Daml SDK Documentation

DAML

Digital Asset

Version : 1.15.0

Copyright (c) 2021 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Getting started 1
11 Installing the SDK o e e e 1
111 1. Install the dependencies 1

11.2 2.Installthe SDK 1

11.3 Installing the Enterprise Edition o o o oo 1

1.1.4 NexXt StepsS o o e e e e e 2

11.5 Alternative: manualdownload o 2

1.2 Getting Started withDaml e 6
1.2.1 Prerequisites 6

122 Runningthe app i i e 6

1.3 App Architecture e 10
1.3.1 TheDamlModel. e n

1.3.2 TypeScriptCode Generation ittt 12

133 TheUl .. e e 12

14 Your FirstFeature oo i e e e 13
1.4 DamlChanges e 13

142 RunningtheNew Feature 14

1.4.3 Messaging Ul e e e e 14

144 Runningtheupdated Ul e 15

1.4.5 NeXt StepS . . . i e e e e e e e e 17

15 Testing YOUTr APP . . i i it e e e e e e e e e e e e e e e e e e 17
1.5. Settingupourtests e 18

1.5.2 Example: Logginginandout e 18

1.5.3 AccessingUlelements 19

1.5.4 Writing CSS Selectors o i i e 19

1,55 TheFullTestSuite i 20

2 Writing Daml 21
21 AnintroductiontoDaml e 21
2.11 TBasiccontracts o e 21

212 2Testing templates using DamlScript 23

213 B Datatypes e e e 29

214 4Transforming datausingchoices 44

215 5Addingconstraintstoacontract 51

216 6 Partiesandauthority e 60

217 7ComposSing ChoiCeSo it it e e 69

218 8ExceptionHandling 77

219 9 Working with Dependencies i, 81

2.2

2.3

2.110 10 Functional Programming 10T. it e 84
211 1Introtothe Daml Standard Library 95
2112 12TestingDamlContracts i 101
Languagereference doCs oo e 105
221 Overview: template structure e 105
222 Reference:templates e 108
223 Reference:choices e m
224 Reference:updates e 15
225 Reference:datatypes e 18
2.2.6 Reference: built-in functions L e 124
2.27 Reference: eXpressions it e e 126
2.2.8 Reference: functions 128
2.2.9 Reference:scenarios e e 131
2.210 Reference: Damlfilestructure 132
2211 Reference: Damlpackages i 133
2212 Contractkeys e 139
2213 EXceplions e 148
The standard library e e e 149
2.3.1 Module Prelude e e e e e 149
2.3.2 Module DAACLION o L e e 179
2.3.3 ModuleDAActionState e 180
2.34 Module DAAction.State.Class e 181
2.3.5 Module DAAssert e 182
2.3.6 Module DABIfunctor. e 182
2.37 Module DABIENUMENIC ottt e e e e e e e e e e 183
2.3.8 ModuleDADate e 185
2.3.9 Module DAEIther e e 187
2.3.10 Module DAEXception 187
2.3.11 Module DAFoldable 190
2.3.12 Module DAFUNCIOr L e e e e e e e e e 191
2.3.13 Module DALLISt e 192
2.314 Module DALList.BuiltinOrder e 196
2.315 Module DALListTotal e 197
2306 Module DALOZIC i e e 197
2307 Module DAMApo i e e e 199
2.3.18 Module DAMath e e 201
2.319 Module DAMONOIA o e e 202
2.3.20 Module DAINextMap i e e e 203
2.3.21 Module DAINext.Set e 205
2.3.22 Module DANONEMpPtY o e e 206
2.3.23 Module DANoONEMpty.Typeso i 207
2.3.24 Module DAINUMEIIC . . o o it e e e e e e e e e e e e e e 208
2.3.25 Module DAOptional e e 208
2.3.26 Module DAOptionalTotal e 209
2.3.27 Module DARRecord 210
2.3.28 Module DASSEMIZIOUP . . ¢ v v i i et e e et e e e e e e e e 21
2.329 Module DASet e e e e 21
2.3.30 Module DASStack e 213
2.3.31 Module DATeXt . . . o e e e e e e e e e e e e e 214
2.3.32 Module DATextMap i i e 217
2.3.33 Module DATIME o it e e e 218

2.3.34 Module DATraversable @ e e e 219

2.3.35 Module DATUPle e e 220
2.3.36 Module DAValidation 220
24 Troubleshooting e e e 221
2.4.1 Error: <X>is not authorized tocommitanupdate 221
24.2 Error Argumentis notof serializabletype 222
243 Modeling questions e e 222
244 Testingquestions 224
2.5 Gooddesignpatterns e e 225
2.5.1 Initiate and Accept L e e 225
2.5.2 Multiple party agreement e 227
253 Delegation e 229
2,54 Authorization e 232
255 Locking e 234
2.5.6 Diagramlegends e e 242
Building applications 244
3.1 Application architecture e e 244
3.1 Backend e 246
312 Frontend e 246
3.3 Authorization 246
3.4 Developerworkflow e 247
3.2 JavaScript Client Libraries e e 249
3.21 JavaScriptCode Generator. e 250
322 @daml/react e e 255
323 @daml/ledger. e 255
324 @daml/types 255
3.3 HTTPJSON APISErviCe . . . o o o i et e e e e e e e e e e e e e e e e e e e 255
3.31 Daml-LFJSON Encoding i ittt 255
3.32 Querylanguage 262
3.33 RunningtheJSON API e e e e 264
3.34 HTTPStatusCodes 268
335 CreateanewContract. e 270
3.3.6 CreatingaContractwithaCommandID.......................... 271
3.37 ExercisebyContractID e 272
3.3.8 ExercisebyContractKey e 273
3.3.9 Create and Exercise in the Same Transaction 274
3.3.10 Fetch ContractbyContractID. 276
3311 FetchContractbyKey 277
3.312 GetallActiveContracts 278
3.3.13 Getall Active Contracts Matching a GivenQuery 279
3.3.14 Fetch Parties by Identifiers 281
3.315 Fetch AllKnown Parties e 282
33116 AllocateaNew Partyo e 282
3.317 List All DALF Packagesottt it e e e e 283
3.3.18 Download a DALF Package it i e 283
3.319 Upload aDARFile. . . . o . e 284
3.3.20 Streaming APl o e e 285
3.3.21 Healthcheck Endpoints. e 291
34 Daml SCript . . o e e e e 291

3.4.1 Daml ScriptLibrary e e e 291

342 US8Be . . i e e e 294

3.4.3 Using Daml Script for Ledger Initialization 298
344 Using Daml Scriptin Distributed Topologies 299
3.4.5 Running Daml Script against Ledgers with Authorization 300
34.6 Running Daml Script againstthe HTTPJSONAPI 300
35 DamlREPL e 301
3.5.1 USaE . . i it e e e e e e e e e e 301
3.52 Whatisinscopeattheprompt? 302
3.5.3 Using Daml REPLwithoutaledger, 303
3.54 ConnectingVviaTLS e e 303
3.5.5 Connection to a Ledger with Authorization 303
3.5.6 UsingDamlREPLtoconverttoJSON 303
3.6 Upgrading and Extending Daml applications. 303
3.6.1 Extending Damlapplications 303
3.6.2 Upgrading Damlapplications 304
3.6.3 AutomatingtheUpgrade Process, 310
37 Authorization e 313
371 Introduction e 313
372 Accesstokensandclaims 314
37.3 Gettingaccesstokens 315
374 UsingaccesstoKens e 315
3.8 The Ledger APl . . . o o e e e e e e e e e 315
3.81 Theledger APISErVICES . . . v v it ittt i e e e e e e e e e e e e 315
382 BRPC . . e e 323
3.8.3 Ledger APIReference i 324
3.84 How Daml types are translated to protobuf 363
3.8.5 How Damltypes are translatedtoDaml-LF 370
3.8.6 Javabindings e 375
3.87 Scalabindings 406
3.88 Nodejsbindings 409
3.8.9 Creatingyourown bindings 410
3.8.10 What'sinthe Lledger APl e 413
3811 Daml-LF . .. e 413
Deploying to Daml ledgers 415
41 Overviewof Damlledgers. i e 415
4.1.1 Commercial Integrations e 415
412 OpenSourcelntegrations 415
413 DamlLedgersinDevelopment o 415
4.2 DeployingtoagenericDamlledger e 416
421 ConnectingviaTLS e 417
422 Configuring RequestTimeouts ittt 417
4.3 DamlLledgerTopologies o ot i e e e 417
431 Global State Topologies e e 417
4.3.2 Partitioned Ledger Topologies 421
Operating Daml 422
51 DamlParticipantpruning e 422
5.11 Impacts on Daml applications 422
512 Howthe Daml Ledger APlisaffected, .. 423
513 Otherlimitations e 423

514 How Pruning affects Index DB administration 423

515 Determining a suitable pruningoffset 424

6 Developer Tools 425
6.1 DamlAssistant (daml) ittt e e e e e e 425
6.1.1 Full help forcommands e 425

6.1.2 Configurationfiles 425

6.1.3 Building Daml projects L e 428

6.14 Managingreleases.o 429

6.1.5 Terminal Command Completion 429

6.1.6 Running Commands outside of the Project Directory 429

6.2 DamlStudio e e 430
6.21 Installing o 430

6.2.2 CreatingyourfirstDamlfile. 430

6.2.3 Supported features e 431

6.24 COMMON SCENANIOBITOIS . ¢ v v v vttt i e et e e e et e e e e e e e e e e e e e e e 435

6.2.5 Working with multiple packages 438

6.3 DamlSandboX e e e 439
6.3.1 Contractldentifier Generation 440

6.3.2 Runningwithpersistence 440

6.3.3 Running with authentication o . 441

6.34 Runningwith TLS 442

6.3.5 Command-linereference. e 443

B.3.6 MEtriCS . . . i it e e e 443

6.4 NaVIgator e e e e e e e e 449
6.41 Navigatorfunctionality e 450

6.4.2 Installing and starting Navigator 450

6.43 Choosing aparty /changingtheparty 450

6.44 LOgEINGOUL e e 451

645 Viewingtemplatesorcontracts 451

646 UsingNavigator e 454

6.47 Authorizing Navigator. e 457

6.4.8 Advanced usage e 457

6.5 Damlcodegen . . . o e e e e e e e e 459
6.5.1 Introduction e 459

6.52 RunningtheDamlcodegen 459

6.6 DamlProfiler e e 461
6.6.1 USBEE . . i i i e e e 461

6.6.2 Cavealts e 462

7 Background concepts 463
71 Glossaryofconcepts e e 463
7.1 Daml . . o e 463

7.1.2 Developertools e e e e 467

7.1.3 Building applications e 468

7.4 Generalconcepts L L e e 470

72 DamlledgerModel e e 470
7.2.1 Structure e e 471

722 Integrity e e e 478

723 PriVaCY . o ot e e e 490

7.24 Daml: Defining Contract Models Compactly 498

725 EXCEPLiONS e e e e 499

7.3 ldentity and Package Management L e 505

7.3.1 [dentity Management e 506

7.3.2 Package Management e e 507

74 TIME . o e e e e 509
7.4 Ledgertime e e e 509

742 Recordtime 509

743 Guarantees. e 509

744 Ledgertimemodel e e 509

745 Assigningledgertime. e 510

7.5 Causalityand Local Ledgers o i it e e e 510
7.5 Causalityexamples e 510

7.52 Causalitygraphs o e e e 513

7.5.3 Localledgers 517

8 Examples 521
9 Early Access Features 522
9.1 EXTractor e e 522
9.11 Introduction e 522

912 Settingup e 522

913 Trying itout e e 523

914 Runningthe Extractor e 523

9.1.5 Connecting the Extractortoaledger 523

9.1.6 Connectingtoyourdatabase 523

9.17 Authorize Extractor e 524

9.1.8 Fulllistofoptions e 524

919 Outputformat. e 525

9110 Transactionst i e e 526

Q1T Contracts e e 526

Q112 EXEICISES . o vt ittt e e e e e e 527

9..13 JUSONTformat o e e e e e 528

9.114 Examplesofoutput e 528

9.115 Dealing with schemaevolution 528

9116 LOZEINE - o v ot e e e e e e e e e e e 530

9117 ContinUILy . . . v it e 531

9118 Faulttolerance e 531

9.119 Troubleshooting 531

9.2 Damlintegration Kit e 532
9.21 Ledger APITestTool e 532

9.22 DamlIntegration Kit statusandroadmap 536

9.23 Implementing yourownDamlledger. 537

9.24 DeployingaDamlledger. 540

9.2.5 TestingaDamllLedger e 541

9.2.6 BenchmarkingaDamlLedger 541

9.3 Daml T Triggers - Off-Ledger AutomationinDaml 541
9.3 DamlTriggerLibrary e 541

932 USABe . . . i e e 553

9.3.3 WhennottouseDamltriggers e 557

94 Visualizing DamlContracts e 557
9.4.1 Example: Visualizing the Quickstartproject 557

9.4.2 Visualizing Daml Contracts-WithinIDE 558

9.4.3 Visualizing Daml Contracts - Interactive Graphs 558

9.5 LedgerInteroperability e 558

9.5.1 Interoperabilityexamples e 559

9.5.2 Multi-ledger causality graphs 561

9.5.3 Ledger-aware projection 565

9.54 Ledger APlordering guarantees i, 569

10 Daml Ecosystem 571

10.1 Daml Ecosystem OVEIVIEW o it i it e e e e e e e e e e e e e e e e 571

10.11 Status Definitions L L e 571

10.1.2 Feature and Component Statuses e 574

10.1.3 Architecture e e e 578

10.2 Releases and Versioning o i ittt e e e 579

10,21 Versioning . . . v it i e e e e 580

10,22 CadenCe.t e e e 580

10.2.3 SupportDuration e e e 580

1024 Release Notes i e 580

10.2.5 RoAdMap oot e e e e e e e e e e e e e 580

10.2.6 PrOCESS . . . i i ittt e e e e e e 580

10.3 Portability, Compatibility, and Support Durations. 581

10.3.1 Ledger APl Compatibility: Application Portability 582

10.3.2 Driver and Participant Compatibility: Network Upgradeability 583
10.3.3 SDK, Runtime Component, and Library Compatibility: Daml Connect Upgrade-

ability . . o e 583

10.34 Ledger API SupportDuration 583

104 Getting Help . . . o it e e e e e 583

10.4.1 Supportexpectations e e 584

Chapter1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies
The Daml Connect SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.

2. JDK 8 or greater. If you don’t already have a JDK installed, try AdoptOpenJDK.
As part of the installation process you might need to set up the JAVA HOME variable. You can
find here the instructions on how to do it on Windows,macOS, and Linux.

1.1.2 2. Install the SDK
1.1.2.1 Windows 10

Download and run the installer, which will install Daml and set up your PATH.

1.1.2.2 Mac and Linux

To install the SDK on Mac or Linux open a terminal and run:

curl -sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out
and log in again.

11.3 Installing the Enterprise Edition

If you have a license for the enterprise edition of Daml Connect, you can install it as follows:

On Windows, download the installer from Artifactory_ instead of Github releases. On Linux and
MacOS download the corresponding tarball, extract it and run . /install.sh. Afterwards, modify
the global daml-config.yaml and add an entry with your Artifactory APl key. The APl key can be found in
your Artifactory user profile.

artifactory-api-key: YOUR API KEY

https://code.visualstudio.com/download
https://adoptopenjdk.net
https://github.com/digital-asset/daml/releases/download/v1.15.0/daml-sdk-1.15.0-windows.exe

Daml SDK Documentation, 1.15.0

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml-config. yaml.
To overwrite a previously installed version with the corresponding enterprise edition, use daml
install --force VERSION.

1.1.4 Next steps

Follow the getting started guide.

Use daml --help to see all the commands that the Daml assistant (daml) provides.

If the dam1l command is not available in your terminal after logging out and logging in again,
you need to set the PATH environment variable manually. You can find instructions on how to
do this here.

If you run into any other problems, you can use the support page to get in touch with us.

1.1.5 Alternative: manual download

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

11.5.1 Setting JAVA_HOME and PATH variables

Windows

We’ll explain here how to set up JAVA HOME and PATH variables on Windows.

Setting the JAVA_HOME variable

1. Open Search and type advanced system settings and hitEnter.

2. Find the Advanced tab and click on the Environment Variables.

3. Inthe System variables section click on New if you want to set JAVA HOME system wide. To
set JAVA HOME for a single user click on New under User variables.

4. In the opened modal window for Variable name type JAVA HOME and for the Variable
value set the path to the JDK installation. Click OK once you’re done.

5. Click OK and click Apply to apply the changes.

Setting the PATH variable

If you have downloaded and installed the SDK using our Windows installer your PATH variable is
already set up.

Mac OS

First, you need to figure out whether you are running Bash or zsh. To do that, open a Terminal and
run:

echo $SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which
case you are running zsh. We provide instructions for both, but you only need to follow the instruc-
tions for the one you are using.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/latest

Daml SDK Documentation, 1.15.0

If you get any other output, you have a non-standard setup. If you’re not sure how to set up envi-
ronment variables in your setup, please come and ask on the Daml forum and we will be happy to
help.

Open a terminal and run the following commands. Typos are a big problem here so copy/paste one
line at a time if possible. None of these should produce any output on success. If you are running
bash, run:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.bash profile
echo 'export PATH="SHOME/.daml/bin:S$SPATH"' >> ~/.bash profile

If you are running zsh, run:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.zprofile
echo 'export PATH="SHOME/.daml/bin:S$SPATH"' >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will
not affect any exsting one. To test the configuration of JAVA HOME (on either shell), open a new
terminal and run:

echo $JAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

daml version

You should see a the header SDK versions: followed by a list of installed (or available) SDK ver-
sions (possibly a list of just one if you just installed).

If you do not see the expected outputs, please contact us on the Dam| forum and we will be happy to
help.

Linux

We’ll explain here how to set up JAVA HOME and PATH variables on Linux for bash.

Setting the JAVA_HOME variable

Java should be installed typically in a folder like /usr/1ib/jvm/java-version. Before running
the following command make sure to change the java-version with the actual folder found on
your computer:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

Setting the PATH variable

The installer will ask you and set the PATH variable for you. If you want to set the PATH variable
manually instead, run the following command:

echo 'export PATH="SHOME/.daml/bin:$PATH"' >> ~/.bash profile

1.1. Installing the SDK 3

https://discuss.daml.com
https://discuss.daml.com

Daml SDK Documentation, 1.15.0

Verifying the changes

In order for the changes to take effect you will need to restart your computer. After the restart, please
follow the instructions below to verify that everything was set up correctly.

Please verify the JAVA_HOME variable by running:

echo SJAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Next, please verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/
your username/.daml/bin.

11.5.2 Manually installing the SDK

If you require a higher level of security, you can instead install the Daml Connect SDK by manually
downloading the compressed tarball, verifying its signature, extracting it and manually running the
install script.

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install release
1.4.0, you would download the files daml-sdk-1.4.0-macos.tar.gz and daml-sdk-1.4.
O-macos.tar.gz.asc. Note that for Windows you can choose between the tarball (ends in
.tar.gz), which follows the same instructions as the Linux and macOS ones (but assumes
you have a number of typical Unix tools installed), or the installer, which ends with .exe. Re-
gardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-
mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —-keyserver pool.sks-keyservers.net --search!|
—~4911A8DFE976ACDFAQ07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2019-05-16 and expiring on 023-04-18. If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.
Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to
work reliably for us), you can find the full public key at the bottom of this page.

4. Oncethekeyisimported, you can ask gpg toverify that the file you have downloaded has indeed
been signed by that key. Continuing with our example of 1.4.0 on macOS, you should have both
files in the current directory and run:

4 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, 1.15.0

gpg --verify daml-sdk-1.4.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-1.4.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC
—<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to thel]
—owner.

Primary key fingerprint: 4911 A8DF E976 ACDF AO071 30DB E837 2C0C 1C73[]
—4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows
installer, in which case the next step is to double-click it):

tar xzf daml-sdk-1.4.0-macos.tar.gz
cd sdk-1.4.0
./install.sh

6. Just like for the more automated install procedure, you may want to add ~/.daml/bin to your
SPATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following
Bash command:

gpg --import < <(cat <<EOF

MQENBFzdsasBCADO+ZcfZQATP6ceTh4WEXiL2Z22tetvUZGEfTaEs/UfBoJPmQ53bN
90MxudKhgB2mi8DuifYnHfLCvkxSgzfhj2IogV1lS+Fa2x99Y819GausJoYfK9gwc
8YWKEKM81F15jJA5UWITsssKNxUddr/sxJIHIFfqGRQOe6YeAcc5b0OA0GBE8UrmxE
uGfOot9/MvLpDewjDE+21Q0F1i9RZuy7S8RMILTig2IWbO5yI500FKeMQy/AJPmV 7y
gAyYUIleZZxvrYeBWi5JDsZ2HOSJPqVT7ttD2MvkyXcIJCW/XE8FcleAoWJUO IRWVWW
BhZSDz+9mipwZBHENILMuVyEygG5A+vce/YptABEBAAGONORPZ210YWwgQXNZZXQg
SG9sZ2Gluz3MsIExXMQyA8c2V]dXJpdH1AZGInaXRhbGFzc2VOLmNvbT 6 JAVQEEWE T
AD4CGWMFCwkIBWIGFQoJCASCBBYCAWECHgECF4AWIQRJEa]f6Xas36BxMNvoNywM
HHNMUQUCYHxZ3AUJB2EPMAAKCRDONYyWMHHNMUfJpB/ 9G] 7Kceb6qtrXj4£f54eLOfl
RpKYUnBcBWijmrnj8eSOAYLy7C1lnkpP4H80AIDIWxs1nY6MIjMOYmPNgGz£4 /MONxa
PuFbRAfyblkUfujXikI2GFXwyUDEpOJOWOTCOLMZkRxf92bFxTy9rD+Lx9EeBPdi
nfyID2TOKHOfYOpawg]jvnLyVb/WENUogkhLRpDXFWrykCWDaWQOmFgDkLU2nYkb+
YyEfWgdcgF3Sbsad43AToRUpUL6r1dPwCImtDPS8Ba/SxvcU31+9ksdcTsIko8BEyY
BwOK5xkRenEDDwpZvTA2bHLS3iBWWO6WC52wyUOLzar+ha/YRgNjb8YB1kYbLbwaN
UQENBFzdsasBCACSfr5pgxFm+AWPc7wiBSt 7uKNdxiRJYydeoPggmYZTvc8Um8pl
6JHtUrNxnx4WWKtj6iSPn5pSUrJbuedNAUsSBEFS509LZ0£fcQKb5di ZLGHKtEOZttCaj
IryplRm961skmPmi3yYaHXg4GC/05Ra/bo3C+ZByv/W0JzntOxA3Pvc3c8Pw5sBm
63xu7iRrnIBtyFGD+MUAZxbN8dwYX00cmwuSFGxf/wa+aB8b7Ut 9RP76sbDvFaxXx

(continues on next page)

1.1. Installing the SDK 5

Daml SDK Documentation, 1.15.0

(continued from previous page)

Ef314k8AwxUv1v+ozdNWmEBxplwR/Fra9i8EbCOV6EkKkCcModRhjbaNSPTIbgkCOka
2cg¥plUDgf9FrKvkuir70dg75qSrPRwvFghrABEBAAGIATWEGAEIACYCGWWWIQRJ
Eajf6Xas36BxMNvoNywMHHNMUQUCYHxZ3AUJB2EPMQAKCRDONYywWMHHNMUYXRB/ 0b
Ln55mfnhJUFwal49Le5174E0L4vCAya6aDDVx/C7PJ1VEr+cXZi9gNJn9RTAICz3
4yQeg3AFhgqvTK/bEHTRVAfqeUf8TgPjI/gDacSFDhzjdsg3GMDolXpOoubp 9mN+Y
JFowLzulJ7DXFVyICozuWeixcjtKz1lePX0GW80kcPzXCNwukcMrwCf45+0zF6YMb
yA2FyBmjjgAlHKM/oUapVoD2hmO3ptC5CAkfslxrsIUAfoStez9MrGoX1JOCudgm
aODLV3Mlty4HhdtO20+Akh6ay5fnrXQ5r2kGalICrfoFFKs7o0WpSDbsTsgQKexFC
rLmmBKjG6RQfWJIyVSUcC8

=pVl1b

1.2 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. We do this
through the example of a simple social networking application, showing you three things:

1. How to build and run the application
2. The design of its different components (App Architecture)
3. How to write a new feature for the app (Your First Feature)

We do not aim to be comprehensive in all Daml concepts and tools (covered in Writing Daml) or in all
deployment options (see Deploying). For a quick overview of the most important Daml concepts
used in this tutorial open the Daml cheat-sheet in a separate tab. The goal is that by the end of
this tutorial, you’ll have a good idea of the following:

1. What Daml contracts and ledgers are
2. How a user interface (Ul) interacts with a Daml ledger
3. How Daml helps you build a real-life application fast.

With that, let’s get started!

1.2.1 Prerequisites

Please make sure that you have the Daml Connect SDK, Java 8 or higher, and Visual Studio Code (the
only supported IDE) installed as per instructions from our Installing the SDK page.

You will also need some common software tools to build and interact with the template project.

Node package manager for JavaScript. Note: On Ubuntu 18.04, NodeJS 8.10 will be installed but
its too old.
A terminal application for command line interaction

1.2.2 Running the app

We’ll start by getting the app up and running, and then explain the different components which we
will later extend.

First off, open a terminal, change to a folder in which to create your first application, and instantiate
the template project.

6 Chapter 1. Getting started

https://docs.daml.com/cheat-sheet/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Daml SDK Documentation, 1.15.0

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

Change to the new folder:

cd create-daml-app

We can now run the app in two steps. You’ll need two terminal windows running for this. In one
terminal, at the root of the create-daml-app directory, run the command:

daml start

Any commands starting with daml are using the Daml/ Assistant, a command line tool in the SDK for
building and running Daml apps.

You will know that the command has started successfully when you see the INFO com.daml.
http.Main$ - Started server: ServerBinding(/127.0.0.1:7575) message in the ter-
minal. The command does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file.

2. Generates a JavaScript library in ui/daml. js to connect the Ul with your Daml code.

3. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR.

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in
this case the running Sandbox).

We’ll leave these processes running to serve requests from our Ul.

In a second terminal, navigate to the create-daml-app/ui folder and use npmto install the project
dependencies:

cd create-daml-app/ui
npm install

This step may take a couple of moments (it’s worth it!). You should see success Saved lockfile.
in the output if everything worked as expected.

Now you can start the Ul with:

npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000. Once the web Ul
has been compiled and started, you should see Compiled successfully! in your terminal. If it
doesn’t, just open that link in a web browser. (Depending on your firewall settings, you may be asked
whether to allow the app to receive network connections. It is safe to accept.) You should now see the
login page for the social network. For simplicity of this app, there is no password or sign-up required.
First enter your name and click Log in.

You should see the main screen with two panels. One for the users you are following and one for
your followers. Initially these are both empty as you are not following anyone and you don’t have any

1.2. Getting Started with Daml 7

http://localhost:3000

Daml SDK Documentation, 1.15.0

Create D,\ M I_ App

followers! Go ahead and start following users by typing their usernames in the text box and clicking
on the Follow button in the top panel.

DAML You are logged in as Bob. ®

Welcome, Bob!

@ Bob

- .. following

Follow

& The Network
wr My followers and users they are following

You’ll notice that the users you just started following appear in the Following panel. However they do
notyet appear in the Network panel. This is either because they have not signed up and are not parties
on the ledger or they have not yet started following you. This social network is similar to Twitter and
Instagram, where by following someone, say Alice, you make yourself visible to her but not vice versa.
We will see how we encode this in Daml in the next section.

DAML You are logged in as Bob. [cg

Welcome, Bob!

@ Bob
ab Users I'm following
& Alice

Username to follow

Follow

& The Network
w My followers and users they are following

To make this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-
ing separate windows/tabs allows you to see both you and the screen of the user you are following
at the same time.) Once you log in as the user you are following - Alice, you’ll notice your name in her

8 Chapter 1. Getting started

http://localhost:3000

Daml SDK Documentation, 1.15.0

network. In fact, Alice can see the entire list of users you are following in the Network panel. This is
because this list is part of the user data that became visible when you started following her.

DAML

You are logged in as Alice. [cd
Welcome, Alice!

@ Alice

- .. following

Follow

aa» The Network
v My followers and users they are following

& Bob &
& Alice &

When Alice starts following you, you can see her in your network as well. Just switch to the window
where you are logged in as yourself - the network should update automatically.

DAML

You are logged in as Bob. ®

Welcome, Bob!

@ Bob

a5 following

& Alice

Follow

aa» The Network
v My followers and users they are following

& Alice &

& Bob &

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding Daml’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get
the next one by implementing your first feature.

1.2. Getting Started with Daml

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, 1.15.0

1.3 App Architecture

In this section we’ll look at the different components of our social network app. The goal is to fa-
miliarize you enough to feel comfortable extending the code with a new feature in the next section.
There are two main components:

We generate TypeScript code to bridge the two.

the Daml model and

the React/TypeScript frontend.

Overall, the social networking app is following the recommended architecture of a fullstack Daml appli-
cation. Below you can see a simplified version of the architecture represented in the app.

Application Frontend

React Components

Y

@daml React Libraries

Y

User Code

Provided Component

Generated from DAML
model

@daml2js Interface Library |-
Application Backend
DAR -4— DAML Model
JSON API Server
DAML Sandbox -4

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the
Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

10

Chapter 1. Getting started

https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, 1.15.0

1.3.1 The Daml Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (You may get a new tab pop
up with release notes for the latest version of Daml Connect - just close this.) Using the file Explorer
on the left sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-
tract template. Let’s look at the data portion first.

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-
tract. In this case it is an identifier for the user and the list of users they are following. Both fields
use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization
is required to create or archive contracts, in this case the user herself. The observers are the parties
who are able toview the contract on the ledger. In this case all users that a particular useris following
are able to see the user contract.

Let’s see what the signatory and observer clauses mean in our app more concretely. A user Al-
ice can see another user Bob in the network only when Bob is following Alice (only if Alice is in the
following listin his user contract). For this to be true, Bob must have previously started to follow
Alice, as he is the sole signatory on his user contract. If not, Bob will be invisible to Alice.

Here we see two concepts that are central to Daml: authorization and privacy. Authorization is about
who can do what, and privacy is about who can see what. In Daml we must answer these questions
upfront, as they fundamentally change the design of an application.

The last part of the Daml model is the operation to follow users, called a choice in Daml.

Daml contracts are immutable (can not be changed in place), so the only way to update one is
to archive it and create a new instance. That is what the Follow choice does: after checking some
preconditions, it archives the current user contract and creates a new one with the new user to follow
added to the list. Here is a quick explanation of the code:

The choice starts with the nonconsuming choice keyword followed by the choice name
Follow.

The return type of a choice is defined next. In this case itis ContractId User.

After that we declare choice parameters with the with keyword. Here this is the user we want
to start following.

The keyword controller defines the Party thatis allowed to execute the choice. In this case,
itis the username party associated with the User contract.

The do keyword marks the start of the choice body where its functionality will be written.
After passing some checks, the current contract is archived with archive self.

A new User contract with the new user we have started following is created (the new user is
added to the following list).

This information should be enough for understanding how choices work in this guide. More detailed
information on choices can be found in our docs.

Let’s move on to how our Daml| model is reflected and used on the Ul side.

1.3. App Architecture n

Daml SDK Documentation, 1.15.0

1.3.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that
provides more support during development through its type system.

In order to build an application on top of Daml, we need a way to refer to our Daml templates and
choices in TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).
The daml codegen js command then takes this file as argument to produce a number of Type-
Script packages in the output folder.

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.]s

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll
use in our Ul code next.

1.3.3 The Ul

On top of TypeScript, we use the Ul framework React. React helps us write modular Ul components
using afunctional style-acomponentisrerendered wheneverone of its inputs changes - with careful
use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.
You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first
look at App . tsx, which is the entry point to our application.

An important tool in the design of our components is a React feature called Hooks. Hooks allow you
to share and update state across components, avoiding having to thread it through manually. We
take advantage of hooks in particular to share ledger state across components. We use custom Dam|
React hooks to query the ledger for contracts, create new contracts, and exercise choices. This is the
library you will be using the most when interacting with the ledger'.

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not
set, we render the LoginScreen with a callback to setCredentials. If they are set, then we render
the MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a
handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame
around the MainView component, which houses the main functionality of our app. It uses Daml
React hooks to query and update ledger state.

The useParty hook simply returns the current user as stored in the DamlLedger context. A more
interesting example is the allUsers line. This uses the useStreamQueries hook to get all User
contracts on the ledger. (User.User here is an object generated by daml codegen js - it stores
metadata of the User template defined in User.daml.) Note however that this query preserves
privacy: only users that follow the current user have their contracts revealed. This behaviouris due to
the observers on the User contract being exactly in the list of users that the current user is following.

Afinal pointon this is the streaming aspect of the query. This means that results are updated as they
come in - there is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the
User template.

FYI Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger
implementation via the HTTP JSON API.

12 Chapter 1. Getting started

https://www.typescriptlang.org/
https://reactjs.org/
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

Daml SDK Documentation, 1.15.0

The useLedger hook returns an object with methods for exercising choices. The core of the follow
function here is the call to ledger.exerciseByKey. The key in this case is the username of the
current user, used to look up the corresponding User contract. The wrapper function follow is
then passed to the subcomponents of MainView. For example, follow is passed to the UserList
component as an argument (a prop in React terms). This gets triggered when you click the icon next
to a user's name in the Network panel.

This should give you a taste of how the Ul works alongside a Daml ledger. You’ll see this more as you
develop your first feature for our social network.

1.4 Your First Feature

Let’s dive into implementing a new feature for our social network app. This will give us a better idea
how to develop Daml applications using our template.

At the moment, our app lets us follow users in the network, but we have no way to communicate with
them! Let’s fix that by adding a direct messaging feature. This should let users that follow each other
send messages, respecting authorization and privacy. This means:

1. You cannot send a message to someone unless they have given you the authority by following
you back.
2. You cannot see a message unless you sent it or it was sent to you.

We will see that Daml lets us implement these guarantees in a direct and intuitive way.
There are three parts to building and running the messaging feature:

1. Adding the necessary changes to the Daml model
2. Making the corresponding changes in the Ul
3. Running the app with the new feature.

As usual, we must start with the Daml model and base our Ul changes on top of that.

1.4.1 Daml Changes

As mentioned in the architecture section, the Daml code defines the data and workflow of the applica-
tion. The workflow aspect refers to the interactions between parties that are permitted by the system.
In the context of a messaging feature, these are essentially the authorization and privacy concerns
listed above.

For the authorization part, we take the following approach: a user Bob can message another user Al-
ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission
or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/
User.daml file and copy the following Message template to the bottom. Indentation is important:
it should be at the top level like the original User template.

This template is very simple: it contains the data for a message and no choices. The interesting
part is the signatory clause: both the sender and receiver are signatories on the template.
This enforces the fact that creation and archival of Message contracts must be authorized by both
parties.

Now we can add messaging into the workflow by adding a new choice to the User template. Copy the
following choice to the User template afterthe Followchoice. Theindentation for the SendMessage
choice must match the one of Follow. Make sure you save the file after copying the code.

1.4. Your First Feature 13

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, 1.15.0

As with the Follow choice, there are a few aspects to note here.

By convention, the choice returns the ContractId of the resulting Message contract.

The parameters to the choice are the sender and content of this message; the receiver is the
party named on this User contract.

The controller clause states that itis the sender who can exercise the choice.

The body of the choice first ensures that the sender is a user that the receiver is following and
then creates the Message contractwith the receiver beingthe signatory of the User contract.

This completes the workflow for messaging in our app.

1.4.2 Running the New Feature
Navigate to the terminal window where the daml start process is running and press ‘r’. This will

Compile our Daml code into a DAR file containing the new feature
Update the JavaScript library under ui/daml . js to connect the Ul with your Daml code
Upload the new DAR file to the sandbox

As mentioned at the beginning of this Getting Started with Daml guide, Daml Sandbox uses an in-
memory store, which means it loses its state when stopped or restarted. That means that all user
data and follower relationships are lost.

Now let’s integrate the new functionality into the Ul

1.4.3 Messaging Ul

The Ul for messaging will consist of a new Messages panel in addition to the Follow and Network panel.
This panel will have two parts:

1. Alist of messages you’ve received with their senders.
2. Aform with adropdown menu for follower selection and a text field for composing the message.

We will implement each part as a React component, which we’ll name MessageList and
MessageEdit respectively. Let’s start with the simpler MessageList.

1.4.3.1 Messagelist Component

The goal of the MessageList component is to query all Message contracts where the receiveris
the current user, and display their contents and senders in a list. The entire component is shown
below. You should copy this into a new MessageList.tsx fileinui/src/components and save it.

In the component body, messagesResult gets the stream of all Message contracts visible to the
current user. The streaming aspect means that we don’t need to reload the page when new mes-
sages come in. For each contract in the stream, we destructure the payload (the data as opposed to
metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we
construct a ListItem Ul element with the details of the message.

There is one important point about privacy here. No matter how we write our Message query in the
Ul code, it is impossible to break the privacy rules given by the Daml model. That is, it is impossible
to see a Message contract of which you are not the sender or the receiver (the only parties that
can observe the contract). This is a major benefit of writing apps on Daml: the burden of ensuring
privacy and authorization is confined to the Daml model.

14 Chapter 1. Getting started

Daml SDK Documentation, 1.15.0

1.4.3.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again
we show the entire component here; you should copy this into a new MessageEdit. tsx fileinui/
src/components and save it.

You will first notice a Props type near the top of the file with a single followers field. A prop in React
is an input to a component; in this case a list of users from which to select the message receiver.
The prop will be passed down from the MainView component, reusing the work required to query
users from the ledger. You can see this followers field bound at the start of the MessageEdit
component.

We use the React useState hook to get and set the current choices of message receiver and
content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-
erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with
the receiver’s username and exercises the SendMessage choice with the appropriate arguments.
If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage
setsthe isSubmitting state sothatthe Send button is disabled while the requestis processed. The
result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to
select a receiver from the followers, a text field for the message content, and a Send button which
triggers submitMessage.

There is again an important point here, in this case about how authorization is enforced. Due to the
logic of the SendMessage choice, it is impossible to send a message to a user who is not follow-
ing us (even if you could somehow access their User contract). The assertion that elem sender
followingin SendMessage ensures this: no mistake or malice by the Ul programmer could breach
this.

1.4.3.3 MainView Component

Finally we can see these components come together in the MainView component. We want to add a
new panel to house our messaging Ul.Opentheui/src/components/MainView. tsx file and start
by adding imports for the two new components.

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll
add a new Segment for Messages. Make sure you’ve saved the file after copying the code.

You can see we simply follow the formatting of the previous panels and include the new messag-
ing components: MessageEdit supplied with the usernames of all visible parties as props, and
MessageList to display all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.4.4 Running the updated Ul

If you have the frontend Ul up and running you’re all set. In case you don’t have the Ul running open
a new terminal window and navigate to the create-daml-app/ui folder and run the npm start
command, which will start the UL

Once you’ve done all these changes you should see the same login page as before at http://localhost:
3000.

Once you've logged in, you’ll see a familiar Ul but with our new Messages panel at the bottom!

1.4. Your First Feature 15

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, 1.15.0

Create D'\ M I_ App

DAML

Welcome, Bob!

@ Bob

a Users I'm following

Follow

& The Network
w My followers and users they are following

Messages

Send a message to a follower

You are logged in as Bob. ®

16 Chapter1

. Getting started

Daml SDK Documentation, 1.15.0

Go ahead and add follow more users, and log in as some of those users in separate browser windows
to follow yourself back. Then, if you click on the dropdown menu in the Messages panel, you’ll be able
to see some followers to message!

Messages

Send a message to a follower

Alice

Send some messages between users and make sure you can see each one from the other side. You’ll
notice that new messages appear in the Ul as soon as they are sent (due to the streaming React
hooks).

Messages

Send a message to a follower

Alice v

Bob - Alice: Hi Alice!

Tip: You completed the second part of the Getting Started Guide! Join our forum and share a screen-
shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to
Daml Hub

1.4.5 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-
ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and
understand its core concepts such as parties, signatories, observers, and controllers. You can do
that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.5 Testing Your App

When developing your application, you will want to test that user flows work from end to end. This
means that actions performed in the web Ul trigger updates to the ledger and give the desired results

1.5. Testing Your App 17

https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/learn/fundamental-concepts

Daml SDK Documentation, 1.15.0

on the page. In this section we show how you can do such testing automatically in TypeScript (equally
JavaScript). This will allow you to iterate on your app faster and with more confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

npm add --only=dev puppeteer wait-on @types/jest Qtypes/node @types/
—puppeteer Q@types/wait-on

1.5.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suitein section The Full Test Suite at the bottom of this page. Torun this test suite, create a new fileui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes forthe daml start
and npm start commands, which run for the duration of our tests. We also have a single Puppeteer
browser that we share among tests, opening new browser pages for each one.

The beforeAll () sectionis a function run once before any of the tests run. We use it to spawn the
daml startandnpm start processesandlaunchthebrowser. OntheotherhandtheafterAll ()
sectionis used toshutdown these processes and close the browser. This step is important to prevent
child processes persisting in the background after our program has finished.

1.5.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

we’ll walk though this step by step.

18 Chapter 1. Getting started

https://jestjs.io/
https://pptr.dev/

Daml SDK Documentation, 1.15.0

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

getParty () gives us a new party name. Right now itis justa string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single User contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.5.3 Accessing Ul elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.test-
select-login-button', are CSS Selectors. You may have seen them before in CSS styling of web
pages. In this case we use class selectors, which look for CSS classes we’ve given to elements in our
React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.5.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic

1.5. Testing Your App 19

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

Daml SDK Documentation, 1.15.0

Elements | Console Sources Network Performance >

pt>

Create DI\ M I. App :
on class="ui fluid primary button test-select-login-button'>Log in

utt

Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the
input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS

selectors accordingly.

1.5.5 The Full Test Suite

20 Chapter 1. Getting started

Chapter 2

Writing Daml

2.1 An introduction to Daml

Daml is a smart contract language designed to build composable applications on an abstract Daml!
Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-
plications that run on any Daml Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
Daml Ledger Model and how to use Daml Connect’s developer tools to write, test, compile, package and
ship your application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the Daml code for each
section here or download them using the Daml assistant. Forexample, to load the sources for section
Tinto a folder called 1 Token,rundaml new 1 Token --template daml-intro-1.

Prerequisites:
You have installed the Dam/ Connect SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small Daml template, which represents a self-issued, non-
transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make
it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

Daml Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder 1 Token by running
daml new 1 Token --template daml-intro-1

2]

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, 1.15.0

2.1.1.1 Daml ledger basics

Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll coverin more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are
collectively called a Daml model or contract model.
2.1.1.2 Daml files and modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with —-:

-— A Daml file defines a module.
module Token where

2.11.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the create arguments or simply arguments. The with block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou can read this as template Token with a field owner of type Party .

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.
2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority
is required to create the contract or archive it - just like a real contract. Every contract must have at

22 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

2.11.5 Next up

In 2 Testing templates using Daml Script, you’ll learn about how to try out the Token contract template
in Daml’s inbuilt Daml Script testing language.

2.1.2 2 Testing templates using Daml Script

In this section you will test the Token model from 1 Basic contracts using the Dam/ Script integration
in Daml Studio. You’ll learn about the basic features of :

Allocating parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2
by running daml new daml-intro-2 --template daml-intro-2

2.1.2.1 Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of
transactions, tocheck that your templates behave as you’d expect. You can also script some external
information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called Alice .

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to puta partycalled Alice inavariablealice. There are
two things of note there:

Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the
Script is run in the context of a ledger. <- means run the action and bind the result . It
can only be run in that context because, depending on the ledger state the script is running
on,allocateParty will either give you back a party with the name you specified or append a
suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

2.1. An introduction to Daml 23

Daml SDK Documentation, 1.15.0

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in Daml are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = aliceis aCommands, which translates to a list of commands that will be submit-
ted to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alicein 3 Data types.

You couldwritethisas submit alice (createCmd Token with owner = alice),butjustlike
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note however, that the commands submitted as part of a transaction are not allowed
to depend on each other.

2.1.2.2 Running scripts
There are a few ways to run Daml Scripts:

In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

Using the command line daml test also against a test ledger, useful for continuous integra-
tion.

Against a real ledger, take a look at the documentation for Daml Script for more information.
Interactively using Dam/ REPL.

In Daml Studio, you should see the text Script results just above the line token test 1 = do.
Click on it to display the outcome of the script.

SCFIPE resu

token test 1 = script do
alice <- allocateParty "Alice"

submit alice do
createCmd Token owner = alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

The first columns, labelled vertically, show which parties know about which contracts. In this
simple script, the sole party Alice knows about the contract she created.

The second column shows the ID of the contract. This will be explained later.

The third column shows the status of the contract, either active or archived.

The remaining columns show the contract arguments, with one column per field. As expected,
field owneris 'Alice'. The single quotation marks indicate that Alice is a party.

24 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

= Script: token_test 1 X

SR k=l M show archived M show detailed disclosure

Main:Token

@
=
it stotusowne <

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. If your file contains more than one script,
all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do

createCmd Token with owner = bob
submit bob do
createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

create of at DA.Internal.Prelude:381:26
failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01TO0:00:00Z

L~

-

owner = 'Bob’

The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice can’t create a token for Bob, and the second submit statement was never reached.

2.1. An introduction to Daml 25

Daml SDK Documentation, 1.15.0

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

submitMustFail alice do

createCmd Token with owner = bob
submitMustFail bob do
createCmd Token with owner = alice

submit alice do
createCmd Token with owner = alice
submit bob do
createCmd Token with owner

bob

submitMustFail never has an impacton the ledger so the resulting tabular script view just shows
the two Tokens resulting from the successful submit statements. Note the new column for Bob as
well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.
Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,
you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.
How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

2.1.2.5 Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you
want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

26 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

= Script: token_test 3 X

Show transaction view show archived I show detailed disclosure
Main:Token

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the Daml Studio script runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.All transactions have this format in the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contractis archived in sub-transaction 0 of commit 2.
referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that
'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that Alice learned about the contract in commit #0.

Everything following with shows the create arguments.

2.1.2.6 Exercises
To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

2.1. An introduction to Daml 27

Daml SDK Documentation, 1.15.0

= Script: token_test 3 X

Show table view

Transactions:
1970-01-01TO0:00:00Z |

owner = 'Alice’

1970-01-01TO0:00:00Z |

L "Alice' (1)
= '"Alice’ Archive

Active contracts:

Return value: {}

28 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

2.1.2.7 Next up

In 3 Data types you will learn about Dam/’s type system, and how you can think of templates as tables
and contracts as database rows.

2.1.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using Daml| Script, you learnt about the script view in Daml Studio, which displays
the current ledger state. It shows one table per template, with one row per contract of that type and
one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

Daml’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyou canload all the code for this section into a foldercalled 3 Data byrunning
daml new 3 Data --template daml-intro-3

2.1.3.1 Native types

You have already encountered a few native Daml types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using Daml Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0or =9999999999999999999999999999.99999999909.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

2.1. An introduction to Daml 29

Daml SDK Documentation, 1.15.0

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result.

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"
my bool = False
my date = date 2020 Jan 01

my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addbDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time == time (addDays my date 1) 00 0O[I
—00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the Daml Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
Daml Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or Party. An integer
like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.
You can think of the 1let as turning variable declaration into an action.

Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so
if you declare my int = 123, itcan infer thatmy int is also an Int. This means you don’t
have to write the type annotationmy int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.
001 : Decimal which is a synonym for Numeric 10. You can always choose to add type
annotations to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party
in the role of an accountant.

30 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

template CashBalance
with
accountant : Party
currency : Text

amount : Decimal
owner : Party
account number : Text

bank : Party

bank address : Text

bank telephone : Text
where

signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
alice <- allocateParty "Alice"
bob <- allocateParty "Bank of Bob"

submit accountant do
createCmd CashBalance with
accountant
currency = "USD"
amount = 100.0
owner = alice
account number = "ABC123"
bank = bob
bank address = "High Street"
bank telephone = "012 3456 789"

2.1.3.2 Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these
native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple
import Daml.Script

tuple test = script do

let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)

(continues on next page)

2.1. An introduction to Daml 31

Daml SDK Documentation, 1.15.0

(continued from previous page)

assert (fst my key value == "Key")

assert (snd my key value == 1)

assert (my key value. 1 == "Key")

assert (my key value. 2 == 1)

assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3l
—my coordinate))

assert (my coordinate == (my coordinate. 1, my coordinate. 2, my

—coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

Daml supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] or alist of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-
tions.

import DA.List
import Daml.Script

list test = script do

let
empty : [Int] = []
one = [1]
two = [2]
many = [3, 4, 5]

-— “head’ gets the first element of a list
assert (head one == 1)
assert (head many == 3)

-- “tail gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— '++ concatenates 1lists
assert (one ++ two ++ many == [1, 2, 3, 4, 51])
assert (empty ++ many ++ empty == many)

(continues on next page)

32 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

-— ':: adds an element to the beginning of a 1ist.
assert (1 :: 2 :: 3 :: 4 :: 5 :: empty == 2 :: many)

Note the type annotation on empty : [Int] = []. It's necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-— Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

-- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = script do
let
my record = MyRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N o< %
I
.(DOO

2.
3

-— 'my text int’ has type "KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val = 1

(continues on next page)

2.1. An introduction to Daml 33

Daml SDK Documentation, 1.15.0

(continued from previous page)

-— 'my int decimal has type KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick thenl]
—up
-— implicitly, writing just "my coord instead of "my coord = my
—coord .
my nested = Nested with
my coord
my record
my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with,one of the things that happens inthe background is that this becomes adata Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert
(my record == my record) in the script, you may be surprised to get an error message No
instance for (Eg MyRecord) arising from a use of ‘==’. Equality in Daml is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

data EqRecord = EgqRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]
deriving (Eq)

data MyContainer a = MyContainer with
contents : a

deriving (Eq)

eq test = script do

let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

(continues on next page)

34 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

my container = MyContainer with
contents = eq record

other container = MyContainer with
contents = eq record

assert (my container.contents == eq record)
assert (my container == other container)

Eqg is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-
guages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.
There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which
gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eqg, Show). The record types cre-
ated using template T with do this automatically, and the native types have appropriate type-
class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eqand Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"

(continues on next page)

2.1. An introduction to Daml 35

Daml SDK Documentation, 1.15.0

(continued from previous page)

owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street”
telephone = "012 3456 789"
account = Account with
owner
bank
numpber = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
cash
account
pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are

expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. Daml doesn’t have an equivalent tonull. Variants can express

that cash can either be in hand or at a bank.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand

(continues on next page)

36

Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

| InAccount Account
deriving (Eq, Show)

template CashBalance

with
accountant : Party
owner : Party
cash : Cash
location : Location
where

signatory accountant

cash balance test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street”
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InHand

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest Daml has to a null value:

data Optional a

(continues on next page)

2.1. An introduction to Daml

37

Daml SDK Documentation, 1.15.0

(continued from previous page)

= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if itis InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-—- Commented out as "Either 1is defined in the standard library.
data Either a b

= Left a
| Right b
-}
variant access test = script do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that "1° is a "Left , we can error on the "Right’ case.
1 value = case 1 of
Left 1 -> 1
Right i -> error "Expecting Left"
-—- Comment out at your own peril
{_
r value = case r of
Left 1 -> 1
Right i -> error "Expecting Left"
-}

-- If we are unsure, we can return an Optional’ in both cases
ol value = case 1 of

Left i -> Some i

Right i -> None

(continues on next page)

38 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

or value = case r of
Left i -> Some i
Right i -> None

-— If we don't care about values or even constructors, we can usel]

—wildcards
1 value2 = case 1 of
Left 1 -> 1

Right _ -> error "Expecting Left"

1 value3 = case 1 of
Left i -> 1
_ —> error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —> False
assert (1 value == 1)
assert (1 value2 == 1)
assert (1 value3d == 1)
assert (ol value == Some 1)
assert (or value == None)

assert weekend

2.1.3.3 Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

manipulation demo = script do
let
eq record = EqRecord with
my txt = "Text"
my int = 2

my dec = 2.5

my list = ["One", "Two", "Three"]

-— A verbose way to change "eq record’

changed record = EqRecord with
my txt = eqg record.my txt
my int = 3
my dec = eg record.my dec
my list = eq record.my list

(continues on next page)

2.1. An introduction to Daml

39

Daml SDK Documentation, 1.15.0

(continued from previous page)

-—- A better way
better changed record = eq record with
my int = 3

record with changed list = eq record with

my list = "Zero" :: eqg record.my list
assert (eq record.my int == 2)
assert (changed record == better changed record)

-— The list on "eq record' can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])
-- The 1list on "record with changed list' 1s a new one.
assert (record with changed list.my list == ["Zero", "One", "Two", "Three

H"])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

2.1.3.4 Contract keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most
database schemas have more than one table, Daml contract models often have multiple templates
thatreference each other. Forexample, you may not want to store your bank and account information
on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below
shows a contract model where Account is split out into a separate template and referenced by
ContractId, but it also highlights a big problem with that kind of reference: just like data, con-
tracts are immutable. They can only be created and archived, so if you want to change the dataon a
contract, you end up archiving the original contract and creating a new one with the changed data.
That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text

(continues on next page)

40 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

bank : Bank
where
signatory accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : ContractId Account
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on thell
—account
Some account <- queryContractId accountant accountCid
new_account <- submit accountant do
archiveCmd accountCid
createCmd account with

(continues on next page)

2.1. An introduction to Daml 41

Daml SDK Documentation, 1.15.0

(continued from previous page)

bank = account.bank with
telephone = "098 7654 321"
pure ()

-—- The “account’ field on the balance now refers to the archived
-— contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account
optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active
contractusingits contractID.If thereis no active contract with the given identifiervisible to the given
party, queryContractId returns None. Here, we use a pattern match on Some which will abort the
script if queryContractIdreturns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part
of that transaction. To create new_account, the accountant archives the old account and creates a
new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint
in the sense that only one contract of a given template and with a given key value can be active at a
time.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text
bank : Bank

where

signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
AccountKey

(continues on next page)

42 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

Some account <- queryContractId accountant accountCid
balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = key account

-— Now the accountant updates the telephone number for the bank on thell
—account
Some account <- queryContractId accountant accountCid
new accountCid <- submit accountant do
archiveCmd accountCid
cid <- createCmd account with
bank = account.bank with

(continues on next page)

2.1. An introduction to Daml 43

Daml SDK Documentation, 1.15.0

(continued from previous page)

telephone = "098 7654 321"
pure cid

-— Thanks to contract keys, the current account contract is fetched
Some balance <- queryContractId accountant balanceCid
(cid, account) <- submit accountant do
createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.
—account)
assert (cid == new_ accountCid)

-- Helper template to call “fetchByKey' .
template Helper
with
p : Party
where
signatory p
choice FetchAccountByKey : (ContractId Account, Account)
with
accountKey : AccountKey
controller p
do fetchByKey (@Account accountKey

Since Daml is designed to run on distributed systems, you have to assume that there is no
global entity that can guarantee uniqueness, which is why each key expression must come with
amaintainer expression. maintainer takes one or several parties, all of which have to be signa-
tories of the contract and be part of the key. That way the index can be partitioned amongst sets of
maintainers, and each set of maintainers can independently ensure the uniqueness constraint on
their piece of the index. The constraint that maintainers are part of the key is ensured by only having
the variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-
tract identifier, we use fetchByKey @Account. fetchByKey @Account takes a value of type
AccountKey and returns a tuple (ContractId Account, Account) if the lookup was success-
ful or fails the transaction otherwise. fetchByKey cannot be used directly in the list of commands
sent to the ledger. Therefore we create a Helper template with a FetchAccountByKey choice and
call thatvia createAndExerciseCmd. We will learn more about choices in the next section.

Since a single type could be used as the key for multiple templates, you need to tell the compiler
what type of contract is being fetched by using the @Account notation.

2.1.3.5 Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other
parties the right to manipulate data in restricted ways.
2.1.4 4 Transforming data using choices

Inthe example in Contract keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the

44 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder called
4 Transformations by running daml new 4 Transformations --template daml-intro-
4

2.1.4.1 Choices as methods
If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact:

template Contact
with
owner : Party
party : Party
address : Text
telephone : Text
where
signatory owner

controller owner can

UpdateTelephone
ContractId Contact
with
newTelephone : Text
do

create this with
telephone = newTelephone

The above defines a choice called UpdateTelephone. Choices are part of acontract template. They’'re
permissioned functions that result in an Update. Using choices, authority can be passed around,
allowing the construction of complex transactions.

Let’s unpack the code snippet above:

Thefirstline,controller owner can saysthatthe followingchoices are controlled by owner,

meaning owner is the only party that is allowed to exercise them. The line starts a new block in

which multiple choices can be defined.

UpdateTelephone isthe name of achoice. It starts a new block in which that choice is defined.
ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

2.1. An introduction to Daml 45

Daml SDK Documentation, 1.15.0

The following with block is that of a record. Just like with templates, in the background, a new
record type is declared: data UpdateTelephone = UpdateTelephone with

The do starts a block defining the action the choice should perform when exercised. In this
case a new Contact is created.

The new Contact is created using this with. this is a special value available within the
where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas
createCmd builds up a list of commands to be sent to the ledger, create builds up a more flex-
ible Update that is executed directly by the ledger. You might have noticed that create returns an
Update (ContractId Contact),notaContractId Contact. As a do block always returns the
value of the last statement within it, the whole do block returns an Update, but the return type on
the choice is justa ContractId Contact. Thisis a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice test = do
owner <- allocateParty "Alice"
party <- allocateParty "Bob"

contactCid <- submit owner do
createCmd Contact with

owner
party

address = "1 Bobstreet"
telephone = "012 345 6789"

-—- Bob can't change his own telephone number as Alice controls
-—- that choice.
submitMustFail party do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

newContactCid <- submit owner do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exerciseCmdreturns a Commands r where risthe returntype specified onthe choice, allowing the
new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd
and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always

46 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

used on the client side to build up the list of commands on the ledger. The versions without the
suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-
vious section. This allows you to create a new contract with the given arguments and immediately
exercise a choice on it. For a consuming choice, this archives the contract so the contract is created
and archived within the same transaction.

2.1.4.2 Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
script:

controller party can

UpdateAddress
ContractId Contact
with
newAddress : Text
do
create this with
address = newAddress

newContactCid <- submit party do
exerciseCmd newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"”

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. Controllers specified
via controller c can syntax become observers of the contract. More on observers later, but in
short, they get to see any changes to the contract.

2.1.4.3 Choices in the Ledger Model

In T Basic contracts you learned about the high-level structure of a Daml ledger. With choices and the
exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and

2.1. An introduction to Daml 47

Daml SDK Documentation, 1.15.0

nonconsuming. consuming is the default kind and changes the contract’s status from active
to archived.

A key assertion records the assertion that the given contract key (see Contract keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above script:

Transactions:
TX #0 1970-01-01T00:00:00Z (Contact:43:17)
#0:0
| consumed by: #2:0
| referenced by #2:0

| known to (since): 'Alice' (#0), 'Bob' (#0)
L_> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone

—»= "012 345 6789"

TX #1 1970-01-01T00:00:002Z
mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)
#2:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"
children:
#2:1
| consumed by: #4:0
| referenced by #3:0, #4:0

| known to (since): 'Alice' (#2), 'Bob' (#2)
L_> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";l!
—~telephone = "098 7654 321"

TX #3 1970-01-01T00:00:00Z (Contact:60:3)
#3:0
L> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)
#4:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)
with
newAddress = "1-10 Bobstreet"
children:

(continues on next page)

48 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

(continued from previous page)

#4:1
| referenced by #5:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L_> create Contact:Contact
with

owner = 'Alice';

party = 'Bob';

address = "1-10 Bobstreet";

telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)
#5:0
L> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four submit statementsin the script. Within each com-
mit, we see that it’s actually actions that have IDs of the form #commit number:action number.
Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions
of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive choice

You may have noticed that thereis no archive action. That’s becausearchive cidisjustshorthand
forexercise cid Archive,whereArchiveisachoiceimplicitlyaddedtoeverytemplate, withthe
signatories as controllers.

2.1.4.4 A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the
location of the physical cash, but merely with liabilities:

-—- Copyright (c) 2021 Digital Asset (Switzerland) GmbH and/or itsl]
—affiliates. All rights reserved.
-- SPDX-License-Identifier: Apache-2.0

module SimpleIou where
import Daml.Script
data Cash = Cash with

currency : Text
amount : Decimal

(continues on next page)

2.1. An introduction to Daml 49

Daml SDK Documentation, 1.15.0

(continued from previous page)

deriving (Eq, Show)

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

controller owner can

Transfer
ContractId Simplelou
with
newOwner : Party
do
create this with owner = newOwner
test iou = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

charlie <- allocateParty "Charlie"
dora <- allocateParty "Dora"

-- Dora issues an Iou for S$100 to Alice.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-- Alice transfers it to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

-— Bob transfers it to Charlie.
submit bob do
exerciseCmd iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

50

Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

2.1.4.5 Next up

You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In
that context, you will also learn about time on Daml ledgers, do blocks and <- notation within those.

2.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in Daml:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do blocks,
which will be good preparation for 7 Composing choices, where you will use do blocks to compose
choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Rememberthatyou can load all the code for this sectioninto a foldercalled 5 Restrictions
by running daml new 5 Restrictions --template daml-intro-5

2.1.5.1 Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-
conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou

with
issuer : Party
owner : Party
cash : Cash
where

signatory issuer

ensure cash.amount > 0.0

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency == 3
&& T.isUpper cash.currency

Hint: The T here stands for the DA. Text standard library which has been imported using import

2.1. An introduction to Daml 51

Daml SDK Documentation, 1.15.0

DA.Text as T.

test restrictions = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
dora <- allocateParty "Dora"

-—- Dora can't issue negative Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-— Or even zero Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"

-—- Nor positive Ious with invalid currencies.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-—- But positive Ious still work, of course.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

2.1.5.2 Assertions
A second common kind of restriction is one on data transformations.

For example, the simple lou in A simple cash model allowed the no-op where the owner transfers to

themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scripts.

52 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

assert does not return an informative error so often it’s better to use the function assertMsgqg,
which takes a custom error message:

controller owner can

Transfer

ContractId SimpleIou

with
newOwner : Party

do
assertMsg "newOwner cannot be equal to owner." (owner /=

—newOwner)

create this with owner = newOwner

-—- Alice can't transfer to herself...
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-
ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This
assumes that actual cash changes hands off-ledger.)

controller owner can
Redeem
()
do

now <- getTime

let
today = toDateUTC now
dow = dayOfWeek today
timeofday = now “subTime time today 0 0 O
hrs = convertRelTimeToMicroseconds timeofday / 3600000000

assertMsg
("Cannot redeem outside business hours. Current time: " <>[

—~show timeofday)

(hrs >= 8 && hrs <= 18)

case dow of
Saturday -> abort "Cannot redeem on a Saturday."
Sunday -> abort "Cannot redeem on a Sunday."
_ —> return ()

-- June 1st 2019 is a Saturday.
setTime (time (date 2019 Jun 1) 0 0 0)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do

(continues on next page)

2.1. An introduction to Daml 53

Daml SDK Documentation, 1.15.0

(continued from previous page)

exerciseCmd iou?2 Redeem

-- Not even at mid-day.
passTime (hours 12)
-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exerciseCmd iou2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
passTime (hours 42)
submitMustFail bob do

exerciseCmd iou2 Redeem

-— Bob can redeem at 8am on Monday.
passTime (hours 2)
submit bob do

exerciseCmd iou2 Redeem

There are quite a few new time-related functions from the DA. Time and DA . Date libraries here. Their
names should be reasonably descriptive so how they work won’t be covered here, but given that Daml
assumes itisrunin a distributed setting, we will still discuss time in Daml.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the
<- operator. do blocks and <- deserve a proper explanation at this point.

2.1.5.3 Time on Daml ledgers

Each transaction on a Daml ledger has two timestamps called the ledger time (LT) and the record time
(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. The
participant has to take a good guess at what the record time will be. If it’s too far off, the transaction
will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart
into day of week and hour of day using standard library functions from DA.Date and DA.Time. The
hour of the day is checked to be in the range from 8 to 18.

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Alice
submits a transaction toredeem an lou. One second later, the transaction is assigned a LT of 17:59:56,
but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even though it was
committed after business hours, it would be a valid transaction and be committed successfully as
getTime will return 17:59:56 so hrs == 17. Since the RT is 18:00:06, LT - RT <= 10 seconds
and the transaction won’t be rejected.

Time therefore has to be considered slightly fuzzy in Daml, with the fuzziness depending on the skew
parameter.

For details, see Background concepts - time.

Time in test scripts

For tests, you can set time using the following functions:

54 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

setTime, which sets the ledger time to the given time.
passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed Daml ledger, there are no guarantees that ledger time or record time are strictly
increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-
tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or
equal to that of TX1:

iou3 <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days (-3))
submitMustFail alice do
exerciseCmd iou3 Redeem

2.1.5.4 Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Script and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocks is therefore crucial to being able to construct correct contract
models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressionsin Damlare pureinthe sense thatthey have no side-effects: they neither read nor modify
any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is
no expression expr that you could put on theright hand side of now = expr. To get the ledger time,
you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a, and Update and Script are instances of Action. A value of such atypem a wherem

2.1. An introduction to Daml 55

Daml SDK Documentation, 1.15.0

isaninstanceof Actioncanbeinterpretedas arecipeforan actionoftypem,which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais a recipe to update a Daml ledger, which, when committed, has the effect of
changing the ledger, and returns a value of type a . An update to a Daml ledger is a transaction
so equivalently, an Update ais arecipe toconstruct atransaction, which, when executed in
the context of a ledger, returns a value of type a .

A Script ais arecipe for a test, which, when performed against a ledger, has the effect of
changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, allocateParty party,passTime time, submit party commands,
create contract and exercise choice should make more sense in thatlight. For example:

getTime : Update Time is the recipe for an empty transaction that also happens to return
a value of type Time.

passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any
transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou),whereiou : Iouisarecipeforatransaction
consisting of a single create action, and returns the contract id of the created contract if
successful.

submit alice (createCmd iou) : Script (ContractId Iou) is arecipe for a script
in which Alice sends the command createCmd iou to the ledger which produces a transac-
tion and a return value of type ContractId Iouand returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent
commands sent to the ledger. You can still use do blocks but if you have more than one command
in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.
In addition to that, the last statement in such a do block must be of the form return expr orpure
expr. Applicative is a more restricted version of Action that enforces that there are no depen-
dencies between commands. If you do have dependencies between commands, you can always wrap
itin a choice in a helper template and call that via createAndExerciseCmd just like we did to call
fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you can make
multiple calls to submit.

{—-# LANGUAGE ApplicativeDo #-)}
module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just
another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a
transaction.

A scriptis a list of interactions with the ledger (submit, allocateParty, passTime, etc). So
a script followed by another script is again a script.

56 Chapter 2. Writing Daml

Daml SDK Documentation, 1.15.0

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,
using the results of earlier actions in later ones.

sub scriptl (alice, dora) = do
submit dora do
createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

sub script2 = do
passTime (days 1)
passTime (days (-1))
return 42

sub script3 (bob, dora) = do
submit dora do
createCmd SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main : Script () do
dora <- allocateParty "Dora"
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

ioul <- sub scriptl (alice, dora)
sub script2
iou2 <- sub script3 (bob, dora)

submit dora do
archiveCmd ioul
archiveCmd iou2
pure ()

Above, we see do blocks in action for both Script and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return xis a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_script2 : Script Int.

2.1.5.5 Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can
fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on

2.1. An introduction to Daml 57

Daml SDK Documentation, 1.15.0

the ledger.

Each has a special action abort txt