DAML SDK Documentation

DAML

Digital Asset

Version : 1.1.0-snapshot.20200422.3991.0.6391ee9f

Copyright 2020 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents

1 Getting started
1.1 Installing the SDK

1.1

11.2
11.3
1.1.4

1.2 Getting Started with DAML
App Architecture
Your First Feature
Prerequisites
Running the app

1.2.1

1.2.2
1.2.3
1.2.4

1. Install the dependencies
2. Install the SDK
Next steps

Alternative: manual download

1.3 Testing Your App

1.3.1

1.3.2
1.3.3
1.3.4
1.3.5

Setting up our tests
Example: Logging in and out
Accessing Ul elements
Writing CSS Selectors
The Full Test Suite

2 Writing DAML

2.1 Anintroduction to DAML
1 Basic contracts

2.1.1

2.1.2
213
214
2.1.5
2.1.6
2.1.7

2.2.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.27
2.2.8
2.2.9
2.2.10

2 Testing templates usingscenarios

3 Data types

4 Transforming datausingchoices
5Adding constraintstoacontract L L oo L.

6 Parties and authority
7 Composing choices
2.2 Language reference docs
Overview: template structure
templates
choices........
updates
datatypes
built-in functions .
expressions
functions
scenarios

Reference:
Reference:
Reference:
Reference:
Reference:
Reference:
Reference:
Reference:
Reference:

DAML file structure

RN U G O G Y

w

n
12
14

16
16
17
17

2.211 Reference: DAMLpackagesttt 100

2212 Contract keys e 104
2.3 DAMLSEUIO . . . o o e e e e e e e e e e e e 106
2.3.1 Installing o e e 106
2.3.2 CreatingyourfirstDAMLfile e 106
2.3.3 Supportedfeatures 108
234 COMMON SCENANIO EITOIS . v v v vt it e ettt et e e et e ettt et e e e e e 110
2.3.5 Working with multiple packages 13
24 Testing USINE SCENATIOS . . v o v v it i i e et e e e e e e e e e e e e e e e e e e 14
241 SCENANiOSYNTAX . « v v v o i e e e e e e e e 15
242 RunningscenariosinDAMLStudio ns
243 EXamples e e e e e e 1S
2.5 Troubleshooting e e 17z
2.5.1 Error: <X>is not authorized tocommitanupdate 17
2,52 Error Argumentis notof serializabletype 18
2,53 Modellingquestions. e 18
254 Testingquestions e 120
26 Writing o0d DAML L e 121
2.6.1 Gooddesignpatterns 121
2.6.2 Anti-patterns e 140
2.6.3 What functionality belongs in DAML models versus application code? 142
Building applications 145
3.1 Application architecture e 145
3.1 Backend 147
312 Frontend e 147
3.1.3 Authentication 148
3.1.4 Developerworkflow e 148
3.2 JavaScript Client Libraries e e 150
3.21 JavaScriptCode Generator. e 150
3.22 @daml/react e e 155
323 @daml/ledger. e 155
324 @AamI/types . . . oo e 155
3.3 HTTPJSON APISErVICE . . o o v i e 155
3.31 DAML-LFJSONENCOdING o it e e e e e e 156
3.32 Querylanguage 162
333 Howtostart e 164
3.34 EXample session e e e 166
3.3.5 Choosingaparty e 167
3.3.6 ErrorReporting e 168
337 CreateanewContract. e 169
3.3.8 Create a new Contract with optional metafield 171
3.39 ExercisebyContractID 171
3.3.10 ExercisebyContractKey e 173
3.3.11 Create and Exercise in the Same Transaction 174
3.3.12 FetchContractbyContractID. 176
3.313 FetchContractbyKey 177
3.314 ContractSearch,AllTemplates 178
3.315 ContractSearch e 178
3.3.16 Fetch Parties by Identifiers o o 180

3.3.17 Fetch All Known Parties o v i it i i e e e e e e e e e e e e e e 182

3.318 AllocateaNew Party e 182

3.3.19 List All DALF Packages i e 183
3.3.20 Download a DALF Package e 183

3.321 UploadaDARFile. e 184
3.3.22 Streaming APl . . . L L e 184

34 DAML SCript . . o e e e e e 190
3.4.1 DAML Script Library e e e 190

342 Us8Be . . . e e 192

3.4.3 Using DAML Script for Ledger Initialization 195

344 Using DAML Scriptin Distributed Topologies 196

3.4.5 Running DAML Script againstthe HTTPJSONAPI 196

3.5 Upgrading and extending DAML applications 197
3.51 Automating the Upgrade Process 197

3.5.2 Structuringupgradecontracts L e 200

3.5.3 Building and deployingcoin-1.0.0 i 202

3.54 Createsomecoin-1.0.0COINS ittt 202

3.5.5 Building and deploying coin-20.0 e 202

3.5.6 Building and deploying coin-upgrade 203

3.5.7 Upgrade existing coins from coin-1.0.0to coin-2.0.0 204

3.5.8 Further Steps e e 204

3.6 Authentication e e 204
3.6.0 Introduction e 204

3.6.2 Accesstokensandclaims 206

3.6.3 Gettingaccesstokens e 206

3.6.4 Usingaccesstokens i 207

37 Theledger APl . . . o o e e e e e e e 207
371 Theledger APISErViCeS . . . v v it ittt et e e e e e e e e 207

372 BRPC . . e e 21

37.3 Ledger APIReference e 213

374 How DAML types are translated to protobuf.o L. 247

37.5 HowDAMLtypes aretranslatedtoDAML-LF 253

37.6 Javabindings 257

377 Scalabindings e 289

37.8 Nodejsbindings 293

379 Creatingyourownbindings e 293
3710 What'sintheledger APl 296

3711 DAML-LF . o e 296

4 Deploying to DAML ledgers 298
41 Overview of DAMLledgers i e 298
4.1.1 Commercial Integrations e 298

41.2 Open Source Integrations e 298

413 DAML Ledgersin Development o 298

42 Deployingtoageneric DAMLledger e 299
421 ConnectingviaTLS o e 300

4.3 DAML Ledger Topologies it it e e e e 300
4.3.1 Global State Topologies i i e 300

4.3.2 Partitioned Ledger Topologies e 304

5 SDKtools 305
51 DAMLAssistant (daml)ttt i e e e 305

5.1 Movingtothe daml assistant 305

512 Full helpforcommands e 305

513 Configurationfiles e 306

514 Building DAMLProjects ottt i i 308

515 Managing SDKreleases i e 308

516 Terminal Command Completion 309

52 DAMLSandboX e e 309
5.2.1 Contractldentifier Generation 310

522 Runningwithpersistence 310

5.2.3 Running with authentication o 31

524 Runningwith TLS 312

525 Command-linereference. e 313

53 Navigator o e e e 313
53.0 Navigator functionality 313

5.3.2 Installing and starting Navigator 313

5.3.3 Choosingaparty/changingtheparty 313

534 LogEINGOUL e 314

53.5 Viewingtemplatesorcontracts o o, 314

53.6 Using Navigator 318

5.37 Authenticating Navigator 0 . 321

5.3.8 Advanced USage it e e e e 321

6 Background concepts 325
6.1 Glossaryof conCeptso e e 325
6.11 DAML . e e e e e 325

6.1.2 SDKtoOIS o e 329

6.1.3 Buildingapplications e 330

6.1.4 Generalconcepts e e 332

6.2 DAMLLedgerModel e 332
6.2.1 STructure e 333

6.2.2 Integrity. . . . oo i e 340

B.2.3 PriVACY & o v it it e e e e e e e e e e 352

6.24 DAML: Defining Contract Models Compactly 360

7 Examples 362
701 DAMLexamples e e e e 362
8 Early Access Features 363
81 NavigatorConsole e 363
8.1.1 Querying the Navigator local database., 363

812 Tryoutthe Navigator Consoleonthe Quickstart. 365

8.1.3 Displaying statusinformation o . 368

814 Choosingapartyt it e e e e 369

815 Advancingtime 369

81.6 Inspectingtemplates 370

8.17 Inspecting contracts, transactions,andevents 370

818 Queryingdata e 371

819 Creatingcontracts i 372

8110 Exercisingchoices e 373

8111 Using Navigatoroutsidethe SDK 373
8.112 Using Navigator with DAMLLedgers 374

8.2 EXIraCctor e e 374

8.2.1 INntroduction o e e e e e e e e e 374

822 Setlingup i 374

823 Tryingitout e 375
824 Runningthe Extractor 375
8.2.5 Connecting the Extractortoaledger 375
826 Connectingtoyourdatabase 375
8.27 AuthenticatingExtractor. o o 376
828 Fulllistofoptions e 376
829 Outputformat. e 378
8210 TransactionsS. i i e 378
8211 Contracts e e 378
8212 EXEICISES . o vt it e e e 379
8213 JSONformat o e e 380
8214 Examplesofoutput e 380
8215 Dealingwith schemaevolution 381
8.206 LOBEING « v v v e it e e e e e 383
8217 ContinuUity 383
8218 Faulttolerance e 384
8.2.19 Troubleshooting e 384
83 DAMLIntegration Kit- ALPHA e 384
83.1 Ledger APITestTool i e 384
8.3.2 DAMLIntegration Kitstatusandroadmap 387
8.3.3 Implementing yourown DAML Ledger 388
83.4 DeployingaDAMLLedger. ittt e 391
83.5 TestingaDAML Ledger e 392
8.3.6 Benchmarkinga DAMLLedger, 392
84 DAMLTriggers - Off-Ledger Automation inDAML 392
84.1 DAMLTrigger Library 392
842 USae . . . e e e 403
843 Whennottouse DAMLtriggers. e 407
8.5 DAML REPL . o o e e e e e e e e 408
8.5.1 USBEE . . i i et e e e e e e 408
852 Whatisinscopeattheprompt? 409
853 Connecting viaTLS o i e e e 409
8.5.4 Connection to a Ledger with Authentication 409
8.6 Visualizing DAMLCoONtracts it ittt e e e e e 409
8.6.1 Example: Visualizing the Quickstartproject 410
8.6.2 Visualizing DAML Contracts-WithinIDE 410
8.6.3 Visualizing DAML Contracts - Interactive Graphs 410
Support and updates 412
Q1 SUPPOIt & e e e e e e e e e e e e e e e 412
9.1.1 Supportexpectations e e 412
9.2 Release notes e e e 413
9.21 10.0-2020-04-15 . . . o o e e 413
9.2.2 013.55-2020-03-18 . . . o i i e e e e e e e e 418
923 0.13.54-2020-02-20 ot e e e 422
9.24 0.13.53-2020-02-19 . . . o i e e e e e 423
9.2.5 0.13.52-2020-02-12 e e e 423
9.2.6 0.13.51-2020-02-05 i e e e e e e 425
9.27 013.50-2020-01-30 o i e e 425

9.2.8 0.13.49-Thisversionwasskipped e 426

9.2.9
9.2.10
9.21
9.2.12
9.2.13
9.2.14
9.2.15
9.2.16
9.2.17
9.2.18
9.2.19
9.2.20
9.2.21
9.2.22
9.2.23
9.2.24
9.2.25
9.2.26
9.2.27
9.2.28
9.2.29
9.2.30
9.2.31
9.2.32
9.2.33
9.2.34
9.2.35
9.2.36
9.2.37
9.2.38
9.2.39
9.2.40
9.2.41
9.2.42
9.2.43
9.2.44
9.2.45
9.2.46
9.2.47
9.2.48
9.2.49
9.2.50
9.2.51
9.2.52
9.2.53
9.2.54
9.2.55
9.2.56
9.2.57
9.2.58
9.2.59

0.13.48 -This versionwas skipped i e 426

0.13.47 - This version was skipped 426
0.13.46 - 2020-01-22 ot i e e e e e 426
0.13.45 - 2020-01-22 o e e e e e e e e 426
0.13.44 - 2020-01-17 .« . ot it e e e e e e e 427
0.13.43 - 2020-071-15 . . L L oo e e e e e e e e 427
0.1342-2020-01-08 ot e e e 428
0.13.41-2019-12-18 . . . L o e e e e e e e e 429
0.1340-2019-12-T10 . . . o vttt e e e e 430
0.13.39-2019-12-05 o e e e e e e 431
0.03.38-2019-11-29 . . . L i e e 431
0.13.37-2019-T1-20 . . . o oot e e e e e e e e e 433
0.13.36-2019-T1-14 . . . o 434
Ledger . . o e 434
DAML Compiler e e e e 434
Sandbox ... e 434
DAMLStdlib . . . o e 434
DAMLTIIZEOIS « o o o i i e 434
JSON APl - Experimental e 435
Extractor - Experimental e 435
0.13.34-2019-T1-07 . . o o it e e e e e e e e e e e e e 435
0.03.33-2019-11-06 ot 435
0.13.32-2019-10-29o e e e 436
0.13.31-2019-10-18 . . . o i e e 437
0.13.30-2019-10-15 .« .« o o v it e e e e e e 437
0.13.29-2019-10-04 i e e e e e e 439
0.13.28 - 2019-10-04 o e e 439
0.13.27 - 2019-09-25 e e e e e e 440
0.13.26-2019-09-24 e e e 440
0.13.25-2019-09-18 o e e e e e 441
0.13.24-2019-09-16 . . . ¢ it it e e e 441
0.13.23-2019-00-11 . . . L o ot e e e e e e e e 442
0.13.22-2019-09-04 o e e 442
0.13.21-2019-08-29 o e e e 443
0.13.20-2019-08-22ttt e 444
0.1319-2019-08-14 . . . L o ot e e e e 444
0.13.18 - 2019-08-07 o ot e e e e e e e e e e 445
0.13.17-2019-08-07 o it e e e e e e e e 445
0.13.16 - 2019-08-01 . . . o o vttt e e e e e e e e e e 445
0.13.15-2019-07-25 o o e e 446
01314 - 2019-07-22 . . . o o ittt e e e e e e e e e e e e 447
00313 -2019-07-16 . . . o v it e e e e 447
01312 - 2019-07-09 o o e e e e e e 448
0.0311-2019-07-08 . . . o ottt e e e 449
01310 -2019-06-28 ot e e e e e e 450
0.03.9-2019-06-28 . . . o it e e 450
0.18.8-2019-06-27 o o it e e e e e 450
0.187-2019-06-26 ottt e e e e e e e e e e e e 451
0.18.6-2019-06-25 o it e e e e e e 451
0.13.5-2019-06-19 e e e e e e e 452
0.134-2019-06-19 o e e e 452

9.3

9.2.60
9.2.61

9.2.62
9.2.63
9.2.64
9.2.65
9.2.66
9.2.67
9.2.68
9.2.69
9.2.70
9.2.71

9.2.72
9.2.73
9.2.74
9.2.75
9.2.76
9.2.77

9.2.78
9.279
9.2.80
9.2.81

9.2.82
9.2.83
9.2.84
9.2.85
9.2.86
9.2.87
9.2.88
9.2.89
9.2.90
9.2.91

9.2.92
9.2.93

0.18.3-2019-06-18 o o it e e e e 453
0.13.2-2019-06-18 o i e e 453
0.181-2019-06-17 . . . o ottt e e e e e e e 453
0.13.0-2019-06-17 o e e e e 454
0.12.25 — 2019-06-13 o e e e e e e 454
01224 -2019-06-06 o e e 455
0.12.23 -2019-06-05 e e e e 455
0.12.22 - 2019-05-29o e e e e e 456
0.12.21-2019-05-28 o e e e 456
0.12.20-2019-05-23 ot e e e e e e e 457
0.12.19-2019-05-22 o e e 457
0.1218 - 2019-05-20 o it e e e e e e e 458
0.12.17-2019-05-10 o o i e e e 461
0.1216 - 2019-05-07 o o i e e e e e 461
0.1215-2019-05-06 o o e e e 462
0.12.14 - 2019-05-03 o e e e e e e e 462
01213 -2019-05-02 e 463
01212 -2019-04-30 i e e e e 463
0.1211-2019-04-26 o o it i e e e e e e e e e e e e 463
0.1210 — 2019-04-25 o e e 463
0.12.9 — 2019-04-23 o i e e e e e e e 463
0127 —2019-04-17 . . . i e e 463
0126 —20T19-04-16 o o i i e e e e e 464
0.12.5 —2019-04-15 L o i e e 464
0.12.4 — 2019-04-15 .« . . L L ot e e e e 464
0.12.3 —2019-04-12 o e e e 464
0.12.2 —2019-04-12 o o e e e e e e e e 464
0121 —=2019-04-04 e 464
0.12.0 — 20719-04-04 o e e e 464
O 465
0.11.3-2019-02-07 . . . o o e e e e 465
O0.11.2 - 2019-01-31 . . . o it e e e e e e e e e e e e e e e 465
OM1-2019-01-24 o e e 465
O.11.0-2019-01-17 . . . i e e e e e e e e e e e 466

DAML roadmap (as of January 2020) ot ittt e e 470

Chapter1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies
The SDK currently runs on Windows, MacOS or Linux.
You need to install:

1. Visual Studio Code.

2. JDK 8 or greater.

You can get the JDK from Zulu 8 JDK or Oracle 8 JDK (requires you to accept Oracle’s license).

11.2 2. Install the SDK
1.1.2.1 Mac and Linux
To install the SDK on Mac or Linux:

1. Run:

curl -sSL https://get.daml.com/ | sh

2. If prompted, add ~/.daml/bin to your PATH.
If you don’t know how to do this, try following these instructions for MacOS or these instructions
for Windows.
11.2.2 Windows
We support running the SDK on Windows 10. To install the SDK on Windows, download and run the
installer from github.com/digital-asset/daml/releases/latest.
1.1.3 Next steps

Follow the getting started guide.
Use daml --help to see all the commands that the DAML assistant (daml) provides.
If you run into any problems, use the support page to get in touch with us.

1.1.4 Alternative: manual download

The cURL command above will automatically download and run the DAML installation script from
GitHub (using TLS). If you require a higher level of security, you can instead install the SDK by manu-

https://code.visualstudio.com/download
https://www.azul.com/downloads/zulu/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://hathaway.cc/2008/06/how-to-edit-your-path-environment-variables-on-mac/
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml
https://github.com/digital-asset/daml/releases/latest

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

ally downloading the compressed tarball, verifying its signature, extracting it and manually running
the install script.

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1.

2.

Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install release
0.13.27, you would download the files daml1-sdk-0.13.27-macos.tar.gz and daml-sdk-0.
13.27-macos.tar.gz.asc. Note that for Windows you can choose between the tarball, which
follows the same instructions as the Linux and macOS ones (but assumes you have a number
of typical Unix tools installed), or the installer, which ends with .exe. Regardless, the steps to
verify the signature are the same.

To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-
mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —--keyserver pool.sks-keyservers.net --search!|
—~4911A8DFE976ACDFAQ07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2019-05-16 and expiring on 2021-05-15. |If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.

. Oncethe keyisimported, you can ask gpg to verify that the file you have downloaded has indeed

been signed by that key. Continuing with our example of v0.13.27 on macOS, you should have
both files in the current directory and run:

gpg —-verify daml-sdk-0.13.27-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-0.13.27-macos.tar.gz'

gpg: Signature made Wed Sep 25 11:57:28 2019 BST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC
—<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to thel
—owner.

Primary key fingerprint: 4911 A8DF E976 ACDF AQ071 30DB E837 2C0C 1C73[]
~4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

tar xzf daml-sdl-0.13.27-macos.tar.gz
cd sdk-0.13.27
./install.sh

6. Just like for the more automated install procedure, you may want to add ~/ .daml/bin to your
SPATH.

1.2 Getting Started with DAML

The goal of this tutorial is to get you up and running with full-stack DAML development. We do this
through the example of a simple social networking application, showing you three things:

1. How to build and run the application
2. The design of its different components (App Architecture)
3. How to write a new feature for the app (Your First Feature)

We do not aim to be comprehensive in all DAML concepts and tools (covered in Writing DAML) or in
all deployment options (see Deploying). The goal is that by the end of this tutorial, you’ll have a good
idea of the following:

1. What DAML contracts and ledgers are
2. How a user interface (Ul) interacts with a DAML ledger
3. How DAML helps you build a real-life application fast.

With that, let’s get started!

1.2.1 App Architecture

In this section we’ll look at the different components of our social network app. The goal is to fa-
miliarise you enough to feel comfortable extending the code with a new feature in the next section.
There are two main components:

the DAML model and
the React/TypeScript frontend.

We generate TypeScript code to bridge the two.

Overall, the social networking app is following the recommended architecture of a fullstack DAML appli-
cation. Below you can see a simplified version of the architecture represented in the app.

1.2. Getting Started with DAML 3

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Frontend User Code

React Components

Y

Provided Component

Generated from DAML

@daml React Libraries model

Y

@daml2js Interface Library
A

DAML Platform

DAML Model DAR

JSON API Server

DAML Ledger

DAML Sandbox

4 Chapter 1. Getting started

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Let’s start by looking at the DAML model, which defines the core logic of the application.

1.2.1.1 The DAML Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (You may get a new tab pop
up with release notes for the latest SDK - just close this.) Using the file Explorer on the left sidebar,
navigate to the daml folder and double-click on the User.daml file.

The DAML code defines the data and workflow of the application. Both are described in the User con-
tract template. Let’s look at the data portion first.

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-
tract. In this case it is an identifier for the user and the list of users they are following. Both fields
use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization
is required to create or archive instances of the contract template, in this case the user herself. The
observers are the parties who are able to view the contract on the ledger. In this case all users that
a particular user is following are able to see the user contract.

Let’s say what the signatory and observer clauses mean in our app more concretely. A user Al-
ice can see another user Bob in the network only when Bob is following Alice (only if Alice is the
following listin his user contract). For this to be true, Bob must have previously started to follow
Alice, as he is the sole signatory on his user contract. If not, Bob will be invisible to Alice.

Here we see two concepts that are central to DAML: authorization and privacy. Authorization is about
who can do what, and privacy is about who can see what. In DAML we must answer these questions
upfront, as they fundamentally change the design of an application.

The last part of the DAML model is the operation to follow users, called a choice in DAML.

DAML contracts are immutable (can not be changed in place), so the only way to update one is
to archive it and create a new instance. That is what the Follow choice does: after checking some
preconditions, it archives the current user contract and creates a new one with the new user to follow
added to the list. Here is a quick explanation of the code:

The choice starts with the nonconsuming choice keyword followed by the choice name
Follow.

The return type of a choice is defined next. In this case it is ContractId User.

After that we declare choice paramteres with with keyword. Here this is the user we want to
start following.

The keyword controller defines the Party thatis allowed to execute the choice. In this case,
itis the username party associated with the User contract.

The do keyword marks the start of the choice body where its functionality will be written.
After passing some checks, the current contract is archived with archive self.

A new User contract with the new user we have started following is created (the new user is
added to the following list).

This information should be enough for understanding how choices work in this guide. More detailed
information on choices can be found in our docs).

1.2. Getting Started with DAML 5

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Let’s move on to how our DAML model is reflected and used on the Ul side.

1.2.1.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that
provides more support during development through its type system.

In order to build an application on top of DAML, we need a way to refer to our DAML templates and
choices in TypeScript. We do this using a DAML to TypeScript code generation tool in the DAML SDK.

To run code generation, we first need to compile the DAML model to an archive format (a .dar file).
The daml codegen js command then takes this file as argument to produce a number of Type-
Script packages in the output folder.

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.]s

Now we have a TypeScript interface (types and companion objects) to our DAML model, which we’ll
use in our Ul code next.

1.2.1.3 The Ul

On top of TypeScript, we use the Ul framework React. React helps us write modular Ul components
using a functional style -acomponentisrerendered wheneveroneof itsinputs changes - with careful
use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.
You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first
look at App. tsx, which is the entry point to our application.

An important tool in the design of our components is a React feature called Hooks. Hooks allow you
to share and update state across components, avoiding having to thread it through manually. We
take advantage of hooks in particular to share ledger state across components. We use custom DAML
React hooks to query the ledger for contracts, create new contracts, and exercise choices. This is the
library you will be using the most when interacting with the ledger' .

The useState hook (not specific to DAML) here keeps track of the user’s credentials. If they are not
set, we render the LoginScreen with a callback to setCredentials. If they are set, then we render
the MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a
handle to the ledger.

Let’s move on to more advanced uses of our DAML React library. The MainScreen is a simple frame
around the MainView component, which houses the main functionality of our app. It uses DAML
React hooks to query and update ledger state.

The useParty hook simply returns the current user as stored in the DamlLedger context. A more
interesting example is the allUsers line. This uses the useStreamQuery hook to get all User
contracts on the ledger. (User.User here is an object generated by daml codegen js - it stores
metadata of the User template defined in User.daml.) Note however that this query preserves
privacy: only users that follow the current user have their contracts revealed. This behaviouris due to
the observers on the User contract being exactly in the list of users that the current user is following.

Afinal point on this is the streaming aspect of the query. This means that results are updated as they
come in - there is no need for periodic or manual reloading to see updates.

FYI Behind the scenes the DAML React hooks library uses the DAML Ledger TypeScript library to communicate with a ledger
implementation via the HTTP JSON API.

6 Chapter 1. Getting started

https://www.typescriptlang.org/
https://reactjs.org/
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Another example, showing how to update ledger state, is how we exercise the Follow choice of the
User template.

The useLedger hook returns an object with methods for exercising choices. The core of the follow
function here is the call to ledger.exerciseByKey. The key in this case is the username of the
current user, used to look up the corresponding User contract. The wrapper function follow is
then passed to the subcomponents of MainView. For example, follow is passed to the UserList
component as an argument (a prop in React terms). This gets triggered when you click the icon next
to a user’s name in the Network panel.

This should give you a taste of how the Ul works alongside a DAML ledger. You’ll see this more as you
develop your first feature for our social network.

1.2.2 Your First Feature

Let’s dive into implementing a new feature for our social network app. This will give us a better idea
how to develop DAML applications using our template.

At the moment, our app lets us follow users in the network, but we have no way to communicate with
them! Let’s fix that by adding a direct messaging feature. This should let users that follow each other
send messages, repsecting authorization and privacy. This means:

1. You cannot send a message to someone unless they have given you the authority by following
you back.
2. You cannot see a message unless you sent it or it was sent to you.

We will see that DAML lets us implement these guarantees in a direct and intuitive way.
There are three parts to building and running the messaging feature:

1. Adding the necessary changes to the DAML model
2. Making the corresponding changes in the Ul
3. Running the app with the new feature.

As usual, we must start with the DAML model and base our Ul changes on top of that.

1.2.2.1 DAML Changes

As mentioned in the architecture section, the DAML code defines the data and workflow of the applica-
tion. The workflow aspect refers to the interactions between parties that are permitted by the system.
In the context of a messaging feature, these are essentially the authorization and privacy concerns
listed above.

For the authorization part, we take the following approach: a user Bob can message another user Al-
ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission
or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/
User.daml file and copy the following Message template to the bottom. Indentation is important:
it should be at the top level like the original User template.

This template is very simple: it contains the data for a message and no choices. The interesting
part is the signatory clause: both the sender and receiver are signatories on the template.
This enforces the fact that creation and archival of Message contracts must be authorized by both
parties.

Now we can add messaging into the workflow by adding a new choice to the User template. Copy the
following choice tothe User template afterthe Followchoice. The indentation for the SendMessage

1.2. Getting Started with DAML 7

https://reactjs.org/docs/components-and-props.html

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

choice must match the one of Follow. Make sure you save the file after copying the code.
As with the Follow choice, there are a few aspects to note here.

By convention, the choice returns the ContractId of the resulting Message contract.

The parameters to the choice are the sender and content of this message; the receiver is the
party named on this User contract.

The controller clause states that it is the sender who can exercise the choice.

The body of the choice first ensures that the sender is a user that the receiver is following and
then creates the Message contract withthe receiver beingthe signatory of the User contract.

This completes the workflow for messaging in our app. Now let’s integrate this functionality into the
ul.

1.2.2.2 TypeScript Code Generation

Remember that we interface with the DAML model from the Ul components using generated Type-
Script. Since we have changed our DAML code, we also need to rerun the TypeScript code generator.
Open a new terminal and run the following commands:

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.js

Theresultis an up-to-date TypeScript interface to our DAML model, in particular to the new Message
template and SendMessage choice.

To make sure that Yarn picks up the newly generated JavaScript code, we have to run the following
command in the ui directory:

yarn install --force --frozen-lockfile

Once that command finishes, you have to close Visual Studio Code and restart it by running daml
studio from the root directory of your project.

We can now implement our messaging feature in the Ul!

1.2.2.3 Messaging Ul

The Ul for messaging will consist of a new Messages panel in addition to the Follow and Network panel.
This panel will have two parts:

1. Alist of messages you’ve received with their senders.
2. Aform with a dropdown menu for follower selection and a text field for composing the message.

We will implement each part as a React component, which we’ll name MessageList and
MessageEdit respectively. Let’s start with the simpler MessageList.

MessagelList Component

The goal of the MessageList componentis to query all Message contracts where the receiver is
the current user, and display their contents and senders in a list. The entire component is shown
below. You should copy this into a new MessageList.tsx fileinui/src/components and save it.

First we get the username of the current user with the useParty hook. Then messagesResult gets
the stream of all Message contracts where the receiver is our username. The streaming aspect
means that we don’t need to reload the page when new messages come in. We extract the payload

8 Chapter 1. Getting started

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

of every Message contract (the data as opposed to metadata like the contract ID) in messages. The
rest of the component simply constructs a React List element with an item for each message.

There is one important point about privacy here. No matter how we write our Message query in the
Ul code, it is impossible to break the privacy rules given by the DAML model. That is, it is impossible
to see a Message contract of which you are not the sender or the receiver (the only parties that
can observe the contract). This is a major benefit of writing apps on DAML: the burden of ensuring
privacy and authorization is confined to the DAML model.

MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again
we show the entire component here; you should copy this into a new MessageEdit.tsx fileinui/
src/components and save it.

You will first notice a Props type near the top of the file with a single following field. A prop in React
is an input to a component; in this case a list of users from which to select the message receiver.
The prop will be passed down from the MainView component, reusing the work required to query
users from the ledger. You can see this following field bound at the start of the MessageEdit
component.

We use the React useState hook to get and set the current choices of message receiver and
content. The DAML-specific useLedger hook gives us an object we can use to perform ledger
operations. The call to ledger.exerciseByKey in sendMessage looks up the User contract
with the receiver’s username and exercises SendMessage with the appropriate arguments. The
sendMessage wrapper reports potential errors to the user, and submitMessage additionally uses
the isSubmitting state to ensure message requests are processed one at a time. The result of a
successful call to submitMessage is a hew Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to
select a receiver from the following, a text field for the message content, and a Send button which
triggers submitMessage.

There is again an important point here, in this case about how authorization is enforced. Due to the
logic of the SendMessage choice, it is impossible to send a message to a user who is not follow-
ing us (even if you could somehow access their User contract). The assertion that elem sender
followingin SendMessage ensures this: no mistake or malice by the Ul programmer could breach
this.

MainView Component

Finally we can see these components come together in the MainView component. We want to add a
new panel to house our messaging Ul.Openthe ui/src/components/MainView. tsx file and start
by adding imports for the two new components.

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll
add a new Segment for Messages. Make sure you’ve saved the file after copying the code.

You can see we simply follow the formatting of the previous panels and include the new messag-
ing components: MessageEdit supplied with the usernames of all visible parties as props, and
MessageList to display all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.2. Getting Started with DAML 9

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

1.2.2.4 Running the New Feature

We need to terminate the previous daml start process and runitagain, as we need to have a Sand-
box instance with a DAR file containing the new feature. As a reminder, by running daml start
again we will

Compile our DAML code into a DAR file containing the new feature
Run a fresh instance of the Sandbox with the new DAR file
Start the HTTP JSON API

First, navigate to the terminal window where the daml start processis running and terminate the
active process by hitting Ctr1-C. This shuts down the previous instances of the sandbox. Then in
the root create-daml-app folder run daml start.

As mentioned at the beginning of this Getting Started with DAML guide, DAML Sandbox uses an in-
memory store, which means it loses its state when stopped or restarted. That means that all user
data and follower relationships are lost.

If you have the frontend Ul up and running you’re all set. In case you don’t have the Ul running open
a new terminal window and navigate to the create-daml-app/ui folder and run the yarn start
command, which will start the Ul. Once you’ve done all these changes you should see the same login
page as before at http://localhost:3000.

Create D,\ M I_ App

Once you've logged in, you’ll see a familiar Ul but with our new Messages panel at the bottom!
DAML You are logged in as Bob. ®
Welcome, Bob!

@ Bob

& oersim following

Follow

&&» The Network

w My followers and users they are following

Messages

Send a message to a follower

10 Chapter 1. Getting started

http://localhost:3000

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Go ahead and add follow more users, and log in as some of those users in separate browser windows
to follow yourself back. Then, if you click on the dropdown menu in the Messages panel, you’ll be able
to see some followers to message!

Messages

Send a message to a follower

Alice

Send some messages between users and make sure you can see each one from the other side. You’ll
notice that new messages appear in the Ul as soon as they are sent (due to the streaming React
hooks).

Messages

Send a message to a follower

Alice v

Bob - Alice: Hi Alice!

1.2.2.5 Next Steps

We’ve gone through the process of setting up a full-stack DAML app and implementing a useful fea-
ture end to end. Have a think about how you might further improve or extend this app. For example,
you might have noticed that your list of messages can get out of order. You could add a timestamp to
the Message template and sort messages in the MessageList component so your most recent are
at the top. Of course there are many more features you could imagine (just think of your favourite
social media app).

Hopefully this exercise gives you a sense of the power and ease of building DAML apps. Explore the
documentation to learn more, and keep shipping DAML apps. Have fun!
1.2.3 Prerequisites

Please make sure that you have the DAML SDK, Java 8 or higher, and Visual Studio Code (the only
supported IDE) installed as per instructions from our Installing the SDK page.

You will also need some common software tools to build and interact with the template project.

Git version control system
Yarn package manager for JavaScript. You have to have yarn version 1.10.0 or higher.

1.2. Getting Started with DAML n

https://git-scm.com/downloads
https://classic.yarnpkg.com/en/docs/install/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Note: Ubuntu 17.04 and higher come with cmdtest package installed by default. If you are get-
ting errors when installing yarn, you may want to run sudo apt remove cmdtest first and
then install yarn. More information can be found here as well as in the official yarn installation
docs for Debian / Ubuntu

A terminal application for command line interaction

1.2.4 Running the app

We’ll start by getting the app up and running, and then explain the different components which we
will later extend.

First off, open a terminal and instantiate the template project.

daml new create-daml-app create-daml-app

This creates a new folder with contents from our template. Change to the new folder:

cd create-daml-app

Next we need to compile the DAML code to a DAR file:

daml build

Once the DAR file is created you will see this message in terminal Created .daml/dist/create-
daml-app-0.1.0.dar.

Any commands starting with daml are using the DAML Assistant, a command line tool in the DAML
SDK for building and running DAML apps. In order to connect the Ul code to this DAML, we need to
run a code generation step:

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.]s

Now, changing to the ui folder, use Yarn to install the project dependencies:

cd ui
yarn install

This step may take a couple of moments (it’s worth it!). You should see success Saved lockfile.
in the output if everything worked as expected.

We can now run the app in two steps. You’ll need two terminal windows running for this. In one
terminal, at the root of the create-daml-app directory, run the command:

daml start

You will know that the command has started successfully when you see the INFO com.daml.
http.Main$ - Started server: ServerBinding(/127.0.0.1:7575) message in the ter-
minal. The command does a few things:

1. Compiles the DAML code to a DAR file as in the previous daml build step.

2. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR.

3. Starts a server for the HTTP JSON API, a simple way to run commands against a DAML ledger (in
this case the running Sandbox).

12 Chapter 1. Getting started

https://github.com/yarnpkg/yarn/issues/2821
https://classic.yarnpkg.com/en/docs/install/#debian-stable
https://classic.yarnpkg.com/en/docs/install/#debian-stable

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

we’ll leave these processes running to serve requests from our Ul.

In a second terminal, navigate to the create-daml-app/ui folder and run the application:

cd ui
yarn start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000. Once the web Ul
has been compiled and started, you should see Compiled successfully! in your terminal. If it
doesn’t, just open that link in a web browser. (Depending on your firewall settings, you may be asked
whether to allow the app to receive network connections. It is safe to accept.) You should now see the
login page for the social network. For simplicity of this app, there is no password or sign-up required.
First enter your name and click Log in.

Create D,\ M I_ App

You should see the main screen with two panels. One for the users you are following and one for
your followers. Initially these are both empty as you are not following anyone and you don’t have any
followers! Go ahead and start following users by typing their usernames in the text box and clicking
on the Follow button in the top panel.

DAML You are logged in as Bob. [cg

Welcome, Bob!

@ Bob

- .. following

Follow

& The Network
v My followers and users they are following

You’ll notice that the users you just started following appear in the Following panel. However they
do not yet appear in the Network panel. This is either because they have not signed up and are not
parties on the ledger or they have not yet started followiong you. This social network is similar to
Twitter and Instagram, where by following someone, say Alice, you make yourself visible to her but
not vice versa. We will see how we encode this in DAML in the next section.

1.2. Getting Started with DAML 13

http://localhost:3000

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

DAML You are logged in as Bob. ®

Welcome, Bob!
@ Bob
ab Users I'm following

& Alice
Username to follow

Follow

& The Network
v My followers and users they are following

To make this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-
ing separate windows/tabs allows you to see both you and the screen of the user you are following
at the same time.) Once you log in as the user you are following - Alice, you’ll notice your name in
her network. In fact, Alice can see the entire list of users you are follwing in the Network panel. This
is because this list is part of the user data that became visible when you started follwing her.

DAML You are logged in as Alice. [cg

Welcome, Alice!

@ Alice

ab Users I'm following

Follow

&~ The Network

W My followers and users they are following

& Bob &

& Alice o

When Alice starts follwing you, you can see her in your network as well. Just switch to the window
where you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding DAML’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

1.3 Testing Your App

When developing your application, you will want to test that user flows work from end to end. This
means that actions performed in the web Ul trigger updates to the ledger and give the desired results
on the page. In this section we show how you can do such testing automatically in TypeScript (equally
JavaScript). This will allow you to iterate on your app faster and with more confidence!

14 Chapter 1. Getting started

http://localhost:3000

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

DAML You are logged in as Bob. ®

Welcome, Bob!
@ Bob
ab Users I'm following

& Alice

Follow

aa» The Network
v My followers and users they are following

& Alice
& Bob o

L4

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

yarn add --dev puppeteer wait-on @types/jest @types/node @types/puppeteerl]
—~Q@types/wait-on

1.3.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suite in section The Full Test Suite at the bottom of this page. Torun this test suite, create a new file ui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

yarn test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes for the daml start
andyarn startcommands,whichrunforthedurationof ourtests. We also have asingle Puppeteer
browser that we share among tests, opening new browser pages for each one.

The beforeAll () section is a function run once before any of the tests run. We use it to spawn

1.3. Testing Your App 15

https://jestjs.io/
https://pptr.dev/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

the daml start and yarn start processes and launch the browser. On the other hand the
afterAll () section is used to shut down these processes and close the browser. This step is im-
portant to prevent child processes persisting in the background after our program has finished.

1.3.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

we’ll walk though this step by step.

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

getParty () gives us a new party name. Right now itis just a string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single Usexr contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.3.3 Accessing Ul elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.test-
select-login-button', are CSS Selectors. You may have seen them before in CSS styling of web
pages. In this case we use class selectors, which look for CSS classes we’ve given to elements in our
React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

16 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.3.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

Elements ~ Console Sources Network Performance

octype html>

ript>You need to enable JavaScript to run this app. ript>
id=" >
/ class="ui center aligned middle al g y ight: 10@vh;">
class="column" yle="max-widtl
lass="ui h ter aligned he : rgb(34, 54, 104);">..

v class="field test-select-username
v class="ui fluid left icon input"
input placehold:

ul

Create D'\ M I_ App

ss="ui fluid primary button te ect-login-button

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic
Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the
input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS
selectors accordingly.

1.3.5 The Full Test Suite

1.3. Testing Your App 17

https://semantic-ui.com/

Chapter 2

Writing DAML

2.1 An introduction to DAML

DAML is a smart contract language designed to build composable applications on an abstract DAML
Ledger Model.

In this introduction, you will learn about the structure of a DAML Ledger, and how to write DAML
applicationsthatrunon any DAML Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
DAML Ledger Model and how to use the DAML SDK Tools to write, test, compile, package and ship your
application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the DAML code for each
section here or download them using the DAML assistant. For example, to download the sources for
section 1into a folder called 1 _Token,rundaml new 1 Token daml-intro-1.

Prerequisites:
You have installed the DAML SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small DAML template, which represents a self-issued, non-
transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make
it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

DAML Modules and Files
Templates

Contracts

Signatories

2.1.1.1 DAML ledger basics

Like most structures called ledgers, a DAML Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

18

https://github.com/digital-asset/daml/tree/master/docs/source/daml/intro/daml

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Transaction is a conceptwe’ll cover in more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it again.

DAML specifies what transactions are legal on a DAML Ledger. The rules the DAML code specifies are
collectively called a DAML model or contract model.
2.1.1.2 DAML files and modules

Each .daml file defines a DAML Module. At the top of each DAML file is a pragma informing the com-
piler of the language version and the module name:

module Token where

Code comments in DAML are introduced with -:

-— The first line of a DAML file 1is a pragma telling the compiler the
—language
-—- version to use.

-— A DAML file defines a module. The second line of a DAML file gives the
-— module a name.
module Token where

2.11.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

DAML is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the create arguments or simply arguments. The with block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou can read this as template Token with a field owner of type Party .

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.
2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract instance. These are the parties whose
authority is required to create the contract or archive it again - just like a real contract. Every contract
must have at least one signatory.

2.1. An introduction to DAML 19

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Furthermore, DAML ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

2.1.1.5 Next up

In 2 Testing templates using scenarios, you’ll learn about how to try out the Token contract template in
DAML’s inbuilt scenario testing language.

2.1.2 2 Testing templates using scenarios

In this section you will test the Token model from 1 Basic contracts using DAML’s inbuilt scenario
language. You’ll learn about the basic features of scenarios:

Getting parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

2.1.2.1 Scenario basics

A Scenario is like a recipe for a test, where you can script different parties submitting a series of
transactions, to check that your templates behave as you’d expect. You can also script some some
external information like party identities, and ledger time.

Below is a basic scenario that creates a Token for a party called Alice .

token test 1 = scenario do
alice <- getParty "Alice"
submit alice do
create Token with owner = alice

You declare a Scenario a top-level variable and introduce it using scenario do. do always starts
a block, so the rest of the scenario is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
scenario uses the function getParty to put a party called Alice inavariablealice. There are two
things of note there:

Use of <- instead of =.

The reason for that is getPartyis an Action that can only be performed once the Scenario
is run in the context of a ledger. <- means run the action and bind the result . It can only
be run in that context because, depending on the ledger the scenario is running on, getParty
may have to look up a party identity or create a new party.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to getParty does not have to be enclosed in brackets. Functions in
DAML are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: a Party and an Update.

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Just like Scenariois arecipe for a test, Update is a recipe for a transaction. create Token with
owner = alice is an Update, which translates to the transaction creating a Token with owner
Alice.

You’ll learn all about the syntax Token with owner = alicein 3 Data types.

You could write this as submit alice (create Token with owner = alice), but just like
scenarios, you can assemble updates using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the scenario above gives the same result, whilst being
easier to read.

2.1.2.2 Running scenarios

There are two ways to run scenarios:

In DAML Studio, providing visualizations of the resulting ledger
Using the command line, useful for continuous integration

In DAML Studio, you should see the text Scenarioresults justabovetheline token test 1 = do.
Click on it to display the outcome of the scenario.

token_test_

alice

submit alice
ate Token owner = allce

This opens the scenario view in a separate column in VS Code. The default view is a tabular repre-
sentation of the final state of the ledger:

= Scenario: token_test_1 X

Token_Test:Token

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

The first columns, labelled vertically, show which parties know about which contracts. In this
simple scenario, the sole party Alice knows about the contract she created.

The second column shows the ID of the contract. This will be explained later.

The third column shows the status of the contract, either active or archived.

2.1. An introduction to DAML 21

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

The remaining columns show the contract arguments, with one column per field. As expected,
field owner is 'Alice"'. The single quotation marks indicate that Alice is a party.

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. Ifyourfile contains morethanonescenario,
all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"
submit alice do
create Token with owner
submit bob do
create Token with owner = alice

bob

However, if you open the scenario view for that scenario, you see the following message:

The scenario failed, as expected, but scenarios abort at the first failure. This means thatitonly tested
that Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the scenario running thereafter, or fail if the submission suc-
ceeds, you can use the submitMustFail function:

token test 2 = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"

submitMustFail alice do
create Token with owner

submitMustFail bob do
create Token with owner = alice

bob

(continues on next page)

22 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

submit alice do

create Token with owner = alice
submit bob do
create Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular scenario view just
shows the two Tokens resulting from the successful submit statements. Note the new column for
Bob as well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archive instead of create. Where
create takes an instance of a template, archive takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archive the Token Alice has created, you need to get a handle on its contract ID. In scenarios, you
do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger. How
this works is discussed in 5 Adding constraints to a contract.

This scenario first checks that Bob cannot archive Alice’s Token and then Alice successfully archives
it:

token test 3 = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"

alice token <- submit alice do
create Token with owner = alice

submitMustFail bob do
archive alice token

submit alice do
archive alice token

2.1.2.5 Exploring the ledger

The resulting scenario view is empty, because there are no contracts left on the ledger. However, if
you want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the DAML Studio scenario runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the scenario.

2.1. An introduction to DAML 23

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Show transaction view Show archived

Token_Test:Token

Show table wiew

24 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Transaction #0 has one sub-transaction #0: 0, which the arrow indicatesis a create of a Token. Iden-
tifiers #X:Y mean commit X, sub-transaction Y.All transactions have this formatin the sce-
nario runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you thatthe contractis archived in sub-transaction 0 of commit 2.
referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells youwho knows about the contract. The fact that
'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that Alice learned about the contract in commit #0.

Everything following with shows the create arguments.

2.1.2.6 Exercises
To get a better understanding of scenarios, try the following exercises:

1. Write a template for a second type of Token.

2. Write a scenario with two parties and two types of tokens, creating one token of each type for
each party and archiving one token for each party, leaving one token of each type in the final
ledger view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

2.1.2.7 Next up

In 3 Data types you will learn about DAML’s type system, and how you can think of templates as tables
and contracts as database rows.

2.1.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using scenarios, you learnt about the scenario view in DAML Studio, which dis-
plays the current ledger state. It shows one table per template, with one row per contract of that type
and one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract instance of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

DAMVL’s built-in and native data types
Record types

2.1. An introduction to DAML 25

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a DAML ledger as a simple database where individual
parties can write, read and delete complex data.

2.1.3.1 Native types

You have already encountered a few native DAML types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using scenarios. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0r =9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below scenarioinstantiates each one of these types, manipulates it where appropriate, and tests
the result.

import DA.Time
import DA.Date

native test = scenario do

alice <- getParty "Alice"
bob <- getParty "Bob"
let

my int = -123

my dec = 0.001 Decimal
my text = "Alice"

my bool = False

my date = date 2020 Jan 01

my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addbDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time (addbays my date 1) 00 OOl
—00)

Despite its simplicity, there are quite a few things to note in this scenario:

26

Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

The import statements at the top import two packages from the DAML Standard Library, which
contain all the date and time related functions we use here. More on packages, imports and
the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the scenario do block expects scenario actions like submit orgetParty. An
integer like 123 is not an action, it’s a pure expression, something we can evaluate without any
ledger. You can think of the 1et as turning variable declaration into an action.

None of the variables have annotations to say what type they are.

That’s because DAML is very good at inferring types. The compiler knows that 123 is an Int, so
if you declare my int = 123, it can infer thatmy int is also an Int. This means you don’t
have to write the type annotationmy int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. And you can always choose to add them to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a scenario and see what happens to the scenario
result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party
in the role of an accountant.

template CashBalance
with
accountant : Party
currency : Text

amount : Decimal
owner : Party
account number : Text

bank : Party

bank address : Text

bank telephone : Text
where

signatory accountant

cash balance test = scenario do
accountant <- getParty "Bob"
alice <- getParty "Alice"
bob <- getParty "Bank of Bob"

submit accountant do
create CashBalance with
accountant
currency = "USD"
amount = 100.0
owner = alice
account number = "ABC123"
bank = bob
bank address = "High Street"
bank telephone = "012 3456 789"

2.1. An introduction to DAML 27

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.1.3.2 Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, DAML’s type system has a number of ways to assemble these
native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In DAML, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple

tuple test = scenario do
let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)
assert (fst my key value == "Key")
assert (snd my key value == 1)
assert (my key value. 1 == "Key")
assert (my key value. 2 == 1)
assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3l

—my coordinate))
assert (my coordinate == (my coordinate. 1, my coordinate. 2, my
—coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

DAML supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

Lists

Lists in DAML take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] or alist of strings [Text], but not a list mixing integers and strings.

That’s because DAML is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below scenario instantiates a few lists of integers and demonstrates the most important list
functions.

import DA.List

list test = scenario do
let
empty : [Int] = []

(continues on next page)

28 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

one = [1
two = [2
many = [

-—- “head’ gets the first element of a list
assert (head one == 1)
assert (head many == 3)

-- “tail’ gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— “++ concatenates 1lists
assert (one ++ two ++ many == [1, 2, 3, 4, 51])
assert (empty ++ many ++ empty == many)

-— ':: adds an element to the beginning of a 1ist.
assert (1 :: 2 :: 3 :: 4 :: 5 1 empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It's necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-— Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

-—- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = scenario do

(continues on next page)

2.1. An introduction to DAML 29

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

let
my record = MyRecord with
my txt = "Text"
my int = 2

my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N o< X
I
oo o

2
= 3

-— 'my text int’ has type "KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val = 1

-— 'my int decimal’ has type "KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick thenl]
Sup
-— implicitly, writing just "my coord instead of "my coord = my
—coord .
my nested = Nested with
my coord
my record
my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with, one of the things that happens in the background is that this becomes a data Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert
(my record == my record) in the scenario, you may be surprised to get an error message No
instance for (Eg MyRecord) arising from a use of ‘==’. Equality in DAML is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

data EqRecord = EgqRecord with
my txt : Text

(continues on next page)

30 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

my int : Int

my dec : Decimal

my list : [Text]
deriving (Eq)

data MyContainer a = MyContainer with
contents : a
deriving (Eq)

eq test = scenario do
let
eq record = EqRecord with
my txt = "Text"

my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my container = MyContainer with
contents = eqg record

other container = MyContainer with
contents = eq record

assert (my container.contents == eq record)
assert (my container == other container)

Eqg is what is called a type-class. You can think of a type-class as being like an interface in other
languages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.

There are some other type-classes that the compiler can derive automatically. Most prominently,
Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which

gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-

ated using template T with do this automatically.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

(continues on next page)

2.1. An introduction to DAML

3]

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = scenario do
accountant <- getParty "Bob"
owner <- getParty "Alice"
bank party <- getParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
owner
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
create CashBalance with
accountant
cash
account

If you look at the resulting scenario view, you’ll see that this still gives rise to one table. The records
are expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. DAML doesn’t have an equivalent to null. Variants can express
that cash can either be in hand or at a bank.

data Bank = Bank with
party : Party
address: Text
telephone : Text

(continues on next page)

32 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

deriving (Eq, Show)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand
| InAccount Account
deriving (Eq, Show)

template CashBalance

with
accountant : Party
owner : Party
cash : Cash
location : Location
where

signatory accountant

cash balance test = scenario do
accountant <- getParty "Bob"
owner <- getParty "Alice"
bank party <- getParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street”
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
create CashBalance with
accountant
owner
cash
location = InHand

(continues on next page)

2.1. An introduction to DAML 33

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

submit accountant do
create CashBalance with
accountant
owner
cash
location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the
closest DAML has to anull value:

data Optional a
= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday
| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if it is InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-— Commented out as "Either 1is defined in the standard library.
data Either a b

= Left a
| Right b
-}
variant access test = scenario do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that "1° is a "Left , we can error on the "Right case.

(continues on next page)

34 Chapter 2. Writing DAML

DAML SDK Documentation,

1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

1 value = case 1 of

Left i -> 1

Right i -> error "Expecting Left"
-—- Comment out at your own peril

{_
r value = case r of

Left 1 -> 1

Right i -> error "Expecting Left"
-}

-- If we are unsure,
ol value = case 1 of
Left i -> Some i
Right i -> None
or value = case r of
Left i -> Some i
Right i -> None

-— If we don't care about values or even constructors,

—wildcards
1 value2 = case 1 of
Left i > 1
Right _ -> error "Expecting Left"
1 value3 = case 1 of
Left i > 1

_ —> error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —> False
assert (1 value == 1)
assert (1 value2 == 1)
assert (1 value3d == 1)
assert (ol value == Some 1)
assert (or value == None)
assert weekend

we can return an

"Optional” 1in both cases

we can usel]

2.1.3.3 Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in DAML is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

2.1. An introduction to DAML

35

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

manipulation demo = scenario do
let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

-— A verbose way to change "eq record’
changed record = EqRecord with

my txt = eqg record.my txt

my int 3

my dec = eg record.my dec

my list = eq record.my list

-—- A better way
better changed record = eq record with
my int = 3

record with changed list = eq record with
my list = "Zero" :: eqg record.my list

assert (eq record.my int == 2)
assert (changed record == better changed record)

-- The list on "eq record' can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])
-- The list on "record with changed list’ 1s a new one.
assert (record with changed list.my list == ["Zero", "One", "Two", "Three

E)H])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the scenario, eq_record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

2.1.3.4 Contract keys

DAML’s type system lets you store richly structured data on DAML templates, but just like most
database schemas have more than one table, DAML contract models often have multiple templates
thatreference each other. Forexample, you may not want to store your bank and accountinformation
on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below
shows a contract model where Account is split out into a separate template and referenced by
ContractId, but it also highlights a big problem with that kind of reference: just like data, con-
tracts are immutable. They can only be created and archived, so if you want to change the dataon a

36 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

contract, you end up archiving the original contract and creating a new one with the changed data.
That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account
with
accountant : Party
owner : Party

number : Text
bank : Bank
where

signatory accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : ContractId Account
where
signatory accountant

id ref test = scenario do
accountant <- getParty "Bob"
owner <- getParty "Alice"
bank party <- getParty "Bank"
let

bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
create Account with
accountant
owner
bank
number = "ABC123"

(continues on next page)

2.1. An introduction to DAML 37

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

balanceCid <- submit accountant do
create CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on thell
—account

new_account <- submit accountant do

account <- fetch accountCid

archive accountCid

create account with

bank = account.bank with
telephone = "098 7654 321"

-— The “account’® field on the balance now refers to the archived
-—- contract, so this will fail.
submitMustFail accountant do

balance <- fetch balanceCid

fetch balance.account

The scenario above uses the fetch function, which retrieves the arguments of an active contract
using its contract ID.

Note that, for the first time, the party submitting a transaction is doing more than one thing as
part of that transaction. To create new _account, the accountant fetches the arguments of the old
account, archives the old account and creates a new account, all in one transaction. More on building
transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint
in the sense that only one contract of a given template and with a given key value can be active at a
time.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account
with
accountant : Party
owner : Party

(continues on next page)

38 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

number : Text
bank : Bank
where

signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
AccountKey

maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = scenario do
accountant <- getParty "Bob"
owner <- getParty "Alice"
bank party <- getParty "Bank"
let

bank = Bank with
party = bank party

address = "High Street”

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
create Account with
accountant
owner
bank
number = "ABC123"

balanceCid <- submit accountant do
account <- fetch accountCid
create CashBalance with
accountant

(continues on next page)

2.1. An introduction to DAML 39

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

cash
account = key account

-— Now the accountant updates the telephone number for the bank on thell
—account

new accountCid <- submit accountant do

account <- fetch accountCid

archive accountCid

create account with

bank = account.bank with
telephone = "098 7654 321"

-— Thanks to contract keys, the current account contract is fetched
submit accountant do

balance <- fetch balanceCid

(cid, account) <- fetchByKey (@Account balance.account

assert (cid == new accountCid)

Since DAML is designed to run on distributed systems, you have to assume that there is no
global entity that can guarantee uniqueness, which is why each key expression must come with
amaintainer expression. maintainer takes one or several parties, all of which have to be signa-
tories of the contract and be part of the key. That way the index can be partitioned amongst sets of
maintainers, and each set of maintainers can independently ensure the uniqueness constraint on
their piece of the index. The constraint that maintainers are part of the key is ensured by only having
the variable key in each maintainer expression.

Note how the fetch in the final submit block has become a fetchByKey @Account. fetchByKey
@Account takes a value of type AccountKey and returns a tuple (ContractId Account,
Account) if the lookup was successful or fails the transaction otherwise.

Since a single type could be used as the key for multiple templates, you need to tell the compiler
what type of contract is being fetched by using the @Account notation.

2.1.3.5 Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other
parties the right to manipulate data in restricted ways.

2.1.4 4 Transforming data using choices

In the example in Contract keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the
accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

40 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.1.4.1 Choices as methods
If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact:

template Contact
with

owner : Party

party : Party

address : Text
telephone : Text
where

signatory owner

controller owner can

UpdateTelephone
ContractId Contact
with
newTelephone : Text
do

create this with
telephone = newTelephone

The above defines a choice called UpdateTelephone. Choices are part of a contract template. They’re
permissioned functions that result in an Update. Using choices, authority can be passed around,
allowing the construction of complex transactions.

Let’s unpack the code snippet above:

Thefirstline,controller owner can says thatthe followingchoices are controlled by owner,

meaning owner is the only party that is allowed to exercise them. The line starts a new block in

which multiple choices can be defined.

UpdateTelephone isthe name of achoice. It starts a new block inwhich that choice is defined.
ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

If you paid a lot of attention in 3 Data types, you may have noticed that the create statement returns
an Update (ContractId Contact),nota ContractId Contact. As a do block always returns
the value of the last statement within it, the whole do block returns an Update, but the return type on

2.1. An introduction to DAML 4]

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

the choice is just a ContractId Contact. Thisis a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a scenario:

choice test = scenario do
owner <- getParty "Alice"
party <- getParty "Bob"

contactCid <- submit owner do
create Contact with

owner
party

address = "1 Bobstreet"
telephone = "012 345 6789"

-— The bank can't change its own telephone number as the accountant
—controls
-— that choice.
submitMustFail party do
exercise contactCid UpdateTelephone with
newTelephone = "098 7654 321"

newContactCid <- submit owner do
exercise contactCid UpdateTelephone with
newTelephone = "098 7654 321"

submit owner do
newContact <- fetch newContactCid
assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exercisereturns an Update r where risthe return type specified on the choice, allowing the new
ContractId Contact to be stored in the variable new contactCid.

2.1.4.2 Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
scenario:

controller party can
UpdateAddress
ContractId Contact
with

(continues on next page)

42 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

newAddress : Text
do
create this with
address = newAddress

newContactCid <- submit party do
exercise newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"

submit owner do
newContact <- fetch newContactCid
assert (newContact.address == "1-10 Bobstreet™")

If you open the scenario view in the IDE, you will notice that Bob sees the Contact. Controllers spec-
ified via controller c can syntax become observers of the contract. More on observers later, but
in short, they get to see any changes to the contract.

2.1.4.3 Choices in the Ledger Model

In 1Basic contracts you learned about the high-level structure of a DAML ledger. With choices and the
exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and
nonconsuming. consuming is the default kind and changes the contract’s status from active
to archived.

A key assertion records the assertion that the given contract key (see Contract keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above scenario:

Transactions:
TX #0 1970-01-01T00:00:00Z (Contact:43:17)
#0:0
| consumed by: #2:0
| referenced by #2:0

| known to (since): 'Alice' (#0), 'Bob' (#0)
L> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone

—= "012 345 6789"

(continues on next page)

2.1. An introduction to DAML 43

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

TX #1 1970-01-01T00:00:002Z
mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)
#2:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"
children:
#2:1
| consumed by: #4:0
| referenced by #3:0, #4:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L_> create Contact:Contact
with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";[|
—~telephone = "098 7654 321"

TX #3 1970-01-01T00:00:00Z (Contact:60:3)
#3:0

L> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)
#4:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)
with
newAddress = "1-10 Bobstreet”
children:
#4:1
| referenced by #5:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L_> create Contact:Contact
with
owner 'Alice';
party = 'Bob';
address = "1-10 Bobstreet";
telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)
#5:0
L_> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four

submit statements in the sce-
nario.

Within each commit, we see that it’s actually actions that have IDs of the form

44 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

#commit number:action number. Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions
of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive choice

You may have noticed that there is no archive action. That’s because archive cidisjustshorthand
forexercise cid Archive,whereArchiveisachoiceimplicitlyaddedtoeverytemplate, withthe
signatories as controllers.

2.1.4.4 A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the
location of the physical cash, but merely with liabilities:

-—- Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or 1itsl]
—affiliates. All rights reserved.
-—- SPDX-License-Identifier: Apache-2.0

module SimpleIou where

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template SimpleIou

with
issuer : Party
owner : Party
cash : Cash
where

signatory issuer

controller owner can

Transfer
ContractId SimpleIou
with
newOwner : Party
do
create this with owner = newOwner
test iou = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

charlie <- getParty "Charlie"
dora <- getParty "Dora"

(continues on next page)

2.1. An introduction to DAML 45

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

-— The bank issues an Iou for S$100 to Alice.
iou <- submit dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Alice transfers it to Bob.
iou2 <- submit alice do
exercise iou Transfer with
newOwner = bob

-—- Bob transfers it to Charlie.
submit bob do
exercise iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner
could prove that Dora was dishonest and cancelled her debt.

2.1.4.5 Next up

You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In
that context, you will also learn about time on DAML ledgers, do blocks and <- notation within those.

2.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in DAML:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Scenario types and do
blocks, which will be good preparation for 7 Composing choices, where you will use do blocks to com-
pose choices into complex transactions.

Lastly, you will learn about time on the ledger and in scenarios.

2.1.5.1 Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-
conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

46 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

ensure cash.amount > 0.0

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency == 3
&& T.isUpper cash.currency

test restrictions = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"
dora <- getParty "Dora"

-—- Dora can't issue negative Ious.
submitMustFail dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-— Or even zero Ious.
submitMustFail dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"

-- Nor positive Ious with invalid currencies.
submitMustFail dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-—- But positive Ious still work, of course.

(continues on next page)

2.1. An introduction to DAML 47

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

iou <- submit dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

2.1.5.2 Assertions
A second common kind of restriction is one on data transformations.

For example, the simple lou in A simple cash model allowed the no-op where the owner transfers to
themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scenarios.

assert does not return an informative error so often it’s better to use the function assertMsgqg,
which takes a custom error message:

controller owner can

Transfer

ContractId SimpleIou

with
newOwner : Party

do
assertMsg "newOwner cannot be equal to owner." (owner /=

—newOwner)

create this with owner = newOwner

-— Alice can't transfer to herself...
submitMustFail alice do
exercise iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exercise iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-
ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This
assumes that actual cash changes hands off-ledger.)

controller owner can
Redeem
()
do
now <- getTime
let
today = toDateUTC now

(continues on next page)

48 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

dow = dayOfWeek today

timeofday = now "subTime time today 0 0 0O

hrs = convertRelTimeToMicroseconds timeofday / 3600000000
assertMsg

("Cannot redeem outside business hours. Current time: " <>[]

—show timeofday)

(hrs >= 8 && hrs <= 18)
case dow of

Saturday -> abort "Cannot redeem on a Saturday."

Sunday -> abort "Cannot redeem on a Sunday."

_ —=> return ()

-— June 1st 2019 is a Saturday.
passToDate (date 2019 Jun 1)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do

exercise iou2 Redeem

-- Not even at mid-day.
pass (hours 12)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exercise iou2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
pass (hours 42)
submitMustFail bob do

exercise iou2 Redeem

-— Bob can redeem at 8am on Monday.
pass (hours 2)
submit bob do

exercise iou2 Redeem

There are quite a few new time-related functions from the DA. Time and DA . Date libraries here. Their
names should be reasonably descriptive so how they work won’t be covered here, but given that DAML
assumes itis runin a distributed setting, we will still discuss time in DAML.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the
<- operator. do blocks and <- deserve a proper explanation at this point.

2.1.5.3 Time on DAML ledgers

Each transaction on a DAML ledger has two timestamps called the ledger effective time (LET) and the
record time (RT). The ledger effective time is set by the submitter of a transaction, the record time is
set by the consensus protocol.

Each DAML ledger has a policy on the allowed difference between LET and RT called the skew. The
submitter has to take a good guess at what the record time will be. If it’s too far off, the transaction
will be rejected.

getTime isanactionthatgets the LET from the ledger. In the above example, that time is taken apart

2.1. An introduction to DAML 49

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

into day of week and hour of day using standard library functions from DA.Date and DA.Time. The
hour of the day is checked to be in the range from 8 to 18.

Suppose now that the ledger had a skew of 10 seconds, but a submission took less than 4 seconds
to commit. At 18:00:05, Alice could submit a transaction with a LET of 17:59:59 to redeem an lou. It
would be a valid transaction and be committed successfully as getTime will return 17:59:59 so hrs
== 17. Since RT will be before 18:00:09, LET - RT < 10 seconds and the transaction won’t be
rejected.

Time therefore has to be considered slightly fuzzy in DAML, with the fuzziness depending on the skew
parameter.

Time in scenarios

In scenarios, record and ledger effective time are always equal. You can set them using the following
functions:

passToDate, which takes a date and sets the time to midnight (UTC) of that date
pass, which takes a Re1Time (a relative time) and moves the ledger by that much

Time on ledgers

On a distributed DAML ledger, there are no guarantees that ledger effective time or relative time are
strictly increasing. The only guarantee is that ledger effective time is increasing with causality. That
is, if a transaction TX2 depends on a transaction TX1, then the ledger enforces that the LET of TX2 is
greater than or equal to that of TX1:

iou3 <- submit dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

pass (days (-3))
submitMustFail alice do
exercise iou3 Redeem

2.1.5.4 Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Scenario and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocksis therefore crucial to being able to construct correct contract
models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressions in DAML are pure in the sense that they have no side-effects: they neither read nor mod-
ify any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

50 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

getTime is a good example of an Action. Here’s the example we used earlier

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there
is no expression expr that you could put on the right hand side of now = expr. To get the ledger
effective time, you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so,you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a,and Update and Scenarioareinstances of Action. Avalueof suchatypem awherem
isaninstanceof Actioncanbeinterpreted as arecipeforan actionof typem, which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais arecipe toupdate a DAML ledger, which, when committed, has the effect of
changing the ledger, and returns avalue of type a . An update to a DAML ledger is a transaction
so equivalently, an Update ais arecipe to construct a transaction, which, when executed in
the context of a ledger, returns a value of type a .

A Scenario ais arecipe for a test, which, when performed against a ledger, has the effect
of changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, getParty party, pass time, submit party update, create
contract and exercise choice should make more sense in that light. For example:

getTime : Update Time isthe recipe for an empty transaction that also happens to return
a value of type Time.

pass (days 10) : Scenario () is a recipe for a transaction that doesn’t submit any
transactions, but has the side-effect of changing the LET of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou),whereiou : Iouisarecipeforatransaction
consisting of a single create action, and returns the contract id of the created contract if
successful.

submit alice (create iou) : Scenario (ContractId Iou) isarecipeforascenario
in which Alice evaluates the result of create iou to get a transaction and a return value of
type ContractId Iou, and then submits thattransaction to the ledger.

Any DAML ledger knows how to perform actions of type Update a. Only some know how to run sce-
narios, meaning they can perform actions of type Scenario a.

2.1. An introduction to DAML 51

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just
another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a
transaction.

A scenariois alist of interactions with the ledger (submit, getParty, pass, etc). So a scenario
followed by another scenario is again a scenario.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,
using the results of earlier actions in later ones.

sub scenariol : Scenario (ContractId SimpleIou) = scenario do
alice <- getParty "Alice"
dora <- getParty "Dora"

submit dora do
create SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

sub scenario2 : Scenario Int = scenario do
getParty "Nobody"
pass (days 1)
pass (days (-1))
return 42

sub scenario3 : Scenario (ContractId SimplelIou) = scenario do
bob <- getParty "Bob"
dora <- getParty "Dora"

submit dora do
create SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main scenario : Scenario () = scenario do
dora <- getParty "Dora"

ioul <- sub scenariol
sub scenario?2
iou2 <- sub scenario3

submit dora do
archive ioul

(continues on next page)

52 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

archive iou2

Above, we see do blocks in action for both Scenario and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return xis a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_scenario2 : Scenario Int.

2.1.5.5 Failing actions

Not only are Update and Scenario examples of Action, they are both examples of actions that
can fail, e.g. because a transaction is illegal or the party retrieved via getParty doesn’t exist on the
ledger.

Each has a special action abort txt thatrepresents failure, and that takes on type Update () or
Scenario () dependingon context.

Transactions and scenarios succeed or fail atomically as a whole. So an occurrence of an abort action
will always fail the entire evaluation of the current Scenario or Update.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.
It has type Update () and is either an abort or return depending on the day of week. So during
the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of
transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails
the entire transaction.

2.1.5.6 A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more
generally, by creating a new type thatis also an action. CoinGame aisanAction ainwhichaCoin
is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing
the random number generator’s state. Based on the Heads and Tails results, a return value of type
a is calulated.

data Face = Heads | Tails
deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with
play : Coin -> (Coin, a)

flipCoin : CoinGame Face
getCoin : Scenario Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.
More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get
yourhandsonaCoininaScenariocontextandanaction f1ipCoinwhichrepresentsthe simplest
possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write
down a script or recipe for a game:

2.1. An introduction to DAML 53

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

coin test = scenario do
—-— The coin is pseudo-random on LET so change the parameter to changell
—the game.
passToDate (date 2019 Jun 1)
pass (seconds 2)
coin <- getCoin
let
game = do
flr <- flipCoin
f2r <- flipCoin
f3r <- flipCoin

if all (== Heads) [flr, f2r, £f3r]
then return "Win"
else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return
Heads, the resultis "Win", or else "Loss".

Ina Scenario contextyoucangeta Coin usingthe getCoin action,which uses the LET to calculate
a seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-
ing glass and understand in-depth what’s going on, you can look at the source file to see how the
CoinGame action is implemented, though be warned that the implementation uses a lot of DAML
features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general
course on functional programming, and Haskell in particular. For example:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)
Learn You a Haskell for Great Good! (Miran Lipova a)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

2.1.5.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-
tions only have an effect when they are performed, so the following scenario succeeds or fails de-
pending on the value of abortScenario:

nonPerformedAbort = scenario do
let abortScenario = False
let failingAction : Scenario () = abort "Foo"
let successfulAction : Scenario () = return ()

if abortScenario then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a
function pow that takes an integer to the power of another positive integer. How do we handle that

54 Chapter 2. Writing DAML

https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int
optPow X y
|y == = Some 1
| v > 0 = let Some z = optPow x (y - 1)
in Some (y * z)
| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always
handle it as we need to extract the result from an Optional. We can see the impact on convenience
in the definition of the above function. In cases, like division by zero or the above function, it can
therefore be preferrable to fail catastrophically instead:

errPow : Int -> Int -> Int
errPow X y
'y == 0=1
| v >0 =y * errPow x (y - 1)
| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following scenario will fail,
because failingComputation is evaluated:

nonPerformedError = scenario do
let causeError = False
let failingComputation = errPow 1 (-1)
let successfulComputation = errPow 1 1
return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and
where explicit partiality would unduly impact usability of the function.

2.1.5.8 Next up

You can now specify a precise data and data-transformation model for DAML ledgers. In 6 Parties and
authority, you will learn how to properly involve multiple parties in contracts, how authority works in
DAML, and how to build contract models with strong guarantees in contexts with mutually distrust-
ing entities.

2.1.6 6 Parties and authority

DAML is designed for distributed applications involving mutually distrusting parties. In a well-
constructed contract model, all parties have strong guarantees that nobody cheats or circumvents
the rules laid out by templates and choices.

In this section you will learn about DAML’s authorization rules and how to develop contract models
that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another
Write advanced choices
Reason through DAML’s Authorization model

2.1. An introduction to DAML 55

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.1.6.1 Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract
has one major problem: The contract is only signed by the issuer. The signatories are the parties
with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange
for some goods, she could just archive it again after receiving the goods. Bob would have a record of
such actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

simple iou test = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"

-- Alice and Bob enter into a trade.
-- Alice transfers the payment as a Simplelou.
iou <- submit alice do
create SimpleIou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

pass (days 1)
-— Bob delivers the goods.

pass (minutes 10)
-—- Alice just deletes the payment again.
submit alice do

archive iou

For a party to have any guarantees that only those transformations specified in the choices are actu-
ally followed, they either need to be a signatory themselves, or trust one of the signatories to not agree
to transactions that archive and re-create contracts in unexpected ways. To make the SimpleIou
safe for Bob, you need to add him as a signatory.

template Iou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer, owner

(continues on next page)

56 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

controller owner can
Transfer
ContractId Iou
with
newOwner : Party
do
assertMsg "newOwner cannot be equal to owner." (owner /=]
—newOwner)
create this with
owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Tou to Bob. To get an
Iou with Bob’s signature as owner onto the ledger, his authority is needed.

iou test = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"

-- Alice and Bob enter into a trade.
-- Alice wants to give Bob an Iou, but she can't without Bob's authority.
submitMustFail alice do
create Iou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

-- She can issue herself an Iou.
iou <- submit alice do
create Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— However, she can't transfer it to Bob.
submitMustFail alice do
exercise iou Transfer with
newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the ITou again. The above

Iou can contain negative values so Bob should be glad that A1ice cannot put his signature on any
Tou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above
Tou, before diving into the authorization model in full.

2.1. An introduction to DAML 57

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.1.6.2 Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an lou to
Bob, giving him the choice to accept. You can do so by introducing a proposal contract ITouProposal:

template IouProposal
with
iou : Iou
where
signatory iou.issuer

controller iou.owner can
IouProposal Accept
ContractId Iou
do
create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do
create IouProposal with
iou = Iou with

issuer = alice

owner = bob

cash = Cash with
amount = 100.0
currency = "USD"

submit bob do
exercise iouProposal IouProposal Accept

The IouProposal contract carries the authorithy of iou.issuer by virtue of them being a signa-
tory. By exercising the TouProposal Accept choice, Bob adds his authority to that of Alice, which
is why an Iou with both signatories can be created in the context of that choice.

The choice is called TouProposal Accept, not Accept, because propose-accept patterns are very
common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot
have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure
uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,
by creating a TransferProposal:

template IouTransferProposal

with
iou : Iou
newOwner : Party
where

signatory (signatory iou)

controller iou.owner can
IouTransferProposal Cancel
ContractId Iou

(continues on next page)

58 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

do
create iou

controller newOwner can
IouTransferProposal Reject
ContractId Iou
do
create iou

IouTransferProposal Accept
ContractId Iou
do
create iou with
owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the
signatories from another contract. Instead of writing signatory (signatory iou), you could
write signatory iou.issuer, iou.owner.

Note also how newOwner is given multiple choices using a single controller newOwner can
block. The TouProposal had a single signatory so it could be cancelled easily by archiving it. With-
out a Cancel choice, the newOwner could abuse an open TransferProposal as an option. The triple
Accept,Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a
transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a
IouTransferProposal is created instead of an Iou:

ProposeTransfer
ContractId IouTransferProposal
with
newOwner : Party
do
assertMsg "newOwner cannot be equal to owner." (owner /=
—newOwner)
create IouTransferProposal with
iou = this
newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- getParty "Charlie"

-—- Alice 1issues an Iou using a transfer proposal.
tpab <- submit alice do
create IouTransferProposal with

newOwner = bob

iou = Iou with
issuer = alice
owner = alice

cash = Cash with

(continues on next page)

2.1. An introduction to DAML 59

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

amount = 100.0
currency = "USD"

-— Bob accepts the transfer from Alice.
iou2 <- submit bob do
exercise tpab IouTransferProposal Accept

-—- Bob offers Charlie a transfer.
tpbc <- submit bob do
exercise iou2 ProposeTransfer with
newOwner = charlie

-— Charlie accepts the transfer from Bob.
submit charlie do
exercise tpbc IouTransferProposal Accept

2.1.6.3 Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this
succinctly in DAML through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the scenario
above. In 7 Composing choices, you will see how to compose the ProposeTransfer and
IouTransferProposal Accept choices into a single new choice, but for now, here is a different
way. You can give them the joint right to transfer an IOU:

choice Mutual Transfer
ContractId Iou
with
newOwner : Party
controller owner, newOwner
do
create this with
owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner
variable is part of the choice arguments, not the Iou.

The above syntax is an alternative to controller c can, which allows for this. Such choices live
outsideany controller c can block. They declared usingthe choice keyword, and have an extra
clause controller c,which takes the place of controller c can, and has access to the choice
arguments.

This is also the first time we have shown a choice with more than one controller. If multiple con-
trollers are specified, the authority of allthe controllers is needed. Here, neither owner, nornewOwner
can execute a transfer unilaterally, hence the name Mutual Transfer.

template IouSender
with
sender : Party
receiver : Party

(continues on next page)

60 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

where
signatory receiver

controller sender can
nonconsuming Send Iou

ContractId Iou

with
iouCid : ContractId Iou

do
iou <- fetch iouCid
assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)
exercise iouCid Mutual Transfer with
newOwner = receiver

The above ITouSender contract now gives one party, the sender theright to send Ioucontracts with
positive amounts to a receiver. The nonconsuming keyword on the choice Send Iouchanges the
behaviour of the choice so that the contract it’s exercised on does not get archived when the choice
is exercised. That way the sender can use the contract to send multiple lous.

Here it is in action:

-— Bob allows Alice to send him Ious.
sab <- submit bob do
create IouSender with
sender = alice
receiver = bob

-— Charlie allows Bob to send him Ious.
sbc <- submit charlie do
create IouSender with
sender = bob
receiver = charlie

-— Alice can now send the Iou she issued herself earlier.
ioud4 <- submit alice do
exercise sab Send Iou with
iouCid = iou

-— Bob sends it on to Charlie.
submit bob do
exercise sbc Send Iou with
iouCid = iou4

2.1.6.4 DAML's authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in DAML.
In this section you’ll learn about the formal authorization model to allow you to reason through your
contract models. This will allow you to construct them in such a way that you don’t run into autho-
rization errors at runtime, or, worse still, allow malicious transactions.

2.1. An introduction to DAML 61

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

In Choices in the Ledger Model you learned that a transaction is, equivalently, a tree of transactions, ora
forest of actions, where each transaction is a list of actions, and each action has a child-transaction
called its consequences.

Each action has a set of required authorizers - the parties that must authorize that action - and each
transaction has a set of authorizers - the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers
of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.
Remember that Archive and archive are just an implicit choice with the signatories as con-
trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat
dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.
The consequences of an exercise action are authorized by the actors of that action plus the
signatories of the contract on which the action was taken.

An authorization example

The final transaction in the scenario of the the source file for this section is authorized as follows,
ignoring fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send Iouon a IouSender con-
tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the
sender, Bob is the required authorizer.

The consequences of the Send Tou action are authorized by its actors, Bob, as well as signa-
tories of the contract on which the action was taken. That’'s Charlie in this case, so the conse-
quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual Exercise with Charlie as
newOwner on an Iou with issuer alice and owner Bob. The required authorizers of the ac-
tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.
The consequences of Mutual Transfer areauthorized by the actors (Bob and Charlie), as well
as the signatories on the lou (Alice and Bob).

The single action on the consequences, the creation of an lou with issuer Alice and owner
Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s
authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX #12 1970-01-01T00:00:00Z (Parties:269:3)
#12:0
| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> 'Bob' exercises Send TIou on #10:0 (Parties:IouSender)
with
iouCid = #11:3
children:

(continues on next page)

62 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

#12:1
| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> fetch #11:3 (Parties:Iou)
#12:2
| known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)
L> 'Bob', 'Charlie' exercises Mutual Transfer on #11:3 (Parties:Iou)
with
newOwner = 'Charlie'
children:
#12:3
| known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)
L> create Parties:Iou
with
issuer = 'Alice';
owner = 'Charlie';
cash =
(Parties:Cash with
currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive
with
partyA : Party
partyB : Party
where
signatory partyA

controller partyA can
TryA
ContractId NonTransitive
do
create NonTransitive with
partyA = partyB
partyB = partyA

controller partyB can

TryB
ContractId NonTransitive
with
other : ContractId NonTransitive
do

exercise other TryA

ntl <- submit alice do
create NonTransitive with
partyA = alice
partyB = bob

(continues on next page)

2.1. An introduction to DAML 63

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

nt2 <- submit alice do
create NonTransitive with
partyA = alice
partyB = bob

submitMustFail bob do
exercise ntl TryB with
other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action Trya only has Alice
as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to
create the flipped NonTransitive so the transaction fails.

2.1.6.5 Next up

In 7 Composing choices you will finally put everything you have learned together to build a simple asset
holding and trading model akin to that in the 10U Quickstart Tutorial. In that context you’ll learn a bit
more about the Update action and how to use it to compose transactions, as well as about privacy
on DAML ledgers.

2.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure DAML model for
asset issuance, management, transfer, and trading. This application will have capabilities similar
to the one in I0U Quickstart Tutorial. In the process you will learn about a few more concepts:

DAML projects, packages and modules
Composition of transactions
Observers and stakeholders

DAML’s execution model

Privacy

The model in this section is not a single DAML file, but a DAML project consisting of several files that
depend on each other.

2.1.7.1 DAML projects

DAML is organized in packages and modules. A DAML project is specified using a single daml . yaml
file, and compiles into a package. Each DAML file within a project becomes a DAML module. You can
start a new project with a skeleton structure using daml new project name in the terminal.

Each DAML project has a main source file, which is the entry point for the compiler. Acommon pat-
tern is to have a main file called LibraryModules.daml, which simply lists all the other modules
to include.

A minimal project would contain just two files: daml.yaml and daml/LibraryModules.daml.
Take a look at the daml . yaml for this project:

sdk-version: VERSION
name: _ PROJECT NAME
source: daml/LibraryModules.daml

(continues on next page)

64 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib
sandbox-options:

- —-wall-clock-time

You can generally set name and version freely to describe your project. dependencies lists pack-
age dependencies: you should always include daml-prim, and daml-stdlib gives access to the
DAML standard library.

You compile a DAML project by running daml build from the project root directory. This creates a
dar packagein dist/project name.dar. Adar file is DAML’s equivalent of a JAR file in Java: it’s
the artifact that gets deployed to a ledger to load the contract model.

2.1.7.2 Project structure

This project contains an asset holding model for transferrable, fungible assets and a separate trade
workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and
Intro.Asset.Trade.

In addition, there are tests in modules Test.Intro.Asset, Test.Intro.Asset.Role,and Test.
Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths, and the last one to a file
name. The folder structure therefore looks like this:

| | F—— Role.daml
| | L — Trade.daml
| L — Asset.daml
F—— LibraryModules.daml
L— Test
L— Intro
— Asset
| F—— Role.daml
| L — Trade.daml
L— Asset.daml
L— daml.yaml

Each file contains the DAML pragma and module header. For example, daml/Intro/Asset/Role.
daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModules module
imports all six modules:

2.1. An introduction to DAML 65

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

import Intro.Asset ()
import Intro.Asset.Role ()
import Intro.Asset.Trade ()

import Test.Intro.Asset ()
import Test.Intro.Asset.Role ()
import Test.Intro.Asset.Trade ()

Imports always have to appear just below the module declaration. The () behind each import above

is optional, and lets you only import selected names.

Inthis case, it suppresses an unused import warning. LibraryModules is notactually using any
of the imports in LibraryModules. The () tells the compiler that this is intentional.

A more typical import statement is import Intro.Asset asfoundin Test.Intro.Asset.

2.1.7.3 Project overview

The project both changes and adds to the Tou model presented in 6 Parties and authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner

to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This

makes Asset safer than Iou from the issuer’s point of view.

With the Tou model, an issuer could end up owing cash to anyone as transfers were autho-
rized by just owner and newOwner. In this project, only parties having an AssetHolder con-
tract can end up owning assets. This allows the i ssuer to determine which parties may own

their assets.
The Trade template adds a swap of two assets to the model.

2.1.7.4 Composed choices and scenarios

This project showcases how you can put the Update and Scenario actions you learnt about in 6
Parties and authority to good use. For example, the Merge and Split choices each perform several

actions in their consequences.

Two create actions in case of Split
One create and one archive action in case of Merge

Split
SplitResult
with
splitQuantity : Decimal
do
splitAsset <- create this with
quantity = splitQuantity
remainder <- create this with
quantity = quantity - splitQuantity
return SplitResult with
splitAsset
remainder

Merge

(continues on next page)

66 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

ContractId Asset

with
otherCid : ContractId Asset
do
other <- fetch otherCid
assertMsg
"Merge failed: issuer does not match"
(issuer == other.issuer)
assertMsg
"Merge failed: owner does not match"
(owner == other.owner)
assertMsg
"Merge failed: symbol does not match"
(symbol == other.symbol)

archive otherCid
create this with
quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return xisa
no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a
value with side-effects. The return name makes sense when it’s used as the last statementin a do
block as its argument is indeed the return -value of the do block in that case.

Taking transaction composition a step further, the Trade Settle choice on Trade composes two
exercise actions:

Trade_Settle
(ContractId Asset, ContractId Asset)
with
quoteAssetCid : ContractId Asset
baseApprovalCid : ContractId TransferApproval
do
fetchedBaseAsset <- fetch baseAssetCid
assertMsg
"Base asset mismatch"
(baseAsset == fetchedBaseAsset with
observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg
"Quote asset mismatch"
(quoteAsset == fetchedQuoteAsset with
observers = quoteAsset.observers)

transferredBaseCid <- exercise
baseApprovalCid TransferApproval Transfer with
assetCid = baseAssetCid

transferredQuoteCid <- exercise
quoteApprovalCid TransferApproval Transfer with

(continues on next page)

2.1.

An introduction to DAML 67

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the
test trade scenarioin Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)
#15:0

| known to (since): 'Alice' (#15), 'Bob' (#15)
L> 'Bob' exercises Trade Settle on #13:1 (Intro.Asset.Trade:Trade)
with
quoteAssetCid = #10:1; baseApprovalCid = #14:2
children:
#15:1
| known to (since): 'Alice' (#15), 'Bob' (#15)

L> fetch #11:1 (Intro.Asset:Asset)

#15:2
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)

#15:3
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)
L> 'Alice’,
'Bob' exercises TransferApproval Transfer on #14:2 (Intro.
—~Asset:TransferApproval)

with
assetCid = #11:1
children:
#15:4
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)

L> fetch #11:1 (Intro.Asset:Asset)

#15:5

| known to (since): 'Alice' (#15), 'USD Bank' (#15), 'Bob' (#15)

L> 'Alice’, 'USD Bank' exercises Archive on #11:1 (Intro.
—~Asset:Asset)

#15:0
| referenced by #17:0
| known to (since): 'Bob' (#15), 'USD Bank' (#15), 'Alice' (#15)
L> create Intro.Asset:Asset
with
issuer = 'USD Bank'; owner = 'Bob'; symbol = "USD"; quantity
—~= 100.0; observers = []
#15:7
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)

(continues on next page)

68 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

L> 'Bob’,
'Alice' exercises TransferApproval Transfer on #12:1 (Intro.
—Asset:TransferApproval)
with
assetCid = #10:1
children:
#15:8
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)

#15:9

| known to (since): 'Bob' (#15), 'EUR Bank' (#15), 'Alice' (#15)

L> 'Bob', 'EUR Bank' exercises Archive on #10:1 (Intro.
—Asset:Asset)

#15:10
| referenced by #16:0
| known to (since): 'Alice' (#15), 'EUR Bank' (#15), 'Bob' (#15)
L> create Intro.Asset:Asset
with
issuer = 'EUR Bank'; owner = 'Alice'; symbol = "EUR";[I
—quantity = 90.0; observers = []

Similar to choices, you can see how the scenarios in this project are built up from each other:

test issuance = scenario do
setupResultl (alice, bob, bank, aha, ahb) <- setupRoles

assetCid <- submit bank do
exercise aha Issue Asset
with
symbol = "USD"
quantity = 100.0

submit bank do

asset <- fetch assetCid

assert (asset == Asset with
issuer = bank
owner = alice
symbol = "USD"
quantity = 100.0
observers = []

)

return (setupResult, assetCid)

In the above, the test issuance scenario in Test.Intro.Asset.Role uses the output of the
setupRoles scenario in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResults <-
setupRoles and then accessing the components of setupResults using 1, 2,etc, youcan give

2.1. An introduction to DAML 69

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

them names. It’s equivalent to writing

setupResults <- setupRoles
case setupResults of
(alice, bob, bank, aha, ahb) ->

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but
setupResults is used in the return value of test issuance so it makes sense to give it a name,
too. The notation with @ allows you to give both the whole value as well as its constituents names in
one go.

2.1.7.5 DAML's execution model

DAML’s execution model is fairly easy to understand, but has some important consequences. You
can imagine the life of a transaction as follows:

1. A party submits a transaction. Remember, a transaction is just a list of actions.

2. The transaction is interpreted, meaning the Update corresponding to each action is evaluated
in the context of the ledger to calculate all consequences, including transitive ones (conse-
quences of consequences, etc.).

3. The views of the transaction that parties get to see (see Privacy) are calculated in a process
called blinding, or projecting.

4. The blinded views are distributed to the parties.

5. The transaction is validated based on the blinded views and a consensus protocol depending
on the underlying infrastructure.

6. If validation succeeds, the transaction is committed.

The first important consequence of the above is that all transactions are committed atomically. Ei-
ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade Settle choice shown above. The choice transfers a
baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no
chance that either party is left out of pocket.

The second consequence, due to 2, is that the submitter of a transaction knows all consequences
of their submitted transaction - there are no surprises in DAML. However, it also means that the
submitter must have all the information to interpret the transaction.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that
transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about
some way for Alice to accept a transfer - remember, accepting a transfer needs the authority of
issuer in this example.

2.1.7.6 Observers

Observers are DAML’s mechanism to disclose contracts to other parties. They are declared just like
signatories, but using the ocbserver keyword, as shown in the Asset template:

template Asset
with
issuer : Party
owner : Party
symbol : Text
quantity : Decimal

(continues on next page)

70 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

observers : [Party]
where

signatory issuer, owner

ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice
uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if
she didn’t do that by removing that transaction.

usdCid <- submit alice do
exercise usdCid SetObservers with
newObservers = [bob]

Observers have guarantees in DAML. In particular, they are guaranteed to see actions that create and
archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each
other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and
using that to authorize the transfer in Trade Settle, Alice creates a one-time authorization in the
formof a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up
leaking them to each other.

Controllers declared via the controller cs can syntax are automatically made observers. Con-
trollers declared in the choice syntax are not, as they can only be calculated at the point in time
when the choice arguments are known.

2.1.7.7 Privacy
DAML’s privacy model is based on two principles:

1. Parties see those actions that they have a stake in.
2. Every party that sees an action sees its (transitive) consequences.

Iltem 2. is necessary to ensure that every party can independently verify the validity of every trans-
action they see.

A party has a stake in an action if

they are a required authorizer of it
they are a signatory of the contract on which the action is performed
they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade Settle action from test trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade Settled action,
so both of them see it. According to rule 2. above, that means they get to see everything in the
transaction.

The consequences contain, next to some fetch actions, two exercise actions of the choice
TransferApproval Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see
the action on their contract. So the EUR_Bank sees the TransferApproval Transfer action

2.1. An introduction to DAML 71

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

for the EUR Asset and the USD_Bank sees the TransferApproval Transfer action for the USD
Asset.

Some DAML ledgers, like the scenario runner and the Sandbox, work on the principle of data min-
imization , meaning nothing more than the above information is distributed. That is, the projec-
tion of the overall transaction that gets distributed to EUR_Bank in step 4 of DAML’s execution model
would consist only of the TransferApproval Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-

straints.

Divulgence

Note that principle 2. of the privacy model means that sometimes parties see contracts that they
are not signatories or observers on. If you look at the final ledger state of the test trade scenario,
for example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in
their respective columns:

Intro.Asset:Asset

5t'—:tus issuer -c-wner aymbnl quantlw ﬂbbE‘f"’."EI‘b
: =

X[[x[#556
X[X[x] - J#15

This is because the create action of these contracts are in the transitive consequences of the
Trade Settle action both of them have a stake in. This kind of disclosure is often called divul-
gence and needs to be considered when designing DAML models for privacy sensitive applications.

2.2 Language reference docs
This section contains a reference to writing templates for DAML contracts. It includes:
2.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a DAML file outside a template, see Reference: DAML file structure.

2.2.1.1 Template outline structure

Here’s the structure of a DAML template:

template NameOfTemplate
with
exampleParty : Party
exampleParty?2 : Party

(continues on next page)

72 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

exampleParty3 : Party
exampleParameter : Text
-- more parameters here
where
signatory exampleParty
observer exampleParty?2
agreement
-— some text
ensure
-- boolean condition
True
key (exampleParty, exampleParameter) : (Party, Text)
maintainer (exampleFunction key)
-— a choice goes here; see next section

template name template keyword
parameters with followed by the names of parameters and their types
template body where keyword
Can include:
signatories signatory keyword
Required. The parties (see the Party type) who must consent to the creation of an instance
of this contract. You won’t be able to create an instance of this contract until all of these
parties have authorized it.
observers observer keyword
Optional. Parties that aren’t signatories but who you still want to be able to see this con-
tract.
an agreement agreement keyword
Optional. Text that describes the agreement that this contract represents.
a precondition ensure keyword
Only create the contract if the conditions after ensure evaluate to true.
a contract key key keyword
Optional. Lets you specify a combination of a party and other data that uniquely identifies
an instance of this contract template. See Contract keys.
maintainers maintainer keyword
Required if you have specified a key. Keys are only unique to amaintainer. See Contract
keys.
choices choice NameOfChoice : ReturnType controller nameOfParty do
or
controller nameOfParty can NameOfChoice : ReturnType do
Defines choices that can be exercised. See Choice structure for what can go in a choice.

2.2.1.2 Choice structure
Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

start with the choice keyword
start with the controller keyword

-- option 1 for specifying choices: choice name first

(continues on next page)

2.2. Language reference docs 73

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

choice NameOfChoice
() —-— replace () with the actual return type

with
party : Party —-- parameters here
controller party
do
return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first
controller exampleParty can
NameOfAnotherChoice
() —-—- replace () with the actual return type

with
party : Party —-- parameters here
do
return () -- replace the line with the choice body

a controller (or controllers) controller keyword
Who can exercise the choice.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which
changes the behavior of the choice with respect to privacy and if and when the contract is
archived. See contract consumption in choices for more details.

aname Must begin with a capital letter. Must be unique - choices in different templates can’t have
the same name.

areturn type after a :, the return type of the choice

choice arguments with keyword
If you start your choice with choice and include a Party as a parameter, you can make that
Party the controller of the choice. This is a feature called flexible controllers , and it
means you don’t have to specify the controller when you create the contract - you can spec-
ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an
observer of the contract and must be explicitly declared as such.

a choice body After do keyword
What happens when someone exercises the choice. A choice body can contain update state-
ments: see Choice body structure below.

2.2.1.3 Choice body structure
A choice body contains Update expressions, wrapped in a do block.
The update expressions are:

create Create a new contract instance of this template.
create NameOfContract with contractArgumentl = valuel;
contractArgument?2 = valueZ2;

exercise Exercise a choice on a particular contract.
exercise 1dOfContract NameOfChoiceOnContract with choiceArgumentl =
valuel; choiceArgument?2 = value 2; .

fetch Fetch a contract instance using its ID. Often used with assert to check conditions on the con-
tract’s content.
fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.

74 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

fetchedContract <- fetchByKey @ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.
fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.
if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be
supplied to a contract choice.
assert (amount > 0)

getTime Gets the ledger effective time. Usually used to restrict when a choice can be exercised.
currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.
This means you only need to use return if you want to return something else.
return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch
someContractId

2.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

2.2.2.1 Template name

template NameOfTemplate

This is the name of the template. It’s preceded by template keyword. Must begin with a capital
letter.

This is the highest level of nesting.

The name is used when creating a contract instance of this template (usually, from within a
choice).

2.2.2.2 Template parameters

with
exampleParty : Party
exampleParty?2 : Party
exampleParty3 : Party
exampleParam : Text
-— more parameters here

with keyword. The parameters are in the form of a record type.

Passed in when creating a contract instance from this template. These are then in scope inside
the template body.

A template parameter can’t have the same name as any choice arguments inside the template.
For all parties involved in the contract (whether they're a signatory, observer, or
controller)you must passthem in as parameters to the contract, whether individually or as
alist([Party]).

2.2. Language reference docs 75

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.2.3 Signatory parties

where

signatory exampleParty

signatory keyword. After where. Followed by at least one Party.

Signatories are the parties (see the Party type) who must consent to the creation of an in-
stance of this contract. They are the parties who would be put into an obligable position when
this contract is created.

DAML won’t let you put someone into an obligable position without their consent. So if the
contract will cause obligations for a party, they must be a signatory. If they haven’t authorized
it, you won’t be able to create the contract. In this situation, you may see errors like:
NameOfTemplate requires authorizers Partyl,Party2,Party, but only
Partyl were given.

When a signatory consents to the contract creation, this means they also authorize the conse-
quences of choices that can be exercised on this contract.

The contract instance is visible to all signatories (as well as the other stakeholders of the con-
tract). That is, the compiler automatically adds signatories as observers.

You must have least one signatory per template. You can have many, either as a comma-
separated list or reusing the keyword. You could pass in a list (of type [Party]).

2.2.2.4 Observers

observer exampleParty?2

observer keyword. After where. Followed by at least one Party.

Observers are additional stakeholders, so the contract instance is visible to these parties (see
the Party type).

Optional. You can have many, either as a comma-separated list or reusing the keyword. You
could pass in alist (of type [Party]).

Use when a party needs visibility on a contract, or be informed or contract events, but is not a
signatory or controller.

If you start your choice with choice rather than controller (see Choices below), you must
make sure to add any potential controller as an observer. Otherwise, they will not be able to
exercise the choice, because they won’t be able to see the contract.

2.2.2.5 Choices

-- option 1 for specifying choices: choice name first
choice NameOfChoicel

() -- replace () with the actual return type
with
exampleParameter : Text -- parameters here
controller exampleParty
do
return () -- replace this line with the choice body

-—- option 2 for specifying choices: controller first
controller exampleParty can
NameOfChoice2
() -—- replace () with the actual return type

(continues on next page)

76

Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body

nonconsuming NameOfChoice3
() -— replace () with the actual return type

with
exampleParameter : Text —-- parameters here
do
return () -- replace this line with the choice body

A right that the contract gives the controlling party. Can be exercised.

This is essentially where all the logic of the template goes.

By default, choices are consuming: that is, exercising the choice archives the contract, so
no further choices can be exercised on it. You can make a choice non-consuming using the
nonconsuming keyword.

There are two ways of specifying a choice: start with the choice keyword or start with the
controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure
to add that party as an observer.

See Reference: choices for full reference information.

2.2.2.6 Agreements

agreement
-—- text representing the contract

mwn

agreement keyword, followed by text.

Represents what the contract means in text. They’re usually the boundary between on-ledger
and off-ledger rights and obligations.

Usually, they look like agreement tx,where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenate with
<>

2.2.2.7 Preconditions

ensure
True -- a boolean condition goes here

ensure keyword, followed by a boolean condition.
Used on contract creation. ensure limits the values on parameters that can be passed to the
contract: the contract can only be created if the boolean condition is true.

2.2.2.8 Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)
maintainer (exampleFunction key)

key and maintainer keywords.

2.2. Language reference docs 77

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

This feature lets you specify a key that you can use to uniquely identify an instance of this
contract template.

If you specify a key, you must also specify amaintainer. This is a Party that will ensure the
uniqueness of all the keys it is aware of.

Because of this, the key mustinclude the maintainer Party or parties (for example, as part
of a tuple or record), and the maintainer must be a signatory.

For a full explanation, see Contract keys.

2.2.3 Reference: choices

This page gives reference information on choices:

choicefirstor controller first
Choice name
Controllers

- Contract consumption
Preconsuming choices
Postconsuming choices
Non-consuming choices

= Return type
Choice arguments
Choice body

For information on the high-level structure of a choice, see Overview: template structure.

2.2.3.1 choice first or controller first
There are two ways you can start a choice:

start with the choice keyword
start with the controller keyword

-— option 1 for specifying choices: choice name first
choice NameOfChoice

() —-— replace () with the actual return type
with
party : Party —-- parameters here
controller party
do
return () -- replace this line with the choice body

-— option 2 for specifying choices: controller first
controller exampleParty can

NameOfAnotherChoice
() -—- replace () with the actual return type
with
party : Party —-- parameters here
do
return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a
controller. If you do this, you must make sure that you add that party as an observer, otherwise

78 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer
when you compile your DAML files.

2.2.3.2 Choice name

Listing 2: Option 1for specifying choices: choice name first

choice ExampleChoicel
() —-—- replace () with the actual return type

Listing 3: Option 2 for specifying choices: controller first

ExampleChoice2

() -- replace () with the actual return type

The name of the choice. Must begin with a capital letter.

If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

Must be unique in your project. Choices in different templates can’t have the same name.
If you’re using controller-first, you can have multiple choices after one can, for tidiness.

2.2.3.3 Controllers

Listing 4: Option 1for specifying choices: choice name first

controller exampleParty

Listing 5: Option 2 for specifying choices: controller first

controller exampleParty can

controller keyword
The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.
The conjunction of all the parties are required to authorize when this choice is exercised.

Contract consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of

the choice body and both the controllers and all contract stakeholders see all consequences of the
action.

2.2.3.4 Preconsuming choices

Listing 6: Option 1for specifying choices: choice name first

preconsuming choice ExampleChoiceb5
() -—- replace () with the actual return type

2.2. Language reference docs 79

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Listing 7: Option 2 for specifying choices: controller first

preconsuming ExampleChoice?7
() —-—- replace () with the actual return type

preconsuming keyword. Optional.

Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-
ecuted.

The archival behavior is analogous to the consuming default behavior.

Unlike what happens the in consuming behavior, though, only the controllers and signatories
of the contract see all consequences of the action. If the choice archives the contract, other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract before any-
thing else happens

2.2.3.5 Postconsuming choices

Listing 8: Option 1for specifying choices: choice name first

postconsuming choice ExampleChoice6
() -—- replace () with the actual return type

Listing 9: Option 2 for specifying choices: controller first

postconsuming ExampleChoice8
() —-—- replace () with the actual return type

postconsuming keyword. Optional.

Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-
cuted.

The contract can still be used in the body of the exercise.

Only the controllers and signatories of the contract see all consequences of the action. If the
choice archives the contract, other stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract after the
choice has been exercised

2.2.3.6 Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name
first

nonconsuming choice ExampleChoice3
() -—- replace () with the actual return type

Listing 11: Option 2 for specifying choices: controller first

nonconsuming ExampleChoice4
() —-— replace () with the actual return type

nonconsuming keyword. Optional.
Makes a choice non-consuming: that is, exercising the choice does not archive the contract.

80 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Only the controllers and signatories of the contract see all consequences of the action. If the
choice archives the contract, other stakeholders merely see an archive action.
Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

Return type is written immediately after choice name.

All choices have a return type. A contract returning nothing should be marked as returning a
unit ,ie ().

If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

2.2.3.7 Choice arguments

with
exampleParameter : Text

with keyword.

Choice arguments are similar in structure to Template parameters: a record type.

A choice argument can’t have the same name as any parameter to the template the choice is in.
Optional - only if you need extra information passed in to exercise the choice.

2.2.3.8 Choice body

Introduced with do

The logic in this section is what is executed when the choice gets exercised.

The choice body contains Update expressions. For detail on this, see Reference: updates.

By default, the last expression in the choice is returned. You can return multiple updates in
tuple form or in a custom data type. To return something that isn’t of type Update, use the
return keyword.

2.2.4 Reference: updates

This page gives reference information on Updates:

Background
Binding variables
do

create
exercise
exerciseByKey
fetch
fetchByKey
lookupByKey
abort

assert
getTime
return

let

this

2.2. Language reference docs 81

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

For the structure around them, see Overview: template structure.

2.2.4.1 Background

An Update is ledger update. There are many different kinds of these, and they’re listed below.
They are what can go in a choice body.

2.2.4.2 Binding variables

boundVariable <- UpdateExpressionl

One of the things you can doin achoice body is bind (assign) an Update expression to a variable.
This works for any of the Updates below.

2.2.4.3 do

do
updateExpressionl
updateExpression?

do can be used to group Update expressions. You can only have one update expression in a
choice, so any choice beyond the very simple will use a do block.

Anything you can put into a choice body, you can put into a do block.

By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an
example.

2.2.4.4 create

create NameOfTemplate with exampleParameters

create function.

Creates an instance of that contract on the ledger. When a contract is committed to the ledger,
itis given a unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

Use with to specify the template parameters.

Requires authorization from the signatories of the contract being created. This is given by
being signatories of the contract from which the other contract is created, being the controller,
or explicitly creating the contract itself.

Ifthe required authorization is not given, the transaction fails. For more detail on authorization,
see Signatory parties.

2.2.4.5 exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgumentl = wvaluel

exercise function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice. If the authorization is not given,
the transaction fails.

82 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.4.6 exerciseByKey

exerciseByKey (@ContractType contractKey NameOfChoiceOnContract with
—choiceArgumentl = valuel

exerciseByKey function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice and from at least one of the main-
tainers of the key. If the authorization is not given, the transaction fails.

2.2.4.7 fetch

fetchedContract <- fetch IdOfContract

fetch function.
Fetches the contract instance with that ID. Usually used with a bound variable, as in the exam-

ple above.

Often used to check the details of a contract before exercising a choice on that contract. Also
used when referring to some reference data.

fetch cidfails if cidis not the contract id of an active contract, and thus causes the entire
transaction to abort.

The submitting party must be an observer or signatory on the contract, otherwise fetch fails,
and similarly causes the entire transaction to abort.

2.2.4.8 fetchByKey

fetchedContract <- fetchByKey (@ContractType contractKey

fetchByKey function.
The same as fetch, but fetches the contract instance with that contract key, instead of the

contract ID.
As well as the authorization that fetch requires, you also need authorization from one of the

maintainers of the key.

2.2.4.9 lookupByKey

fetchedContractId <- lookupByKey @ContractType contractKey

lookupByKey function.

Use this to confirm that a contract with the given contract key exists.

If it does exist, lookupByKey returns the ContractId of the contract; otherwise, it returns
None. If it returns None, this guarantees that no contract has this key. This does not cause the
transaction to abort.

All of the maintainers of the key must authorize the lookup (by either being signatories or by
submitting the command to lookup), otherwise this will fail.

2.2.4.10 abort

abort errorMessage

abort function.

2.2. Language reference docs 83

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Fails the transaction - nothing in it will be committed to the ledger.

errorMessage is of type Text. Use the error message to provide more context to an external
system (e.g., it gets displayed in DAML Studio scenario results).

You could use assert False as an alternative.

2.2.4.11 assert

assert (condition == True)

assert keyword.
Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.
Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a
parameter is on a blacklist:

Transfer : ContractId RestrictedPayout
with newReceiver : Party
do
assert (newReceiver /= blacklisted)
create RestrictedPayout with receiver = newReceiver; giver;
—blacklisted; gty

2.2.4.12 getTime

currentTime <- getTime

getTime keyword.
Gets the ledger effective time. (You will usually want to immediately bind it to a variable in

order to be able to access the value.)
Used to restrict when a choice can be made. For example, with an assert that the time is later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

Complete : ()

do
-- bind the ledger effective time to the tchoose variable using

—~getTime
tchoose <- getTime

2.2.4.13 return

return ()

return keyword.
Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a
tuple:

84 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

do
firstContract <- create SomeContractTemplate with argl; arg?2
secondContract <- create SomeContractTemplate with argl; arg2
return (firstContract, secondContract)

2.2.4.14 let
See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument thatl]
—when

-— called will create the new contract using argument for issuer and]

—Oowner
let createContract x = create NameOfContract with issuer = x; owner = x

createContract partyl
createContract party?2

2.2.4.15 this

this lets you refer to the current contract from within the choice body. This refers to the contract,
not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the
template.

2.2.5 Reference: data types

This page gives reference information on DAML’s data types:

Built-in types
- Table of built-in primitive types
- Escaping characters
- Time
Lists
- Summing a list
Records and record types
- Data constructors
- Accessing record fields
- Updating record fields
- Parameterized data types
Type synonyms
- Function types
Algebraic data types
- Product types
- Sumtypes
- Pattern matching

2.2. Language reference docs 85

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.5.1 Built-in types

Table of built-in primitive types

Type For Example Notes
Int integers 1, 1000000, | Intvaluesaresigned 64-bitintegers which
1 000 000 represent numbers between -9,223,372,
036,854,775,808 and 9,223,372,036,
854,775,807 inclusive. Arithmetic opera-
tions raise an error on overflows and divi-
sion by 0. To make long numbers more read-
able you can optionally add underscores.
Decimal short for Numeric | 1.0 Decimal values are rational numbers with
10 precision 38 and scale 10.
Numeric n | fixed point decimal | 1.0 Numeric n values are rational numbers with
numbers up to 38 digits. The scale parameter n con-
trols the number of digits after the decimal
point, so for example, Numeric 10 values
have 10 decimal places, and Numeric 20
values have 20 decimal places. The value of
n must be between 0 and 37 inclusive.
Text strings "hello" Text values are strings of characters en-
closed by double quotes.
Bool boolean values True,False
Party unicode string rep- | alice <- Every party in a DAML system has a unique
resenting a party getParty identifier of type Party. To create a value
"Alice" of type Party, use binding on the result of
calling getParty. The party text can only
contain alphanumeric characters, -, and
spaces.
Date models dates date 2007 | Tocreate avalue of type Date, use the func-
Apr 5 tion date (to get this function, import DA.
Date).
Time models absolute | time Time values have microsecond precision.
time (UTC) (date To create a value of type Time, use a Date
2007 Apr and the function time (to get this function,
5) 14 30 import DA. Time).
05
RelTime models differences | seconds 1, | seconds 1 and seconds (-2) represent
between timevalues | seconds the values for 1 and -2 seconds. There are
(=2) no literals for RelTime. Instead they are

created using one of days, hours,minutes
and seconds (to get these functions, im-
port DA.Time).

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

86

Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Time

Definition of time on the ledger is a property of the execution environment. DAML assumes there is
a shared understanding of what time is among the stakeholders of contracts.

2.2.5.2 Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,
3, 2] isanexampleofalistoftype [Int].

You can also construct lists using [] (the empty list) and : : (which is an operator that appends an
element to the front of a list). For example:

twoEquivalentListConstructions =
scenario do
assert ([1, 2, 3] == 1 ::: 2 :: 3 :: 1[1)

Summing a list

To sum a list, use a fold (because there are no loops in DAML). See Folding for details.

2.2.5.3 Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord
with
labell : typel
label2 : type?2

labelN : typeN
deriving (Eq, Show)

where:

labell, label?2, , labelN are labels, which must be unique in the record type
typel, type2, ,typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { labell : typel; label2 : type2; ...; labelN :[]
—typeN }
deriving (Eq, Show)

The formatusing with and the formatusing { } are exactly the same syntactically. The main differ-
ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting
semicolons.

Thederiving (Eg, Show) ensures the data type can be compared (using ==) and displayed (us-
ing show). The line starting deriving is required for data types used in fields of a template.

In general,add the derivingunless the data type contains function types (e.g. Int -> Int),which
cannot be compared or shown.

For example:

2.2. Language reference docs 87

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

-— This is a record type with two fields, called first and second,
-- both of type "Int"
data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type 1is:
newRecord = MyRecord with first = 1; second = 2

-— You can also write:
newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for
some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that
can be used to specify values of the Floor Int type: forexample, Floor 0,Floor 1.

In DAML, data constructors may take at most one argument.

An example of a data constructor with zero arguments isdata Empty = Empty {}.Theonlyvalue
of the Empty type is Empty.

Note: Indata Confusing = Int,the Intisadataconstructorwith noarguments. It has nothing
to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

—-— Access the value of the field "first’
val.first

—-— Access the value of the field "second’
val.second

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select
fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord?2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, DAML lets you use this without assigning it
to make things look nicer:

88 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

-—- 1f you have a variable called "second’ equal to 5
second = 5

-- you could construct the same value as before with
myRecord?2 = myRecord with second = second

-- or with
myRecord3 = MyRecord with first = 1; second = second

-—- but DAML has a nicer way of putting this:
myRecord4 = MyRecord with first = 1; second

-— or even
myRecordb = r with second

Note: The with keyword binds more strongly than function application. So for a function, say
return, either write return IntegerCoordinate with first = 1; second = 5or return
(IntegerCoordinate {first = 1; second = 5}),where the latter expression is enclosed in
parentheses.

Parameterized data types

DAML supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-— Here, a and b are type parameters.
-— The Coordinate after the data keyword is a type constructor.
data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

2.2.5.4 Type synonyms
To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used
interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has
type ParamTypel -> ParamTypeZ -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type
FooType = ParamTypel -> ParamType2 -> ReturnType

2.2. Language reference docs 89

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.5.5 Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The
enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in DAML: data AlternativeCoordinate a b =
AlternativeCoordinate a b. Thisis because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:
a; second: b}l.

These kinds of types are called product types.

Awayofthinking aboutthisisthatthe Coordinate Int Inttypehasafirstandseconddimension
(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and
soon.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False
deriving (Eg, Show), where True and False are data constructors with zero arguments . This
means that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive
at least from (Eq, Show).

A very useful sum type is data Optional a = None | Some a deriving (Eqg, Show). Itis
part of the DAML standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined
by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.
Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

optionalIntegerToText (x : Optional Int) : Text =
case x of
None -> "Box is empty"
Some val -> "The content of the box is " <> show wval

optionallIntegerToTextTest =
scenario do

let
x = Some 3
assert (optionallntegerToText x == "The content of the box is 3")

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

In the optionalIntegerToText function, the case construct first tries to match the x argument
against the None data constructor, and in case of a match, the "Box is empty" textisreturned. In
case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some
data constructor. In case of a match, the content of the value attached to the Some label is bound to
the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least
one pattern that matches. The patterns are tested from top to bottom, and the expression for the
first pattern that matches will be executed. Note that can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and
achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

let
1 =11, 2, 3]
in case 1 of
[] -> "List is empty"
[] -> "List has one element"
: -> "List has at least two elements"

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that DAML Studio
produces a warning for all variables that are not being used. This is useful in detecting unused
variables. You can suppress the warning by naming the variable with an initial underscore.

2.2.6 Reference: built-in functions

This page gives reference information on functions for:

Working with time
Working with numbers
Working with text
Working with lists

- Folding

2.2.6.1 Working with time
DAML has these built-in functions for working with time:

datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.
subTime: subtracts one time from another. Returns the Re1Time difference between timel
and time?2.

addRelTime: add times. Takes a Time and RelTime and adds the Re1Time to the Time.
days, hours,minutes, seconds: constructs a Re1Time of the specified length.

pass: (in scenario tests only) use pass : RelTime -> Scenario Time to advance the
ledger effective time by the argument amount. Returns the new time.

2.2. Language reference docs 91

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.6.2 Working with numbers
DAML has these built-in functions for working with numbers:

round: rounds a Decimal number to Int.
round disthe nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:
round 2.5 == 3 round (-2.5) == -3
round 3.4 == 3 round (-3.7) == -4

truncate: converts a Decimal numberto Int, truncating the value towards zero, for example:

truncate 2.2

2 truncate (-2.2) == -2
truncate 4.9 == 4

v (-4.9) == -4

intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require
more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational
number, but not a Decimal.

2.2.6.3 Working with text

DAML has these built-in functions for working with text:

<> operator: concatenates two Text values.

show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to
a Text.

To escape text in DAML strings, use \:

Character How to escape it
\ A\
" \ll
|l \ 1
Newline \n
Tab \t
Carriage return \r

Unicode (using ! as an example
(g ple) Decimal code: \33

Octal code: \o41
Hexadecimal code: \x21

2.2.6.4 Working with lists
DAML has these built-in functions for working with lists:

foldl and foldzr: see Folding below.

Folding

A fold takes:

a binary operator
a first accumulator value

92 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a
foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs
to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.
This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the
list. This produces a third accumulator value.

3. This continues until there are no more elements in the list. Then, the last accumulator value is
returned.

As an example, to sum up a list of integers in DAML:

sumList =
scenario do
assert (foldl (+) O [1, 2, 3] == 0)

2.2.7 Reference: expressions

This page gives reference information for DAML expressions that are not updates:

Definitions

- Values

- Functions
Arithmetic operators
Comparison operators
Logical operators
If-then-else
Let

2.2.7.1 Definitions

Use assignement to bind values or functions at the top level of a DAML file or in a contract template
body.

Values

For example:

pi = 3.1415926535

The factthat pi has type Decimal is inferred from the value. To explicitly annotate the type, mention
it after a colon following the variable name:

2.2. Language reference docs 93

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

Here you see:

the name of the function

the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

the definition= 2.0 * pi * r * h(which uses the previously defined pi)

2.2.7.2 Arithmetic operators

Operator Works for

+ Int,Decimal,RelTime
- Int,Decimal,RelTime
* Int, Decimal

/ (integer division) Int

% (integer remainder opera- | Int

tion)

~ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

7 / 3and (-7) / (-3) evaluateto?2
(=7) / 3and7 / (-3) evaluateto -2

7 % 3and7 % (-3) evaluatetol

(-=7) % 3and (-7) % (-3) evaluateto-1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2
is another way of writing 1 + 2.

2.2.7.3 Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-
tract instances stemming from the same contract template

2.2.7.4 Logical operators
The logical operators in DAML are:

not for negation, e.g, not True == False
&& for conjunction, wherea && b == and a b

94 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

| | for disjunction,wherea || b == or a b

for Bool variables a and b.

2.2.7.5 If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

2276 Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =
-— let binds values or functions to be in scope beneath the expression
let
double (x : Int) = 2 * x
up = 5
in double up

You can use let inside do and scenario blocks:

blah = scenario
do
let
x =1
y = 2
-- x and y are in scope for all subsequent expressions of the do
—~block,
-—- so can be used in expressionl and expressionZ.
expressionl
expression?

Lastly, a template may contain a single let block.

template Iou

with
issuer : Party
owner : Party
where

signatory issuer

let updateOwner o = create this with owner = o
updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced
-- from any and all of the signatory, consuming, ensure and
-— agreement expressions and from within any choice do blocks.

controller owner can
Transfer : ContractId Iou

(continues on next page)

2.2. Language reference docs 95

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

with newOwner : Party
do
updateOwner newOwner

2.2.8 Reference: functions

This page gives reference information on functions in DAML:

Defining functions
Partial application
Functions are values
Generic functions

DAML is a functional language. It lets you apply functions partially and also have functions that take
other functions as arguments. This page discusses these higher-order functions.

2.2.8.1 Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

You can define this function equivalently using lambdas, involving ‘, a sequence of parameters, and
an arrow -> as:

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.2.8.2 Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->
Decimal. An equivalent, but more instructive, way to read its type is: Decmial -> (Decimal -
> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns
another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type
Decimal -> Decimal. In other words, this function returns another function. Only the last appli-
cation of an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a
function that takes just a single argument and returns another function. In DAML, all functions are
curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to
all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a
function with partially defined arguments. For example:

96 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

multiplyThreeNumbers : Int -> Int -> Int -> Int
multiplyThreeNumbers xx yy zz =
XX * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21l

multiplyTwoNumbersWith7 3

multiplyWithl8 = multiplyThreeNumbers 3 6

You could also define equivalent lambda functions:

multiplyWithl8 v2 : Int -> Int
multiplyWithl8 v2 xx =
multiplyThreeNumbers 3 6 xx

2.2.8.3 Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with
the lambda notation):

-—- Type synonym for Decimal -> Decimal -> Decimal
type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as
when binding values,e.g,pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In
fact, in DAML, functions are values.

This means a function can take another function as an argument. For example, define a function
applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first ar-
gument, a higher-order function, to the second and the third arguments to yield the result.

applyFilter (filter : Int -> Int -> Bool)

(x : Int)
(v : Int) = filter x vy

compute = scenario do
assert (applyFilter (<) 3 2 == False)
assert (applyFilter (/=) 3 2 == True)
assert (round (2.5 : Decimal) == 3)
assert (round (3.5 : Decimal) == 4)
assert (explode "me" == ["m", "e"])

(continues on next page)

2.2. Language reference docs 97

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

assert (applyFilter (\a b -> a /= b) 3 2 == True)

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-
tion as an argument.

Note: DAML does not allow functions as parameters of contract templates and contract choices.
However, a follow up of a choice can use built-in functions, defined at the top level or in the contract
template body.

2.2.8.4 Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type
parameters. For example, you can define function composition as follows:

compose (f : b ->c) (g : a -=>b) (x : a) : ¢ =1f (g x)

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose
not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas
not has type Bool -> Bool.

You can find many other generic functions including this one in the DAML standard library.

Note: DAML currently does not support generic functions for a specific set of types, such as Int
and Decimal numbers. For example, sum (x: a) (y: a) = x + yisundefined when a equals
the type Party. Bounded polymorphism might be added to DAML in a later version.

2.2.9 Reference: scenarios

This page gives reference information on scenario syntax, used for testing templates:

Scenario keyword
Submit
submitMustFail
Scenario body

- Updates

- Passingtime

- Binding variables

For an introduction to scenarios, see Testing using scenarios.

2.2.9.1 Scenario keyword

scenario function. Introduces a series of transactions to be submitted to the ledger.

2.2.9.2 Submit

submit keyword.

98 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Submits an action (a create or an exercise) to the ledger.
Takes two arguments, the party submitting followed by the expression, for example: submit
bankOfEngland do create

2.2.9.3 submitMustFail

submitMustFail keyword.
Like submit, but you’re asserting it should fail.
Takes two arguments, the party submitting followed by the expression by a party, for example:
submitMustFail bankOfEngland do create
2.2.9.4 Scenario body

Updates

Usually create and exercise. But you can also use other updates, like assert and fetch.
Parties can only be named explicitly in scenarios.
Passing time

In a scenario, you may want time to pass so you can test something properly. You can do this with
pass.

Here’s an example of passing time:

timeTravel =
scenario do
-—- Get current ledger effective time
tl <- getTime
assert (tl == datetime 1970 Jan 1 0 0 0)

-— Pass 1 day
pass (days 1)

-—- Get new ledger effective time
t2 <- getTime
assert (t2 == datetime 1970 Jan 2 0 0 0)

Binding variables

As in choices, you can bind to variables. Usually, you’d bind commits to variables in order to get the
returned value (usually the contract).

2.2.10 Reference: DAML file structure

This page gives reference information on the structure of DAML files outside of templates:

File structure
Imports

Libraries
Comments
Contract identifiers

2.2. Language reference docs 929

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.10.1 File structure

Language version (daml 1.2).

This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the DAML
file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, usemodule Scenarios.Demo where.

2.2.10.2 Imports

You can import other modules (import OtherModuleName), including qualified
imports (import qualified AndYetOtherModuleName, import qualified
AndYetOtherModuleName as Signifier). Can’t have circular import references.
To import the Prelude module of . /Prelude.daml, use import Prelude.
To import a module of . /Scenarios/Demo.daml, use import Scenarios.Demo.
If you leave out qualified, and a module alias is specified, top-level declarations of the im-
ported module are imported into the module’s namespace as well as the namespace specified
by the given alias.

2.2.10.3 Libraries

A DAML library is a collection of related DAML modules.

Define a DAML library using a LibraryModules.daml file: a normal DAML file that imports the root
modules of the library. The library consists of the LibraryModules.daml file and all its dependen-
cies, found by recursively following the imports of each module.

Errors are reported in DAML Studio on a per-library basis. This means that breaking changes on
shared DAML modules are displayed even when the files are not explicitly open.
2.210.4 Comments

Use —- for a single line comment. Use {- and -} for a comment extending over multiple lines.

2.2.10.5 Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique
identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract
identifier from the Sandbox may look different to ones on other DAML Ledgers.

You can use == and /= on contract identifiers of the same type.

2.2.11 Reference: DAML packages

This page gives reference information on DAML package dependencies:

Building DAML archives
Importing DAML packages

- Importing a DAML package via dependencies

- Importing a DAML archive via data-dependencies
Handling module name collisions

100 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.11.1 Building DAML archives

When a DAML project is compiled, the compiler produces a DAML archive. These are platform-
independent packages of compiled DAML code that can be uploaded to a DAML ledger or imported
in other DAML projects.

DAML archives have a .dar file ending. By default, when you run daml build, it will generate the
.dar file in the .daml/dist folder in the project root folder. For example, running daml buildin
project foo with projectversion 0.0.1 will resultin a DAML archive .daml/dist/foo-0.0.1.dar.

You can specify a different path for the DAML archive by using the -o flag:

daml build -o foo.dar

For details on how to upload a DAML archive to the ledger, see the deploy documentation. The rest of
this page will focus on how to import a DAML packages in other DAML projects.

2.2.11.2 Importing DAML packages

There are two ways to import a DAML package in a project: via dependencies, and via data-
dependencies. They each have certain advantages and disadvantages. To summarize:

dependencies allow you to import a DAML archive as a library. The definitions in the depen-
dency will all be made available to the importing project. However, the dependency must be
compiled with the same DAML SDK version, so this method is only suitable for breaking up
large projects into smaller projects that depend on each other, or to reuse existing libraries.
data-dependencies allow you to import a DAML archive (.dar) or a DAML-LF package (.dalf),
including packages that have already been deployed to a ledger. These packages can be com-
piled with any previous SDK version. On the other hand, not all definitions can be carried over
perfectly, since the DAML interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

Importing a DAML package via dependencies

A DAML project can declare a DAML archive as a dependency in the dependencies field of daml.
yaml. This lets you import modules and reuse definitions from another DAML project. The main
limitation of this method is that the dependency must be for the same SDK version as the importing
project.

Let’s go through an example. Suppose you have an existing DAML project foo, located at /home/
user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the DAML archive of foo. Go into /home/user/foo and run daml
build -o foo.dar. This will create the DAML archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated DAML archive as a depndency. Go
into /home/user/bar and change the dependencies field in daml. yaml to point to the created
DAML archive:

dependencies:
- daml-prim
- daml-stdlib
- ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

2.2. Language reference docs 101

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

- /home/user/foo/foo.dar

When you run daml buildinbar project, the compiler will make the definitions in foo.dar avail-
able for importing. For example, if foo exports the module Foo, you can import it in the usual way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit
which modules of foo get exported, you may add an exposed-modules field in the daml . yaml file
for foo:

exposed-modules:
- Foo

Importing a DAML archive via data-dependencies

You can import a DAML archive (.dar) or DAML-LF package (.dalf) using data-dependencies. Unlike
dependencies, this can be used when the DAML SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

- daml-prim

- daml-stdlib
data-dependencies:
- ../foo/foo.dar

When importing packages this way, the DAML compiler will try to reconstruct the original DAML in-
terface from the compiled binaries. However, to allow data-dependencies to work across SDK
versions, the compiler has to abstract over some details which are not compatible across SDK ver-
sions. This means that there are some DAML features that cannot be recovered when using data-
dependencies. In particular:

1. Export lists cannot be recovered, so imports via data-dependencies can access definitions
that were originally hidden. This means it is up to the importing module to respect the data
abstraction of the original module. Note that this is the same for all code that runs on the
ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via exposed-
modules, you can get an error if you also have a data-dependency that references some-
thing from the hidden modules (even if it is only reexported). Since exposed-modules are not
available on the ledger in general, we recommend to not make use of them and instead rely
on naming conventions (e.g., suffix module names with .Internal) to make it clear which
modules are part of the public API.

3. Prior to DAML-LF version 1.8, typeclasses could not be reconstructed. This means if you have
a package that is compiled with an older version of DAML-LF, typeclasses and typeclass in-
stances will not be carried over via data-dependencies, and you won’t be able to call func-
tions that rely on typeclass instances. This includes the template functions, such as create,
signatory, and exercise, as these rely on typeclass instances.

4. Starting from DAML-LF version 1.8, when possible, typeclass instances will be reconstructed
by re-using the typeclass definitions from dependencies, such as the typeclasses exported
in daml-stdlib. However, if the typeclass signature has changed, you will get an instance
for a reconstructed typeclass instead, which will not interoperate with code from dependen-

102 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

cies. Furthermore, if the typeclass definition uses the FunctionalDependencies language
extension, this may cause additional problems, since the functional dependencies cannot be
recovered. So this is something to keep in mind when redefining typeclasses and when using
FunctionalDependencies.

5. Certain advanced type system features cannot be reconstructed. In particular, DA.Generics
and DeriveGeneric cannot be reconstructed. This may result in certain definitions being
unavailable when importing a module that uses these advanced features.

Because of their flexibility, data-dependencies are a tool that is recommended for performing DAML
model upgrades. See the upgrade documentation for more details.

2.2.11.3 Handling module name collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple
import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,
there are a few tools you can use to approach this problem.

The first is to use package qualified imports. Supposing you have packages with different names,
foo and bar, which both expose a module X. You can select which on you want with a package qual-
ified import.

To get X from foo:

import "foo" X

To get X from barx:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX
import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with
the same name. Forexample, if you’re loading different versions of the same package. To handle this
case, you need the --package build option.

Suppose you are importing packages foo-1.0.0 and foo-2.0.0. Notice they have the same name
foobutdifferentversions. To get modules that are exposed in both packages, you will need to provide
module aliases. You can do this by passing the —--package build option. Open daml.yaml and add
the following build-options:

build-options:

- '—--package'

- '"foo-1.0.0 with (X as Fool.X)'
- '—--package'

- '"fo0o-2.0.0 with (X as Foo2.X)'

This will aliasthe Xin foo-1.0.0asFool.X,and aliastheXin foo-2.0.0 as Foo2.X.Now you will
be able to import both X by using the new names:

import qualified Fool.X
import qualified Foo2.X

2.2. Language reference docs 103

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.2.12 Contract keys

Contract keys are an optional addition to templates. They let you specify a way of uniquely identifying
contract instances, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with
bank : Party
number : Text
owner : Party

balance : Decimal
observers : [Party]
where

signatory [bank, owner]
observer observers

key (bank, number) : AccountKey
maintainer key. 1

2.2.12.1 What can be a contract key

The key can be an arbitrary expression that does not contain contract IDs. However, it must include
every party that you want to use as amaintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

2.2.12.2 Specifying maintainers

If you specify a contract key for a template, you must also specify amaintainer or maintainers,in
a similar way to specifying signatories or observers. However, maintainers are computed from the
key instead of the template arguments. In the example above, the bank is ultimately the maintainer
of the key. Maintainers are the parties that know about all of the keys that they are party to, and are
used by the engine to guarantee uniqueness of contract keys. The maintainers must be signatories
of the contract.

Keys are unique to their maintainers. For example, say you have a key that you’re using as the iden-
tifer for a BankAccount contract. You might have key (bank, accountId) : (Party, Text).
When you create a new bank account, the contract key ensures that no-one else can have an account
with the same accountID at that bank. But that doesn’t apply to other banks: for a contract with a
different bank as maintainer, you could happily re-use that accountID.

When you’re writing DAML models, the maintainers matter since they affect authorization - much
like signatories and observers. You don’t need to do anything to maintain the keys.

Checking of the keys is done automatically at execution time, by the DAML exeuction engine: if some-
one tries to create a new contract that duplicates an existing contract key, the execution engine will
cause that creation to fail.

2.2.12.3 Contract keys functions

Contract keys introduce several new functions.

104 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType
contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative
to the currently-used fetch.

It returns a tuple of the ID and the contract object (containing all its data).

fetchByKey is authorized like fetch so it needs to be authorized by at least one stakeholder. There
are no restrictions on the submitter.

fetchByKey fails and aborts the transaction if:

Missing authorization, i.e., no authorization from a stakeholder of the contract you are trying
to fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that
you can’t see one.

Moreover, future versions of DAML will enforce that when using fetchByKey the submitter of the
transaction is one of the maintainers. It’s therefore advised to write your contract key workflows
with this future limitation in mind.

Because different templates can use the same key type, you need to specify the type of the contract

you are trying to fetch using the @ContractType syntax.

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

Use lookupByKey to check whether a contract with the specified key exists. If it does exist,
lookupByKey returns the Some contractId, where contractId is the ID of the contract; oth-
erwise, it returns None.

lookupByKey needs to be authorized by all maintainers of the contract you are trying to lookup.
There are no restrictions on the submitter.

If the lookup fails (ie returns None), this guarantees that no contract has this key.

Unlike fetchByKey, the transaction does not fail if a contract with the key doesn’t exist: instead,
lookupByKey just returns None.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

Moreover, like fetchByKey, future versions of DAML will enforce the submitter of the transaction is
one of the maintainers. It’s therefore advised to write your contract key workflows with this future
limitation in mind.

Because different templates can use the same key type, you need to specify the type of the contract

you are trying to fetch using the @ContractType syntax.

exerciseByKey

exerciseByKey @ContractType contractKey

UseexerciseByKey toexercise a choice on acontractidentified by its key (compared toexercise,
which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need
authorization from the controllers of the choice and at least one of the key maintainers.

2.2. Language reference docs 105

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Because different templates can use the same key type, you need to specify the type of the contract
you are trying to fetch using the @ContractType syntax.

2.3 DAML Studio

DAML Studio is an integrated development environment (IDE) for DAML. It is an extension on top
of Visual Studio Code (VS Code), a cross-platform, open-source editor providing a rich code editing
experience.

2.3.1 Installing

To install DAML Studio, install the SDK. DAML Studio isn’t currently available in the Visual Studio Mar-
ketplace.

2.3.2 Creating your first DAML file

1. Start DAML Studio by running daml studio in the current project.
This command starts Visual Studio Code and (if needs be) installs the DAML Studio extension,
or upgrades it to the latest version.
2. Make sure the DAML Studio extension is installed:
1. Click on the Extensions icon at the bottom of the VS Code sidebar.
2. Click on the DAML Studio extension that should be listed on the pane.

n: DAML Studio — daml-

= Extension: DAML Studio %

ch Extensions
DAML Studio
DAML Studio 82.0.0 Digital Asset

DAML editing and analysis tools DAML editing and a
Digital Asset

4 ENABLED

Disablev Uninstall

Details Contributions Changelog

DAML Studio (82.0.0)

DAML Studio extends Visual Studio Code with the following DAML-specific features.

ame resolution, king and Scenario interpretation errors and viewer for the resulting ledger

definition of d top

For more inform n DAML please see the DAML r Guide by pressing Cmd+F1 (Ctrl+F1in Linux)

Troubleshooting

The DAML lang rlog output is available under the "Output" panel (View->Output). Select "DAML Language Server" from the dropdown in the pan

log.
Known issues and Changelog
The list of k s and the change | aintained in the DAML User Guide. Press Cmd+F1 to open the User Guide.

Copyright Notice

0 » RECOMMENDED a

Copyright (c) 2014-2018, Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved
> DISABLED

Pmasterr S @O0 A0 DAML files checked: 0/ 0

3. Open a new file ((IN) and save it ((1S) as Test.daml.
4. Copy the following code into your file:

-- Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or 1itsll
—affiliates. All rights reserved.
-—- SPDX-License-Identifier: Apache-2.0

(continues on next page)

106 Chapter 2. Writing DAML

https://code.visualstudio.com
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/editingevolved

DAML SDK Documentation,

1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

module Test where

double :
double x

Int -> Int
2 * X

Your screen should now look like the image below.

Test.daml — damlstudio

= Test.daml X

)

daml 1.2
ydule Test where

double r Ir
double x = 2 * x

@0 A0 DAML files checked: 0/ 0

5. Introduce a parse error by deleting the = sign and then clicking the
corner. Your screen should now look like the image below.

[DAML User's Guide]

m

Ln6,Col1 Spaces:2 UTF-8 LF DAML @ A

symbol on the lower-left

Test.daml — damlstudio

= Test.daml ®

1.2
lule Test where

daml

double
5 double x

2 % X

PROBLEMS (1 OUTPUT DEBUG SOLE TERMINAL
4 = Test.daml 1

[}

T

®1 A0 DAML files checked: 0/ 0

[DAML

6. Remove the parse error by restoring the = sign.

e] /Users/sofusmortensen/damlistudio/Test.daml:5:1: error: Parse error: module header, import declar...

[DAML User's Guide]

m

Filter. Eg: text, **/*.ts, !* {% a A X

(5,1

Ln5,Col10 Spaces:2 UTF-8 LF DAML

S A

We recommend reviewing the Visual Studio Code documentation to learn more about how to use it.

To learn more about DAML, see Language reference docs.

2.3. DAML Studio

107

https://code.visualstudio.com/docs/editor/codebasics

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.3.3 Supported features

Visual Studio Code provides many helpful features for editing DAML files and we recommend review-
ing Visual Studio Code Basics and Visual Studio Code Keyboard Shortcuts for OS X. The DAML Studio
extension for Visual Studio Code provides the following DAML-specific features:

2.3.3.1 Symbols and problem reporting

Use the commands listed below to navigate between symbols, rename them, and inspect any prob-
lems detected in your DAML files. Symbols are identifiers such as template names, lambda argu-
ments, variables, and so on.

Command Shortcut (OS X)
Go to Definition F12

Peek Definition [F12

Rename Symbol F2

Go to Symbol in File Lo

Go to Symbol in Workspace | OT

Find all References [F12

Problems Panel M

Note: You can also start a command by typing its name into the command palette (press [P or
F1). The command palette is also handy for looking up keyboard shortcuts.

Note:

Rename Symbol, Go to Symbol in File, Go to Symbol in Workspace, and Find all References work
on: choices, record fields, top-level definitions, let-bound variables, lambda arguments, and
modules

Go to Definition and Peek Definition work on: top-level definitions, let-bound variables, lambda
arguments, and modules

2.3.3.2 Hover tooltips

You can hover over most symbols in the code to display additional information such as its type.

2.3.3.3 Scenario results

Top-level declarations of type Scenario are decorated with a Scenario results code lens. You
canclickonthe Scenario resultscodelenstoinspectthetransaction graphoranerrorresulting
from running that scenario.

The scenario results present a simplified view of a ledger, in the form of a transaction graph, after
execution of the scenario. The transaction graph consists of transactions, each of which contain
one or more updates to the ledger, that is creates and exercises. The transaction graph also records
fetches of contracts.

For example a scenario for the Tou module looks as follows:

108 Chapter 2. Writing DAML

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_hover

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Scenario: run — damlstudio
= Scenario: run X

results
run = scenario do
bank <- getParty
alice <- getParty
bob <- getPart
cid <- submit ban
create Iou
issuer = bank
owner = alice
amount = 10
currency = "USD"
submit alice do
exercise cid Transfer
newOwner = bob

"]

@0 A0 DAML files checked: 0/ 0

Fig.1: Scenario results (click to zoom)

Each transaction is the result of executing a step in the scenario. In the image below, the transaction
#0 is the result of executing the first line of the scenario (line 20), where the lou is created by the bank.
The following information can be gathered from the transaction:

The result of the first scenario transaction #0 was the creation of the ITou contract with the
arguments bank, 10, and "USD".

The created contract is referenced in transaction #1, step 0.

The created contract was consumed in transaction #1, step 0.

A new contract was created in transaction #1, step 1, and has been divulged to parties ‘Alice’,
‘Bob’, and ‘Bank’.

At the end of the scenario only the contract created in #1:1 remains.

The return value from running the scenario is the contract identifier #1: 1.

And finally, the contract identifiers assigned in scenario execution correspond to the scenario
step that created them (e.g. #1).

You can navigate to the corresponding source code by clicking on the location shown in parenthesis
(e.g. Tou:20:12,which meansthe ITou module, line 20 and column 1). You can also navigate between
transactions by clicking on the transaction and contract ids (e.g. #1:0).

2.3.3.4 DAML snippets

You can automatically complete a number of snippets when editing a DAML source file. By default,
hitting ~-Space after typing a DAML keyword displays available snippets that you can insert.

To define your own workflow around DAML snippets, adjust your user settings in Visual Studio Code
to include the following options:

{
"editor.tabCompletion": true,
"editor.quickSuggestions": false

2.3. DAML Studio 109

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

With those changes in place, you can simply hit Tab after a keyword to insert the code pattern.

= Payout.daml ®

You can develop your own snippets by following the instructions in Creating your own Snippets to
create an appropriate daml. json snippet file.

2.3.4 Common scenario errors

During DAML execution, errors can occur due to exceptions (e.g. use of abort , or division by zero),
or due to authorization failures. You can expect to run into the following errors when writing DAML.

When a runtime error occurs in a scenario execution, the scenario result view shows the error to-
gether with the following additional information, if available:

Last source location A link to the last source code location encountered before the error occurred.

Environment The variables that are in scope when the error occurred. Note that contract identifiers
are links that lead you to the transaction in which the contract was created.

Ledger time The ledger time at which the error occurred.

Call stack Call stack shows the function calls leading to the failing function. Updates and scenarios
that do not take parameters are not included in the call stack.

Partial transaction The transaction that is being constructed, but not yet committed to the ledger.

Committed transaction Transactions that were successfully committed to the ledger prior to the
error.

2.3.4.1 Abort, assert, and debug

The abort, assert and debug inbuilt functions can be used in updates and scenarios. All three can
be used to output messages, but abort and assert can additionally halt the execution:

abortTest = scenario do
debug "hello, world!"
abort "stop"

Scenario execution failed:
Aborted: stop

(continues on next page)

1o Chapter 2. Writing DAML

https://code.visualstudio.com/docs/editor/userdefinedsnippets

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

Ledger time: 1970-01-01T00:00:002Z
Partial transaction:

Trace:
"hello, world!"

2.3.4.2 Missing authorization on create

If a contract is being created without approval from all authorizing parties the commit will fail. For
example:

template Example
with
partyl : Party; party2 : Party
where
signatory partyl
signatory party?2

example = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"
submit alice (create Example with partyl=alice; party2=bob)

Execution of the example scenario fails due to ‘Bob’ being a signatory in the contract, but not autho-
rizing the create:

Scenario execution failed:
#0: create of CreateAuthFailure:Example at unknown source
failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01T00:00:00%

Partial transaction:
Sub-transactions:

#0
L> create CreateAuthFailure:Example
with
partyl = '"Alice'; party2 = 'Bob'

To create the Example contract one would need to bring both parties to authorize the creation via
a choice, for example ‘Alice’ could create a contract giving ‘Bob’ the choice to create the ‘Example’
contract.

2.3.4.3 Missing authorization on exercise

Similarly to creates, exercises can also fail due to missing authorizations when a party that is not a
controller of a choice exercises it.

2.3. DAML Studio m

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

template Example
with
owner : Party
friend : Party
where
signatory owner

controller owner can
Consume : ()
do return ()

controller friend can
Hello : ()
do return ()

example = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"
cid <- submit alice (create Example with owner=alice; friend=bob)
submit bob do exercise cid Consume

The execution of the example scenario fails when ‘Bob’ tries to exercise the choice ‘Consume’ of which
he is not a controller

Scenario execution failed:
#1: exercise of Consume in ExerciseAuthFailure:Example at unknown source
failed due to a missing authorization from 'Alice'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:
Sub-transactions:
#0
L> fetch #0:0 (ExerciseAuthFailure:Example)

#1

L> 'Alice' exercises Consume on #0:0 (ExerciseAuthFailure:Example)
with

Committed transactions:
TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0
| known to (since): 'Alice' (#0), 'Bob' (#0)
L> create ExerciseAuthFailure:Example

with

owner = 'Alice'; friend = 'Bob'

From the error we can see that the parties authorizing the exercise (‘Bob’) is not a subset of the
required controlling parties.

12 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.3.4.4 Contract not visible

Contract not being visible is another common error that can occur when a contract that is being
fetched or exercised has not been disclosed to the committing party. For example:

template Example
with owner: Party
where
signatory owner

controller owner can
Consume : ()
do return ()

example = scenario do
alice <- getParty "Alice"
bob <- getParty "Bob"
cid <- submit alice (create Example with owner=alice)
submit bob do exercise cid Consume

In the above scenario the ‘Example’ contract is created by ‘Alice’ and makes no mention of the party
‘Bob’ and hence does not cause the contract to be disclosed to ‘Bob’. When ‘Bob’ tries to exercise the
contract the following error would occur:

Scenario execution failed:
Attempt to fetch or exercise a contract not visible to the committer.
Contract: #0:0 (NotVisibleFailure:Example)
Committer: 'Bob'
Disclosed to: 'Alice'

Ledger time: 1970-01-01T00:00:002Z
Partial transaction:

Committed transactions:
TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

| known to (since): 'Alice' (#0)

L> create NotVisibleFailure:Example
with

owner = 'Alice'

To fix this issue the party ‘Bob’ should be made a controlling party in one of the choices.

2.3.5 Working with multiple packages

Often a DAML project consists of multiple packages, e.g., one containing your templates and one
containing a DAML trigger so that you can keep the templates stable while modifying the trigger. Itis
possible to work on multiple packages in a single session of DAML studio but you have to keep some
things in mind. You can see the directory structure of a simple multi-package project consisting of
two packages pkga and pkgb below:

2.3. DAML Studio N3

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

daml.yaml

prkga

I— daml

| L— A.daml
L— daml.yaml
pkgb

I— daml

| L— B.daml
L— daml.yaml

1T

pkga and pkgb are regular DAML projects with a daml.yaml and a DAML module. In addition to
the daml.yaml files for the respective packages, you also need to add a daml.yaml to the root of
your project. This file only needs to specify the SDK version. Replace X.Y.Z by the SDK version you
specified in the daml.yaml files of the individual packages. Note that this feature is only available
in SDK version 0.13.52 and newer.

sdk-version: X.Y.Z

You can then open DAML Studio once in the root of your project and work on files in both packages.
Note that if pkgb refers topkga.dar inits dependencies field, changes will not be picked up auto-
matically. This is always the case even if you open DAML Studio in pkgb. However, for multi-package
projects there is an additional caveat: You have to both rebuild pkga.dar using daml build and
then build pkgb using daml build before restarting DAML Studio.

2.4 Testing using scenarios

DAML has a built-in mechanism for testing templates called scenarios.

Scenarios emulate the ledger. You can specify a linear sequence of actions that various parties take,
and these are evaluated in order, according to the same consistency, authorization, and privacy rules
as they would be on the sandbox ledger or ledger server. DAML Studio shows you the resulting Trans-
action graph.

For more on how scenarios work, see the Examples below.

On this page:

Scenario syntax
- Scenarios
- Transaction submission
- Asserting transaction failure
- Full syntax
Running scenarios in DAML Studio
Examples
- Simple example
- Example with two updates
- Example with submitMustFail

N4 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.4.1 Scenario syntax

2.4.1.1 Scenarios

example =
scenario do

A scenarioemulates the ledger, in order to test that a DAML template or sequence of templates are
working as they should.

It consists of a sequence of transactions to be submitted to the ledger (after do), together with suc-
cess or failure assertions.

2.4.1.2 Transaction submission

-- Creates an instance of the Payout contract, authorized by "Alice"
submit alice do

The submit function attempts to submit a transaction to the ledger on behalf of a Party.

For example, a transaction could be creating a contract instance on the ledger, or exercising a choice
on an existing contract.

2.4.1.3 Asserting transaction failure

submitMustFail alice do
exercise payAlice Call

The submitMustFail function asserts that submitting a transaction to the ledger would fail.

This is essentially the same as submit, except that the scenario tests that the action doesn’t work.

2.4.1.4 Full syntax

For detailed syntax, see Reference: scenarios.

2.4.2 Running scenarios in DAML Studio

When you load a file that includes scenarios into DAML Studio, it displays a Scenario results link
above the scenario. Click the link to see a representation of the ledger after the scenario has run.

2.4.3 Examples
2.4.3.1 Simple example

A very simple scenario looks like this:

example =
scenario do
-— Creates the party Alice
alice <- getParty "Alice"
-—- Creates an instance of the Payout contract, authorized by "Alice"
submit alice do
create Payout

(continues on next page)

2.4. Testing using scenarios N5

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

-— There’s only one party: "Alice" is both the receiver and giver.
with receiver = alice; giver = alice

In this example, there is only one transaction, authorized by the party Alice (created using
getParty "Alice"). The ledger update is a create, and has to include the arguments for the tem-
plate (Payout with receiver = alice; giver = alice).

2.4.3.2 Example with two updates

This example tests a contract that gives both parties an explicit opportunity to agree to their obli-
gations.

example =
scenario do

-— Bank of England creates a contract giving Alice the option

-— to be paid.

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.
submit alice do
exercise payAlice Call

In the first transaction of the scenario, party bankOfEngland (created using getParty "Bank of
England") creates an instance of the CallablePayout contract with alice as the receiver and
bankOfEngland as the giver.

When the contract is submitted to the ledger, it is given a unique contract identifier of type
ContractId CallablePayout.payAlice <- assigns thatidentifier to the variable payAlice.

In the second statement, exercise payAlice Call,is anexercise of the Call choice on the con-
tract instance identified by payAlice. This causes a Payout agreement with her as the receiver
to be written to the ledger.

The workflow described by the above scenario models both parties explicitly exercising their rights
and accepting their obligations:

Party "Bank of England" is assumed to know the definition of the CallablePayout con-
tract template and the consequences of submitting a contract instance to the ledger.

Party "Alice" is assumed to know the definition of the contract template, as well as the con-
sequences of exercisingthe Call choiceonit. If "Alice" does not want to receive five pounds,
she can simply not exercise that choice.

2.4.3.3 Example with submitMustFail

Because exercising a contract (by default) archives a contract, once party "Alice" exercises the
Call choice, she will be unable to exercise it again.

To test this expectation, use the submitMustFail function:

1 [3) Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

exampleDoubleCall =
scenario do

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

-— Bank of England creates a contract giving Alice the option

-- to be paid.

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.
submit alice do
exercise payAlice Call

-- If Alice tries to exercise the contract again, 1t must
-- fail.
submitMustFail alice do

exercise payAlice Call

When the Call choice is exercised, the contract instance is archived. The fails keyword checks
thatif 'Alice' submits exercise payAlice Call again, it would fail.

2.5 Troubleshooting

Error: <X>is not authorized to commit an update
Error Argument is not of serializable type
Modelling questions
- How to model an agreement with another party
- How to model rights
- How to void a contract
- How to represent off-ledger parties
- How to limit a choice by time
- How to model a mandatory action
- When to use Optional
Testing questions
- How to test that a contract is visible to a party
- How to test that an update action cannot be committed

2.5.1 Error: “<X> is not authorized to commit an update”
This error occurs when there are multiple obligables on a contract.

Acornerstone of DAMLis that you cannot create a contract that will force some other party (or parties)
into an obligation. This error means that a party is trying to do something that would force another
parties into an agreement without their consent.

To solve this, make sure each party is entering into the contract freely by exercising a choice. A good
way of ensuring this is the initial and accept pattern: see the DAML patterns for more details.

2.5. Troubleshooting n7

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.5.2 Error “Argument is not of serializable type”

This error occurs when you’re using a function as a parameter to a template. For example, here is a
contract that creates a Payout controller by a receiver’s supervisor:

template SupervisedPayout

with
supervisor : Party -> Party
receiver : Party
giver : Party
amount : Decimal
where

controller (supervisor receiver) can
SupervisedPayout Call
returning ContractId Payout
to create Payout with giver; receiver; amount

Hovering over the compilation error displays:

[Type checker] Argument expands to non-serializable type Party -> Party.

2.5.3 Modelling questions

2.5.3.1 How to model an agreement with another party

To enter into an agreement, create a contract instance from a template that has explicit signatory
and agreement statements.

You’ll need to use a series of contracts that give each party the chance to consent, via a contract
choice.

Because of the rules that DAML enforces, it is not possible for a single party to create an instance
of a multi-party agreement. This is because such a creation would force the other parties into that
agreement, without giving them a choice to enter it or not.

2.5.3.2 How to model rights

Use a contract choice to model a right. A party exercises that right by exercising the choice.

2.5.3.3 How to void a contract

To allow voiding a contract, provide a choice that does not create any new contracts. DAML contracts
are archived (but not deleted) when a consuming choice is made - so exercising the choice effectively
voids the contract.

However, you should bear in mind who is allowed to void a contract, especially without the re-sought
consent of the other signatories.

2.5.3.4 How to represent off-ledger parties

You’d need to do this if you can’t set up all parties as ledger participants, because the DAML Party
type gets associated with a cryptographic key and can so only be used with parties that have been
set up accordingly.

To model off-ledger parties in DAML, they must be represented on-ledger by a participant who can
sign on their behalf. You could represent them with an ordinary Text argument.

n8 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

This isn’t very private, so you could use a numeric ID/an accountld to identify the off-ledger client.

2.5.3.5 How to limit a choice by time

Some rights have a time limit: either a time by which it must be exercised or a time before which it
cannot be exercised.

You can use getTime to get the current time, and compare your desired time to it. Use assert to
abort the choice if your time condition is not met.

2.5.3.6 How to model a mandatory action

If you want to ensure that a party takes some action within a given time period. Might want to incur
a penalty if they don’t - because that would breach the contract.

For example: an Invoice that must be paid by a certain date, with a penalty (could be something like
an added interest charge or a penalty fee). To do this, you could have a time-limited Penalty choice
that can only be exercised after the time period has expired.

However, note that the penalty action can only ever create another contract on the ledger, which
represents an agreement between all parties that the initial contract has been breached. Ultimately,
the recourse for any breach is legal action of some kind. What DAML provides is provable violation
of the agreement.

2.5.3.7 When to use Optional

The Optional type, from the standard library, to indicate that a value is optional, i.e, that in some
cases it may be missing.

In functional languages, Optional is a better way of indicating a missing value than using the more
familiar value NULL , present in imperative languages like Java.

Touse Optional,include Optional.daml from the standard library:

import DA.Optional

Then, you can create Optional values like this:

Some "Some text" -— Optional value exists.
None -—- Optional value does not exist.

You can test for existence in various ways:

-— 1isSome returns True 1f there is a value.
if isSome m
then "VYes"
else "No"
-— The inverse 1s isNone.
if isNone m
then "No"
else "Yes"

If you need to extract the value, use the optional function.

It returns a value of a defined type, and takes a Optional value and a function that can transform
the value contained in a Some value of the Optional to that type. If it is missing optional also

2.5. Troubleshooting 19

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

takes a value of the return type (the default value), which will be returned if the Optional value is
None

let £ \ (1 : Int) -> "The number is " <> (show 1)
let t = optional "No number" f someValue

If optionalValueis Some 5,thevalue of t would be "The number is 5".Ifitwas None, t would
be "No number". Note that with optional, it is possible to return a different type from that con-
tained in the Optional value. This makes the Optional type very flexible.

There are many other functions in Optional.daml that let you perform familiar functional opera-
tions on structures thatcontainOptional values-suchasmap, filter,etc.onListsof Optional
values.

2.5.4 Testing questions

2.5.41 How to test that a contract is visible to a party

Use a submit block and a fetch operation. The submit block tests that the contract (as a
ContractId) isvisible to that party, and the fetch tests that it is valid, i.e., that the contract does
exist.

For example, if we wanted to test for the existence and visibility of an Invoice, visible to ‘Alice’,
whose Contractld is bound to invoiceCid, we could say:

submit alice do
result <- fetch invoiceCid

You could also check (in the submit block) that the contract has some expected values:

assert (result == (Invoice with
payee = alice
payer = acme
amount = 130.0
service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0))

using an equality test and an assert:

submit alice do

result <- fetch invoiceCid

assert (result == (Invoice with
payee = alice
payer = acme
amount = 130.0
service = "A job well done"
timelLimit = datetime 1970 Feb 20 0 0 0))

2.5.4.2 How to test that an update action cannot be committed

Use the submitMustFail function. This is similarin form to the submit function, but is an asser-
tion that an update will fail if attempted by some Party.

120 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.6 Writing good DAML

2.6.1 Good design patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a
document of good design practices. This documentis a catalog of DAML patterns intended to provide
the same facility in the DA/DAML application world.

You can checkout the examples locally via daml new daml-patterns daml-patterns.

Initiate and Accept The Initiate and Accept pattern demonstrates how to start a bilateral workflow.
One party initiates by creating a proposal or an invite contract. This gives another party the
chance to accept, reject or renegotiate.

Multiple party agreement The Multiple Party Agreement pattern uses a Pending contract as a wrap-
per for the Agreement contract. Any one of the signatory parties can kick off the workflow by
creating a Pending contract on the ledger, filling in themselves in all the signatory fields. The
Agreement contract is not created on the ledger until all parties have agreed to the Pending
contract, and replaced the initiator’s signature with their own.

Delegation The Delegation pattern gives one party the right to exercise a choice on behalf of another
party. The agent can control a contract instance on the ledger without the principal explicitly
committing the action.

Authorization The Authorization pattern demonstrates how to make sure a controlling party is au-
thorized before they take certain actions.

Locking The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the
specified locking party can lock the asset through an active and authorized action. When a
contract is locked, some or all choices specified on that contract may not be exercised.

2.6.1.1 Initiate and Accept

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates
by creating a proposal or an invite contract. This gives another party the chance to accept, reject or
renegotiate.

Motivation

It takes two to tango, but one party has to initiate. There is no difference in business world. The
contractual relationship between two businesses often starts with an invite, a business proposal, a
bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an on-boarding
process, in which they invite participants to sign master service agreements and fulfill differ-
ent roles in the market. Receiving participants need to evaluate the rights and responsibilities
of each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The
proposal lays out what is expected from buyers, and what they can expect from the issuer. Buy-
ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before
making a decision.

The Initiate and Accept pattern demonstrates how to write a DAML program to model the initiation
of an inter-company contractual relationship. DAML modelers often have to follow this pattern to
ensure no participants are forced into an obligation.

2.6. Writing good DAML 121

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Implementation

The Initiate and Accept pattern in general involves 2 contracts:

Initiate contract The Initiate contract can be created from a role contract or any other point in the
workflow. In this example, initiate contractis the proposal contract CoinlssueProposal the issuer
created from from the master contract CoinMaster.

template CoinMaster
with
issuer: Party
where
signatory issuer

controller issuer can
nonconsuming Invite : ContractId CoinIssueProposal
with owner: Party
do create CoinIssueProposal
with coinAgreement = CoinlIssueAgreement with issuer; owner

The CoinlssueProposal contract has Issuer as the signatory, and Owner as the controller to the
Accept choice. In its complete form, the CoinlssueProposal contract should define all choices
available to the owner, i.e. Accept, Reject or Counter (e.g. re-negotiate terms).

template CoinIssueProposal
with
coinAgreement: CoinIssueAgreement
where
signatory coinAgreement.issuer

controller coinAgreement.owner can
AcceptCoinProposal
ContractId CoinIssueAgreement
do create coinAgreement

Result contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to
express their consent, it returns a result contract representing the agreement between the two
parties. In this example, the result contract is of type CoinlssueAgreement. Note, it has both
issuer and owner as the signatories, implying they both need to consent to the creation of this
contract. Both parties could be controller(s) on the result contract, depending on the business
case.

template CoinIssueAgreement
with
issuer: Party
owner: Party
where
signatory issuer, owner

controller issuer can
nonconsuming Issue : ContractId Coin
with amount: Decimal
do create Coin with issuer; owner; amount; delegates = []

122 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

CoinlssueProposal

Issuer, owner CoinlssueAgreement

Issuer, Owner,
issuer

Fig. 2: Initiate and Accept pattern diagram

Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to
progress the workflow.

2.6.1.2 Multiple party agreement

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-
tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on
the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on
the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature
with their own.

Motivation

The Initiate and Accept shows how to create bilateral agreements in DAML. However, a project or a
workflow often requires more than two parties to reach a consensus and put their signatures on
a multi-party contract. For example, in a large construction project, there are at least three major
stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on key
responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure
if there are conflicts between their two contracts and the third contract between their partners. If
the Initiate and Accept were used to collect three signatures on a multi-party agreement, unnecessary
restrictions would be put on the order of consensus and a number of additional contract templates
would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-
tiple signatories and have each party accept explicitly.

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of
stakeholders. Its content can vary per business case, but in this pattern, it always has mul-
tiple signatories.

template Agreement
with

(continues on next page)

2.6. Writing good DAML 123

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

signatories: [Party]
where

signatory signatories

ensure

unique signatories
—-— The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so
that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to
sign it. If you add these lists together, it has to be the same set of parties as the signatories
of the Agreement contract.

All of the toSign parties have the choice to Sign. This choice checks that the party isindeed a
member of toSign, then creates a new instance of the Pending contract where they have been
moved to the signedlist.

template Pending
with
finalContract: Agreement
alreadySigned: [Party]
where
signatory alreadySigned
observer finalContract.signatories
ensure
-— Can't have duplicate signatories
unique alreadySigned

-—- The parties who need to sign is the finalContract.signatoriesl]
wwith alreadySigned filtered out

let toSign = filter (notElem alreadySigned) finalContract.
—signatories

choice Sign : ContractId Pending with
signer : Party
controller signer

do

—-— Check the controller is in the toSign 1list, and 1if theyl]
—are, sign the Pending contract

assert (signer “elem’ toSign)
create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using
the Finalize choice. This checks that all of the signatories for the Agreement have signed the
Pending contract.

choice Finalize : ContractId Agreement with
signer : Party
controller signer
do
-— Check that all the required signatories have signed]

—~Pending (continues on next page)

Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

assert (sort alreadySigned == sort finalContract.signatories)
create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it
cannot be created in that state by any one stakeholder.
However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[personl, person2, person3, persond] <- makePartiesFrom |
—"Alice", "Bob", "Clare", "Dave"]
let finalContract = Agreement with signatories = parties

-— Parties cannot create a contract already signed by someone else
initialFailTest <- personl ~submitMustFail do
create Pending with finalContract; alreadySigned = [personl,!]
—person2]

-—- Any party can create a Pending contract provided they 1list
—~themselves as the only signatory
pending <- personl “submit® do
create Pending with finalContract; alreadySigned = [personl]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example
code only has choices to express consensus (but you might want to add choices to Accept,
Reject, or Negotiate).

-— Each signatory of the finalContract can Sign the Pending contract
pending <- person?2 “submit’® do
exercise pending Sign with signer = person?
pending <- person3 “submit® do
exercise pending Sign with signer = person3
pending <- persond “submit® do
exercise pending Sign with signer = person4

-—- A party can't sign the Pending contract twice

pendingFailTest <- person3 " submitMustFail do
exercise pending Sign with signer = person3

-- A party can't sign on behalf of someone else

pendingFailTest <- person3 " submitMustFail do
exercise pending Sign with signer = personi

Once all of the parties have sighed the Pending contract, any of them can then exercise the
Finalize choice. This creates the Agreement contract on the ledger.

personl “submit® do
exercise pending Finalize with signer = personl

2.6.1.3 Delegation

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The
agent can control a contract instance on the ledger without the principal explicitly committing the
action.

2.6. Writing good DAML 125

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Pending
personl, person2,
person3, person4
personl, personZ2,
person3, person4

l

Agreement

It recreates itself each
time when a party
agrees to the contract.

personl, person2,
person3, person4

Fig. 3: Multiple Party Agreement Diagram

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on
delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to
hold their securities and settle transactions on their behalf. The securities are not legally possessed
by the custodian banks, but the banks should have full rights to perform actions in the client’s name,
such as making payments or changing investments.

The Delegation pattern enables DAML modelers to model the real-world business contractual agree-
ments between custodian banks and their customers. Ownership and administration rights can be
segregated easily and clearly.

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-
egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to
delegate the Transfer choice.

-—-the original contract
template Coin
with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]
where
signatory issuer, owner
observer delegates

controller owner can

(continues on next page)

126 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

Transfer : ContractId TransferProposal
with newOwner: Party
do
create TransferProposal
with coin=this; newOwner

Lock : ContractId LockedCoin
with maturity: Time; locker: Party
do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin
with p : Party
do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition thatl]
—the issuer is the owner of the coin. This ensures the issuer cannotl]
—archive coins at will.

controller issuer can
Archives
()

do assert (issuer == owner)

Delegation Contract

Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-
natory is required to authorize the Transfer choice on coin.

template CoinPoA
with
attorney: Party
principal: Party
where
signatory principal

controller principal can
WithdrawPoA
()
do return ()

Whetheror not the Attorney party should be a signatory of CoinPoAis subject to the business
agreements between Principal and Attorney. For simplicity, in this example, Attorney is not
a signatory.

Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-
cipal exercises the choice Transfer on the Coin contract.

controller attorney can
nonconsuming TransferCoin
ContractId TransferProposal
with
coinId: ContractId Coin

(continues on next page)

2.6. Writing good DAML 127

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

newOwner: Party
do
exercise coinlId Transfer with newOwner

Coin contracts need to be disclosed to Attorney before they can be used in an exercise of
Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done
dynamically, for any specific Coin, by making the observers a List, and adding a choice to
add a party to that List:

Disclose : ContractId Coin
with p : Party
do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. DAML is actively researching future language
features for contract disclosure.

Coin - CoinPoA
issuer, owner, v issuer, owner,
owner issuer

TransferProposal Coin
coin.issuetr,
coin.owner, issuer, newOwner,
newOwner newOwner

Fig. 4: Delegation pattern diagram

2.6.1.4 Authorization

The Authorization pattern demonstrates how to make sure a controlling party is authorized before
they take certain actions.

Motivation

Authorization is an universal conceptin the business world as access to most business resources is
a privilege, and not given freely. For example, security trading may seem to be a plain bilateral agree-
ment between the two trading counterparties, but this could not be further from truth. To be able to
trade, the trading parties need go through a series of authorization processes and gain permission
from a list of service providers such as exchanges, market data streaming services, clearing houses
and security registrars etc.

The Authorization pattern shows how to model these authorization checks prior to a business trans-
action.

128 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

controller owner can

Transfer : ContractId TransferProposal
with newOwner: Party
do
create TransferProposal
with coin=this; newOwner

Lock : ContractId LockedCoin
with maturity: Time; locker: Party
do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin
with p : Party
do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition thatl]
—~the issuer is the owner of the coin. This ensures the issuer cannotl]
—archive coins at will.

controller issuer can

Archives
()

do assert (issuer == owner)

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited
company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this
example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an
observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization
with
owner: Party
issuer: Party
where
signatory issuer
observer owner

(continues on next page)

2.6. Writing good DAML 129

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

controller issuer can
WithdrawAuthorization

0

do return ()

Authorization contracts can have much more advanced business logic, butinits simplestform,
CoinOwnerAuthorization serves its main purpose, which is to prove the owner is a warranted coin
owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that
newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-
plied and is checked by the two assert statements in the choice before a coin can be transferred.

controller newOwner can
AcceptTransfer

ContractId Coin

with token: ContractId CoinOwnerAuthorization

do
t <- fetch token
assert (coin.issuer == t.issuer)
assert (newOwner == t.ownher)
create coin with owner = newOwner

Coin CoinOwnerAuthorization

issuer, owner, .
issuer, owner, owner

issuer
8 :
TransferProposal Coin
coin.issuer,
coin.owner, issuer, newOwner,
newOwner newOwner

Fig. 5: Authorization Diagram

2.6.1.5 Locking

The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the specified
locking party can lock the asset through an active and authorized action. When a contract is locked,
some or all choices specified on that contract may not be exercised.

130 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-
tlement process, once a trade is registered and novated to a central Clearing House, the trade is
considered locked-in. This means the securities under the ownership of seller need to be locked so
they cannot be used for other purposes, and so should be the funds on the buyer’'s account. The
locked state should remain throughout the settlement Payment versus Delivery process. Once the
ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation
There are three ways to achieve locking:
Locking by archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is
used as the original contract to demonstrate locking and unlocking.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

controller owner can

Transfer : ContractId TransferProposal
with newOwner: Party
do
create TransferProposal
with coin=this; newOwner

—-—a coin can only be archived by the issuer under the condition thatl]
—the issuer is the owner of the coin. This ensures the issuer cannotl]
—archive coins at will.

controller issuer can

Archives

)

do assert (issuer == owner)

Archiving is a straightforward choice for locking because once a contract is archived, all choices
on the contract become unavailable. Archiving can be done either through consuming choice or
archiving contract.

Consuming choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

2.6. Writing good DAML 131

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

The controller party on the Lock may vary depending on business context. In this example, owner
is a good choice.

The parameters to this choice are also subject to business use case. Normally, it should have
at least locking terms (eg. lock expiry time) and a party authorized to unlock.

Lock : ContractId LockedCoin
with maturity: Time; locker: Party
do create LockedCoin with coin=this; maturity; locker

Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-
teristics, all in order to be able to recreate the original Coin:
- The signatories are the same as the original contract.
- It has all data of Coin, either through having a Coin as a field, or by replicating all data of
Coin.
- It has an Unlock choice to lift the lock.

template LockedCoin
with
coin: Coin
maturity: Time
locker: Party
where
signatory coin.issuer, coin.owner

controller locker can
Unlock
ContractId Coin
do create coin

q Lock
Cain LockedCoin

issuer, owner,

issuer, owner,
owner

owner, unlocker

Fig. 6: Locking By Consuming Choice Diagram

Archiving contract

In the event that changing the original contract is not desirable and assuming the original contract
already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin
and create LockedCoin.

Examine the controller party and archiving logic in the Archives choice on the Coin contract. A
coin can only be archived by the issuer under the condition that the issuer is the owner of the
coin. This ensures the issuer cannot archive any coin at will.

132 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

controller issuer can
Archives

0

do assert (issuer == owner)

Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment
with
owner: Party
issuer: Party
amount: Decimal
where
signatory issuer

The controller party and parameters on the Lock choice are the same as described in locking by
consuming choice. The additional logic required is to transfer the asset to the issuer, and then
explicitly call the Archive choice on the Coin contract.

Once a Coinis archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

controller owner can
nonconsuming LockCoin
ContractId LockedCoin
with coinCid: ContractId Coin
maturity: Time
locker: Party

do
inputCoin <- fetch coinCid
assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&
< 1inputCoin.amount == amount)

-—the original coin firstly transferred to issuer and thenl]
—archivaed
prop <- exercise coinCid Transfer with newOwner = issuer
do
id <- exercise prop AcceptTransfer
exercise id Archives
--create a lockedCoin to represent the coin in locked state
create LockedCoin with
coin=inputCoin with owner; issuer; amount
maturity; locker

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

Locking by archiving disables all choices on the original contract. Usually for consuming
choices this is exactly what is required. But if a party needs to selectively lock only some
choices, remaining active choices need to be replicated on the LockedCoin contract, which can
lead to code duplication.

The choices on the original contract need to be altered for the lock choice to be added. If this
contract is shared across multiple participants, it will require agreement from all involved.

2.6. Writing good DAML 133

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Coin

issuer, owner,
owner .. Archive

CoinCommitment)
LockedCoin

Lock

issuer, owner issuer, owner,
owner, unlocker

Fig.7: Locking By Archiving Contract Diagram

Locking by state

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

controller owner can

Transfer : ContractId TransferProposal
with newOwner: Party
do
create TransferProposal
with coin=this; newOwner

-—-a coin can only be archived by the issuer under the condition thatl]
—the issuer is the owner of the coin. This ensures the issuer cannotl]
—archive coins at will.

controller issuer can

Archives
()

do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State

134 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

requires introducing fields to track state. This allows for the creation of an active contract in two
possible states: locked or unlocked. ADAML modeler can selectively make certain choices actionable
only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin
through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag
or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

Add a locker party to the template parameters.
Define the states.
- if owner == locker, the coin is unlocked
- if owner != locker, the coinis in a locked state
The contract state is checked on choices.
- Transfer choice is only actionable if the coin is unlocked
- Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied
- Unlock is available to the locker party only if the coin is locked

template LockableCoin
with
owner: Party
issuer: Party
amount: Decimal
locker: Party
where
signatory issuer
signatory owner

ensure amount > 0.0

--Transfer can happen only 1if it is not locked
controller owner can
Transfer : ContractId TransferProposal
with newOwner: Party
do
assert (locker == owner)
create TransferProposal
with coin=this; newOwner

--Lock can be done 1if owner decides to bring a locker on board
Lock : ContractlId LockableCoin
with newLocker: Party

do
assert (newLocker /= owner)
create this with locker = newLocker

--Unlock only makes sense 1f the coin is in locked state
controller locker can

Unlock
ContractId LockableCoin

do

(continues on next page)

2.6. Writing good DAML 135

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

assert (locker /= owner)

create this with locker = owner

Locking By State Diagram

Transfer choice,

LockableCoin

actionable only if it is

locked
issuer,
owner, locker
TransferProposal
coin.issuer,
coin.owner,
newOwner

Trade-offs

It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to
the template parameters to track the state change, the template can get overloaded.

Locking by safekeeping

Safekeeping is a realistic way to model locking as itis a common practice in many industries. For ex-
ample,during areal estate transaction, purchase funds are transferred to the sellers lawyer’s escrow
account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates [Party]
where

signatory issuer, owner

observer delegates

controller owner can

Transfer ContractId TransferProposal
with newOwner: Party
do

create TransferProposal

with coin=this; newOwner

(continues on next page)

136

Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

-—-a coin can only be archived by the issuer under the condition thatl]
—the issuer is the owner of the coin. This ensures the issuer cannotl]
—archive coins at will.

controller issuer can

Archives
()

do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can
transfer the Coin ownership to a locker party.

Introduce a separate contract template LockRequest with the following features:
- LockRequest has a locker party as the single signatory, allowing the locker party to unilat-
erally initiate the process and specify locking terms.
- Once owner exercises Accept on the lock request, the ownership of coin is transferred to
the locker.
- The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest
with
locker: Party
maturity: Time
coin: Coin
where
signatory locker

controller coin.owner can
Accept : LockResult
with coinCid : ContractId Coin

do
inputCoin <- fetch coinCid
assert (inputCoin == coin)
tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer
lockCid <- create LockedCoinV2 with locker; maturity; coin
return LockResult {coinCid; lockCid}

LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described
in Consuming choice. The additional logic is to transfer ownership from the locker back to the
owner when Unlock or Clawback is called.

template LockedCoinV2
with
coin: Coin
maturity: Time
locker: Party
where
signatory locker, coin.owner

(continues on next page)

2.6. Writing good DAML 137

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

controller locker can
UnlockV2
ContractId Coin
with coinCid : ContractId Coin

do
inputCoin <- fetch coinCid
assert (inputCoin.owner == locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

controller coin.owner can
ClawbackVv2

ContractId Coin

with coinCid : ContractId Coin

do
currTime <- getTime
assert (currTime >= maturity)
inputCoin <- fetch coinCid
assert (inputCoin == coin with owner=locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner
exercise tpCid AcceptTransfer

Coin

issuer, owner,

owner . Transfer
LockRequest .
LockedCoin
Accep
locker, owner owner, locker

owner, locker

Fig. 8: Locking By Safekeeping Diagram

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer
could run away with the funds. In a similar fashion, a malicious locker party could introduce code to
transfer assets away while they are under their ownership.

138 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Contract Active contract
Contract Archived contract
A B C

Signatories, Controllers, Observers

O Non-consuming choice
& Consuming choice
4] Consuming choice (but recreating itself with an updated state)

Create another contract from a choice

Reference to contractld

2.6. Writing good DAML 139

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.6.1.6 Diagram legends
2.6.2 Anti-patterns

This documents DLT anti-patterns, their drawbacks and more robust ways of achieving the same
outcome.

Don’t use the ledger for orchestration
Avoid race conditions in smart contracts

Don’t use status variables in smart contracts

2.6.2.1 Don't use the ledger for orchestration

Applications often need to orchestrate calculations at specific times or in a long-running sequence
of steps. Examples are:

Committing assets to a settlement cycle at 10:00 am
Starting a netting calculation after trade registration has finished
Triggering the optimization of a portfolio

At first, creating a contract triggering this request might seem convenient:

template OptimizePortfolio
with
self: Party
where
signatory self

However, this is a case of using a database [ledger] for interprocess communication. This contractis
a computational request from the orchestration unit to a particular program. But the ledger repre-
sents the legal rights and obligations associated with a business process: computational requests
are a separate concern and shouldn’t be mixed into this. Having them on-ledger has the following
drawbacks:

Code bloat in shared models: introduces more things which need to be agreed upon

Limited ability to send complicated requests since they first have to be projected into smart
contracts

High latency since intermediate variables have to be committed to the ledger

Changing the orchestration of a production system has a very high barrier since it may require
DAML model upgrades

Orchestration contracts have no business meaning and contaminate the ledger holding
business-oriented legal rights and obligations

Instead, lightweight remote procedure calls (RPC) would be more appropriate. A system designer can
consider triggering the application waiting to execute a task with RPC mechanism like:

An HTTP request
A general message bus
A scheduler starting the calculation at a specific time

Notification contracts, which draw a line in the sand and have a real business meaning, don’t fall
under this categorization. These are persistent contracts with real meaning to the business process
and not an ephemeral computational request as described above.

140 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.6.2.2 Avoid race conditions in smart contracts

The DLT domain lends itself to race conditions. How? Multiple parties are concurrently updating
shared resources (contracts). Here’s an example that’s vulnerable to race conditions: a DvP where a
payer allocates their asset, a receiver has to allocate their cash and then an operator does the final
settlement.

template DvP
with
operator: Party
payer: Party
receiver: Party
assetCid: Optional (ContractId Asset)
cashIouCid: Optional (ContractId CashIou)

controller payer can
PayerAllocate: ContractId DvP

controller receiver can
ReceiverAllocate: ContractId DvP

controller operator can
Settle: (ContractId Asset, ContractId CashIou)

If the payer and receiver react to the creation of this contract and try to exercise their respective
choices, one will succeed and the other will result in an attempted double-spend. Double-spends
create additional work on the system because when an exception is returned, a new command needs
to be subsequently generated and reprocessed. In addition, the application developer has to imple-
ment careful errorhandling associated with the failed command submission. It should be everyone’s
goal towrite double-spend free code as needless exceptions dirty logs and can be a distraction when
debugging other problems.

To write your code in a way that avoids race conditions, you should explicitly break up the updating
of the state into a workflow of contracts which collect up information from each participant and
is deterministic in execution. For the above example, deterministic execution can be achieved by
refactoring the DvP into three templates:

1. DvPRequest created by the operator, which only has a choice for the payer to allocate.

2. DvP which is the result of the previous step and only has a choice for the receiver to allocate.

3. SettlementInstruction which is the result of the previous step. It has all the information
required for settlement and can be advanced by the operator

Alternatively, if asynchronicity is required, the workflow can be broken up as follows:

1. Create a PayerAllocation contract to collect up the asset.
2. Create a ReceiverAllocation contract to collect up the cashIou.
3. Have the Settle choice on the DvP which takes the previous two contracts as arguments.

2.6. Writing good DAML 141

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

2.6.2.3 Don't use status variables in smart contracts

When orchestrating the processing of an obligation, the obligation may go through a set of states.
The simplest example is locking an asset where the states are locked versus unlocked. A more com-
plex example is the states of insurance claim:

1. Claim Requested

2. Cleared Fraud Detection
3. Approved

4. Sent for Payment

Initially, it might seem that a convenient way to represent this is with a status variable like below:

data ObligationStatus = ClaimRequested | ClearedFraudDetection | Approved|
— | SentForPayment deriving (Eq, Show)

template Obligation
with
insuranceUnderwriter: Party
claimer: Party
status : ObligationStatus

Instead, you can break up the obligation into separate contracts for each of the different states.

template ClaimRequest
with
insuranceUnderwriter: Party
claimer: Party

template ClaimClearedFraudDetection
with
insuranceUnderwriter: Party
claimer: Party

The drawbacks of maintaining status variables in contracts are:

It is harder to understand the state of the ledger since you have to inspect contracts

More complex application code is required since it has to condition on the state of the contract
Within the contract code, having many choices on a contract can make it ambiguous as to how
to advance the workflow forward

The contract code can become complex supporting all the various ways to update its internal
state

Information can be leaked to parties who are not involved in the exercising of a choice

It is harder to update the ledger/models/application if a new state is introduced

Increased error checking code required to verify the state transitions are correct

Makes the code harder to reason about

By breaking the contract up and removing the status variable, it eliminates the above drawbacks
and makes the system transparent in its state and how to evolve forward.

2.6.3 What functionality belongs in DAML models versus application code?

The answer to this question depends on how you’re using your ledger and what is important to you.
Consider two different use cases: aledger encoding legal rights and obligations between companies
versus using a ledger as a conduit for internal data synchronization. Each of these solutions would

142 Chapter 2. Writing DAML

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

be deployed in very different environments and are on either end of the trust and coordination spec-
trums. Internally to a company, trust is high and the ability to coordinate change is high. External
to a company, the opposite is true.

The rest of this page will talk about how to organize things in either case. For your particular solution,
itis important to similarly identify the what factors are important to you, then separate along those
lines.

Looking at the ledger from a legal perspective
Looking at the ledger from a data synchronization perspective

2.6.3.1 Looking at the ledger from a legal perspective

When the ledger is encoding legal rights and obligations between external counterparties, a defen-
sive/minimalistic approach to functionality in DAML models may be prudent. The reasons for this
are:

Itis alitigious environment where the ledger’s state may require examination in court

The ledger is a valuable source of legal information and shouldn’t be contaminated with non-
business oriented logic

The more functionality in shared models, the more which needs to be agreed upon upfront by
all companies involved. Further updating shared models is hard since all companies need to
coordinate

As aresult, shared functionality in DAML models needs careful scrutiny. This minimalistic approach
might only include:

Contracts representing, and going into the servicing of, traditional legal contracts

Contracts narrowly associated with the business process such as obligations for payment/de-
livery

Contractual eligibility checks prior to obligation creation - e.g. prerequisites for creating an
insurance claim

Operations requiring atomicity such as swapping of ownership

Calculations resulting in legal obligations such as the payout of a call option

Functionality not going into the DAML models then must go into the application. These non-business
oriented items may include:

Commonly available libraries like calendars or date calculations
Code to parse messages - e.g. FIX trade confirmation messages
Code to orchestrate a batch calculation

Calculations specific to a participant

2.6.3.2 Looking at the ledger from a data synchronization perspective

On the other hand, when doing data synchronization most of the inter-process communication be-
tween parties belongs on the ledger. This perspective is grounded in the fact that the ledger infras-
tructure acts as a messaging bus where the messages are subject to certain guarantees:

The initiating party is authentic
Messages conform to DAML model specification
Messages are approved by all participants hosting stakeholders of the message

Therefore, when doing data synchronization all of the above functionality is eligible to go into the
DAML models and have the application be a lightweight router. However, there are still some things

2.6. Writing good DAML 143

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

for which itisn’t sensible to put on the ledger. For examples of these, see the section on Anti-patterns.

144 Chapter 2. Writing DAML

Chapter 3

Building applications

3.1 Application architecture

This section describes our recommended design of a full-stack DAML application.

145

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Frontend User Code

React Components -

Y

Provided Component

Generated from DAML

@daml React Libraries model

External Component

v

@daml2js Interface Library

A External Service Provider

Authentication Token Issuer

DAML Platform

DAML Model DAR

JSON API Server

DAML Ledger

DAML Ledger APl Server

v

DAML Ledger Implementation

The above image shows the recommended architecture. Of course there are many ways how you can
change the architecture and technology stack to fit your needs, which we’ll mention in the corre-
sponding sections.

To get started quickly with the recommended application architecture clone the create-daml-app
application template:

146 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

git clone https://github.com/digital-asset/create-daml-app

create-daml-app is a small, but fully functional demo application implementing the recom-
mended architecture, providing you with an excellent starting point for your own application. It
showcases

using DAML React libraries

quick iteration against the DAML Ledger Sandbox.
authentication

deploying your application in the cloud as a Docker container

3.1.1 Backend

The backend for your application can be any DAML ledger implementation running your DAR (DAML
Archive) file.

We recommend using the DAMLJSON APl as an interface to your frontend. It is served by the HTTP JSON
APl server connected to the ledger API server. It provides simple HTTP endpoints to interact with the
ledger via GET/POST requests. However, if you prefer, you can also use the gRPC API directly.

When you use the create-daml-app template application, you can start a local sandbox together
with a JSON API server by running

daml start --start-navigator=no

in the root of the project. This is the most simple DAML ledger implementation. Once your applica-
tion matures and becomes ready for production, the daml deploy command helps you deploy your
frontend and DAML artefacts of your project to a production ledger. See Deploying to DAML Ledgers for
an in depth manual for specific ledgers.

3.1.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-
ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,
we provide support libraries for Java and Scala and you can also interact with the gRPC API directly.

We provide two libraries to build your React frontend for a DAML application.

Name Summary
@daml/react | React hooks to query/create/exercise DAML contracts
@daml/ledger | DAML ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running yarn add <library> in the ui directory of your
project, e.g. yarn add @daml/react. Please explore the create-daml-app example project to
see the usage of these libraries.

To make your life easy when interacting with the ledger, the DAML assistant can generate JavaScript
libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your-project-name.dar> -o daml.]js

This command will generate a JavaScript library for each DALF in you DAR, containing meta-
data about types and templates in the DALF and TypeScript typings them. In create-daml-app,

3.1. Application architecture 147

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

ui/package.json refers to these libraries via the "create-daml-app": "file:../daml.js/
create-daml-app-0.1.0" entryin the dependencies field.

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,
@daml/types and the generated daml. js libraries provide you with the necessary code to connect
and issue commands against your ledger.

3.1.3 Authentication

When you deploy your application to a production ledger, you need to authenticate the identities of
your users.

DAML ledgers support a unified interface for authentication of commands. Some DAML ledgers like
forexample https://projectdabl.com offer an integrated authentication service, but you can also use
an external service provider for authentication like https://authO.com. The DAML react libraries sup-
port interfacing with an authenticated DAML ledger. Simply initialize your DamlLedger object with
the token obtained by an authentication service. How authentication works and the form of the re-
quired tokens is described in the Authentication section.

3.1.4 Developer workflow

The DAML SDK enables a local development environment with fast iteration cycles. If you run daml-
reload-on-change.sh of the create-daml-app, a local DAML sandbox ledger is started that is
updated with your most recent DAML code on any change. Next, you can start your frontend in devel-
opment mode by changing to your ui directory and run yarn start. This will reload your frontend
whenever you make changes to it. You can add unit tests for your DAML models by writing DAML
scenarios. These will also be reevaluated on change. A typical DAML developer workflow is to

Make a small change to your DAML data model

Optionally test your DAML code and with scenarios

Edit your React components to be aligned with changes made in DAML code

Extend the Ul to make use of the newly introduced feature

Make further changes either to your DAML and/or React code until you’re happy with what
you’ve developed

a MW -

Iterate on the

DAML model Iterate on the Ul

3.1.4.1 Handle failures when submitting commands

The interaction of a DAML application with the ledger is inherently asynchronous: applications send
commands to the ledger, and some time later they see the effect of that command on the ledger.

There are several things that can fail during this time window: the application can crash, the partici-
pant node can crash, messages can be lost on the network, or the ledger may be just slow to respond

148 Chapter 3. Building applications

https://projectdabl.com
https://auth0.com

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

due to a high load.

If you want to make sure that a command is not executed twice, your application needs to robustly
handle all the various failure scenarios. DAML ledgers provide a mechanism for command deduplica-
tion to help deal this problem.

For each command applications provide a command ID and an optional parameter that specifies
the deduplication time. If the latter parameter is not specified in the command submission itself,
the ledger will fall back to using the configured maximum deduplication time. The ledger will then
guarantee that commands for the same submitting party and command ID will be ignored within
the deduplication time window.

To use command deduplication, you should:

Use generous values for the deduplication time. It should be large enough such that you can
assume the command was permanently lost if the deduplication time has passed and you still
don’t observe any effect of the command on the ledger (i.e. you don’t see a transaction with the
command ID via the transaction service).

Make sure you set command IDs deterministically, that is to say: the same command
must use the same command ID. This is useful for the recovery procedure after an applica-
tion crash/restart, in which the application inspects the state of the ledger (e.g. via the Active
contracts service) and sends commands to the ledger. When using deterministic command IDs,
any commands that had been sent before the application restart will be discarded by the ledger
to avoid duplicate submissions.

If you are not sure whether a command was submitted successfully, just resubmit it. If the new
command was submitted within the deduplication time window, the duplicate submission will
safely be ignored. If the deduplication time window has passed, you can assume the command
was lost or rejected and a new submission is justified.

For more details on command deduplication, see the Ledger APl Services documentation.

3.1.4.2 Dealing with time

The DAML language contains a function getTime which returns the currenttime . The notion of time
comes with a lot of problems in a distributed setting: different participants might run slightly differ-
ent clocks, transactions would not be allowed to overtake each other during DAML interpretation,
i.e.,, a long-running command could block all other commands, and many more.

To avoid such problems, DAML provides the following concept of ledger time:

As part of command interpretation, each transaction is automatically assigned a ledger time by
the participant server.

All calls to getTime within a transaction return the ledger time assigned to that transaction.
Ledger time is reasonably close to real time. To avoid transactions being rejected because the
assigned ledger time does not match the ledger's system time exactly, DAML Ledgers define
a tolerance interval around its system time. The system time is part of the ledger synchro-
nization/consensus protocol, but is not known by the participant node at interpretation time.
Transactions with a ledger time outside this tolerance interval will be rejected.

Ledger time respects causal monotonicity: if a transaction x uses a contract created in another
transaction y, transaction xs ledger time will be greater than or equal to the ledger time of the
referenced transaction y.

Some commands might take a long time to process, and by the time the resulting transaction is
about to be committed to the ledger, it might violate the condition that ledger time should be rea-
sonably close to real time (even when considering the ledger’s tolerance interval). To avoid such
problems, applications can set the optional parameters min_ledger_time_absor min_ledger_time_rel

3.1. Application architecture 149

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

command parameters that specify (in absolute or relative terms) the minimal ledger time for the
transaction. The ledger will then process the command, but wait with committing the resulting
transaction until ledger time fits within the ledger’s tolerance interval.

How is this used in practice?

Be aware that getTime is only reasonably close to real time. Avoid DAML workflows that rely
on very accurate time measurements or high frequency time changes.

Setmin ledger time absormin ledger time rel ifthe duration of command interpre-
tation and transmission is likely to take a long time relative to the tolerance interval set by the
ledger.

In some corner cases, the participant node may be unable to determine a suitable ledger time
by itself. If you get an error that no ledger time could be found, check whether you have con-
tention on any contract referenced by your command or whether the referenced contracts are
sensitive to small changes of getTime.

3.2 JavaScript Client Libraries

The JavaScript Client Libraries are the recommended way to build a frontend for a DAML applica-
tion. The JavaScript Code Generator can automatically generate JavaScript containing metadata
about DAML packages that is required to use these libraries. We provide an integration for the React
framework with the @daml/react library. However, you can choose any JavaScript/TypeScript based
framework and use the @daml/ledger library directly to connect and interact with a DAML ledger via
its HTTP JSON API.

The @daml/types library contains TypeScript data types corresponding to primitive DAML data types,
such as Party or Text. It is used by the @dam|/react and @daml/ledger libraries.

3.2.1 JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-
junction with the JavaScript Client Libraries for interacting with a DAML ledger via the HTTP JSON
API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-
taining metadata and types for all DAML packages included in the DAR files.

The generated packages use the library @daml/types.

3.2.1.1 Usage

In outline, the command to generate JavaScript and TypeScript typings from DAMLis daml codegen
js -o OUTDIR DAR where DAR is the path to a DAR file (generated via daml build) and OUTDIR
is a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard skeleton template.

daml new my-proj skeleton # Create a new project based off the skeletonl]
—~template

cd my-proj # Enter the newly created project directory

daml build # Compile the project's DAML files into a DAR

daml codegen js -o daml.js .daml/dist/my-proj-0.0.1.dar # Generatel
—~JavaScript packages in the daml.js directory

On execution of these commands:

150 Chapter 3. Building applications

https://reactjs.org
daml-react/index.html
daml-ledger/index.html
daml-types/index.html
daml-react/index.html
daml-ledger/index.html
../json-api/index.html
../json-api/index.html
https://github.com/digital-asset/daml/tree/master/language-support/ts/daml-types

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

- The directory my-proj/daml.js contains generated JavaScript packages with Type-
Script typings;

- The files are arranged into directories;

- One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-
responding to the DAML files in the project;

- For example, daml.js/my-proj-0.0.1/1ib/index.js provides access to the defini-
tions for daml/Main.daml;

- The remaining directories correspond to modules of the DAML standard library;

- Those directories have numeric names (the names are hashes of the DAML-LF package
they are derived from).

To get aquickstartidea of how to use what has been generated, you may wish to jump to the Templates
and choices section and return to the reference material that follows as needed.
3.2.1.2 Primitive DAML types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind
this quick review of the TypeScript equivalents of the primitive DAML types provided by @daml/types.

Interfaces:
Template<T extends object, K = unknown>
Choice<T extends object, C, R, K = unknown>

Types:

DAML TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric v Numeric string

Text Text string

Time Time string

Party Party string

[7T] List<rT> T[]

Date Date string

ContractId ContractId<t> string

-

Optional 7 Optional<r> null | (null extends 7 ? [1 | [Exclude<T,

null>] T)
TextMap T TextMap<7> { [key: string]: 7 }
(71, T2) Tupley<ty, { 1: 715 2: 72}
To>

Note: The types given in the TypeScript column are defined in @daml/types.

Note:
table).

For n-tuples where n

3, representation is analogous with the pair case (the last line of the

3.2. JavaScript Client Libraries

151

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices
relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<7> in the above table might look complicated. It
accounts for differences in the encoding of optional values when nested versus when they are not (i.e.

top-level). For example, null and "foo" are two possible values of Optional<Text> whereas,
[1 and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another
possible value, [null] is not).

3.2.1.3 DAML to TypeScript mappings
The mappings from DAML to TypeScript are best explained by example.

Records

In DAML, we might model a person like this.

data Person =
Person with
name: Text
party: Party
age: Int

Given the above definition, the generated TypeScript code will be as follows.

type Person = {
name: string;
party: daml.Party;
age: daml.Int;

Variants

This is a DAML type for a language of additive expressions.

data Expr a =
Lit a
| Var Text
| Add (Expr a, Expr a)

In TypeScript, it is represented as a discriminated union.

type Expr<a> =
| { tag: '"Lit'; value: a }
| { tag: '"Var'; value: string }
| { tag: 'Add'; value: { 1: Expr<a>, 2: Expr<a>} }

152 Chapter 3. Building applications

../json-api/index.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

data Expr a =
Lit a
| Var Text
| Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields 1hs and rhs.
This renders in TypeScript like so.

type Expr<a> =
| { tag: '"Lit2'; wvalue: a }
| { tag: 'Var2'; value: string }
| { tag: 'Add'; wvalue: Expr.Add<a> }

namespace Expr {
type Add<a> = {
lhs: Expr<a>;
rhs: Expr<a>;

The thing to note is how the definition of the Add case has given rise to a record type definition
Expr.Add.

Enums

Given a DAML enumeration like this,

data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-
panion object.

type Color = 'Red' | 'Blue' | 'Yellow'

const Color = {

Red: 'Red',

Blue: 'Blue',

Yellow: 'Yellow',

keys: ['Red',6 'Blue', 'Yellow'],
} as const;

Templates and choices

Here is a DAML template of a basic ‘lOU’ contract.

template Iou
with
issuer: Party

(continues on next page)

3.2. JavaScript Client Libraries 153

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

owner: Party
currency: Text
amount: Decimal
where
signatory issuer
choice Transfer: ContractId Iou
with
newOwner: Party
controller owner
do
create this with owner = newOwner

The daml codegen js command generates types for each of the choices defined on the template
as well as the template itself.

type Transfer = {
newOwner: daml.Party;

type Iou = {
issuer: daml.Party;
owner: daml.Party;
currency: string;
amount: daml.Numeric;

Each template results in the generation of a companion object. Here, is a schematic of the one gen-
erated from the Tou template®.

const Iou: daml.Template<Iou, undefined> & {
Archive: daml.Choice<Iou, DA Internal Template.Archive, {}, undefined>;
Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;
b= A
JE oL K/

The exact details of these companion objects are not important - think of them as representing
metadata .

What is important is the use of the companion objects when creating contracts and exercising
choices using the @daml/ledger package. The following code snippet demonstrates their usage.

import Ledger from '(@daml/ledger';
import {Iou, Transfer} from /* ... */;

const ledger = new Ledger (/* ... */);

// Contract creation,; Bank issues Alice a USD SIMM IOU.

(continues on next page)

The undefined type parameter captures the fact that Tou has no contract key.

154 Chapter 3. Building applications

https://github.com/digital-asset/daml/tree/master/language-support/ts/daml-ledger

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

const iouDetails: Iou = {
issuer: 'Chase',
owner: 'Alice',

currency: 'USD',

amount: 1000000.0,
}i
const alicelIouCreateEvent = await ledger.create(Iou, iouDetails);
const alicelouContractId = alicelouCreateEvent.contractId;

// Choice execution,; Alice transfers ownership of the IOU to Bob.

const transferDetails: Transfer = {
newOwner: 'Bob',
1
const [bobIouContractId,] = await ledger.exercise (Transfer,![!

—alicelouContractId, transferDetails);

Observe online 14, the first argument to create is the Tou companion object and on line 22, the first
argument to exercise is the Transfer companion object.

3.2.2 @daml/react

@daml/react documentation

3.2.3 @daml/ledger

@daml/ledger documentation

3.2.4 @daml/types

@daml/types documentation

3.3 HTTP JSON API Service

The JSON API provides a significantly simpler way than the Ledger API to interact with a ledger by
providing basic active contract set functionality:

creating contracts,

exercising choices on contracts,

querying the current active contract set, and
retrieving all known parties.

The goal of this APl is to get you up and running distributed ledger applications quickly, so we have
deliberately excluded complicating concerns, including but not limited to:

inspecting transactions,

asynchronous submit/completion workflows,

temporal queries (e.g. active contracts as of a certain time), and
ledger metaprogramming (e.g. retrieving packages and templates).

For these and other features, use the Ledger APl instead.

3.3. HTTP JSON API Service 155

daml-react/index.html
daml-ledger/index.html
daml-types/index.html

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.1 DAML-LF JSON Encoding

We describe how to decode and encode DAML-LF values as JSON. For each DAML-LF type we explain
what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

The output format is parameterized by two flags:

encodeDecimalAsString: boolean
encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in
JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-
ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse
below.

Note that throughout the document the decoding is type-directed. In other words, the same JSON
value can correspond to many DAML-LF values, and the expected DAML-LF type is needed to decide
which one.

3.3.1.1 Contractld

Contract ids are expressed as their string representation:

|'123||
"XYZ "
"foo:bar#baz"

3.3.1.2 Decimal
Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using
the same format that JSON accepts, and treated them as the equivalent JSON number:

=2(2:0][1-9]1\d*) (2:\.\d+) 2 (2: [eE] [+-]2\d+) ?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings
because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,
and IEEE Doubles cannot express DAML-LF Decimals correctly. Therefore, we also accept strings so
that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [-(10%8-1) 10'°, (10%8-1) 10'°]. Numbers outside
those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s
rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42
42.0 --> 42
"4 —=> 42

9999999999999999999999999999.9999999999 -->
9999999999999999999999999999.9999999999

—42 —=> -42

"o42n —-> 42

(continues on next page)

156 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

0 -—>20

-0 --=> 0
0.30000000000000004 --> 0.3
2e3 --> 2000

A few invalid examples:

" 42 "

Hblahll
99999999999999999999999999990
+42

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -2 [0-9]1 {1,
28} (\.[0-91{1,10}) 2. If encodeDecimalAsString is not set, they are encoded as JSON numbers,
also using the format -2 [0-91{1,28} (\.[0-9]{1,10}) ~.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume
Decimals safely with the standard JSON.parse.

3.31.3 Inte4

Input

Int64, much like Decimal, can be represented as JSON numbers and as strings, with the string
representation being [+-]12[0-9]1+. The numbers must fall within [-9223372036854775808,
9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional
part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807
"9223372036854775807"
-9223372036854775808
"-9223372036854775808"

A few invalid examples:

42.3

+42
9223372036854775808
-9223372036854775809
"garbage"

n 42 Al

3.3. HTTP JSON API Service 157

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Output

If encodelnt64AsString is set, Int64s are encoded as strings, using the format -2 [0-9]+. If en-
codelnt64AsString is not set, they are encoded as JSON numbers, also using the format -2 [0-9] +.

Note that the flag encodelnt64AsString is useful because it lets JavaScript consumers consume
Int64s safely with the standard JSON.parse.
3.3.1.4 Timestamp

Input

Timestamps are represented as ISO 8601 strings, rendered using the format yyyy-mm-
ddThh:mm:ss[.ssssss]Z:

1990-11-09T04:30:23.1234569Z
1990-11-09T04:30:232
1990-11-09T04:30:23.123%Z
0001-01-01T00:00:002
9999-12-31T23:59:59.999999Z2

It’s OK to omit the microsecond part partially or entirely. Sub-second data beyond microseconds will
be dropped. The UTC timezone designator must be included. The rationale behind the inclusion of
the timezone designator is minimizing the risk that users pass in local times.

The timestamp must be between the bounds specified by DAML-LF and ISO 8601, [0001-01-
01T00:00:00Z, 9999-12-31T23:59:59.9999997].

JavaScript

> new Date () .toISOString()
'2019-06-18T08:59:34.1917"

Python

>>> datetime.datetime.utcnow () .isoformat () + 'Z'
'2019-06-18T08:59:08.3927647"'

Java

import java.time.Instant;
class Main {
public static void main(String[] args) {
Instant instant = Instant.now();
// prints 2019-06-18T09:02:16.652%7
System.out.println(instant.toString());

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss [.
ssssss]Z.

The sub-second part will be formatted as follows:

158 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-
onds), the sub-second part will be omitted entirely;

If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-
liseconds, padding with trailing Os if necessary;

Otherwise, the sub-second part will be up to microseconds, padding with trailing Os if neces-
sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of
length 3, or a sub-second part of length 6.
3.3.1.5 Party

Represented using their string representation, without any additional quotes:

"Alice"
HBOb"

3.3.1.6 Unit

Represented as empty object { }. Note that in JavaScript {} !== {}; however, null would be am-
biguous; for the type Optional Unit,null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually
an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in
Python.

3.31.7 Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18
9999-12-31
0001-01-01

The dates must be between the bounds specified by DAML-LF and ISO 8601, [0001-01-01, 9999-99-99].

3.3.1.8 Text

Represented as strings.

3.3.1.9 Bool

Represented as booleans.

3.3.1.10 Record

Input

Records can be represented in two ways. As objects:

{ £f1: vq1, ..., fl: vl }

And as arrays:

3.3. HTTP JSON API Service 159

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

[Vl, e ey VU]

Note that DAML-LF record fields are ordered. So if we have

record Foo = {fl: Int64d, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it
looks like in DAML. Note that a DAML tuple, i.e. (42, True), will be compiled to a DAML-LF record Tuple2
{ 1 =142, 2 = True }.

Output

Records are always encoded as objects.

3.3.1.11 List

Lists are represented as

v

[Vi, «.ey

33112 Map

Maps are represented as objects:

{ ki: vy, ., kO: vO }

3.3.1.13 Optional

Input

Optionals are encoded using null if the value is None, and with the value itself if it's Some. However,
this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are

encoded using an empty list for None, and a list with one element for Some. Note that after the
top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> DAML-LF Expected DAML-LF type

to make clear what the target DAML-LF type is:

null --> None Optional Into64

null --> None Optional (Optional Inté64)

42 --> Some 42 Optional Into64

[] -—> Some None Optional (Optional Int64)

[42] --> Some (Some 42) Optional (Optional Int64)

(1711 -—> Some (Some None) Optional (Optional (Optional Int64))
[[42]] -—> Some (Some (Some 42)) Optional (Optional (Optional Int64))
160 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Finally, if Optional values appear in records, they can be omitted to represent None. Given DAML-LF
types

record Depthl = { foo: Optional Int64 }
record Depth2 = { foo: Optional (Optional Int64) }

We have

{1} --> Depthl { foo: None } : Depthl
{1} --> Depth2 { foo: None } : Depth2
{ foo: 42 } --> Depthl { foo: Some 42 } : Depthl
{ foo: [42] } --> Depth2 { foo: Some (Some 42) } : Depth2
{ foo: null } --> Depthl { foo: None } : Depthl
{ foo: null } --> Depth2 { foo: None } : Depth2
{ foo: [] } --> Depth2 { foo: Some None } : Depth2

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-
sented as objects), since Map relies on absence of key to determine what keys are present in the
Map to begin with. Nor does it applytothe [f,, ..., £[J] record form; Depthl None in the array
notation must be written as [null].

Type variables may appear in the DAML-LF language, but are always resolved before deciding on a
JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it
may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> QOa { foo: Some 42 } : Oa Int

{1} --> Q0Oa { foo: None } : Oa Int

{ foo: [] !} --> QOa { foo: Some None } : Oa (Optional Int)
{ foo: [42] } --> 0Oa { foo: Some (Some 42) } : Oa (Optional Int)

In otherwords, the correct JSON encoding for any LF value is the one you get when you have eliminated
all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None
} will always encode as { foo: null }.

3.3.1.14 Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

variant Foo = Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

3.3. HTTP JSON API Service 161

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

{"tag":
{"tag":
{"tag":
{"tag":

"Bar",
"Baz",
"Quux",
"Quux",

"value": 42}

"value": {}}
"value": null}
"value": 42}

Note that DAML data types with named fields are compiled by factoring out the record. So forexample

if we have

data Foo = Bar {fl: Int64, f2: Bool} | Baz

we’ll get in DAML-LF

record Foo.Bar = {fl: Into4d4, f2: Bool}

variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"fl": 42, "f2": true}}
{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-

ment example.

3.3.115 Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, Bar and Baz .

3.3.2 Query language

The body of POST /v1/query looks like so:

{"templateIds": [...template IDs...
{...query elements...}}

I
"query":

The elements of that query are defined here.

3.3.2.1 Fallback rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-

ing to DAML-LF JSON Encoding, and compared for equality.
All types are supported by this simple equality comparison except:

lists
textmaps
genmaps

162

Chapter 3. Building applications

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.2.2 Simple equality

Match records having at least all the (potentially nested) keys expressed in the query. The result
record may contain additional properties.

Example: { person: { name: "Bob" }, city: "London" }

Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",
createdAt: "2019-04-30T12:34:122" }

No match: { person: { name: "Bob" }, city: "Zurich" }

Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its
type context is thus mutually exclusive with comparison queries.

3.3.2.3 Comparison query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a
value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

"$1t" for less than

"%gt" for greater than

"$1te" for less than or equal to
"$gte" for greater than or equal to

"$1t" and "$1te" may not be used at the same time, and likewise with "$gt" and "%gte", but all
other combinations are allowed.
Example: { "person" { "dob": { "%1lt": "2000-01-01", "%gte": "1980-01-01" } }
1

Match: { person: { dob: "1986-06-21" } }

No match: { person: { dob: "1976-06-21" } }
No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than
these four operators occur where they are legal, so there is no ambiguity with field equality.

3.3.2.4 Appendix: Type-aware queries

This section is non-normative.

Thisis nota JSON query language, itis a DAML-LF query language. So, while we could theoretically treat
queries (where not otherwise interpreted by the may contain additional properties rule above)
without concern for what LF type (i.e. template) we’re considering, we will not do so.

Considerthe subquery {"foo": "bar"}.This queryconforms totypes,amongan unbounded num-
ber of others:

record A [l { foo : Text }
record B [J { foo : Optional Text }
variant C [J foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;
// these are perfectly legal types in DAML-LF packages

In the cases of A and B, "foo" is part of the query language, and only "bar" is treated as an LF
value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous

3.3. HTTP JSON API Service 163

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

interpretations about what elements are interpreted, and what elements treated as literal, and how
those elements are interpreted or compared, would preclude many techniques for efficient query
compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing
them, and impossible in many cases to suppress those unintended meanings within the query lan-
guage. For example, there is no way that the above query could be written to match A but never C.

For thesereasons, as with LF value input via JSON, queries written in JSON are also always interpreted
with respect to some specified LF types (e.g. template IDs). For example:

{"templateIds": [{"moduleName": "Foo", "entityName": "A"},
{"moduleName": "Foo", "entityName": "B"},
{"moduleName": "Foo", "entityName": "C"}1],
"query": {"foo": "bar"}}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data
types were permitted to be variants, which they are not, but for the sake of argument) as a whole
value equality query for C.

The above Typecheck failure happens because there is no LF type to which both "Bob" and
["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering
any contracts.

3.3.3 How to start

3.3.3.1 Start sandbox

From a DAML project directory:

$ daml sandbox --wall-clock-time --ledgerid MyLedger ./.daml/dist/
—quickstart-0.0.1.dar

3.3.3.2 Start HTTP service

From a DAML project directory:

$ daml json-api --ledger-host localhost --ledger-port 6865 \

--http-port 7575 --max-inbound-message-size 4194304 --package-reload-
—interval 5s \

—-—application-id HTTP-JSON-API-Gateway --static-content "prefix=static,
—directory=./static-content™ \

--query-store-jdbc-config "driver=org.postgresgl.Driver,
—url=jdbc:postgresqgl://localhost:5432/test?&ssl=true,user=postgres,
—password=password, createSchema=false"

$ daml json-api --help
HTTP JSON API daemon
Usage: http-json-binary [options]

--help
Print this usage text
—--ledger-host <value>

(continues on next page)

164 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

Ledger host name or IP address
--ledger-port <value>
Ledger port number
-—address <value>
IP address that HTTP JSON API service listens on. Defaults to 127.
—~0.0.1.
--http-port <value>
HTTP JSON API service port number. A port number of 0 will let thel]
—system pick an ephemeral port. Consider specifying "--port-file® option
—with port number 0.
--port-file <value>
Optional unique file name where to write the allocated HTTP portl]
—number. If process terminates gracefully, this file will be deleted!
—automatically. Used to inform clients in CI about which port HTTP JSON!]
—API listens on. Defaults to none, that is, no file gets created.
-—application-id <value>
Optional application ID to use for ledger registration. Defaultsl]
—to HTTP-JSON-API-Gateway
--pem <value>
TLS: The pem file to be used as the private key.
-—-crt <value>
TLS: The crt file to be used as the cert chain.
Required for client authentication.
-—-cacrt <value>
TLS: The crt file to be used as the the trusted root CA.
--tls
TLS: Enable tls. This is redundant if --pem, --crt or --cacrt arel]
—set
--package-reload-interval <value>
Optional interval to poll for package updates. Examples: 500ms, 5s,
— 10min, 1h, 1d. Defaults to 5 seconds
--max-inbound-message-size <value>
Optional max inbound message size in bytes. Defaults to 4194304
-—-query-store-jdbc-config "driver=<JDBC driver class name>,url=<JDBC!
—connection url>,user=<user>,password=<password>, createSchema=<true|false>

"
—

Optional query store JDBC configuration string. Query store is all
—search index, use it if you need to query large active contract sets.!|
—~Contains comma-separated key-value pairs. Where:

driver -- JDBC driver class name, only org.postgresqgl.Driver!]
—supported right now,

url -- JDBC connection URL, only jdbc:postgresgl supported rightl]
—~Nnow,

user -- database user name,

password —-- database user password,

createSchema -- boolean flag, if set to true, the process will re-

—create database schema and terminate immediately.
Example: "driver=org.postgresqgl.Driver,url=jdbc:postgresql://
—localhost:5432/test?&ssl=true,user=postgres, password=password,

craat anC~h e o L

—fa1a -
reateschema=tats (continues on next page)

3.3. HTTP JSON API Service 165

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

--static-content "prefix=<URL prefix>,directory=<directory>"

DEV MODE ONLY (not recommended for production). Optional staticl
—content configuration string. Contains comma-separated key-value pairs.
—Where:

prefix -- URL prefix,

directory -- local directory that will be mapped to the URL prefix.

Example: "prefix=static,directory=./static-content"

--access-token-file <value>

provide the path from which the access token will be read,

—required to interact with an authenticated ledger, no default
--websocket-config "maxDuration=<Maximum websocket session duration inl]
—minutes>, heartBeatPer=Server-side heartBeat interval in seconds"

Optional websocket configuration string. Contains comma-separated
—key-value pairs. Where:

maxDuration -- Maximum websocket session duration in minutes

heartBeatPer -- Server-side heartBeat interval in seconds

Example: "maxDuration=120,heartBeatPer=5"

3.3.3.3 With Authentication

Apart from interacting with the Ledger APl on behalf of the user, the HTTP JSON API server must also
interact with the Ledger APl to maintain some relevant internal state.

For this reason, you must provide an access token when you start the HTTP JSON API if you’re running
it against a Ledger APl server that requires authentication.

Note that this token is used exclusively for maintaining the internal list of known packages and
templates, and that it will not be use to authenticate client calls to the HTTP JSON API: the user is
expected to provide a valid authentication token with each call.

The HTTP JSON API server requires no access to party-specific data, only access to the ledger identity
and package services. A token issued for the HTTP JSON API server should contain enough claims to
contact these two services but no more than that. Please refer to your ledger operator’s documenta-
tion to find out how.

Once you have retrieved your access token, you can provide it to the HTTP JSON API by storing itin a
file. Give the path to it with the ~—access-token-file command line option.

If the token cannot be read from the provided path or the Ledger API reports an authentication error
(for example due to token expiration), the HTTP JSON API will report the error via logging. The token
file can be updated with a valid token, and it will be picked up at the next attempt to send a request.

3.3.4 Example session

$ daml new iou-quickstart-java quickstart-java

$ cd iou-quickstart-java/

$ daml build

$ daml sandbox --wall-clock-time --ledgerid MyLedger ./.daml/dist/
—quickstart-0.0.1.dar

$ daml json-api --ledger-host localhost --ledger-port 6865 —--http-port 7575

166 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.5 Choosing a party

Every request requires you to specify a party and some other settings, with a JWT token. Normal HTTP
requests pass the token in an Authentication header, while WebSocket requests pass the token

in a subprotocol.

In testing environments, you can use https://jwt.io to generate your token. The default header is
fine. Under Payload |, fill in:

{
"https://daml.com/ledger-api": {
"ledgerId": "MyLedger",
"applicationId": "foobar",
"actAs": ["Alice"]

Keep in mind that the value of ledgerId payload field has to match —-ledgerid passed to the
sandbox. You can replace Alice with whatever party you want to use.

Under Verify Signature , put secret as the secret (_not_ base64 encoded); that is the hardcoded
secret for testing.

Then the Encoded box should have your token, ready for passing to the service as described in the
following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger",

"applicationId": "foobar", "actAs": ["Alice"]}}eyJdhbGciOiJIUzIINiIsInR5cCI6IkpX
eyJodHRwczovL2RhbWwuY29t1L2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi0iJINeUx1Z2GdlciIsImFwcGx

VdADI96mwbhrfM5ZNxLyetSVwcD7XtLT4dIdHIOa%1cU
{"https://daml.com/ledger-api™: {"ledgerId": "MyLedger",

"applicationId": "foobar", "actAs": ["Bob"]}}eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVC
eyJodHRwczovL2RhbWwuY29t1L2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi0iJINeUx1Z2GdlciIsImFwcGx

zU-iMSFG90na8IHacrS25xho3u6AKnS1TKbvpkaSyYw

For production use, we have a tool in development for generating proper RSA-encrypted tokens lo-
cally, which will arrive when the service also supports such tokens.

3.3.5.1 Passing token with HTTP

Set HTTP header Authorization: Bearer copy-paste-token-here for normal requests.

3.3.5.2 Passing token with WebSockets

WebSocket clients support a subprotocols argument (sometimes simply called protocols); this
is usually in a list form but occasionally in comma-separated form. Check documentation for your
WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

daml.ws.auth
jwt.token.copy-paste-token-here

where copy-paste-token-here is the encoded JWT token described above.

3.3. HTTP JSON API Service 167

https://jwt.io

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.6 Error Reporting

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes in 3
groups indicating:

1. success (200)
2. failure due to a client-side problem (400, 401, 404)
3. failure due to a server-side problem (500)

The JSON API can return one of the following HTTP status codes:

200 - OK

400 - Bad Request (Client Error)

401 - Unauthorized, authentication required
404 - Not Found

500 - Internal Server Error

If client’s HTTP GET or POST request reaches an APl endpoint, the corresponding response will always
contain a JSON object with status field, either errors or result and optional warnings:

{
"status": <400 | 401 | 404 | 500>,
"errors": <JSON array of strings>, | "result": <JSON object or array>,
["warnings": <JSON object>]

Where:

status - a JSON number which matches the HTTP response status code returned in the HTTP
header,

errors - a JSON array of strings, each string represents one error,

result - a JSON object or JSON array, representing one or many results,

warnings - optional field, a JSON object, representing one ore many warnings.

See the following blog post for more details about error handling best practices: REST API Error Codes
101.
3.3.6.1 Successful response, HTTP status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>

3.3.6.2 Successful response with a warning, HTTP status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>,

(continues on next page)

168 Chapter 3. Building applications

https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"warnings": <JSON object>

3.3.6.3 Failure, HTTP status: 400 | 401 | 404 | 500

Content-Type: application/json
Content:

"status": <400 | 401 | 404 | 500>,
"errors": <JSON array of strings>

3.3.6.4 Examples
Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [
~"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character 'f' atl]
—input index 27 (line 1, position 28)"]}

Bad Request Error with Warnings:

{"status":400, "errors":["Cannot not resolve any template ID from request
—"], "warnings":{"unknownTemplateIds": ["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod (POST), uri: http://localhost:7575/
—vl/queryl"]}

Internal Server Error:

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

3.3.7 Create a new Contract

See the request documentation below on how to create an instance of ITou contract from the Quick-
start guide:

3.3. HTTP JSON API Service 169

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

template Iou
with
issuer : Party
owner : Party
currency : Text
amount : Decimal
observers : [Party]

3.3.71 HTTP Request

URL: /v1/create
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Iou:Iou",
"payload": {
"issuer": "Alice",
"owner": "Alice",
"eurrency'": "USD",
"amount": "999.99",
"observers": []
}
}
Where:

templatelId is the contract template identifier, which can be formatted as either:
- "<package ID>:<module>:<entity>" or
- "<module>:<entity>"if contracttemplate can be uniquelyidentified byits module and
entity name.
payload field contains contract fields as defined in the DAML template and formatted accord-
ing to DAML-LF JSON Encoding.

3.3.7.2 HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {
"observers": [],
"agreementText":
"payload": ({
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

mwn
4

(continues on next page)

170 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

} 4
"signatories": |
"Alice"
1y
"contractId": "#124:0",
"templateId":
—"11c8f3ace75868d28136adchbcfclde?265a9%9eeb5ad73fe8f2db97510e3631096a2:Iou:Iou

"
—

Where:
status field matches the HTTP response status code returned in the HTTP header,
result field contains created contract details. Keep in mind that templateId in the JSON
APl response is always fully qualified (always contains package ID).

3.3.8 Create a new Contract with optional meta field

When creating a new contract, client may specify an optional meta field:

{

"templateId": "Iou:Iou",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"meta": {
"commandId": "a unique ID"
}
}
Where:

commandId - optional field, a unique string identifying the command.

3.3.9 Exercise by Contract ID

The JSON command below, demonstrates how to exercise Tou Transfer choice on Iou contract:

controller owner can
Iou Transfer : ContractId IouTransfer
with
newOwner : Party
do create IouTransfer with iou = this; newOwner

3.3.9.1 HTTP Request

URL: /vl /exercise

3.3. HTTP JSON API Service 171

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Method: POST
Content-Type: application/json

Content:

{
"templateId": "Iou:Iou",
"contractId": "#124:0",
"choice": "Iou Transfer",
"argument": {

"newOwner": "Alice"

}

}

Where:

templatelId - contract template identifier, same as in create request,
contractId - contract identifier, the value from the create response,
choice - DAML contract choice, that is being exercised,

argument - contract choice argument(s).

3.3.9.2 HTTP Response

Content-Type: application/json

Content:
{
"status": 200,
"result": {
"exerciseResult": "#201:1",
"events": |
{
"archived": {
"contractId": "#124:0",
"templateId":
—"11c8f3ace75868d28136adchcfclde?265a9%9eeb5ad73fe8f2db97510e3631096a2:Iou:Iou
}
bo
{
"created": {
"observers": [],
"agreementText": "",
"payload": {
"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 14
"newOwner": "Alice"
}I
(continues on next page)
172 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"signatories": |
"Alice"

1y

"contractId": "#201:1",

"templateId":

—"11c8f3ace’75868d28136adcbcfclde265a9%eeb5ad73£e8£2db97510e3631096a2:Iou:IouT

"
—

ransfer

Where:

status field matches the HTTP response status code returned in the HTTP header,
result field contains contract choice execution details:
- exerciseResult field contains the return value of the exercised contract choice,
- eventscontains anarray of contracts that were archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or
many {"created": {...}} elements. The order of the contracts is the same as on the
ledger.

3.3.10 Exercise by Contract Key

The JSON command below, demonstrates how to exercise Archive choice on Account contract with
a (Party, Text) keydefined like this:

template Account with
owner : Party

number : Text
status : AccountStatus
where

signatory owner
key (owner, number) : (Party, Text)
maintainer key. 1

3.3.10.1 HTTP Request

URL: /vl /exercise
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Account:Account",
"key": {
" 1": "Alice",
"_2": "abcl23"
}I

(continues on next page)

3.3. HTTP JSON API Service 173

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"choice": "Archive",
"argument": {}

Where:

templateId - contract template identifier, same as in create request,

key - contract key, formatted according to the DAML-LF JSON Encoding,

choice - DAML contract choice, that is being exercised,

argument - contract choice argument(s), empty, because Archive does not take any.
3.3.10.2 HTTP Response

Formatted similar to Exercise by Contract ID response.

3.3.11 Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in
the same transaction.

3.3.11.1 HTTP Request

URL: /vl/create-and-exercise
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Iou:Iou",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 4
"choice": "Iou Transfer",
"argument": {
"newOwner": "Bob"
}
}
Where:

templateId - the initial contract template identifier, in the same format as in same as in the
create request,

payload -theinitial contract fields as defined in the DAML template and formatted according
to DAML-LF JSON Encoding,

choice - DAML contract choice, that is being exercised,

argument - contract choice argument(s).

174 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.11.2 HTTP Response
Please note that the response below is for a consuming choice, so it contains:

created and archived events for the initial contract ("contractId": "#1:0"),whichwas
created and archived right away when a consuming choice was exercised on it,

a created event for the contract that is the result of the choice exercise ("contractId":
"#1:2M).

Content-Type: application/json

Content:

"result": {
"exerciseResult": "#1:2",
"events": |

{

"created": {
"observers": [],
"agreementText": "",
"payload": {

"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
bo
"signatories": |
"Alice"
]I
"contractId": "#1:0",
"templateId":
—"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Tou:Iou
}
}l
{

"archived": {
"contractId": "#1:0",
"templateId":

~"a3b788b4dc18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Iou:Iou

}

Yo
{

"created": {
"observers": |
"Bob"
] 4
"agreementText": "",
"payload": {
"iou": {
"observers": [],

(continues on next page)

3.3. HTTP JSON API Service 175

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
by
"newOwner": "Bob"
by
"signatories": |
"Alice"
1y
"contractId": "#1:2",
"templateId":

~"a3b788b4dcl8dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Iou:IouT

"
—

]

I
"status": 200

ransfer

3.3.12 Fetch Contract by Contract ID
3.3.12.1 HTTP Request

URL: /v1/fetch

Method: POST

Content-Type: application/json
Content:

application/json body:

{
"contractId": "#201:1"

3.3.12.2 Contract Not Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": null

3.3.12.3 Contract Found HTTP Response

Content-Type: application/json
Content:

176 Chapter 3.

Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

{
"status": 200,
"result": {
"observers": [],
"agreementText": "",
"payload": {
"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
b
"newOwner": "Alice"
by
"signatories": |
"Alice"
I
"contractId": "#201:1",
"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%eebad73fe8£2db97510e3631096a2:Iou:IouTransfer
}
1

3.3.13 Fetch Contract by Key
3.3.13.1 HTTP Request

URL: /v1/fetch
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Account:Account",
"key": {
" 1": "Alice",
" 2": "abcl23"
}
}

3.3.13.2 Contract Not Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": null

3.3. HTTP JSON API Service 177

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.13.3 Contract Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {

"observers": [],
"agreementText": "",
"payload": ({
"owner": "Alice",
"number": "abcl23",
"status": {

"tag": "Enabled",

"value": "2020-01-01T00:00:012"

}y

"signatories": |
"Alice"
] 4
"key": {
" 1": "Alice",
" 2": "abcl23"
} 4
"contractId": "#697:0",
"templateId":

—"11c8f3ace75868d28136adc5cfclde265a9eebad73fe8£2db97510e3631096a2:Account:

"

IAccount

3.3.14 Contract Search, All Templates

List all currently active contracts for all known templates.

Note that the retrieved contracts do not get persisted into query store database. Query store is a
search index and can be used to optimize search latency. See Start HTTP service for information on

how to start JSON API service with query store enabled.

3.3.14.1 HTTP Request

URL: /v1/query
Method: GET
Content: <EMPTY>

3.3.14.2 HTTP Response

The response is the same as for the POST method below.

3.3.15 Contract Search

List currently active contracts that match a given query.

178

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.15.1 HTTP Request

URL: /v1/query
Method: POST
Content-Type: application/json

Content:

"templateIds": ["Iou:Iou"],

n query" .

{"amount": 999.99}

Where:

templateIds - an array of contract template identifiers to search through,
query - search criteria to apply to the specified templateIds, formatted according to the

Query language.

3.3.15.2 Empty HTTP Response

Content-Type: application/json

Content:

"status": 200,
"result": []

3.3.15.3 Nonempty HTTP Response

Content-Type: application/json

Content:

{

"
—

"result": |

"observers": [],

"agreementText":

"payload": ({
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

nmn
14

}l

"signatories": |
"Alice"

]I

"contractId": "#52:0",

"templateId":

—="b10d22d6c2f2fae41b353315¢cf£893edb66996ecblabed424ea6a81576918£658a:Iou:Iou

(continues on next page)

3.3. HTTP JSON API Service

179

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

1,
"status": 200

Where

result contains an array of contracts, each contract formatted according to DAML-LF JSON En-

coding,

status matches the HTTP status code returned in the HTTP header.

3.3.15.4 Nonempty HTTP Response with Unknown Template IDs Warning

Content-Type: application/json

Content:
{
"warnings": {
"unknownTemplateIds": ["UnknownModule:UnknownEntity"]
bo
"result": [
{
"observers": [],
"agreementText": "",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
by
"signatories": |
"Alice"
]I
"contractId": "#52:0",
"templateId":

—"b10d22d6c2f2faedlb353315¢cf£893ed6699%6ecblabed424ea6a81576918f£658a:Iou:Iou

"
—

1,
"status": 200

3.3.16 Fetch Parties by Identifiers

URL: /v1l/parties

Method: POST

Content-Type: application/json
Content:

180

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

[”Alice", "BOb", "Dave"]

If empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{
"status": 400,
"errors": |
"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.
—DeserializationException: must be a list with at least 1 element"

]

3.3.16.1 HTTP Response

Content-Type: application/json
Content:

"status": 200,

"result": |
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",

"isLocal": true

"identifier": "Bob",
"displayName": "Bob & Co. LLC",
"isLocal": true

"identifier": "Dave",
"isLocal": true

Please note that the order of the party objects in the response is not guaranteed to match the order
of the passed party identifiers.

Where

identifier - a stable unique identifier of a DAML party,
displayName -optional humanreadable name associated with the party. Might not be unique,
isLocal - true if party is hosted by the backing participant.

3.3.16.2 Response with Unknown Parties Warning

Content-Type: application/json
Content:

3.3. HTTP JSON API Service 181

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

"result": |
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",

"isLocal": true
}
] 4
"warnings": {
"unknownParties": ["Erin"]

by
"status": 200

The result might be an empty JSON array if none of the requested parties is known.

3.3.17 Fetch All Known Parties

URL: /v1l/parties
Method: GET
Content: <EMPTY>

3.3.17.1 HTTP Response

The response is the same as for the POST method above.

3.3.18 Allocate a New Party

This endpointis a JSON API proxy for the Ledger API’s AllocatePartyRequest. For more information about
party management, please refer to Provisioning Identifiers part of the Ledger APl documentation.

3.3.18.1 HTTP Request

URL: /vl/parties/allocate
Method: POST
Content-Type: application/json

Content:
{
"identifierHint": "Carol",
"displayName": "Carol & Co. LLC"
}

Please refer to AllocateParty documentation for information about meaning of the fields.

All fields in the request are optional, this means that empty JSON object is a valid request to allocate
a new party:

{1

182 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.18.2 HTTP Response

{

"result": {
"identifier": "Carol",
"displayName": "Carol & Co. LLC",

"isLocal": true

by
"status": 200

3.3.19 List All DALF Packages
3.3.19.1 HTTP Request

URL: /v1/packages
Method: GET
Content: <REMPTY>

3.3.19.2 HTTP Response

{

"result": [
"clf1£f00558799eecl139fb4df4c76f95fb52fal837a5dd29600baalc8edlbdcctd",
"733e38d36a2759688a4d4b2cd4cec69d48e7b55ecc8dedc8067b815926c917al182a",
"bfcd37bd6ob84768e86e432f5£6c33e25d9e7724a9d42e33875££74£6348e733£",
"40f452260bef3f29dedel36108fc08a88d5a5250310281067087da6f0baddff7",
"8a7806365bbd98d88b4cl13832ebfal305f6abaecaf32cfaz2b7dd25¢c4fad489b79fb"

1y

"status": 200

Where result is the JSON array containing package IDs of all loaded DALFs.

3.3.20 Download a DALF Package
3.3.20.1 HTTP Request

URL: /v1/packages/<package ID>
Method: GET
Content: <EMPTY>

Note that package ID is specified in the URL.

3.3.20.2 HTTP Response, status: 200 OK

Transfer-Encoding: chunked
Content-Type: application/octet-stream
Content: <DALF bytes>

The content (body) of the HTTP response contains raw DALF package bytes, without any encoding.
Note that the package ID specified in the URL is actually the SHA-256 hash of the downloaded DALF
package and can be used to validate the integrity of the downloaded content.

3.3. HTTP JSON API Service 183

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.3.20.3 HTTP Response with Error, any status different from 200 OK
Any status different from 200 OK will be in the format specified below.

Content-Type: application/json
Content:

"errors": |
"io.grpc.StatusRuntimeException: NOT FOUND"

1,
"status": 500

3.3.21 Upload a DAR File
3.3.21.1 HTTP Request

URL: /v1/packages

Method: POST

Content-Type: application/octet-stream
Content: <DAR bytes>

The content (body) of the HTTP request contains raw DAR file bytes, without any encoding,

3.3.21.2 HTTP Response, status: 200 OK

Content-Type: application/json
Content:

"result": 1,
"status": 200

3.3.21.3 HTTP Response with Error

Content-Type: application/json

Content:
{
"errors": |
"io.grpc.StatusRuntimeException: INVALID ARGUMENT: Invalidll
—argument: Invalid DAR: package-upload, content: [}]"

1,
"status": 500

3.3.22 Streaming API

WARNING: the WebSocket endpoints described below are in alpha, so are subject to breaking changes,
including all request and response elements demonstrated below or otherwise implemented by the
API. We welcome feedback about the APl on our issue tracker or on Slack.

184 Chapter 3. Building applications

https://github.com/digital-asset/daml/issues/new?milestone=HTTP+JSON+API+Maintenance
https://hub.daml.com/slack/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Please keep in mind that the presence of /v1 prefix in the the WebSocket URLs does not mean that
the endpoint interfaces are stabilized.

Two subprotocols must be passed with every request, as described in Passing token with WebSockets.

JavaScript/Node.js example demonstrating how to establish Streaming APl connection:

const wsProtocol = "daml.ws.auth";

const tokenPrefix = "jwt.token.";

const jwt =
"eyJhbGciOi1iJIUzIINiIsInR5cCI6IkpXVCJI9.

—eyJodHRwczovL2RhbWwuY29tL2x12Gd1lcilhcGkiOnsibGVkZ2VySWQi01JINeUx1Z2GdlciIsIm|

<VdDI96mwShr fM5ZNxLyetSVwcD7XtLT4dIdHIOa%91cU";

const subprotocols = [S{tokenPrefix jwt), wsProtocol];

const ws = new WebSocket ("ws://localhost:7575/v1l/stream/query",[]
—subprotocols) ;

ws.addEventListener ("open", function open() {
ws.send (JSON.stringify ({templateIds: ["Iou:Iou"]}));
1)

ws.addEventListener ("message", function incoming(data) {
console.log(data);

)

Please note that Streaming APl does not allow multiple requests over the same WebSocket connec-
tion. The server returns an error and disconnects if second request received over the same Web-
Socket connection.

3.3.22.1 Error and Warning Reporting

Errors and warnings reported as part of the regular on-message flow: wS.
addEventListener ("message", ...).

Streaming APl error messages formatted the same way as synchronous APl errors.

Streaming API reports only one type of warnings - unknown template IDs, which is formatted as:

{"warnings": {"unknownTemplateIds" :<JSON Array of template ID strings>>}}

Error and Warning Examples:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}
{

"errors": ["JsonReaderError. Cannot read JSON: <{\"templateIds\":[]}>.L
—~Cause: spray.json.DeserializationException: search requires at least one
—~item in 'templateIds'"],

"status":400

FwcGxpY

(continues on next page)

3.3. HTTP JSON API Service 185

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"errors":["Multiple requests over the same WebSocket connection are notl]
—allowed."],
"status":400

"errors":["Could not resolve any template ID from request."],
"status":400

3.3.22.2 Contracts Query Stream

URL: /v1l/stream/query
Scheme: ws
Protocol: WebSocket

Endpointis in alpha as described above.
List currently active contracts that match a given query, with continuous updates.

application/json body must be sent first, formatted according to the Query language:

{"templateIds": ["Iou:Iou"]}

Multiple queries may be specified in an array, for overlapping or different sets of template IDs:

[
{"templateIds": ["Iou:Iou"], "query": {"amount": {"%$1lte": 50}}},
{"templateIds": ["Iou:Iou"], "query": {"amount": {"2gt": 50}}},
{"templateIds": ["Iou:Iou"]}

An optional offset returned by a prior query (see output examples below) may be specified before
the above, as a separate body. It must be a string, and if specified, the stream will begin immediately
after the response body that included that offset:

{"offset™: "5609"}

The output is a series of JSON documents, each payload formatted according to DAML-LF JSON En-
coding:

{

"events": [{
"created": {

"observers": [],

"agreementText": "",

"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",

(continues on next page)

186 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"owner": "Alice"
}/
"signatories": ["Alice"],
"contractId": "#1:0",
"templateId":

~"eb3b150383a979d6765b8570al17dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou: Iou

"
—

}y

"matchedQueries": [1, 2]

1]

wherematchedQueries indicates the O-based indices into the request list of queries that matched
this contract.

Every events block following the end of contracts that existed when the request started includes
an offset. The stream is guaranteed to send an offset immediately at the beginning of this live
data, which may or may not contain any events; if it does not contain events and no events were
emitted before, it may be null or a string; otherwise, it will be a string. For example, you might use
it to turn off an initial loading indicator:

{

"events": [],
"offset": "2"

To keep the stream alive, you’ll occasionally see messages like this, which can be safely ignored if
you do not need to capture the last seen ledger offset:

{"events":[],"offset":"5609"}

where offset is the last seen ledger offset.

After submitting an ITou Split exercise, which creates two contracts and archives the one above,
the same stream will eventually produce:

{

"events": [{
"archived": {
"contractId": "#1:0",
"templateId":

—~"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou: Iou

"
—

}
oo A

"created": {
"observers": [],
"agreementText": "",
"payload": |
"observers": [],
"issuer": "Alice",

(continues on next page)

3.3. HTTP JSON API Service 187

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

"amount": "42.42",
"currency": "USD",
"owner": "Alice"
}I
"signatories": ["Alice"],
"contractId": "#2:1",
"templateId":

—"eb3b150383a979d676508570al17dd24ae8d8b63418ee5fd20df20ad2alcl3976:Iou:Iou

"
—

by

"matchedQueries": [0, 2]
boo A
"created": {
"observers": [],
"agreementText": ""
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "957.57",
"currency": "USD",
"owner": "Alice"
}I
"signatories": ["Alice"],
"contractId": "#2:2",
"templateId":

~"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5£d20df20ad2alcl3976:Iou: Iou

"
—

}y

"matchedQueries": [1, 2]

11y
"offset": "3"

If any template IDs are found not to resolve, the first element of the stream will report them:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

and the stream will continue, provided that at least one template ID resolved properly.

Aside from "created" and "archived" elements, "error" elements may appear, which contain
a string describing the error. The stream will continue in these cases, rather than terminating.

Some notes on behavior:

1. Each result array means this is what would have changed if you just polled /v1/query itera-
tively. In particular, just as polling search can miss contracts (as a create and archive can
be paired between polls), such contracts may or may not appear in any result object.

2. No archived ever contains a contract ID occurring within a created in the same array. So,
for example, supposing you are keeping an internal map of active contracts keyed by contract
ID, you can apply the created first or the archived first, forwards, backwards, or in random
order, and be guaranteed to get the same results.

188 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3. Within a given array, if an archived and created refer to contracts with the same template
ID and contract key, the archived is guaranteed to occur before the created.

4. Except in cases of #3, within a single response array, the order of created and archived is
undefined and does not imply that any element occurred before or after any otherone.

5. You will almost certainly receive contract IDs in archived that you never received a created
for. These are contracts that query filtered out, but for which the server no longer is aware
of that. You can safely ignore these. However, such phantom archives are guaranteed to
represent an actual archival on the ledger, so if you are keeping a more global dataset outside
the context of this specific search, you can use that archival information as you wish.

3.3.22.3 Fetch by Key Contracts Stream

URL: /vl/stream/fetch
Scheme: ws
Protocol: WebSocket

Endpointis in alpha as described above.

List currently active contracts that match one of the given {templateId, key} pairs,with contin-
uous updates.

application/json body must be sent first, formatted according to the following rule:

[

{"templateId": "<template ID 1>", "key": <key 1>},
{"templateId": "<template ID 2>", "key": <key 2>},
{"templateId": "<template ID N>", "key": <key N>}
]
Where:

templateId - contract template identifier, same as in create request,
key - contract key, formatted according to the DAML-LF JSON Encoding,

Example:
[

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "abcl23
‘—>" } } ’

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345

E)"}}

The output stream has the same format as the output from the Contracts Query Stream. We fur-
ther guarantee that for every archived event appearing on the stream there has been a matching
created event earlier in the stream, except in the case of missing contractIdAtOffset fieldsin
the case described below.

You may supply an optional offset for the stream, exactly as with query streams. However, you
should supply with each {templateId, key} pairacontractIdAtOffset,which isthe contract
ID currently associated with that pair at the point of the given offset, or null if no contract ID was
associated with the pair at that offset. For example, with the above keys, if you had one "abc123"
contract but no "def345" contract, you might specify:

3.3. HTTP JSON API Service 189

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

{"templateId": "Account:Account", "key": {"_1 ": "Alice", "_2 ": "abcl23
=" } ’
"contractIdAtOffset": "#1:0"},
{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345

(_)"},

"contractIdAtOffset": null}

If every contractIdAtOffset is specified, as is so in the example above, you will not receive any
archived events for contracts created before the offset unless those contracts are identified in a
contractIdAtOffset. By contrast, if any contractIdAtOffset is missing, archived event fil-
tering will be disabled, and you will receive phantom archives as with query streams.

3.4 DAML Script

3.4.1 DAML Script Library

The DAML Script library defines the APl used to implement DAML scripts. See DAML Script:: for more
information on DAML script.

3.4.11 Module Daml.Script

Data Types

data Commands a

This is used to build up the commands send as part of submit. If you enable the
ApplicativeDo extension by adding {-# LANGUAGE ApplicativeDo #-} atthe top
of your file, you can use do-notation but the individual commands must not depend on
each other.

instance Functor Commands

instance HasSubmit Script Commands

instance Applicative Commands

instance HasField commands (SubmitCmd a) (Commands a)
data ParticipantName

ParticipantName

Field Type Description
participantName Text

instance HasField participantName ParticipantName Text
data PartyldHint

A hint to the backing participant what party id to allocate. Must be a valid PartyldString
(as described in @value.proto@).

PartyldHint

190 Chapter 3. Building applications

https://docs.daml.com/daml/reference/base.html#class-ghc-base-functor-73448
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Description
partyldHint Text

instance HasField partyldHint PartyldHint Text
data Script a

This is the type of A DAML script. Script is an instance of Action, so you can use do
notation.

instance Functor Script

instance CanAbort Script

instance HasSubmit Script Commands
instance HasTime Script

instance Action Script

instance ActionFail Script

instance Applicative Script

instance HasField runScript (Scripta) (() -> Free ScriptF (a, ()))

Functions

query : Template t => Party -> Script [(Contractld t, t)]
Query the set of active contracts of the template that are visible to the given party.

allocateParty : Text -> Script Party
Allocate a party with the given display name using the party management service.

allocatePartyWithHint : Text -> PartyldHint -> Script Party
Allocate a party with the given display name and id hint using the party management service.

allocatePartyOn : Text -> ParticipantName -> Script Party
Allocate a party with the given display name on the specified participant using the party man-
agement service.

allocatePartyWithHintOn : Text -> PartyldHint -> ParticipantName -> Script Party
Allocate a party with the given display name and id hint on the specified participant using the
party management service.

sleep : RelTime -> Script ()
Sleep for the given duration.
This is primarily useful in tests where you repeatedly call query until a certain state is reached.
Note that this will sleep for the same duration in both wallcock and static time mode.

createCmd : Template t =>t -> Commands (Contractid t)
Create a contract of the given template.

exerciseCmd : Choice t ¢ r => Contractld t-> ¢ -> Commands r
Exercise a choice on the given contract.

exerciseByKeyCmd : (TemplateKey t k, Choicetcr) =>k -> ¢ -> Commands r
Exercise a choice on the contract with the given key.

3.4. DAML Script 191

https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#class-ghc-base-functor-73448
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703
https://docs.daml.com/daml/reference/base.html#type-ghc-types-text-57703

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

createAndExerciseCmd : Choicetcr=>t->c->Commandsr
Create a contract and exercise a choice on it in the same transacton.

DAML scenarios provide a simple API for testing DAML models and getting quick feedback in DAML
studio. However, scenarios are run in a special process and do not interact with an actual ledger.
This means that you cannot use scenarios to test other ledger clients, e.g., your Ul or DAML triggers.

DAML script addresses this problem by providing you with an APl with the simplicity of DAML scenar-
ios and all the benefits such as being able to reuse your DAML types and logic while running against
an actual ledger. This means that you can use it to test automation logic, your Ul but also for ledger
initialization where scenarios cannot be used (with the exception of DAML Sandbox).

You can also use DAML Script interactively using DAML REPL.

3.4.2 Usage
Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin
with
issuer : Party
owner : Party
where
signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the
issuer as signatories.

Second, we have a template called CoinProposal:

template CoinProposal
with
coin : Coin
where
signatory coin.issuer
observer coin.owner

choice Accept : ContractId Coin
controller coin.owner
do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when
exercised by the controller will create the corresponding Coin.

Having defined the templates, we can now move on to write DAML scripts that operate on these tem-
plates. To get accees to the APl used to implement DAML scripts, you need to add the daml-script
library to the dependencies field in daml. yaml.

dependencies:
- daml-prim
- daml-stdlib
- daml-script

192 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

We also enable the ApplicativeDo extension. We will see below why this is useful.

{—-# LANGUAGE ApplicativeDo #-)}
module ScriptExample where

import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the
parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with
bank : Party
alice : Party
bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2
of them. This function takes the LedgerParties as an argument and return something of type
Script () which is DAML script’s equivalent of Scenario ().

initialize : LedgerParties -> Script ()
initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transac-
tion. The first argument is the party submitting the transaction. In our case, we want all
proposals to be created by the bank so we use parties.bank. The second argument must
be of type Commands a so in our case Commands (ContractId CoinProposal, ContractId
CoinProposal, ContractId CoinProposal) corresponding to the 3 proposals that we cre-
ate. Commands is similar to Update which is used in the submit function in scenarios. However,
Commands requires that the individual commands do not depend on each other. This matches
the restriction on the Ledger API where a transaction consists of a list of commands. Using
ApplicativeDo we can still use do-notation as long as we respect this. In Commands we use
createCmd instead of create and exerciseCmd instead of exercise.

(coinProposalAlice, coinProposalBob, coinProposalBank) <- submit parties.

—~bank $ do

coinProposalAlice <- createCmd (CoinProposal (Coin parties.bank
—parties.alice))

coinProposalBob <- createCmd (CoinProposal (Coin parties.bank parties.
—~bob))

coinProposalBank <- createCmd (CoinProposal (Coin parties.bank parties.
—bank))

pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposals,wewant Alice and Bob to accept the proposal while
the Bank will ignore the proposal that it has created for itself. To do so we use separate submit
statements for Alice and Bob and call exerciseCmd.

coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept
coinBob <- submit parties.bob $ exerciseCmd coinProposalBob Accept

Finally, we call pure () on the last line of our script to match the type Script ().

3.4. DAML Script 193

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

pure ()

We have now defined awaytoinitialize the ledger sowe can write a test that checks that the contracts
that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does
not take any arguments.

test : Script ()
test = do

Now, we create the parties using the allocateParty function. This uses the party management
service to create new parties with the given display name. Note that the display name does not
identify a party uniquely. If you call allocateParty twice with the same display name, it will create
2 different parties. This is very convenient for testing since a new party cannot see any old contracts
on the ledger so using new parties for each test removes the need to reset the ledger.

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

bank <- allocateParty "Bank"

let parties = LedgerParties bank alice bob

We now call the initialize function that we defined before on the parties that we have just allo-
cated.

initialize parties

To verify the contracts on the ledger, we use the query function. We pass it the type of the template
and a party. It will then give us all active contracts of the given type visible to the party. In our
example, we expect to see one active CoinProposal for bank and one Coin contract for each of
Alice and Bob. We get back list of (ContractId t, t) pairsfrom query. In our tests, we do not
need the contract ids, so we throw them away using map snd.

proposals <- query (@CoinProposal bank
assertEg [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <- query @Coin alice
assertEq [Coin bank alice] (map snd aliceCoins)

bobCoins <- query (@Coin bob
assertEgq [Coin bank bob] (map snd bobCoins)

To run our script, we first build it with daml buildand then run it by pointing to the DAR, the name
of our script, the host and port our ledger is running on and the time mode of the ledger.

daml script --dar .daml/dist/script-example-0.0.1.dar —--script-name
ScriptExample:test --ledger-host localhost --ledger-port 6865

Up to now, we have worked with parties that we have allocated in the test. We can also pass in the
path to a file containing the input in the DAML-LF JSON Encoding.

{

"alice": "Alice",

(continues on next page)

194 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

Hbob": HBObH,
"bank": "Bank"

We can then initialize our ledger passing in the json file via ——input-file.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name
ScriptExample:initialize --ledger-host localhost --ledger-port 6865 --
input-file ledger-parties.json

If you open Navigator, you can now see the contracts that have been created.

While we will not use it here, there is also an —-output-file option that you can use to write the
result of a script to a file using the DAML-LF JSON encoding,. This is particularly useful if you need to
consume the result from another program.

3.4.3 Using DAML Script for Ledger Initialization

You can use DAML script to initialize a ledger on startup. To do so, specify an init-script:
ScriptExample:initializeFixed field in your daml.yaml. This will automatically be picked
up by daml start and used to initialize sandbox. Since it is often useful to create a party with a
specific party identifier during development, you can use the allocatePartyWithHint function
which accepts not only the display name but also a hint for the party identifier. On Sandbox, the hint
will be used directly as the party identifier of the newly allocated party. This allows us to implement
initializeFixed as a small wrapper around the initialize function we defined above:

initializeFixed : Script ()

initializeFixed = do
bank <- allocatePartyWithHint "Bank" (PartyIdHint "Bank")
alice <- allocatePartyWithHint "Alice" (PartyIdHint "Alice")
bob <- allocatePartyWithHint "Bob" (PartyIdHint "Bob")
let parties = LedgerParties{..}
initialize parties

3.4.31 Migrating from Scenarios

Existing scenarios that you used for ledger initialization can be translated to DAML script but there
are a few things to keep in mind:

1. You need to add daml-script to the list of dependencies in your daml . yaml.

2. You need to import the Daml.Script module.

3. Calls to create, exercise, exerciseByKey and createAndExercise need to be suffixed
with Cmd, e.g., createCmd.

4. Instead of specifying a scenario field in your daml.yaml, you need to specify an init-
script field. The initialization script is specified via Module:identifier for both fields.

5. DAML script only supports the commands available on the ledger APl so you cannot call func-
tions like fetch directly. This is intentional. Your initialization scripts should not be able to
create transactions that a ledger client would not be able to create. If you want to call methods
not exposed via the Ledger API, you can create a new template with a single choice and call that
via createAndExercise.

6. You need to replace calls to getParty x by allocatePartyWithHint x (PartyIdHint
X).

3.4. DAML Script 195

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.4.4 Using DAML Script in Distributed Topologies

So far, we have run DAML script against a single participant node. It is also more possible to run
it in a setting where different parties are hosted on different participant nodes. To do so, pass the
-—-participant-config participants.json filetodaml script instead of --ledger-host
and ledger-port. The file should be of the format

{

"default participant”: {"host": "localhost", "port": 6866},
"participants": {
"one": {"host": "localhost", "port": 6865}
} 14
"party participants": {"alice": "one"}

This will define a participant called one, a default participant and it defines that the party aliceis
on participant one. Whenever you submit something as party, we will use the participant for that
party or if none is specified default participant. If default participant is not specified,
using a party with an unspecified participant is an error.

allocateParty will alsousethedefault participant. If you wantto allocate a party on a spe-
cific participant, you can use allocatePartyOn which accepts the participant name as an extra
argument.

3.4.5 Running DAML Script against the HTTP JSON API

In some cases, you only have access to the HTTP JSON APl but not to the gRPC of a ledger, e.g., on
project:DABL. For this usecase, DAML script can be run against the JSON API. Note that if you do have
access to the gRPC API, running DAML script against the JSON API does not have any advantages.

To run DAML script against the JSON API you have to pass the --json-api parameter to daml
script. There are a few differences and limitations compared to running DAML Script against the
gRPC API:

1. When running against the JSON API, the —--host argument has to contain an http://
or https:// prefix, eg, daml script --host http://localhost --port 7575 --
json-api.

2. The JSON API only supports single-command submissions. This means that within a single
call to submit you can only execute one ledger APl command, e.g., one createCmd or one
exerciseCmd.

3. The JSON APl requires an authentication token even when itis run against an unauthenticated
ledger. The authentication token must be a JWT token so the —~access-token-file passed
todaml script should contain the actual JWT token.

4. The token must contain exactly one party in actAs and/or readAs. This party will be used for
submit and query. Passing a party as the argument to submit and query that is different
from the party in the token is an error.

5. Since DAML Script only accepts a single token and the party is inferred from the token, this
means that you can only use a single party within a DAML script when running against the
JSON API.

196 Chapter 3. Building applications

https://projectdabl.com

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.5 Upgrading and extending DAML applications

3.5.1 Automating the Upgrade Process

In this section, we are going to automate the upgrade of our coin process using DAML Script and
DAML Triggers. Note that automation for upgrades is specific to an individual application, just like
the upgrade models. Nevertheless, we have found that the pattern shown here occurs frequently.

3.5.1.1 Structuring the Upgrade
There are three kinds of actions performed during the upgrade:

1. Alice creates UpgradeCoinProposal contracts. We assume here, that Alice wants to upgrade
all Coin contracts she has issued. Since the UpgradeCoinProposal proposal is specific to
each owner, Alice has tocreateone UpgradeCoinProposal perowner. There can be potentially
many owners but this step only has to be performed once assuming Alice will not issue more
Coin contracts after this point.

2. Bob and other owners accept the UpgradeCoinProposal. To keep this example simple, we
assume that there are only coins issued by Alice. Therefore, each owner has to accept at most
one proposal.

3. As owners accept upgrade proposals, Alice has to upgrade each coin. This means that she has
to execute the upgrade choice once for each coin. Owners will not all accept the upgrade at the
same time and some might never accept it. Therefore, this should be a long-running process
that upgrades all coins of a given owner as soon as they accept the upgrade.

Given those constraints, we are going to use the following tools for the upgrade:

1. ADAML script that will be executed once by Alice and creates an UpgradeCoinProposal con-
tract for each owner.

2. Navigator to acceptthe UpgradeCoinProposal as Bob. While we could also use a DAML script
toacceptthe proposal, this step will often be exposed as part of aweb Ul so doing itinteractively
in Navigator resembles that workflow more closely.

3. Along-running DAML trigger that upgrades all Coin contracts for which there is a correspond-
ing UpgradeCoinAgreement.

3.5.1.2 Implementation of the DAML Script

In our DAML Script, we are first going to query the ACS (Active Contract Set) to find all Coin contracts
issued by us. Next, we are going to extract the owner of each of those contracts and remove any
duplicates coming from multiple coins issued to the same owner. Finally, we iterate over the owners
and create an UpgradeCoinAgreement contract for each owner.

initiateUpgrade : Party -> Script ()
initiateUpgrade issuer = do
coins <- query (@Coin issuer
let myCoins = filter (\(_cid, c) =-> c.lssuer == 1issuer) coilns
let owners = dedup $ map (\(cid, c¢) -> c.owner) myCoins
forA owners $ \owner -> do
debug ("Creating upgrade proposal for: " <> show owner)
submit issuer $ createCmd (UpgradeCoinProposal issuer owner)

3.5. Upgrading and extending DAML applications 197

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.51.3 Implementation of the DAML Trigger

Our trigger does not need any custom user state and no heartbeat so the only interesting field in its
definition is the rule.

upgradeTrigger : Trigger ()

upgradeTrigger = Trigger with
initialize = _acs -> ()
updateState = _acs ~msg () => ()

registeredTemplates = AllInDar
heartbeat = None
rule = triggerRule

In our rule, we first filter out all agreements and coins issued by us. Next, we iterate over all agree-
ments. For each agreement we filter the coins by the owner of the agreement and finally upgrade the
coin by exercising the Upgrade choice. We mark the coin as pending which temporarily removes it
from the ACS and therefore stops the trigger from trying to upgrade the same coin multiple times if
the rule is triggered in quick succession.

triggerRule : Party -> ACS -> Time -> Map CommandId [Command] -> () ->
—TriggerA ()
triggerRule issuer acs _ _ _ = do
let agreements =
filter (\(_cid, agreement) -> agreement.issuer == issuer) $

getContracts (@UpgradeCoinAgreement acs

let allCoins =
filter (\(_cid, coin) -> coin.issuer == issuer) $
getContracts @Coin acs

forA agreements $ \ (agreementCid, agreement) -> do

let coinsForOwner = filter (\(_cid, coin) -> coin.owner == agreement.
—owner) allCoins
forA coinsForOwner § \ (coinCid,) >
emitCommands

[exerciseCmd agreementCid (Upgrade coinCid)]
[toAnyContractId coinCid]

The trigger is a long-running process and the rule will be executed whenever the state of the ledger
changes. So whenever an owner accepts an upgrade proposal, the trigger will run the rule and up-
grade all coins of that owner.

3.5.1.4 Deploying and Executing the Upgrade

Now that we defined our DAML script and our trigger, it is time to use them! If you still have Sandbox
running from the previous section, stop it to clear out all data before continuing.

First, we start sandbox passing in the coin-upgrade DAR. Since a DAR includes all transitive de-
pendencies, this includes coin-1.0.0 and coin-2.0.0.

$ cd example/coin-upgrade
$ daml sandbox .daml/dist/coin-upgrade-1.0.0.dar

To simplify the setup here, we use a DAML script to create 3 parties Alice, Bob and Charlie and two
Coin contracts issues by Alice, one owned by Bob and one owned by Charlie.

198 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

setup : Script ()

setup = do
alice <- allocatePartyWithHint "Alice" (PartyIdHint "Alice")
bob <- allocatePartyWithHint "Bob" (PartyIdHint "Bob'")
charlie <- allocatePartyWithHint "Charlie" (PartyIdHint "Charlie™)
bobProposal <- submit alice $ createCmd (CoinProposal alice bob)
submit bob $ exerciseCmd bobProposal CoinProposal Accept
charlieProposal <- submit alice $ createCmd (CoinProposal alice charlie)
submit charlie $ exerciseCmd charlieProposal CoinProposal Accept
pure ()

Run the script as follows:

$ cd example/coin-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/coin-initiate-upgrade-1.0.0.dar --script-
—name=InitiateUpgrade:setup --ledger-host=localhost --ledger-port=6865 --
—wall-clock-time

If you now start Navigator from the coin-initiate-upgrade directory and log in as Alice, you can
see the two Coin contracts.

Next, we run the trigger for Alice. The trigger will keep running throughout the rest of this example.

$ cd example/coin-upgrade-trigger

$ daml build

$ daml trigger --dar=.daml/dist/coin-upgrade-trigger-1.0.0.dar --trigger-
—name=UpgradeTrigger:upgradeTrigger --ledger-host=localhost --ledger-
—port=6865 --ledger-party=Alice --wall-clock-time

With the trigger running, we can now run the script to create the UpgradeCoinProposal contracts
(we could also have done that before starting the trigger). The script takes an argument of type
Party. We can pass this in via the ——input-file argument which we will point to a file party.
json containing "Alice". This allows us to change the party without having to change the code of
the script.

$ cd example/coin-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/coin-initiate-upgrade-1.0.0.dar --script-
—name=InitiateUpgrade:initiateUpgrade --ledger-host=localhost --ledger-
—port=6865 —--wall-clock-time --input-file=party.json

At this point, our trigger is running and the UpgradeCoinProposal contracts for Bob and Charlie
have been created. What is left to do is to accept the proposals. Our trigger will then automatically
pick them up and upgrade the Coin contracts.

First, start Navigator and log in as Bob. Click on the UpgradeCoinProposal and accept it. If you
now go back to the contracts tab, you can see that the Coin contract has been archived and instead
there is a new CoinWithAmount upgrade. Our trigger has successfully upgraded the Coin!

Next, log in as Charlie and accept the UpgradeCoinProposal. Just like for Bob, you can see that
the Coin contract has been archived and instead there is a new CoinWithAmount contract.

3.5. Upgrading and extending DAML applications 199

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Since we upgraded all Coin contracts issued by Alice, we can now stop the trigger and declare the
update successful.

Note: Cross-SDK upgrades require DAML-LF 1.8 or newer. This is the default starting from SDK 1.0. For
older releases add build-options: ["--target=1.8"] to your daml.yaml to select DAML-LF
1.8.

In applications backed by a centralized database controlled by a single operator, it is possible to
upgrade an application in a single step that migrates all existing data to a new data model.

However, in a DAML application running on a distributed ledger, the signatories of a contract have
agreed to one specific version of a template. Changing the definition of a template, e.g., by extend-
ing it with a new choice without agreement from signatories of contracts of that template would
completely break the authorization guarantees provided by DAML.

Therefore, DAML takes a different approach to upgrades and extensions. Rather than having a sep-
arate concept of data migration that sidesteps the fundamental guarantees provided by DAML, up-
grades are expressed as DAML contracts. This means that the same guarantees and rules that apply to
other DAML contracts also apply to upgrades.

In a DAML application, it therefore makes sense to think of upgrades as an extension of an existing
application instead of an operation that replaces exiting contracts with a newer version of those con-
tracts. The existing templates stay on the ledger and can still be used. Contracts of existing tem-
plates are not automatically replaced by newer versions. However, the application is extended with
new templates and if all signatories of a contract agree, a choice can archive the old version of a
contract and create a new contract instead.

3.5.2 Structuring upgrade contracts

Upgrade contracts are specific tothe templates that are being upgraded. However, there are common
patterns between most of them. We use the example of a simple Coin template as an example here.
We have some prescience that there will be future versions of Coin, and so place the definition of
Coininamodule named CoinVv1l

module CoinV1l where

template Coin

with
issuer : Party
owner : Party
where

signatory issuer, owner

A Coin has an issuer and an owner and both are signatories. Our goal is to extend this Coin template
with a field that represents the number of coins to avoid needing 1000 contracts to represent 1000
coins. (In a real application, you would also want choices for merging and splitting such a Coin. For
the sake of simplicity, we omit those here.) We use a different name for the new template here. This
is not required as templates are identified by the triple (Packageld, ModuleName, TemplateName)

module CoinV2 where

template CoinWithAmount
with
issuer : Party

(continues on next page)

200 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

owner : Party
amount : Int
where

signatory issuer, owner

Next, we need to provide a way for the signatories, issuer and owner, to agree to a contract being
upgraded. It would be possible to structure this such that issuer and owner have to agree to an
upgrade for each individual Coin contract separately. However, since the template definition for all of
them is the same, this is usually not necessary for most applications. Instead, we collect agreement
from the signatories only once and use that to upgrade all coins. Since there are multiple signatories
involved here, we use a Propose-Accept workflow. First, we define an UpgradeCoinProposal template that
will be created by the issuer. This template has an Accept choice that the owner can exercise which
will then create an UpgradeCoinAgreement.

template UpgradeCoinProposal

with
issuer : Party
owner : Party
where

signatory issuer

observer owner

key (issuer, owner) : (Party, Party)

maintainer key. 1

choice Accept : ContractId UpgradeCoinAgreement
controller owner
do create UpgradeCoinAgreement with

Now we can define the UpgradeCoinAgreement template. This template has one nonconsuming choice
that takes the contract ID of a Coin contract, archives this Coin contract and creates a CoinWithAmount
contract with the same issuer and owner and the amount setto 1.

template UpgradeCoinAgreement

with
issuer : Party
owner : Party
where
signatory issuer, owner
key (issuer, owner) : (Party, Party)

maintainer key. 1
nonconsuming choice Upgrade : ContractId CoinWithAmount
with
coinId : ContractId Coin
controller issuer
do coin <- fetch coinId
assert (coin.issuer == issuer)
assert (coin.owner == ownher)
archive coinId
create CoinWithAmount with
issuer = coin.issuer
owner = coin.owner

(continues on next page)

3.5. Upgrading and extending DAML applications 201

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

amount = 1

3.5.3 Building and deploying coin-1.0.0

Let’s see everything in action by first building and deploying coin-1.0.0. After this we’ll see how
to deploy and upgrade to coin-2.0.0 containing the CoinWithAmount template.

First we’ll need a sandbox ledger to which we can deploy.

$ daml sandbox --port 6865

Now we’ll setup the project for the original version of our coin. The project contains the DAML for just
the Coin template, along with a CoinProposal template which will allow us to issue some coins in
the example below.

Here is the project config.

name: coin
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy coin-1.0.0 of our Coin.

$ cd example/coin-1.0.0
$ daml build
$ daml ledger upload-dar --port 6865

3.5.4 Create some coin-1.0.0 coins
Let’s create some coins!

we’ll use the navigator to connect to the ledger, and create two coins issued by Alice, and owned by
Bob.

$ cd example/coin-1.0.0
$ daml navigator server localhost 6865

We point a browser to http://localhost: 4000, and follow the steps:

1. Login as Alice:
1. Select Templates tab.
2. Create a CoinProposal with Alice as issuer and Bob as owner.
3. Create a 2nd proposal in the same way.
2. Login as Bob:
1. Exercise the CoinProposal_Accept choice on both proposal contracts.

3.5.5 Building and deploying coin-2.0.0

Now we setup the project for the improved coins containing the amount field. This project contains
only the CoinWithAmount template. The upgrade templates are in a third coin-upgrade package.
While it would be possible to include the upgrade templates in the same package, this means that

202 Chapter 3. Building applications

http://localhost:4000

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

the package containing the new CoinWithAmount template depends on the previous version. With
the approach taken here of keeping the upgrade templates in a separate package, the coin-1.0.0
package is no longer needed once we have upgraded all coins.

It’s worth stressing here that extensions always need to go into separate packages. We cannot just
add the new definitions to the original project, rebuild and re-deploy. This is because the crypto-
graphically computed package identifier would change, and would not match the package identifier
of the original Coin contracts from coin-1.0.0 which are live on the ledger.

Here is the new project config:

name: coin
version: 2.0.0
dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy coin-2.0.0 of our Coin.

$ cd example/coin-2.0.0
$ daml build
$ daml ledger upload-dar --port 6865

3.5.6 Building and deploying coin-upgrade

Having built and deployed coin-1.0.0 and coin-2.0.0 we are now ready to build the upgrade
package coin-upgrade. The project config references both coin-1.0.0 and coin-2.0.0 via the
data-dependencies field. This allows us to import modules from the respective packages which
allows us to reference templates from packages that we already uploaded to the ledger.

When following this example,path/to/coin-1.0.0.darandpath/to/coin-2.0.0.dar should
be replaced by the relative or absolute path to the DAR file created by building the respective projects.
Commonly the coin-1.0.0 and coin-2.0.0 projects would be sibling directories in the file sys-
tems, so this path would be: . ./coin-1.0.0/.daml/dist/coin-1.0.0.dar.

name: coin-upgrade
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib
data-dependencies:

- path/to/coin-1.0.0.dar

- path/to/coin-2.0.0.dar

The DAML for the upgrade contacts imports the modules for both the new and old coin versions.

module UpgradeFromCoinV1l where
import CoinV2
import CoinV1l

Now we can build and deploy coin-upgrade. Note that uploading a DAR also uploads its depen-
dencies so if coin-1.0.0 and coin-2.0.0 had not already been deployed before, they would be
deployed as part of deploying coin-upgrade.

3.5. Upgrading and extending DAML applications 203

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

$ cd example/coin-upgrade
$ daml build
$ daml ledger upload-dar --port 6865

3.5.7 Upgrade existing coins from coin-1.0.0 to coin-2.0.0

We start the navigator again.

$ cd example/coin-upgrade
$ daml navigator server localhost 6865

Finally, we point a browser to http://localhost:4000 and can effect the coin upgrades:

1. Login as Alice
1. Select Templates tab.
2. Create an UpgradeCoinProposal with Alice as issuer and Bob as owner.
2. Login as Bob
1. Exercise the Accept choice of the upgrade proposal, creating an
UpgradeCoinAgreement.
3. Login again as Alice
1. Use the UpgradeCoinAgreement repeatedly to upgrade any coin for which Alice is
issuer and Bob is owner.

3.5.8 Further Steps

For the upgrade of our coin model above, we performed all steps manually via Navigator. However, if
Alice had issued millions of coins, performing all upgrading steps manually becomes infeasible. It
thus becomes necessary to automate these steps. We will go through a potential implementation of
an automated upgrade in the next section.

3.6 Authentication

When developing DAML applications using SDK tools, your local setup will most likely not use any
authentication - by default, any valid ledger APl request will be accepted by the sandbox.

To run your application against a deployed ledger, you will need to add authentication.

3.6.1 Introduction

The Ledger APl is used to request changes to the ledger (e.g., Alice wants to exercise choice X on contract
Y), or to read data from the ledger (e.g., Alice wants to see all active contracts).

What requests are valid is defined by integrity and privacy parts the DAML Ledger Model. This model is
defined in terms of DAML parties, and does not require any cryptographic information to be sent along
with requests.

In particular, this model does not talk about authentication (Is the request claiming to come from Alice
really sent by Alice?) and authorization (Is Alice authorized to add a new DAML package to the ledger?).

In practice, DAML ledgers will therefore need to add authentication to the ledger API.

Note: Depending on the ledger topology, a DAML ledger may consist of multiple participant nodes,
each having its own ledger APl server. Each participant node typically hosts different DAML parties,

204 Chapter 3. Building applications

http://localhost:4000

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

and only sees data visible to the parties hosted on that node (as defined by the DAML privacy model).

For more details on DAML ledger topologies, refer to the DAML Ledger Topologies documentation.

3.6.1.1 Adding authentication

How authentication is set up on a particular ledger is defined by the ledger operator. However, most
authentication setups share the following pattern:

First, the DAML application contacts a token issuer to get an access token. The token issuer verifies
the identity of the requesting user (e.g., by checking the username/password credentials sent with
the request), looks up the privileges of the user, and generates a signed access token describing
those privileges.

Then, the DAML application sends the access token along with each ledger API request. The DAML
ledger verifies the signature of the token (to make sure it has not been tampered with), and then
checks that the privileges described in the token authorize the given ledger API request.

DAML application Token issuer DAML ledger

Request token [credentials] —— Check authentication
[token] Generate token

[API request + token]

Y

[API result]

Glossary:

Authentication is the process of confirming an identity.

Authorization is the process of checking permissions to access a resource.

Atoken(oraccess token)isatamper-proof piece of datathatcontains security information,

such as the user identity or its privileges.

A token issuer is aservice that generates tokens. Also known as authentication server or
Identity and Access Management (IAM) system .

3.6. Authentication 205

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.6.2 Access tokens and claims

Access tokens contain information about the capabilities held by the bearer of the token. This infor-
mation is represented by a claim to a given capability.

The claims can express the following capabilities:

public: ability to retrieve publicly available information, such as the ledger identity
admin: ability to interact with admin-level services, such as package uploading and user allo-

cation

canReadAs (p): ability to read information off the ledger (like the active contracts) visible to

the party p

canActsAs (p): same as canReadAs (p), with the added ability of issuing commands on be-

half of the party p

The following table summarizes what kind of claim is required to access each Ledger APl endpoint:

Ledger API service

Endpoint

Required claim

LedgerldentityService GetlLedgerldentity public
ActiveContractsService GetActiveContracts for each requested party p: can-
ReadAs(p)
CommandSubmissionSer- Submit for submitting party p: canActAs(p)
vice CompletionEnd public
CompletionStream for each requested party p: can-
ReadAs(p)

CommandService

All

for submitting party p: canActAs(p)

LedgerConfigurationService

GetledgerConfigura-
tion

public

PackageService All public
PackageManagementSer- All admin
vice
PartyManagementService All admin
ResetService All admin
TimeService GetTime public
SetTime admin
TransactionService LedgerEnd public
All (except LedgerEnd) | for each requested party p: can-
ReadAs(p)

Access tokens may be represented differently based on the ledger implementation.

To learn how these claims are represented in the Sandbox, read the sandbox documentation.

3.6.3 Getting access tokens

To learn how to receive access tokens for a deployed ledger, contact your ledger operator. This may be
amanual exchange over a secure channel, or your application may have to request tokens at runtime
using an APl such as OAuth.

To learn how to generate access tokens for the Sandbox, read the sandbox documentation.

206 Chapter 3. Building applications

https://oauth.net/2/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.6.4 Using access tokens

To learn how to use access tokens in the Scala bindings, read the Scala bindings authentication docu-
mentation.

3.7 The Ledger API

3.7.1 The Ledger API services

The Ledger APl is structured as a set of services. The core services are implemented using grRPC and
Protobuf, but most applications access this APl through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way
you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

3.7.1.1 Overview
The APl is structured as two separate data streams:

A stream of commands TO the ledger that allow an application to submit transactions and
change state.

A stream of transactions and corresponding events FROM the ledger that indicate all state
changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events
are the only mechanism to read those changes.

Foran application, the mostimportant consequence of these architectural decisions and implemen-
tation is that the ledger API is asynchronous. This means:

The outcome of commands is only known some time after they are submitted.

The application must deal with successful and erroneous command completions separately
from command submission.

Ledger state changes are indicated by events received asynchronously from the command sub-
missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding
the consequences of the APl characteristics is important for a successful application design.

For more help understanding these issues so you can build correct, performant and maintainable
applications, read the application architecture guide.

Glossary

The ledgeris a list of transactions. The transaction service returns these
Atransactionisatreeofactions,alsocalled events,which are of type create, exercise
or archive. The transaction service can return the whole tree, or a flattened list.

A submission is a proposed transaction, consisting of a list of commands, which correspond
to the top-level actions in that transaction.

A completion indicates the success or failure of a submission.

3.7.1.2 Submitting commands to the ledger

3.7. The Ledger API 207

https://grpc.io/
https://developers.google.com/protocol-buffers/

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Command submission service

Use the command submission service to submit commands to the ledger. Commands either create
a new contract instance, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the
command, and has either accepted or rejected it. This does not mean the command has been exe-
cuted, only that the server has looked at the command and decided that its format is acceptable, or
has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described
below. The completion status of the command is reported via the command completion service. Your
application should receive completions, correlate them with command submission, and handle er-
rors and failed commands. Alternatively, you can use the command service, which conveniently wraps
the command submission and completion services.

Commands can be labeled with two application-specific IDs, both of which are returned in comple-
tion events:

A commandld, returned to the submitting application only. It is generally used to implement
this correlation between commands and completions.

A workflowld, returned as part of the resulting transaction to all applications receiving it. It can
be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command deduplication

The command submission service deduplicates submitted commands based on the submitting
party and command ID:

Applications can provide a deduplication time for each command. If this parameter is not set,
the default maximum deduplication time is used.

A command submission is considered a duplicate submission if the ledger server receives the
command within the deduplication time of a previous command with the same command ID
from the same submitting party.

Duplicate command submissions will be ignored until either the deduplication time of the orig-
inal command has elapsed or the original submission was rejected (i.e. the command failed
and resulted in a rejected transaction), whichever comes first.

Command deduplication is only guaranteed to work if all commands are submitted to the same
participant. Ledgers are free to perform additional command deduplication across partici-
pants. Consult the respective ledger's manual for more details.

A command submission will return:

- The result of the submission (Empty or a gRPC error), if the command was submitted out-
side of the deduplication time of a previous command with the same command ID on the
same participant.

- The status error ALREADY EXISTS, if the command was discarded by the ledger server
because it was sent within the deduplication time of a previous command with the same
command ID.

If the ledger provides additional command deduplication across participants, the initial com-
mand submission might be successful, but ultimately the command can be rejected if the
deduplication check fails on the ledger.

For details on how to use command deduplication, see the Application Architecture Guide.

208 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Command completion service

Use the command completion service to find out the completion status of commands you have
submitted.

Completions contain the commandId of the completed command, and the completion status of the
command. This status indicates failure or success, and your application should use it to update
what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. This
service is similar to the command submission service, but also receives completions and waits until
it knows whether or not the submitted command has completed. It returns the completion status
of the command execution.

You can use either the command or command submission services to submit commands to effect
a ledger change. The command service is useful for simple applications, as it handles a basic form
of coordination between command submission and completion, correlating submissions with com-
pletions, and returning a success or failure status. This allow simple applications to be completely
stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

3.7.1.3 Reading from the ledger

Transaction service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-
actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive
of contracts) that had an effect in that transaction.

Transactions contain a transactionld (assigned by the server), the workflowId, the commandId, and
the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This is
important when starting or restarting and application, and to work in conjunction with the active
contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction trees

TransactionService offers several different subscriptions. The most commonly used is
GetTransactions. If you need more details, you can use GetTransactionTrees instead, which
returns transactions as flattened trees, represented as a map of event IDs to events and a list of root
event IDs.

Verbosity

The service works in a non-verbose mode by default, which means that some identifiers are omitted:

Record IDs

3.7. The Ledger API 209

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Record field labels
Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-

sage GetTransactionsRequest or GetActiveContractsRequest to true.

Active contracts service

Use the active contracts service to obtain a party-specific view of all contracts currently active on
the ledger.

The active contracts service returns the current contract set as a set of created events that would
re-create the state being reported. Each created event has a ledger offset where it occurs. You can
infer the ledger offset of the contract set from the ledger offset of the last event you receive.

This is most important at application start, if the application needs to synchronize its initial state
with a known view of the ledger. Without this service, the only way to do this would be to read the
Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a
large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

3.7.1.4 Utility services

Package service

Use the package service to obtain information about DAML packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in
a more useful way.

For full details, see the proto documentation for the service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-
nected to.

You need to include this identity string when submitting commands. Commands with an incorrect
identity string are rejected.

For full details, see the proto documentation for the service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes maximum and minimum values for the difference in Ledger Effective
Time and Maximum Record Time (see Time Service for details of these).

For full details, see the proto documentation for the service.

210 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.1.5 Testing services

These are only for use for testing with the Sandbox, not for on production ledgers.
Time service

Use the time service to obtain the time as known by the ledger server.

For full details, see the proto documentation for the service.

Reset service

Use the reset service to reset the ledger state, as a quicker alternative to restarting the whole ledger
application.

This resets all state in the ledger, including the ledger ID, so clients will have to re-fetch the ledger ID
from the identity service after hitting this endpoint.

For full details, see the proto documentation for the service.

3.7.1.6 Services diagram

Client Application

Application Servigces Layer

Ledger Services Layer

Command Command . Ledger Ledger
Submission Completion Transa_ctlon Pack,c:nge Identity Configuration
. . Service Service . .
Service Service Service Service
3.7.2 gRPC

If you want to write an application for the ledger API in other languages, you’ll need to use gRPC
directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart
and gRPC tutorials. This documentation is written assuming you already have an understanding of
gRPC.

3.7.2.1 Getting started

You can get the protobufs from a GitHub release, or from the daml repository here.

3.7. The Ledger API 21

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://github.com/https://github.com/digital-asset/daml/releases/download/v1.1.0-snapshot.20200422.3991.0.6391ee9f/protobufs-1.1.0-snapshot.20200422.3991.0.6391ee9f.zip
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.2.2 Protobuf reference documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger AP| Reference.

3.7.2.3 Example project

We have an example project demonstrating the use of the Ledger APl with gRPC. To get the example
project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set up a Maven
project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.
PingPongGrpcMain as the main class.

About the example project

The example shows very simply how two parties can interact via a ledger, using two DAML contract
templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-
tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract
of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the DAML is
reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/
PingPongGrpcMain. java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count O
Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 atl]
—~count 9

The first line shows:

Bob is exercising the RespondPong choice on the contract with ID #1 : 0 for the workflow Ping-
Alice-1.

Count 0 means that this is the first choice after the initial Ping contract.

The workflow ID Ping-Alice-1 conveys thatthis is the workflow triggered by the second initial
Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-
ferent participant nodes. However, if you have multiple parties registered on the same node, or are
running an application against the Sandbox, you can subscribe to transactions for multiple par-
ties in a single subscription by putting multiple entries into the filters by party field of the
TransactionFilter message. Subscribing to transactions for an unknown party will result in an
error.

212 Chapter 3. Building applications

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.2.4 DAML types and protobuf

For information on how DAML types and contracts are represented by the Ledger APl as protobuf
messages, see How DAML types are translated to protobuf.

3.7.2.5 Error handling
Tor the standard error codes that the server or the client might return, see the gRPC documentation.
For submitted commands, there are these response codes:

ABORTED The platform failed to record the result of the command due to a transient server-side
error or a time constraint violation. You can retry the submission. In case of a time constraint
violation, please refer to the section Dealing with time on how to handle commands with long
processing times.

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely
reject resubmissions of the same command.

OK, INTERNAL, UNKNOWN (when returned by the Command Submission Service) Assume that
the command was accepted, and wait for the resulting completion or a timeout from the
Command Completion Service.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) Resubmit the command with
the same command__id.

3.7.3 Ledger API Reference
3.7.31 com/daml/ledger/api/vi/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label | Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Required
. Transaction- Templates to include in the served snapshot, per party. Re-
filter Filter quired
bool Ifenabled, values served over the APl will contain more infor-
verbose mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels for record fields. Optional
TraceContext Server side tracing will be registered as a child of the sub-
trace_con- : P . . .
toxt mitted context. This field is a future extension point and is
currently not supported. Optional

3.7. The Ledger API

213

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GetActiveContractsResponse

Field Type Label Description
string Included in the last message. The client should start
offset consuming the transactions endpoint with this offset.
The format of this field is described in ledger offset.
proto. Required
string The workflow that created the contracts. Must be a valid
:‘Allgvrvk-id LedgerString (as described in value.proto). Optional
ac- CreatedE- repeated | Thelistof contracts that were introduced by the workflow
tive con- vent with workflow id atthe offset. Must be a valid Ledger-
tracts String (as described in value.proto). Optional
trace con- TraceContext Zipkjn trace context. This field isafgture extension point
text - and is currently not supported. Optional

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without reading
through all transactions that were committed since the ledger’s creation.

Method Request Response | Description

name type type

GetActive- GetActive- GetActive- Returns a stream of the latest snapshot of active con-

Contracts ContractsRe- | ContractsRe- | tracts. If there are no active contracts, the stream re-
quest sponse turns a single GetActiveContractsResponse message

with the offset at which the snapshot has been taken.
Clients SHOULD use the offset in the last GetActive-
ContractsResponse message to continue streaming
transactions with the transaction service. Clients
SHOULD NOT assume that the set of active contracts
they receive reflects the state at the ledger end.

3.7.3.2 com/daml/ledger/api/Vl//admin/config_management_service.proto

GetTimeModelRequest

GetTimeModelResponse

Field Type Label | Description
. int64 The current configuration generation. The generation is a
configura- . . R .
i monotonically increasing integer that is incremented on each
|§n_gener change. Used when setting the time model.
ation
. TimeModel The current ledger time model.
time_model

214

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

SetTimeModelRequest

Field Type Label | Description
bmi string Submission identifier used for tracking the request and to
submis reject duplicate submissions. Required.
sion_.id
. google.pro- Deadline for the configuration change after which the
maxi q ttQ- change is rejected.
mum_record_time
tamp
fi int64 The current configuration generation which we’re submit-
con '‘gura ting the change against. This is used to perform a compare-
tion_gener- . . .
] and-swap of the configuration to safeguard against concur-
ation e L .
rent modifications. Required.
_ TimeModel The new time model that replaces the current one. Required.
new_time_model
SetTimeModelResponse
Field Type | Label | Description
. . int64 The configuration generation of the committed time
configuration_genera-
. model.
tion
TimeModel
Field Type Label | Description
ave trans- google.pro- The expected average latency of a transaction, i.e, the aver-
aci:{ign la- tobuf.Dura- age time from submitting the transaction to a [[WriteSer-
tency tion vice]l and the transaction being assigned a record time. Re-
y quired.
. K google.pro- The minimimum skew between ledger time and record time:
min_skew tobuf.Dura- [t_TX >= rt_TX - minSkew Required.
tion
K google.pro- The maximum skew between ledger time and record time:
Max_sSKeW | tobuf.Dura- [t_TX <= rt_TX + maxSkew Required.
tion

ConfigManagementService

Ledger configuration management service provides methods for the ledger administrator to change
the current ledger configuration. The services provides methods to modify different aspects of the

configuration.

3.7. The Ledger API

215

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Method Request Response | Description

name type type

GetTimeM- | GetTimeMo- | GetTimeMo- | Return the currently active time model and the cur-
odel delRequest delResponse | rent configuration generation.

SetTimeM- | SetTimeMod- | SetTimeMod- | Set the ledger time model. In case of failure this
odel elRequest elResponse method responds with: - INVALID_ARGUMENT if argu-

ments are invalid, or the provided configuration gen-
eration does not match the current active configu-
ration generation. The caller is expected to retry by
again fetching current time model using ‘GetTimeMo-
del’, applying changes and resubmitting. - ABORTED
if the request is rejected or times out. Note that a
timed out request may have still been committed to
the ledger. Application should re-query the current
time model before retrying. - UNIMPLEMENTED if this
method is not supported by the backing ledger.

3.7.3.3 com/daml/ledger/api/Vl//admin/package_management_service.proto

ListKknownPackagesRequest

ListKknownPackagesResponse

Field Type Label Description
K PackageDe- repeated | The details of all DAML-LF packages known to backing
pac) tails participant. Required
age_details
PackageDetails
Field Type Label | Description
string The identity of the DAML-LF package. Must be a valid Pack-
pack- . S .
age._id ageldString (as describe in value.proto). Required
K uint64 Size of the package in bytes. The size of the package is given
pack= by the size of the daml 1f ArchivePayload. See further de-
age_size tailsindaml 1f.proto. Required
le.pro- Indicat i hen th k is k to the backi
known._since google.pro ndicates since when the pac age is known to the backing
to- participant. Required
buf.Times-
tamp
string Description provided by the backing participant describing
source_de- . -
- where it got the package from. Optional
scription
216 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

UploadDarFileRequest

Field Type | Label | Description
dar_fil bytes Contains a DAML archive DAR file, which in turn is a jar like zipped
ar_tie container for daml 1f archives. See further details in daml 1f.
proto. Required
. string Unique submission identifier. Optional, defaults to arandom iden-
submis- o
. . tifier.
sion_id

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Query the DAML-LF packages supported by the ledger participant and upload DAR files. We use ‘back-
ing participant’ to refer to this specific participant in the methods of this API. When the participant
is run in mode requiring authentication, all the calls in this interface will respond with UNAUTHENTI-
CATED, if the caller fails to provide a valid access token, and will respond with PERMISSION_DENIED,
if the claims in the token are insufficient to perform a given operation. Subsequently, only specific
errors of individual calls not related to authorization will be described.

Method Request Response | Description

name type type

Listknown- | ListKnown- ListKnown- Returns the details of all DAML-LF packages known to

Packages PackagesRe- | PackagesRe- | the backing participant. This request will always suc-
quest sponse ceed.

Upload- Upload- Upload- Upload a DAR file to the backing participant. De-

DarFile DarfFil- DarFileRe- pending on the ledger implementation this mightalso
eRequest sponse make the package available on the whole ledger. This

call might not be supported by some ledger imple-
mentations. Canton could be an example, where up-
loading a DAR is not sufficient to render it usable,
it must be activated first. This call may: - Succeed,
if the package was successfully uploaded, or if the
same package was already uploaded before. - Re-
spond with UNIMPLEMENTED, if DAR package upload-
ing is not supported by the backing participant. - Re-
spond with INVALID_ARGUMENT, if the DAR file is too
big or malformed. The maximum supported size is
implementation specific.

3.7.3.4 com/daml/ledger/api/Vl/admin/party_management_service.proto

3.7. The Ledger API

217

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

AllocatePartyRequest

Field Type | Label | Description

string A hint to the backing participant which party ID to allocate. It can
be ignored. Must be a valid PartyldString (as described in value.
proto). Optional

~+

party_id_hin

string Human-readable name of the party to be added to the participant.

dis- It doesn’t have to be unique. Optional

play_name

AllocatePartyResponse

Field Type Label | Description
PartyDetails

party_details

GetParticipantldRequest

GetParticipantldResponse

Field Type | Label | Description
tici- string Identifier of the participant, which SHOULD be globally unique.
E::mtlmid Must be a valid LedgerString (as describe in value.proto).

GetPartiesRequest

Field Type | Label Description
string | repeated | The stable, unique identifier of the DAML parties. Must be valid Par-
tyldStrings (as described in value.proto). Required

parties

GetPartiesResponse

Field Type Label Description

PartyDetails | repeated | The details of the requested DAML parties by the partici-
party_de- K h detail be in th
tails pant, if known. The party details may not be in the same

order as requested. Required

ListKknownPartiesRequest

ListKknownPartiesResponse

Field Type Label Description

PartyDetails | repeated | The details of all DAML parties hosted by the participant.
party_de- Required
tails equire

218 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

PartyDetails

Field Type | Label | Description

party string The stable unique identifier of a DAML party. Must be a valid Par-
tyldString (as described in value.proto). Required

dis- string Human readable name associated with the party. Caution, it might
not be unique. Optional

play_name

s local bool true if party is hosted by the backing participant. Required

PartyManagementService

Inspect the party management state of a ledger participant and modify the parts that are modifiable.
We use ‘backing participant’ to refer to this specific participant in the methods of this API. When the
participant is run in mode requiring authentication, all the calls in this interface will respond with
UNAUTHENTICATED, if the caller fails to provide a valid access token, and will respond with PERMIS-
SION_DENIED, if the claims in the token are insufficient to perform a given operation. Subsequently,
only specific errors of individual calls not related to authorization will be described.

3.7. The Ledger API 219

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Method Request Response | Description
name type type
GetPartici- GetPar- GetPar- Return the identifier of the backing participant. All
pantid ticipan- ticipan- horizontally scaled replicas should return the same
tldRequest tldResponse | id. This method is expected to succeed provided the
backing participant is healthy, otherwise it responds
with INTERNAL grpc error. daml-on-sql: returns an
identifier supplied on command line at launch time
daml-on-kv-ledger: as above canton: returns globally
unique identifier of the backing participant
GetParties GetParties- GetParties- Get the party details of the given parties. Only known
Request Response parties will be returned in the list. This request will
always succeed.
Listknown- | ListKnown- Listknown- List the parties known by the backing participant. The
Parties PartiesRe- PartiesRe- list returned contains parties whose ledger access is
quest sponse facilitated by backing participant and the ones main-
tained elsewhere. This request will always succeed.
Allo- AllocatePar- | AllocatePar- | Adds a new party to the set managed by the backing
cateParty tyRequest tyResponse participant. Caller specifies a party identifier sugges-

tion, the actual identifier allocated might be differ-
ent and is implementation specific. This call may: -
Succeed, in which case the actual allocated identifier
is visible in the response. - Respond with UNIMPLE-
MENTED if synchronous party allocation is not sup-
ported by the backing participant. - Respond with IN-
VALID_ARGUMENT if the provided hint and/or display
name is invalid on the given ledger (see below). daml-
on-sql: suggestion’s uniqueness is checked and call
rejected if the identifier is already present daml-on-
kv-ledger: suggestion’s uniqueness is checked by the
validators in the consensus layer and call rejected if
the identifier is already present. canton: completely
different globally unique identifier is allocated. Be-
hind the scenes calls to an internal protocol are made.
As that protocol is richer than the the surface proto-
col, the arguments take implicit values

3.7.3.5 com/daml/ledger/api/vl/commmand_completion_service.proto

Checkpoint

Checkpoints may be used to:

detect time out of commands.
provide an offset which can be used to restart consumption.

220

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label | Description
. google.pro- All commands with a maximum record time below this
record_time to- value MUST be considered lost if their completion has not
buf.Times- arrived before this checkpoint. Required
tamp
LedgerOffset May be used in a subsequent CompletionStreamRequest to
offset . .)
resume the consumption of this stream at a later time. Re-
quired

CompletionEndRequest

Field Type Label | Description
led id string Must correspond to the ledger ID reported by the Ledger
edger_l Identification Service. Required Must be a valid Ledger-

String (as described in value.proto).

TraceContext Server side tracing will be registered as a child of the sub-
mitted context. This field is a future extension point and is
currently not supported. Optional

trace_con-
text

CompletionEndResponse

Field | Type Label | Description
offset LedgerOffset This offset can be used in a CompletionStreamRequest message.
Required

CompletionStreamRequest

Field Type Label Description
led i string Must correspond to the ledger id reported by the Ledger
edger_l Identification Service. Must be a valid LedgerString (as

described in value.proto). Required
string Only completions of commands submitted with the same

a'ppllga— application_id will be visible in the stream. Must be a
tion_id valid LedgerString (as described in value.proto). Re-
quired
. string repeated | Non-empty list of parties whose data should be included.
parties Must be a valid PartyldString (as described in value.
proto). Required
offset LedgerOffset This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.
Optional, if not set the ledger uses the current ledger end
offset instead.

3.7. The Ledger API 221

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

CompletionStreamResponse

Field Type Label Description
. Checkpoint This checkpoint may be used to restart consumption. The

checkpoint oo . . .
checkpoint is after any completions in this response. Op-
tional

Completion | repeated | If set, one or more completions.
comple-
tions

CommandCompletionService

Allows clients to observe the status of their submissions. Commands may be submitted via the Com-
mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-
tion Service. Commands may fail in 4 distinct manners:

Eal SN AS

INVALID PARAMETER gRPC error on malformed payloads and missing required fields.
Failure communicated in the grRPC error.
Failure communicated in a Completion.

A Checkpointwith record time >commandmrt arrives through the Completion Stream, and

the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the
trace context field. The server will return a child context of the submitted one, (or a new one
if the context was missing) on both the Completion and Transaction streams.

Method Request type Response type Description

name

Completion- CompletionStream- | CompletionStreamRe- | Subscribe to command completion
Stream Request sponse events.

Completio- CompletionEn- CompletionEn- Returns the offset after the latest
nEnd dRequest dResponse completion.

3.7.3.6 com/daml/ledger/api/Vl/command_service.proto

SubmitAndWaitForTransactionldResponse

Field Type | Label | Description

transac- string The id of the transactign that resul'ted from the _subm.itted com-

tion id mand. Must be a valid LedgerString (as described in value.
- proto). Required

SubmitAndWaitForTransactionResponse

Field

Type

Label

Description

transaction

Transaction

The flat transaction that resulted from the submitted com-

mand. Required

222

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

SubmitAndWaitForTransactionTreeResponse

Field

Type

Label

Description

transaction

Transaction-
Tree

The transaction tree that resulted from the submitted com-
mand. Required

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label | Description
Commands The commands to be submitted. Required
commands
trace con- TraceContext Se.rver side tracing wi‘II be. registered as a c.hild of the sut?-
text - mitted context. This field is a future extension point and is
currently not supported. Optional

CommandService

Command Service is able to correlate submitted commands with completion data, identify timeouts,
and return contextual information with each tracking result. This supports the implementation of
stateless clients.

Method Request Response | Description

name type type

Submi- SubmitAnd- | .google.pro- | Submits a single composite command and waits for

tAndWait WaitRequest | to- its result. Returns RESOURCE EXHAUSTED if the num-

buf.Empty ber of in-flight commands reached the maximum (if

a limit is configured). Propagates the gRPC error of
failed submissions including DAML interpretation er-
rors.

Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for

tAndWait- WaitRequest | WaitFor- its result, and returns the transaction id. Returns

ForTransac- Transaction- | RESOURCE EXHAUSTED if the number of in-flight

tionld IdResponse commands reached the maximum (if a limit is con-
figured). Propagates the gRPC error of failed submis-
sions including DAML interpretation errors.

Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for

tAndWait- WaitRequest | WaitFor- its result, and returns the transaction. Returns

ForTransac- Transaction- | RESOURCE EXHAUSTED if the number of in-flight

tion Response commands reached the maximum (if a limit is con-
figured). Propagates the gRPC error of failed submis-
sions including DAML interpretation errors.

Submi- SubmitAnd- | SubmitAnd- | Submits a single composite command, waits for

tAndWait- WaitRequest | WaitFor- its result, and returns the transaction tree. Re-

ForTransac- Transac- turns RESOURCE_EXHAUSTED if the number of in-

tionTree tionTreeRe- flight commands reached the maximum (if a limit is

sponse configured). Propagates the gRPC error of failed sub-

missions including DAML interpretation errors.

3.7. The Ledger API

223

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.3.7 com/daml/ledger/api/vl/command_submission_service.proto

SubmitRequest

The submitted commands will be processed atomically in a single transaction. Moreover, each
Command in commands will be executed in the order specified by the request.

Field Type Label | Description
Commands The commands to be submitted in a single transaction. Re-
commands .
quired
trace con- TraceContext Server side tracing will be registered as a child of the sub-
text - mitted context. This field is a future extension point and is
currently not supported. Optional

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of
their submissions are disclosed by the Command Completion Service. The on-ledger effects of their
submissions are disclosed by the Transaction Service. Commands may fail in 4 distinct manners:

1) INVALID PARAMETER gRPC error on malformed payloads and missing required fields.

2) Failure communicated in the gRPC error.

3) Failure communicated in a Completion.

4) ACheckpointwith record time>commandmrt arrives through the Completion Stream, and
the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that
it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit
commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the
trace context field. The server will return a child context of the submitted one, (or a new one
if the context was missing) on both the Completion and Transaction streams.

Method Request Response type Description

name type

Submit SubmitRequest | .google.proto- Submit a single composite com-
buf.Empty mand.

3.7.3.8 com/daml/ledger/api/N1/commands.proto

Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label | Description
CreateCommand

create

. ExerciseCommand
exercise

. ExerciseByKeyCommand
exerciseByKey

CreateAndExerciseCommand

createAndExercise

224 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Commands

A composite command that groups multiple commands together.

Field

Type

Label

Description

ledger_id

string

Must correspond to the ledger ID reported by the Ledger
Identification Service. Must be a valid LedgerString (as
described in value.proto). Required

work-
flow_id

string

Identifier of the on-ledger workflow that this command
is a part of. Must be a valid LedgerString (as described in
value.proto). Optional

applica-
tion_id

string

Uniquely identifies the application (or its part) that is-
sued the command. This is used in tracing across dif-
ferent components and to let applications subscribe to
theirown submissions only. Must be avalid LedgerString
(as described in value.proto). Required

com-
mand_id

string

Uniquely identified the command. This identifier should
be unique for each new command within an applica-
tion domain, i.e., the triple (application_id, party, com-
mand_id) must be unique. It can be used for matching
the requests with their respective completions. Must be
avalid LedgerString (as described in value.proto). Re-
quired

party

string

Party on whose behalf the command should be executed.
Itisup tothe servertoverifythatthe authorisationcan be
granted and that the connection has been authenticated
for that party. Must be a valid PartyldString (as described
in value.proto). Required

commands

Command

repeated

Individual elements of this atomic command. Must be
non-empty. Required

deduplica-
tion_time

google.pro-
tobuf.Dura-
tion

The length of the time window during which all com-
mands with the same party and command ID will be
deduplicated. Duplicate commands submitted before
the end of this window return an ALREADY_EXISTS error.
Optional

min_ledger_|

oogle pro-
time_abs
to-

buf.Times-
tamp

Lower bound for the ledger time assigned to the resulting
transaction. Note: The ledger time of a transaction is as-
signed as partof command interpretation. Use this prop-
erty if you expect that command interpretation will take
a considerate amount of time, such that by the time the
resulting transaction is sequenced, its assigned ledger
time is not valid anymore. Must not be set at the same
time as min_ledger_time_rel. Optional

min_ledger_|

oogle.pro-
tlto eU'frBE ra-
tion

Same as min_ledger_time_abs, but specified as a du-
ration, starting from the time the command is received
by the server. Must not be set at the same time as
min_ledger_time_abs. Optional

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

3.7. The Ledger API

225

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label | Description
termn- Identifier The template of the contract the client wants to create. Required
plate_id
create ar- Record The argumgnts required for creating a contract from this tem-
" plate. Required
guments
) string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto). Required
, Value The argument for this choice. Required
choice_ar-
gument
CreateCommand

Create a new contract instance based on a template.

Field Type Label | Description
. Identifier The template of contract the client wants to create. Required
template_.id
Record The arguments required for creating a contract from this
create_argu- .
template. Required
ments

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label | Description
term- Identifier The template of contract the client wants to exercise. Required
plate_id
con- Value The key of the contract the client wants to exercise upon. Re-
tract_key quired

_ string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto) Required

_ Value The argument for this choice. Required
choice_ar-
gument

ExerciseCommand

Exercise a choice on an existing contract.

226

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label | Description
termn- Identifier The template of contract the client wants to exercise. Required
plate_id
con- string The ID of the contract the client wants to exercise upon. Must be
tract id a valid LedgerString (as described in value.proto). Required
_ string The name of the choice the client wants to exercise. Must be a
choice valid NameString (as described in value.proto) Required
_ Value The argument for this choice. Required
choice_ar-
gument

3.7.3.9 com/daml/ledger/api/Vl/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.
Field Type Label | Description
com- string The ID of the succeeded or failed command. Must be a valid
mand_id LedgerString (as described in value.proto). Required
status google.rpc.Sta- Identifies the exact type of the error. For example, mal-
tus formed or double spend transactions will result in a
INVALID ARGUMENT status. Transactions with invalid time
time windows (which may be valid at a later date) will result
in an ABORTED error. Optional
transac- string The transaction_id of the transaction that resulted from the
. . command with command_id. Only set for successfully ex-
tion_id . .
ecuted commands. Must be a valid LedgerString (as de-
scribed in value.proto). Optional
trace con- TraceContext The trace context 'submi.tted with the command. This field
text - is a future extension point and is currently not supported.
Optional

3.7.310 com/daml/ledger/api/vl/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

3.7. The Ledger API

227

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label Description
. string The ID of this particular event. Must be a valid LedgerString
event_id .) .
(as described in value.proto). Required
con- string The ID of the archived contract. Must be a valid LedgerString
tract_id (as described in value.proto). Required
term- Identifier The template of the archived contract. Required
plate_id
) string repeated | The parties that are notified of this event. For ArchivedEvent's,
wit- these are the intersection of the stakeholders of the contract in
ness_par question and the parties specified in the ‘TransactionFilter. The
ties stakeholders are the union of the signatories and the ob-
servers of the contract. Each one of its elements must be a
valid PartyldString (as descibed in value.proto). Required
CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

Field Type Label Description
¢ id string The ID of this particular event. Must be a valid Ledger-
event_t String (as described in value.proto). Required
con- string The ID of the created contract. Must be a valid Ledger-
tract_id String (as described in value.proto). Required
tem- Identifier The template of the created contract. Required
plate_id
con- Value The key of the created contract, if defined. Optional
tract_key
Record The arguments that have been used to create the con-
create_ar- .
tract. Required
guments
. string repeated | The parties that are notified of this event. When a Cre-
wit- . . .
atedEvent is returned as part of a transaction tree, this
Eess_par will include all the parties specified in the TransactionFil-
1es ter that are informees of the event. If served as part of a
flat transaction those will be limited to all parties spec-
ified in the TransactionFilter that are stakeholders of the
contract (i.e. either signatories or observers). Required
i) string repeated | The signatories for this contract as specified by the tem-
signatories .
plate. Required
string repeated | The observers for this contract as specified explicitly by
observers ;
the template or implicitly as choice controllers. Required
agree- google.pro- The agreement text of the contract. We use StringValue
ment text to- to properly reflect optionality on the wire for backwards
- buf.String- compatibility. This is necessary since the empty string
Value is an acceptable (and in fact the default) agreement text,
but also the default string in protobuf. This means a
newer client works with an older sandbox seamlessly.
Optional
228 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in
the transaction filter. Each event message type below contains awitness parties field which in-
dicates the subset of the requested parties that can see the event in question. In the flat transaction
stream you’ll only receive events that have witnesses.

Field Type Label | Description
CreatedEvent

created
ArchivedEvent

archived

ExercisedEvent

Records that a choice has been exercised on a target contract.

3.7. The Ledger API

229

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label Description
. string The ID of this particular event. Must be a valid LedgerString
event_id . . .
(as described in value.proto). Required
con- string The ID of the target contract. Must be a valid LedgerString (as
tract_id described in value.proto). Required
term- Identifier The template of the target contract. Required
plate_id
hoi string The choice that’s been exercised on the target contract. Must
choice be a valid NameString (as described in value.proto). Re-
quired
_ Value The argument the choice was made with. Required
choice_ar-
gument
act- string repeated | The parties that made the choice. Each element must be
: . a valid PartyldString (as described in value.proto). Re-
Ing_parties .
quired
. bool If true, the target contract may no longer be exercised. Re-
consuming .
quired
it string repeated | The parties that are notified of this event. The witnesses of an
W exercise node will depend on whether the exercise was con-
ness_par- . ‘ ; he wit th .
ties suming or not. If consuming, the witnesses are the union
of the stakeholders and the actors. If not consuming, the
witnesses are the union of the signatories and the actors.
Note that the actors might not necessarily be observers and
thus signatories. This is the case when the controllers of a
choice are specified using flexible controllers , using the
choice controller syntax, and said controllers are not explic-
itly marked as observers. Each element must be a valid Par-
tyldString (as described in value.proto). Required
. .string repeated | Referencesto furthereventsinthe sametransactionthatap-
child_event_lids . .)
peared as a result of this ExercisedEvent. It contains only
the immediate children of this event, not all members of the
subtree rooted at this node. Each element must be a valid
LedgerString (as described in value.proto). Optional
exer- Value The result of exercising the choice Required
cise_result

3.7.311 com/daml/ledger/api/vl/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type Label | Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Required
TraceContext Server side tracing will be registered as a child of the sub-
trace_con- : PR : . .
toxt mitted context. This field is a future extension point and is
currently not supported. Optional
230 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GetlLedgerConfigurationResponse

Field

Type

Label | Description

ledger_configuration

LedgerConfiguration

The latest ledger configuration.

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label | Description
ded google.pro- The maximum value for the deduplication time param-
rr:gx_ edU™ 1 tobuf.Dura- eter of command submissions (as described in commands.
plica- tion proto). This defines the maximum time window during
tion_time . .
which commands can be deduplicated.

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration.

Method Request Response Description

name type type

Getledger- | Getledger- GetlLedgerCon- | Returns the latest configuration as the first re-
Configura- | Configura- figurationRe- sponse, and publishes configuration updates in
tion tionRequest sponse the same stream.

3.7.3.12 com/daml/ledger/api/vl/ledger_identity_service.proto

GetlLedgerldentityRequest

Field Type Label | Description

trace con- TraceContext Se.rver side tracing wi'II be' registered as a c'hild of the sul?—

text - mitted context. This field is a future extension point and is
currently not supported. Optional

GetlLedgerldentityResponse

Field

Type | Label

Description

ledger_id

string

The ID of the ledger exposed by the server. Requests submitted with
the wrong ledger ID will result in NOT FOUND gRPC errors. Must be a
valid LedgerString (as described in value.proto). Required

LedgerldentityService

Allows clients to verify that the server they are communicating with exposes the ledger they wish to
operate on. Note that every ledger has a unique ID.

3.7. The Ledger API

231

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Method Request Response Description
name type type

GetlLedgerl- | Getledgerlden- | Getledgerlden- | Clients may call this RPC to return the identifier
dentity tityRequest tityResponse of the ledger they are connected to.

3.7.313 com/daml/ledger/api/vl/ledger_offset.proto
LedgerOffset

Describes a specific point on the ledger.

Field Type Label | Description

absolute

string Absolute values are acquired by reading the transactions in
the stream. An offset is an opaque string that can be com-
pared according to lexicographical ordering.

LedgerOff-
set.Ledger-
Boundary

boundary

LedgerOffset.LedgerBoundary

Name Number | Description

LEDGER_BEGIN 0 Refers to the first transaction.

LEDGER_END

1 Refers to the currently last transaction, which is a moving target.

3.7.314 com/daml/ledger/api/Vl/package_service.proto

GetPackageRequest
Field Type Label | Description
led i string Must correspond to the ledger ID reported by the Ledger
edger_! Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

string The ID of the requested package. Must be a valid Packageld-

zgzk-id String (as described in value.proto). Required
trace con- TraceContext Server side tracing will be registered as a child of the sub-
toxt - mitted context. This field is a future extension point and is
currently not supported. Optional
232 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GetPackageResponse
Field Type Label | Description
HashFunc- The hash function we use to calculate the hash. Required

hash_func- | .
R tion
tion

. bytes Contains a daml 1f ArchivePayload. See further details in
archive_pay daml 1f.proto.Required
load - '
hash string The hash of the archive payload, can also used as a

package id. Must be a valid PackageldString (as de-
scribed in value.proto). Required

GetPackageStatusRequest

Field Type Label | Description

string Must correspond to the ledger ID reported by the Ledger
Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Required

string The ID of the requested package. Must be a valid Packageld-

ledger_id

Sggk_id String (as described in value.proto). Required
trace con- TraceContext Server side tracing will be registered as a child of the sub-
text B mitted context. This field is a future extension point and is

currently not supported. Optional

GetPackageStatusResponse

Field Type Label | Description
PackageStatus The status of the package.

package_status

ListPackagesRequest

Field Type Label | Description
ledger_id string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Required

TraceContext Server side tracing will be registered as a child of the sub-
mitted context. This field is a future extension point and is
currently not supported. Optional

trace_con-
text

ListPackagesResponse

Field Type | Label Description

string | repeated | The IDs of all DAML-LF packages supported by the server. Each
element must be a valid PackageldString (as described in
value.proto). Required

pack-
age_ids

3.7. The Ledger API 233

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

HashFunction

Name Number | Description
SHA256 0
PackageStatus
Name Number | Description
UNKNOWN 0 The server is not aware of such a package.
REGISTERED 1 ;’22 server is able to execute DAML commands operating on this pack-

PackageService

Allows clients to query the DAML-LF packages that are supported by the server.

Method Request Response Description

name type type

ListPack- ListPack- ListPackages- | Returns the identifiers of all supported packages.

ages agesRequest | Response

GetPackage | GetPack- GetPack- Returns the contents of a single package, or a
ageRequest ageResponse | NOT FOUND error if the requested package is un-

known.

GetPack- GetPack- GetPack- Returns the status of a single package.

ageStatus ageStatusRe- | ageStatusRe-
quest sponse

3.7.315 com/daml/ledger/api/vi/testing/reset_service.proto

ResetRequest
Field Type | Label | Description
led i string Must correspond to the ledger ID reported by the Ledger Identifica-
edger_| tion Service. Must be a valid LedgerString (as describe in value.
proto). Required

ResetService

Service to reset the ledger state. The goal here is to be able to reset the state in a way that’s much
faster compared to restarting the whole ledger application (be it a sandbox or the real ledger server).

Note that all state presentin the ledger implementation will be reset, mostimportantly including the
ledger ID. This means that clients will have to re-fetch the ledger ID from the identity service after
hitting this endpoint.

The semantics are as follows:

When the reset service returns the reset is initiated, but not completed;

234

Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

While the reset is performed, the ledger will not accept new requests. In fact we guarantee that
ledger stops accepting new requests by the time the response to Reset is delivered;

In-flight requests might be aborted, we make no guarantees on when or how quickly this hap-
pens;

The ledger might be unavailable for a period of time before the reset is complete.

Given the above, the recommended mode of operation for clients of the reset endpoint is to call it,
then call the ledger identity endpoint in a retry loop that will tolerate a brief window when the ledger
is down, and resume operation as soon as the new ledger ID is delivered.

Note that this service will be available on the sandbox and might be available in some other testing
environments, but will never be available in production.

Method Request Response | Description
name type type
Reset ResetRe- .google.pro- | Resets the ledger state. Note that loaded DARs won’t
quest to- be removed - this only rolls back the ledger to genesis.
buf.Empty

3.7.316 com/daml/ledger/api/vl/testing/time_service.proto

GetTimeRequest

Field Type | Label | Description

string Must correspond to the ledger ID reported by the Ledger Identifica-
tion Service. Must be a valid LedgerString (as describe in value.
proto). Required

ledger_.id

GetTimeResponse

Field Type Label | Description
cur- google.protobuf.Times- The current time according to the ledger
rent_time tamp server.

SetTimeRequest

Field Type Label | Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as de-
scribe in value.proto). Required
cur- google.pro- MUST precisely match the current time as it's known to the
rent_time to- . Iedger§erver. On mismatch, an INVALID PARAMETER gRPC
buf.Times- error will be returned.
tamp
, google.pro- The time the client wants to set on the ledger. MUST be a
new_time to- point int time after current time.
buf.Times-
tamp

3.7. The Ledger API 235

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

TimeService

Optional service, exposed for testing static time scenarios.

Method Request Response | Description
name type type
GetTime Get- GetTimeRe- Returns a stream of time updates. Always returns at
TimeRequest | sponse least one response, where the first one is the current
time. Subsequent responses are emitted whenever
the ledger server’s time is updated.
SetTime Set- google.pro- | Allows clients to change the ledgers clock in an
TimeRequest | to- atomic get-and-set operation.
buf.Empty

3.7.317 com/daml/ledger/api/vi/trace_context.proto

TraceContext

Data structure to propagate Zipkin trace information.

See https://github.com/openzipkin/

b3-propagation Trace identifiers are 64 or 128-bit, but all span identifiers within a trace are 64-bit.
All identifiers are opaque.

Field Type Label | Description
_ .], uinte4 If present, this is the high 64 bits of the 128-bit identifier.
trace_id_high Otherwise the trace ID is 64 bits long.
_ uint64 The Traceld is 64 or 128-bit in length and indicates the over-
trace_id all ID of the trace. Every span in a trace shares this ID.
. uint64 The Spanld is 64-bit in length and indicates the position of
span_id the current operation in the trace tree. The value should not
be interpreted: it may or may not be derived from the value
of the Traceld.
par- google.pro- The ParentSpanld is 64-bit in length and indicates the posi-
ent_span_id to- tion of the parent operation in the trace tree. When the span
o | buf.UInt64Value is the root of the trace tree, the ParentSpanld is absent.

sampled

bool

When the sampled decision is accept, report this span to
the tracing system. When it is reject, do not. When B3 at-
tributes are sent without a sampled decision, the receiver
should make one. Once the sampling decision is made, the
same value should be consistently sent downstream.

3.7.318 com/daml/ledger/api/Vl/transaction.proto

Transaction

Filtered view of an on-ledger transaction.

236

Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/b3-propagation
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label Description
transac- string Assigned by the server. Useful for correlating logs. Must
tion id be a valid LedgerString (as described in value.proto).
- Required
com- string The ID of the command which resulted in this transac-
mand id tion. Missing for everyone except the submitting party.
- Must be a valid LedgerString (as described in value.
proto). Optional
K string The workflow ID used in command submission. Must be
work=. avalid LedgerString (as described in value.proto). Op-
flow_id .
tional
google.pro- Ledger effective time. Must be a valid LedgerString (as
effec- . . .
. to- described in value.proto). Required
tive_at .
buf.Times-
tamp
events Event repeated | The collection of events. Only contains CreatedEvent or
ArchivedEvent. Required
fset string The absolute offset. The format of this field is described
ofise in ledger offset.proto. Required
trace con- TraceContext Zipkin trace context. This field is a future extension point
text - and is currently not supported. Optional

TransactionTree

Complete view of an on-ledger transaction.

3.7. The Ledger API

237

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label Description
transac- string Assigngd by the server. Useful for‘ corrfalating logs. Must
tion id be a Ya|ld LedgerString (as described in value.proto).
- Required
com- string The ID of the command which resulted in this transac-
mand id tion. Missing for everyone except the submitting party.
- Must be a valid LedgerString (as described in value.
proto). Optional
string The workflow ID used in command submission. Only set
work—' if the workflow id for the command was set. Must be
flow_id avalid LedgerStri_ng (as described in value.proto). Op-
tional
offoc google.pro- Ledger effective time. Required
R to-
tive_at buf.Times-
tamp
string The absolute offset. The format of this field is described
offset in ledger offset.proto. Required
.|, Transaction- | repeated | Changes to the ledger that were caused by this transac-
events_by_id Tree.Events- tion. Nodes of the transaction tree. Each key be a valid
ByldEntry LedgerString (as describe in value.proto). Required
| string repeated | Roots of the transaction tree. Each element must be a
root_event_ids . . o
valid LedgerString (as describe in value.proto). The
elements are in the same order as the commands in
the corresponding Commands object that triggerd this
transaction. Required
trace con- TraceContext Zipk‘in trace context. This field isafgture extension point
text - and is currently not supported. Optional

TransactionTree.EventsByldEntry

TreeEvent

Field | Type Label | Description
key string

TreeEvent
value

Each tree event message type below contains awitness parties field which indicates the subset
of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included
simply because they were children of events which have witnesses.

Field Type Label | Description
CreatedEvent
created
. ExercisedEvent
exercised

238

Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.319 com/daml/ledger/api/vl/transaction_filter.proto

Filters

Field Type Label | Description
InclusiveFilters If not set, no filters will be applied. Optional

inclusive

InclusiveFilters

If no internal fields are set, no data will be returned.

Field Type Label Description
tormn- Identifier | repeated | A collection of templates. SHOULD NOT contain duplicates.
plate_ids Required

TransactionFilter

Used for filtering Transaction and Active Contract Set streams. Determines which on-ledger events
will be served to the client.

Field Type Label Description

. Transaction- | repeated | Keys of the map determine which parties’ on-ledger
fil- Filter.Filters- transactions are being queried. Values of the map deter-
ters—by—partyByPartyEntry mine which events are disclosed in the stream per party.

At the minimum, a party needs to set an empty Filters
message to receive any events. Each key must be a valid
PartyldString (as described in value.proto). Required

TransactionFilter.FiltersByPartyEntry

Field | Type | Label | Description
key string

Filters
value

3.7.3.20 com/daml/ledger/api/vi/transaction_service.proto

GetFlatTransactionResponse

Field Type Label | Description
Transaction

transaction

3.7. The Ledger API 239

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GetlLedgerEndRequest
Field Type Label | Description
led i string Must correspond to the ledger ID reported by the Ledger
edger_| Identification Service. Must be a valid LedgerString (as de-
scribe in value.proto). Required
TraceContext Server side tracing will be registered as a child of the sub-
trace_con- : SR . . .
text mitted context. This field is a future extension point and is
currently not supported. Optional
GetLedgerEndResponse
Field | Type Label | Description
offset LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventldRequest

Field Type Label Description
. string Must correspond to the ledger ID reported by the Ledger
ledger_id Identification Service. Must be a valid LedgerString (as
described in value.proto). Required
. string The ID of a particular event. Must be a valid LedgerString
event_.id . . .
(as described in value.proto). Required
request- string repeated | The parties wh.o\f,e events the cligntgxpegts to see..Even"ts
ing_parties that are not visible for the parties in this collection will
- not be present in the response. Each element must be a
valid PartyldString (as described in value.proto). Re-
quired
trace con- TraceContext Se’rver side tracing'wil‘l be registered asa child ofthe sub-
text - mitted context. This field is a future extension point and

is currently not supported. Optional

GetTransactionByldRequest

Field Type Label Description
. string Must correspond to the ledger ID reported by the Ledger

ledger_id Identification Service. Must be a valid LedgerString (as
describe in value.proto). Required

transac- string Thg IDofa partic'ula.r transaction. Must be a.valid Ledger-

tion id String (as describe in value.proto). Required

request- string repeated | The parties whose events the client expects to see. Events

. . that are not visible for the parties in this collection will

Ing__parties . .
not be present in the response. Each element be a valid
PartyldString (as describe in value.proto). Required

trace con- TraceContext Se’rver side tracing'wil‘l be registered asa child ofthe sub-

text - mitted context. This field is a future extension point and
is currently not supported. Optional

240 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GetTransactionResponse

Field Type Label | Description
. TransactionTree
transaction
GetTransactionTreesResponse
Field Type Label Description
transac- Transaction- | repeated | The list of transaction trees that matches the
tions Tree filter in GetTransactionsRequest for the
GetTransactionTrees method.
GetTransactionsRequest
Field Type Label | Description
led i string Must correspond to the ledger ID reported by the Ledger
edger_l Identification Service. Must be a valid LedgerString (as de-
scribed in value.proto). Required
begin LedgerOffset Beginning of the requested ledger section. Required
q LedgerOffset End of the requested ledger section. Optional, if not set, the
en stream will not terminate.
filt Transaction- Requesting parties with template filters. Required
eer Filter
b bool Ifenabled, values served over the APl will contain more infor-
verbose mation than strictly necessary to interpret the data. In par-
ticular, setting the verbose flag to true triggers the ledger to
include labels for record fields. Optional
trace con- TraceContext Server side tracing will be registered as a child of the sub-
text - mitted context. This field is a future extension point and is
currently not supported. Optional
GetTransactionsResponse
Field Type Label Description
transac- Transaction | repeated | Thelist of transactions that matches the filter in GetTrans-
tions actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger.

3.7. The Ledger API

241

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Method Request Response | Description
name type type
GetTransac- | GetTransac- | GetTrans- Read the ledger’s filtered transaction stream for a set
tions tionsRequest | actionsRe- of parties.
sponse
GetTransac- | GetTransac- | GetTransac- | Read the ledger's complete transaction tree stream
tionTrees tionsRequest | tionTreesRe- | for a set of parties.
sponse
GetTransac- | GetTransac- | GetTrans- Lookup a transaction tree by the ID of an event that ap-
tionByEven- | tionByEven- | actionRe- pears within it. Returns NOT FOUND if no such trans-
tid tidRequest sponse action exists. For looking up a transaction instead
of a transaction tree, please see GetFlatTransaction-
ByEventld
GetTransac- | GetTrans- GetTrans- Lookup a transaction tree by its ID. Returns
tionByld action- actionRe- NOT FOUND if no such transaction exists. For
ByldRequest | sponse looking up a transaction instead of a transaction
tree, please see GetFlatTransactionByld
GetFlat- GetTransac- | GetFlat- Lookup a transaction by the ID of an event that ap-
Transac- tionByEven- | Transaction- | pears within it. Returns NOT FOUND if no such trans-
tionByEven- | tldRequest Response action exists.
tld
GetFlat- GetTrans- GetFlat- Lookup a transaction by its ID. Returns NOT FOUND if
Transac- action- Transaction- | no such transaction exists.
tionByld ByldRequest | Response
Ge- GetlLedgerEn- | GetLedgerEn- | Getthe currentledgerend. Subscriptions started with
tLedgerEnd | dRequest dResponse the returned offset will serve transactions created af-

ter this RPC was called.

3.7.3.21 com/daml/ledger/api/vl/value.proto

Enum

A value with finite set of alternative representations.

Field Type Label | Description
i Identifier Omitted from the transaction stream when verbose streaming
enum._t is not enabled. Optional when submitting commands.
string Determines which of the Variant’s alternatives is encoded in
constructor : . : .
this message. Must be a valid NameString. Required
GenMap
Field Type Label Description
GenMap.Entry | repeated
entries P y P
242 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

GenMap.Entry

Field | Type | Label | Description
Val
key alue
Value
value
Identifier
Unique identifier of an entity.
Field Type | Label | Description
K string The identifier of the DAML package that contains the entity. Must
pack be a valid PackageldString. Required
age_.id
mod- string The dot-separated module name of the identifier. Required
ule_name
en- string The dot-separated name of the entity (e.g. record, template,)
tity_name within the module. Required
List

A homogenous collection of values.

Field Type | Label Description
Value | repeated | The elements must all be of the same concrete value type. Op-
elements .
tional
Map
Field Type Label Description

Map.Entry | repeated

entries

Map.Entry
Field | Type | Label | Description
key string
Value
value
Optional

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to
wrap this in an additional message is that we need to be able to encode the None case in the Value
oneof.

3.7. The Ledger API 243

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field | Type | Label | Description

Value optional
value

Record
Contains nested values.

Field Type Label Description

4 id Identifier Omitted from the transaction stream when verbose stream-

record_t ing is not enabled. Optional when submitting commands.

fields RecordField | repeated | The nested values of the record. Required
RecordField

A named nested value within a record.

Field | Type | Label | Description
string When reading a transaction stream, it's omitted if verbose streaming
label is not enabled. When submitting a commmand, it’s optional: - if all
keys within a single record are present, the order in which fields appear
does not matter. however, each key must appear exactly once. - if any
of the keys within a single record are omitted, the order of fields MUST
match the order of declaration in the DAML template. Must be a valid
NameString
Value A nested value of a record. Required
value
Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different four classes of strings as identifiers. Those classes are defined as
follow: - NameStrings are strings that match the regexp [A-Za-z\$] [A-Za-z0-9\$]*. - Pack-
ageldStrings are strings that match the regexp [A-Za-z0-9\-_]+. - PartyldStrings are strings
that match the regexp [A-Za-z0-9:\-_]+.-LedgerStrings are strings that match the regexp [A-
Za-z0-9%:\- /]+

244 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label | Description
Record
record
. Variant
variant
con- string Identifier of an on-ledger contract. Commands which ref-
tract id erence an unknown or already archived contract ID will fail.
- Must be a valid LedgerString.
list List Represents a homogeneous list of values.
. sint64
inté4
) string A Numeric, that is a decimal value with precision 38 (at
numeric most 38 significant digits) and a scale between 0 and 37
(significant digits on the right of the decimal point). The
field has to match the regex [+]?d{1,38}(.d{0,37})? and
should be representable by a Numeric without loss of pre-
cision.
text string A string.
. sfixed64 Microseconds since the UNIX epoch. Can go backwards.
timestamp Fixed since the vast majority of values will be greater than
2128, since currently the number of microseconds since the
epoch is greater than that. Range: 0001-01-01T00:00:00Z
to 9999-12-31T23:59:59.9999997, so that we can convert
to/from https://www.ietf.org/rfc/rfc3339.txt
string An agent operating on the ledger. Must be a valid Partyld-
party)
String.
bool True or false.
bool
. google.pro- This value is used for example for choices that don’t take
unit to- any arguments.
buf.Empty
int32 Days since the unix epoch. Can go backwards. Limited from
date 0001-01-01 to 9999-12-31, also to be compatible with https:
/Iwww.ietf.org/rfc/rfc3339.txt
optional Optional The Optional type, None or Some
map Map The Map type
enum Enum The Enum type
gen_map GenMap The GenMap type
Variant

A value with alternative representations.

3.7. The Ledger API

245

https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Field Type Label | Description
iant id Identifier Omitted from the transaction stream when verbose streaming
variant_ is not enabled. Optional when submitting commands.
string Determines which of the Variant’s alternatives is encoded in
constructor
this message. Must be a valid NameString. Required
value Value The value encoded within the Variant. Required

3.7.3.22 Scalar Value Types

.proto type | Notes C++ type | Java type | Python
type
double double float
double
float float float
float
. Uses variable-length encoding. Inefficient | int32 int int
int32 . . .
for encoding negative numbers - if your
field is likely to have negative values, use
sint32 instead.
. Uses variable-length encoding. Inefficient | int64 long int/long
int64 . . .
for encoding negative numbers - if your
field is likely to have negative values, use
sint64 instead.
. Uses variable-length encoding. uint32 int int/long
uint32
Uses variable-length encoding. uintc4 lon int/lon
uinte4 & & & flong
, Uses variable-length encoding. Signed int | int32 int int
sint32 .
value. These more efficiently encode nega-
tive numbers than regular int32s.
. Uses variable-length encoding. Signed int | int64 long int/long
sint64 .
value. These more efficiently encode nega-
tive numbers than regular int64s.
fixed32 Always four bytes. More efficient than | uint32 int int
xe uint32 if values are often greater than
2/28.
fixedG4 Always eight bytes. More efficient than | uinté4 long int/long
xe uint64 if values are often greater than 2/56.
Always four bytes. int32 int int
sfixed32 y y
Always eight bytes. inte4 lon int/lon
sfixed64 ys elgnt by & flong
bool boolean boolean
bool
i A string must always contain UTF-8 en- | string String str/unicode
string coded or 7-bit ASCII text.
May contain any arbitrary sequence of | string ByteString | str
bytes bytes

246 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.4 How DAML types are translated to protobuf

This page gives an overview and reference on how DAML types and contracts are represented by the
Ledger API as protobuf messages, most notably:

in the stream of transactions from the TransactionService
as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and
CommandService.

The DAML code in the examples below is written in DAML 1.1.

3.7.4.1 Notation

The notation used on this page for the protobuf messages is the same as you get if you invoke protoc
--decode=Foo < some payload.bin. Toillustrate the notation, here is a simple definition of the
messages Foo and Bar:

message Foo ({
string field with primitive type = 1;
Bar field with message type = 2;

}

message Bar {
repeated int64 repeated field inside bar = 1;

A particular value of Foo is then represented by the Ledger API in this way:

{ // Foo
field with primitive type: "some string"
field with message type { // Bar
repeated field inside bar: 17
repeated field inside bar: 42
repeated field inside bar: 3

}

The name of messages is added as a comment after the opening curly brace.

3.7.4.2 Records and primitive types

Records or product types are translated to Record. Here’s an example DAML record type that contains
a field for each primitive type:

data MyProductType = MyProductType {
intField: Int;
textField: Text;
decimalField: Decimal;
boolField: Bool;
partyField: Party;
timeField: Time;
listField: [Int];
contractIdField: ContractId SomeTemplate

3.7. The Ledger API 247

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

And here’s an example of creating a value of type MyProductType:

alice <- getParty "Alice"
someCid <- submit alice do create SomeTemplate with owner=alice
let myProduct = MyProductType with
intField = 17
textField = "some text"
decimalField = 17.42
boolField = False
partyField = bob
timeField = datetime 2018 May 16 0 0 O
listField = [1,2,3]
contractIdField = someCid

For this data, the respective data on the Ledger APl is shown below. Note that this value would be
enclosed by a particular contract containing a field of type MyProductType. See Contract templates for
the translation of DAML contracts to the representation by the Ledger API.

{ // Record

record id { // Identifier
package id: "some-hash"
name: "Types.MyProductType"

}

fields { // RecordField
label: "intField"
value { // Value

inted: 17

}
fields { // RecordField
label: "textField"
value { // Value
text: "some text"

}
fields { // RecordField
label: "decimalField"
value { // Value
decimal: "17.42"

}
fields { // RecordField
label: "boolField"
value { // Value
bool: false

}
fields { // RecordField
label: "partyField"
value { // Value
party: "Bob"

(continues on next page)

248 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

}
fields { // RecordField
label: "timeField"
value { // Value
timestamp: 1526428800000000

}
fields { // RecordField
label: "listField"
value { // Value
list { // List
elements { // Value
inted: 1
}
elements { // Value
inted: 2
}
elements { // Value
inted: 3

}
fields { // RecordField
label: "contractIdField"
value { // Value
contract id: "some-contract-id"

}

3.7.4.3 Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant
type with two constructors:

data MySumType = MySumConstructorl Int |
MySumConstructor2 (Text, Bool)

The constructorMyConstructorl takes a single parameter of type Integer, whereas the construc-
torMyConstructor?2 takes a record with two fields as parameter. The snippet below shows how you
can create values with either of the constructors.

let mySuml MySumConstructorl 17
let mySum2 = MySumConstructor2 ("it's a sum", True)

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySuml and mySum?2 respectively as they would be transmit-
ted on the Ledger APl within a contract.

3.7. The Ledger API 249

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Listing 1: mySumi

{ // Value
variant { // Variant
variant id { // Identifier
package id: "some-hash"
name: "Types.MySumType"
}

constructor: "MyConstructorl"

value { // Value
inted: 17

Listing 2: mySumz2

{ // Value
variant { // Variant
variant id { // Identifier
package id: "some-hash"
name: "Types.MySumType"
}

constructor: "MyConstructor2"

value { // Value
record { // Record
fields { // RecordField

label: "sumTextField"

value { // Value
text: "it's a sum"

}
fields { // RecordField

label: "sumBoolField"
value { // Value
bool: true

3.7.4.4 Contract templates
Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =

(continues on next page)

250 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

MySimpleTemplateKey
with
party: Party

template MySimpleTemplate
with
owner: Party
where
signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey

Creating a contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-
mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown
below:

{ // CreateCommand
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
}
create arguments { // Record
fields { // RecordField
label: "owner"
value { // Value
party: "Alice"

Receiving a contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained
in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent
event id: "some-event-id"
contract id: "some-contract-id"
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
}
create arguments { // Record
fields { // RecordField
label: "owner"
value { // Value

(continues on next page)

3.7. The Ledger API 251

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

party: "Alice"

}

witness parties: "Alice"

}

Exercising a choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,
exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand
template id { // Identifier
package id: "some-hash"
name: "Templates.MySimpleTemplate"
}
contract id: "some-contract-id"
choice: "MyChoice"
choice argument { // Value
record { // Record
fields { // RecordField
label: "parameter"
value { // Value
inted: 42

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as
ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The
example above could be rewritten as follows:

{ // ExerciseByKeyCommand
template id { // Identifier
package id: "some-hash"

name: "Templates.MySimpleTemplate"
}
contract key { // Value
record { // Record
fields { // RecordField
label: "party"
value { // Value
party: "Alice"

(continues on next page)

252 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

(continued from previous page)

}

choice: "MyChoice"

choice argument { // Value

record { // Record
fields { // RecordField
label: "parameter"
value { // Value
inted: 42

3.75 How DAML types are translated to DAML-LF

This page shows how types in DAML are translated into DAML-LF. It should help you understand and
predict the generated client interfaces, which is useful when you’re building a DAML-based applica-
tion that uses the Ledger APl or client bindings in other languages.

For an introduction to DAML-LF, see DAML-LF.

3.7.5.1 Primitive types
Built-in data types in DAML have straightforward mappings to DAML-LF.

This section only covers the serializable types, as these are what client applications can interact
with via the generated DAML-LF. (Serializable types are ones whose values can be written in a text
or binary format. So not function types, Update and Scenario types, as well as any types built up
from those.)

Most built-in types have the same name in DAML-LF as in DAML. These are the exact mappings:

DAML primitive type DAML-LF primitive type
Int Intoc4

Time Timestamp
() Unit

[List
Decimal Decimal
Text Text

Date Date

Party Party
Optional Optional
ContractIid ContractId

Be aware that only the DAML primitive types exported by the Prelude module map to the DAML-LF
primitive types above. That means that, if you define your own type named Party, it will nottranslate
to the DAML-LF primitive Party.

3.7. The Ledger API 253

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

3.7.5.2 Tuple types

DAML tuple type constructors take types T1, T2, .., TNtothetype (T1, T2, .., TN).Theseare
exposed in the DAML surface language through the Prelude module.

The equivalent DAML-LF type constructors are daml-prim:DA.Types:TupleN, for each particular
N (where 2 <= N <= 20). This qualified name refers to the package name (ghc-prim) and the module
name (GHC. Tuple).

For example: the DAML pair type (Int, Text) is translated to daml-prim:DA.Types:Tuple2
Int64 Text.

3.7.5.3 Data types
DAML-LF has three kinds of data declarations:

Record types, which define a collection of data
Variant or sum types, which define a number of alternatives
Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in DAML (starting with the data keyword) are translated to record, variant or
enum types. It's sometimes not obvious what they will be translated to, so this section lists many
examples of data types in DAML and their translations in DAML-LF.

Record declarations

This section uses the syntax for DAML records with curly braces.

DAML declaration DAML-LF translation

data Foo = Foo { fool: Int; record Foo [{ fool: Int64d; foo2: Text }
foo2: Text }
data Foo = Bar { barl: Int; record Foo [J { barl: Int64; bar2: Text }
bar2: Text }

data Foo = Foo { foo: Int } record Foo U { foo: Int64d }
data Foo = Bar { foo: Int } record Foo [{ foo: Into4d }
data Foo = Foo {} record Foo [{}
data Foo = Bar {} record Foo [{}

254 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Variant declarations

DAML declaration DAML-LF translation

data Foo = Bar Int | Baz variant Foo [l Bar Int6d4 | Baz Text

Text

data Foo a = Bar a | Baz variant Foo a [l Bar a | Baz Text

Text

data Foo = Bar Unit | Baz variant Foo [l Bar Unit | Baz Text

Text

data Foo = Bar Unit | Baz variant Foo [] Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a [l Bar Unit | Baz Unit

data Foo = Foo Int variant Foo [] Foo Intoc4

data Foo = Bar Int variant Foo [] Bar Intoc4

data Foo = Foo () variant Foo [l Foo Unit

data Foo = Bar () variant Foo [l Bar Unit

data Foo = Bar { bar: Int } variant Foo [Bar Foo.Bar | Baz Text, record
| Baz Text Foo.Bar [{ bar: Into64d }

data Foo = Foo { foo: Int } variant Foo [l Foo Foo.Foo | Baz Text, record
| Baz Text Foo.Foo [{ foo: Into6d }

data Foo = Bar { barl: Int; variant Foo [Bar Foo.Bar | Baz Text, record
bar2: Decimal } | Baz Text Foo.Bar [{ barl: Int64; bar2: Decimal }
data Foo = Bar { barl: Int; data Foo [J Bar Foo.Bar | Baz Foo.Baz, record
bar2: Decimal } | Baz { Foo.Bar [{ barl: Into64; bar2: Decimal },
bazl: Text; baz2: Date } record Foo.Baz [l { bazl: Text; baz2: Date }

Enum declarations

DAML declaration DAML-LF declaration

data Foo = Bar | Baz enum Foo [Bar | Baz

data Color = Red | Green | enum Color [l Red | Green | Blue
Blue

Banned declarations

There are two gotchas to be aware of: things you might expect to be able to do in DAML that you can’t
because of DAML-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or
avariant type. Concretely, the data type declaration data Foo = Foo causes a compile-time error,
because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} todeclare arecord
type with no fields,ordata Foo = Foo () foravariantwith a single constructor taking unit argu-
ment.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled
argument type. This restriction is so that we can provide a straight-forward encoding of DAML-LF
types in a variety of client languages.

3.7. The Ledger API 255

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} toproduce record Foo I {}OR
data Foo = Foo () to produce variant Foo [Foo
Unit

data Foo = Bar data Foo = Bar {} to produce record Foo [
{} OR data Foo = Bar () to produce variant
Foo [J Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,
forexampledata Foo = Foo { x: Int; y: Text }

data Foo = Bar Int Text Name constructor arguments using a record declaration,
forexampledata Foo = Bar { x: Int; y: Text }

data Foo = Bar | Baz Int Name arguments to the Baz constructor, for example

Text data Foo = Bar | Baz { x: Int; y: Text }

3.7.5.4 Type synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to DAML-LF. The
body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following DAML type declarations.

type Username = Text
data User = User { name: Username }

The Username type is eliminated in the DAML-LF translation, as follows:

record User [{ name: Text }

3.7.5.5 Template types

A template declaration in DAML results in one or more data type declarations behind the scenes. These
data types, detailed in this section, are not written explicitly in the DAML program but are created by
the compiler.

They are translated to DAML-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

Template data types

Every contract template defines a record type for the parameters of the contract. For example, the
template declaration:

template Iou
with
issuer: Party
owner: Party
currency: Text
amount: Decimal
where

results in this record declaration:

256 Chapter 3. Building applications

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

data Iou = Iou { issuer: Party; owner: Party; currency: Text; amount:
—~Decimal }

This translates to the DAML-LF record declaration:

record Iou [J { issuer: Party; owner: Party; currency: Text; amount:[]
—~Decimal }

Choice data types

Every choice within a contract template results in a record type for the parameters of that choice.
For example, let’s suppose the earlier Tou template has the following choices:

controller owner can
nonconsuming DoNothing: ()
do
return ()

Transfer: ContractId Iou
with newOwner: Party
do

updateOwner newOwner

This results in these two record types:

data DoNothing = DoNothing {}
data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The
data type is a record even if there are no fields.

These translate to the DAML-LF record declarations:

record DoNothing [1 {}
record Transfer [J { newOwner: Party }

3.7.6 Java bindings
3.7.6.1 Generate Java code from DAML

Introduction

When writing applications for the ledger in Java, you want to work with a representation of DAML
templates and data types in Java that closely resemble the original DAML code while still being as
true to the native types in Java as possible. To achieve this, you can use DAML to Java code generator
(Java codegen) to generate Java types based on a DAML model. You can then use these types in
your Java code when reading information from and sending data to the ledger.

Download

You can download the latest version of the Java codegen. Make sure that the following versions are
aligned:

3.7. The Ledger API 257

https://search.maven.org/artifact/com.daml/codegen-java

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

the downloaded Java codegen jar file, eg. x.y.z
the dependency to bindings-java, eg. x.y.z
the sdk-version attribute in the daml.yaml file, eg. x.y.z

Run the Java codegen

The Java codegen takes DAML archive (DAR) files as input and generates Java files for DAML tem-
plates, records, and variants. For information on creating DAR files see Building DAML projects. To use
the Java codegen, run this command in a terminal:

java —-jar <path-to-codegen-jar>

Use this command to display the help text:

java —-jar codegen.jar —--help

Generate Java code from DAR files

Pass one or more DAR files as arguments to the Java codegen. Use the —o or —-output-directory
parameter for specifying the directory for the generated Java files.

java -jar java-codegen.jar -o target/generated-sources/daml daml/my-
—project.dar

ANANAANNAANANANAANANANAANANANAANANNAANANANAANANAANAANANANAANAANAANAANANAN

To avoid possible name clashes in the generated Java sources, you should specify a Java package
prefix for each input file:

java -jar Jjava-codegen.jar -o target/generated-sources/daml \
daml/projectl.dar=com.example.daml.projectl \

ANNANANANNANANANANNANAANANAANANNANANANANANANANANAN

daml/project2.dar=com.example.daml.project2

ANNANANANNANANANAANNANAANANAANANNANANNANANANANANAN

Generate the decoder utility class

When reading transactions from the ledger, you typically want to convert a CreatedEvent from the
Ledger API to the corresponding generated Contract class. The Java codegen can optionally gener-
ate a decoder class based on the input DAR files that calls the fromCreatedEvent method of the
respective generated Contract class (see Templates). The decoder class can do this for all templates
in the input DAR files.

To generate such a decoder class, provide the command line parameter -d or --decoderClass with
a fully qualified class name:

java -jar Jjava-codegen.jar -o target/generated-sources/daml \
-d com.myproject.DamModelDecoder daml/my-project.dar

ANNAANAANAANAANAANAANAANAANAANAANAANAANANANAANAANAANAANAANAANAANAANAANAANAAANAANAN

Receive feedback

By default, the logging is configured so that you’ll only see error messages.

258 Chapter 3. Building applications

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

DAML SDK Documentation, 1.1.0-snapshot.20200422.3991.0.6391ee9f

If you want to change this behavior, you can ask to receive more extensive feedback using the -V or
--verbosity command-line option. This option takes a numeric parameter from O to 4, where O
corresponds to the default quiet behavior and 4 represents the most verbose output possible.

In the following example the logging is set to print most of the output with detailed debugging in-
formation:

java -jar Jjava-codegen.jar -o target/generated-sources/daml -V 3

ANANAN

Integrate with build tools

While we currently don’t provide direct integration with Maven, Groovy, SBT, etc., you can run the
Java codegen as described in Run the Java codegen just like any other external process (for example
the protobuf compiler).

Compile the generated Java code

To compile the generated Java code, add the Java Bindings library with the same version as the Java
codegen to the classpath.

With Maven you can do this by adding a dependency to the pom. xml file:

<dependency>
<groupId>com.daml</groupId>
<artifactId>bindings-rxjava</artifactId>
<version>x.y.z</version>

</dependency>

Understand the generated Java model

The Java codegen generates source files in a directory tree under the output directory specified on
the command line.

Map DAML primitives to Java types

DA