-codegen
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/iou-no-codegen
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala
https://grpc.io/docs/
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions

DAML SDK Documentation, 2019-12-19

describes the resources in the SDK to help with this task

gives some guidelines to help you build correct, performant, and maintainable applications

using all of the supported languages

3.7.1 Categories of application

Applications that interact with the ledger normally fall into four categories:

Table 1: Categories of application

Category Receives

transac-

tions?

Sends com-

mands?

Example

Source No Yes An injector that reads new contracts from a

file and injects them into the system.

Sink Yes No A reader that pipes data from the ledger into

an SQL database.

Automation Yes Yes, responding

to transactions

Automatic trade registration.

Interactive Yes (and dis-

plays to user)

Yes, based on

user input

DA’s Navigator, which lets you see and interact

with the ledger

Additionally, applications can be written in two different styles:

Event-driven - applications base their actions on individual ledger events only.

State-driven - applications base their actions on some model of all contracts active on the

ledger.

3.7.1.1 Event-driven applications

Event-driven applications react to events on the the ledger and generate commands and other out-

puts on a per-event basis. They do not require access to ledger state beyond the event they are re-

acting to.

Examples are sink applications that read the ledger and dump events to an external store (e.g. an

external (reporting) database).

3.7.1.2 State-driven applications

State-driven applications build up a real-time view of the ledger state by reading events and record-

ing contract create and archive events. They then generate commands based on a given state, not

just single events.

Examples of these are automation and interactive applications that let a user or code react to com-

plex state on the ledger (e.g. the DA Navigator tool).

3.7.1.3 Which approach to take

For all except the simplest applications, we generally recommend the state-driven approach. State-

driven applications are easier to reason about when determining correctness, so this makes design

and implementation easier.

In practice, most applications are actually a mixture of the two styles, with one predominating. It

is easier to add some event handling to a state-driven application, so it is better to start with that

style.

216 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

3.7.2 Structuring an application

Although applications that communicate with the ledger have many purposes, they generally have

some common features, usually related to their style: event-driven or state-driven. This section de-

scribes these commonalities, and the major functions of each of these styles.

In particular, all applications need to handle the asynchronous nature of the ledger API. The most

important consequence of this is that applications must be multi-threaded. This is because of the

asynchronous, separate streams of commands, transaction and completion events.

Although you can choose to do this in several ways, from bare threads (such as a Java Thread)

through thread libraries, generally the most effective way of handling this is by adopting a reactive

architecture, often using a library such as RxJava.

All the language bindings support this reactive pattern as a fundamental requirement.

3.7.2.1 Structuring event-driven applications

Event-driven applications read a stream of transaction events from the ledger, and convert them to

some other representation. This may be a record on a database, some update of a UI, or a differently

formattedmessage that is sent to an upstream process. It may also be a command that transforms

the ledger.

The critical thing here is that each event is processed in isolation - the application does not need to

keep any application-related state between each event. It is this that differentiates it from a state-

driven application.

To do this, the application should:

1. Create a connection to the Transaction Service, and instantiate a stream handler to handle the

new event stream. By default, this will read events from the beginning of the ledger. This is

usually not what is wanted, as it may replay already processed transactions. In this case, the

application can request the stream from the current ledger end. This will, however, cause any

events between the last read point and the current ledger end to be missed. If the application

must start reading from the point it last stopped, itmust record that point and explicitly restart

the event stream from there.

2. Optionally, create a connection to the CommandSubmission Service to send any required com-

mands back to the ledger.

3. Act on the content of events (type, content) to perform any action required by the application

e.g. writing a database record or generating and submitting a command.

3.7.2.2 Structuring state-driven applications

State-driven applications read a stream of events from the ledger, examine them and build up an

application-specific view of the ledger state based on the events type and content. This involves stor-

ing some representation of existing contracts on a Create event, and removing them on an Archive

event. To be able to remove contract reference, they must be indexed by contractId.

This is the most basic kind of update, but other types are also possible. For example, counting the

number of a certain type of contract, and establishing relationships between contracts based on

business-level keys.

The core of the application is then to write an algorithm that examines the overall state, and gener-

ates a set of commands to transform the ledger, based on that state.

If the result of this algorithmdepends purely on the current ledger state (and not, for instance, on the

event history), you should consider this as a pure function between ledger state and command set,

3.7. Application architecture guide 217

https://github.com/ReactiveX/RxJava

DAML SDK Documentation, 2019-12-19

and structure the design of an application accordingly. This is highlighted in the language bindings.

To do this, the application should:

1. Obtain the initial state of the ledger by using the Active Contracts service, processing each

event received to create an initial application state.

2. Create a connection to the Transaction Service to receive new events from that initial state, and

instantiate a stream handler to process them.

3. Create a connection to the Command Submission Service to send commands.

4. Create a connection to the Command Completion Service, and set up a stream handler to han-

dle completions.

5. Read the event stream and process each event to update its view of the ledger state.

To make accessing and examining this state easier, this often involves turning the generic

description of create contracts into instances of structures (such as class instances that are

more appropriate for the language being used. This also allows the application to ignore con-

tract data it does not need.

6. Examine the state at regular intervals (often after receiving and processing each transaction

event) and send commands back to the ledger on significant changes.

7. Maintain a record of pending contracts: contracts that will be archived by these commands,

but whose completion has not been received.

Because of the asynchronous nature of the API, these contracts will not exist on the ledger at

some point after the command has been submitted, but will exist in the application state until

the corresponding archive event has been received. Until that happens, the application must

ensure that these pending contracts are not considered part of the application state, even

though their archives have not yet been received. Processing and maintaining this pending

set is a crucial part of a state-driven application.

8. Examine command completions, and handle any command errors. As well as application de-

fined needs (such as command re-submission and de-duplications), this must also include

handling command errors as described Common tasks, and also consider the pending set. Ex-

ercise commands that fail mean that contracts that are marked as pending will now not be

archived (the application will not receive any archive events for them) andmust be returned to

the application state.

3.7.2.3 Common tasks

Both styles of applications will take the following steps:

Define an applicationId - this identifies the application to the ledger server.

Connect to the ledger (includinghandling authentication). This creates a client interface object

that allows creation of the stream connection described in Structuring an application.

Handle execution errors. Because these are received asynchronously, the application will need

to keep a record of commands in flight - those sent but not yet indicated complete (via an

event). Correlate commands and completions via an application-defined commandId. Catego-

rize different sets of commands with a workflowId.

Handle lost commands. The ledger server does not guarantee that all commands submitted to

it will be executed. This means that a command submission will not result in a corresponding

completion, and some other mechanism must be employed to detect this. This is done using

the values of Ledger Effective Time (LET) and Maximum Record Time (MRT). The server does

guarantee that if a command is executed, it will be executed within a time window between

the LET and MRT specified in the command submission. Since the value of the ledger time at

which a command is executed is returned with every completion, reception of a completion

with a record time that is greater than the MRT of any pending command guarantees that the

pending command will not be executed, and can be considered lost.

218 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

Have a policy regarding command resubmission. In what situations should failing commands

be re-submitted? Duplicate commandsmust be avoided in some situations - what state must

be kept to implement this?

Access auxiliary services such as the time service and package service. The time service will

be used to determine Ledger Effective Time value for command submission, and the package

servicewill be used to determine packageId, used in creating a connection, aswell asmetadata

that allows creation events to be turned in to application domain objects.

3.7.3 Application libraries

We provide several libraries and tools that support the task of building applications. Some of this

is provided by the API (e.g. the Active Contracts Service), but mostly is provided by several language

binding libraries.

3.7.3.1 Java

The Java API bindings have three levels:

A low-level Data Layer, including Java classes generated from the gRPC protocol definition files

and thin layer of support classes. These provide a builder pattern for constructing protocol

items, and blocking and non-blocking interfaces for sending and receiving requests and re-

sponses.

A Reactive Streams interface, exposing all API endpoints as RxJava Flowables.

A Reactive Components API that uses the above to provide high-level facilities for building

state-driven applications.

For more information on these, see the documentation: a tutorial/description and the JavaDoc refer-

ence.

This API allows a Java application to accomplish all the steps detailed in Application Structure. In

particular, the Bot abstraction fully supports building of state-driven applications. This is described

further in Architectural Guidance, below.

3.7.3.2 Scala

The Java libraries above are compatible with Scala and can be used directly.

3.7.3.3 gRPC

We provides the full details of the gRPC service and protocol definitions. These can be compiled to a

variety of target languages using the open-source protobuf and gRPC tools. This allows an applica-

tion to attach to an interface at the same level as the provided Data Layer Java bindings.

3.7.4 Architecture guidance

This section presents some suggestions and guidance for building successful applications.

3.7.4.1 Use a reactive architecture and libraries

In general, you should consider using a reactive architecture for your application. This has a number

of advantages:

It matches well to the streaming nature of the ledger API.

It will handle all themulti-threading issues, providing you with sequentialmodel to implement

your application code.

3.7. Application architecture guide 219

https://github.com/ReactiveX/RxJava
http://reactivex.io/RxJava/javadoc/io/reactivex/Flowable.html
/app-dev/bindings-java/javadocs/index.html
/app-dev/bindings-java/javadocs/index.html
../../app-dev/bindings-java/javadocs/com/daml/ledger/rxjava/components/Bot.html
https://grpc.io/docs/

DAML SDK Documentation, 2019-12-19

It allows for several implementation strategies that are inherently scalable e.g. RxJava, Akka

Streams/Actors, RxJS, RxPy etc.

3.7.4.2 Prefer a state-driven approach

For all but the simplest applications, the state-driven approach has several advantages:

It’s easier to add direct event handling to state-driven applications than the reverse.

Most applications have to keep some state.

DigitalAsset language bindings directly support the pattern, and provide libraries that handle

many of the required tasks.

3.7.4.3 Consider a state-driven application as a function of state to commands

As far as possible, aim to encode the core application as a function between application state and

generated commands. This helps because:

It separates the application into separate stages of event transformation, state update and

command generation.

The command generation is the core of the application - implementing as a pure function

makes it easy to reason about, and thus reduces bugs and fosters correctness.

Doing this will also require that the application is structured so that the state examined by

that function is stable - that is, not subject to an update while the function is running. This is

one of the things that makes the function, and hence the application, easier to reason about.

The Java Reactive Components library provides an abstraction and framework that directly supports

this. It provides a Bot abstraction that handlesmuch of work of doing this, and allows the command

generation function to be represented as an actual Java function, and wired into the framework,

along with a transform function that allows the state objects to be Java classes that better represent

the underlying contracts.

This allows you to reduce the work of building an application to the following tasks:

Define the Bot function.

Define the event transformation.

Define setup tasks such as disposing of command failure, connecting to the ledger and ob-

taining ledger- and package- IDs.

The framework handles much of the work of building a state-driven application. It handles the

streamsof events and completions, transforming events into domain objects (via the provided event

transform function) and storing them in a LedgerView object. This is then passed to the Bot function

(providedby the application), which generates a set of commandsandapending set. The commands

are sent back to the ledger, and the pending set, along with the commandId that identifies it, is held

by the framework (LedgerViewFlowable). This allows it to handle all command completion events.

220 Chapter 3. Building applications

../../app-dev/bindings-java/javadocs/com/daml/ledger/rxjava/components/Bot.html
../../app-dev/bindings-java/javadocs/com/daml/ledger/rxjava/components/LedgerViewFlowable.LedgerView.html
../../app-dev/bindings-java/javadocs/com/daml/ledger/rxjava/components/LedgerViewFlowable.html

DAML SDK Documentation, 2019-12-19

Full details of the framework are available in the links described in the Java library above.

3.7.5 Commonly used types

Primitive and structured types (records, variants and lists) appearing in the contract constructors

and choice arguments are compatible with the types defined in the current version of DAML-LF (v1).

They appear in the submitted commands and in the event streams.

There are some identifier fields that are represented as strings in the protobuf messages. They are

opaque: you shouldn’t interpret them in client code, except by comparing them for equality. They

include:

Transaction IDs

Event IDs

Contract IDs

Package IDs (part of template identifiers)

There are some other identifiers that are determined by your client code. These aren’t interpreted by

the server, and are transparently passed to the responses. They include:

Command IDs: used to uniquely identify a command and to match it against its response.

Application ID: used to uniquely identify client process talking to the server. You could use a

combination of submitting party, command ID, and application ID for deduplication of com-

mands.

Workflow IDs: identify chains of transactions. You can use these to correlate transactions sent

across time spans and by different parties.

3.7.5.1 Testing

Testing is fundamental to ensure correctness and improve maintainability.

Testing is usually divided into different categories according to its scope and aim:

unit testing verifies single properties of individual components

integration testing verifies that an aggregation of components behaves as expected

3.7. Application architecture guide 221

DAML SDK Documentation, 2019-12-19

acceptance testing checks that the overall behavior of a whole system satisfies certain criteria

Both tests in the small scale (unit testing) and large (acceptance testing) tend to be specific to the

given component or system under test.

This chapter focuses on providing portable approaches and techniques to perform integration test-

ing between your components and an actual running ledger.

3.7.6 Test the business logic with a ledger

In production, your application is going to interact with a DAMLmodel deployed on an actual ledger.

Each model is usually specific to a business need and describes specific workflows.

Mocking a ledger response is usually not desirable to test the business logic, because so much of

it is encapsulated in the DAML model. This makes integration testing with an actual running ledger

fundamental to evaluating the correctness of an application.

This is usually achieved by running a ledger as part of the test process and running several tests

against it, possibly coordinated by a test framework. Since the in-memory sandbox shipped as part

of the SDK is a full-fledged implementation of a DAML ledger, it’s usually the tool of choice for these

tests. Please note that this does not replace acceptance tests with the actual ledger implementation

that your application aims to use in production. Whatever your choice is, sharing a single ledger to

run several tests is a suggested best practice.

3.7.7 Share the ledger

Sharing a ledger is useful because booting a ledger and loading DAML code into it takes time. As

you’re likely to have a lot of very short tests in order to properly test your application the total running

time of these would be severely impacted if you ran a new ledger for every test.

Tests must thus be designed to not interfere with each other. Both the transaction and the active

contract service offer the possibility of filtering by party. Parties can thus be used as a way to isolate

tests.

You can use the party management service to allocate new parties and use them to test your appli-

cation. You can also limit the number of transactions read from the ledger by reading the current

offset of the ledger end before the test starts, since no transactions can possibly appear for the newly

allocated parties before this time.

In summary:

1. retrieve the current offset of the ledger end before the test starts

1. use the party management service to allocate the parties needed by the test

1. whenever you issue a command, issue it as one of the parties allocated for this test

1. whenever you need to get the set of active contracts or a stream of transactions, always filter

by one or more of the parties allocated for this test

This isolation between instances of tests also means that different tests can be run completely in

parallel with respect to each other, possibly improving on the overall running time of your test suite.

3.7.8 Reset if you need to

It may be the case that you are running a very high number of tests, verifying the ins and outs of a

very complex application interacting with an equally complex DAML model.

222 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

If that’s the case, the leak of resources caused by the approach to test isolation mentioned above

can become counterproductive, causing slow-downs or even crashes as the ledger backing your test

suite has to keep track of more parties and more transactions that are actually no longer relevant

after the test itself finishes.

As a last resort for these cases, your tests can use the reset service, which ledger implementations

can optionally expose for testing.

The reset service has a single resetmethod that will cause all the accumulated state to be dropped,

including all active contracts, the entire history of transactions and all allocated users. Only the

DAML packages loaded in the ledger are preserved, thereby saving the time needed for reloading

them as opposed to simply spinning up a new ledger.

The reset service momentarily shuts down the gRPC channel it communicates over, so your testing

infrastructure must take this into account and, when the reset is invoked, must ensure that tests

are temporarily suspended as attempts to reconnect with the rebooted ledger are performed. There

is no guarantee as to how long the reset will take, so this should also be taken into account when

attempting to reconnect.

3.8 Authentication

When developing DAML applications using SDK tools, your local setup will most likely not use any

authentication - by default, any valid ledger API request will be accepted by the sandbox.

To run your application against a deployed ledger, you will need to add authentication.

3.8.1 Introduction

The main way for a DAML application to interact with a DAML ledger is through the gRPC ledger API.

This API can be used to request changes to the ledger (e.g., Alice wants to exercise choice X on contract

Y), or to read data from the ledger (e.g., Alice wants to see all active contracts).

What requests are valid is defined by integrity and privacy parts the DA Ledger Model. This model is

defined in terms of DAML parties, and does not require any cryptographic information to be sent along

with requests.

In particular, this model does not talk about authentication (Is the request claiming to come from Alice

really sent by Alice?) and authorization (Is Alice authorized to add a new DAML package to the ledger?).

In practice, DAML ledgers will therefore need to add authentication to the ledger API.

Note: Depending on the ledger topology, a DAML ledger may consist of multiple participant nodes,

each having its own ledger API server. Each participant node typically hosts different DAML parties,

and only sees data visible to the parties hosted on that node (as defined by the DAML privacymodel).

For more details on DAML ledger topologies, refer to the DAML Ledger Topologies documentation.

3.8.1.1 Adding authentication

How authentication is set up on a particular ledger is defined by the ledger operator. However, most

authentication setups share the following pattern:

First, the DAML application contacts a token issuer to get an access token. The token issuer verifies

the identity of the requesting user (e.g., by checking the username/password credentials sent with

3.8. Authentication 223

DAML SDK Documentation, 2019-12-19

the request), looks up the privileges of the user, and generates a signed access token describing

those privileges.

Then, the DAML application sends the access token along with each ledger API request. The DAML

ledger verifies the signature of the token (to make sure it has not been tampered with), and then

checks that the privileges described in the token authorize the given ledger API request.

Glossary:

Authentication is the process of confirming an identity.

Authorization is the process of checking permissions to access a resource.

Atoken (oraccess token) is a tamper-proof piece of data that contains security information,

such as the user identity or its privileges.

A token issuer is a service that generates tokens. Also known as authentication server or

Identity and Access Management (IAM) system.

3.8.2 Access tokens and claims

Access tokens contain information about the capabilities held by the bearer of the token. This infor-

mation is represented by a claim to a given capability.

The claims can express the following capabilities:

public: ability to retrieve publicly available information, such as the ledger identity

admin: ability to interact with admin-level services, such as package uploading and user allo-

cation

canReadAs(p): ability to read information off the ledger (like the active contracts) visible to

the party p

canActsAs(p): same as canReadAs(p), with the added ability of issuing commands on be-

half of the party p

224 Chapter 3. Building applications

DAML SDK Documentation, 2019-12-19

The following table summarizes what kind of claim is required to access each Ledger API endpoint:

Ledger API service Endpoint Required claim

LedgerIdentityService GetLedgerIdentity public

ActiveContractsService GetActiveContracts for each requested party p: can-

ReadAs(p)

CommandSubmissionSer-

vice

Submit for submitting party p: canActAs(p)

CompletionEnd public

CompletionStream for each requested party p: can-

ReadAs(p)

CommandService All for submitting party p: canActAs(p)

LedgerConfigurationService GetLedgerConfigura-

tion

public

PackageService All public

PackageManagementSer-

vice

All admin

PartyManagementService All admin

ResetService All admin

TimeService GetTime public

SetTime admin

TransactionService LedgerEnd public

All (except LedgerEnd) for each requested party p: can-

ReadAs(p)

Access tokens may be represented differently based on the ledger implementation.

To learn how these claims are represented in the Sandbox, read the sandbox documentation.

3.8.3 Getting access tokens

To learn how to receive access tokens for a deployed ledger, contact your ledger operator. Thismay be

amanual exchange over a secure channel, or your applicationmay have to request tokens at runtime

using an API such as OAuth.

To learn how to generate access tokens for the Sandbox, read the sandbox documentation.

3.8.4 Using access tokens

To learn how to use access tokens in the Scala bindings, read the Scala bindings authentication docu-

mentation.

3.8. Authentication 225

https://oauth.net/2/

Chapter 4

SDK tools

4.1 DAML Assistant (daml)

daml is a command-line tool that does a lot of useful things related to the SDK. Using daml, you can:

Create new DAML projects: daml new <path to create project in>

Initialize a DAML project: daml init

Compile a DAML project: daml build

This builds the DAML project according to the project config file daml.yaml (see Configuration

files below).

In particular, it will download and install the specified version of the SDK (the sdk-version

field in daml.yaml) if missing, and use that SDK version to resolve dependencies and compile

the DAML project.

Launch the tools in the SDK:

– Launch DAML Studio: daml studio

– Launch Sandbox, Navigator and the HTTP JSON API Service: daml start You can disable the

HTTP JSONAPI by passing--json-api-port none todaml start. To specify additional

options for sandbox/navigator/the HTTP JSON API you can use --sandbox-option=opt,

--navigator-option=opt and --json-api-option=opt.

– Launch Sandbox: daml sandbox

– Launch Navigator: daml navigator

– Launch Extractor: daml extractor

– Launch the HTTP JSON API Service: daml json-api

– Run DAML codegen: daml codegen

Install new SDK versions manually: daml install <version>

Note that you need to update your project config file <#configuration-files> to use the new

version.

4.1.1 Moving to the daml assistant

To move your projects to use daml, and see the difference between da commands and daml com-

mands, read the Moving to the new DAML assistant.

4.1.2 Full help for commands

To see information about any command, run it with --help.

226

DAML SDK Documentation, 2019-12-19

4.1.3 Configuration files

The DAML assistant and the DAML SDK are configured using two files:

The global config file, one per installation, which controls some options regarding SDK instal-

lation and updates

The project config file, one per DAML project, which controls how the DAML SDK builds and

interacts with the project

4.1.3.1 Global config file (daml-config.yaml)

The global config file daml-config.yaml is in the daml home directory (~/.daml on Linux and

Mac, C:/Users/<user>/AppData/Roaming/daml onWindows). It controls options related to SDK

version installation and upgrades.

By default it’s blank, and you usually won’t need to edit it. It recognizes the following options:

auto-install: whetherdamlautomatically installs amissingSDKversionwhen it is required

(defaults to true)

update-check: how often daml will check for new versions of the SDK, in seconds (default to

86400, i.e. once a day)

This setting is only used to inform you when an update is available.

Set update-check: <number> to check for new versions every N seconds. Set

update-check: never to never check for new versions.

Here is an example daml-config.yaml:

auto-install: true

update-check: 86400

4.1.3.2 Project config file (daml.yaml)

The project config file daml.yamlmust be in the root of your DAML project directory. It controls how

the DAML project is built and how tools like Sandbox and Navigator interact with it.

The existence of a daml.yaml file is what tells daml that this directory contains a DAML project, and

lets you use project-aware commands like daml build and daml start.

daml init creates a daml.yaml in an existing folder, so daml knows it’s a project folder. It incor-

porates info from da.yaml in the generated daml.yaml, if da.yaml is available (see Moving to the

new DAML assistant).

daml new creates a skeleton application in a new project folder, which includes a config file. For

example, daml new my_project creates a new folder my_projectwith a project config file daml.

yaml like this:

sdk-version: __VERSION__

name: __PROJECT_NAME__

source: daml

scenario: Main:setup

parties:

- Alice

- Bob

version: 1.0.0

exposed-modules:

(continues on next page)

4.1. DAML Assistant (daml) 227

DAML SDK Documentation, 2019-12-19

(continued from previous page)

- Main

dependencies:

- daml-prim

- daml-stdlib

scenario-service:

grpc-max-message-size: 134217728

grpc-timeout: 60

build-options: ["--ghc-option", "-Werror",

"--ghc-option", "-v"]

Here is what each field means:

sdk-version: the SDK version that this project uses.

The assistant automatically downloads and installs this version if needed (see the

auto-install setting in the global config). We recommend keeping this up to date

with the latest stable release of the SDK. It is possible to override the version without

modifying the daml.yaml file by setting the DAML_SDK_VERSION environment vari-

able. This is mainly useful when you are working with an external project that you

want to build with a specific version.

The assistant will warn you when it is time to update this setting (see the update-

check setting in the global config to control how often it checks, or to disable this

check entirely).

name: the name of the project. This determines the filename of the .dar file compiled by daml

build.

source: the root folder of your DAML source code files relative to the project root.

scenario: the name of the scenario to run when using daml start.

parties: the parties to display in the Navigator when using daml start.

version: the project version.

exposed-modules: theDAMLmodules that are exposedby this project, which canbe imported

in other projects. If this field is not specified all modules in the project are exposed.

dependencies: the dependencies of this project.

scenario-service: settings for the scenario service

– grpc-max-message-size: This option controls themaximum size of gRPCmessages. If

unspecified this defaults to 128MB (134217728 bytes). Unless you get errors, there should

be no reason to modify this.

– grpc-timeout: This option controls the timeout used for communicating with the sce-

nario service. If unspecified this defaults to 60s. Unless you get errors, there should be no

reason to modify this.

build-options: a list of tokens thatwill be appended to some invocationsofdamlc (currently

build and ide). Note that there is no further shell parsing applied.

4.1.4 Building DAML projects

To compile your DAML source code into a DAML archive (a .dar file), run:

daml build

You can control the build by changing your project’s daml.yaml:

sdk-version The SDK version to use for building the project.

name The name of the project.

source The path to the source code.

228 Chapter 4. SDK tools

DAML SDK Documentation, 2019-12-19

The generated .dar file is created in .daml/dist/${name}.dar by default. To override the default

location, pass the -o argument to daml build:

daml build -o path/to/darfile.dar

4.1.5 Managing SDK releases

In general the daml assistant will install versions and guide you when you need to update SDK ver-

sions or project settings. If you disable auto-install and update-check in the global config file,

you will have to manage SDK releases manually.

To download and install the latest stable SDK release and update the assistant, run:

daml install latest --activate

Remove the --activate flag if you only want to install the latest release without updating the daml

assistant in theprocess. If it is already installed, you can force reinstallationbypassing the--force

flag. See daml install --help for a full list of options.

To install the SDK release specified in the project config, run:

daml install project

To install a specific SDK version, for example version 0.12.17, run:

daml install 0.12.17

Rarely, you might need to install an SDK release from a downloaded SDK release tarball. This is

an advanced feature: you should only ever perform this on an SDK release tarball that is released

through the official digital-asset/daml github repository. Otherwise your daml installationmay

become inconsistent with everyone else’s. To do this, run:

daml install path-to-tarball.tar.gz

4.2 DAML Sandbox

The DAML Sandbox, or Sandbox for short, is a simple ledger implementation that enables rapid ap-

plication prototyping by simulating a Digital Asset Distributed Ledger.

You can start Sandbox together with Navigator using the daml start command in a DAML SDK

project. This command will compile the DAML file and its dependencies as specified in the daml.

yaml. It will then launch Sandbox passing the just obtained DAR packages. Sandbox will also be

given the name of the startup scenario specified in the project’s daml.yaml. Finally, it launches the

navigator connecting it to the running Sandbox.

It is possible to execute the Sandbox launching step in isolation by typing daml sandbox.

Sandbox can also be run manually as in this example:

$ daml sandbox Main.dar --scenario Main:example

____ ____

/ __/__ ____ ___/ / / ___ __ __

(continues on next page)

4.2. DAML Sandbox 229

DAML SDK Documentation, 2019-12-19

(continued from previous page)

_\ \/ _ `/ _ \/ _ / _ \/ _ \\ \ /

/___/_,_/_//_/_,_/_.__/___/__\

initialized sandbox with ledger-id = sandbox-16ae201c-b2fd-45e0-af04-

↪→c61abe13fed7, port = 6865,

dar file = DAR files at List(/Users/damluser/temp/da-sdk/test/Main.dar),

↪→time mode = Static, daml-engine = {}

Initialized Static time provider, starting from 1970-01-01T00:00:00Z

listening on localhost:6865

Here, daml sandbox tells the SDK Assistant to run sandbox from the active SDK release and pass

it any arguments that follow. The example passes the DAR file to load (Main.dar) and the optional

--scenario flag tells Sandbox to run the Main:example scenario on startup. The scenario must

be fully qualified; here Main is the module and example is the name of the scenario, separated by a

:.

Note: The scenario is used for testing and development only, and is not supported by production

DAML Ledgers. It is therefore inadvisable to rely on scenarios for ledger initialization.

submitMustFail is only supported by the test-ledger used by daml test and the IDE, not by the

Sandbox.

4.2.1 Running with persistence

By default, Sandbox uses an in-memory store, which means it loses its state when stopped or

restarted. If you want to keep the state, you can use a Postgres database for persistence. This al-

lows you to shut down Sandbox and start it up later, continuing where it left off.

To set this up, you must:

create an initially empty Postgres database that the Sandbox application can access

have a database user for Sandbox that has authority to execute DDL operations

This is because Sandboxmanages its own database schema, applyingmigrations if necessary

when upgrading versions.

To start Sandbox using persistence, pass an --sql-backend-jdbcurl <value> option, where

<value> is a valid jdbc url containing the username, password and database name to connect to.

Here is an example for such a url: jdbc:postgresql://localhost/test?

user=fred&password=secret

Due to possible conflicts between the & character and various terminal shells, we recommend quot-

ing the jdbc url like so:

$ daml sandbox Main.dar --sql-backend-jdbcurl "jdbc:postgresql://localhost/

↪→test?user=fred&password=secret"

If you’re not familiar with JDBC URLs, see the JDBC docs for more information: https://jdbc.

postgresql.org/documentation/head/connect.html

4.2.2 Running with authentication

By default, Sandbox does not use any authentication and accepts all valid ledger API requests.

230 Chapter 4. SDK tools

https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html

DAML SDK Documentation, 2019-12-19

To start Sandbox with authentication based on JWT tokens, use one of the following command line

options:

--auth-jwt-rs256-crt=<filename>. The sandbox will expect all tokens to be signed with

RSA256 with the public key loaded from the given X.509 certificate file. Both PEM-encoded

certificates (text files starting with -----BEGIN CERTIFICATE-----) and DER-encoded cer-

ticates (binary files) are supported.

--auth-jwt-rs256-jwks=<url>. The sandbox will expect all tokens to be signed with

RSA256 with the public key loaded from the given JWKS URL.

Warning: For testing purposes only, the following options may also be used. None of them is

considered safe for production:

--auth-jwt-hss256-unsafe=<secret>. The sandbox will expect all tokens to be signed

with HMAC256 with the given plaintext secret.

4.2.2.1 Token payload

JWTs express claims which are documented in the authentication documentation.

The following is an example of a valid JWT payload:

{

"ledgerId": "aaaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",

"participantId": null,

"applicationId": null,

"exp": 1300819380,

"admin": true,

"actAs": ["Alice"],

"readAs": ["Bob"]

}

where

ledgerId, participantId, applicationId restricts the validity of the token to the given

ledger, participant, or application

exp is the standard JWT expiration date (in seconds since EPOCH)

admin, actAs and readAs bear the same meaning as in the authentication documentation

The public claim is implicitly held by anyone bearing a valid JWT (even without being an admin or

being able to act or read on behalf of any party).

4.2.2.2 Generating tokens

To generate tokens for testing purposes, use the jtw.io web site.

To generate RSA keys for testing purposes, use the following command

openssl req -nodes -new -x509 -keyout sandbox.key -out sandbox.crt

which generates the following files:

sandbox.key: the private key in PEM/DER/PKCS#1 format

sandbox.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

4.2. DAML Sandbox 231

https://jwt.io/
https://tools.ietf.org/html/rfc7517
https://jwt.io/

DAML SDK Documentation, 2019-12-19

4.2.3 Command-line reference

To start Sandbox, run: sandbox [options] <archive>....

To see all the available options, run daml sandbox --help.

4.3 Navigator

The Navigator is a front-end that you can use to connect to any Digital Asset ledger and inspect and

modify the ledger. You can use it during DAML development to explore the flow and implications of

the DAML models.

The first sections of this guide cover use of the Navigator with the DAML SDK. Refer to Advanced usage

for information on using Navigator outside the context of the SDK.

4.3.1 Navigator functionality

Connect Navigator to any Digital Asset ledger and use it to:

View templates

View active and archived contracts

Exercise choices on contracts

Advance time (This option applies only when using Navigator with the DAML Sandbox ledger.)

4.3.2 Installing and starting Navigator

Navigator ships with the DAML SDK. To launch it:

1. Start Navigator via a terminal window running SDK Assistant by typing daml start

2. The Navigator web-app is automatically started in your browser. If it fails to start, open a

browser window and point it to the Navigator URL

When running daml start you will see the Navigator URL. By default it will be http://

localhost:7500/.

Note: Navigator is compatible with these browsers: Safari, Chrome, or Firefox.

For information on how to launch and use Navigator outside of the SDK, see Advanced usage below.

4.3.3 Choosing a party / changing the party

The ledger is a record of transactions between authorized participants on the distributed network.

Before you can interact with the ledger, you must assume the role of a particular party. This deter-

mines the contracts that you can access and the actions you are permitted to perform on the ledger.

The first step in using Navigator is to use the drop-down list on the Navigator home screen to select

from the available parties.

232 Chapter 4. SDK tools

http://localhost:7500/
http://localhost:7500/

DAML SDK Documentation, 2019-12-19

Note: The party choices are configured on startup. (Refer to DAML Assistant (daml) or Advanced usage

for more instructions.)

The main Navigator screen will be displayed, with contracts that this party is entitled to view in

the main pane and the option to switch from contracts to templates in the pane at the left. Other

options allow you to filter the display, include or exclude archived contracts, and exercise choices as

described below.

To change the active party:

1. Click the name of the current party in the top right corner of the screen.

2. On the home screen, select a different party.

You can act as different parties in different browser windows. Use Chrome’s profile feature https:

//support.google.com/chrome/answer/2364824 and sign in as a different party for each Chrome

profile.

4.3.4 Logging out

To log out, click the name of the current party in the top-right corner of the screen.

4.3.5 Viewing templates or contracts

DAML contract templates aremodels that contain the agreement statement, all the applicable param-

eters, and the choices that can be made in acting on that data. They specify acceptable input and

4.3. Navigator 233

https://support.google.com/chrome/answer/2364824
https://support.google.com/chrome/answer/2364824

DAML SDK Documentation, 2019-12-19

the resulting output. A contract template contains placeholders rather than actual names, amounts,

dates, and so on. In a contract instance, the placeholders have been replaced with actual data.

The Navigator allows you to list templates or contracts, view contracts based on a template, and view

template and contract details.

4.3.5.1 Listing templates

To see what contract templates are available on the ledger you are connected to, choose Templates

in the left pane of the main Navigator screen.

Use the Filter field at the top right to select template IDs that include the text you enter.

4.3.5.2 Listing contracts

To view a list of available contracts, choose Contracts in the left pane.

234 Chapter 4. SDK tools

DAML SDK Documentation, 2019-12-19

In the Contracts list:

Changes to the ledger are automatically reflected in the list of contracts. To avoid the auto-

matic updates, select the Frozen checkbox. Contracts will still be marked as archived, but the

contracts list will not change.

Filter the displayed contracts by entering text in the Filter field at the top right.

Use the Include Archived checkbox at the top to include or exclude archived contracts.

4.3.5.3 Viewing contracts based on a template

You can also view the list of contracts that are based on a particular template.

1. You will see icons to the right of template IDs in the template list with a number indicating how

many contracts are based on this template.

2. Click the number to display a list of contracts based on that template.

Number of Contracts

4.3. Navigator 235

DAML SDK Documentation, 2019-12-19

List of Contracts

4.3.5.4 Viewing template and contract details

To view template or contract details, click on a template or contract in the list. The template or

contracts detail page is displayed.

Template Details

236 Chapter 4. SDK tools

DAML SDK Documentation, 2019-12-19

Contract Details

4.3.6 Using Navigator

4.3.6.1 Creating contracts

Contracts in a ledger are created automatically when you exercise choices. In some cases, you create

a contract directly from a template. This feature can be particularly useful for testing and experi-

menting during development.

To create a contract based on a template:

1. Navigate to the template detail page as described above.

2. Complete the values in the form

3. Choose the Submit button.

4.3. Navigator 237

DAML SDK Documentation, 2019-12-19

When the command has been committed to the ledger, the loading indicator in the navbar at the top

will display a tick mark.

While loading

When committed to the ledger

4.3.6.2 Exercising choices

To exercise a choice:

1. Navigate to the contract details page (see above).

2. Click the choice you want to exercise in the choice list.

3. Complete the form.

4. Choose the Submit button.

238 Chapter 4. SDK tools

DAML SDK Documentation, 2019-12-19

Or

1. Navigate to the choice form by clicking the wrench icon in a contract list.

2. Select a choice.

You will see the loading and confirmation indicators, as pictured above in Creating Contracts.

4.3.6.3 Advancing time

It is possible to advance time against the DAML Sandbox. (This is not true of the Digital Asset ledger.)

This advance-time functionality can be useful when testing, for example, when entering a trade on

one date and settling it on a later date.

To advance time:

1. Click on the ledger time indicator in the navbar at the top of the screen.

2. Select a new date / time.

3. Choose the Set button.

4.3. Navigator 239

DAML SDK Documentation, 2019-12-19

4.3.7 Authenticating Navigator

If you are running Navigator against a Ledger API server that requires authentication, you must pro-

vide the access token when you start the Navigator server.

The access token retrieval depends on the specific DAML setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Navigator by storing it in a file and

provide the path to it using the --access-token-file command line option.

If the access token cannot be retrieved, is missing or wrong, you’ll be unable to move past the Navi-

gator’s frontend login screen and see the following:

4.3.8 Advanced usage

4.3.8.1 Customizable table views

Customizable table views is an advanced rapid-prototyping feature, intended for DAML developers

who wish to customize the Navigator UI without developing a custom application.

To use customized table views:

1. Create a file frontend-config.js in your project root folder (or the folder from which you

run Navigator) with the content below:

import { DamlLfValue } from '@da/ui-core';

export const version = {

schema: 'navigator-config',

major: 2,

minor: 0,

};

(continues on next page)

240 Chapter 4. SDK tools

DAML SDK Documentation, 2019-12-19

(continued from previous page)

export const customViews = (userId, party, role) => ({

customview1: {

type: "table-view",

title: "Filtered contracts",

source: {

type: "contracts",

filter: [

{

field: "id",

value: "1",

}

],

search: "",

sort: [

{

field: "id",

direction: "ASCENDING"

}

]

},

columns: [

{

key: "id",

title: "Contract ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.id

}),

sortable: true,

width: 80,

weight: 0,

alignment: "left"

},

{

key: "template.id",

title: "Template ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.template.id

}),

sortable: true,

width: 200,

weight: 3,

alignment: "left"

}

]

}

})

4.3. Navigator 241

DAML SDK Documentation, 2019-12-19

2. Reload your Navigator browser tab. You should now see a sidebar item titled Filtered contracts

that links to a table with contracts filtered and sorted by ID.

To debug config file errors and learnmore about the config file API, open the Navigator /config page

in your browser (e.g., http://localhost:7500/config).

4.3.8.2 Using Navigator outside the SDK

This section explains how to work with the Navigator if you have a project created outside of the

normal SDK workflow and want to use the Navigator to inspect the ledger and interact with it.

Note: If you are using the Navigator as part of the DAML SDK, you do not need to read this section.

The Navigator is released as a fat Java .jar file that bundles all required dependencies. This JAR is

part of the SDK release and can be found using the SDK Assistant’s path command:

da path navigator

Use the run command to launch the Navigator JAR and print usage instructions:

da run navigator

Arguments may be given at the end of a command, following a double dash. For example:

da run navigator -- server \

--config-file my-config.conf \

--port 8000 \

localhost 6865

The Navigator requires a configuration file specifying each user and the party they act as. It has a

.conf ending by convention. The file follows this form:

users {

<USERNAME> {

party = <PARTYNAME>

}

..

}

In many cases, a simple one-to-one correspondence between users and their respective parties is

sufficient to configure the Navigator. Example:

users {

BANK1 { party = "BANK1" }

BANK2 { party = "BANK2" }

OPERATOR { party = "OPERATOR" }

}

4.3.8.3 Using Navigator with the Digital Asset ledger

By default, Navigator is configured to use an unencrypted connection to the ledger. To run Navigator

against a secured Digital Asset Ledger, configure TLS certificates using the --pem, --crt, and --

242 Chapter 4. SDK tools

http://localhost:7500/config

DAML SDK Documentation, 2019-12-19

cacrt command line parameters. Details of these parameters are explained in the command line

help:

daml navigator --help

4.3. Navigator 243

Chapter 5

Background concepts

5.1 Glossary of concepts

5.1.1 DAML

DAML is a programming language for writing smart contracts, that you can use to build an application

based on a ledger. You can run DAML contracts on many different ledgers.

5.1.1.1 Contract, contract instance

A contract is an item on a ledger. They are created from blueprints called templates, and include:

data (parameters)

roles (signatory, observer)

choices (and controllers)

Contracts are immutable: once they are created on the ledger, the information in the contract cannot

be changed. The only thing that can happen to it is that the contract can be archived.

They’re sometimes referred to as a contract instance to make clear that this is an instantiated con-

tract, as opposed to a template.

Active contract, archived contract

When a contract is created on a ledger, it becomes active. But that doesn’t mean it will stay active

forever: it can be archived. This can happen:

if the signatories of the contract decide to archive it

if a consuming choice is exercised on the contract

Once the contract is archived, it is no longer valid, and choices on the contract can no longer be

exercised.

5.1.1.2 Template

A template is a blueprint for creating a contract. This is the DAML code you write.

For full documentation on what can be in a template, see Reference: templates.

244

DAML SDK Documentation, 2019-12-19

5.1.1.3 Choice

A choice is something that a party can exercise on a contract. You write code in the choice body that

specifies what happens when the choice is exercised: for example, it could create a new contract.

Choices give you a way to transform the data in a contract: while the contract itself is immutable,

you can write a choice that archives the contract and creates a new version of it with updated data.

A choice can only be exercised by its controller. Within the choice body, you have the authorization of

all of the contract’s signatories.

For full documentation on choices, see Reference: choices.

Consuming choice

A consuming choicemeans that, when the choices is exercised, the contract it is on will be archived.

The alternative is a nonconsuming choice.

Consuming choices can be preconsuming or postconsuming.

Preconsuming choice

A choice marked preconsuming will be archived at the start of that exercise.

Postconsuming choice

A choice marked postconsuming will not be archived until the end of the exercise choice body.

Nonconsuming choice

A nonconsuming choice does NOT archive the contract it is on when exercised. This means the choice

can be exercised more than once on the same contract instance.

Disjunction choice, flexible controllers

A disjunction choice has more than one controller.

If a contract uses flexible controllers, this means you don’t specify the controller of the choice at

creation time of the contract, but at exercise time.

5.1.1.4 Party

A party represents a person or legal entity. Parties can create contracts and exercise choices.

Signatories, observers, controllers, and maintainers all must be parties, represented by the Party data

type in DAML.

Signatory

A signatory is a party on a contract instance. The signatories MUST consent to the creation of the con-

tract by authorizing it: if they don’t, contract creation will fail.

For documentation on signatories, see Reference: templates.

5.1. Glossary of concepts 245

DAML SDK Documentation, 2019-12-19

Observer

An observer is a party on a contract instance. Being an observer allows them to see that instance and

all the information about it. They do NOT have to consent to the creation.

For documentation on observers, see Reference: templates.

Controller

A controller is a party that is able to exercise a particular choice on a particular contract instance.

Controllers must be at least an observer, otherwise they can’t see the contract to exercise it on. But

they don’t have to be a signatory. this enables the propose-accept pattern.

Stakeholder

Stakeholder is not a term used within the DAML language, but the concept refers to the signatories

and observers collectively. That is, it means all of the parties that are interested in a contract instance.

Maintainer

Themaintainer is a party that is part of a contract key. Theymust always be a signatory on the contract

that they maintain the key for.

It’s not possible for keys to be globally unique, because there is no party that will necessarily know

about every contract. However, by including a party as part of the key, this ensures that the main-

tainerwill know about all of the contracts, and so can guarantee the uniqueness of the keys that they

know about.

For documentation on contract keys, see Contract keys.

5.1.1.5 Authorization, signing

The DAML runtime checks that every submitted transaction is well-authorized, according to the

authorization rules of the ledger model, which guarantee the integrity of the underlying ledger.

A DAML update is the composition of update actions created with one of the items in the table below.

A DAML update is well-authorized when all its contained update actions are well-authorized. Each

operation has an associated set of parties that need to authorize it:

Table 1: Updates and required authorization

Update

action

Type Authorization

create (Template c) => c ->

Update (ContractId c)

All signatories of the created contract instance

exercise ContractId c -> e ->

Update r

All controllers of the choice

fetch ContractId c -> e ->

Update r

One of the union of signatories and observers

of the fetched contract instance

fetchByKey k -> Update (ContractId

c, c)

Same as fetch

lookupByKeyk -> Update (Optional

(ContractId c))

All key maintainers

246 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

At runtime, the DAML execution engine computes the required authorizing parties from this map-

ping. It also computes which parties have given authorization to the update in question. A party is

giving authorization to an update in one of two ways:

It is the signatory of the contract that contains the update action.

It is element of the controllers executing the choice containing the update action.

Only if all required parties have given their authorization to an update action, the update action is

well-authorized and therefore executed. A missing authorization leads to the abortion of the update

action and the failure of the containing transaction.

It is noteworthy, that authorizing parties are always determined only from the local context of a

choice in question, that is, its controllers and the contract’s signatories. Authorization is never in-

herited from earlier execution contexts.

5.1.1.6 Standard library

The DAML standard library is a set of DAML functions, classes and more that make developing with

DAML easier.

For documentation, see /daml/reference/base.

5.1.1.7 Agreement

An agreement is part of a contract. It is text that explains what the contract represents.

It can be used to clarify the legal intent of a contract, but this text isn’t evaulated programmatically.

See Reference: templates.

5.1.1.8 Create

A create is an update that creates a contract instance on it the ledger.

Contract creation requires authorization from all its signatories, or the create will fail. For how to get

authorization, see the propose-accept and multi-party agreement patterns.

A party submits a create command.

See Reference: updates.

5.1.1.9 Exercise

An exercise is an action that exercises a choice on a contract instance on the ledger. If the choice is

consuming, the exercise will archive the contract instance; if it is nonconsuming, the contract instance

will stay active.

Exercising a choice requires authorization from all of the controllers of the choice.

A party submits an exercise command.

See Reference: updates.

5.1.1.10 Scenario

A scenario is a way of testing DAML code during development. You can run scenarios inside DAML

Studio, or write them to be executed on Sandbox when it starts up.

They’re useful for:

5.1. Glossary of concepts 247

DAML SDK Documentation, 2019-12-19

expressing clearly the intended workflow of your contracts

formaking sure that parties can create contracts, observe contracts, and exercise choices (and

that they CANNOT create contracts, observe contracts, or exercise choices that they should not

be able to)

acting as DAML unit tests to confirm that everything keeps working correctly

Scenarios emulate a real ledger. You specify a linear sequence of actions that various parties take,

and these are evaluated in order, according to the same consistency, authorization, andprivacy rules

as they would be on a DAML ledger. DAML Studio shows you the resulting transaction graph, and (if a

scenario fails) what caused it to fail.

See Testing using scenarios.

5.1.1.11 Contract key

A contract key allows you to uniquely identify a contract instance of a particular template, similarly to

a primary key in a database table.

A contract key requires amaintainer: a simple key would be something like a tuple of text and main-

tainer, like (accountId, bank).

See Contract keys.

5.1.1.12 DAR file, DALF file

A .dar file is the result of compiling DAML using the Assistant. Its underlying format is DAML-LF.

You upload .dar files to a ledger in order to be able to create contracts from the templates in that

file.

A .dar contains multiple .dalf files. A .dalf file is the output of a compiled DAML package or

library.

5.1.2 SDK tools

5.1.2.1 Assistant

DAML Assistant is a command-line tool for many tasks related to DAML. Using it, you can create

DAML projects, compile DAML projects into .dar files, launch other SDK tools, and download new SDK

versions.

See DAML Assistant (daml).

5.1.2.2 Studio

DAML Studio is a plugin for Visual Studio Code, and is the IDE for writing DAML code.

See DAML Studio.

5.1.2.3 Sandbox

Sandbox is a lightweight ledger implementation. In its normal mode, you can use it for testing.

You can also run the Sandbox connected to a PostgreSQL back end, which gives you persistence and

a more production-like experience.

See DAML Sandbox.

248 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

5.1.2.4 Navigator

Navigator is a tool for exploring what’s on the ledger. You can use it to see what contracts can be

seen by different parties, and submit commands on behalf of those parties.

Navigator GUI

This is the version of Navigator that runs as a web app.

See Navigator.

Navigator Console

This is the version of Navigator that runs on the command-line. It has similar functionality to the

GUI.

See Navigator Console.

5.1.2.5 Extractor

Extractor is a tool for extracting contract data for a single party into a PostgreSQL database.

See Extractor.

5.1.3 Building applications

5.1.3.1 Application, ledger client, integration

Application, ledger client and integration are all terms for an application that sits on top of the

ledger. These usually read from the ledger, send commands to the ledger, or both.

There’s a lot of information available about application development, starting with the Writing appli-

cations using the Ledger API page.

5.1.3.2 Ledger API

The Ledger API is an API that’s exposed by any DAML ledger. It includes the following services.

Command submission service

Use the command submission service to submit commands - either create commands or exercise

commands - to the ledger. See Command submission service.

Command completion service

Use the command completion service to find out whether or not commands you have submitted have

completed, and what their status was. See Command completion service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. See

Command service.

5.1. Glossary of concepts 249

DAML SDK Documentation, 2019-12-19

Transaction service

Use the transaction service to listen to changes in the ledger, reported as a stream of transactions.

See Transaction service.

Active contract service

Use the active contract service to obtain a party-specific view of all contracts currently active on the

ledger. See Active contracts service.

Package service

Use the package service to obtain information about DAML packages available on the ledger. See

Package service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to. See Ledger identity service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration. See Ledger

configuration service.

5.1.3.3 Ledger API libraries

The following libraries wrap the ledger API for more native experience applications development.

Java bindings

An idiomatic Java library for writing ledger applications. See Java bindings.

Node.js bindings

An idiomatic JavaScript library for writing ledger applications. See Node.js bindings.

Scala bindings

An idiomatic Scala library for writing ledger applications. See Java bindings.

gRPC API

The low-level ledger API that all of the other bindings use. Written in gRPC. See The Ledger API using

gRPC.

5.1.3.4 Reading from the ledger

Applications get information about the ledger by reading from it. You can’t query the ledger, but you

can subscribe to the transaction stream to get the events, or themore sophisticated active contract

service.

250 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

5.1.3.5 Submitting commands, writing to the ledger

Applications make changes to the ledger by submitting commands. You can’t change it directly: an

application submits a command of transactions. The command gets evaluated by the runtime, and

will only be accepted if it’s valid.

For example, a commandmight get rejected because the transactions aren’twell-authorized; because

the contract isn’t active (perhaps someone else archived it); or for other reasons.

This is echoed in scenarios, where you can mock an application by having parties submit transac-

tions/updates to the ledger. You can use submit or submitMustFail to express what should suc-

ceed and what shouldn’t.

Commands

A command is an instruction to add a transaction to the ledger.

5.1.3.6 DAML-LF

When you compile DAML source code into a .dar file, the underlying format is DAML-LF. DAML-LF is

similar to DAML, but is stripped down to a core set of features. The relationship between the surface

DAML syntax and DAML-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with DAML-LF directly. But inside the DAML SDK, it’s used for:

executing DAML code on the Sandbox or on another platform

sending and receiving values via the Ledger API (using a protocol such as gRPC)

generating code in other languages for interacting with DAML models (often called codegen)

5.1.4 General concepts

5.1.4.1 Ledger, DAML ledger

Ledger can refer to a lot of things, but a ledger is essentially the underlying storage mechanism for

a running DAML applications: it’s where the contracts live. A DAML ledger is a ledger that you can

store DAML contracts on, because it implements the ledger API.

DAML ledgers provide various guarantees about what you can expect from it, all laid out in the DA

Ledger Model page.

When you’re developing, you’ll use Sandbox as your ledger.

If you would like to integrate DAML with a storage infrastructure not already in development (see

daml.com), please get in touch on Slack in the channel #daml-contributors.

5.1.4.2 Trust domain

A trust domain encompasses a part of the system (in particular, a DAML ledger) operated by a single

real-world entity. This subsystem may consist of one or more physical nodes. A single physical

machine is always assumed to be controlled by exactly one real-world entity.

5.2 DA Ledger Model

The Digital Asset Platform enables multi-party workflows by providing parties with a virtual shared

ledger, which encodes the current state of their shared contracts, written in DAML. At a high level, the

interactions are visualized as follows:

5.2. DA Ledger Model 251

https://daml.com
https://damldriven.slack.com/sso/saml/start

DAML SDK Documentation, 2019-12-19

The DA ledger model defines:

1. what the ledger looks like - the structure of DA ledgers

2. who can request which changes - the integrity model for DA ledgers

3. who sees which changes and data - the privacy model for DA ledgers

The below sections review these concepts of the ledger model in turn. They also briefly describe the

link between DAML and the model.

5.2.1 Structure

This section looks at the structure of a DA ledger and the associated ledger changes. The basic

building blocks of changes are actions, which get grouped into transactions.

5.2.1.1 Actions and Transactions

One of the main features of the DA ledger model is a hierarchical action structure.

This structure is illustrated below on a toy example of a multi-party interaction. Alice (A) gets some

digital cash, in the formof an I-Owe-You (IOU for short) fromabank, and she needs her house painted.

She gets an offer from a painter (P) with reference number P123 to paint her house in exchange for

this IOU. Lastly, A accepts the offer, transfering the money and signing a contract with P, whereby he

is promising to paint her house.

This acceptance can be viewed as A exercising her right to accept the offer. Her acceptance has two

consequences. First, A transfers her IOU, that is, exercises her right to transfer the IOU, after which a

new IOU for P is created. Second, a new contract is created that requires P to paint A’s house.

Thus, the acceptance in this example is reduced to two types of actions: (1) creating contracts, and

(2) exercising rights on them. These are also the two main kinds of actions in the DA ledger model.

252 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

The visual notation below records the relations between the actions during the above acceptance.

Formally, an action is one of the following:

1. a Create action on a contract, which records the creation of the contract

2. an Exercise action on a contract, which records that one ormore parties have exercised a right

they have on the contract, and which also contains:

1. An associated set of parties called actors. These are the parties who perform the action.

2. An exercise kind, which is either consuming or non-consuming. Once consumed, a con-

tract cannot be used again (for example, the painter should not be able to accept the offer

twice). Contracts exercised in a non-consuming fashion can be reused.

3. A list of consequences, which are themselves actions. Note that the consequences, as

well as the kind and the actors, are considered a part of the exercise action itself. This

nesting of actions within other actions through consequences of exercises gives rise to

the hierarchical structure. The exercise action is the parent action of its consequences.

3. a Fetch action on a contract, which demonstrates that the contract exists and is in force at the

time of fetching. The action also contains actors, the parties who fetch the contract. A Fetch

behaves like a non-consuming exercise with no consequences, and can be repeated.

4. a Key assertion, which records the assertion that the given contract key is not assigned to any

unconsumed contract on the ledger.

An Exercise or a Fetch action on a contract is said to use the contract. Moreover, a consuming Ex-

ercise is said to consume (or archive) its contract.

The following EBNF-like grammar summarizes the structure of actions and transactions. Here, s | t

represents the choice between s and t, s t represents s followed by t, and s* represents the repetition

of s zero or more times. The terminal ‘contract’ denotes the underlying type of contracts, and the

terminal ‘party’ the underlying type of parties.

Action ::= 'Create' contract

| 'Exercise' party* contract Kind Transaction

| 'Fetch' party* contract

| 'NoSuchKey' key

Transaction ::= Action*

Kind ::= 'Consuming' | 'NonConsuming'

The visual notation presented earlier captures actions precisely with conventions that:

1. Exercise denotes consuming, ExerciseN non-consuming exercises, and Fetch a fetch.

5.2. DA Ledger Model 253

DAML SDK Documentation, 2019-12-19

2. double arrows connect exercises to their consequences, if any.

3. the consequences are ordered left-to-right.

4. to aid intuitions, exercise actions are annotated with suggestive names like accept or transfer.

Intuitively, these correspond to names of DAML choices, but they have no semantic meaning.

An alternative shorthand notation, shown below uses the abbreviations Exe and ExeN for exercises,

and omits the Create labels on create actions.

To show an example of a non-consuming exercise, consider a different offer example with an easily

replenishable subject. For example, if P was a car manufacturer, and A a car dealer, P could make an

offer that could be accepted multiple times.

To see an example of a fetch, we can extend this example to the case where P produces exclusive cars

and allows only certified dealers to sell them. Thus, when accepting the offer, A has to additionally

show a valid quality certificate issued by some standards body S.

254 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

In the paint offer example, the underlying type of contracts consists of three sorts of contracts:

PaintOffer houseOwner painter obligor refNo Intuitively an offer (with a reference number) by

which the painter proposes to the house owner to paint her house, in exchange for a single

IOU token issued by the specified obligor.

PaintAgree painter houseOwner refNo Intuitively a contract whereby the painter agrees to paint

the owner’s house

Iou obligor owner An IOU token from an obligor to an owner (for simplicity, the token is of unit

amount).

In practice, multiple IOU contracts would exist between the same obligor and owner, in which case

each contract should have a unique identifier. However, in this section, each contract only appears

once, allowing us to drop the notion of identifiers for simplicity reasons.

A transaction is a list of actions. Thus, the consequences of an exercise form a transaction. In the

example, the consequences of the Alice’s exercise form the following transaction, where actions are

again ordered left-to-right.

For an action act, its proper subactions are all actions in the consequences of act, together with all

of their proper subactions. Additionally, act is a (non-proper) subaction of itself.

The subaction relation is visualized below. Both the green and yellow boxes are proper subactions of

Alice’s exercise on the paint offer. Additionally, the creation of Iou Bank P (yellow box) is also a proper

subaction of the exercise on the Iou Bank A.

5.2. DA Ledger Model 255

DAML SDK Documentation, 2019-12-19

Similarly, a subtransaction of a transaction is either the transaction itself, or a proper subtrans-

action: a transaction obtained by removing at least one action, or replacing it by a subtransaction

of its consequences. For example, given the the transaction consisting of just one action, the paint

offer acceptance, the image below shows all its proper subtransactions on the right (yellow boxes).

To illustrate contract keys, suppose that the contract key for a PaintOffer consists of the reference

number and the painter. So Alice can refer to the PaintOffer by its key (P, P123). To make this explicit,

we use the notation PaintOffer @P A&P123 for contracts, where@ and&mark the parts that belong to

a key. (The difference between @ and & will be explained in the integrity section.) The ledger integrity

constraints in the next section ensure that there is always at most one active PaintOffer for a given

key. So if the painter retracts its PaintOffer and later Alice tries to accept it, she can then record the

absence with a NoSuchKey (P, P123) key assertion.

5.2.1.2 Ledgers

The transaction structure records the contents of the changes, but not who requested them. This in-

formation is added by the notion of a commit: a transaction paired with the parties that requested

it, called the requesters of the commit. In the ledger model, a commit is allowed to have multiple

requesters, although the current DA Platform API offers the request functionality only to individual

parties. Given a commit (p, tx) with transaction tx = act1, , actn, every acti is called a top-level action

of the commit. A ledger is a sequence of commits. A top-level action of any ledger commit is also a

top-level action of the ledger.

The following EBNF grammar summarizes the structure of commits and ledgers:

256 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

Commit ::= party Transaction

Ledger ::= Commit*

A DA ledger thus represents the full history of all actions taken by parties.1 Since the ledger is a se-

quence (of dependent actions), it induces an order on the commits in the ledger. Visually, a ledger can

be represented as a sequence growing from left to right as time progresses. Below, dashed vertical

lines mark the boundaries of commits, and each commit is annotated with its requester(s). Arrows

link the create and exercise actions on the same contracts. These additional arrows highlight that

the ledger forms a transaction graph. For example, the aforementioned house painting scenario is

visually represented as follows.

The definitions presented here are all the ingredients required to record the interaction between par-

ties in a DA ledger. That is, they address the first question: what do changes and ledgers look like?.

To answer the next question, who can request which changes, a precise definition is needed of which

ledgers are permissible, and which are not. For example, the above paint offer ledger is intuitively

permissible, while all of the following ledgers are not.

Fig. 1: Alice spending her IOU twice (double spend), once transferring it to B and once to P.

The next section discusses the criteria that rule out the above examples as invalid ledgers.

Calling such a complete record ledger is standard in the distributed ledger technology community. In accounting termi-

nology, this record is closer to a journal than to a ledger.

5.2. DA Ledger Model 257

DAML SDK Documentation, 2019-12-19

Fig. 2: Alice changing the offer’s outcome by removing the transfer of the Iou.

Fig. 3: An obligation imposed on the painter without his consent.

Fig. 4: Painter stealing Alice’s IOU. Note that the ledger would be intuitively permissible if it was Alice

performing the last commit.

258 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

Fig. 5: Painter falsely claiming that there is no offer.

Fig. 6: Painter trying to create two different paint offers with the same reference number.

5.2.2 Integrity

This section addresses the question of who can request which changes.

5.2.2.1 Valid Ledgers

At the core is the concept of a valid ledger; changes are permissible if adding the corresponding com-

mit to the ledger results in a valid ledger. Valid ledgers are those that fulfill three conditions:

Consistency Exercises and fetches on inactive contracts are not allowed, i.e. contracts that have not

yet been created or have already been consumed by an exercise. A contract with a contract key

can be created only if the key is not associated to another unconsumed contract, and all key

assertions hold.

Conformance Only a restricted set of actions is allowed on a given contract.

Authorization The parties who may request a particular change are restricted.

Only the last of these conditions depends on the party (or parties) requesting the change; the other

two are general.

5.2.2.2 Consistency

Consistency consists of two parts:

1. Contract consistency: Contracts must be created before they are used, and they cannot be used

once they are consumed.

2. Key consistency: Keys are unique and key assertions are satisfied.

To define this precisely, notions of before and after are needed. These are given by putting all actions

in a sequence. Technically, the sequence is obtained by a pre-order traversal of the ledger’s actions,

noting that these actions forman (ordered) forest. Intuitively, it is obtained by always picking parent

actions before their proper subactions, and otherwise always picking the actions on the left before

the actions on the right. The image below depicts the resulting order on the paint offer example:

5.2. DA Ledger Model 259

DAML SDK Documentation, 2019-12-19

In the image, an action act happens before action act’ if there is a (non-empty) path from act to act’.

Then, act’ happens after act.

Contract consistency

Contract consistency ensures that contracts are used after they have been created and before they

are consumed.

Definition contract consistency A ledger is consistent for a contract c if all of the following holds

for all actions act on c:

1. either act is itself Create c or a Create c happens before act

2. act does not happen before any Create c action

3. act does not happen after any exercise consuming c.

The consistency condition rules out the double spend example. As the red path below indicates, the

second exercise in the example happens after a consuming exercise on the same contract, violating

the contract consistency criteria.

In addition to the consistency notions, the before-after relation on actions can also be used to define

the notion of contract state at any point in a given transaction. The contract state is changed by

creating the contract and by exercising it consumingly. At any point in a transaction, we can then

define the latest state change in the obvious way. Then, given a point in a transaction, the contract

state of c is:

1. active, if the latest state change of c was a create;

2. archived, if the latest state change of c was a consuming exercise;

260 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

3. inexistent, if c never changed state.

A ledger is consistent for c exactly ifExerciseand Fetchactions on chappenonlywhen c is active, and

Create actions only when c is inexistent. The figures below visualize the state of different contracts

at all points in the example ledger.

Fig. 7: Activeness of the PaintOffer contract

Fig. 8: Activeness of the Iou Bank A contract

The notion of order can be defined on all the different ledger structures: actions, transactions, lists of

transactions, and ledgers. Thus, the notions of consistency, inputs and outputs, and contract state

can also all be defined on all these structures. The active contract set of a ledger is the set of all

contracts that are active on the ledger. For the example above, it consists of contracts Iou Bank P and

PaintAgree P A.

Key consistency

Contract keys introduce a key uniqueness constraint for the ledger. To capture this notion, the con-

tract model must specify for every contract in the system whether the contract has a key and, if so,

the key. Every contract can have at most one key.

5.2. DA Ledger Model 261

DAML SDK Documentation, 2019-12-19

Like contracts, every key has a state. An action act is an action on a key k if

act is a Create, Exercise, or a Fetch action on a contract c with key k, or

act is the key assertion NoSuchKey k.

Definition key state The key state of a key on a ledger is determined by the last action act on the

key:

If act is a Create, non-consuming Exercise, or Fetch action on a contract c, then the key

state is assigned to c.

If act is a consuming Exercise action or a NoSuchKey assertion, then the key state is free.

If there is no such action act, then the key state is unknown.

A key is unassigned if its key state is either free or unknown.

Key consistency ensures that there is at most one active contract for each key and that all key as-

sertions are satisfied.

Definition key consistency A ledger is consistent for a key k if for every action act on k, the key state

s before act satisfies

If act is a Create action or NoSuchKey assertion, then s is free or unknown.

If act is an Exercise or Fetch action on some contract c, then s is assigned to c orunknown.

Key consistency rules out the problematic examples around key consistency. For example, suppose

that the painter P hasmade a paint offer to A with reference number P123, but A has not yet accepted

it. When P tries to create another paint offer to David with the same reference number P123, then this

creation action would violate key uniqueness. The following ledger violates key uniqueness for the

key (P, P123).

Key assertions can be used in workflows to evidence the inexistence of a certain kind of contract. For

example, suppose that the painter P is a member of the union of painters U. This union maintains

a blacklist of potential customers that its members must not do business with. A customer C is

considered to be on the blacklist if there is an active contract Blacklist @U&A. To make sure that the

painter P does not make a paint offer if A is blacklisted, the painter combines its commit with a No-

SuchKey assertion on the key (U, A). The following ledger shows the transaction, where UnionMember

U P represents P’s membership in the union U. It grants P the choice to perform such an assertion,

which is needed for authorization.

262 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

Key consistency extends to actions, transactions and lists of transactions just like the other consis-

tency notions.

Ledger consistency

Definition ledger consistency A ledger is consistent if it is consistent for all contracts and for all

keys.

Internal consistency

The above consistency requirement is too strong for actions and transactions in isolation. For exam-

ple, the acceptance transaction from the paint offer example is not consistent as a ledger, because

PaintOffer A P Bank and the Iou Bank A contracts are used without being created before:

However, the transaction can still be appended to a ledger that creates these contracts and yields

a consistent ledger. Such transactions are said to be internally consistent, and contracts such as

the PaintOffer A P Bank P123 and Iou Bank A are called input contracts of the transaction. Dually, output

contracts of a transaction are the contracts that a transaction creates and does not archive.

Definition internal consistency for a contract A transaction is internally consistent for a con-

tract c if the following holds for all of its subactions act on the contract c

1. act does not happen before any Create c action

2. act does not happen after any exercise consuming c.

A transaction is internally consistent if it is internally consistent for all contracts and consis-

tent for all keys.

Definition input contract For an internally consistent transaction, a contract c is an input contract

of the transaction if the transaction contains anExercise or a Fetch action on cbut not aCreate

c action.

Definition output contract For an internally consistent transaction, a contract c is an output con-

tract of the transaction if the transaction contains a Create c action, but not a consuming

Exercise action on c.

Note that the input and output contracts are undefined for transactions that are not internally con-

sistent. The image below shows some examples of internally consistent and inconsistent transac-

tions.

Similar to input contracts, we define the input keys as the set that must be unassigned at the be-

ginning of a transaction.

5.2. DA Ledger Model 263

DAML SDK Documentation, 2019-12-19

Fig. 9: The first two transactions violate the conditions of internal consistency. The first transaction

creates the Iou after exercising it consumingly, violating both conditions. The second transaction

contains a (non-consuming) exercise on the Iou after a consuming one, violating the second condi-

tion. The last transaction is internally consistent.

Definition input key A key k is an input key to an internally consistent transaction if the first action

act on k is either a Create action or a NoSuchKey assertion.

In the blacklisting example, P’s transaction has two input keys: (U, A) due to theNoSuchKey action and

(P, P123) as it creates a PaintOffer contract.

5.2.2.3 Conformance

The conformance condition constrains the actions that may occur on the ledger. This is done by con-

sidering a contract model M (or amodel for short), which specifies the set of all possible actions. A

ledger is conformant to M (or conforms to M) if all top-level actions on the ledger are members of

M. Like consistency, the notion of conformance does not depend on the requesters of a commit, so it

can also be applied to transactions and lists of transactions.

For example, the set of allowed actions on IOU contracts could be described as follows.

264 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

The boxes in the image are templates in the sense that the contract parameters in a box (such as

obligor or owner) can be instantiated by arbitrary values of the appropriate type. To facilitate un-

derstanding, each box includes a label describing the intuitive purpose of the corresponding set of

actions. As the image suggest, the transfer box imposes the constraint that the bank must remain

the same both in the exercised IOU contract, and in the newly created IOU contract. However, the

owner can change arbitrarily. In contrast, in the settle actions, both the bank and the owner must

remain the same. Furthermore, to be conformant, the actor of a transfer actionmust be the same as

the owner of the contract.

Of course, the constraints on the relationship between the parameters can be arbitrarily complex,

and cannot conveniently be reproduced in this graphical representation. This is the role of DAML – it

provides a muchmore convenient way of representing contract models. The link between DAML and

contract models is explained in more detail in a later section.

To see the conformance criterion in action, assume that the contractmodel allows only the following

actions on PaintOffer and PaintAgree contracts.

The problem with example where Alice changes the offer’s outcome to avoid transferring the money

now becomes apparent.

5.2. DA Ledger Model 265

DAML SDK Documentation, 2019-12-19

A’s commit is not conformant to the contract model, as the model does not contain the top-level

action she is trying to commit.

5.2.2.4 Authorization

The last criterion rules out the last two problematic examples, an obligation imposed on a painter, and

the painter stealing Alice’s money. The first of those is visualized below.

The reason why the example is intuitively impermissible is that the PaintAgree contract is supposed

to express that the painter has an obligation to paint Alice’s house, but he never agreed to that obli-

gation. On paper contracts, obligations are expressed in the body of the contract, and imposed on

the contract’s signatories.

Signatories, Agreements, and Maintainers

To capture these elements of real-world contracts, the contract model additionally specifies, for

each contract in the system:

1. A non-empty set of signatories, the parties bound by the contract.

2. An optional agreement text associated with the contract, specifying the off-ledger, real-world

obligations of the signatories.

3. If the contract is associated with a key, a non-empty set ofmaintainers, the parties that make

sure that at most one unconsumed contract exists for the key. The maintainers must be a

subset of the signatories and depend only on the key. This dependence is captured by the

function maintainers that takes a key and returns the key’s maintainers.

In the example, the contract model specifies that

1. an Iou obligor owner contract has only the obligor as a signatory, and no agreement text.

266 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

2. aMustPay obligor owner contract has both the obligor and the owner as signatories, with an agree-

ment text requiring the obligor to pay the owner a certain amount, off the ledger.

3. a PaintOffer houseOwner painter obligor refNo contract has only the painter as the signatory, with

no agreement text. Its associated key consists of the painter and the reference number. The

painter is the maintainer.

4. a PaintAgree houseOwner painter refNo contract has both the house owner and the painter as sig-

natories, with an agreement text requiring the painter to paint the house. The key consists of

the painter and the reference number. The painter is the only maintainer.

In the graphical representation below, signatories of a contract are indicated with a dollar sign (as

a mnemonic for an obligation) and use a bold font. Maintainers are marked with@ (as a mnemonic

who enforces uniqueness). Since they are always signatories, parties marked with @ are implicitly

signatories. For example, annotating the paint offer acceptance action with signatories yields the

image below.

Authorization Rules

Signatories allow one to precisely state that the painter has an obligation. The imposed obligation

is intuitively invalid because the painter did not agree to this obligation. In other words, the painter

did not authorize the creation of the obligation.

In a DA ledger, a party can authorize a subaction of a commit in either of the following ways:

Every top-level action of the commit is authorized by all requesters of the commit.

Every consequence of an exercise action act on a contract c is authorized by all signatories of c

and all actors of act.

The second authorization rule encodes the offer-acceptance pattern, which is a prerequisite for con-

tract formation in contract law. The contract c is effectively an offer by its signatories who act as

offerers. The exercise is an acceptance of the offer by the actors who are the offerees. The conse-

quences of the exercise can be interpreted as the contract body so the authorization rules of DA

ledgers closely model the rules for contract formation in contract law.

A commit is well-authorized if every subaction act of the commit is authorized by at least all of the

required authorizers of act, where:

1. the required authorizers of a Create action on a contract c are the signatories of c.

2. the required authorizers of an Exercise or a Fetch action are its actors.

3. the required authorizers of a NoSuchKey assertion are the maintainers of the key.

We lift this notion to ledgers, whereby a ledger is well-authorized exactly when all of its commits are.

5.2. DA Ledger Model 267

DAML SDK Documentation, 2019-12-19

Examples

An intuition for how the authorization definitions work is most easily developed by looking at some

examples. Themain example, the paint offer ledger, is intuitively legitimate. It should therefore also

be well-authorized according to our definitions, which it is indeed.

In the visualizations below,ΠX act denotes that the partiesΠ authorize the action act. The resulting

authorizations are shown below.

In the first commit, the bank authorizes the creation of the IOU by requesting that commit. As the

bank is the sole signatory on the IOU contract, this commit is well-authorized. Similarly, in the sec-

ond commit, the painter authorizes the creation of the paint offer contract, and painter is the only

signatory on that contract, making this commit also well-authorized.

The third commit is more complicated. First, Alice authorizes the exercise on the paint offer by re-

questing it. She is the only actor on this exercise, so this complies with the authorization require-

ment. Since the painter is the signatory of the paint offer, and Alice the actor of the exercise, they

jointly authorize all consequences of the exercise. The first consequence is an exercise on the IOU,

with Alice as the actor; so this is permissible. The second consequence is the creation of the paint

agreement, which has Alice and the painter as signatories. Since they both authorize this action,

this is also permissible. Finally, the creation of the new IOU (for P) is a consequence of the exercise

on the old one (for A). As the old IOUwas signed by the bank, and as Alice was the actor of the exercise,

the bank and Alice jointly authorize the creation of the new IOU. Since the bank is the sole signatory

of this IOU, this action is also permissible. Thus, the entire third commit is also well-authorized, and

then so is the ledger.

Similarly, the intuitively problematic examples are prohibitied by our authorization criterion. In the

first example, Alice forced the painter to paint her house. The authorizations for the example are

shown below.

Alice authorizes the Create action on the PaintAgree contract by requesting it. However, the painter

is also a signatory on the PaintAgree contract, but he did not authorize the Create action. Thus, this

268 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

ledger is indeed not well-authorized.

In the second example, the painter steals money from Alice.

The bank authorizes the creation of the IOU by requesting this action. Similarly, the painter autho-

rizes the exercise that transfers the IOU to him. However, the actor of this exercise is Alice, who has

not authorized the exercise. Thus, this ledger is not well-authorized.

The rationale for making the maintainers as required authorizers for a NoSuchKey assertion is dis-

cussed in the next section about privacy.

5.2.2.5 Valid Ledgers, Obligations, Offers and Rights

DA ledgers are designed to mimic real-world interactions between parties, which are governed by

contract law. The validity conditions on the ledgers, and the information contained in contract mod-

els have several subtle links to the concepts of the contract law that are worth pointing out.

First, in addition to the explicit off-ledger obligations specified in the agreement text, contracts also

specify implicit on-ledger obligations, which result from consequences of the exercises on con-

tracts. For example, the PaintOffer contains an on-ledger obligation for A to transfer her IOU in case

she accepts the offer. Agreement texts are therefore only necessary to specify obligations that are

not already modeled as permissible actions on the ledger. For example, P’s obligation to paint the

house cannot be sensibly modeled on the ledger, and must thus be specified by the agreement text.

Second, every contract on a DA ledger can simultaneously model both:

a real-world offer, whose consequences (both on- and off-ledger) are specified by the Exercise

actions on the contract allowed by the contract model, and

a real-world contract proper, specified through the contract’s (optional) agreement text.

Third, in DA ledgers, as in the real world, one person’s rights are another person’s obligations. For

example, A’s right to accept the PaintOffer is P’s obligation to paint her house in case she accepts.

In DA ledgers, a party’s rights according to a contract model are the exercise actions the party can

perform according to the authorization and conformance rules.

Finally, validity conditions ensure three important properties of the DA ledgermodel, thatmimic the

contract law.

1. Obligations need consent. DA ledgers follow the offer-acceptance pattern of the contract law,

and thus ensures that all ledger contracts are formed voluntarily. For example, the following

ledger is not valid.

5.2. DA Ledger Model 269

DAML SDK Documentation, 2019-12-19

2. Consent is needed to take awayon-ledger rights. As onlyExerciseactions consumecontracts,

the rights cannot be taken away from the actors; the contract model specifies exactly who the

actors are, and the authorization rules require them to approve the contract consumption.

In the examples, Alice had the right to transfer her IOUs; painter’s attempt to take that right

away from her, by performing a transfer himself, was not valid.

Parties can still delegate their rights to other parties. For example, assume that Alice, instead

of accepting painter’s offer, decides to make him a counteroffer instead. The painter can then

accept this counteroffer, with the consequences as before:

Here, by creating the CounterOffer contract, Alice delegates her right to transfer the IOU contract

to the painter. In case of delegation, prior to submission, the requester must get informed

about the contracts that are part of the requested transaction, but where the requester is not

a signatory. In the example above, the painter must learn about the existence of the IOU for

Alice before he can request the acceptance of the CounterOffer. The concepts of observers and

divulgence, introduced in the next section, enable such scenarios.

3. On-ledger obligations cannot be unilaterally escaped. Once an obligation is recorded on a DA

ledger, it can only be removed in accordance with the contract model. For example, assuming

the IOU contract model shown earlier, if the ledger records the creation of a MustPay contract,

the bank cannot later simply record an action that consumes this contract:

270 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

That is, this ledger is invalid, as the action above is not conformant to the contract model.

5.2.3 Privacy

The previous sections have addressed two out of three questions posed in the introduction: what

the ledger looks like, and whomay request which changes. This section addresses the last one, who

sees which changes and data. That is, it explains the privacy model for DA ledgers.

The privacy model of the DA platform is based on a need-to-know basis, and provides privacy on

the level of subtransactions. Namely, a party learns only those parts of ledger changes that affect

contracts in which the party has a stake, and the consequences of those changes. And maintainers

see all changes to the contract keys they maintain.

To make this more precise, a stakeholder concept is needed.

5.2.3.1 Contract Observers and Stakeholders

Intuitively, as signatories are bound by a contract, they have a stake in it. Actorsmight not be bound

by the contract, but they still haveastake in their actions, as theseare theactor’s rights. Generalizing

this, observers are parties whomight not be bound by the contract, but still have the right to see the

contract. For example, Alice should be an observer of the PaintOffer, such that she ismade aware that

the offer exists.

Signatories are already determined by the contract model discussed so far. The full contract model

additionally specifies the observers on each contract. A stakeholder of a contract (according to a

given contractmodel) is then either a signatory or an observer on the contract. Note that in DAML, as

detailed later, controllers specified using simple syntax are automatically made observers whenever

possible.

In the graphical representation of the paint offer acceptance below, observers who are not signato-

ries are indicated by an underline.

5.2. DA Ledger Model 271

DAML SDK Documentation, 2019-12-19

5.2.3.2 Projections

Stakeholders should see changes to contracts they hold a stake in, but that does notmean that they

have to see the entirety of any transaction that their contract is involved in. This is made precise

through projections of a transaction, which define the view that each party gets on a transaction. In-

tuitively, given a transaction within a commit, a party will see only the subtransaction consisting of

all actions on contracts where the party is a stakeholder. Thus, privacy is obtained on the subtrans-

action level.

An example is given below. The transaction that consists only of Alice’s acceptance of the PaintOffer

is projected for each of the three parties in the example: the painter, Alice, and the bank.

Since both the painter and Alice are stakeholders of the PaintOffer contract, the exercise on this con-

tract is kept in the projection of both parties. Recall that consequences of an exercise action are a

part of the action. Thus, both parties also see the exercise on the Iou Bank A contract, and the cre-

ations of the Iou Bank P and PaintAgree contracts.

The bank is not a stakeholder on the PaintOffer contract (even though it ismentioned in the contract).

272 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

Thus, the projection for the bank is obtained by projecting the consequences of the exercise on the

PaintOffer. The bank is a stakeholder in the contract Iou Bank A, so the exercise on this contract is

kept in the bank’s projection. Lastly, as the bank is not a stakeholder of the PaintAgree contract, the

corresponding Create action is dropped from the bank’s projection.

Note the privacy implications of the bank’s projection. While the bank learns that a transfer has

occurred from A to P, the bank does not learn anything about why the transfer occurred. In practice,

thismeans that the bank does not learnwhat A is paying for, providing privacy to A and Pwith respect

to the bank.

As a design choice, the DA Platform shows to observers on a contract only the state changing actions

on the contract. More precisely, Fetch and non-consuming Exercise actions are not shown to the

observers - except when they are the actors of these actions. Thismotivates the following definition:

a party p is an informee of an action A if one of the following holds:

A is a Create on a contract c and p is a stakeholder of c.

A is a consuming Exercise on a contract c, and p is a stakeholder of c or an actor on A. Note that

a DAML flexible controller can be an exercise actor without being a contract stakeholder.

A is a non-consuming Exercise on a contract c, and p is a signatory of c or an actor on A.

A is a Fetch on a contract c, and p is a signatory of c or an actor on A.

A is a NoSuchKey k assertion and p is a maintainer of k.

Then, we can formally define the projection of a transaction tx = act1, , actn for a party p is the sub-

transaction obtained by doing the following for each action acti:

1. If p is an informee of acti, keep acti as-is.

2. Else, if acti has consequences, replace acti by the projection (for p) of its consequences, which

might be empty.

3. Else, drop acti.

Finally, the projection of a ledger l for a party p is a list of transactions obtained by first projecting

the transaction of each commit in l for p, and then removing all empty transactions from the result.

Note that the projection of a ledger is not a ledger, but a list of transactions. Projecting the ledger of

our complete paint offer example yields the following projections for each party:

5.2. DA Ledger Model 273

DAML SDK Documentation, 2019-12-19

Examine each party’s projection in turn:

1. The painter does not see any part of the first commit, as he is not a stakeholder of the Iou Bank A

contract. Thus, this transaction is not present in the projection for the painter at all. However,

the painter is a stakeholder in the PaintOffer, so he sees both the creation and the exercise of

this contract (again, recall that all consequences of an exercise action are a part of the action

274 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

itself).

2. Alice is a stakeholder in both the Iou Bank A and PaintOffer A B Bank contracts. As all top-level

actions in the ledger are performed on one of these two contracts, Alice’s projection includes

all the transactions from the ledger intact.

3. The Bank is only a stakeholder of the IOU contracts. Thus, the bank sees the first commit’s

transaction as-is. The second commit’s transaction is, however dropped from the bank’s pro-

jection. The projection of the last commit’s transaction is as described above.

Ledger projections do not always satisfy the definition of consistency, even if the ledger does. For

example, in P’s view, Iou Bank A is exercised without ever being created, and thus without beingmade

active. Furthermore, projections can in general be non-conformant. However, the projection for a

party p is always

internally consistent for all contracts,

consistent for all contracts on which p is a stakeholder, and

consistent for the keys that p is a maintainer of.

In other words, p is never a stakeholder on any input contracts of its projection. Furthermore, if the

contract model is subaction-closed, which means that for every action act in the model, all subac-

tions of act are also in the model, then the projection is guaranteed to be conformant. As we will see

shortly, DAML-based contract models are conformant. Lastly, as projections carry no information

about the requesters, we cannot talk about authorization on the level of projections.

5.2.3.3 Privacy through authorization

Setting the maintainers as required authorizers for a NoSuchKey assertion ensures that parties

cannot learn about the existence of a contract without having a right to know about their existence.

So we use authorization to impose access controls that ensure confidentiality about the existence

of contracts. For example, suppose now that for a PaintAgreement contract, both signatories are key

maintainers, not only the painter. That is, we consider PaintAgreement @A@P&P123 instead of PaintA-

greement $A @P &P123. Then, when the painter’s competitor Q passes by A’s house and sees that

the house desperately needs painting, Q would like to know whether there is any point in spending

marketing efforts and making a paint offer to A. Without key authorization, Q could test whether a

ledger implementation accepts the action NoSuchKey (A, P, refNo) for different guesses of the refer-

ence number refNo. In particular, if the ledger does not accept the transaction for some refNo, then Q

knows that P has some business with A and his chances of A accepting his offer are lower. Key autho-

rization prevents this flow of information because the ledger always rejects Q’s action for violating

the authorization rules.

For these access controls, it suffices if one maintainer authorizes a NoSuchKey assertion. However,

we demand that all maintainers must authorize it. This is to prevent spam in the projection of the

maintainers. If only one maintainer sufficed to authorize a key assertion, then a valid ledger could

contain NoSuchKey k assertions where the maintainers of k include, apart from the requester, arbi-

trary other parties. Unlike Create actions to observers, such assertions are of no value to the other

parties. Since processing such assertions may be expensive, they can be considered spam. Requir-

ing all maintainers to authorize a NoSuchKey assertion avoids the problem.

5.2.3.4 Divulgence: When Non-Stakeholders See Contracts

The guiding principle for the privacy model of DA ledgers is that contracts should only be shown

to their stakeholders. However, ledger projections can cause contracts to become visible to other

parties as well.

In the example of ledger projections of the paint offer, the exercise on the PaintOffer is visible to both the

painter and Alice. As a consequence, the exercise on the Iou Bank A is visible to the painter, and the

5.2. DA Ledger Model 275

DAML SDK Documentation, 2019-12-19

creation of Iou Bank P is visible to Alice. As actions also contain the contracts they act on, Iou Bank A

was thus shown to the painter and Iou Bank P was shown to Alice.

Showing contracts to non-stakeholders through ledger projections is called divulgence. Divulgence

is a deliberate choice in the design of DA ledgers. In the paint offer example, the only proper way

to accept the offer is to transfer the money from Alice to the painter. Conceptually, at the instant

where the offer is accepted, its stakeholders also gain a temporary stake in the actions on the two

Iou contracts, even though they are never recorded as stakeholders in the contractmodel. Thus, they

are allowed to see these actions through the projections.

More precisely, every action act on c is shown to all informees of all ancestor actions of act. These

informees are called thewitnesses of act. If one of the witnessesW is not a stakeholder on c, then act

and c are said to be divulged toW. Note that only Exercise actions can be ancestors of other actions.

Divulgence can be used to enable delegation. For example, consider the scenario where Alice makes

a counteroffer to the painter. Painter’s acceptance entails transferring the IOU to him. To be able to

construct the acceptance transaction, the painter first needs to learn about the details of the IOU

that will be transferred to him. To give him these details, Alice can fetch the IOU in a context visible

to the painter:

276 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

In the example, the context is provided by consuming a ShowIou contract on which the painter is a

stakeholder. This now requires an additional contract type, compared to the original paint offer ex-

ample. An alternative approach to enable this workflow, without increasing the number of contracts

required, is to replace the original Iou contract by one on which the painter is an observer. This would

require extending the contract model with a (consuming) exercise action on the Iou that creates a

new Iou, with observers of Alice’s choice. In addition to the different number of commits, the two

approaches differ in one more aspect. Unlike stakeholders, parties who see contracts only through

divulgence have no guarantees about the state of the contracts in question. For example, consider

what happens if we extend our (original) paint offer example such that the painter immediately set-

tles the IOU.

5.2. DA Ledger Model 277

DAML SDK Documentation, 2019-12-19

While Alice sees the creation of the Iou Bank P contract, she does not see the settlement action. Thus,

she does know whether the contract is still active at any point after its creation. Similarly, in the

previous example with the counteroffer, Alice could spend the IOU that she showed to the painter

by the time the painter attempts to accept her counteroffer. In this case, the painter’s transaction

could not be added to the ledger, as it would result in a double spend and violate validity. But the

painter has no way to predict whether his acceptance can be added to the ledger or not.

278 Chapter 5. Background concepts

DAML SDK Documentation, 2019-12-19

5.2.4 DAML: Defining Contract Models Compactly

As described in preceeding sections, both the integrity and privacy notions depend on a contract

model, and such a model must specify:

1. a set of allowed actions on the contracts, and

2. the signatories, observers, and

3. an optional agreement text associated with each contract, and

4. the optional key associated with each contract and its maintainers.

The sets of allowed actions can in general be infinite. For instance, the actions in the IOU contract

model considered earlier can be instantiated for an arbitrary obligor and an arbitrary owner. As enu-

merating all possible actions from an infinite set is infeasible, a more compact way of representing

models is needed.

DAML provides exactly that: a compact representation of a contract model. Intuitively, the allowed

actions are:

1. Create actions on all instances of DAML templates such that the template arguments satisfy

the ensure clause of the template

2. Exercise actions on a contract instance corresponding to DAML choices on that template, with

given choice arguments, such that:

1. The actors match the controllers of the choice. That is, the DAML controllers define the

required authorizers of the choice.

2. The exercise kind matches.

3. All assertions in the update block hold for the given choice arguments.

4. Create, exercise, fetch and key statements in the DAML update block are represented as

create, exercise and fetch actions and key assertions in the consequences of the exercise

action.

3. Fetch actions on a contract instance corresponding to a fetch of that instance inside of an

update block. The actors must be a non-empty subset of the contract stakeholders. The actors

are determined dynamically as follows: if the fetch appears in an update block of a choice ch on

a contract c1, and the fetched contract ID resolves to a contract c2, then the actors are defined

as the intersection of (1) the signatories of c1 union the controllers of chwith (2) the signatories

of c2.

A fetchByKey statement also produces a Fetch action with the actors determined in the same

way. A lookupByKey statement that finds a contract also translates into a Fetch action, but all

maintainers of the key are the actors.

4. NoSuchKey assertions corresponding to a lookupByKey update statement for the given key that

does not find a contract.

An instance of a DAML template, that is, a DAML contract or contract instance, is a triple of:

1. a contract identifier

2. the template identifier

3. the template arguments

The signatories of a DAML contract are derived from the template arguments and the explicit signa-

tory annotations on the contract template. The observers are also derived from the template argu-

ments and include:

1. the observers as explicitly annotated on the template

2. all controllers c of every choice defined using the syntax controller c can... (as opposed

to the syntax choice ... controller c)

For example, the following DAML template exactly describes the contract model of a simple IOU with

5.2. DA Ledger Model 279

DAML SDK Documentation, 2019-12-19

a unit amount, shown earlier.

template MustPay with

obligor : Party

owner : Party

where

signatory obligor, owner

agreement

show obligor <> " must pay " <>

show owner <> " one unit of value"

template Iou with

obligor : Party

owner : Party

where

signatory obligor

controller owner can

Transfer

: ContractId Iou

with newOwner : Party

do create Iou with obligor; owner = newOwner

controller owner can

Settle

: ContractId MustPay

do create MustPay with obligor; owner

In this example, the owner is automatically made an observer on the contract, as the Transfer and

Settle choices use the controller owner can syntax.

The template identifiers of DAML contracts are created through a content-addressing scheme. This

means every DAML contract is self-describing in a sense: it constrains its stakeholder annotations

and all DAML-conformant actions on itself. As a consequence, one can talk about the DAML contract

model, as a single contract model encoding all possible instances of all possible DAML templates.

Thismodel is subaction-closed; all exercise and create actions done within an update block are also

always permissible as top-level actions.

280 Chapter 5. Background concepts

Chapter 6

Deploying

6.1 Deploying to DAML Ledgers

To run a DAML application, you’ll need to deploy it to a DAML ledger.

6.1.1 How to Deploy

You can deploy to:

The Sandboxwith persistence. For information onhow to do this, see the section onpersistence

in DAML Sandbox docs.

Other available DAML ledgers. For information on these options and their stage of development,

see the tables below.

To deploy a DAML project to a ledger, you will need the ledger’s hostname (or IP) and the port number

for the gRPC Ledger API. The default port number is 6865. Then, inside your DAML project folder, run

the following command, taking care to substitute the ledger’s hostname and port for <HOSTNAME>

and <PORT>:

Once you have retrieved your access token, you can provide it by storing it in a file and provide the

path to it using the --access-token-file command line option.

$ daml deploy --host=<HOSTNAME> --port=<PORT> --access-token-file=<TOKEN-

↪→FILE>

This command will deploy your project to the ledger. This has two steps:

1. It will allocate the parties specified in the project’sdaml.yaml on the ledger if they aremissing.

The command looks through the list of parties known to the ledger, sees if any party ismissing

by comparing display names, and adds any missing party via the party management service

of the Ledger API.

2. It will upload the project’s compiled DAR file to the ledger via the packagemanagement service

of the Ledger API. This will make the templates defined in the current project available to the

users of the ledger.

Instead of passing --host and --port flags to the command above, you can add the following

section to the project’s daml.yaml file:

If the ledger has no authenication, the --access-token-file flag may be ommitted.

281

DAML SDK Documentation, 2019-12-19

ledger:

host: <HOSTNAME>

port: <PORT>

You can also use the daml ledger command for more fine-grained deployment options, and to

interact with the ledger more generally. Try running daml ledger --help to get a list of available

ledger commands:

$ daml ledger --help

Usage: daml ledger COMMAND

Interact with a remote DAML ledger. You can specify the ledger in daml.

↪→yaml

with the ledger.host and ledger.port options, or you can pass the --host

↪→and

--port flags to each command below. If the ledger is authenticated, you

↪→should

pass the name of the file containing the token using the --access-token-

↪→file

flag.

Available options:

-h,--help Show this help text

Available commands:

list-parties List parties known to ledger

allocate-parties Allocate parties on ledger

upload-dar Upload DAR file to ledger

navigator Launch Navigator on ledger

6.1.2 Available DAML Products

The following table lists commercially supported DAML ledgers and environments that are available

for production use today.

Product Ledger Vendor

Sextant for DAML Amazon Aurora Blockchain Technology Partners

Sextant for DAML Hyperledger Sawtooth Blockchain Technology Partners

project : DABL Managed cloud enviroment Digital Asset

6.1.3 Open Source Integrations

The following table lists open source DAML integrations.

Ledger Developer More Information

Hyperledger Sawtooth Blockchain Technology Partners Github Repo

Hyperledger Fabric Hacera Github Repo

PostgreSQL Digital Asset DAML Sandbox Docs

282 Chapter 6. Deploying

https://blockchaintp.com/sextant/daml/
https://aws.amazon.com/rds/aurora/
https://blockchaintp.com/
https://blockchaintp.com/sextant/daml/
https://sawtooth.hyperledger.org/
https://blockchaintp.com/
https://projectdabl.com/
https://projectdabl.com/
https://digitalasset.com/
https://sawtooth.hyperledger.org/
https://blockchaintp.com/
https://github.com/blockchaintp/daml-on-sawtooth
https://www.hyperledger.org/projects/fabric
https://hacera.com/
https://github.com/hacera/daml-on-fabric
https://www.postgresql.org/
https://digitalasset.com/
https://docs.daml.com/tools/sandbox.html

DAML SDK Documentation, 2019-12-19

6.1.4 DAML Ledgers in Development

The following table lists the ledgers that are implementing support for running DAML.

Ledger Developer More Information

VMware Blockchain VMware Press release, April 2019

Corda R3 press release, June 2019

QLDB Blockchain Technology Partners press release, September 2019

Canton Digital Asset reference implementation canton.io

6.1. Deploying to DAML Ledgers 283

https://blogs.vmware.com/blockchain
https://www.vmware.com/
http://hub.digitalasset.com/press-release/digital-asset-daml-smart-contract-language-now-extended-to-vmware-blockchain
https://www.corda.net/
https://www.corda.net/
https://hub.digitalasset.com/press-release/digital-asset-announces-daml-partner-integrations-with-hyperledger-fabric-r3-corda-and-amazon-aurora
https://aws.amazon.com/qldb/
https://blockchaintp.com/
https://blog.daml.com/daml-driven/quantum-daml-amazon-qldb-goes-ga
https://www.canton.io/
https://digitalasset.com/
https://www.canton.io/

Chapter 7

Examples

7.1 DAML examples

Wehave plenty of example code, both of DAML and of applications aroundDAML, on our public GitHub

organization.

12+ examples of different use cases: A repository containing a wide variety of DAML examples

Bond trading example: DAML code and automation using the Java bindings

Collateral management example: DAML code

Repurchase agreement example: DAML code and automation using the Java bindings

Upgrading DAML templates example: DAML code

Java bindings tutorial: Three examples using the Java bindings with a very simple DAMLmodel

Node.js tutorial: Step-by-step running through using the experimental Node.js bindings

284

https://github.com/digital-asset
https://github.com/digital-asset
https://github.com/digital-asset/ex-models
https://github.com/digital-asset/ex-bond-trading
https://github.com/digital-asset/ex-collateral
https://github.com/digital-asset/ex-repo-market
https://github.com/digital-asset/ex-upgrade
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-tutorial-nodejs

Chapter 8

Experimental features

8.1 WARNING

The tools described in this section are actively being designed and are subject to breaking changes

or removal. When we become more confident in their designs, we will introduce them as standard

components in the SDK.

8.1.1 Navigator Console

8.1.1.1 Querying the Navigator local database

You can query contracts, transactions, events, or commands in any way you’d like, by querying the

Navigator Console’s local database(s) directly. This page explains how you can run queries.

Note: Because of the strong DAML privacymodel, each party will see a different subset of the ledger

data. For this reason, each party has its own local database.

The Navigator database is implemented on top of SQLite. SQLite understands most of the standard

SQL language. For information on how to compose SELECT statements, see to the SQLite SELECT

syntax specification.

To run queries, use the sql Navigator Console command. Take a look at the examples below to see

how you might use this command.

On this page:

How the data is structured

Example query using plain SQL

Example queries using JSON functions

How the data is structured

To get full details of the schema, run sql_schema.

Semi-structured data (such as contract arguments or template parameters) are stored in columns

of type JSON.

285

https://sqlite.org/index.html
https://www.sqlite.org/lang_select.html
https://www.sqlite.org/lang_select.html
https://www.sqlite.org/json1.html

DAML SDK Documentation, 2019-12-19

You can compose queries against the content of JSON columns by using the SQLite functions

json_extract and json_tree.

Example query using plain SQL

Filter on the template id of contracts:

sql select count (*) from contract where template_id like '%Offer%'

Example queries using JSON functions

Select JSON fields from a JSON column by specifying the path:

sql select json_extract(value, '$.argument.landlord') from contract

Filter on the value of a JSON field:

sql select contract.id, json_tree.fullkey from contract, json_

↪→tree(contract.value) where atom is not null and json_tree.value like '

↪→%BANK1%'

Filter on the JSON key and value:

sql select contract.id from contract, json_tree(contract.value) where atom

↪→is not null and json_tree.key = 'landlord' and json_tree.value like '

↪→%BANK1%'

Filter on the value of a JSON field for a given path:

sql select contract.id from contract where json_extract(contract.value, '$.

↪→argument.landlord') like '%BANK1%'

Identical query using json_tree:

sql select contract.id from contract, json_tree(contract.value) where atom

↪→is not null and json_tree.fullkey = '$.argument.landlord' and json_tree.

↪→value like '%BANK1%'

Filter on the content of an array if the index is specified:

sql select contract.id from contract where json_extract(contract.value, '$.

↪→template.choices[0].name') = 'Accept'

Filter on the content of an array if the index is not specified:

sql select contract.id from contract, json_tree(contract.value) where atom

↪→is not null and json_tree.path like '$.template.choices[%]' and json_

↪→tree.value ='Accept'

The Navigator Console is a terminal-based front-end for inspecting and modifying a Digital Asset

ledger. It’s useful for DAML developers, app developers, or business analysts who want to debug or

analyse a ledger by exploring it manually.

You can use the Console to:

286 Chapter 8. Experimental features

https://www.sqlite.org/json1.html#jex
https://www.sqlite.org/json1.html#jtree

DAML SDK Documentation, 2019-12-19

inspect available templates

query active contracts

exercise commands

list blocks and transactions

If you prefer to use a graphical user interface for these tasks, use the Navigator instead.

On this page:

Try out the Navigator Console on the Quickstart

– Installing and starting Navigator Console

– Getting help

– Exiting Navigator Console

– Using commands

Displaying status information

Choosing a party

Advancing time

Inspecting templates

Inspecting contracts, transactions, and events

Querying data

Creating contracts

Exercising choices

– Advanced usage

Using Navigator outside the SDK

Using Navigator with the Digital Asset ledger

8.1.1.2 Try out the Navigator Console on the Quickstart

With the sandbox running the quickstart application

1. To start the shell, run daml navigator console localhost 6865

This connects Navigator Console to the sandbox, which is still running.

You should see a prompt like this:

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version 1.1.0

Welcome to the console. Type 'help' to see a list of commands.

2. Since you are connected to the sandbox, you canbe any party you like. Switch to Bobby running:

party Bob

The prompt should change to Bob>.

3. Issue a BobsCoin to yourself. Start by writing the following, then hit Tab to auto-complete and

get the full name of the Iou.Iou template:

create Iou.Iou <TAB>

This full name includes a hash of the DAML package, so don’t copy it from the command below

- it’s better to get it from the auto-complete feature.

You can then create the contract by running:

create Iou.Iou@317057d06d4bc4bb91bf3cfe3292bf3c2467c5e004290e0ba20b993eb1e40931

8.1. WARNING 287

DAML SDK Documentation, 2019-12-19

with {issuer="Bob", owner="Bob", currency="BobsCoin", amount="1.0",

observers=[]}

You should see the following output:

CommandId: 1b8af77a91ad1102

Status: Success

TransactionId: 10

4. You can see details of that contract using the TransactionId. First, run:

transaction 10

to get details of the transaction that created the contract:

Offset: 11

Effective at: 1970-01-01T00:00:00Z

Command ID: 1b8af77a91ad1102

Events:

- [#10:0] Created #10:0 as Iou

Then, run:

contract #10:0

to see the contract for the new BobsCoin:

Id: #10:0

TemplateId: Iou.

↪→Iou@317057d06d4bc4bb91bf3cfe3292bf3c2467c5e004290e0ba20b993eb1e40931

Argument:

observers:

issuer: Bob

amount: 1.0

currency: BobsCoin

owner: Bob

Created:

EventId: #10:0

TransactionId: 10

WorkflowId: 1ba8521c395096e3

Archived: Contract is active

5. You can transfer the coin to Alice by running:

exercise #10:0 Iou_Transfer with {newOwner="Alice"}

There are lots of other things you can do with the Navigator Console.

One of its most powerful features is that you can query its local databases using SQL, with the

sql command.

For example, you could see all of the Iou contracts by runningsql select * from contract

where template_id like 'Iou.Iou@%'. For more examples, take a look at the Navigator

Console database documentation.

For a full list of commands, run help. You can also look at the Navigator Console documentation

page.

For help on a particular command, run help <name of command>.

When you are done exploring the shell, run quit to exit.

288 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

Installing and starting Navigator Console

Navigator Console is installed as part of the DAML SDK. See Installing the SDK for instructions on how

to install the DAML SDK.

If you want to use Navigator Console independent of the SDK, see the Advanced usage section.

To run Navigator Console:

1. Open a terminal window and navigate to your DAML SDK project folder.

2. If the Sandbox isn’t already running, run it with the command daml start.

The sandbox prints out the port on which it is running - by default, port 6865.

3. Rundaml navigator console localhost 6865. Replace6865 by the port reported by the

sandbox, if necessary.

When Navigator Console starts, it displays a welcome message:

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version X.Y.Z

Welcome to the console. Type 'help' to see a list of commands.

Getting help

To see all available Navigator Console commands and how to use them, use the help command:

>help

Available commands:

choice Print choice details

command Print command details

commands List submitted commands

contract Print contract details

create Create a contract

diff_contracts Print diff of two contracts

event Print event details

exercise Exercises a choice

help Print help

graphql Execute a GraphQL query

graphql_examples Print some example GraphQL queries

graphql_schema Print the GraphQL schema

info Print debug information

package Print DAML-LF package details

packages List all DAML-LF packages

parties List all parties available in Navigator

party Set the current party

quit Quit the application

set_time Set the (static) ledger effective time

templates List all templates

template Print template details

time Print the ledger effective time

(continues on next page)

8.1. WARNING 289

DAML SDK Documentation, 2019-12-19

(continued from previous page)

transaction Print transaction details

version Print application version

sql_schema Return the database schema

sql Execute a SQL query

To see the help for the given command, run help <command>:

>help create

Usage: create <template> with <argument>

Create a contract

Parameters:

<template> Template ID

<argument> Contract argument

Exiting Navigator Console

To exit Navigator Console, use the quit command:

>quit

Bye.

Using commands

This section describes how to use some common commands.

Note: Navigator Console has several features to help with typing commands:

Press the Tab key one or more times to use auto-complete and see a list of suggested text to

complete the command.

Press the Up or Down key to scroll through the history of recently used commands.

Press Ctrl+R to search in the history of recently used commands.

8.1.1.3 Displaying status information

To see useful information about the status of both Navigator Console and the ledger, use the info

command:

>info

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version 1.0.14 commit a3e1d1c30d84261fa9b6db95c69036da14bc9e7e

General info:

Ledger host: localhost

Ledger port: 6865

(continues on next page)

290 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

Secure connection: false

Application ID: Navigator-c06fae89-d8ed-4656-b085-388e24569ecf

↪→#5b21103194967935

Ledger info:

Connection status: Connected

Ledger ID: sandbox-051e2468-c679-43df-b99f-9c72dcd8ffa0

Ledger time: 1970-01-01T00:16:40Z

Ledger time type: static

Akka system:

OPERATOR: Actor running

BANK2: Actor running

BANK1: Actor running

Local data:

BANK1:

Packages: 1

Contracts: 0

Active contracts: 0

Last transaction: ???

BANK2:

Packages: 1

Contracts: 0

Active contracts: 0

Last transaction: ???

OPERATOR:

Packages: 1

Contracts: 1001

Active contracts: 1001

Last transaction: scenario-transaction-2002

8.1.1.4 Choosing a party

Privacy is an important aspect of a Digital Asset ledger: parties can only access the contracts on the

ledger that they are authorized to. Thismeans that, before you can interact with the ledger, youmust

assume the role of a particular party.

The currently active party is displayed left of the prompt sign (>). To assume the role of a different

party, use the party command:

BANK1>party BANK2

BANK2>

Note: The list of available parties is configured when the Sandbox starts. (See the DAML Assistant

(daml) or Advanced usage for more instructions.)

8.1.1.5 Advancing time

You can advance the time of the DAML Sandbox. This can be useful when testing, for example, when

entering a trade on one date and settling it on a later date.

(For obvious reasons, this feature does not exist on the Digital Asset ledger.)

8.1. WARNING 291

DAML SDK Documentation, 2019-12-19

To display the current ledger time, use the time command:

>time

1970-01-01T00:16:40Z

To advance the time to the time you specify, use the set_time command:

>set_time 1970-01-02T00:16:40Z

New ledger effective time: 1970-01-02T00:16:40Z

8.1.1.6 Inspecting templates

To see what templates are available on the ledger you are connected to, use the templates com-

mand:

>templates

╔════════════════════════╤════════╤═══════╗

║Name │Package │Choices║

╠════════════════════════╪════════╪═══════╣

║Main.RightOfUseAgreement│07ca8611│0 ║

║Main.RightOfUseOffer │07ca8611│1 ║

╚════════════════════════╧════════╧═══════╝

To get detailed information about a particular template, use the template command:

>template Offer<Tab>

>template Main.

↪→RightOfUseOffer@07ca8611d05ec14ea4b973192ef6caa5d53323bba50720a8d7142c2a246cfb73

Name: Main.RightOfUseOffer

Parameter:

landlord: Party

tenant: Party

address: Text

expirationDate: Time

Choices:

- Accept

Note: Remember to use the Tab key. In the above example, typing Offer followed by the Tab key

auto-completes the fully qualified name of the RightOfUseOffer template.

To get detailed information about a choice defined by a template, use the choice command:

>choice Main.RightOfUseOffer Accept

Name: Accept

Consuming: true

Parameter: Unit

8.1.1.7 Inspecting contracts, transactions, and events

The ledger is a record of transactions between authorized participants on the distributed network.

Transactions consist of events that create or archive contracts, or exercise choices on them.

292 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

To get detailed information about a ledger object, use the singular form of the command

(transaction, event, contract):

>transaction 2003

Offset: 1004

Effective at: 1970-01-01T00:16:40Z

Command ID: 732f6ac4a63c9802

Events:

- [#2003:0] Created #2003:0 as RightOfUseOffer

>event #2003:0

Id: #2003:0

ParentId: ???

TransactionId: 2003

WorkflowId: e13067beec13cf4c

Witnesses:

- Scrooge_McDuck

Type: Created

Contract: #2003:0

Template: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

expirationDate: 2020-01-01T00:00:00Z

>contract #2003:0

Id: #2003:0

TemplateId: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

expirationDate: 2020-01-01T00:00:00Z

Created:

EventId: #2003:0

TransactionId: 2003

WorkflowId: e13067beec13cf4c

Archived: Contract is active

Exercise events:

8.1.1.8 Querying data

To query contracts, transactions, events, or commands in any way you’d like, you can query the Nav-

igator Console’s local database(s) directly.

Because of the strong DAML privacy model, each party will see a different subset of the ledger data.

For this reason, each party has its own local database.

To execute a SQL query against the local database for the currently active party, use the sql com-

mand:

8.1. WARNING 293

DAML SDK Documentation, 2019-12-19

>sql select id, template_id, archive_transaction_id from contract

╔═══════╤════════════════════╤══════════════════════╗

║id │template_id │archive_transaction_id║

╠═══════╪════════════════════╪══════════════════════╣

║#2003:0│Main.RightOfUseOffer│null ║

║#2004:0│Main.RightOfUseOffer│null ║

╚═══════╧════════════════════╧══════════════════════╝

See the Navigator Local Database documentation for details on the database schema and how to write

SQL queries.

Note: The local database contains a copy of the ledger data, created using the Ledger API. If you

modify the local database, you might break Navigator Console, but it will not affect the data on the

ledger in any way.

8.1.1.9 Creating contracts

Contracts in a ledger can be created directly from a template, or when you exercise a choice. You can

do both of these things using Navigator Console.

To create a contract of a given template, use the create command. The contract argument is written

in JSON format (DAML primitives are strings, DAML records are objects, DAML lists are arrays):

>create Main.

↪→RightOfUseOffer@07ca8611d05ec14ea4b973192ef6caa5d53323bba50720a8d7142c2a246cfb73

↪→with {"landlord": "BANK1", "tenant": "BANK2", "address": "Example Street

↪→", "expirationDate": "2018-01-01T00:00:00Z"}

CommandId: 1e4c1610eadba6b

Status: Success

TransactionId: 2005

Note: Again, you can use the Tab key to auto-complete the template name.

The Console waits briefly for the completion of the create command and prints basic information

about its status. To get detailed information about your create command, use the command com-

mand:

>command 1e4c1610eadba6b

Command:

Id: 1e4c1610eadba6b

WorkflowId: a31ea1ca20cd5971

PlatformTime: 1970-01-02T00:16:40Z

Command: Create contract

Template: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

(continues on next page)

294 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

expirationDate: 2020-01-01T00:00:00Z

Status:

Status: Success

TransactionId: 2005

8.1.1.10 Exercising choices

To exercise a choice on a contract with the given ID, use the exercise command:

>exercise #2005:0 Accept

CommandID: 8dbbcbc917c7beee

Status: Success

TransactionId: 2006

>exercise #2005:0 Accept with {tenant="BANK2"}

CommandID: 8dbbcbc917c7beee

Status: Success

TransactionId: 2006

Advanced usage

8.1.1.11 Using Navigator outside the SDK

This section explains how to work with the Navigator if you have a project created outside of the

normal SDK workflow and want to use the Navigator to inspect the ledger and interact with it.

Note: If you are using the Navigator as part of the DAML SDK, you do not need to read this section.

The Navigator is released as a fat Java .jar file that bundles all required dependencies. This JAR is

part of the SDK release and can be found using the SDK Assistant’s path command:

da path navigator

To launch the Navigator JAR and print usage instructions:

da run navigator

Provide arguments at the end of a command, following a double dash. For example:

da run navigator -- console \

--config-file my-config.conf \

--port 8000 \

localhost 6865

The Navigator needs a configuration file specifying each user and the party they act as. It has a

.conf ending by convention. The file has this format:

users {

<USERNAME> {

(continues on next page)

8.1. WARNING 295

DAML SDK Documentation, 2019-12-19

(continued from previous page)

party = <PARTYNAME>

}

..

}

In many cases, a simple one-to-one correspondence between users and their respective parties is

sufficient to configure the Navigator. Example:

users {

BANK1 { party = "BANK1" }

BANK2 { party = "BANK2" }

OPERATOR { party = "OPERATOR" }

}

8.1.1.12 Using Navigator with the Digital Asset ledger

By default, Navigator is configured to use an unencrypted connection to the ledger.

To run Navigator against a secured Digital Asset Ledger, configure TLS certificates using the --pem,

--crt, and --cacrt command line parameters.

Details of these parameters are explained in the command line help:

daml navigator --help

8.1.2 Extractor

8.1.2.1 Introduction

You can use the Extractor to extract contract data for a single party from a Ledger node into a Post-

greSQL database.

It is useful for:

Application developers to access data on the ledger, observe the evolution of data, and debug

their applications

Business analysts to analyze ledger data and create reports

Support teams to debug any problems that happen in production

Using the Extractor, you can:

Take a full snapshot of the ledger (from the start of the ledger to the current latest transaction)

Take a partial snapshot of the ledger (between specific offsets)

Extract historical data and then stream indefinitely (either from the start of the ledger or from

a specific offset)

8.1.2.2 Setting up

Prerequisites:

A PostgreSQL database that is reachable from the machine the Extractor runs on. Use Post-

greSQL version 9.4 or later to have JSONB type support that is used in the Extractor.

We recommend using an empty database to avoid schema and table collisions. To see which

tables to expect, see Output format.

296 Chapter 8. Experimental features

../../app-dev/grpc/proto-docs.html#ledgeroffset

DAML SDK Documentation, 2019-12-19

A running Sandbox or Ledger Node as the source of data.

You’ve installed the SDK.

Once you have the prerequisites, you can start the Extractor like this:

$ daml extractor --help

8.1.2.3 Trying it out

This example extracts:

all contract data from the beginning of the ledger to the current latest transaction

for the party Scrooge_McDuck

from a Ledger node or Sandbox running on host 192.168.1.12 on port 6865

to PostgreSQL instance running on localhost

identified by the user postgres without a password set

into a database called daml_export

$ daml extractor postgresql --user postgres --connecturl

↪→jdbc:postgresql:daml_export --party Scrooge_McDuck -h 192.168.1.12 -p

↪→6865 --to head

This terminates after reaching the transaction which was the latest at the time the Extractor started

streaming.

To run the Extractor indefinitely, and thus keeping the database up to date as new transactions

arrive on the ledger, omit the--to headparameter to fall back to the default streaming-indefinitely

approach, or state explicitly by using the --to follow parameter.

8.1.2.4 Running the Extractor

The basic command to run the Extractor is:

$ daml extractor [options]

For what options to use, see the next sections.

8.1.2.5 Connecting the Extractor to a ledger

To connect to the Sandbox, provide separate address and port parameters. For example, --host

10.1.1.10 --port 6865, or in short form -h 10.1.1.168 -p 6865.

The default host is localhost and the default port is 6865, so you don’t need to pass those.

To connect to a Ledger node, you might have to provide SSL certificates. The options for doing this

are shown in the output of the --help command.

8.1.2.6 Connecting to your database

As usual for a Java application, the database connection is handled by the well-known JDBC API, so

you need to provide:

a JDBC connection URL

a username

an optional password

8.1. WARNING 297

DAML SDK Documentation, 2019-12-19

For more on the connection URL, visit https://jdbc.postgresql.org/documentation/80/connect.html.

This example connects to a PostgreSQL instance running on localhost on the default port, with a

user postgres which does not have a password set, and a database called daml_export. This is a

typical setup on a developer machine with a default PostgreSQL install

$ daml extractor postgres --connecturl jdbc:postgresql:daml_export --user

↪→postgres --party [party]

This example connects to a database on host 192.168.1.12, listening on port 5432. The database

is called daml_export, and the user and password used for authentication are daml_exporter

and ExamplePassword

$ daml extractor postgres --connecturl jdbc:postgresql://192.168.1.12:5432/

↪→daml_export --user daml_exporter --password ExamplePassword --party

↪→[party]

8.1.2.7 Authenticating Extractor

If you are running Extractor against a Ledger API server that requires authentication, you must pro-

vide the access token when you start it.

The access token retrieval depends on the specific DAML setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Extractor by storing it in a file and

provide the path to it using the --access-token-file command line option.

Both in the case in which the token cannot be read from the provided path or if the Ledger API reports

an authentication error (for example due to token expiration), Extractor will keep trying to read and

use it and report the error via logging. This retry mechanism allows expired token to be overwritten

with valid ones and keep Extractor going from where it left off.

8.1.2.8 Full list of options

To see the full list of options, run the --help command, which gives the following output:

Usage: extractor [prettyprint|postgresql] [options]

Command: prettyprint [options]

Pretty print contract template and transaction data to stdout.

--width <value> How wide to allow a pretty-printed value to

↪→become before wrapping.

Optional, default is 120.

--height <value> How tall to allow each pretty-printed output to

↪→become before

it is truncated with a `...`.

Optional, default is 1000.

Command: postgresql [options]

Extract data into a PostgreSQL database.

--connecturl <value> Connection url for the `org.postgresql.Driver`

↪→driver. For examples,

(continues on next page)

298 Chapter 8. Experimental features

https://jdbc.postgresql.org/documentation/80/connect.html

DAML SDK Documentation, 2019-12-19

(continued from previous page)

visit https://jdbc.postgresql.org/documentation/

↪→80/connect.html

--user <value> The database user on whose behalf the connection

↪→is being made.

--password <value> The user's password. Optional.

Common options:

-h, --ledger-host <h> The address of the Ledger host. Default is 127.

↪→0.0.1

-p, --ledger-port <p> The port of the Ledger host. Default is 6865.

--ledger-api-inbound-message-size-max <bytes>

Maximum message size from the ledger API.

↪→Default is 52428800 (50MiB).

--party <value> The party or parties whose contract data should

↪→be extracted.

Specify multiple parties separated by a comma, e.

↪→g. Foo,Bar

-t, --templates <module1>:<entity1>,<module2>:<entity2>...

The list of templates to subscribe for.

↪→Optional, defaults to all ledger templates.

--from <value> The transaction offset (exclusive) for the

↪→snapshot start position.

Must not be greater than the current latest

↪→transaction offset.

Optional, defaults to the beginning of the

↪→ledger.

Currently, only the integer-based Sandbox

↪→offsets are supported.

--to <value> The transaction offset (inclusive) for the

↪→snapshot end position.

Use “head” to use the latest transaction offset

↪→at the time

the extraction first started, or “follow” to

↪→stream indefinitely.

Must not be greater than the current latest

↪→offset.

Optional, defaults to “follow”.

--help Prints this usage text.

TLS configuration:

--pem <value> TLS: The pem file to be used as the private key.

--crt <value> TLS: The crt file to be used as the cert chain.

Required if any other TLS parameters are set.

--cacrt <value> TLS: The crt file to be used as the the trusted

↪→root CA.

Authentication:

--access-token-file <value>

provide the path from which the access token

↪→will be read, required to interact with an authenticated ledger, no

↪→default
(continues on next page)

8.1. WARNING 299

DAML SDK Documentation, 2019-12-19

(continued from previous page)

Some options are tied to a specific subcommand, like --connecturl only makes sense for the

postgresql, while others are general, like --party.

8.1.2.9 Output format

To understand the format that Extractor outputs into a PostgreSQL database, youneed to understand

how the ledger stores data.

The DAML Ledger is composed of transactions, which contain events. Events can represent:

creation of contracts (create event), or

exercise of a choice on a contract (exercise event).

A contract on the ledger is either active (created, but not yet archived), or archived. The relationships

between transactions and contracts are captured in the database: all contracts have pointers (for-

eign keys) to the transaction in which they were created, and archived contracts have pointers to the

transaction in which they were archived.

8.1.2.10 Transactions

Transactionsare stored in thetransaction table in thepublic schema, with the following struc-

ture

CREATE TABLE transaction

(transaction_id TEXT PRIMARY KEY NOT NULL

,seq BIGSERIAL UNIQUE NOT NULL

,workflow_id TEXT

,effective_at TIMESTAMP NOT NULL

,extracted_at TIMESTAMP DEFAULT NOW()

,ledger_offset TEXT NOT NULL

);

transaction_id: The transaction ID, as appears on the ledger. This is the primary key of the

table.

transaction_id, effective_at, workflow_id, ledger_offset: These columns are the properties

of the transaction on the ledger. For more information, see the specification.

seq: Transaction IDs should be treated as arbitrary text values: you can’t rely on them for or-

dering transactions in the database. However, transactions appear on the Ledger API transac-

tion stream in the same order as they were accepted on the ledger. You can use this to work

around the arbitrary nature of the transaction IDs, which is the purpose of the seq field: it

gives you a total ordering of the transactions, as they happened from the perspective of the

ledger. Be aware that seq is not the exact index of the given transaction on the ledger. Due

to the privacy model of the DAML Ledger, the transaction stream won’t deliver a transaction

which doesn’t concern the party which is subscribed. The transaction with seq of 100might be

the 1000th transaction on the ledger; in the other 900, the transactions contained only events

which mustn’t be seen by you.

extracted_at: The extracted_at field means the date the transaction row and its events

were inserted into the database. When extracting historical data, this field will point to a pos-

sibly much later time than effective_at.

300 Chapter 8. Experimental features

../../app-dev/grpc/proto-docs.html#transactiontree

DAML SDK Documentation, 2019-12-19

8.1.2.11 Contracts

Create events and contracts that are created in those events are stored in the contract table in the

public schema, with the following structure

CREATE TABLE contract

(event_id TEXT PRIMARY KEY NOT NULL

,archived_by_event_id TEXT DEFAULT NULL

,contract_id TEXT NOT NULL

,transaction_id TEXT NOT NULL

,archived_by_transaction_id TEXT DEFAULT NULL

,is_root_event BOOLEAN NOT NULL

,package_id TEXT NOT NULL

,template TEXT NOT NULL

,create_arguments JSONB NOT NULL

,witness_parties JSONB NOT NULL

);

event_id, contract_id, create_arguments, witness_parties: These fields are the properties

of the corresponding CreatedEvent class in a transaction. For more information, see the

specification.

package_id, template: The fields package_id and template are the exploded version of the

template_id property of the ledger event.

transaction_id: The transaction_id field refers to the transaction in which the contract

was created.

archived_by_event_id, archived_by_transaction_id: These fields will contain the event id

and the transaction id in which the contract was archived once the archival happens.

is_root_event: Indicateswhether the event inwhich the contract was createdwas a root event

of the corresponding transaction.

Every contract is placed into the same table, with the contract parameters put into a single column

in a JSON-encoded format. This is similar to what you would expect from a document store, like

MongoDB. For more information on the JSON format, see the later section.

8.1.2.12 Exercises

Exercise events are stored in theexercise table in thepublic schema, with the following structure:

CREATE TABLE

exercise

(event_id TEXT PRIMARY KEY NOT NULL

,transaction_id TEXT NOT NULL

,is_root_event BOOLEAN NOT NULL

,contract_id TEXT NOT NULL

,package_id TEXT NOT NULL

,template TEXT NOT NULL

,contract_creating_event_id TEXT NOT NULL

,choice TEXT NOT NULL

,choice_argument JSONB NOT NULL

,acting_parties JSONB NOT NULL

,consuming BOOLEAN NOT NULL

,witness_parties JSONB NOT NULL

(continues on next page)

8.1. WARNING 301

../../app-dev/grpc/proto-docs.html#createdevent

DAML SDK Documentation, 2019-12-19

(continued from previous page)

,child_event_ids JSONB NOT NULL

);

package_id, template: The fields package_id and template are the exploded version of the

template_id property of the ledger event.

is_root_event: Indicateswhether the event inwhich the contract was createdwas a root event

of the corresponding transaction.

transaction_id: The transaction_id field refers to the transaction in which the contract

was created.

The other columns are properties of the ExercisedEvent class in a transaction. For more

information, see the specification.

8.1.2.13 JSON format

Values on the ledger can be either primitive types, user-defined records, or variants. An extracted

contract is represented in the database as a record of its create argument, and the fields of that

records are either primitive types, other records, or variants. A contract can be a recursive

structure of arbitrary depth.

These types are translated to JSON types the following way:

Primitive types

ContractID: represented as string.

Int64: represented as string.

Decimal: A decimal value with precision 38 (38 decimal digits), of which 10 after the comma

/ period. Represented as string.

List: represented as array.

Text: represented as string.

Date: days since the unix epoch. represented as integer.

Time: Microseconds since the UNIX epoch. Represented as number.

Bool: represented as boolean.

Party: represented as string.

Unit and Empty are represented as empty records.

Optional: represented as object, as it was a Variant with two possible constructors: None

and Some.

User-defined types

Record: represented as object, where each create parameter’s name is a key, and the param-

eter’s value is the JSON-encoded value.

Variant: represented as object, using the {constructor: body} format, e.g. {"Left":

true}.

8.1.2.14 Examples of output

The following examples show you what output you should expect. The Sandbox has al-

ready run the scenarios of a DAML model that created two transactions: one creating a

Main:RightOfUseOffer and one accepting it, thus archiving the original contract and creating

a new Main:RightOfUseAgreement contract. We also added a new offer manually.

This is how the transaction table looks after extracting data from the ledger:

302 Chapter 8. Experimental features

../../app-dev/grpc/proto-docs.html#exercisedevent
https://json-schema.org/understanding-json-schema/reference/index.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/array.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/numeric.html#integer
https://json-schema.org/understanding-json-schema/reference/numeric.html#number
https://json-schema.org/understanding-json-schema/reference/boolean.html
https://json-schema.org/understanding-json-schema/reference/string.html
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html
https://json-schema.org/understanding-json-schema/reference/object.html

DAML SDK Documentation, 2019-12-19

You can see that the transactions which were part of the scenarios have the format scenario-

transaction-{n}, while the transaction created manually is a simple number. This is why the

seq field is needed for ordering. In this output, the ledger_offset field has the same values as

the seq field, but you should expect similarly arbitrary values there as for transaction IDs, so better

rely on the seq field for ordering.

This is how the contract table looks:

You can see that the archived_by_transacion_id and archived_by_event_id fields of con-

tract #0:0 is not empty, thus this contract is archived. These fields of contracts #1:1 and #2:0 are

NULL s, which mean they are active contracts, not yet archived.

This is how the exercise table looks:

You can see that there was one exercise Accept on contract #0:0, which was the consuming choice

mentioned above.

8.1.2.15 Dealing with schema evolution

When updating packages, you can end up withmultiple versions of the same package in the system.

Let’s say you have a template called My.Company.Finance.Account:

daml 1.2 module My.Company.Finance.Account where

template Account

with

provider: Party

accountId: Text

owner: Party

observers: [Party]

where

[...]

This is built into apackagewitha resultinghash6021727fe0822d688ddd545997476d530023b222d02f1919567bd82b205a5ce3.

Later you add a new field, displayName:

daml 1.2 module My.Company.Finance.Account where

template Account

(continues on next page)

8.1. WARNING 303

DAML SDK Documentation, 2019-12-19

(continued from previous page)

with

provider: Party

accountId: Text

owner: Party

observers: [Party]

displayName: Text

where

[...]

Thehashof thenewpackagewith theupdate is1239d1c5df140425f01a5112325d2e4edf2b7ace223f8c1d2ebebe76a8ececfe.

There are contract instances of first version of the template which were created before the new field

is added, and there are contract instances of the new version which were created since. Let’s say you

have one instance of each:

{

"owner":"Bob",

"provider":"Bob",

"accountId":"6021-5678",

"observers":[

"Alice"

]

}

and:

{

"owner":"Bob",

"provider":"Bob",

"accountId":"1239-4321",

"observers":[

"Alice"

],

"displayName":"Personal"

}

They will look like this when extracted:

To have a consistent view of the two versions with a default value NULL for the missing field of in-

stances of older versions, you can create a view which contains all Account rows:

CREATE VIEW account_view AS

SELECT

create_arguments->>'owner' AS owner

,create_arguments->>'provider' AS provider

,create_arguments->>'accountId' AS accountId

,create_arguments->>'displayName' AS displayName

(continues on next page)

304 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

,create_arguments->'observers' AS observers

FROM

contract

WHERE

package_id =

↪→'1239d1c5df140425f01a5112325d2e4edf2b7ace223f8c1d2ebebe76a8ececfe'

AND

template = 'My.Company.Finance.Account'

UNION

SELECT

create_arguments->>'owner' AS owner

,create_arguments->>'provider' AS provider

,create_arguments->>'accountId' AS accountId

,NULL as displayName

,create_arguments->'observers' AS observers

FROM

contract

WHERE

package_id =

↪→'6021727fe0822d688ddd545997476d530023b222d02f1919567bd82b205a5ce3'

AND

template = 'My.Company.Finance.Account';

Then, account_view will contain both contract instances:

8.1.2.16 Logging

By default, the Extractor logs to stderr, with INFO verbose level. To change the level, use the -

DLOGLEVEL=[level] option, e.g. -DLOGLEVEL=TRACE.

You can supply your own logback configuration file via the standard method: https://logback.qos.

ch/manual/configuration.html

8.1.2.17 Continuity

When you terminate the Extractor and restart it, it will continue from where it left off. This hap-

pens because, when running, it saves its state into the state table in the public schema of the

database. When started, it reads the contents of this table. If there’s a saved state from a previ-

ous run, it restarts from where it left off. There’s no need to explicitly specify anything, this is done

automatically.

DO NOT modify content of the state table. Doing so can result in the Extractor not being able to

continue running against the database. If that happens, youmust delete all data from the database

and start again.

If you try to restart the Extractor against the same database but with different configuration, you will

get an error message indicating which parameter is incompatible with the already exported data.

This happens when the settings are incompatible: for example, if previously contract data for the

party Alice was extracted, and now you want to extract for the party Bob.

8.1. WARNING 305

https://logback.qos.ch/manual/configuration.html
https://logback.qos.ch/manual/configuration.html

DAML SDK Documentation, 2019-12-19

The only parameters that you can change between two sessions running against the same database

are the connection parameters to both the ledger and the database. Both could have moved to dif-

ferent addresses, and the fact that it’s still the same Ledger will be validated by using the Ledger ID

(which is saved when the Extractor started its work the first time).

8.1.2.18 Fault tolerance

Once the Extractor connects to the Ledger Node and the database and creates the table structure

from the fetched DAML packages, it wraps the transaction stream in a restart logic with an expo-

nential backoff. This results in the Extractor not terminating even when the transaction stream is

aborted for some reason (the ledger node is down, there’s a network partition, etc.).

Once the connection is back, it continues the stream from where it left off. If it can’t reach the node

on the host/port pair the Extractor was started with, you need to manually stop it and restart with

the updated address.

Transactions on the ledger are inserted into PostgreSQL as atomic SQL transactions. This means

either the whole transaction is inserted or nothing, so you can’t end up with inconsistent data in the

database.

8.1.2.19 Troubleshooting

Can’t connect to the Ledger Node

If the Extractor can’t connect to the Ledger node on startup, you’ll see amessage like this in the logs,

and the Extractor will terminate:

16:47:51.208 ERROR c.d.e.Main$@[akka.actor.default-dispatcher-7] - FAILURE:

io.grpc.StatusRuntimeException: UNAVAILABLE: io exception.

Exiting...

To fix this, make sure the Ledger node is available from where you’re running the Extractor.

Can’t connect to the database

If the database isn’t available before the transaction stream is started, the Extractor will terminate,

and you’ll see the error from the JDBC driver in the logs:

17:19:12.071 ERROR c.d.e.Main$@[kka.actor.default-dispatcher-5] - FAILURE:

org.postgresql.util.PSQLException: FATAL: database "192.153.1.23:daml_

↪→export" does not exist.

Exiting…

To fix this, make sure make sure the database exists and is available from where you’re running

the Extractor, the username and password your using are correct, and you have the credentials to

connect to the database from the network address where the you’re running the Extractor.

If the database connection is broken while the transaction stream was already running, you’ll see a

similar message in the logs, but in this case it will be repeated: as explained in the Fault tolerance

section, the transaction stream will be restarted with an exponential backoff, giving the database,

network or any other trouble resource to get back into shape. Once everything’s back in order, the

stream will continue without any need for manual intervention.

306 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

8.2 DAML Integration Kit - ALPHA

8.2.1 Ledger API Test Tool

The Ledger API Test Tool is a command line tool for testing the correctness of implementations of the

Ledger API, i.e. DAML ledgers. For example, it will show you if there are consistency or conformance

problem with your implementation.

Its intended audience are developers of DAML ledgers, who are using the DAML Ledger Implementa-

tion Kit to develop a DAML ledger on top of their distributed-ledger or database of choice.

Use this tool to verify if your Ledger API endpoint conforms to the DA Ledger Model.

8.2.1.1 Downloading the tool

Run the following command to fetch the tool:

curl -L 'https://bintray.com/api/v1/content/digitalassetsdk/

↪→DigitalAssetSDK/com/daml/ledger/testtool/ledger-api-test-tool/$latest/

↪→ledger-api-test-tool-$latest.jar?bt_package=sdk-components' -o ledger-

↪→api-test-tool.jar

This will create a file ledger-api-test-tool.jar in your current directory.

8.2.1.2 Extracting .dar files required to run the tests

Before you can run the Ledger API test tool on your ledger, you need to load a specific set of DAML

templates onto your ledger.

1. To obtain the corresponding .dar files, run:

$ java -jar ledger-api-test-tool.jar --extract

This writes all .dar files required for the tests into the current directory.

2. Load all .dar files into your Ledger.

8.2.1.3 Running the tool against a custom Ledger API endpoint

Run this command to test your Ledger API endpoint exposed at host <host> and at a port <port>:

$ java -jar ledger-api-test-tool.jar <host>:<port>

For example

$ java -jar ledger-api-test-tool.jar localhost:6865

If any test embedded in the tool fails, it will print out details of the failure for further debugging.

8.2.1.4 Exploring options the tool provides

Run the tool with --help flag to obtain the list of options the tool provides:

$ java -jar ledger-api-test-tool.jar --help

8.2. DAML Integration Kit - ALPHA 307

DAML SDK Documentation, 2019-12-19

Selecting tests to run

Running the tool without any arguments runs the default tests. Use the following command line flags

to select which tests to run:

--list: print all available tests to the console

--include: only run the tests provided as argument

--exclude: do not run the tests provided as argument

--all-tests: run all default and optional tests. This flag can be combined with the --

exclude flag.

Examples (hitting a single participant at localhost:6865):

Listing 1: Only run TestA

$ java -jar ledger-api-test-tool.jar --include TestA localhost:6865

Listing 2: Run all default tests, but not TestB

$ java -jar ledger-api-test-tool.jar --exclude TestB localhost:6865

Listing 3: Run all tests

$ java -jar ledger-api-test-tool.jar --all-tests localhost:6865

Listing 4: Run all tests, but not TestC

$ java -jar ledger-api-test-tool.jar --all-tests --exclude TestC

8.2.1.5 Try out the Ledger API Test Tool against DAML Sandbox

If you wanted to test out the tool, you can run it against DAML Sandbox. To do this:

$ java -jar ledger-api-test-tool.jar --extract

$ daml sandbox -- *.dar

$ java -jar ledger-api-test-tool.jar localhost:6865

This should always succeed, as the Sandbox is tested to correctly implement the Ledger API. This is

useful if you do not have yet a custom Ledger API endpoint.

8.2.1.6 Testing your tool from continuous integration pipelines

To test your ledger in a CI pipeline, run it as part of your pipeline:

$ java -jar ledger-api-test-tool.jar localhost:6865 --all-tests --

↪→exclude=TimeIT,LotsOfPartiesIT,TransactionScaleIT

$ echo $?

0

The reason for exclusion of these tests is listed below : TimeIT: Only relevant for a ledger implemen-

tation where time can be controlled, but not relevant for a realtime wallclock ledger implementation

LotsOfPartiesIT: stresses the system by quickly creating a large number of parties. It can be run

explicitly if you are intending to stress test the ledger, but need not be run for baseline functional

308 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

conformance TransactionScaleIT: a transaction scaling test only to be run if particularly focusing on

scalability and stress testing

The tool is tailored to be used in CI pipelines: as customary, when the tests succeed, it will produce

minimal output and return the success exit code.

8.2.1.7 Using the tool with a known-to-be-faulty Ledger API implementation

Use flag --must-fail if you expect one or more or the scenario tests to fail. If enabled, the tool will

return the success exit code when at least one test fails, and it will return a failure exit code when

all tests succeed:

java -jar ledger-api-test-tool.jar --must-fail localhost:6865

This is useful during development of a DAML ledger implementation, when tool needs to be used

against a known-to-be-faulty implementation (e.g. in CI). It will still print information about failed

tests.

8.2.1.8 Tuning the testing behaviour of the tool

Use the command line options --timeout-scale-factor and --command-submission-ttl-

scale-factor to tune timeouts applied by the tool.

Set --timeout-scale-factor to a floating point value higher than 1.0 to make the tool wait

longer for expected events coming from the DAML ledger implementation under test. Con-

versely use values smaller than 1.0 to make it wait shorter.

Set --command-submission-ttl-scale-factor to adjust the time-to-live of commands

as represented by the MRT (Maximum Record Time) on the Ledger API. The default value is 1.0

and will be applied to the default TTL, which is themaximum TTL as returned by the LedgerCon-

figurationService. In any case, the used TTL value will be clipped to stay between theminimum

and maximum TTL.

8.2.1.9 Verbose output

Use the command line option --verbose to print full stacktraces on failures

8.2.1.10 Concurrent test runs

To minimize parallelized runs of tests, --concurrent-test-runs can be set to 1 or 2. The default

value is the number of processors available

DAML Applications run on DAML Ledgers. A DAML Ledger is a server serving the Ledger API as per the

semantics defined in the DA Ledger Model and the DAML-LF specification.

The DAML Integration Kit helps third-party ledger developers to implement a DAML Ledger on top of

their distributed ledger or database of choice.

We provide the resources in the kit, which include guides to

DAML Integration Kit status and roadmap

Implementing your own DAML Ledger

Deploying a DAML Ledger

Testing a DAML Ledger

Benchmarking a DAML Ledger

8.2. DAML Integration Kit - ALPHA 309

https://github.com/digital-asset/daml/blob/master/daml-lf/spec/daml-lf-1.rst

DAML SDK Documentation, 2019-12-19

Using these guides, you can focus on your own distributed-ledger or database and reuse our DAML

Ledger server and DAML interpreter code for implementing the DAML Ledger API. For example uses of

the integration kit, see below.

8.2.2 DAML Integration Kit status and roadmap

The current status of the integration kit is ALPHA. We are working towards BETA, and General Avail-

ability (GA) will come quite a bit later. The roadmap below explains what we mean by these different

statuses, and what’s missing to progress.

ALPHA (current status) In the ALPHA status, the DAML Integration Kit is ready to be used by third-

parties willing to accept the following caveats:

The architecture includes everything required to run DAML Applications using the DAML

Ledger API. However, it misses support for testing DAML Applications in a uniform way

against different DAML Ledgers.

Ledger API authorization, package upload, party on-boarding, ledger reset, and time ma-

nipulation are specific to each DAML Ledger, until the uniform administrative DAML ledger

access API is introduced, which is different to the uniform per-party DAML ledger access that

the DAML Ledger API provides. We will address this before reaching BETA status.

The architecture is likely to change due to learnings from integrators like you! Where pos-

sible we strive to make these changes backwards compatible. though this might not al-

ways be possible.

The documentation might be spotty in some places, and you might have to infer some of

the documentation from the code.

Some of our code might be fresh off the press and might therefore have a higher rate of

bugs.

That said: wehighly value your feedbackand input onwhere you findDAMLsoftware and this in-

tegration kitmost useful. You can get into contact with us using the feedback form on this doc-

umentation page or by creating issues or pull-requests against the digital-asset/daml GitHub

repository.

BETA For us, BETA status means that we have architectural stability and solid documentation in

place. At this point, third-parties should have everything they need to integrate DAML with

their ledger of choice completely on their own.

Before reaching BETA status, we expect to have:

hardened our test tooling

built tooling for benchmarking DAML ledgers

completed several integrations of DAML for different ledgers

implementeduniform administrativeDAML ledger access to provideaportableway for testing

DAML applications against different DAML ledgers

Related links

Tracking GitHub issue

GitHub milestone tracking work to reach BETA status

GA For usGA (General Availability)means that there are several production-readyDAML ledgers built

using the DAML Integration Kit. We expect to reach GA in 2019.

Related links

Tracking GitHub issue

8.2.3 Implementing your own DAML Ledger

Each X ledger requires at least the implementation of a specific daml-on-<X>-server, which im-

plements theDAML Ledger API. Itmight also require the implementation of a<X>-daml-validator,

which provides the ability for nodes to validate DAML transactions.

310 Chapter 8. Experimental features

https://github.com/digital-asset/daml
https://github.com/digital-asset/daml/issues/660
https://github.com/digital-asset/daml/milestone/13
https://github.com/digital-asset/daml/issues/661

DAML SDK Documentation, 2019-12-19

For more about these parts of the architecture, read the Architectural overview.

8.2.3.1 Step-by-step guide

Prerequisite knowledge

Before you can decide on an appropriate architecture and implement your own server and validator,

you need a significant amount of context about DAML. To acquire this context, you should:

1. Complete the Quickstart guide.

2. Get an in-depth understanding of the DA Ledger Model.

3. Build a mental model of how the Ledger API is used to build DAML Applications.

Deciding on the architecture and writing the code

Once you have the necessary context, we recommend the steps to implement your own server and

validator:

1. Clone our example DAML Ledger (which is backed by an in-memory key-value store) from the

digital-asset/daml-on-x-example.

1. Read the example code jointly with the Architectural overview, Resources we provide, and the Library

infrastructure overview below.

1. Combine all the knowledge gained to decide on the architecture for your DAML on X ledger.

1. Implement your architecture; and let the world know about it by creating a PR against the

digital-asset/daml repository to add your ledger to the list of DAML Ledgers built or in develop-

ment.

If you need help, then feel free to use the feedback formon this documentation page or GitHub issues

on the digital-asset/daml repository to get into contact with us.

8.2.3.2 Architectural overview

This section explains the architecture of a DAML ledger backed by a specific ledger X.

The backing ledger can be a proper distributed ledger or also just a database. The goal of a DAML

ledger implementation is to allowmultiple DAML applications, which are potentially run by different

entities, to execute multi-party workflows using the ledger X.

This is a likely architecture for a setup with a distributed ledger:

8.2. DAML Integration Kit - ALPHA 311

https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml
https://github.com/digital-asset/daml

DAML SDK Documentation, 2019-12-19

It assumes that the X ledger allows entities to participate in the evolution of the ledger via particular

nodes. In the remainder of this documentation, we call these nodes participant nodes.

In the diagram:

The boxes labeled daml-on-<X>-server denote the DAML Ledger API servers, which implement the

DAML Ledger API on top of the services provided by the X participant nodes.

The boxes labeled <X>-daml-validator denote X-specific DAML transaction validation services. In

a distributed ledger they provide the ability for nodes to validate DAML transactions at the appro-

priate stage in the X ledger’s transaction commit process.

Whether they are needed, by what nodes they are used, and whether they are run in-process

or out-of-process depends on the X ledger’s architecture. Above we depict a common case

where the participant nodes jointly maintain the ledger’s integrity and therefore need to vali-

date DAML transactions.

Message flow

TODO (BETA):

explain to readers the life of a transaction at a high-level, so they have a mental framework in

place when looking at the example code. (GitHub issue)

8.2.3.3 Resources we provide

Scala libraries for validating DAML transactions and serving the Ledger API given implemen-

tations of two specific interfaces. See the Library infrastructure overview for an overview of these

libraries.

A complete example of a DAML Ledger backed by an in-memory key-value store, in the digital-

asset/daml-on-x-example GitHub repository. It builds on our Scala libraries and demonstrates

how they can be assembled to serve the Ledger API and validate DAML transactions.

For ledgers where data is shared between all participant nodes, we recommend using this ex-

ample as a starting point for implementing your server and validator.

For ledgers with stronger privacy models, this example can serve as an inspiration. You will

need to dive deeper into how transactions are represented and how to communicate them to

implement DAML’s privacy model at the ledger level instead of just at the Ledger API level.

312 Chapter 8. Experimental features

https://github.com/digital-asset/daml/issues/672
https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml-on-x-example

DAML SDK Documentation, 2019-12-19

Library infrastructure overview

To help you implement your server and validator, we provide the following four Scala libraries as part

of the DAML SDK. Changes to them are explained as part of the Release notes.

As explained in Deciding on the architecture and writing the code, this section is best read jointly with

the code in digital-asset/daml-on-x-example.

participant-state.jar (source code) Contains interfaces abstracting over the state of a par-

ticipant node relevant for a DAML Ledger API server.

These are the interfaces whose implementation is specific to a particular X ledger. These inter-

faces are optimized for ease of implementation.

participant-state-kvutils.jar (source code) These utilities provide methods to succintly

implement interfaces from participant-state.jar on top of a key-value state storage.

See documentation in package.scala

ledger-api-server.jar (source code for API server, source code for indexer) Contains code

that implements a DAML Ledger API server and the SQL-backed indexer given implementations

of the interfaces in participant-state.jar.

daml-engine.jar (source code) Contains code for serializing and deserializing DAML transac-

tions and for validating them.

An <X>-daml-validator is typically implemented by wrapping this code in the X-ledger’s SDK for

building transaction validators. daml-engine.jar also contains code for interpreting com-

mandssent over the Ledger API. It is usedby the daml-on-<X>-server to construct the transactions

submitted to its participant node.

This diagram shows how the classes and interfaces provided by these libraries are typically com-

bined to instantiate a DAML Ledger API server backed by an X ledger:

TODO: Update this diagram to mention ledger server classes above instead of deprecated daml-on-x-server

In the diagram above:

Boxes labeled with fully qualified class names denote class instances.

Solid arrows labeled with fully qualified interface names denote that an instance depends on

another instance providing that interface.

Dashed arrows denote that a class instance provides or depends on particular services.

8.2. DAML Integration Kit - ALPHA 313

https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/package.scala
https://github.com/digital-asset/daml/tree/master/ledger/participant-state/kvutils/src/main/scala/com/daml/ledger/participant/state/kvutils
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/kvutils/src/main/scala/com/daml/ledger/participant/state/kvutils/package.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/StandaloneApiServer.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/indexer/StandaloneIndexerServer.scala
https://github.com/digital-asset/daml/blob/master/daml-lf/engine/src/main/scala/com/digitalasset/daml/lf/engine/Engine.scala

DAML SDK Documentation, 2019-12-19

Boxes embedded in other boxes denote that the outer class instance creates the contained

instances.

Explaining this diagram in detail (for brevity, we drop prefixes of their qualified names where unam-

biguous):

Ledger API is the collection of gRPC services that you would like your daml-on-<X>-server to provide.

<X> services are the services provided by which underly your ledger, which you aim to leverage

to build your daml-on-<X>-server.

<x>.LedgerApiServer is the class whose main method or constructor creates the contained in-

stances and wires them up to provide the Ledger API backed by the <X> services. You need

to implement this for your DAML on X ledger.

WriteService (source code) is an interface abstracting over the mechanism to submit DAML

transactions to the underlying X ledger via a participant node.

ReadService (source code) is an interface abstracting over the ability to subscribe to changes of

the X ledger visible to a particular participant node. The changes are exposed as a stream that

is resumable from any particular offset, which supports restarts of the consumer. We typically

expect there to be a single consumer of the data provided on this interface. That consumer is

responsible for assembling the streamed changes into a view onto the participant state suit-

able for querying.

<x>.Backend is a class implementing the ReadService and the WriteService on top of the <X>

services. You need to implement this for your DAML on X ledger.

StandaloneIndexerServer (source code) is a standalone service that subscribe to ledger

changes using ReadService and inserts the data into a SQL backend (index) for the purpose

of serving the data over the Ledger API.

StandaloneIndexServer (source code) is a class containing all the code to implement the

Ledger API on top of an ledger backend. It serves the data from a SQL database populated by

the StandaloneIndexerServer.

8.2.4 Deploying a DAML Ledger

TODO (BETA):

explain recommended approach for Ledger API authorization (GitHub issue)

explain option of using a persistent SQL-backed participant state index (GitHub issue).

explain how testing of DAML applications (ledger reset, time manipulation, scripted package

upload) can be supported by a uniform admin interface (GitHub issue).

8.2.4.1 Authorization

To implement authorization on your ledger, do the following modifications to your code:

Implement the com.digitalasset.ledger.api.auth.AuthService (source code) inter-

face. An AuthService receives all HTTP headers attached to a gRPC ledger API request and re-

turns a set of Claims (source code), which describe the authorization of the request.

Instantiate a com.digitalasset.ledger.api.auth.interceptor.

AuthorizationInterceptor (source code), and pass it an instance of your AuthService

implementation. This interceptor will be responsible for storing the decoded Claims in a place

where ledger API services can access them.

When starting the com.digitalasset.platform.apiserver.LedgerApiServer (source

code), add the above AuthorizationInterceptor to the list of interceptors (see interceptors

parameter of LedgerApiServer.create).

For reference, you can have a look at how authorization is implemented in the sandbox:

314 Chapter 8. Experimental features

https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/WriteService.scala
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/ReadService.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/indexer/StandaloneIndexerServer.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/StandaloneApiServer.scala
https://github.com/digital-asset/daml/issues/669
https://github.com/digital-asset/daml/issues/581
https://github.com/digital-asset/daml/issues/347
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthService.scala
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/Claims.scala
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/interceptor/AuthorizationInterceptor.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/LedgerApiServer.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/LedgerApiServer.scala

DAML SDK Documentation, 2019-12-19

The com.digitalasset.ledger.api.auth.AuthServiceJWT class (source code) reads a

JWT token from HTTP headers.

The com.digitalasset.ledger.api.auth.AuthServiceJWTPayload class (source

code) defines the format of the token payload.

The token signature algorithmand the correspondingpublic key is specified as a sandbox com-

mand line parameter.

8.2.5 Testing a DAML Ledger

You can test your DAML ledger implementation using Ledger API Test Tool, which will assess correct-

ness of implementation of the Ledger API. For example, it will show you if there are consistency or

conformance problem with your implementation.

Assuming that your Ledger API endpoint is accessible at localhost:6865, you can use the tool in

the following manner:

1. Obtain the tool:

curl -L 'https://bintray.com/api/v1/content/digitalassetsdk/

DigitalAssetSDK/com/daml/ledger/testtool/ledger-api-test-tool_2.

12/$latest/ledger-api-test-tool_2.12-$latest.jar?bt_package=sdk-

components' -o ledger-api-test-tool.jar

2. Obtain the DAML archives required to run the tests:

java -jar ledger-api-test-tool.jar --extract

3. Load all .dar files extracted in the current directory into your Ledger.

4. Run the tool against your ledger:

java -jar ledger-api-test-tool.jar localhost:6865

See more in Ledger API Test Tool.

8.2.6 Benchmarking a DAML Ledger

TODO (BETA):

explain how to use the ledger-api-bench tool to evaluate the performance of your imple-

mentation of the Ledger API (GitHub issue).

8.3 HTTP JSON API Service

WARNING: the HTTP JSON API described in this document is actively being designed and is subject

to breaking changes, including all request and response elements demonstrated below or otherwise

implemented by the API. We welcome feedback about the API on our issue tracker or on Slack.

The JSON API provides a significantly simpler way than the Ledger API to access basic active contract set

functionality:

creating contracts,

exercising choices on contracts, and

querying the current active contract set.

The goal is to get you up and running writing effective ledger-integrated applications quickly, so we

have deliberately excluded complicating concerns, including but not limited to

inspecting transactions,

asynchronous submit/completion workflows,

temporal queries (e.g. active contracts as of a certain time), and

ledger metaprogramming (e.g. packages and templates).

8.3. HTTP JSON API Service 315

https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthServiceJWT.scala
https://jwt.io/
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthServiceJWTPayload.scala
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthServiceJWTPayload.scala
https://github.com/digital-asset/daml/issues/671
https://github.com/digital-asset/daml/issues/new?milestone=HTTP+JSON+API+Maintenance
https://hub.daml.com/slack/

DAML SDK Documentation, 2019-12-19

For these and other features, use the Ledger API instead.

8.3.1 DAML-LF JSON Encoding

We describe how to decode and encode DAML-LF values as JSON. For each DAML-LF type we explain

what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

The output format is parameterized by two flags:

encodeDecimalAsString: boolean

encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in

JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-

ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse

below.

Note that throughout the document the decoding is type-directed. In other words, the same JSON

value can correspond to many DAML-LF values, and the expected DAML-LF type is needed to decide

which one.

8.3.1.1 ContractId

Contract ids are expressed as their string representation:

"123"

"XYZ"

"foo:bar#baz"

8.3.1.2 Decimal

Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using

the same format that JSON accepts, and treated them as the equivalent JSON number:

-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+-]?\d+)?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings

because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,

and IEEE Doubles cannot express DAML-LF Decimals correctly. Therefore, we also accept strings so

that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [–(1038–1)1010, (1038–1)1010]. Numbers outside those

bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s round-

ing to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42

42.0 --> 42

"42" --> 42

9999999999999999999999999999.9999999999 -->

9999999999999999999999999999.9999999999

(continues on next page)

316 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

-42 --> -42

"-42" --> -42

0 --> 0

-0 --> 0

0.30000000000000004 --> 0.3

2e3 --> 2000

A few invalid examples:

" 42 "

"blah"

99999999999999999999999999990

+42

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -?[0-9]{1,

28}(\.[0-9]{1,10})?. If encodeDecimalAsString is not set, they are encoded as JSON numbers,

also using the format -?[0-9]{1,28}(\.[0-9]{1,10})?.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume

Decimals safely with the standard JSON.parse.

8.3.1.3 Int64

Input

Int64, much like Decimal, can be represented as JSON numbers and as strings, with the string

representation being [+-]?[0-9]+. The numbers must fall within [-9223372036854775808,

9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional

part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807

"9223372036854775807"

-9223372036854775808

"-9223372036854775808"

A few invalid examples:

42.3

+42

9223372036854775808

-9223372036854775809

(continues on next page)

8.3. HTTP JSON API Service 317

DAML SDK Documentation, 2019-12-19

(continued from previous page)

"garbage"

" 42 "

Output

If encodeInt64AsString is set, Int64s are encoded as strings, using the format -?[0-9]+. If en-

codeInt64AsString is not set, they are encoded as JSON numbers, also using the format -?[0-9]+.

Note that the flag encodeInt64AsString is useful because it lets JavaScript consumers consume

Int64s safely with the standard JSON.parse.

8.3.1.4 Timestamp

Input

Timestamps are represented as ISO 8601 strings, rendered using the format yyyy-mm-

ddThh:mm:ss[.ssssss]Z:

1990-11-09T04:30:23.1234569Z

1990-11-09T04:30:23Z

1990-11-09T04:30:23.123Z

0001-01-01T00:00:00Z

9999-12-31T23:59:59.999999Z

It’s OK to omit themicrosecond part partially or entirely. Sub-second data beyondmicroseconds will

be dropped. The UTC timezone designator must be included. The rationale behind the inclusion of

the timezone designator is minimizing the risk that users pass in local times.

The timestamp must be between the bounds specified by DAML-LF and ISO 8601, [0001-01-

01T00:00:00Z, 9999-12-31T23:59:59.999999Z].

JavaScript

> new Date().toISOString()

'2019-06-18T08:59:34.191Z'

Python

>>> datetime.datetime.utcnow().isoformat() + 'Z'

'2019-06-18T08:59:08.392764Z'

Java

import java.time.Instant;

class Main {

public static void main(String[] args) {

Instant instant = Instant.now();

// prints 2019-06-18T09:02:16.652Z

System.out.println(instant.toString());

}

}

318 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss[.

ssssss]Z.

The sub-second part will be formatted as follows:

If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-

onds), the sub-second part will be omitted entirely;

If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-

liseconds, padding with trailing 0s if necessary;

Otherwise, the sub-second part will be up to microseconds, padding with trailing 0s if neces-

sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of

length 3, or a sub-second part of length 6.

8.3.1.5 Party

Represented using their string representation, without any additional quotes:

"Alice"

"Bob"

8.3.1.6 Unit

Represented as empty object {}. Note that in JavaScript {} !== {}; however, null would be am-

biguous; for the type Optional Unit, null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually

an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in

Python.

8.3.1.7 Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18

9999-12-31

0001-01-01

The datesmust be between the bounds specified by DAML-LF and ISO 8601, [0001-01-01, 9999-99-99].

8.3.1.8 Text

Represented as strings.

8.3.1.9 Bool

Represented as booleans.

8.3.1.10 Record

Input

Records can be represented in two ways. As objects:

8.3. HTTP JSON API Service 319

DAML SDK Documentation, 2019-12-19

{ f1: v1, ..., f: v }

And as arrays:

[v1, ..., v]

Note that DAML-LF record fields are ordered. So if we have

record Foo = {f1: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it

looks like in DAML. Note that a DAML tuple, i.e. (42, True), will be compiled to a DAML-LF record Tuple2

{ _1 = 42, _2 = True }.

Output

Records are always encoded as objects.

8.3.1.11 List

Lists are represented as

[v1, ..., v]

8.3.1.12 Map

Maps are represented as objects:

{ k1: v1, ..., k: v }

8.3.1.13 Optional

Input

Optionals are encoded using null if the value is None, and with the value itself if it’s Some. However,

this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are

encoded using an empty list for None, and a list with one element for Some. Note that after the

top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> DAML-LF : Expected DAML-LF type

to make clear what the target DAML-LF type is:

null --> None : Optional Int64

null --> None : Optional (Optional Int64)

42 --> Some 42 : Optional Int64

(continues on next page)

320 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

[] --> Some None : Optional (Optional Int64)

[42] --> Some (Some 42) : Optional (Optional Int64)

[[]] --> Some (Some None) : Optional (Optional (Optional Int64))

[[42]] --> Some (Some (Some 42)) : Optional (Optional (Optional Int64))

...

Finally, if Optional values appear in records, they can be omitted to represent None. Given DAML-LF

types

record Depth1 = { foo: Optional Int64 }

record Depth2 = { foo: Optional (Optional Int64) }

We have

{ } --> Depth1 { foo: None } : Depth1

{ } --> Depth2 { foo: None } : Depth2

{ foo: 42 } --> Depth1 { foo: Some 42 } : Depth1

{ foo: [42] } --> Depth2 { foo: Some (Some 42) } : Depth2

{ foo: null } --> Depth1 { foo: None } : Depth1

{ foo: null } --> Depth2 { foo: None } : Depth2

{ foo: [] } --> Depth2 { foo: Some None } : Depth2

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-

sented as objects), since Map relies on absence of key to determine what keys are present in the

Map to begin with. Nor does it apply to the [f1, ..., f] record form; Depth1 None in the array

notation must be written as [null].

Type variables may appear in the DAML-LF language, but are always resolved before deciding on a

JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it

may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> Oa { foo: Some 42 } : Oa Int

{ } --> Oa { foo: None } : Oa Int

{ foo: [] } --> Oa { foo: Some None } : Oa (Optional Int)

{ foo: [42] } --> Oa { foo: Some (Some 42) } : Oa (Optional Int)

In otherwords, the correct JSONencoding for any LF value is the one yougetwhen youhave eliminated

all type variables.

Output

Encoded as described above, always applying the shortcut for None record fields.

8.3.1.14 Variant

Variants are expressed as

{ constructor: argument }

For example, if we have

8.3. HTTP JSON API Service 321

DAML SDK Documentation, 2019-12-19

variant Foo = Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

{"Bar": 42}

{"Baz": {}}

{"Quux": null}

{"Quux": 42}

Note thatDAMLdata typeswithnamed fields are compiledby factoring out the record. So for example

if we have

data Foo = Bar {f1: Int64, f2: Bool} | Baz

We’ll get in DAML-LF

record Foo.Bar = {f1: Int64, f2: Bool}

variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"Bar": {"f1": 42, "f2": true}}

{"Baz": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a keyed exam-

ple.

8.3.1.15 Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, Bar and Baz.

8.3.2 /contracts/search query language

The body of POST /contracts/search looks like so:

{"%templates": [...template IDs...],

...other query elements...}

The elements of that query are defined here.

8.3.2.1 Fallback rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-

ing to DAML-LF JSON Encoding, and compared for equality.

8.3.2.2 Simple equality

Match records having at least all the (potentially nested) keys expressed in the query. The result

record may contain additional properties.

322 Chapter 8. Experimental features

https://www.typescriptlang.org/play/#src=type%20Foo%20%3D%0D%0A%20%20%20%20%7B%20Bar%3A%20%7B%20f1%3A%20number%2C%20f2%3A%20boolean%20%7D%20%7D%0D%0A%20%20%7C%20%7B%20Baz%3A%20%7B%20f3%3A%20string%20%7D%20%7D%3B%0D%0A%0D%0Afunction%20test(v%3A%20Foo)%20%7B%0D%0A%20%20if%20(%22Bar%22%20in%20v)%20%7B%0D%0A%20%20%20%20console.log(v.Bar.f1%2C%20v.Bar.f2)%3B%0D%0A%20%20%7D%20else%20if%20(%22Baz%22%20in%20v)%20%7B%0D%0A%20%20%20%20console.log(v.Baz.f3)%3B%0D%0A%20%20%7D%20else%20%7B%0D%0A%20%20%20%20const%20_%3A%20never%20%3D%20v%3B%0D%0A%20%20%7D%0D%0A%7D%20%0D%0A
https://www.typescriptlang.org/play/#src=type%20Foo%20%3D%0D%0A%20%20%20%20%7B%20Bar%3A%20%7B%20f1%3A%20number%2C%20f2%3A%20boolean%20%7D%20%7D%0D%0A%20%20%7C%20%7B%20Baz%3A%20%7B%20f3%3A%20string%20%7D%20%7D%3B%0D%0A%0D%0Afunction%20test(v%3A%20Foo)%20%7B%0D%0A%20%20if%20(%22Bar%22%20in%20v)%20%7B%0D%0A%20%20%20%20console.log(v.Bar.f1%2C%20v.Bar.f2)%3B%0D%0A%20%20%7D%20else%20if%20(%22Baz%22%20in%20v)%20%7B%0D%0A%20%20%20%20console.log(v.Baz.f3)%3B%0D%0A%20%20%7D%20else%20%7B%0D%0A%20%20%20%20const%20_%3A%20never%20%3D%20v%3B%0D%0A%20%20%7D%0D%0A%7D%20%0D%0A

DAML SDK Documentation, 2019-12-19

Example: { person: { name: "Bob" }, city: "London" }

Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",

createdAt: "2019-04-30T12:34:12Z" }

No match: { person: { name: "Bob" }, city: "Zurich" }

Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

Example: { favorites: ["vanilla", "chocolate"] }

Match: { favorites: ["vanilla", "chocolate"] }

No match: { favorites: ["chocolate", "vanilla"] }

No match: { favorites: ["vanilla", "strawberry"] }

No match: { favorites: ["vanilla", "chocolate", "strawberry"] }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its

type context is thus mutually exclusive with comparison queries.

8.3.2.3 Comparison query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a

value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

"%lt" for less than

"%gt" for greater than

"%lte" for less than or equal to

"%gte" for greater than or equal to

"%lt" and "%lte"may not be used at the same time, and likewise with "%gt" and "%gte", but all

other combinations are allowed.

Example: { "person" { "dob": { "%lt": "2000-01-01", "%gte": "1980-01-01" } }

}

Match: { person: { dob: "1986-06-21" } }

No match: { person: { dob: "1976-06-21" } }

No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than

these four operators occur where they are legal, so there is no ambiguity with field equality.

8.3.2.4 Appendix: Type-aware queries

This section is non-normative.

This is not a JSON query language, it is a DAML-LF query language. So, while we could theoretically

treat queries (where not otherwise interpreted by the may contain additional properties rule above)

without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery{"foo": "bar"}. This query conforms to types, among anunboundednum-

ber of others:

record A { foo : Text }

record B { foo : Optional Text }

variant C foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;

// these are perfectly legal types in DAML-LF packages

8.3. HTTP JSON API Service 323

DAML SDK Documentation, 2019-12-19

In the cases of A and B, "foo" is part of the query language, and only "bar" is treated as an LF

value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous

interpretations about what elements are interpreted, and what elements treated as literal, and how

those elements are interpreted or compared, would preclude many techniques for efficient query

compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing

them, and impossible in many cases to suppress those unintended meanings within the query lan-

guage. For example, there is no way that the above query could be written to match A but never C.

For these reasons, aswith LF value input via JSON, querieswritten in JSONare also always interpreted

with respect to some specified LF types (e.g. template IDs). For example:

{"%templates": [{"moduleName": "Foo", "entityName": "A"},

{"moduleName": "Foo", "entityName": "B"},

{"moduleName": "Foo", "entityName": "C"}],

"foo": "bar"}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data

types were permitted to be variants, which they are not, but for the sake of argument) as a whole

value equality query for C.

The above Typecheck failure happens because there is no LF type to which both "Bob" and ["Bob",

"Sue"] conform; this would be caught when interpreting the query, before considering any con-

tracts.

8.3.3 How to start

8.3.3.1 Start sandbox from a DAML project directory

$ daml sandbox --wall-clock-time --ledgerid MyLedger ./.daml/dist/

↪→quickstart-0.0.1.dar

8.3.3.2 Start HTTP service from a DAML project directory

$ daml json-api --ledger-host localhost --ledger-port 6865 \

--http-port 7575 --max-inbound-message-size 4194304 --package-reload-

↪→interval 5s \

--application-id HTTP-JSON-API-Gateway --static-content "prefix=static,

↪→directory=./static-content" \

--query-store-jdbc-config "driver=org.postgresql.Driver,

↪→url=jdbc:postgresql://localhost:5432/test?&ssl=true,user=postgres,

↪→password=password,createSchema=false"

$ daml json-api --help

HTTP JSON API daemon

Usage: http-json-binary [options]

--help

Print this usage text

--ledger-host <value>

Ledger host name or IP address

(continues on next page)

324 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

(continued from previous page)

--ledger-port <value>

Ledger port number

--address <value>

IP address that HTTP JSON API service listens on. Defaults to 0.0.

↪→0.0.

--http-port <value>

HTTP JSON API service port number

--application-id <value>

Optional application ID to use for ledger registration. Defaults to

↪→HTTP-JSON-API-Gateway

--package-reload-interval <value>

Optional interval to poll for package updates. Examples: 500ms, 5s,

↪→10min, 1h, 1d. Defaults to 5 seconds

--max-inbound-message-size <value>

Optional max inbound message size in bytes. Defaults to 4194304

--query-store-jdbc-config "driver=<JDBC driver class name>,url=<JDBC

↪→connection url>,user=<user>,password=<password>,createSchema=<true|false>

↪→"

Optional query store JDBC configuration string. Contains comma-

↪→separated key-value pairs. Where:

driver -- JDBC driver class name,

url -- JDBC connection URL,

user -- database user name,

password -- database user password

createSchema -- boolean flag, if set to true, the process will re-

↪→create database schema and terminate immediately.

Example: "driver=org.postgresql.Driver,url=jdbc:postgresql://

↪→localhost:5432/test?&ssl=true,user=postgres,password=password,

↪→createSchema=false"

--static-content "prefix=<URL prefix>,directory=<directory>"

DEV MODE ONLY (not recommended for production). Optional static

↪→content configuration string. Contains comma-separated key-value pairs.

↪→Where:

prefix -- URL prefix,

directory -- local directory that will be mapped to the URL prefix.

Example: "prefix=static,directory=./static-content"

--access-token-file <value>

provide the path from which the access token will be read, required to

↪→interact with an authenticated ledger, no default

8.3.3.3 With Authentication

Apart from interacting with the Ledger API on behalf of the user, the HTTP JSON API server must also

interact with the Ledger API to maintain some relevant internal state.

For this reason, youmust provide an access token when you start the HTTP JSON API if you’re running

it against a Ledger API server that requires authentication.

Note that this token is used exclusively for maintaining the internal list of known packages and

templates, and that it will not be use to authenticate client calls to the HTTP JSON API: the user is

expected to provide a valid authentication token with each call.

8.3. HTTP JSON API Service 325

DAML SDK Documentation, 2019-12-19

TheHTTP JSONAPI servers requires no access to party-specific data, only access to the ledger identity

and package services: a token issued for the HTTP JSON API server should contain enough claims to

contact these two services but no more than that. Please refer to your ledger operator’s documenta-

tion to find out how.

Once you have retrieved your access token, you can provide it to the HTTP JSON API by storing it in a

file and provide the path to it using the --access-token-file command line option.

If the token cannot be read from the provided path or the Ledger API reports an authentication error

(for example due to token expiration), the HTTP JSON API will report the error via logging. The token

file can be updated with a valid token and it will be picked up at the next attempt to send a request.

8.3.4 Example session

$ daml new iou-quickstart-java quickstart-java

$ cd iou-quickstart-java/

$ daml build

$ daml sandbox --wall-clock-time --ledgerid MyLedger ./.daml/dist/

↪→quickstart-0.0.1.dar

$ daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575

8.3.4.1 Choosing a party

You specify your party and other settings with JWT. In testing environments, you can use https://jwt.

io to generate your token.

The default header is fine. Under Payload, fill in:

{

"ledgerId": "MyLedger",

"applicationId": "foobar",

"party": "Alice"

}

Keep in mind: - the value of ledgerId payload field has to match --ledgerid passed to the sand-

box. - you can replace Alice with whatever party you want to use.

Under Verify Signature, put secret as the secret (_not_ base64 encoded); that is the hardcoded

secret for testing.

Then the Encoded box should have your token; set HTTP header Authorization: Bearer copy-

paste-token-here.

Here are two tokens you can use for testing:

{"ledgerId": "MyLedger", "applicationId": "foobar",

"party": "Alice"} eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJsZWRnZXJJZCI6Ik15TGVkZ2VyIiwiYXBwbGljYXRpb25JZCI6ImZvb2JhciIsInBhcnR5IjoiQWxpY2UifQ.

4HYfzjlYr1ApUDot0a6a4zB49zS_jrwRUOCkAiPMqo0

{"ledgerId": "MyLedger", "applicationId": "foobar",

"party": "Bob"} eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

eyJsZWRnZXJJZCI6Ik15TGVkZ2VyIiwiYXBwbGljYXRpb25JZCI6ImZvb2JhciIsInBhcnR5IjoiQm9iIn0.

2LE3fAvUzLx495JWpuSzHye9YaH3Ddt4d2Pj0L1jSjA

For production use, we have a tool in development for generating proper RSA-encrypted tokens lo-

cally, which will arrive when the service also supports such tokens.

326 Chapter 8. Experimental features

https://jwt.io
https://jwt.io

DAML SDK Documentation, 2019-12-19

8.3.4.2 GET http://localhost:7575/contracts/search

List all currently active contracts for all known templates. Note that the retrieved contracts do not

get persisted into query store database.

8.3.4.3 POST http://localhost:7575/contracts/search

List currently active contracts that match a given query.

application/json body, formatted according to the /contracts/search query language:

{"%templates": [{"moduleName": "Iou", "entityName": "Iou"}],

"amount": 999.99}

empty output:

{

"status": 200,

"result": []

}

output, each contract formatted according to DAML-LF JSON Encoding:

{

"status": 200,

"result": [

{

"observers": [],

"agreementText": "",

"signatories": [

"Alice"

],

"contractId": "#489:0",

"templateId": {

"packageId":

↪→"ac3a64908d9f6b4453329b3d7d8ddea44c83f4f5469de5f7ae19158c69bf8473",

"moduleName": "Iou",

"entityName": "Iou"

},

"witnessParties": [

"Alice"

],

"argument": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

}

}

]

}

8.3. HTTP JSON API Service 327

DAML SDK Documentation, 2019-12-19

8.3.4.4 POST http://localhost:7575/command/create

Create a contract.

application/json body, argument formatted according to DAML-LF JSON Encoding:

{

"templateId": {

"moduleName": "Iou",

"entityName": "Iou"

},

"argument": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

}

}

output:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"signatories": [

"Alice"

],

"contractId": "#228:0",

"templateId": {

"packageId":

↪→"6c3b507f18337d64d9b72a5340f6b961c027bfe9dfc1bbf33ac73a9f11623503",

"moduleName": "Iou",

"entityName": "Iou"

},

"witnessParties": [

"Alice"

],

"argument": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

}

}

}

8.3.4.5 POST http://localhost:7575/command/exercise

Exercise a choice on a contract.

328 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

"contractId": "#228:0" is the value from the create output application/json body:

{

"templateId": {

"moduleName": "Iou",

"entityName": "Iou"

},

"contractId": "#228:0",

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Alice"

}

}

output:

{

"status": 200,

"result": {

"exerciseResult": "#328:1",

"contracts": [

{

"archived": {

"contractId": "#228:0",

"templateId": {

"packageId":

↪→"6c3b507f18337d64d9b72a5340f6b961c027bfe9dfc1bbf33ac73a9f11623503",

"moduleName": "Iou",

"entityName": "Iou"

},

"witnessParties": [

"Alice"

]

}

},

{

"created": {

"observers": [],

"agreementText": "",

"signatories": [

"Alice"

],

"contractId": "#328:1",

"templateId": {

"packageId":

↪→"6c3b507f18337d64d9b72a5340f6b961c027bfe9dfc1bbf33ac73a9f11623503",

"moduleName": "Iou",

"entityName": "IouTransfer"

},

"witnessParties": [

"Alice"

(continues on next page)

8.3. HTTP JSON API Service 329

DAML SDK Documentation, 2019-12-19

(continued from previous page)

],

"argument": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

}

}

}

]

}

}

Where:

exerciseResult – the return value of the exercised contract choice.

contracts – an array containing contracts that were archived and created as part of the exer-

cised choice. The array may contain: zero or many {"archived": {...}} and zero or many

{"created": {...}} elements. The order of the contracts is the same as on the ledger.

8.3.4.6 GET http://localhost:7575/parties

output:

{

"status": 200,

"result": [

{

"party": "Alice",

"isLocal": true

}

]

}

8.3.4.7 POST http://localhost:7575/contracts/lookup

Lookup by Contract ID

application/json body:

{

"contractId": "#1:0"

}

output:

330 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"signatories": [

"Alice"

],

"contractId": "#1:0",

"templateId": {

"packageId":

↪→"8a6f2ab52a068c78c0c325591060ccfe744a3106f345061bf09b2ccffd77c3fa",

"moduleName": "Iou",

"entityName": "Iou"

},

"witnessParties": [

"Alice"

],

"argument": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

}

}

}

Lookup by Contract Key

application/json body:

{

"templateId": {

"moduleName": "Account",

"entityName": "Account"

},

"key": [

"Alice",

"abc123"

]

}

output:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

(continues on next page)

8.3. HTTP JSON API Service 331

DAML SDK Documentation, 2019-12-19

(continued from previous page)

"signatories": [

"Alice"

],

"key": {

"_1": "Alice",

"_2": "abc123"

},

"contractId": "#1:0",

"templateId": {

"packageId":

↪→"d7be7966c36fb3588bee1b727cef78a7251caabe3ae4105ba62f06a7af97272b",

"moduleName": "Account",

"entityName": "Account"

},

"witnessParties": [

"Alice"

],

"argument": {

"owner": "Alice",

"number": "abc123"

}

}

}

8.4 DAML Triggers - Off-Ledger Automation in DAML

8.4.1 DAML Trigger Library

The DAML Trigger library defines the API used to declare a DAML trigger. See DAML Triggers - Off-Ledger

Automation in DAML:: for more information on DAML triggers.

8.4.1.1 Module Daml.Trigger

Data Types

data ACS

Active contract set, you can use getContracts to access the templates of a given type.

instance HasField acs (TriggerState s) ACS

instance HasField activeContracts ACS [(AnyContractId, AnyTemplate)]

instance HasField initialize (Trigger s) (ACS -> s)

instance HasField pendingContracts ACS (Map CommandId [AnyContractId])

instance HasField rule (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] -> s

-> TriggerA ())

instance HasField updateState (Trigger s) (ACS -> Message -> s -> s)

data Trigger s

332 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

This is the type of your trigger. s is the user-defined state type which you can often leave

at ().

Trigger

Field Type Description

initialize ACS -> s Initialize the user-defined state based on

the ACS.

updateState ACS -> Mes-

sage -> s -> s

Update the user-defined state based on

the ACS and a transaction or completion

message.

rule Party ->

ACS -> Time

-> Map

CommandId

[Command]

-> s ->

TriggerA ()

The rule defines the main logic of your

trigger. Given the party your trigger is

running as, the ACS, the commands in

flight and the user-defined state, you

can send commands to the ledger using

emitCommands to change the ACS.

registeredTem-

plates

Regis-

teredTem-

plates

The templates the trigger will receive

events for.

instance HasField initialize (Trigger s) (ACS -> s)

instance HasField registeredTemplates (Trigger s) RegisteredTemplates

instance HasField rule (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] -> s

-> TriggerA ())

instance HasField updateState (Trigger s) (ACS -> Message -> s -> s)

data TriggerA a

TriggerA is the type used in the rule of a DAML trigger. Its main feature is that you can

call emitCommands to send commands to the ledger.

instance Functor TriggerA

instance Action TriggerA

instance Applicative TriggerA

instance HasField rule (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] -> s

-> TriggerA ())

Functions

getTemplates : Template a => ACS -> [(ContractId a, a)]

getContracts : Template a => ACS -> [(ContractId a, a)]

Extract the contracts of a given template from the ACS.

emitCommands : [Command] -> [AnyContractId] -> TriggerA CommandId

Send a transaction consisting of the given commands to the ledger. The second argument can

be used tomark a list of contract ids as pending. These contracts will automatically be filtered

8.4. DAML Triggers - Off-Ledger Automation in DAML 333

https://docs.daml.com/daml/reference/base.html#class-ghc-base-functor-73448

DAML SDK Documentation, 2019-12-19

from getContracts until we either get the corresponding transaction event for this command

or a failing completion.

dedupCreate : (Eq t, Template t) => t -> TriggerA ()

Create the template if it’s not already in the list of commands in flight (it will still be created if

it is in the ACS).

Note that this will send the create as a single-command transaction. If you need to send mul-

tiple commands in one transaction, use emitCommands with createCmd and handle filtering

yourself.

dedupExercise : (Eq c, Choice t c r) => ContractId t -> c -> TriggerA ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

If you are calling a consuming choice, you might be better off by using emitCommands and

adding the contract id to the pending set.

dedupExerciseByKey : (Eq c, Eq k, Choice t c r, TemplateKey t k) => k -> c -> TriggerA ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

runTrigger : Trigger s -> Trigger (TriggerState s)

Transform the high-level trigger type into the one from Daml.Trigger.LowLevel.

8.4.1.2 Module Daml.Trigger.LowLevel

Data Types

data ActiveContracts

ActiveContracts

Field Type Description

activeContracts [Created]

instance HasField activeContracts ActiveContracts [Created]

instance HasField initialState (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

data AnyContractId

This type represents the contract id of an unknown template. You can use

fromAnyContractId to check which template it corresponds to.

instance Eq AnyContractId

instance Show AnyContractId

instance HasField activeContracts ACS [(AnyContractId, AnyTemplate)]

instance HasField contractId AnyContractId (ContractId ())

instance HasField contractId Archived AnyContractId

334 Chapter 8. Experimental features

https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447

DAML SDK Documentation, 2019-12-19

instance HasField contractId Command AnyContractId

instance HasField contractId Created AnyContractId

instance HasField pendingContracts ACS (Map CommandId [AnyContractId])

instance HasField pendingContracts TriggerAState (Map CommandId [AnyContractId])

instance HasField templateId AnyContractId TemplateTypeRep

data Archived

The data in an Archived event.

Archived

Field Type Description

eventId EventId

contractId AnyContrac-

tId

instance Eq Archived

instance Show Archived

instance HasField contractId Archived AnyContractId

instance HasField eventId Archived EventId

data Command

A ledger API command. To construct a command use createCmd and exerciseCmd.

CreateCommand

Field Type Description

templateArg AnyTem-

plate

ExerciseCommand

Field Type Description

contractId AnyContrac-

tId

choiceArg AnyChoice

ExerciseByKeyCommand

8.4. DAML Triggers - Off-Ledger Automation in DAML 335

https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447

DAML SDK Documentation, 2019-12-19

Field Type Description

tplTypeRep Template-

TypeRep

contractKey AnyCon-

tractKey

choiceArg AnyChoice

instance HasField choiceArg Command AnyChoice

instance HasField commands Commands [Command]

instance HasField commandsInFlight TriggerAState (Map CommandId [Command])

instance HasField commandsInFlight (TriggerState s) (Map CommandId [Command])

instance HasField contractId Command AnyContractId

instance HasField contractKey Command AnyContractKey

instance HasField rule (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] -> s

-> TriggerA ())

instance HasField templateArg Command AnyTemplate

instance HasField tplTypeRep Command TemplateTypeRep

data CommandId

CommandId Text

instance Eq CommandId

instance Show CommandId

instance HasField commandId Commands CommandId

instance HasField commandId Completion CommandId

instance HasField commandId Transaction (Optional CommandId)

instance HasField commandsInFlight TriggerAState (Map CommandId [Command])

instance HasField commandsInFlight (TriggerState s) (Map CommandId [Command])

instance HasField pendingContracts ACS (Map CommandId [AnyContractId])

instance HasField pendingContracts TriggerAState (Map CommandId [AnyContractId])

instance HasField rule (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] -> s

-> TriggerA ())

instanceMapKey CommandId

data Commands

A set of commands that are submitted as a single transaction.

Commands

336 Chapter 8. Experimental features

https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447

DAML SDK Documentation, 2019-12-19

Field Type Description

commandId CommandId

commands [Command]

instance HasField commandId Commands CommandId

instance HasField commands Commands [Command]

instance HasField emittedCommands TriggerAState [Commands]

instance HasField initialState (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

instance HasField update (Trigger s) (Time -> Message -> s -> (s, [Commands]))

data Completion

A completion message. Note that you will only get completions for commands emitted

from the trigger. Contrary to the ledger API completion stream, this also includes syn-

chronous failures.

Completion

Field Type Description

commandId CommandId

status Completion-

Status

instance Show Completion

instance HasField commandId Completion CommandId

instance HasField status Completion CompletionStatus

data CompletionStatus

Failed

Field Type Description

status Int

message Text

Succeeded

Field Type Description

transactionId Transac-

tionId

instance Show CompletionStatus

instance HasField message CompletionStatus Text

8.4. DAML Triggers - Off-Ledger Automation in DAML 337

https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447
https://docs.daml.com/daml/reference/base.html#type-ghc-types-int-68728
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703

DAML SDK Documentation, 2019-12-19

instance HasField status Completion CompletionStatus

instance HasField status CompletionStatus Int

instance HasField transactionId CompletionStatus TransactionId

data Created

The data in a Created event.

Created

Field Type Description

eventId EventId

contractId AnyContrac-

tId

argument AnyTem-

plate

instance HasField activeContracts ActiveContracts [Created]

instance HasField argument Created AnyTemplate

instance HasField contractId Created AnyContractId

instance HasField eventId Created EventId

data Event

An event in a transaction.

CreatedEvent Created

ArchivedEvent Archived

instance HasField events Transaction [Event]

data EventId

EventId Text

instance Eq EventId

instance Show EventId

instance HasField eventId Archived EventId

instance HasField eventId Created EventId

data Message

Either a transaction or a completion.

MTransaction Transaction

MCompletion Completion

instance HasField update (Trigger s) (Time -> Message -> s -> (s, [Commands]))

instance HasField updateState (Trigger s) (ACS -> Message -> s -> s)

data RegisteredTemplates

338 Chapter 8. Experimental features

https://docs.daml.com/daml/reference/base.html#type-ghc-types-int-68728
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447

DAML SDK Documentation, 2019-12-19

AllInDar

Listen to events for all templates in the given DAR.

RegisteredTemplates [RegisteredTemplate]

instance HasField registeredTemplates (Trigger s) RegisteredTemplates

instance HasField registeredTemplates (Trigger s) RegisteredTemplates

data Transaction

Transaction

Field Type Description

transactionId Transac-

tionId

commandId Optional

CommandId

events [Event]

instance HasField commandId Transaction (Optional CommandId)

instance HasField events Transaction [Event]

instance HasField transactionId Transaction TransactionId

data TransactionId

TransactionId Text

instance Eq TransactionId

instance Show TransactionId

instance HasField transactionId CompletionStatus TransactionId

instance HasField transactionId Transaction TransactionId

data Trigger s

Trigger is (approximately) a left-fold over Message with an accumulator of type s.

Trigger

8.4. DAML Triggers - Off-Ledger Automation in DAML 339

https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#class-ghc-classes-eq-21216
https://docs.daml.com/daml/reference/base.html#class-ghc-show-show-56447

DAML SDK Documentation, 2019-12-19

Field Type Description

initialState Party ->

Time ->

ActiveCon-

tracts ->

(s, [Com-

mands])

update Time ->Mes-

sage -> s -

> (s, [Com-

mands])

registeredTem-

plates

Regis-

teredTem-

plates

instance HasField initialState (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

instance HasField registeredTemplates (Trigger s) RegisteredTemplates

instance HasField update (Trigger s) (Time -> Message -> s -> (s, [Commands]))

Functions

toAnyContractId : Template t => ContractId t -> AnyContractId

Wrap a ContractId t in AnyContractId.

fromAnyContractId : Template t => AnyContractId -> Optional (ContractId t)

Check if a AnyContractId corresponds to the given template or return None otherwise.

fromCreated : Template t => Created -> Optional (EventId, ContractId t, t)

Check if a Created event corresponds to the given template.

fromArchived : Template t => Archived -> Optional (EventId, ContractId t)

Check if an Archived event corresponds to the given template.

registeredTemplate : Template t => RegisteredTemplate

createCmd : Template t => t -> Command

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Command

Exercise the given choice.

exerciseByKeyCmd : (Choice t c r, TemplateKey t k) => k -> c -> Command

fromCreate : Template t => Command -> Optional t

Check if the command corresponds to a create command for the given template.

fromExercise : Choice t c r => Command -> Optional (ContractId t, c)

Check if the command corresponds to an exercise command for the given template.

fromExerciseByKey : (Choice t c r, TemplateKey t k) => Command -> Optional (k, c)

Check if the command corresponds to an exercise by key command for the given template.

WARNING: DAML Triggers are an experimental feature that is actively being designed and is subject

to breaking changes. We welcome feedback about DAML triggers on our issue tracker or on Slack.

340 Chapter 8. Experimental features

https://github.com/digital-asset/daml/issues/new?milestone=DAML+Triggers
https://hub.daml.com/slack/

DAML SDK Documentation, 2019-12-19

In addition to the actual DAML logic which is uploaded to the Ledger and the UI, DAML applications

often need to automate certain interactions with the ledger. This is commonly done in the form of

a ledger client that listens to the transaction stream of the ledger and when certain conditions are

met, e.g., when a template of a given type has been created, the client sends commands to the ledger,

e.g., it creates a template of another type.

It is possible to write these clients in a language of your choice, e.g., JavaScript, using the HTTP JSON

API. However, that introduces an additional layer of friction: You now need to translate between the

template and choice types in DAML and a representation of those DAML types in the language you

are using for your client. DAML triggers address this problem by allowing you to write certain kinds

of automation directly in DAML reusing all the DAML types and logic that you have already defined.

Note that while the logic for DAML triggers is written in DAML, they act like any other ledger client:

They are executed separately from the ledger, they do not need to be uploaded to the ledger and they

do not allow you to do anything that any other ledger client could not do.

8.4.2 Usage

Our example for this tutorial consists of 3 templates.

First, we have a template called Original:

template Original

with

owner : Party

name : Text

textdata : Text

where

signatory owner

key (owner, name) : (Party, Text)

maintainer key._1

This template has an owner, a name that identifies it and some textdata that we just represent as

Text to keep things simple. We have also added a contract key to ensure that each owner can only

have one Original with a given name.

Second, we have a template called Subscriber:

template Subscriber

with

subscriber : Party

subscribedTo : Party

where

signatory subscriber

observer subscribedTo

key (subscriber, subscribedTo) : (Party, Party)

maintainer key._1

This template allows the subscriber to subscribe to Original s where subscribedTo is the

owner. For each of theseOriginal s, our DAML trigger should then automatically create an instance

of third template called Copy:

8.4. DAML Triggers - Off-Ledger Automation in DAML 341

DAML SDK Documentation, 2019-12-19

template Copy

with

original : Original

subscriber : Party

where

signatory (signatory original)

observer subscriber

Our trigger should also ensure that the Copy contracts stay in sync with changes on the ledger. That

means that we need to archive Copy contracts if there is more than one for the same Original,

we need to archive Copy contracts if the corresponding Original has been archived and we need

to archive all Copy s for a given subscriber if the corresponding Subscriber contract has been

archived.

8.4.2.1 Implementing a DAML Trigger

Having defined what our DAML trigger is supposed to do, we can nowmove on to its implementation.

A DAML trigger is a regular DAML project that you can build using daml build. To get access to the

API used to build a trigger, you need to add the daml-triggers library to the dependencies field

in daml.yaml.

dependencies:

- daml-prim

- daml-stdlib

- daml-trigger

In addition to that you also need to import the Daml.Triggermodule.

DAML triggers automatically track the active contract set and the commands in flight for you. In

addition to that, they allow you to have user-defined state that is updated based on new transactions

and command completions. For our copy trigger, the ACS is sufficient, so we will simply use () as

the type of the user defined state.

To create a trigger you need to define a value of type Trigger s where s is the type of your user-

defined state:

data Trigger s = Trigger

{ initialize : ACS -> s

, updateState : ACS -> Message -> s -> s

, rule : Party -> ACS -> Time -> Map CommandId [Command] -> s -> TriggerA

↪→()

, registeredTemplates : RegisteredTemplates

}

The initialize function is called on startup and allows you to initialize your user-defined state

based on the active contract set.

The updateState function is called on new transactions and command completions and can be

used to update your user-defined state based on the ACS and the transaction or completion. Since

our DAML trigger does not have any interesting user-defined state, we will not go into details here.

The rule function is the core of a DAML trigger. It defines which commands need to be sent to the

ledger based on the party the trigger is executed at, the current state of the ACS, the current time, the

342 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

commands in flight and the user defined state. The type TriggerA allows you to emit commands

that are then sent to the ledger. Like Scenario or Update, you can use do notation with TriggerA.

Finally, we can specify the templates that our trigger will operate on. In our case, we will

simply specify AllInDar which means that the trigger will receive events for all tem-

plate types defined in the DAR. It is also possible to specify an explicit list of templates,

e.g., RegisteredTemplates [registeredTemplate @Original, registeredTemplate

@Subscriber, registeredTemplate @Copy]. This is mainly useful for performance reasons if

your DAR contains many templates that are not relevant for your trigger.

For our DAML trigger, the definition looks as follows:

copyTrigger : Trigger ()

copyTrigger = Trigger

{ initialize = _acs -> ()

, updateState = _acs _message () -> ()

, rule = copyRule

, registeredTemplates = AllInDar

}

Nowwe canmove on to themost complex part of our DAML trigger, the implementation of copyRule.

First let’s take a look at the signature:

copyRule : Party -> ACS -> Time -> Map CommandId [Command] -> () ->

↪→TriggerA ()

copyRule party acs _time commandsInFlight () = do

We will need the party and the ACS to get the Original contracts where we are the owner, the

Subscriber contracts where we are in the subscribedTo field and the Copy contracts where we

are the owner of the corresponding Original.

The commands in flight will be useful to avoid sending the same command multiple times if

copyRule is run multiple times before we get the corresponding transaction. Note that DAML trig-

gers are expected to be designed such that they can cope with this, e.g., after a restart or a crash

where the commands in flight do not contain commands in flight from before the restart, so this is

an optimization rather than something required for them to function correctly.

First, we get all Subscriber, Original and Copy contracts from the ACS. For that, the DAML trigger

API provides a getContracts function that given the ACS will return a list of all contracts of a given

template.

let subscribers : [(ContractId Subscriber, Subscriber)] = getContracts

↪→@Subscriber acs

let originals : [(ContractId Original, Original)] = getContracts

↪→@Original acs

let copies : [(ContractId Copy, Copy)] = getContracts @Copy acs

Now, we can filter those contracts to the ones where we are the owner as described before.

let ownedSubscribers = filter (\(_, s) -> s.subscribedTo == party)

↪→subscribers

let ownedOriginals = filter (\(_, o) -> o.owner == party) originals

let ownedCopies = filter (\(_, c) -> c.original.owner == party) copies

8.4. DAML Triggers - Off-Ledger Automation in DAML 343

DAML SDK Documentation, 2019-12-19

We also need a list of all parties that have subscribed to us.

let subscribingParties = map (\(_, s) -> s.subscriber) ownedSubscribers

As we have mentioned before, we only want to keep one Copy per Original and Subscriber and

archive all others. Therefore, we group identical Copy contracts and keep the first of each group

while archiving the others.

let groupedCopies : [[(ContractId Copy, Copy)]]

groupedCopies = groupOn snd $ sortOn snd $ ownedCopies

let copiesToKeep = map head groupedCopies

let archiveDuplicateCopies = concatMap tail groupedCopies

In addition to duplicate copies, we also need to archive copies where the corresponding Original

or Subscriber no longer exists.

let archiveMissingOriginal = filter (\(_, c) -> c.original `notElem` map

↪→snd ownedOriginals) copiesToKeep

let archiveMissingSubscriber = filter (\(_, c) -> c.subscriber `notElem`

↪→subscribingParties) copiesToKeep

let archiveCopies = dedup $ map fst $ archiveDuplicateCopies <>

↪→archiveMissingOriginal <> archiveMissingSubscriber

To send the corresponding archve commands to the ledger, we iterate over archiveCopies us-

ing forA and call the emitCommands function. Each call to emitCommands takes a list of com-

mands which will be submitted as a single transaction. The actual commands can be created using

exerciseCmd and createCmd.

forA archiveCopies $ \cid -> dedupExercise cid Archive

Finally, we also need to create copies that do not already exists. We want to avoid creating copies for

which there is already a command in flight. The DAML Trigger API provides a dedupCreate helper

for this which only sends the commands if it is not already in flight.

let neededCopies = [Copy m o | (_, m) <- ownedOriginals, o <-

↪→subscribingParties]

let createCopies = filter (\c -> c `notElem` map snd copiesToKeep)

↪→neededCopies

mapA dedupCreate createCopies

8.4.2.2 Running a DAML Trigger

To try this example out, you can replicate it using daml new copy-trigger copy-trigger. You

first have to build the trigger like you would build a regular DAML project using daml build. Then

start the sandbox and navigator using daml start.

Now we are ready to run the trigger using daml trigger:

daml trigger --dar .daml/dist/copy-trigger-0.0.1.dar --trigger-name

↪→CopyTrigger:copyTrigger --ledger-host localhost --ledger-port 6865 --

↪→ledger-party Alice

344 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

The first argument specifies the .dar file that we have just built. The second argument specifies the

identifier of the trigger using the syntax ModuleName:identifier. Finally, we need to specify the

ledger host, port and the party that our trigger is executed as.

Now open Navigator at http://localhost:7500/.

First, login as Alice and create an Original contract with party set to Alice. Now, logout and

login as Bob and create a Subscriber contract with subscriber set to Bob and subscribedTo

set to Alice. After a short delay you should now see a Copy contract corresponding to the Original

that you have created as Alice. Once you archive the Subscriber contract, you can see that the

Copy contract will also be archived.

When using DAML triggers against a Ledger with authentication, you can pass --access-token-

file token.jwt to daml trigger which will read the token from the file token.jwt.

8.4.3 When not to use DAML triggers

DAML triggers deliberately only allow you to express automation that listens for ledger events and

reacts to them by sending commands to the ledger. If your automation needs to interact with data

outside of the ledger then DAML triggers are not the right tool. For this case, you can use the HTTP

JSON API.

8.5 DAML Script

8.5.1 DAML Script Library

The DAML Script library defines the API used to implement DAML scripts. See DAML Script:: for more

information on DAML script.

8.5.1.1 Module Daml.Script

Data Types

data Commands a

This is used to build up the commands send as part of submit. If you enable the

ApplicativeDo extension by adding {-# LANGUAGE ApplicativeDo #-} at the top

of your file, you can use do-notation but the individual commands must not depend on

each other.

instance Functor Commands

instance Applicative Commands

instance HasField commands (SubmitCmd a) (Commands a)

data Script a

This is the type of A DAML script. Script is an instance of Action, so you can use do

notation.

instance Functor Script

instance CanAbort Script

instance Action Script

instance Applicative Script

8.5. DAML Script 345

http://localhost:7500/
https://docs.daml.com/daml/reference/base.html#class-ghc-base-functor-73448
https://docs.daml.com/daml/reference/base.html#class-ghc-base-functor-73448

DAML SDK Documentation, 2019-12-19

Functions

query : Template t => Party -> Script [(ContractId t, t)]

Query the set of active contracts of the template that are visible to the given party.

allocateParty : Text -> Script Party

Allocate a party with the given display name using the party management service.

allocatePartyOn : Text -> Text -> Script Party

Allocate a party with the given display name using the party management service.

submit : Party -> Commands a -> Script a

Submit the commands as a single transaction.

submitMustFail : Party -> Commands a -> Script ()

Submit the commands as a single transaction but error if it succeeds. This is only useful for

testing.

createCmd : Template t => t -> Commands (ContractId t)

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Commands r

Exercise a choice on the given contract.

exerciseByKeyCmd : (TemplateKey t k, Choice t c r) => k -> c -> Commands r

Exercise a choice on the contract with the given key.

createAndExerciseCmd : Choice t c r => t -> c -> Commands r

Create a contract and exercise a choice on it in the same transacton.

WARNING: DAML Script is an experimental feature that is actively being designed and is subject to

breaking changes. We welcome feedback about DAML script on our issue tracker or on Slack.

DAML scenarios provide a simple API for experimenting with DAML models and getting quick feed-

back in DAML studio. However, scenarios are run in a special process and do not interact with an

actual ledger. This means that you cannot use scenarios to test other ledger clients, e.g., your UI or

DAML triggers.

DAML script addresses this problemby providing youwith an API with the simplicity of DAML scenar-

ios and all the benefits such as being able to reuse your DAML types and logic while running against

an actual ledger. This means that you can use it to test automation logic, your UI but also for ledger

initialization where scenarios cannot be used (with the exception of DAML Sandbox).

8.5.2 Usage

Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin

with

issuer : Party

owner : Party

where

signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the

issuer as signatories.

346 Chapter 8. Experimental features

https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://github.com/digital-asset/daml/issues/new?milestone=DAML+Script
https://hub.daml.com/slack/

DAML SDK Documentation, 2019-12-19

Second, we have a template called CoinProposal:

template CoinProposal

with

coin : Coin

where

signatory coin.issuer

observer coin.owner

choice Accept : ContractId Coin

controller coin.owner

do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when

exercised by the controller will create the corresponding Coin.

Having defined the templates, we can nowmove on to write DAML scripts that operate on these tem-

plates. To get accees to the API used to implement DAML scripts, you need to add the daml-script

library to the dependencies field in daml.yaml.

dependencies:

- daml-prim

- daml-stdlib

- daml-script

In addition to that you also need to import the Daml.Scriptmodule and since DAML script provides

submit and submitMustFail functions that collide with the ones used in scenarios, we need to

hide those. We also enable the ApplicativeDo extension. We will see below why this is useful.

{-# LANGUAGE ApplicativeDo #-}

daml 1.2

module ScriptExample where

import Prelude hiding (submit, submitMustFail)

import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the

parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with

bank : Party

alice : Party

bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2

of them. This function takes the LedgerParties as an argument and return something of type

Script () which is DAML script’s equivalent of Scenario ().

initialize : LedgerParties -> Script ()

initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transac-

tion. The first argument is the party submitting the transaction. In our case, we want all

proposals to be created by the bank so we use parties.bank. The second argument must

8.5. DAML Script 347

DAML SDK Documentation, 2019-12-19

be of type Commands a so in our case Commands (ContractId CoinProposal, ContractId

CoinProposal, ContractId CoinProposal) corresponding to the 3 proposals that we cre-

ate. Commands is similar to Update which is used in the submit function in scenarios. However,

Commands requires that the individual commands do not depend on each other. This matches

the restriction on the Ledger API where a transaction consists of a list of commands. Using

ApplicativeDo we can still use do-notation as long as we respect this. In Commands we use

createCmd instead of create and exerciseCmd instead of exercise.

(coinProposalAlice, coinProposalBob, coinProposalBank) <- submit parties.

↪→bank $ do

coinProposalAlice <- createCmd (CoinProposal (Coin parties.bank

↪→parties.alice))

coinProposalBob <- createCmd (CoinProposal (Coin parties.bank parties.

↪→bob))

coinProposalBank <- createCmd (CoinProposal (Coin parties.bank parties.

↪→bank))

pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposal``s, we want ``Alice and Bob to accept the pro-

posal while the Bank will ignore the proposal that it has created for itself. To do so we use separate

submit statements for Alice and Bob and call exerciseCmd.

coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept

coinBob <- submit parties.bob $ exerciseCmd coinProposalBob Accept

Finally, we call pure () on the last line of our script to match the type Script ().

pure ()

Wehavenowdefinedaway to initialize the ledger sowecanwrite a test that checks that the contracts

that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does

not take any arguments.

test : Script ()

test = do

Now, we create the parties using the allocateParty function. This uses the party management

service to create new parties with the given display name. Note that the display name does not

identify a party uniquely. If you call allocateParty twice with the same display name, it will create

2 different parties. This is very convenient for testing since a new party cannot see any old contracts

on the ledger so using new parties for each test removes the need to reset the ledger.

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

bank <- allocateParty "Bank"

let parties = LedgerParties bank alice bob

We now call the initialize function that we defined before on the parties that we have just allo-

cated.

348 Chapter 8. Experimental features

DAML SDK Documentation, 2019-12-19

initialize parties

To verify the contracts on the ledger, we use the query function. We pass it the type of the template

and a party. It will then give us all active contracts of the given type visible to the party. In our

example, we expect to see one active CoinProposal for bank and one Coin contract for each of

Alice and Bob. We get back list of (ContractId t, t) pairs from query. In our tests, we do not

need the contract ids, so we throw them away using map snd.

proposals <- query @CoinProposal bank

assertEq [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <- query @Coin alice

assertEq [Coin bank alice] (map snd aliceCoins)

bobCoins <- query @Coin bob

assertEq [Coin bank bob] (map snd bobCoins)

To run our script, we first build it with daml build and then run it by pointing to the DAR, the name

of our script and the host and port our ledger is running on.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name

ScriptExample:test --ledger-host localhost --ledger-port 6865

Up to now, we have worked with parties that we have allocated in the test. We can also pass in the

path to a file containing the input in the DAML-LF JSON Encoding.

{

"alice": "Alice",

"bob": "Bob",

"bank": "Bank"

}

We can then initialize our ledger passing in the json file via --input-file.

daml script daml script --dar .daml/dist/script-example-0.0.1.dar --script-

name ScriptExample:initialize --ledger-host localhost --ledger-port 6865

--input-file ledger-parties.json

If you open Navigator, you can now see the contracts that have been created.

8.5.3 Using DAML Script in Distributed Topologies

So far, we have run DAML script against a single participant node. It is also more possible to run

it in a setting where different parties are hosted on different participant nodes. To do so, pass the

--participant-config participants.json file to daml script instead of --ledger-host

and ledger-port. The file should be of the format

{

"default_participant": {"host": "localhost", "port": 6866},

"participants": {

"one": {"host": "localhost", "port": 6865}

},

(continues on next page)

8.5. DAML Script 349

DAML SDK Documentation, 2019-12-19

(continued from previous page)

"party_participants": {"alice": "one"}

}

This will define a participant called one, a default participant and it defines that the party alice is

on participant one. Whenever you submit something as party, we will use the participant for that

party or if none is specified default_participant. If default_participant is not specified,

using a party with an unspecified participant is an error.

allocateParty will also use the default_participant. If you want to allocate a party on a spe-

cific participant, you can use allocatePartyOn which accepts the participant name as an extra

argument.

8.6 Visualizing DAML Contracts

You can generate visual graphs for the contracts in your DAML project. To do this:

1. Install Graphviz.

2. Generate a DAR from your project by running daml build.

3. Generate a dot file from that DAR by running daml damlc visual <path_to_project>/

dist/<project_name.dar> --dot <project_name>.dot

4. Generate the visual graph with Graphviz by running dot -Tpng <project_name>.dot >

<project_name>.png

8.6.1 Example: Visualizing the Quickstart project

Here’s an example visualization based on the quickstart. You’ll need to install Graphviz to try this out.

1. Generate the dar using daml build

2. Generate a dot file daml damlc visual dist/quickstart-0.0.1.dar --dot

quickstart.dot

3. Generate the visual graph with Graphviz by running dot -Tpng quickstart.dot -o

quickstart.png

Running the above should produce an image which looks something like this:

350 Chapter 8. Experimental features

http://www.graphviz.org/download/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/download/

DAML SDK Documentation, 2019-12-19

8.6.2 Visualizing DAML Contracts - Within IDE

You can generate visual graphs from VS Code IDE. Open the daml project in VS Code and use com-

mand palette. Should reveal a new window pane with dot image. Also visual generates only the

currently open daml file and its imports.

Note: You will need to install the Graphviz/dot packages as mentioned above.

8.6.3 Visualizing DAML Contracts - Interactive Graphs

This does not require any packages installed. You can generate D3 graphs for the contracts in your

DAML project. To do this

1. Generate a DAR from your project by running daml build

2. Generate HTML file daml damlc visual-web .daml/dist/quickstart-0.0.1.dar -o

quickstart.html

Running the above should produce an image which looks something like this:

8.6. Visualizing DAML Contracts 351

https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://d3js.org/

Chapter 9

Support and updates

9.1 Support

Have questions or feedback? You’re in the right place.

Questions: Stack Overflow

For how do I?, why does something work this way or I’ve got a programming problem I’m trying

to solve questions, the daml tag on Stack Overflow is the best place to ask.

If you’re not sure what makes a good question, take a look at this checklist.

Help and feedback: Slack

If you want to give feedback, or have questions that aren’t right for Stack Overflow, you can join

the DAML community on Slack and talk to us in the #public channel.

When you’re in the community Slack or on Stack Overflow, please keep to the Code of Conduct.

9.1.1 Support expectations

For community users (ie on Slack and Stack Overflow):

Timing: You can enjoy the support of the community, which is provided for you out of their own

good will and free time. On top of that, a Digital Asset employee will try to reply to unanswered

questions within two business days.

Business days are affected by public holidays. Engineers contributing to DAML are mostly lo-

cated in Zurich and New York, so please be mindful of the public holidays in those locations

(timeanddate.commaintains an unofficial list of holidays for both Switzerland and the United

States).

Public support: We only offer public support - for example, on the #public channel in Slack.

We can’t answer questions in private messages or over email, so please only ask questions in

the #public channel.

Level of support: We’re happy to answer questions about error messages you’re encountering,

or discuss DAML design questions. However, we can’t provide more extensive consultation on

how to build your DAML application or the languages, frameworks, libraries and tools you may

use to build it.

If you need private support, or want consultation from DA about how to build your DAML application,

we offer paid support. Please contact us to ask about pricing.

352

https://stackoverflow.com/questions/tagged/daml
https://codeblog.jonskeet.uk/2012/11/24/stack-overflow-question-checklist/
https://hub.daml.com/slack/
https://github.com/digital-asset/daml/blob/master/CODE_OF_CONDUCT.md
https://www.timeanddate.com
https://www.timeanddate.com/holidays/switzerland/
https://www.timeanddate.com/holidays/us/
https://www.timeanddate.com/holidays/us/
https://hub.daml.com/slack/

DAML SDK Documentation, 2019-12-19

9.2 Release notes

This page contains release notes for the SDK.

9.2.1 0.13.41 - 2019-12-18

9.2.1.1 DAML Ledger Integration Kit

Move to asyncronous package management service (#3806)

Fix indexer crash on duplicate submission. See #3847

Standardize and cleanup metric names to use underscores that are compatible with

Prometheus

Add FailingCommandsIT and CommandSubmissionCompletion to Ledger test tool suite. Some

of the tests previously part of the CommandService Ledger API Test Tool suite have beenmoved

to a new home in CommandSubmissionCompletion to reflect the fact that those use the sub-

mission/completion workflow instead of leveraging the submit-and-wait alternatives.

9.2.1.2 DAML Triggers - Experimental

Expose timestamp in triggers. See #3612.

9.2.1.3 JSON API - Experimental

Fix and document /contracts/lookup endpoint. See #3755.

Expose exercise result. Changed the output of the /command/exercise. Note

exerciseResult and contracts in {"status":200,"result":{"exerciseResult":

...,"contracts":[...]}. See #3314.

9.2.1.4 Sandbox

Restore 0.13.38 logging behaviour.

9.2.1.5 Navigator

Restore 0.13.38 logging behaviour.

9.2.1.6 Extractor

Restore 0.13.38 logging behaviour.

9.2.1.7 Internals

As of 0.13.39, wemerged anumber of internal JAR files in the SDK tarball to reduce its size. These

jars used to be standalone JARs you could invoke as e.g. java -jar sandbox.jar <args>.

As a result of merging the jars, they lost their individual logback.xml configuration file. Al-

though running the jars directly was (and is still) not supported, note that you can now achieve

the same behaviour with e.g. java -Dlogback.configurationFile=sandbox-logback.

xml -jar daml-sdk.jar sandbox <args>.

9.2.1.8 DAML Standard Library

Add Eq instances for AnyTemplate, AnyChoice and AnyContractKey.

9.2. Release notes 353

https://github.com/digital-asset/daml/issues/3612

DAML SDK Documentation, 2019-12-19

9.2.1.9 DAML Compiler

Fix an issue where transitive package dependencies resulted in packages not being found, if

the DAR name was changed with -o.

9.2.1.10 Documentation

Added documentation for authorization claims

9.2.2 0.13.40 - 2019-12-10

9.2.2.1 DAML Compiler

Themodules DA.Types and GHC.Tuple from daml-prim have beenmoved to separate DALF pack-

ages.

Fixed an issue where packages produced by damlc resulted in type errors during validation by

DAML engine.

9.2.2.2 Sandbox

The sandbox JWT authentication now respects the ledgerId andparticipantId fields of the token

payload.

Improve loading of active contracts for the Sandbox SQL backend.

AuthService implementations can now restrict the validity of access tokens to a single ledger

or participant.

9.2.2.3 Java Client

Ensure the access token is initialized when using a deprecated constructor.

9.2.2.4 RxJava Bindings

Added amethod to the Bot class allowing users to specify a Scheduler to use for running the

bot. See issue #2356.

9.2.2.5 Java Bindings

Removed warnings in code emitted by the Java Codegen.

9.2.3 0.13.39 - 2019-12-05

9.2.3.1 Java Bindings

Added authentication support. See issue #3626.

9.2.3.2 DAML Compiler

Themodules GHC.Prim and GHC.Types from daml-prim have beenmoved to separate pack-

ages.

Don’t make UndecidableSuperClasses a default language extension for DAML anymore. If

you really need this feature for a module, you can reenable it using a LANGUAGE pragma at the

top.

354 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2356
https://github.com/digital-asset/daml/issues/3626

DAML SDK Documentation, 2019-12-19

9.2.3.3 DAML SDK

Reduced the size of the DAML SDK by about 60% uncompressed, 70% compressed, by dedupli-

cating Scala dependencies.

daml damlc docs now takes into account the project’s build-options from daml.yaml.

daml ledger navigator now loads frontend-config.js properly.

9.2.3.4 Navigator

Explicit config files passed via -c are preferred over daml.yaml.

9.2.3.5 Ledger API Server

Add a health check endpoint conforming to the GRPC Health Checking Protocol.

Add health checks for index database connectivity.

9.2.3.6 Participant State API

Add a mandatory currentHealth() method to IndexService, ReadService and

WriteService.

9.2.3.7 DAML Triggers - Experimental

DAML triggers can now be run against an authenticated ledger.

9.2.3.8 DAML Script - Experimental

Add createAndExerciseCmdmatching the Ledger API command of the same name.

9.2.4 0.13.38 - 2019-11-29

9.2.4.1 Ledger API

Allow non-alphanumeric characters in Ledger API server participant ids (space, colon, hash,

slash, dot). Proper fix for change originally attempted in v0.13.36. See issue issue #3327.

Add healthcheck endpoints, conforming to the GRPC Health Checking Protocol. It is always

SERVING for now.

9.2.4.2 Ledger API Server

Ledger API Server and Indexer nowaccept an instance ofMetricRegistry as parameters. This

gives implementors of ledger integrations the most flexibility to set up metrics reporting that

works best for them.

Add various metrics to track gRPC requests, command submissions, and state update pro-

cessing. See #3513.

9.2.4.3 DAML Ledger Integration Kit

Add conformance test coverage for the grpc.health.v1.Health service.

Add Ledger API Test Tool –load-scale-factor option that allows dialing up or down the workload

applied by scale tests (such as the TransactionScaleIT suite). This allows improving the

performance of different ledger over time.

The Ledger API Test Tool no longer shows individual test duration colored based on how long

they lasted.

9.2. Release notes 355

https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/digital-asset/daml/issues/3327
https://github.com/grpc/grpc/blob/master/doc/health-checking.md
https://github.com/digital-asset/daml/issues/3513

DAML SDK Documentation, 2019-12-19

9.2.4.4 Sandbox

Add support for JWT tokens that only authorize to read data, but not to act on the ledger.

Add CLI options to start the sandbox with JWT based authentication with RSA signed tokens.

See issue #3155 .

The --auth-jwt-hs256 CLI option is renamed to --auth-jwt-hs256-unsafe: you are ad-

vised to _not_ use this JWT token signing way in a production environment.

9.2.4.5 Navigator

Fixed a bug where the --access-token-file option did not work correctly.

9.2.4.6 DAML Compiler

Bugfix: The Sdk-Version field in a DAR manifest file now matches the SDK version of the

compiler, not the sdk-version field from daml.yaml. These are usually the same, but they

couldbedifferent if youset theDAML_SDK_VERSION environment variable before runningdaml

init or daml build.

Make the experimental feature generic templates unavailable. The current implementation is

at odds with other, more important language features still under development.

9.2.4.7 DAML Studio

Notify users about new DAML Driven blog posts.

9.2.4.8 Java Bindings

Deprecated existing constructors for DamlLedgerClient, please use the static newBuilder

method to instantiate a builder and use it to create the client, starting from either a

NettyChannelBuilder or a plain host/port pair.

Rename DamlMap to DamlTextMap.

DamlCollectors class provides Collectors to buildmore easily DamlList and DamlTextMap.

Change the recommended method to convert DamlValue containers from/to Java Bindings

containers. See docs/source/app-dev/bindings-java/codegen.rst for more details the newmethod-

ology.

9.2.4.9 DAML-LF Interface Reader

Rename PrimTypeMap to PrimTypeTextMap and PrimType.Map to PrimType.TextMap

9.2.4.10 JSON API - Experimental

Accept a path to a file containing a token at startup for package retrieval. See issue #3627.

9.2.4.11 DAML Triggers - Experimental

DAML Triggers nowallow you to specifywhich templates youwant to listen for. This can improve

performance.

9.2.4.12 DAML Script - Experimental

DAML Script can now run be used in distributed topologies.

Expose the Ledger API exerciseByKey command

356 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/3155
https://github.com/digital-asset/daml/issues/3627

DAML SDK Documentation, 2019-12-19

9.2.5 0.13.37 - 2019-11-20

9.2.5.1 DAML Stdlib

Added the NumericScale typeclass, which improves the type inference for Numeric literals,

and helps catch the creation of out-of-bound Numerics earlier in the compilation process.

fromAnyChoice and fromAnyContractKey now take the template type into account.

9.2.5.2 Navigator

Fixed a bug where Navigator becomes unresponsive if the ledger does not contain any DAML

packages.

9.2.5.3 Ledger-API

Add field gen_map in Protobuf definition for ledger api values. This field is used to sup-

port generic maps, an new feature currently in development. See issue https://github.com/

digital-asset/daml/issues/2256 for more details about generic maps. The Ledger API will send

no messages where this field is set, when using a stable version of DAML-LF. However the ad-

dition of this field may cause pattern-matching exhaustive warnings in the code of ledger API

clients. Those warnings can be safely ignored until GenMap is made stable in an upcoming

version of DAML-LF.

9.2.5.4 Extractor

The app can nowwork against a Ledger API server that requires client authentication. See issue

#3157.

9.2.5.5 DAML Compiler

Breaking The default DAML-LF version is now 1.7. You can still produce DAML-LF 1.6 by pass-

ing --target=1.6 to daml build. This removes the Decimal type in favor of a Numeric

s type with a flexible scale. Decimal is now a synonym for Numeric 10. If you get errors

about ambigous literals, you might need to add a type annotation, e.g., replace 1.0 by (1.0 :

Decimal).

9.2.5.6 JSON API - Experimental

CLI configuration to enable serving static content as part of the JSON API daemon: --static-

content "directory=/full/path,prefix=static" This configuration is NOT recom-

mended for production deployment. See issue #2782.

The database schema has changed; if using --query-store-jdbc-config, you must re-

build the database by adding ,createSchema=true. See issue #3461.

Terminate process immediately after creating schema. See issue #3386.

9.2.5.7 DAML Triggers - Experimental

emitCommands now accepts an additional argument that allows you to mark contracts as

pending. Those contracts will be automatically filtered from the result of getContracts until

we receive the corresponding completion/transaction.

9.2.5.8 DAML Script - Experimental

This release contains a first version of an experimental DAML script feature that provides a

scenario-like API that is run against an actual ledger.

9.2. Release notes 357

https://github.com/digital-asset/daml/issues/2256
https://github.com/digital-asset/daml/issues/2256
https://github.com/digital-asset/daml/issues/3157
https://github.com/digital-asset/daml/issues/3157
https://github.com/digital-asset/daml/pull/3461

DAML SDK Documentation, 2019-12-19

9.2.6 0.13.36 - 2019-11-14

9.2.7 Ledger

Fix divulged contract visibility in multi-participant environments. See issue #3351.

Enable the ability to configure ledger api servers with a time service (for test purposes only).

Allow a ledger api server to share the DAML engine with the DAML-on-X participant node for

performance. See issue #2975.

Allow non-alphanumeric characters in ledger api server participant ids (space, colon, hash,

slash, dot).

Include SQL statement type in ledger api server logging of SQL errors.

9.2.8 DAML Compiler

Support for incremental builds in daml build using the --incremental=yes flag. This is

still experimental and disabled by default but will become enabled by default in the future. On

large codebases, this can significantly improve compile times and reduce memory usage.

Support for data dependencies on packages compiled with an older SDK (experimental). To

import data dependencies, list the packages under the data-dependencies stanza in the

project’s daml.yaml file.

9.2.9 Sandbox

Add the option to start the sandbox with JWT based authentication. See issue #3363.

Fixed a bug in the SQL backend that caused the database to be flooded with requests when

streaming out transactions.

9.2.10 DAML Stdlib

maintainer function that will give you the list of maintainers of a contract key.

9.2.11 DAML Triggers

AddedexerciseByKeyCmd anddedupExerciseByKey to exercise a choice given the contract

key instead of the contract id.

getTemplates has been renamed to getContracts to describe its behaviormore accurately.

getTemplates still exists as a compatiblity helper but it is deprecated and will be removed in

a future SDK release.

Fix a bug where the use of Numeric caused triggers to crash with an assertion error.

9.2.12 JSON API - Experimental

Fix to support Archive choice. See issue #3219

Implement replay on database consistency violation, See issue #3387.

Comparison/range queries supported. See issue #2780.

9.2.13 Extractor - Experimental

Fix bug in reading TLS parameters.

9.2.14 0.13.34 - 2019-11-07

9.2.14.1 DAML-LF - Internal

Freeze DAML-LF 1.7. Summary of changes (See DAML-LF specification for more details.):

358 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/3351
https://github.com/digital-asset/daml/issues/2975
https://github.com/digital-asset/daml/issues/3363
https://github.com/digital-asset/daml/issues/2780

DAML SDK Documentation, 2019-12-19

– Add support for parametrically scaled Numeric type.

– Drop support of Decimal in favor or Numerics.

– Add interning of strings and names. This reduces drastically dar file size.

– Add support for ‘Any’ type.

– Add support for type representation values.

Add immutable bintray/maven packages for handling DAML-LF archive up to version 1.7:

– com.digitalasset.daml-lf-1.7-archive-proto

This package contains the archive protobuf definitions as they were introduced when

1.7 was frozen. These definitions can be used to read DAML-LF archives up to version

1.7.

9.2.14.2 DAML Triggers

Triggers must now be compiled with daml build --target 1.7 instead of 1.dev.

9.2.15 0.13.33 - 2019-11-06

9.2.15.1 Navigator

Fixed regression in Navigator to properly respect the CLI option --ledger-api-inbound-

message-size-max again. See issue #3301.

9.2.15.2 DAML Compiler

Reduce the memory footprint of the IDE and the command line tools (ca. 18% in our experi-

ments).

Fix compile error caused by instantiating generic templates at Numeric n.

The compiler now accepts single-constructor enum types. For example data A = A or data

Foo = Bar.

9.2.15.3 DAML Triggers

Add dedupCreate and dedupExercise helpers that will only send commands if they are not

already in flight.

Remove the custom AbsoluteContractId type in favor of the regular ContractId type used

in DAML templates.

9.2.15.4 Sandbox

Fixed a bug a databasemigration script for Sandbox on Postgres introduced in SDK 0.13.32. See

issue #3284.

Timing about database operations are now exposed over JMX as well as via the logs.

Added a missing index to the SQL schema for the Postgres Ledger.

9.2.15.5 DAML Integration Kit

Re-add integration kit documentation that got accidentally deleted.

9.2.15.6 Ledger API

Disallow empty commands. See issue #592.

9.2. Release notes 359

https://github.com/digital-asset/daml/issues/3301
https://github.com/digital-asset/daml/issues/3284
https://github.com/digital-asset/daml/issues/592

DAML SDK Documentation, 2019-12-19

9.2.15.7 DAML Stdlib

Add DA.TextMap.filter and DA.Next.Map.filter.

Add assertEq and assertNotEq to DA.Assert as synonyms for === and =/=.

Add DA.Foldable.mapA_, DA.Foldable.forA_, DA.Foldable.sequence_ and DA.

Action.replicateA_. These functions match the behavior of corresponding functions

without the underscore suffix but ignore the result which can be more convenient and

efficient.

9.2.15.8 Extractor - Experimental

Extractor now stores exercise events in the single table data format. See issue #3274.

9.2.15.9 JSON API - Experimental

workflowId no longer included in any responses.

/contracts/search endpoint can optionally store searched contracts in a Postgres-based

cache, by passing the new --query-store-jdbc-config option. See issue #2781.

9.2.15.10 DAML SDK

Display release notes in the IDE when the DAML extension is upgraded.

9.2.16 0.13.32 - 2019-10-29

9.2.16.1 DAML Triggers

The trigger runner now supports triggers using the high-level API directly. These no longer need

to be converted to low-level Triggers usingrunTrigger. Triggers using the low-level API are still

supported.

The trigger runner hasanewcommand that just lists the triggers in adar usingdaml trigger

list --dar path/to/dar.

9.2.16.2 DAML Compiler

The package database is now be cleaned automatically on initialization. This means that you

should no longer have to run daml clean on SDK upgrades if you use DAR dependencies (e.g.

with DAML triggers).

9.2.16.3 Sandbox

Improve performance of looking up contracts from postgres. See issue #2330.

9.2.17 0.13.31 - 2019-10-18

9.2.17.1 Sandbox

Party management fix, see issue #3177.

The maximum allowed TTL for commands is now configurable via the --max-ttl-seconds

parameter, for example: daml sandbox --max-ttl-seconds 300.

Fixed a bug where CreatedEvent#event_id field is not properly filled by

ActiveContractsService. See issue #65.

9.2.17.2 DAML SDK

Shrink docker image containing the full DAML SDK from 2.8 GB to 1.2 GB.

360 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/3274
https://github.com/digital-asset/daml/issues/2781
https://github.com/digital-asset/daml/issues/2330
https://github.com/digital-asset/daml/issues/3177
https://github.com/digital-asset/daml/issues/65

DAML SDK Documentation, 2019-12-19

9.2.17.3 Navigator

Accept and use an access token to be used against Ledger API servers that require authentica-

tion, see issue #3156.

Demo-oriented password workflow has been removed.

9.2.17.4 Ledger Client

Expose new method to construct channels for more granular control over the client creation

process.

9.2.17.5 JSON API - Experimental

Add /parties endpoint.

9.2.17.6 DAML Triggers - Experimental

The trigger runner now logs output from trace, error and failed command completions and

hides internal debugging output.

9.2.17.7 DAML-LF - Internal

Changed the name of the bintray/maven package from com.digitalasset.daml-lf-

archive-scala to com.digitalasset.daml-lf-archive-reader

9.2.18 0.13.30 - 2019-10-15

9.2.18.1 DAML Standard Library

Add DA.Action.Statemodule containing a State action that can be used for computations

that modify a state variable.

Add createAndExercise.

9.2.18.2 DAML Compiler

Fixed the location of interface files when the source field in daml.yaml points to a file. This

is mainly important for when you want to use the created .dar in the dependencies field of

another package. See issue #3135.

9.2.18.3 DAML-LF

Breaking Rename DAML-LF Archive protobuf package from com.digitalasset.daml_lf to com.digi-

talasset.daml_lf_dev. This will only affect you do not use the DAML-LF Archive reader provided

with the SDK but a custom one based on code generation by protoc.

Breaking Some bintray/maven packages are renamed:

– com.digitalasset.daml-lf-proto becomes com.digitalasset.daml-lf-dev-archive-proto

– com.digitalasset.daml-lf-archive becomes com.digitalasset:daml-lf-dev-archive-java-proto‘

Add immutable bintray/maven packages for handling DAML-LF archive up to version 1.6 in a stable way:

– com.digitalasset.daml-lf-1.6-archive-proto

This package contains the archive protobuf definitions as they were introduced when

1.6 was frozen. These definitions can be used to read DAML-LF archives up to version

1.6.

9.2. Release notes 361

https://github.com/digital-asset/daml/issues/3156
https://github.com/digital-asset/daml/issues/3135

DAML SDK Documentation, 2019-12-19

The main advantage of this package over the dev version (com.digitalasset.daml-lf-dev-

archive-proto) is that it is immutable (it is guaranteed to never changed once intro-

duced in the SDK). In other words one can used it without suffering frequent breaking

changes introduced in the dev version.

Going forward the SKD will contain a similar immutable package containning the

proto definition for at least each DAML-LF version the compiler supports.

We strongly advise anyone reading DAML-LF Archive directly to use this package (or

the com.digitalasset:daml-lf-1.6-archive-java-proto package described below). Breaking

changes to the dev version may be introduced frequently and without further notice

in the release notes.

– com.digitalasset:daml-lf-1.6-archive-java-proto

This package contains the java classes generated from the package com.digitalas-

set.daml-lf-1.6-archive-proto

9.2.18.4 DAML Triggers

This release contains a first version of an experimental DAML triggers feature that allows you

to implement off-ledger automation in DAML.

9.2.18.5 DAML-SDK Docker Image

The image now contains a daml user and the SDK is installed to /home/daml/.daml. /home/

daml/.daml/bin is automatically added to PATH.

9.2.18.6 JSON API - Experimental

Support for automatic package reload See issue #2906.

9.2.18.7 Java Bindings

Add helper to prepare transformer for Bot.wire. See issue #3097.

9.2.18.8 Ledger

The ledger api index server starts only after the indexer has finished initializing the database.

9.2.18.9 Sandbox

Filter contracts or contracts keys in the database query for parties that cannot see them.

9.2.18.10 Scala Bindings

Fixed a bug in the retry logic of LedgerClientBinding#retryingConfirmedCommands.

Commands are now only retried when the server responds with status RESOURCE_EXHAUSTED

or UNAVAILABLE.

9.2.18.11 Scala Codegen

Fixes for StackOverflowErrors in reading large LF archives. See issue #3104.

9.2.18.12 SQL Extractor

The format used for storing Optional and Map values found in contracts as JSON has been

replaced with DAML-LF JSON Encoding. See issue #3066 for specifics.

362 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2906
https://github.com/digital-asset/daml/issues/3097
https://github.com/digital-asset/daml/issues/3104
https://github.com/digital-asset/daml/issues/3066

DAML SDK Documentation, 2019-12-19

9.2.19 0.13.29 - 2019-10-04

Rerelease of 0.13.28 since that failed due to CI issues.

9.2.20 0.13.28 - 2019-10-04

9.2.20.1 JSON API - Experimental

Returning archived and active/created contracts from /command/exercise endpoint. See

issue #2925.

Flattening the output of the /contracts/search endpoint. The endpoint returns

ActiveContract objects without GetActiveContractsResponse wrappers. See issue

#2987.

9.2.20.2 SDK

Bundle the daml-trigger package. Note, this package is experimental and will change.

Releases can now bundle additional libraries with the SDK in $DAML_SDK/daml-libs. You can

refer to them in your daml.yaml file by listing the package name without .dar extension. See

issue #2979.

9.2.20.3 DAML Studio

damlc ide now also supports a --target option. The easiest way to specify this is the

build-options field in daml.yaml.

Fix a bugwhere the samemodule was imported twice under different file paths causedmodule

name collisions. See issue #3099.

9.2.20.4 Ledger

Improve SQL backend performance by eliminating extra queries to the database.

Enhance logging to correlate log messages with the associated participant id in multi-

participant node tests and environments

Ledger api server indexer closes akka system on shutdown.

The ledger api server now stores divulged, otherwise unknown contracts.

9.2.20.5 DAML Visualization

Adding daml damlc visual-web command. visual-command generates webpage with d3 network.

9.2.20.6 DAML Ledger Integration Kit

The transaction service is now fully tested.

The TTL for commands is now read from the configuration service.

The contract key tests now live under a single test suite and are multi-node aware.

9.2.20.7 DAML Compiler

Fix a problem where constraints of the form Template (Foo t) caused the compiler to sug-

gest enabling the UndecidableInstances language extension.

Generic template instantiations like template instance IouProposal = Proposal

Iou now generate a type synonym type IouProposal = Proposal Iou that can be used

in DAML. Before, they generated a newtype, which cannot be used anymore.

Fixed a bug where damlc build sometimes did not findmodules during typechecking even if

they were present during parallel compilations.

9.2. Release notes 363

https://github.com/digital-asset/daml/issues/2925
https://github.com/digital-asset/daml/pull/2987
https://github.com/digital-asset/daml/pull/2987
https://github.com/digital-asset/daml/issues/2979
https://github.com/digital-asset/daml/issues/3099
https://d3js.org

DAML SDK Documentation, 2019-12-19

9.2.20.8 Security

Document how to verify the signature on release tarballs.

9.2.21 0.13.27 - 2019-09-25

9.2.21.1 DAML Assistant

daml start now supports --sandbox-option=opt, --navigator-option=opt and --

json-api-option=opt to pass additional option to sandbox/navigator/json-api. These flags

can be specified multiple times.

9.2.21.2 DAML Compiler

Fix a bug where generic templates could crash the compiler.

9.2.21.3 Security

Fix signing process.

9.2.22 0.13.26 - 2019-09-24

9.2.22.1 JSON API

/contracts/search now supports a query language for filtering the contracts returned by

matching fields. See issue 2778.

9.2.22.2 DAML Compiler

Fix a bug where .dar files produced by daml build were missing all .daml files except for

the one that source pointed to.

Fix a bug where importing the same module from different directories resulted in an error in

daml build.

damlc migrate now produces a project that can be built with daml build as opposed to

having to use the special build.sh and build.cmd scripts.

9.2.22.3 DAML Integration Toolkit

30 more test cases have been added to the transaction service test suite.

9.2.22.4 Security

Starting with this one, releases are now signed on GitHub.

9.2.23 0.13.25 - 2019-09-18

9.2.23.1 Documentation

Suppress instance documentation when –data-only mode is requested.

9.2.23.2 DAML-LF

Add CAST_NUMERIC and SHIFT_NUMERIC in DAML-LF 1.dev.

Change signature of MUL_NUMERIC and DIV_NUMERIC.

364 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2778

DAML SDK Documentation, 2019-12-19

9.2.23.3 DAML Integration Kit

Fix contract key uniqueness check in kvutils.

Preload packages in a background thread in kvutils.

9.2.23.4 Ledger

ActiveContractsService now specifies to always return at least one message with the offset.

This removes a special case where clients would need to check if the stream was empty or not.

Dramatically increased performance of the ActiveContractService by only loading the contracts

that the parties in the transaction filter are allowed to see.

9.2.24 0.13.24 - 2019-09-16

9.2.24.1 Java codegen

If the DAR source cannot be read, the application crashes and prints an error report.

9.2.24.2 DAML Assistant

Java and Scala codegen is now integrated with the assistant and distributed with the SDK. It

can be run via daml codegen. You can findmore information in the DAML Assistant documen-

tation.

9.2.24.3 DAML Compiler

Fix bug with qualified imports of generic templates.

9.2.24.4 Ledger

Upgraded ledger-api server H2 Database version to 1.4.199 with stability fixes including one to

the merge statement.

9.2.24.5 DAML Integration Kit

One more test case added. Transaction service tests are not multi-node aware.

Semantic tests now ensure synchronization across participants when running in amulti-node

setup.

9.2.25 0.13.23 - 2019-09-11

9.2.25.1 DAML Integration Kit

The reference implementation can now spin up multiple nodes, either scaling a single partici-

pant horizontally or adding new participants. Check the CLI --help option.

The test tool now runs the double spend test on a shared contract in a multi-node setup (as

well as single-node).

The test tool can now run all semantic test in a multi-node setup.

9.2.25.2 DAML Standard Library

BREAKING CHANGE The (/) operator was moved out of the Fractional typeclass into a sep-

arate Divisible typeclass, which is now the parent class of Fractional. The Int instance

of Fractional is discontinued, but there is an Int instance of Divisible. This change will

break projects that rely on the Fractional Int instance. To fix that, change the code to rely

9.2. Release notes 365

https://docs.daml.com/tools/assistant.html
https://docs.daml.com/tools/assistant.html

DAML SDK Documentation, 2019-12-19

on Divisible Int instead. This change will also break projects where a Fractional in-

stance is defined. To fix that, add a Divisible instance and move the definition of (/) there.

9.2.25.3 DAML Assistant

The HTTP JSON API is now integrated with the assistant and distributed with the SDK. It can

either be launched via daml json-api or via daml start. You can find more information in

the README.

The daml.yaml file now supports an additional field build-options, which you can use to list cli

options you want added to invocations of daml build and daml ide.

9.2.25.4 JSON API

BREAKING CHANGE The /contracts/search request payload must use "%templates" in

place of "templateIds" to select which templates’ contracts are returned. See issue #2777.

9.2.25.5 DAML Compiler

BREAKING CHANGE Move the DAML-LF produced by generic template instantiations closer to

the surface syntax. See the documentation on How DAML types are translated to DAML-LF for

details.

9.2.26 0.13.22 - 2019-09-04

9.2.26.1 DAML Assistant

BREAKING CHANGE Changed the meaning of the source field in the daml.yaml file to be a

pointer to the source directory of the DAML code contained in a project relative to the project

root. This is breaking projects, where the source field of the project is pointing to a non-

toplevel location in the source code directory structure.

9.2.26.2 DAML Integration Kit

Introduced initial support for multi-node testing. Note that for the time being no test actually

uses more than one node.

BREAKING CHANGE The -p / --target-port and -h / --host flags have been discontinued.

Pass one (ormore) endpoints to test as command line arguments in the<host>:<port> form.

9.2.26.3 Documentation

Basic explanation of generic templates.

9.2.26.4 Ledger API

BREAKING CHANGE In Protobuf Valuemessage, rename decimal` field to ``numeric.

9.2.26.5 Sandbox

Updated the PostgreSQL JDBC driver to version 42.2.6.

Added TRACE level debugging for database operations.

Fixed a bug that could lead to an inconsistent snapshot of active contracts being served by the

ActiveContractsService under high load.

Commands are now deduplicated based on (submitter, application_id,

command_id).

366 Chapter 9. Support and updates

https://github.com/digital-asset/daml/blob/master/ledger-service/http-json/README.md
https://github.com/digital-asset/daml/issues/2777
https://docs.daml.com/app-dev/daml-lf-translation.html#template-types

DAML SDK Documentation, 2019-12-19

9.2.27 0.13.21 - 2019-08-29

9.2.27.1 DAML Compiler

Enable the language extension FlexibleContexts by default.

BREAKING CHANGE Enable the language extension MonoLocalBinds by default. let and

where bindings introducing polymorphic functions that are used at different types now need

an explicit type annotation. Without the type annotation the type of the first use site will be

inferred and use sites at different types will fail with a type mismatch error.

9.2.27.2 Java Codegen

Fix bug that caused the generation of duplicate methods that affected sources with data con-

structors with type parameters that are either non-unique or not presented in the same order

as in the corresponding data type declaration. See #2367.

9.2.27.3 Ledger

H2 Database support in the Ledger API Server.

9.2.27.4 Sandbox

The sandbox now properly sets the connection pool properties minimumIdle,

maximumPoolSize, and connectionTimeout.

9.2.28 0.13.20 - 2019-08-22

9.2.28.1 Documentation

Added platform-independent tips for testing

9.2.28.2 DAML Compiler

Some issues that caused damlc test to crash on shutdown have been fixed.

The DAML compiler was accidentally compiled without optimizations on Windows. This has

been fixed which should improve the performance of damlc and daml studio on Windows.

damlc build should no longer leak file handles so ulimit workarounds should no longer be

necessary.

Allow more contexts in generic templates. Specifically, template constraints can have argu-

ments besides type variables, if the FlexibleContexts extension is enabled.

9.2.28.3 DAML-LF

Breaking Rename NUMERIC back to DECIMAL in Protobuf definition.

9.2.28.4 DAML Studio

damlc ide now also accepts --ghc-option arguments like damlc build so damlc ide

--ghc-option -W launches the IDE with more warnings.

The VSCode extension now has a configuration field for passing extra arguments to damlc

ide.

9.2.28.5 DAML Integration Kit

Participant State API and kvutils was extended with support for changing the ledger configu-

ration. See changelog in respective package.scala files.

9.2. Release notes 367

https://github.com/digital-asset/daml/issues/2367

DAML SDK Documentation, 2019-12-19

9.2.28.6 Sandbox

Fixed a bug that caused the reset service to hang for 10 seconds. See issue #2549.

9.2.28.7 Java Bindings

The Java Codegen now supports parametrized ContractIds. See #2258.

9.2.28.8 DAML Standard Library

Add stripInfix function to DA.List.

9.2.29 0.13.19 - 2019-08-14

9.2.29.1 Sandbox

Fixed a bug that prevented the ledger from loading transactions with empty workflow ids.

Fixed internal shutdown order to avoid dead letter warnings when stopping Sandbox/Ledger

API Server. See issue #1886.

9.2.29.2 DAML Studio

Added a new command for visualizing a project in the IDE.

Print stack trace when a scenario fails.

Various memory leaks have been fixed so long-running sessions should no longer show a sig-

nificant increase in memory usage.

9.2.29.3 DAML Compiler

The --project-root option now works properly with relative paths in daml build.

Support generic template declarations and instances. Documentation for generic templates

is still being worked on.

The --dump-pom flag from damlc package has been removed as packaging has not relied on

POM files for a while.

9.2.29.4 Navigator

{"None": {}} and {"Some": value}, where previously accepted, are no longer supported

or used for DAML Optional values. Instead, for simple cases, use the plain value for Some, and

null for None. See issue #2361 for other cases.

9.2.29.5 HTTP JSON API

A new, more intuitive JSON format for DAML values is supported. See issue #2361.

9.2.30 0.13.18 - 2019-08-07

Fix a bug where daml studio did not launch VSCode on Windows.

9.2.31 0.13.17 - 2019-08-07

9.2.31.1 DAML Docs

For damlc docs, the --template argument now takes the path to aMustache template when

generating Markdown, Rst, and HTML output. The template can use title and body variables

to control the appearance of the docs.

368 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2549
https://github.com/digital-asset/daml/issues/2258
https://github.com/digital-asset/daml/issues/1886
https://github.com/digital-asset/daml/issues/2361
https://github.com/digital-asset/daml/issues/2361

DAML SDK Documentation, 2019-12-19

9.2.31.2 DAML Assistant

Spaces in user names or other parts of file names should now be handled correctly.

The daml deploy and daml ledger experimental commands were added. Use daml

deploy --help and daml ledger --help to find out more about them.

9.2.32 0.13.16 - 2019-08-01

9.2.32.1 DAML Compiler

BREAKINGCHANGEHandwritten instances ofTemplateandChoice typeclasses are no longer

supported. All template constructs must be defined using declarations inside template syn-

tax.

9.2.32.2 DAML Docs

The damlc docs command now produces docs to a folder by default. Use the new --combine

flag to output a single file instead.

The damlc docs flag --prefix has been replaced with a --template flag which allows for a

more flexible template.

The damlc docs flag --json has been dropped in favor of --format=json.

9.2.32.3 Extractor

BREAKING CHANGE Changed schema to accomodate removed field

ExercisedEvent#contract_creating_event_id. Existing database schemas are

not compatible anymore with the newer version. The extractor needs to be run on an empty

schema from Ledger Begin.

9.2.32.4 Java Bindings

Add all packages of java bindings to the javadocs. See #2280.

BREAKING CHANGE Removed field ExercisedEvent#contract_creating_event_id. See

#2068.

9.2.32.5 Ledger API

BREAKING CHANGE Removed field ExercisedEvent#contract_creating_event_id. See

#2068.

9.2.32.6 Sandbox

The active contract service correctly serves stakeholders. See #2070.

Added the --maxInboundMessageSize CLI parameter to set the maximux size of messages

received through the Ledger API. If the value is not set the current default is preserved (4 MB).

Makes package uploads idempotent and tolerate partial duplicates. See #2130.

9.2.33 0.13.15 - 2019-07-25

9.2.33.1 DAML Studio

Scenario links no longer disappear if the current file does not compile. The location is adjusted

but this is done one a best effort basis and can fail if the scenario itself is modified.

9.2. Release notes 369

https://github.com/digital-asset/daml/issues/2280
https://github.com/digital-asset/daml/issues/2068
https://github.com/digital-asset/daml/issues/2068
https://github.com/digital-asset/daml/issues/2070
https://github.com/digital-asset/daml/issues/2130

DAML SDK Documentation, 2019-12-19

9.2.33.2 DAML Compiler

Support reading of DAML-LF 1.5 again.

9.2.33.3 DAML-LF

Breaking Rename DECIMAL by NUMERIC in archive Protobuf definition.

9.2.33.4 Ledger API

BREAKING: Drop support for legacy identifier. The previously deprecated field name in

Identifier message is not supported anymore. Use module_name and entity_name in-

stead.

9.2.33.5 Navigator

Fixed an issue when Navigator console did not see any contracts. See #2271.

9.2.33.6 Documentation

Improved the Maven pom.xml file for quickstart-java to better integrate with VS Code. See

#887.

9.2.33.7 Releases

Releases should now be announced on the releases blog.

9.2.34 0.13.14 - 2019-07-22

9.2.34.1 DAML Compiler

Support reading of DAML-LF 1.5 again.

9.2.34.2 DAML Studio

VSCode scenario view improvements. Add a note in the IDE if:

there is an open scenario view for a scenario that does no longer exist,

there is an open scenario view for a scenario in a file that does no longer compile.

9.2.35 0.13.13 - 2019-07-16

9.2.35.1 DAML Assistant

Fix VSCode path for use if not already in PATH on mac

BREAKING: remove –replace=newer option.

9.2.35.2 DAML Studio

Fix a bug where the extension seemed to disappear every other time VS Code was opened.

DAML Studio now displays a Processing indicator on the bottom left while the IDE is doing work

in the background.

9.2.35.3 Sandbox

Fixing an issue around handling passTime in scenario loader See #1953.

Remembering already loaded packages after reset See #1979.

370 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2271
https://github.com/digital-asset/daml/issues/887
https://blog.daml.com/release-notes
https://github.com/digital-asset/daml/issues/1953
https://github.com/digital-asset/daml/issues/1979

DAML SDK Documentation, 2019-12-19

9.2.35.4 DAML-LF

Release version 1.6. This versions provides:

– enum types. See issue #105 and DAML-LF 1 specification for more details.

– new builtins for (un)packing strings. See issue #16.

– intern package IDs. See issue #1614.

9.2.35.5 DAML Compiler

Add support for DAML-LF 1.6. In particular:

– BREAKINGCHANGEAdd support forenum types. DAML variant types that look like enumer-

ations (i.e., those variants without type parameters and without arguments) are compiled

to the new DAML-LF enum type when DAML-LF 1.6 target is selected. For instance the daml

type declaration of the form:

data Color = Red | Green | Blue

will produce a DAML-LF enum type instead of DAML-LF variant type. This change is break-

ing, since this release makes DAML-LF 1.6 the default compiler output.

– Add DA.Text.toCodePoints and DA.Text.fromCodePoints primitives to (un)pack

strings.

– Add support for DAML-LF intern package IDs.

BREAKING CHANGEMake DAML-LF 1.6 the default output. This change activates the support of

enum type describes above.

BREAKING CHANGE Drop support for DAML-LF 1.5. Compiling to DAML-LF 1.6 requires some

changes regarding enum types to applications using the Ledger API, see above. (The ledger

server still supports DAML-LF 1.5.)

9.2.35.6 Ledger API

Add support for enum types. Simple DAML variant types will be mapped to DAML-LF enum

types when using a DAML-LF 1.6 archive. Ledger API Value Protobuf provides the new Enum

message. This message must be used to communicate this new data type throught the API.

9.2.35.7 Java Codegen

Add support for enum types. enum types aremapped to standard java enum. See Generate Java

code from DAML for more details.

9.2.35.8 Scala Codegen

Add support for enum types.

9.2.35.9 Navigator

Add support for enum types.

9.2.35.10 Extractor

Add support for enum types.

9.2.35.11 DAML Docs

Added links to type signatures in generated docs. Check out the updated standard library docs.

9.2. Release notes 371

https://github.com/digital-asset/daml/issues/105
https://github.com/digital-asset/daml/blob/master/daml-lf/spec/daml-lf-1.rst
https://github.com/digital-asset/daml/issues/16
https://github.com/digital-asset/daml/pull/1614
https://github.com/digital-asset/daml/blob/master/docs/source/app-dev/bindings-java/codegen.rst
https://github.com/digital-asset/daml/blob/master/docs/source/app-dev/bindings-java/codegen.rst
https://docs.daml.com/daml/reference/base.html

DAML SDK Documentation, 2019-12-19

9.2.36 0.13.12 - 2019-07-09

9.2.36.1 DAML Assistant

Fix VSCode path for use if not already in PATH on mac.

Kill child processes on SIGTERM. Thismeans that killing daml sandboxwill also kill the sand-

box process.

9.2.36.2 DAML-LF

Fixed regression that produced an invalid daml-lf-archive artefact. See #2058.

9.2.36.3 DAML Docs

BREAKING CHANGE damlc docs now typechecks the source files before doc generation, to be

able to use type information during doc generation. This may break existing doc builds.

Added --package-name and --input-format flags to damlc docs.

9.2.37 0.13.11 - 2019-07-08

9.2.37.1 Sandbox

The completion stream method of the command completion service uses the ledger end as a

default value for the offset. See #1913.

Fixed an issue when CompletionService returns offsets having inclusive semantics when used

for re-subscription. See #1932.

DAML-LF packages used by the sandbox are now stored in Postgres, allowing users to resume

a Postgres sandbox ledger without having to again specify all packages through the CLI. See

#1929.

9.2.37.2 Java Bindings

Added overloads to the Java bindings CompletionStreamRequest constructor and the

CommandCompletionClient to accept a request without an explicit ledger offset. See #1913.

DEPRECATION: the CompletionStreamRequest#getOffset method is deprecated in favor

of the non-nullable CompletionStreamRequest#getLedgerOffset. See #1913.

9.2.37.3 Scala Bindings

Contract keys are exposed on CreatedEvent. See #1681.

9.2.37.4 Navigator

Contract keys are show in the contract details page. See #1681.

9.2.37.5 DAML Standard Library

BREAKING CHANGE: Remove the deprecated modules DA.Map, DA.Set, DA.Experimental.

Map and DA.Experimental.Set. Please use DA.Next.Map and DA.Next.Set instead.

Add Sum and Product newtypes that provide Monoid instances based on the Additive and

Multiplicative instances of the underlying type.

Add Min and Max newtypes that provide Semigroup instances based min and max.

372 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/2058
https://github.com/digital-asset/daml/issues/1913
https://github.com/digital-asset/daml/pull/1932
https://github.com/digital-asset/daml/issues/1929
https://github.com/digital-asset/daml/issues/1913
https://github.com/digital-asset/daml/issues/1913
https://github.com/digital-asset/daml/issues/1681
https://github.com/digital-asset/daml/issues/1681

DAML SDK Documentation, 2019-12-19

9.2.37.6 DAML Compiler

The default output path for all artifacts is now in the .daml directory. In particular, the default

output path for .dar files in daml build is now .daml/dist/<projectname>.dar.

9.2.37.7 DAML Studio

DAMLStudio is nowpublished as an extension in the Visual Studio Codemarketplace. Thedaml

studio command will now install the published extension by default, but will revert to the

extension bundled with the DAML SDK if installation fails. You can get the old default behavior

of always using the bundled extension by running daml studio --replace=newer or daml

studio --replace=always instead.

You can now configure the gRPC message size limit in daml.yaml via scenario-service:

{"grpc-max-message-size": 1000000}. This will set the limit to 1000000 bytes. This

should only be necessary for very large projects.

You can now configure the gRPC timeout daml.yaml via scenario-service: {"grpc-

timeout": 42}. This option will set the timeout to 42 seconds. You should only need to set

this option for very large projects.

9.2.37.8 DAML Integration Kit

Make DivulgenceIT properly work when run via the Ledger API Test Tool.

The submission service shuts down its ExecutorService upon exit to ensure a smooth shut-

down.

9.2.37.9 DAML-LF

The DAML-LF development version (1.dev) includes a new, breaking restriction regarding con-

tract key lookups. In short, when looking up or fetching a key, the transaction submitter must

be one of the key maintainers. Note that this change is not breaking since the compiler does

not produce DAML-LF 1.dev by default. However it will be a breaking change once this restric-

tion makes it into DAML-LF 1.6 and once DAML-LF 1.6 becomes the default.

9.2.38 0.13.10 - 2019-06-28

9.2.38.1 Sandbox

Added –log-level command line flag.

BREAKING CHANGE: The Sandbox no longer supports loading fromDALF files. You can now only

use DAR files. See #1610.

9.2.38.2 Ledger API

Added new CLI flags --stable-party-identifiers and --stable-command-

identifiers to the Ledger API Test Tool to allow disabling randomization of party and

command identifiers. It is useful for testing of ledgers which are configured with a predefined

static set of parties.

9.2.39 0.13.9 - 2019-06-28

9.2.39.1 DAML Studio

Fix an error in the package.json that stopped the extension from being loaded.

9.2. Release notes 373

https://github.com/digital-asset/daml/issues/1610

DAML SDK Documentation, 2019-12-19

9.2.40 0.13.8 - 2019-06-27

9.2.40.1 Navigator

Contract details now show signatories and observers. See #1269.

9.2.40.2 Scala Bindings

Reflect addition of signatories and observers to the bindings. See #1269.

9.2.40.3 Java Codegen

Generated code supports signatories and observers as exposed by the bindings. See #1269.

9.2.40.4 Java Bindings

Reflect addition of signatories and observers to the bindings. See #1269.

9.2.40.5 Ledger API

Expose signatories and observers for a contract in CreatedEvent. See #1269.

BREAKING CHANGE: Specify pretty C# namespaces in ledger api protos. C# bindings will end

up in a different namespace than the default one. See #1901.

9.2.40.6 DAML Compiler

BREAKING CHANGE: Drop support for DAML-LF 1.4. Compiling to DAML-LF 1.5 should work with-

out any code changes, although we highly recommend not specifying a target DAML-LF version

at all. (The ledger server still supports DAML-LF 1.4.)

9.2.40.7 Sandbox

Made the archive CLI arguments optional. See #1905.

9.2.40.8 DAML-LF

BREAKING CHANGE: Specify pretty C# namespaces in archive protos. C# bindings will end up

in a different namespace than the default one. See #1900.

9.2.41 0.13.7 - 2019-06-26

9.2.41.1 DAML-LF

Rename none and some to optional_none and optional_some, resp., in Expr and CasePat.

9.2.42 0.13.6 - 2019-06-25

9.2.42.1 DAML Assistant

Added--install-assistant flag todaml install command, changing the default behav-

ior of daml install to install the assistant whenever we are installing a newer version of the

SDK. Deprecated the --activate flag.

Added --start-navigator, --on-start, and --wait-for-signal options to daml

start, to make scripting and testing with the sandbox much easier.

374 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/1269
https://github.com/digital-asset/daml/issues/1269
https://github.com/digital-asset/daml/issues/1269
https://github.com/digital-asset/daml/issues/1269
https://github.com/digital-asset/daml/issues/1269
https://github.com/digital-asset/daml/issues/1901
https://github.com/digital-asset/daml/issues/1905
https://github.com/digital-asset/daml/issues/1900

DAML SDK Documentation, 2019-12-19

9.2.42.2 DAML Studio

Opening an already open scenario will now focus it rather than opening it in a new empty tab

which is never updated with results.

The selected view for scenario results (table or transaction) is nowpreservedwhen the scenario

results are updated. See #1675.

Goto definition now works on the export list of modules.

Goto definition now works on types.

9.2.42.3 DAML-LF

Rename TO_TEXT_CODE_POINTS and FROM_TEXT_CODE_POINTS to

TEXT_FROM_CODE_POINTS and TEXT_TO_CODE_POINTS, resp.

9.2.42.4 Dependencies

Protobuf has been upgraded to version 3.8.0. This also includes the protobuf-java library used

as a dependency.

9.2.42.5 Ledger API

Added additional Ledger API integration tests to Ledger API Test Tool.

9.2.42.6 Java Bindings

The artefact com.daml.ledger:bindings-java now has grpc-netty as dependency so

that users don’t need to explicitly add it.

9.2.42.7 DAML Integration Kit

Fixed a bug in the test tool that prevented users from running the tests. See #1841

9.2.42.8 Navigator

Added support for SDK project configuration files. If you start Navigator with the SDK Assistant,

Navigator will directly read the daml.yaml config file instead of the old Navigator config file.

See #1128.

9.2.42.9 Docker Image

The daml-sdk docker images are now based on Alpine Linux.

9.2.43 0.13.5 - 2019-06-19

9.2.43.1 Release Procedure

Fixes to the CI/CD release procedure. See #1755 <https://github.com/digital-

asset/daml/issues/1755>__.

9.2.43.2 Sandbox

Introduced a new API for package management. See #1311.

9.2. Release notes 375

https://github.com/digital-asset/daml/issues/1675
https://github.com/digital-asset/daml/issues/1841
https://github.com/digital-asset/daml/issues/1128
https://github.com/digital-asset/daml/issues/1311

DAML SDK Documentation, 2019-12-19

9.2.44 0.13.4 - 2019-06-19

9.2.44.1 Java Codegen

Support generic types (including tuples) as contract keys in codegen. See #1728.

9.2.44.2 Ledger API

A new command ExerciseByKey allows to exercise choices on active contracts referring to

them by their key. See #1366.

9.2.44.3 Java Bindings

The addition of the ExerciseByKey to the Ledger API is reflected in the bindings. See #1366.

9.2.44.4 Release Procedure

Fixes to the release procedure. Note: The release to Maven Central was successfully performed

manually in release 0.13.3. This release should confirm that it will occur as part of the CI/CD.

See #1745

9.2.44.5 DAML Studio

Closing and reopening scenario results will now show the results instead of an empty view. See

#1606.

9.2.45 0.13.3 - 2019-06-18

9.2.45.1 Release Procedure

Fixes to the release procedure. See #1737

9.2.45.2 Java Bindings

The changes for Java Bindings listed for SDK 0.13.2 now only apply to SDK 0.13.3 and later. This

is due to the partial failure of the release procedure.

9.2.45.3 Docs

Added An introduction to DAML

9.2.45.4 DAML Studio

The IDE now executes tasks in parallel.

9.2.45.5 Sandbox

Fixed a bug in migration scripts that could cause databases originally created with older ver-

sions of the Sandbox to not upgrade schemas properly. See #1682.

9.2.46 0.13.2 - 2019-06-18

9.2.46.1 Visualizing DAML Contracts

Added Visualizing DAML Contracts

376 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/1728
https://github.com/digital-asset/daml/issues/1366
https://github.com/digital-asset/daml/issues/1366
https://github.com/digital-asset/daml/issues/1745
https://github.com/digital-asset/daml/issues/1606
https://github.com/digital-asset/daml/issues/1737
https://github.com/digital-asset/daml/issues/1682

DAML SDK Documentation, 2019-12-19

9.2.46.2 Release Procedure

Fixes to the release procedure. See #1725

The changes for Java Bindings listed for SDK 0.13.1 now only apply to SDK 0.13.2 and later. This

is due to the partial failure of the release procedure.

9.2.47 0.13.1 - 2019-06-17

9.2.47.1 Language

Add an instance for IsParties (Optional Party), allowing Optional values to be used

in signatory, observer and maintainer clauses.

9.2.47.2 Java Bindings

Release the Java Bindings to the public Maven Central repository. To move to us-

ing the Maven Central repository, remove the <repository>...</repository> and

<pluginRepository>...</pluginRepository> blocks from Maven POM files that use

version 0.13.1 (or later) of the Java Bindings. See #1205.

9.2.48 0.13.0 - 2019-06-17

9.2.48.1 SDK

This marks the first release that is no longer released for the da assistant. It is still possible to

use it to get older SDK releases. Take a look at documentation for the new daml assistant for

migration instructions.

9.2.48.2 Sandbox

Fixed a bug in an internal data structure that broke contract keys. See #1623.

Fixed a bug of not closing a resource properly when shutting down the Sandbox. See #1702.

9.2.48.3 DAML Studio

Double the gRPC message limit used for the scenario service. This avoids issues on large

projects.

9.2.48.4 Ledger API

Slash (/) is now an allowed character in contract, workflow, application and command identi-

fiers.

9.2.49 0.12.25 — 2019-06-13

9.2.49.1 DAML Integration Kit

Added new CLI flag --all-tests to the Ledger API Test Tool to run all default and optional tests.

Added new CLI flag --command-submission-ttl-scale-factor to the Ledger API Test Tool.

It scales time-to-live of commands sent for ledger processing (captured as Maximum Record

Time in submitted transactions) for some suites. Useful to tune Maximum Record Time de-

pending on the environment and the Ledger implementation under test.

Fixed various bugs in the daml-on-x ledger api server and index service.

9.2. Release notes 377

https://github.com/digital-asset/daml/issues/1725
https://github.com/digital-asset/daml/issues/1205
https://docs.daml.com/tools/assistant.html
https://github.com/digital-asset/daml/issues/1623
https://github.com/digital-asset/daml/pull/1702

DAML SDK Documentation, 2019-12-19

9.2.49.2 Sandbox

Introduced a new API for party management. See #1312.

9.2.49.3 Scala bindings

New –root command-line option for limitingwhat templates are selected for codegen. See #1210.

9.2.49.4 Ledger API

Contract keys are now available for created events from the transaction service. See #1268.

9.2.49.5 Java Bindings

The addition of contract keys on created events in the Ledger API is reflected in the bindings.

See #1268.

9.2.49.6 Java Codegen

Contracts decoded from the transaction service now expose their contract key (if defined). See

#1268.

9.2.50 0.12.24 - 2019-06-06

9.2.50.1 DAML Studio

Fix errors due to unhandled$/cancelRequest andtextDocument/willSave requests from

showing up in the output tab in VSCode. These errors also caused an automatic switch from

the problems tab to the output tab which should now no longer happen.

Note that upgrading the VSCode extension requires launching it via daml studio. If you

launch VSCode directly, you might get issues due to an outdated extension.

9.2.51 0.12.23 - 2019-06-05

9.2.51.1 SQL Extractor

50MiB is no longer hard-coded on extractor input for sandbox or any other server, permitting

large packages; e.g. pass --ledger-api-inbound-message-size-max 62914560 to ex-

tractor to get a 60MiB limit. See #1520.

Improving logging. See #1518.

9.2.51.2 DAML Language

BREAKING CHANGE: Contract key maintainers must now explicitly be computed from the con-

tract key using the implicit key variable. For instance, if you have key (bank, accountId)

: (Party, Text) and want bank to be themaintainer, you have to write maintainer key.

_1 (before, you could write maintainer bank).

9.2.51.3 DAML Compiler

BREAKING CHANGE: Drop support for DAML-LF 1.3. Compiling to DAML-LF 1.4 should work with-

out any code changes, although we highly recommend not specifying a target DAML-LF version

at all. (The ledger server still supports DAML-LF 1.3.)

Fix initialization of package-db for non-default DAML-LF versions. This fixes issues when using

daml build –target 1.3 (or other target versions).

378 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/1312
https://github.com/digital-asset/daml/pull/1210
https://github.com/digital-asset/daml/issues/1268
https://github.com/digital-asset/daml/issues/1268
https://github.com/digital-asset/daml/issues/1268
https://github.com/digital-asset/daml/pull/1520
https://github.com/digital-asset/daml/pull/1518

DAML SDK Documentation, 2019-12-19

9.2.51.4 DAML Standard Library

Add enumerate function.

9.2.51.5 Navigator

Fixed a regression where Navigator console was not able to inspect contracts and events. See

#1454.

50MiB is no longer hard-coded on extractor input for sandbox or any other server, permitting

large packages; e.g. pass --ledger-api-inbound-message-size-max 62914560 to ex-

tractor to get a 60MiB limit. See #1520.

9.2.51.6 Sandbox

Added recovery around failing ledger entry persistence queries using Postgres. See #1505.

9.2.51.7 DAML Integration Kit

The Ledger API Test Tool can now optionally run TransactionServiceIT as part of the confor-

mance tests. This means you need to load additional .dar files into the ledger under test.

Please refer to the updated instructions in the documentation.

Added new CLI options to the Ledger API Test Tool:

– --list prints all available tests to the console

– --include takes a comma-separated list of test names that should be run

– --exclude takes a comma-separated list of test names that should not be run

9.2.52 0.12.22 - 2019-05-29

9.2.52.1 DAML Studio

Fixed a bug where type check errors would persist if there was a subsequent parse error.

9.2.52.2 DAML Compiler

BREAKING CHANGE: Drop support for DAML-LF 1.2. Compiling to DAML-LF 1.3 should work with-

out any code changes, although we highly recommend not specifying a target DAML-LF version

at all.

BREAKING CHANGE: By default damlc test must be executed in a project and will test the

whole project. Testing individual files, potentially outside a project, requires passing the new

--files flag.

9.2.52.3 DAML-LF

The Syntax of party literals is relaxed by allowing the character colon. Concretely those liter-

als must match the regular expression [a-zA-Z0-9:\-_]+ instead of [a-zA-Z0-9\-_]+

previously. See #1467.

9.2.52.4 SQL Extractor

The extractor --party option may now specify multiple parties, separated by commas; e.g.

instead of --party Bob you can say --party Bob,Bar,Baz and get the contracts for all

three parties in the database. See #1360.

The extractor --templates option to specify template IDs in the format:

<module1>:<entity1>,<module2>:<entity2>. If not provided, extractor subscribes

to all available templates. See #1352.

9.2. Release notes 379

https://github.com/digital-asset/daml/issues/1454
https://github.com/digital-asset/daml/pull/1520
https://github.com/digital-asset/daml/pull/1505
https://github.com/digital-asset/daml/pull/1467
https://github.com/digital-asset/daml/pull/1360
https://github.com/digital-asset/daml/issues/1352

DAML SDK Documentation, 2019-12-19

9.2.52.5 Sandbox

Fixed a bug in the SQL backend that caused transactions with a fetch node referencing a con-

tract created in the same transaction to be rejected. See issue #1435.

9.2.53 0.12.21 - 2019-05-28

9.2.53.1 DAML Assistant

The exposed-modules field in daml.yaml is now optional. If it is not specified, all modules

in the project are exposed. See #1328.

You can now see all available versions with daml version using the --all flag.

9.2.53.2 DAML Compiler

BREAKINGCHANGE: Drop support for DAML-LF 1.1. Compiling toDAML-LF 1.2 shouldworkwithout

any code changes, although we highly recommend not specifying a target DAML-LF version at

all.

Make DAML-LF 1.5 the default version produced by the compiler.

9.2.53.3 DAML Standard Library

parseInt and parseDecimal now work at more extremes of values and accept leading plus

signs.

9.2.53.4 DAML-LF

Add new version 1.5. See DAML-LF 1 specification for details.

9.2.53.5 Ledger

BREAKING CHANGE: The string fields application_id, command_id, ledger_id, and

workflow_id in Ledger API commands must now match the regular expression [A-Za-z0-

9\._:\-#]{1,255}. Those fields were unrestricted UTF-8 strings in previous versions. See

#398.

9.2.54 0.12.20 - 2019-05-23

9.2.54.1 Sandbox

Contract keys: Support arbitrary key expressions (this was accidentally omitted from 0.12.19).

9.2.55 0.12.19 - 2019-05-22

9.2.55.1 Ledger

Transaction filters in GetTransactionsRequestwithout any party are now rejectedwith INVALID_AR-

GUMENT instead of yielding an empty stream

See #1250 for details.

9.2.55.2 DAML

Contract keys: The syntactic restriction on contract keys has been removed. They can be arbi-

tray expressions now.

380 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/1435
https://github.com/digital-asset/daml/issues/1328
https://github.com/digital-asset/daml/blob/master/daml-lf/spec/daml-lf-1.rst#version-1-5
https://github.com/digital-asset/daml/issues/398
https://github.com/digital-asset/daml/issues/1250

DAML SDK Documentation, 2019-12-19

9.2.55.3 DAML-LF

Addnewversion 1.4 andmake it thedefault versionproducedbydamlc. It removes the syntactic

restriction on contract keys.

9.2.55.4 Java Bindings

Bots: A class called LedgerTestView was added to make bot unit testing possible

9.2.55.5 DAML

BREAKING CHANGE - Syntax: Records with empty update blocks, e.g. foo with, is now an

error (the fact it was ever accepted was a bug).

BREAKING CHANGE - Contract Keys: Before, maintainers were incorrectly not checked to be a

subset of the signatories, now they are. See issue #1123

9.2.55.6 Sandbox

When loading a scenario with --scenario, the sandbox no longer compiles packages twice,

see issue #1238.

When starting the sandbox, you can now choose to have it load all the .dar packages immedi-

ately with the --eager-package-loading flag. The default behavior is to load the packages

only when a command requires them, which causes a delay for the first command that requires

a yet-to-be-compiled package. See issue #1230.

9.2.55.7 SDK tools

The Windows installer is now signed. Youmight still see Windows defender warnings for some

time but the publisher should now show Digital Asset Holdings, LLC.

9.2.56 0.12.18 - 2019-05-20

9.2.56.1 Documentation

Removed unnecessary dependency in the quickstart-java example project.

Removed the ConfigureMaven section from the installation instructions. This step is not needed

anymore.

9.2.56.2 SDK tools

DAML Assistant: We’ve built a new and improved version of the SDK assistant, replacing da

commands with daml commands. The documentation is updated to use the new assistant in

this release.

For a full guide to what’s changed and how to migrate, see Moving to the new DAML assistant. To

read about how to use the new daml Assistant, see DAML Assistant (daml).

9.2.56.3 DAML

BREAKING CHANGE - DAML Compiler: It is now an error to omit method bodies in class

instance s if the method has no default. Almost all instances of such behaviour were an

error - add in a suitable definition.

Contract keys: We’ve added documentation for contract keys, a way of specifying a primary

key for contract instances. For information about how to use them, see Contract keys.

9.2. Release notes 381

https://github.com/digital-asset/daml/issues/1123
https://github.com/digital-asset/daml/issues/1238
https://github.com/digital-asset/daml/issues/1230

DAML SDK Documentation, 2019-12-19

BREAKING CHANGE - DAML Standard Library: Moved the Tuple and Either types to daml-

prim:DA.Types rather than exposing internal locations.

How to migrate:

– You don’t need to change DAML code as a result of this change.

– People using the Java/Scala codegen need to replace import ghc.tuple.* or import

da.internal.prelude.* with import da.types.*.

– People using the Ledger API directly need to replace GHC.Tuple and DA.Internal.

Prelude with DA.Types.

BREAKING CHANGE - DAML Standard Library: Don’t expose the TextMap type via the Prelude

anymore.

How to migrate: Always import DA.TextMap when you want to use the TextMap type.

DAML Standard Library: Add String as a compatibility alias for Text.

9.2.56.4 Ledger API

BREAKINGRemoved theunused field ExercisedEvent from Event, because a Transactionnever con-

tains exercised events (only created and archived events): #960

This change is backwards compatible on the transport level, meaning:

– new versions of ledger language bindings will work with previous versions of the Sandbox,

because the field was never populated

– previous versions of the ledger language bindingswill workwith new versions of the Sand-

box, as the field was removed without any change in observable behavior

How to migrate:

– If you check for the presence of ExercisedEvent when handling a Transaction, you have to

remove this code now.

Added the agreement text as a new field agreement_text to the CreatedEvent message.

This means you now have access to the agreement text of contracts via the Ledger API. The

type of this field is google.protobuf.StringValue to properly reflect the optionality on the

wire for full backwards compatibility. See Google’s wrappers.proto for more information about

StringValue.

See #1110 for details.

Fixed: the CommandService.SubmitAndWait endpoint no longer rejects commands without a

workflow identifier.

See #572 for details.

9.2.56.5 Java Bindings

BREAKING Reflect the breaking change of Ledger API in the event class hierarchy:

– Changed data.Event from an abstract class to an interface, representing events in a flat

transaction.

– Added interface data.TreeEvent, representing events in a transaction tree.

– data.CreatedEvent and data.ArchivedEvent now implement data.Event.

– data.CreatedEvent and data.ExercisedEvent now implement data.TreeEvent.

– data.TransactionTree#eventsById is now Map<String, TreeEvent> (was previ-

ously Map<String, Event>).

How to migrate:

– If you are processing data.TransactionTree objects, you need to change the type of

the processed events from data.Event to data.TreeEvent.

– If you are checking for the presense of exercised events when processing data.

Transaction objects, you can remove that code now. It would never have triggered in

the first place, as transactions do not contain exercised events.

382 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/960
https://github.com/protocolbuffers/protobuf/blob/b4f193788c9f0f05d7e0879ea96cd738630e5d51/src/google/protobuf/wrappers.proto#L31-L34
https://github.com/digital-asset/daml/issues/1110
https://github.com/digital-asset/daml/issues/572

DAML SDK Documentation, 2019-12-19

Java Codegen: You can now call a method to get a CreateAndExerciseCommand for each

choice, for example:

CreateAndExerciseCommand cmd = new MyTemplate(owner, someText).

↪→createAndExerciseAccept(42L);

In this caseMyTemplate is a DAML templatewith a choiceAccept and the resulting command

will create a contract and exercise the Accept choice within the same transaction.

See issue #1092 for details.

Added agreement text of contracts: #1110

– Java Bindings

* Added field Optional<String> agreementText to data.CreatedEvent, to re-

flect the change in Ledger API.

– Java Codegen

* Added generated field Optional<String> TemplateName.

Contract#agreementText.

* Added generated static method TemplateName.Contract.

fromCreatedEvent(CreatedEvent). This is the preferred method to use for

converting a CreatedEvent into a Contract.

* Added generated static method TemplateName.Contract.

fromIdAndRecord(String, Record, Optional<String>). This method is

useful for setting up tests, when you want to convert a Record into a contract

without having to create a CreatedEvent first.

* Deprecated generated static method TemplateName.Contract.

fromIdAndRecord(String, Record) in favor of the new static methods in

the generated Contract classes.

* Changed the generated decoder utility class to use the new fromCreatedEvent

method.

* BREAKING Changed the return type of the getDecodermethod in the generated de-

coder utility class from Optional<BiFunction<String, Record, Contract>>

to Optional<Function<CreatedEvent, Contract>>.

How to migrate:

– If you aremanually constructing instances ofdata.CreatedEvent (for example, for test-

ing), you need to add an Optional<String> value as constructor parameter for the

agreementText field.

– You should change all calls to Contract.fromIdAndRecord to Contract.

fromCreatedEvent.

// BEFORE

CreatedEvent event = ...;

Iou.Contract contract = Iou.Contract.fromIdAndRecord(event.

↪→getContractId(), event.getArguments()));

// AFTER

CreatedEvent event = ...;

Iou.Contract contract = Iou.Contract.fromCreatedEvent(event);

– Pass the data.CreatedEvent directly to the function returned by the de-

coder’s getDecoder method. If you are using the decoder utility class method

fromCreatedEvent, you don’t need to change anything.

CreatedEvent event = ...;

(continues on next page)

9.2. Release notes 383

https://github.com/digital-asset/daml/issues/1092
https://github.com/digital-asset/daml/issues/1110

DAML SDK Documentation, 2019-12-19

(continued from previous page)

// BEFORE

Optional<BiFunction<String, Record, Contract>> decoder =

↪→MyDecoderUtility.getDecoder(MyTemplate.TEMPLATE_ID);

if (decoder.isPresent()) {

return decoder.get().apply(event.getContractId(), event.

↪→getArguments();

}

// AFTER

Optional<Function<CreatedEvent, Contract>> decoder =

↪→MyDecoderUtility.getDecoder(MyTemplate.TEMPLATE_ID);

if (decoder.isPresent()) {

return decoder.get().apply(event);

}

9.2.56.6 Scala Bindings

BREAKING You can now access the agreement text of a contract with the new field

Contract#agreementText: Option[String].

How to migrate:

– If you are pattern matching on com.digitalasset.ledger.client.binding.

Contract, you need to add a match clause for the added field.

– If you are constructing com.digitalasset.ledger.client.binding.Contract val-

ues, for example for tests, you need to add a constructor parameter for the agreement

text.

CreateAndExercise support via createAnd method, e.g. MyTemplate(owner,

someText).createAnd.exerciseAccept(controller, 42). See issue #1092 for

more information.

9.2.56.7 Ledger

Renamed --jdbcurl to --sql-backend-jdbcurl. Left --jdbcurl in place for backwards

compat.

Fixed issue when loading scenarios making use of pass into the sandbox, see #1079.

Fixed issue when loading scenarios that involve contract divulgence, see #1166.

Contract visibility is now properly checked when looking up contracts in the SQL backend, see

#784.

The sandbox now exposes the agreement text of contracts in CreatedEvents. See #1110

9.2.56.8 Navigator

Non-empty agreement texts are now shown on the contract page above the section Contract

details, see #1110

9.2.56.9 SQL Extractor

BREAKING In JSON content, dates and timestamps are formatted like "2020-02-

22" and "2020-02-22T12:13:14Z" rather than UNIX epoch offsets like 18314 or

1582373594000000. See #1174 for more details.

384 Chapter 9. Support and updates

https://github.com/digital-asset/daml/issues/1092
https://github.com/digital-asset/daml/pull/1079
https://github.com/digital-asset/daml/issues/1166
https://github.com/digital-asset/daml/issues/784
https://github.com/digital-asset/daml/issues/1110
https://github.com/digital-asset/daml/issues/1110
https://github.com/digital-asset/daml/issues/1174

DAML SDK Documentation, 2019-12-19

9.2.57 0.12.17 - 2019-05-10

Making transaction lookups performant so we can handle such requests for large ledgers as

well

Sandbox: Transactions with a record time that is after the maximum record time (as provided

in the original command) are now properly rejected instead of committed to the ledger.

See issue #987 for details.

SDK: The Windows installer no longer requires elevated privileges.

9.2.58 0.12.16 - 2019-05-07

Contract keys: Fixed two issues related to contract key visibility.

See issue #969 and issue #973 for details.

Java Codegen: Variants with unserializable cases are now accepted.

See issue #946 for details.

Java Bindings: CreateAndExerciseCommand is now properly converted in the Java Bindings

data layer.

See issue #979 for details.

DAML Integration Kit: Alpha release of the kit for integrating your own ledger with DAML. See

the DAML Integration Kit docs for how to try it out.

DAML Assistant: Added a quickstart-scala DAML Assistant project template.

DAML-LF Engine: If all labels in a record are set, fields no longer need to be ordered.

See issue #988 for details.

9.2.59 0.12.15 - 2019-05-06

Windows support: Beta release of the Windows SDK.

To try it out, download the installer from GitHub releases. TheWindows SDK uses the new daml

command-line which will soon also become the default on Linux and MacOS.

Documentation is still in progress, but you can see the Migration guide and the pull request for

the updated documentation.

DAML Standard Library: Added fromListWith and merge to DA.TextMap.

DAML Standard Library: Deprecated DA.Map and DA.Set. Use the new DA.Next.Map and

DA.Next.Set instead.

Ledger API: Added three new methods to the CommandService:

– SubmitAndWaitForTransactionId returns the transaction ID.

Beta release of the Windows SDK: You can download the installer from GitHub releases. The

Windows SDK ships with the new daml installer which will soon also become the default on

Linux and MacOS. Documentation is still in progress, take a look at the Migration guide and

the updated documentation.

Add fromListWith and merge to DA.TextMap.

Release Javadoc artifacts as part of the SDK. See more here https://github.com/digital-

asset/daml/pull/896

Add DA.Next.Map and DA.Next.Set and deprecate DA.Map and DA.Set in favor of those.

Ledger API: Added three new methods to CommandService:

– SubmitAndWaitForTransactionId returns the transaction id.

– SubmitAndWaitForTransaction returns the transaction.

– SubmitAndWaitForTransactionTree returns the transaction tree.

Ledger API: Added field transaction_id to command completions. This field is only set when

a command is successful.

DAML Standard Library: Added instances of Functor, Applicative, and Action for (->) r

(the reader monad).

9.2. Release notes 385

https://github.com/digital-asset/daml/issues/987
https://github.com/digital-asset/daml/pull/969
https://github.com/digital-asset/daml/pull/973
https://github.com/digital-asset/daml/pull/946
https://github.com/digital-asset/daml/pull/979
https://github.com/digital-asset/daml/issues/988
https://github.com/digital-asset/daml/releases
https://github.com/digital-asset/daml/pull/740
https://github.com/digital-asset/daml/pull/740
https://github.com/digital-asset/daml/releases
https://github.com/digital-asset/daml/pull/768
https://github.com/digital-asset/daml/pull/740

DAML SDK Documentation, 2019-12-19

9.2.60 0.12.14 - 2019-05-03

DAML Standard Library: The id function was previously deprecated and has now been re-

moved. Use identity instead.

DAML and Assistant: The compiler no longer supports DAML-LF 1.0.

DAML-LF: As a new dev minor version, writing with --target 1.dev is now supported by all

tools by default.

Ledger API: You can now look up flat transactions with the new TransactionService methods

GetFlatTransactionByEventId and GetFlatTransactionById.

9.2.61 0.12.13 - 2019-05-02

Sandbox: Fixed an problem with Postgres of potentially not stopping the transaction stream

at required ceiling offset.

For more details, see the pull request.

9.2.62 0.12.12 - 2019-04-30

Sandbox: Added support for using a Postgres database as a back end for the Sandbox, which

gives you persistent data storage. To try it out, see DAML Sandbox.

DAML Integration Kit: Added documentation for the DAML Integration Kit. The docs explain

what the DAML Integration Kit is, what state it is in, and how it is going to evolve.

DAML Integration Kit: Released the Ledger API Test Tool. To try it out, see Ledger API Test Tool.

DAML-LF: Removed DAML-LF Dev major version, --target dev option, and sandbox --

allow-dev option.

A 1.dev target will handle the intended Dev use cases in a future release.

Ledger API: The list of DAML packages used during interpretation is now included in the pro-

duced transaction.

Scala: Source JARs are now released for Scala libraries.

DAML Standard Library: Renamed DA.TextMap.filter and DA.Map.filter to

filterWithKey.

Contract keys: Fixed bug releated to visibility and contract keys.

For details, see issue #751.

Contract keys: Fixed bug related witness parties in transaction events.

For details, see issue #794.

9.2.63 0.12.11 - 2019-04-26

Node.js Bindings: TheNode.js bindings have beenmoved to github.com/digital-asset/daml-js.

DAML: Added documentation for flexible controllers. To read about them, see Overview: template

structure, and for an example, see Multiple party agreement.

9.2.64 0.12.10 — 2019-04-25

DAML-LF: DAML-LF 1.3 is now the default compilation target for the DAML compiler. This means

that contract keys and text maps are now available by default in DAML.

9.2.65 0.12.9 — 2019-04-23

DAML Standard Library: Added the DA.Math library containing exponentiation, logarithms

and trig functions

Ledger API: Added CreateAndExerciseCommand to the Ledger API and DAMLe for creating a

contract and exercising a choice on it within the same transaction.

386 Chapter 9. Support and updates

https://github.com/digital-asset/daml/pull/802
https://github.com/digital-asset/daml/issues/751
https://github.com/digital-asset/daml/issues/794
https://github.com/digital-asset/daml-js

DAML SDK Documentation, 2019-12-19

You can use this to implement callable updates: functions of type Update a that can be called

from the Ledger API via a contract.

Publish the participant-state APIs and reference implementations.

Sandbox: Added the -s option to the CLI to have a shortened version for --static-time.

Sandbox: Change --allow-dev to be a hidden CLI option, as it’s generally not relevant for end

users.

9.2.66 0.12.7 — 2019-04-17

No user-facing changes.

9.2.67 0.12.6 — 2019-04-16

Java Bindings: Removed blocking call inside Bot.wire, which could lead to an application

not making progress in certain situations.

9.2.68 0.12.5 — 2019-04-15

DAML-LF: The DAML-LF Archive Protobuf definitions are now packaged so that it’s possible to

use them without mangling the path.

9.2.69 0.12.4 — 2019-04-15

SDK: Build artifacts are now released to GitHub.

Sandbox: We now avoid recompiling packages after resetting using the ResetService.

Scala: The compiled google.rpc.Status is now included in the ledger-api-scalapb jar.

Ledger API: Fixed critical bug related to the conversion of decimal numbers from Ledger API.

For details, see issue #399 and issue #439.

9.2.70 0.12.3 — 2019-04-12

SDK: Fix Navigator and Extractor packaging.

9.2.71 0.12.2 — 2019-04-12

DAML: Added flexible controllers and disjunction choices.

Sandbox: Introduced experimental support for using Postgres as a backend. The optional CLI

argument for it, --jdbcurl, is still hidden.

Node.js Bindings: Fixed validation for Ledger API timestamp values.

Node.js Bindings: Drop support for identifier names, replacing them with separated module

and entity names.

Node.js Bindings: Ledger API timestamps and dates are now represented with strings instead

of numbers.

Node.js Bindings: Protobuf 64-bit precision integers now use strings instead of numbers, to

avoid a loss of precision.

Java Codegen: Added support for DAML TextMap primitive. This ismapped to the java.util.

Map type, with keys restricted to java.lang.String instances.

Java Codegen: Made log output leaner.

Java Codegen: Added flag for log verbosity: -V LEVEL or --verbosity LEVEL, where LEVEL

is a number between 0 (least verbose) and 4 (most verbose).

BREAKING - Sandbox and DAMLe: Remove support for DAML 1.0 packages in the engine, and

thus the Sandbox. Note that the SDK has removed support for compiling DAML 1.0 months ago.

9.2. Release notes 387

https://github.com/digital-asset/daml/issues/399
https://github.com/digital-asset/daml/pull/439

DAML SDK Documentation, 2019-12-19

9.2.72 0.12.1 — 2019-04-04

No user-facing changes.

9.2.73 0.12.0 — 2019-04-04

Change in how values are addressed in Navigator’s frontend-config.js.

– Old syntax for accessing values: argument.foo.bar

– New syntax:

import { DamlLfValue } from '@da/ui-core';

// Accessing field 'bar' of field 'foo' of the argument

DamlLfValue.evalPath(argument, ["foo", "bar"])

DamlLfValue.toJSON(argument).foo.bar

9.2.74 0.11.32

BREAKING CHANGE - DAML standard library: Removed DA.List.split function, which was

never intended to be exposed and doesn’t do what the name suggests.

BREAKING CHANGE - Java Bindings: Removed type parameter for DamlList and

DamlOptional classes.

The DamlList, DamlOptional, and ContractId classes were previously parameterized (i.e

DamlList[String]) for consistency with the DAML language. The type parameter has been

removed as such type information is not supported by the underlying Ledger API and and there-

fore the parameterized type couldn’t be checked for correctness.

BREAKING CHANGE - Java Bindings: For all classes in the package com.daml.

ledger.javaapi.data, we shortened the names of the conversion methods

from long forms like fromProtoGeneratedCompletionStreamRequest and

toProtoGeneratedCompletionStreamRequest to the much shorter fromProto and

toProto.

Navigator: Added support for Optional and recursive data types.

Navigator: Improved start up performance for big DAML models.

BREAKING CHANGE - Navigator: Refactor the GraphQL API.

If you’re maintaining amodified version of the Navigator frontend, you’ll need to adapt all your

GraphQL queries to the new API.

Navigator: Fixed an issue where it was not possible to enter contract arguments involving

contract IDs.

Navigator: Fixed issues where the console could not read some events or commands from its

database.

BREAKING CHANGE - DAML: For the time being, data types with a single data constructor not

associated with an argument are not accepted. For example, data T = T.

To work around this, use data T = T {} or data T = T () (depending on whether you de-

sire T be interpreted as a product or a sum).

9.2.75 0.11.3 - 2019-02-07

Navigator: Fixed display of Date values.

Extractor: Added first version of Extractor with PostgreSQL support.

9.2.76 0.11.2 - 2019-01-31

Navigator: Added a terminal-based console interface using SQLite as a backend.

Navigator: Now writes logs to ./navigator.log by default using Logback.

388 Chapter 9. Support and updates

DAML SDK Documentation, 2019-12-19

DAML Studio: Significant performance improvements.

DAML Studio: New table view for scenario results.

DAML Standard Library: New type classes.

Node.js bindings: Documentation updated to use version 0.4.0 and DAML 1.2.

9.2.77 0.11.1 - 2019-01-24

Java Bindings: Fixed Timestamp.fromInstant and Timestamp.toInstant.

Java Bindings: Added Timestamp.getMicroseconds.

9.2.78 0.11.0 - 2019-01-17

Documentation: DAML documentation and examples now use DAML 1.2.

Documentation: Added a comprehensive quickstart guide that replaces the old My first project

example.

As part of this, removed the My first project, IOU and PvP examples.

Documentation: Added a guide to building applications against a DA ledger.

Documentation: Updated the support and feedback page.

Ledger API: Version 1.4.0 has support for multi-party subscriptions in the transactions and ac-

tive contracts services.

Ledger API: Version 1.4.0 supports the verbose field in the transactions and active contracts

services.

Ledger API: Version 1.4.0 has full support for transaction trees.

Sandbox: Implements Ledger API version 1.4.0.

Java Bindings: Examples updated to use version 2.5.2 which implements Ledger API version

1.4.0.

9.2.78.1 Moving to the new DAML assistant

We’ve released a new command-line tool for working with the DAML SDK: DAML Assistant, or daml.

Many of its commands are similar to the old SDK Assistant (da), but there are some changes:

Simplified installation process: curl -sSL https://get.daml.com/ | sh for Linux and

Mac

Overhaul and simplification of templates:

– daml new takes arguments in a consistent order:

* daml new proj creates a new project named proj with a skeleton template

* daml new proj quickstart-java creates a new project with the quickstart-java

template

– daml new templates are built-in to the SDK

– Mix-in template mechanism is gone (da add)

– No more publishing or subscribing of templates on Bintray: use Github and git clone

to distribute templates outside of the SDK

Use daml build to compile your project into a DAR

daml start components don’t run in the background, and you stop them with ctrl+c

As a result, there are no equivalents to da stop and da restart

No da run equivalent, but:

– daml sandbox is the same as da run sandbox --

– daml navigator is the same as da run navigator --

– daml damlc is the same as da run damlc --

daml.yaml configuration file replaces da.yaml - read more about this in the next section

9.2. Release notes 389

DAML SDK Documentation, 2019-12-19

Migrating a da project to daml

Migrating with daml init

You canmigrate an existing project using the daml init command. To use it, go to the project root

on the command line and run daml init. This will create a daml.yaml file based on da.yaml.

Some things to keep in mind when using daml init to migrate projects:

If your project uses an SDK version prior to 0.12.15, the generated daml.yaml will use SDK ver-

sion 0.12.15 instead. Support for previous SDK versions in the new assistant is limited.

daml.yaml adds exposed-modules and dependencies fields, which are needed for daml

build. Depending on your DAML project, may have to adjust these fields in the generated

daml.yaml.

Migrating manually

To migrate the project manually:

1. Upgrade your project to SDK version 0.12.15 or later.

2. Convert your project’s da.yaml file into a daml.yaml file.

The two files are very similar: daml.yaml is the project section of da.yaml, plus some addi-

tional packaging information. Here is an example of adaml.yaml file, from the quickstart-java

template:

sdk-version: 0.12.14

name: my_project

source: daml

scenario: Main:setup

parties:

- Alice

- Bob

- USD_Bank

- EUR_Bank

version: 1.0.0

exposed-modules:

- Main

dependencies:

- daml-prim

- daml-stdlib

Here is the corresponding da.yaml file:

project:

sdk-version: 0.12.12

scenario: Main:setup

name: foobar

source: daml

parties:

- Alice

- Bob

- USD_Bank

- EUR_Bank

version: 2

390 Chapter 9. Support and updates

DAML SDK Documentation, 2019-12-19

The extra fields in daml.yaml are related to the new packaging functionality in damlc. When you

build aDAMLproject withdaml build (ordaml start) it creates a.darpackage fromyour project

inside the dist/ folder. (You can supply a different target location by passing the -o option.) To

create the package properly, the new config file daml.yaml needs the following additional fields

that were not present in da.yaml:

version: The version number for the DAML project, which becomes the version number for the

compiled package.

exposed-modules: When the .dar file is built, this determines whatmodules are exposed for

users of the package.

dependencies: The DAML packages that this project depends on. daml-prim and daml-

stdlib together give access to the basic definitions of DAML - you should add them both as

dependencies. Additional dependencies can only be added by giving the path to the .dar file

of the other package.

You can now use daml commands with your project.

Switching from old commands to new ones

This section goes through the da commands, and gives the daml equivalent where there is one.

Managing versions and config

Old com-

mand

Purpose New equivalent

da setup Initialize the SDK No longer needed: this is handled by the installer

da

upgrade

Upgrade SDK ver-

sion

daml install <version>

da list List installed SDK

versions

daml version

da use Set the default SDK

version

No direct equivalent; you now set the newSDK version (sdk-

version: X.Y.Z) in your project config file (daml.yaml)

manually

da config Query and manage

config

No equivalent: view and edit your config files directly

da

uninstall

Uninstall the SDK Currently no equivalent for this

da

update-

info

Show assistant up-

date channel infor-

mation

No longer needed

9.2. Release notes 391

DAML SDK Documentation, 2019-12-19

Running components

Old com-

mand

Purpose New equivalent

da start Start Navigator and Sandbox daml start

da stop Stop running Navigator and

Sandbox

ctrl+c

da restart Shut down and restart Navi-

gator and Sandbox

ctrl+c and daml start

da studio Launch DAML Studio daml studio

da

navigator

Launch Navigator No direct equivalent; daml navigator is

equivalent to da run navigator

da sandbox Launch Sandbox No direct equivalent; daml sandbox is equiva-

lent to da run sandbox

da compile Compile a DAML project into

a .dar file

daml build

da run

<component>

Run an SDK component daml navigator, daml sandbox, etc as

above

da path

<component>

Show the path to an SDK

component

No equivalent

da status Show a list of running ser-

vices

No longer needed: components no longer run in

the background

Managing templates and projects

Old com-

mand

Purpose New equivalent

da template Manage SDK templates No longer needed: use git clone for tem-

plates instead

da project

new

Create an SDK project daml new, or use git clone

da project

add

Add a template to the current

project

No longer needed: use git clone instead

da new Create a new project from tem-

plate

daml new <target path> <name of

template>

da

subscribe

Subscribe to a template names-

pace

No longer needed: use git clone instead

da

unsubscribe

Unsubscribe from a template

namespace

No longer needed: use git clone instead

392 Chapter 9. Support and updates

DAML SDK Documentation, 2019-12-19

Docs and feedback

Old com-

mand

Purpose New equivalent

da docs Display the doc-

umentation

No longer needed: you can access the docs at docs.daml.com,

which includes a PDF download for offline use

da

feedback

Send us feed-

back

No longer needed: see Support for how to give feedback.

da

config-

help

Show help about

config files

No longer needed: config files are documented on this page

da

changelog

Show release

notes

No longer needed: see the Release notes

9.3 DAML roadmap (as of September 2019)

This page specifies themajor features we’re planning to add next to the DAML Ecosystem. Plans and

timelines are subject to change. If you need any of these features or want to request others, see the

Support page for how to get in touch.

We plan to update this roadmap roughly every three months.

DAML Triggers

Support for non-transactional automation written directly in DAML. See discusison on GitHub

Developer tooling

Improved developer experience and functionality on

– Package Management

– Party Allocation and Management

– Application Deployment

– Application Upgrading

API Authentication

Addition of JWT based authentication to the Ledger API

High Level API

A HTTP/JSON-based high-level API with querying capabilities

Ledger Ops Tooling

Tooling for monitoring, logging and health checking ledgers

Canton

Public release of a pre-alpha reference distributed DAML Ledger implementation with a public

test-net, strong privacy, regulatory compliance, and composabilty

See canton.io

Deployment Options

– DAML-on-Aurora publicly available on AWS Marketplace

– DAML-on-Sawtooth publicly available on Sextant by Blockchain Technology Partners

9.3. DAML roadmap (as of September 2019) 393

https://docs.daml.com/
https://github.com/digital-asset/daml/issues/1615
https://canton.io/
https://blockchaintp.com/sextant/

	Table of contents
	Getting started
	Installing the SDK
	1. Install the dependencies
	2. Install the SDK
	Next steps
	Alternative: manual download

	Quickstart guide
	Download the quickstart application
	Overview of what an IOU is
	Run the application using prototyping tools
	Try out the application
	Get started with DAML
	Integrate with the ledger
	Next steps

	Writing DAML
	An introduction to DAML
	1 Basic contracts
	2 Testing templates using scenarios
	3 Data types
	4 Transforming data using choices
	5 Adding constraints to a contract
	6 Parties and authority
	7 Composing choices

	Language reference docs
	Overview: template structure
	Reference: templates
	Reference: choices
	Reference: updates
	Reference: data types
	Reference: built-in functions
	Reference: expressions
	Reference: functions
	Reference: scenarios
	Reference: DAML file structure
	Reference: DAML packages
	Contract keys

	DAML Studio
	Installing
	Creating your first DAML file
	Supported features
	Common scenario errors

	Testing using scenarios
	Scenario syntax
	Running scenarios in DAML Studio
	Examples

	Troubleshooting
	Error: “<X> is not authorized to commit an update”
	Error “Argument is not of serializable type”
	Modelling questions
	Testing questions

	Writing good DAML
	Good design patterns
	Anti-patterns
	What functionality belongs in DAML models versus application code?

	Building applications
	Writing applications using the Ledger API
	The Ledger API services
	How DAML types are translated to DAML-LF
	Resources available to you
	What’s in the Ledger API
	DAML-LF

	Java bindings
	Generate Java code from DAML
	Example project
	Overview
	Reference documentation
	Getting started
	Example project

	Scala bindings
	Introduction
	Getting started
	Generating Scala code
	Example code
	Authentication

	Node.js bindings
	The Ledger API using gRPC
	Ledger API Reference
	How DAML types are translated to protobuf
	Getting started
	Protobuf reference documentation
	Example project
	DAML types and protobuf
	Error handling

	Creating your own bindings
	Introduction
	Building Ledger Commands
	Summary
	Links

	Application architecture guide
	Categories of application
	Structuring an application
	Application libraries
	Architecture guidance
	Commonly used types
	Test the business logic with a ledger
	Share the ledger
	Reset if you need to

	Authentication
	Introduction
	Access tokens and claims
	Getting access tokens
	Using access tokens

	SDK tools
	DAML Assistant (daml)
	Moving to the daml assistant
	Full help for commands
	Configuration files
	Building DAML projects
	Managing SDK releases

	DAML Sandbox
	Running with persistence
	Running with authentication
	Command-line reference

	Navigator
	Navigator functionality
	Installing and starting Navigator
	Choosing a party / changing the party
	Logging out
	Viewing templates or contracts
	Using Navigator
	Authenticating Navigator
	Advanced usage

	Background concepts
	Glossary of concepts
	DAML
	SDK tools
	Building applications
	General concepts

	DA Ledger Model
	Structure
	Integrity
	Privacy
	DAML: Defining Contract Models Compactly

	Deploying
	Deploying to DAML Ledgers
	How to Deploy
	Available DAML Products
	Open Source Integrations
	DAML Ledgers in Development

	Examples
	DAML examples

	Experimental features
	WARNING
	Navigator Console
	Extractor

	DAML Integration Kit - ALPHA
	Ledger API Test Tool
	DAML Integration Kit status and roadmap
	Implementing your own DAML Ledger
	Deploying a DAML Ledger
	Testing a DAML Ledger
	Benchmarking a DAML Ledger

	HTTP JSON API Service
	DAML-LF JSON Encoding
	/contracts/search query language
	How to start
	Example session

	DAML Triggers - Off-Ledger Automation in DAML
	DAML Trigger Library
	Usage
	When not to use DAML triggers

	DAML Script
	DAML Script Library
	Usage
	Using DAML Script in Distributed Topologies

	Visualizing DAML Contracts
	Example: Visualizing the Quickstart project
	Visualizing DAML Contracts - Within IDE
	Visualizing DAML Contracts - Interactive Graphs

	Support and updates
	Support
	Support expectations

	Release notes
	0.13.41 - 2019-12-18
	0.13.40 - 2019-12-10
	0.13.39 - 2019-12-05
	0.13.38 - 2019-11-29
	0.13.37 - 2019-11-20
	0.13.36 - 2019-11-14
	Ledger
	DAML Compiler
	Sandbox
	DAML Stdlib
	DAML Triggers
	JSON API - Experimental
	Extractor - Experimental
	0.13.34 - 2019-11-07
	0.13.33 - 2019-11-06
	0.13.32 - 2019-10-29
	0.13.31 - 2019-10-18
	0.13.30 - 2019-10-15
	0.13.29 - 2019-10-04
	0.13.28 - 2019-10-04
	0.13.27 - 2019-09-25
	0.13.26 - 2019-09-24
	0.13.25 - 2019-09-18
	0.13.24 - 2019-09-16
	0.13.23 - 2019-09-11
	0.13.22 - 2019-09-04
	0.13.21 - 2019-08-29
	0.13.20 - 2019-08-22
	0.13.19 - 2019-08-14
	0.13.18 - 2019-08-07
	0.13.17 - 2019-08-07
	0.13.16 - 2019-08-01
	0.13.15 - 2019-07-25
	0.13.14 - 2019-07-22
	0.13.13 - 2019-07-16
	0.13.12 - 2019-07-09
	0.13.11 - 2019-07-08
	0.13.10 - 2019-06-28
	0.13.9 - 2019-06-28
	0.13.8 - 2019-06-27
	0.13.7 - 2019-06-26
	0.13.6 - 2019-06-25
	0.13.5 - 2019-06-19
	0.13.4 - 2019-06-19
	0.13.3 - 2019-06-18
	0.13.2 - 2019-06-18
	0.13.1 - 2019-06-17
	0.13.0 - 2019-06-17
	0.12.25 — 2019-06-13
	0.12.24 - 2019-06-06
	0.12.23 - 2019-06-05
	0.12.22 - 2019-05-29
	0.12.21 - 2019-05-28
	0.12.20 - 2019-05-23
	0.12.19 - 2019-05-22
	0.12.18 - 2019-05-20
	0.12.17 - 2019-05-10
	0.12.16 - 2019-05-07
	0.12.15 - 2019-05-06
	0.12.14 - 2019-05-03
	0.12.13 - 2019-05-02
	0.12.12 - 2019-04-30
	0.12.11 - 2019-04-26
	0.12.10 — 2019-04-25
	0.12.9 — 2019-04-23
	0.12.7 — 2019-04-17
	0.12.6 — 2019-04-16
	0.12.5 — 2019-04-15
	0.12.4 — 2019-04-15
	0.12.3 — 2019-04-12
	0.12.2 — 2019-04-12
	0.12.1 — 2019-04-04
	0.12.0 — 2019-04-04
	0.11.32
	0.11.3 - 2019-02-07
	0.11.2 - 2019-01-31
	0.11.1 - 2019-01-24
	0.11.0 - 2019-01-17

	DAML roadmap (as of September 2019)

