Module Prelude¶
The pieces that make up the Daml language.
Typeclasses¶
class Action m => CanAssert m where
Constraint that determines whether an assertion can be made in this context.
- assertFail
: Text -> m t
Abort since an assertion has failed. In an Update, Scenario, Script, or Trigger context this will throw an AssertionFailed exception. In an
Either Textcontext, this will return the message as an error.
class HasTime m where
class Action m => CanAbort m where
class HasSubmit m cmds where
- submit
: HasCallStack => Party -> cmds a -> m a
submit p cmdssubmits the commandscmdsas a single transaction from partypand returns the value returned bycmds.If the transaction fails,
submitalso fails.
- submitMustFail
: HasCallStack => Party -> cmds a -> m ()
submitMustFail p cmdssubmits the commandscmdsas a single transaction from partyp.It only succeeds if the submitting the transaction fails.
class Functor f => Applicative f where
- pure
: a -> f a
Lift a value.
- (<*>)
: f (a -> b) -> f a -> f b
Sequentially apply the function.
A few functors support an implementation of
<*>that is more efficient than the default one.
- liftA2
: (a -> b -> c) -> f a -> f b -> f c
Lift a binary function to actions.
Some functors support an implementation of
liftA2that is more efficient than the default one. In particular, iffmapis an expensive operation, it is likely better to useliftA2than tofmapover the structure and then use<*>.
- (*>)
: f a -> f b -> f b
Sequence actions, discarding the value of the first argument.
- (<*)
: f a -> f b -> f a
Sequence actions, discarding the value of the second argument.
instance Applicative ((->) r)
instance Applicative (State s)
instance Applicative Down
instance Applicative Scenario
instance Applicative Update
instance Applicative Optional
instance Applicative Formula
instance Applicative NonEmpty
instance Applicative (Validation err)
instance Applicative (Either e)
instance Applicative ([])
class Applicative m => Action m where
class Action m => ActionFail m where
This class exists to desugar pattern matches in do-notation. Polymorphic usage, or calling
faildirectly, is not recommended. Instead consider usingCanAbort.instance ActionFail Scenario
instance ActionFail Update
instance ActionFail Optional
instance ActionFail (Either Text)
instance ActionFail ([])
class Semigroup a where
The class of semigroups (types with an associative binary operation).
- (<>)
: a -> a -> a
An associative operation.
instance Ord k => Semigroup (Map k v)
instance Semigroup (TextMap b)
instance Multiplicative a => Semigroup (Product a)
instance Additive a => Semigroup (Sum a)
instance MapKey k => Semigroup (Map k v)
instance MapKey a => Semigroup (Set a)
instance Semigroup (NonEmpty a)
instance Ord a => Semigroup (Max a)
instance Ord a => Semigroup (Min a)
instance Ord k => Semigroup (Set k)
instance Semigroup [a]
class Semigroup a => Monoid a where
The class of monoids (types with an associative binary operation that has an identity).
- mempty
: a
Identity of
(<>)
- mconcat
: [a] -> a
Fold a list using the monoid. For example using
mconcaton a list of strings would concatenate all strings to one lone string.instance Ord k => Monoid (Map k v)
instance Multiplicative a => Monoid (Product a)
instance Additive a => Monoid (Sum a)
instance MapKey k => Monoid (Map k v)
instance MapKey a => Monoid (Set a)
instance Ord k => Monoid (Set k)
instance Monoid [a]
class HasSignatory t where
class HasObserver t where
class HasEnsure t where
class HasAgreement t where
class HasCreate t where
Exposes
createfunction. Part of theTemplateconstraint.
- create
: t -> Update (ContractId t)
Create a contract based on a template
t.
class HasFetch t where
Exposes
fetchfunction. Part of theTemplateconstraint.
- fetch
: ContractId t -> Update t
Fetch the contract data associated with the given contract ID. If the
ContractId tsupplied is not the contract ID of an active contract, this fails and aborts the entire transaction.
class HasArchive t where
Exposes
archivefunction. Part of theTemplateconstraint.
- archive
: ContractId t -> Update ()
Archive the contract with the given contract ID.
class HasTemplateTypeRep t where
ExposestemplateTypeRepfunction in Daml-LF 1.7 or later. Part of theTemplateconstraint.
class HasToAnyTemplate t where
ExposestoAnyTemplatefunction in Daml-LF 1.7 or later. Part of theTemplateconstraint.
class HasFromAnyTemplate t where
ExposesfromAnyTemplatefunction in Daml-LF 1.7 or later. Part of theTemplateconstraint.
class HasExercise t c r where
Exposes
exercisefunction. Part of theChoiceconstraint.
- exercise
: ContractId t -> c -> Update r
Exercise a choice on the contract with the given contract ID.
class HasToAnyChoice t c r where
ExposestoAnyChoicefunction for Daml-LF 1.7 or later. Part of theChoiceconstraint.
class HasFromAnyChoice t c r where
ExposesfromAnyChoicefunction for Daml-LF 1.7 or later. Part of theChoiceconstraint.
class HasKey t k where
Exposes
keyfunction. Part of theTemplateKeyconstraint.
- key
: t -> k
The key of a contract.
class HasLookupByKey t k where
Exposes
lookupByKeyfunction. Part of theTemplateKeyconstraint.
- lookupByKey
: k -> Update (Optional (ContractId t))
Look up the contract ID
tassociated with a given contract keyk.You must pass the
tusing an explicit type application. For instance, if you want to look up a contract of templateAccountby its keyk, you must calllookupByKey @Account k.
class HasFetchByKey t k where
Exposes
fetchByKeyfunction. Part of theTemplateKeyconstraint.
- fetchByKey
: k -> Update (ContractId t, t)
Fetch the contract ID and contract data associated with a given contract key.
You must pass the
tusing an explicit type application. For instance, if you want to fetch a contract of templateAccountby its keyk, you must callfetchByKey @Account k.
class HasMaintainer t k where
Exposesmaintainerfunction. Part of theTemplateKeyconstraint.
class HasToAnyContractKey t k where
ExposestoAnyContractKeyfunction in Daml-LF 1.7 or later. Part of theTemplateKeyconstraint.
class HasFromAnyContractKey t k where
ExposesfromAnyContractKeyfunction in Daml-LF 1.7 or later. Part of theTemplateKeyconstraint.
class IsParties a where
class Functor f where
A
Functoris a typeclass for things that can be mapped over (using itsfmapfunction. Examples includeOptional,[]andUpdate).
- fmap
: (a -> b) -> f a -> f b
fmaptakes a function of typea -> b, and turns it into a function of typef a -> f b, wherefis the type which is an instance ofFunctor.For example,
mapis anfmapthat only works on lists. It takes a functiona -> band a[a], and returns a[b].
- (<$)
: a -> f b -> f a
Replace all locations in the input
f bwith the same valuea. The default definition isfmap . const, but you can override this with a more efficient version.
class Eq a where
The
Eqclass defines equality (==) and inequality (/=). All the basic datatypes exported by the “Prelude” are instances ofEq, andEqmay be derived for any datatype whose constituents are also instances ofEq.Usually,
==is expected to implement an equivalence relationship where two values comparing equal are indistinguishable by “public” functions, with a “public” function being one not allowing to see implementation details. For example, for a type representing non-normalised natural numbers modulo 100, a “public” function doesn’t make the difference between 1 and 201. It is expected to have the following properties:Reflexivity:
x == x=TrueSymmetry:
x == y=y == xTransitivity: if
x == y && y == z=True, thenx == z=TrueSubstitutivity: if
x == y=Trueandfis a “public” function whose return type is an instance ofEq, thenf x == f y=TrueNegation:
x /= y=not (x == y)Minimal complete definition: either
==or/=.instance (Eq a, Eq b) => Eq (Either a b)
instance Eq BigNumeric
instance Eq RoundingMode
instance Eq ()
instance (Eq a, Eq b) => Eq (a, b)
instance (Eq a, Eq b, Eq c) => Eq (a, b, c)
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
The
Ordclass is used for totally ordered datatypes.Instances of
Ordcan be derived for any user-defined datatype whose constituent types are inOrd. The declared order of the constructors in the data declaration determines the ordering in derivedOrdinstances. TheOrderingdatatype allows a single comparison to determine the precise ordering of two objects.The Haskell Report defines no laws for
Ord. However,<=is customarily expected to implement a non-strict partial order and have the following properties:Transitivity: if
x <= y && y <= z=True, thenx <= z=TrueReflexivity:
x <= x=TrueAntisymmetry: if
x <= y && y <= x=True, thenx == y=TrueNote that the following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y= ‘True’max x y == if x >= y then x else y= ‘True’Minimal complete definition: either
compareor<=. Usingcomparecan be more efficient for complex types.
- max
- : a -> a -> a
- min
- : a -> a -> a
instance (Ord a, Ord b) => Ord (Either a b)
instance Ord BigNumeric
instance Ord RoundingMode
instance Ord ()
instance (Ord a, Ord b) => Ord (a, b)
instance (Ord a, Ord b, Ord c) => Ord (a, b, c)
instance (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d)
instance (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
class NumericScale n where
Is this a valid scale for the
Numerictype?This typeclass is used to prevent the creation of Numeric values with too large a scale. The scale controls the number of digits available after the decimal point, and it must be between 0 and 37 inclusive.
Thus the only available instances of this typeclass are
NumericScale 0throughNumericScale 37. This cannot be extended without additional compiler and runtime support. You cannot implement a custom instance of this typeclass.If you have an error message in your code of the form “No instance for
(NumericScale n)”, this is probably caused by having a numeric literal whose scale cannot be inferred by the compiler. You can usually fix this by adding a type signature to the definition, or annotating the numeric literal directly (for example, instead of writing3.14159you can write(3.14159 : Numeric 5)).
- numericScale
: proxy n -> Int
Get the scale of a
Numericas an integer. For example,numericScale (3.14159 : Numeric 5)equals5.instance NumericScale 0
instance NumericScale 1
instance NumericScale 10
instance NumericScale 11
instance NumericScale 12
instance NumericScale 13
instance NumericScale 14
instance NumericScale 15
instance NumericScale 16
instance NumericScale 17
instance NumericScale 18
instance NumericScale 19
instance NumericScale 2
instance NumericScale 20
instance NumericScale 21
instance NumericScale 22
instance NumericScale 23
instance NumericScale 24
instance NumericScale 25
instance NumericScale 26
instance NumericScale 27
instance NumericScale 28
instance NumericScale 29
instance NumericScale 3
instance NumericScale 30
instance NumericScale 31
instance NumericScale 32
instance NumericScale 33
instance NumericScale 34
instance NumericScale 35
instance NumericScale 36
instance NumericScale 37
instance NumericScale 4
instance NumericScale 5
instance NumericScale 6
instance NumericScale 7
instance NumericScale 8
instance NumericScale 9
class IsNumeric t where
Types that can be represented by decimal literals in Daml.
- fromNumeric
: NumericScale m => Numeric m -> t
Convert from
Numeric. Raises an error if the number can’t be represented exactly in the target type.
- fromBigNumeric
: BigNumeric -> t
Convert from
BigNumeric. Raises an error if the number can’t be represented exactly in the target type.instance IsNumeric BigNumeric
instance NumericScale n => IsNumeric (Numeric n)
class Bounded a where
Use the
Boundedclass to name the upper and lower limits of a type.You can derive an instance of the
Boundedclass for any enumeration type.minBoundis the first constructor listed in thedatadeclaration andmaxBoundis the last.You can also derive an instance of
Boundedfor single-constructor data types whose constituent types are inBounded.
Ordis not a superclass ofBoundedbecause types that are not totally ordered can still have upper and lower bounds.
- minBound
- : a
- maxBound
- : a
class Enum a where
Use the
Enumclass to define operations on sequentially ordered types: that is, types that can be enumerated.Enummembers have defined successors and predecessors, which you can get with thesuccandpredfunctions.Types that are an instance of class
Boundedas well asEnumshould respect the following laws:
- Both
succ maxBoundandpred minBoundshould result in a runtime error.fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,toEnum 7 : Boolis an error.enumFromandenumFromThenshould be defined with an implicit bound, like this:enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
- succ
: a -> a
Returns the successor of the given value. For example, for numeric types,
succadds 1.If the type is also an instance of
Bounded,succ maxBoundresults in a runtime error.
- pred
: a -> a
Returns the predecessor of the given value. For example, for numeric types,
predsubtracts 1.If the type is also an instance of
Bounded,pred minBoundresults in a runtime error.
- toEnum
: Int -> a
Convert a value from an
Intto anEnumvalue: ie,toEnum ireturns the item at theith position of (the instance of)Enum
- enumFrom
: a -> [a]
Return a list of the
Enumvalues starting at theIntposition. For example:
enumFrom 6 : [Int] = [6,7,8,9,...,maxBound : Int]
- enumFromThen
: a -> a -> [a]
Returns a list of the
Enumvalues with the first value at the firstIntposition, the second value at the secondIntposition, and further values with the same distance between them.For example:
enumFromThen 4 6 : [Int] = [4,6,8,10...]enumFromThen 6 2 : [Int] = [6,2,-2,-6,...,minBound :: Int]
- enumFromTo
: a -> a -> [a]
Returns a list of the
Enumvalues with the first value at the firstIntposition, and the last value at the lastIntposition.This is what’s behind the language feature that lets you write
[n,m..].For example:
enumFromTo 6 10 : [Int] = [6,7,8,9,10]
- enumFromThenTo
: a -> a -> a -> [a]
Returns a list of the
Enumvalues with the first value at the firstIntposition, the second value at the secondIntposition, and further values with the same distance between them, with the final value at the finalIntposition.This is what’s behind the language feature that lets you write
[n,n'..m].For example:
enumFromThenTo 4 2 -6 : [Int] = [4,2,0,-2,-4,-6]enumFromThenTo 6 8 2 : [Int] = []
class Additive a where
Use the
Additiveclass for types that can be added. Instances have to respect the following laws:
(+)must be associative, ie:(x + y) + z=x + (y + z)(+)must be commutative, ie:x + y=y + xx + aunit=xnegategives the additive inverse, ie:x + negate x=aunit
- (+)
: a -> a -> a
Add the two arguments together.
- aunit
: a
The additive identity for the type. For example, for numbers, this is 0.
- (-)
: a -> a -> a
Subtract the second argument from the first argument, ie.
x - y=x + negate y
- negate
: a -> a
Negate the argument:
x + negate x=aunitinstance Additive BigNumeric
class Multiplicative a where
Use the
Multiplicativeclass for types that can be multiplied. Instances have to respect the following laws:
(*)is associative, ie:(x * y) * z=x * (y * z)(*)is commutative, ie:x * y=y * xx * munit=x
- (*)
: a -> a -> a
Multipy the arguments together
- munit
: a
The multiplicative identity for the type. For example, for numbers, this is 1.
instance Multiplicative BigNumeric
instance Multiplicative Int
instance Multiplicative (Numeric n)
class (Additive a, Multiplicative a) => Number a where
Numberis a class for numerical types. As well as the rules forAdditiveandMultiplicative, instances also have to respect the following law:
(*)is distributive with respect to(+). That is:a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)instance Number BigNumeric
class Signed a where
The
Signedis for the sign of a number.
- signum
: a -> a
Sign of a number. For real numbers, the ‘signum’ is either
-1(negative),0(zero) or1(positive).
- abs
: a -> a
The absolute value: that is, the value without the sign.
instance Signed BigNumeric
class Multiplicative a => Divisible a where
class Divisible a => Fractional a where
Use the
Fractionalclass for types that can be divided and where the reciprocal is well defined. Instances have to respect the following laws:
- When
recip xis defined, it must be the inverse ofxwith respect to multiplication:x * recip x = munit- When
recip yis defined, thenx / y = x * recip y
- recip
: a -> a
Calculates the reciprocal:
recip xis1/x.instance Fractional (Numeric n)
class Show a where
Use the
Showclass for values that can be converted to a readableTextvalue.Derived instances of
Showhave the following properties:
- The result of
showis a syntactically correct expression that only contains constants (given the fixity declarations in force at the point where the type is declared). It only contains the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.- If the constructor is defined to be an infix operator, then
showsPrecproduces infix applications of the constructor.- If the precedence of the top-level constructor in
xis less thand(associativity is ignored), the representation will be enclosed in parentheses. For example, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression.- If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
- showsPrec
Convert a value to a readable
Textvalue. Unlikeshow,showsPrecshould satisfy the ruleshowsPrec d x r ++ s == showsPrec d x (r ++ s)instance (Show a, Show b) => Show (Either a b)
instance Show BigNumeric
instance Show RoundingMode
instance Show ()
instance (Show a, Show b) => Show (a, b)
instance (Show a, Show b, Show c) => Show (a, b, c)
instance (Show a, Show b, Show c, Show d) => Show (a, b, c, d)
instance (Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)
class DamlInterface where
instance DamlInterface
Data Types¶
data AnyChoice
data AnyContractKey
Existential contract key type that can wrap an arbitrary contract key.
Field Type Description getAnyContractKey Any getAnyContractKeyTemplateTypeRep TemplateTypeRep instance Eq AnyContractKey
instance Ord AnyContractKey
data AnyTemplate
Existential template type that can wrap an arbitrary template.
Field Type Description getAnyTemplate Any instance Eq AnyTemplate
instance Ord AnyTemplate
data TemplateTypeRep
Unique textual representation of a template Id.
Field Type Description getTemplateTypeRep TypeRep instance Eq TemplateTypeRep
instance Ord TemplateTypeRep
data Down a
data AnyException
A wrapper for all exception types.
instance HasFromAnyException AnyException
instance HasMessage AnyException
instance HasToAnyException AnyException
data ContractId a
The
ContractId atype represents an ID for a contract created from a templatea. You can use the ID to fetch the contract, among other things.instance Eq (ContractId a)
instance Ord (ContractId a)
instance Show (ContractId a)
data Date
data Map a b
The
Map a btype represents an associative array from keys of typeato values of typeb. It uses the built-in equality for keys. ImportDA.Mapto use it.instance Ord k => Foldable (Map k)
instance Ord k => Monoid (Map k v)
instance Ord k => Semigroup (Map k v)
instance Ord k => Traversable (Map k)
instance Ord k => Functor (Map k)
instance (Ord k, Eq v) => Eq (Map k v)
data Party
data Scenario a
The
Scenariotype is for simulating ledger interactions. The typeScenario adescribes a set of actions taken by various parties during the simulated scenario, before returning a value of typea.instance ActionThrow Scenario
instance HasSubmit Scenario Update
instance ActionFail Scenario
instance Applicative Scenario
data TextMap a
data Time
data Update a
The
Update atype represents anActionto update or query the ledger, before returning a value of typea. Examples includecreateandfetch.instance ActionCatch Update
instance ActionThrow Update
instance HasSubmit Scenario Update
instance ActionFail Update
instance Applicative Update
data Optional a
The
Optionaltype encapsulates an optional value. A value of typeOptional aeither contains a value of typea(represented asSome a), or it is empty (represented asNone). UsingOptionalis a good way to deal with errors or exceptional cases without resorting to drastic measures such aserror.The
Optionaltype is also anAction. It is a simple kind of errorAction, where all errors are represented byNone. A richer errorActioncould be built using theData.Either.Eithertype.Some a
instance ActionFail Optional
instance Applicative Optional
instance IsParties (Optional Party)
instance Traversable Optional
instance Eq a => Eq (Optional a)
data Archive
- type Choice t c r
= (Template t, HasExercise t c r, HasToAnyChoice t c r, HasFromAnyChoice t c r)
Constraint satisfied by choices.
- type Template t
= (HasSignatory t, HasObserver t, HasEnsure t, HasAgreement t, HasCreate t, HasFetch t, HasArchive t, HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)
Constraint satisfied by templates.
- type TemplateKey t k
= (Template t, HasKey t k, HasLookupByKey t k, HasFetchByKey t k, HasMaintainer t k, HasToAnyContractKey t k, HasFromAnyContractKey t k)
Constraint satisfied by template keys.
data Either a b
The
Eithertype represents values with two possibilities: a value of typeEither a bis eitherLeft aorRight b.The
Eithertype is sometimes used to represent a value which is either correct or an error; by convention, theLeftconstructor is used to hold an error value and theRightconstructor is used to hold a correct value (mnemonic: “right” also means “correct”).Left a
Right b
instance (Eq a, Eq b) => Eq (Either a b)
- type ShowS
-
showSshould represent some text, and applying it to some argument should prepend the argument to the represented text.
data BigNumeric
A big numeric type, capable of holding large decimal values with many digits.
BigNumericrepresents any positive or negative decimal number with up to 2^15 digits before the decimal point, and up to 2^15 digits after the decimal point.
BigNumericis not serializable, it is only intended for intermediate computation. You must round and convertBigNumericto a fixed-width numeric (Numeric n) in order to store it in a template. The rounding operations areroundanddivfrom theDA.BigNumericmodule. The casting operations arefromNumericandfromBigNumericfrom theIsNumerictypeclass.instance Eq BigNumeric
instance IsNumeric BigNumeric
instance Ord BigNumeric
instance Additive BigNumeric
instance Multiplicative BigNumeric
instance Number BigNumeric
instance Signed BigNumeric
instance Show BigNumeric
data Bool
data Int
data Nat
(Kind) This is the kind of type-level naturals.
data Numeric n
A type for fixed-point decimal numbers, with the scale being passed as part of the type.
Numeric nrepresents a fixed-point decimal number with a fixed precision of 38 (i.e. 38 digits not including a leading zero) and a scale ofn, i.e.,ndigits after the decimal point.
nmust be between 0 and 37 (bounds inclusive).Examples:
0.01 : Numeric 2 0.0001 : Numeric 4instance NumericScale n => IsNumeric (Numeric n)
instance Divisible (Numeric n)
instance Fractional (Numeric n)
instance Multiplicative (Numeric n)
data Ordering
data RoundingMode
Rounding modes for
BigNumericoperations likedivandroundfromDA.BigNumeric.Round away from zero.Round towards zero.Round towards positive infinity.Round towards negative infinity.Round towards the nearest neighbor unless both neighbors are equidistant, in which case round away from zero.Round towards the nearest neighbor unless both neighbors are equidistant, in which case round towards zero.Round towards the nearest neighbor unless both neighbors are equidistant, in which case round towards the even neighbor.Do not round. Raises an error if the result cannot be represented without rounding at the targeted scale.instance Eq RoundingMode
instance Ord RoundingMode
instance Show RoundingMode
data Text
data [] a
Functions¶
- assert
-
Check whether a condition is true. If it’s not, abort the transaction.
- assertMsg
: CanAssert m => Text -> Bool -> m ()
Check whether a condition is true. If it’s not, abort the transaction with a message.
- assertAfter
: (CanAssert m, HasTime m) => Time -> m ()
Check whether the given time is in the future. If it’s not, abort the transaction.
- assertBefore
: (CanAssert m, HasTime m) => Time -> m ()
Check whether the given time is in the past. If it’s not, abort the transaction.
- daysSinceEpochToDate
-
Convert from number of days since epoch (i.e. the number of days since January 1, 1970) to a date.
- dateToDaysSinceEpoch
-
Convert from a date to number of days from epoch (i.e. the number of days since January 1, 1970).
- partyToText
-
Convert the
PartytoText, giving back what you passed togetParty. In most cases, you should useshowinstead.showwraps the party in'ticks'making it clear it was aPartyoriginally.
- partyFromText
-
Converts a
TexttoParty. It returnsNoneif the provided text contains any forbidden characters. See Daml-LF spec for a specification on which characters are allowed in parties. Note that this function accepts text without single quotes.This function does not check on whether the provided text corresponds to a party that “exists” on a given ledger: it merely converts the given
Textto aParty. The only way to guarantee that a givenPartyexists on a given ledger is to involve it in a contract.This function, together with
partyToText, forms an isomorphism between valid party strings and parties. In other words, the following equations hold:∀ p. partyFromText (partyToText p) = Some p ∀ txt p. partyFromText txt = Some p ==> partyToText p = txt
This function will crash at runtime if you compile Daml to Daml-LF < 1.2.
- getParty
-
Get the party with the given name. Party names must be non-empty and only contain alphanumeric charaters, space,
-(dash) or_(underscore).
- curry
: ((a, b) -> c) -> a -> b -> c
Turn a function that takes a pair into a function that takes two arguments.
- uncurry
: (a -> b -> c) -> (a, b) -> c
Turn a function that takes two arguments into a function that takes a pair.
- (>>)
: Action m => m a -> m b -> m b
Sequentially compose two actions, discarding any value produced by the first. This is like sequencing operators (such as the semicolon) in imperative languages.
- ap
: Applicative f => f (a -> b) -> f a -> f b
Synonym for
<*>.
- return
: Applicative m => a -> m a
Inject a value into the monadic type. For example, for
Updateand a value of typea,returnwould give you anUpdate a.
- identity
: a -> a
The identity function.
- guard
- : ActionFail m => Bool -> m ()
- foldl
: (b -> a -> b) -> b -> [a] -> b
This function is a left fold, which you can use to inspect/analyse/consume lists.
foldl f i xsperforms a left fold over the listxsusing the functionf, using the starting valuei.Examples:
>>> foldl (+) 0 [1,2,3] 6 >>> foldl (^) 10 [2,3] 1000000
Note that foldl works from left-to-right over the list arguments.
- find
: (a -> Bool) -> [a] -> Optional a
find p xsfinds the first element of the listxswhere the predicatepis true. There might not be such an element, which is why this function returns anOptional a.
- any
-
Are there any elements in the list where the predicate is true?
any p xsisTrueifpholds for at least one element ofxs.
- all
-
Is the predicate true for all of the elements in the list?
all p xsisTrueifpholds for every element ofxs.
- or
-
Is at least one of elements in a list of
Booltrue?or bsisTrueif at least one element ofbsisTrue.
- and
-
Is every element in a list of Bool true?
and bsisTrueif every element ofbsisTrue.
- elem
-
Does this value exist in this list?
elem x xsisTrueifxis an element of the listxs.
- notElem
-
Negation of
elem:elem x xsisTrueifxis not an element of the listxs.
- optional
: b -> (a -> b) -> Optional a -> b
The
optionalfunction takes a default value, a function, and aOptionalvalue. If theOptionalvalue isNone, the function returns the default value. Otherwise, it applies the function to the value inside theSomeand returns the result.Basic usage examples:
>>> optional False (> 2) (Some 3) True
>>> optional False (> 2) None False
>>> optional 0 (*2) (Some 5) 10 >>> optional 0 (*2) None 0
This example applies
showto aOptional Int. If you haveSome n, this shows the underlyingInt,n. But if you haveNone, this returns the empty string instead of (for example)None:>>> optional "" show (Some 5) "5" >>> optional "" show (None : Optional Int) ""
- either
: (a -> c) -> (b -> c) -> Either a b -> c
The
eitherfunction provides case analysis for theEithertype. If the value isLeft a, it applies the first function toa; if it isRight b, it applies the second function tob.Examples:
This example has two values of type
Either [Int] Int, one using theLeftconstructor and another using theRightconstructor. Then it applieseitherthelengthfunction (if it has a[Int]) or the “times-two” function (if it has anInt):>>> let s = Left [1,2,3] : Either [Int] Int in either length (*2) s 3 >>> let n = Right 3 : Either [Int] Int in either length (*2) n 6
- concat
: [[a]] -> [a]
Take a list of lists and concatenate those lists into one list.
- (++)
: [a] -> [a] -> [a]
Concatenate two lists.
- flip
: (a -> b -> c) -> b -> a -> c
Flip the order of the arguments of a two argument function.
- reverse
: [a] -> [a]
Reverse a list.
- mapA
: Applicative m => (a -> m b) -> [a] -> m [b]
Apply an applicative function to each element of a list.
- forA
: Applicative m => [a] -> (a -> m b) -> m [b]
forAismapAwith its arguments flipped.
- sequence
: Applicative m => [m a] -> m [a]
Perform a list of actions in sequence and collect the results.
- concatMap
: (a -> [b]) -> [a] -> [b]
Map a function over each element of a list, and concatenate all the results.
- span
: (a -> Bool) -> [a] -> ([a], [a])
span p xsis equivalent to(takeWhile p xs, dropWhile p xs).
- partition
: (a -> Bool) -> [a] -> ([a], [a])
The
partitionfunction takes a predicate, a list and returns the pair of lists of elements which do and do not satisfy the predicate, respectively; i.e.,> partition p xs == (filter p xs, filter (not . p) xs)
>>> partition (<0) [1, -2, -3, 4, -5, 6] ([-2, -3, -5], [1, 4, 6])
- break
: (a -> Bool) -> [a] -> ([a], [a])
Break a list into two, just before the first element where the predicate holds.
break p xsis equivalent tospan (not . p) xs.
- enumerate
-
Generate a list containing all values of a given enumeration.
- zip
: [a] -> [b] -> [(a, b)]
ziptakes two lists and returns a list of corresponding pairs. If one list is shorter, the excess elements of the longer list are discarded.
- zip3
: [a] -> [b] -> [c] -> [(a, b, c)]
zip3takes three lists and returns a list of triples, analogous tozip.
- zipWith
: (a -> b -> c) -> [a] -> [b] -> [c]
zipWithtakes a function and two lists. It generaliseszipby combining elements using the function, instead of forming pairs. If one list is shorter, the excess elements of the longer list are discarded.
- zipWith3
: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3generaliseszip3by combining elements using the function, instead of forming triples.
- unzip
: [(a, b)] -> ([a], [b])
Turn a list of pairs into a pair of lists.
- unzip3
: [(a, b, c)] -> ([a], [b], [c])
Turn a list of triples into a triple of lists.
- traceRaw
: Text -> a -> a
traceRaw msg aprintsmsgand returnsa, for debugging purposes.Note that on some ledgers, those messages are not displayed at the default log level. For Sandbox, you can use
--log-level=debugto include them.
- trace
: Show b => b -> a -> a
trace b aprintsband returnsa, for debugging purposes.Note that on some ledgers, those messages are not displayed at the default log level. For Sandbox, you can use
--log-level=debugto include them.
- traceId
: Show b => b -> b
traceId aprintsaand returnsa, for debugging purposes.Note that on some ledgers, those messages are not displayed at the default log level. For Sandbox, you can use
--log-level=debugto include them.
- debug
: (Show b, Action m) => b -> m ()
debug xprintsxfor debugging purposes.Note that on some ledgers, those messages are not displayed at the default log level. For Sandbox, you can use
--log-level=debugto include them.
- fst
: (a, b) -> a
Return the first element of a tuple.
- snd
: (a, b) -> b
Return the second element of a tuple.
- intToNumeric
-
Convert an
Intto aNumeric.
- intToDecimal
-
Convert an
Intto aDecimal.
- roundBankers
: Int -> Numeric n -> Numeric n
Bankers’ Rounding:
roundBankers dp xroundsxtodpdecimal places, where a.5is rounded to the nearest even digit.
- roundCommercial
: NumericScale n => Int -> Numeric n -> Numeric n
Commercial Rounding:
roundCommercial dp xroundsxtodpdecimal places, where a.5is rounded away from zero.
- round
-
Round a
Decimalto the nearest integer, where a.5is rounded away from zero.
- filter
: (a -> Bool) -> [a] -> [a]
Filters the list using the function: keep only the elements where the predicate holds.
- product
: Multiplicative a => [a] -> a
Multiply all the elements in the list together.
- undefined
: a
A convenience function that can be used to mark something not implemented. Always throws an error with “Not implemented.”
- stakeholder
: (HasSignatory t, HasObserver t) => t -> [Party]
The stakeholders of a contract: its signatories and observers.
- maintainer
: HasMaintainer t k => k -> [Party]
The list of maintainers of a contract key.
- exerciseByKey
: (HasFetchByKey t k, HasExercise t c r) => k -> c -> Update r
Exercise a choice on the contract associated with the given key.
You must pass the
tusing an explicit type application. For instance, if you want to exercise a choiceWithdrawon a contract of templateAccountgiven by its keyk, you must callexerciseByKey @Account k Withdraw.
- createAndExercise
: (HasCreate t, HasExercise t c r) => t -> c -> Update r
Create a contract and exercise the choice on the newly created contract.
- templateTypeRep
: HasTemplateTypeRep t => TemplateTypeRep
Generate a unique textual representation of the template id.
- toAnyTemplate
: HasToAnyTemplate t => t -> AnyTemplate
Wrap the template in
AnyTemplate.Only available for Daml-LF 1.7 or later.
- fromAnyTemplate
: HasFromAnyTemplate t => AnyTemplate -> Optional t
Extract the underlying template from
AnyTemplateif the type matches or returnNone.Only available for Daml-LF 1.7 or later.
- toAnyChoice
: (HasTemplateTypeRep t, HasToAnyChoice t c r) => c -> AnyChoice
Wrap a choice in
AnyChoice.You must pass the template type
tusing an explicit type application. For exampletoAnyChoice @Account Withdraw.Only available for Daml-LF 1.7 or later.
- fromAnyChoice
: (HasTemplateTypeRep t, HasFromAnyChoice t c r) => AnyChoice -> Optional c
Extract the underlying choice from
AnyChoiceif the template and choice types match, or returnNone.You must pass the template type
tusing an explicit type application. For examplefromAnyChoice @Account choice.Only available for Daml-LF 1.7 or later.
- toAnyContractKey
: (HasTemplateTypeRep t, HasToAnyContractKey t k) => k -> AnyContractKey
Wrap a contract key in
AnyContractKey.You must pass the template type
tusing an explicit type application. For exampletoAnyContractKey @Proposal k.Only available for Daml-LF 1.7 or later.
- fromAnyContractKey
: (HasTemplateTypeRep t, HasFromAnyContractKey t k) => AnyContractKey -> Optional k
Extract the underlying key from
AnyContractKeyif the template and choice types match, or returnNone.You must pass the template type
tusing an explicit type application. For examplefromAnyContractKey @Proposal k.Only available for Daml-LF 1.7 or later.
- visibleByKey
: HasLookupByKey t k => k -> Update Bool
True if contract exists, submitter is a stakeholder, and all maintainers authorize. False if contract does not exist and all maintainers authorize. Fails otherwise.
- map
: (a -> b) -> [a] -> [b]
map f xsapplies the functionfto all elements of the listxsand returns the list of results (in the same order asxs).
- foldr
: (a -> b -> b) -> b -> [a] -> b
This function is a right fold, which you can use to manipulate lists.
foldr f i xsperforms a right fold over the listxsusing the functionf, using the starting valuei.Note that foldr works from right-to-left over the list elements.
- (.)
: (b -> c) -> (a -> b) -> a -> c
Composes two functions, i.e.,
(f . g) x = f (g x).
- const
: a -> b -> a
const xis a unary function which evaluates toxfor all inputs.>>> const 42 "hello" 42
>>> map (const 42) [0..3] [42,42,42,42]
- ($)
: (a -> b) -> a -> b
Take a function from
atoband a value of typea, and apply the function to the value of typea, returning a value of typeb. This function has a very low precedence, which is why you might want to use it instead of regular function application.
- (&&)
-
Boolean “and”. This function has short-circuiting semantics, i.e., when both arguments are present and the first arguments evaluates to ‘False’, the second argument is not evaluated at all.
- (||)
-
Boolean “or”. This function has short-circuiting semantics, i.e., when both arguments are present and the first arguments evaluates to ‘True’, the second argument is not evaluated at all.
- error
: Text -> a
errorstops execution and displays the given error message.If called within a transaction, it will abort the current transaction. Outside of a transaction (scenarios, Daml Script or Daml Triggers) it will stop the whole scenario/script/trigger.
Throws a
GeneralErrorexception.
- subtract
: Additive a => a -> a -> a
subtract x yis equivalent toy - x.This is useful for partial application, e.g., in
subtract 1since(- 1)is interpreted as the number-1and not a function that subtracts1from its argument.
- showParen
-
Utility function that surrounds the inner show function with parentheses when the ‘Bool’ parameter is ‘True’.
- showString
-
Utility function converting a ‘String’ to a show function that simply prepends the string unchanged.
- showCommaSpace
: ShowS
Prepends a comma and a single space to the front of the string.