DAML SDK Documentation

DAML

Digital Asset

Version : 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Copyright 2020 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Getting started 1
11 Installing the SDK o e 1
111 1. Install the dependencies 1

11.2 2.Installthe SDK oo e 1

11.3 NeXt StepPS . . . it e e e e e e e e 1

114 Alternative: manualdownload o 1

1.2 Getting Started With DAML L. 5
1.2.1 Prerequisites e e e 5

122 Runningtheapp 5

1.3 Testing YOUTr APP . . o i it i e e e e e e e e e e e e e e e e 8
1.3.1 Settingupourtests e 9

1.3.2 Example: Logginginandout i e 9

1.3.3 AccessingUlelements e 10

1.3.4 WritingCSS Selectors 10

1.3.5 TheFullTestSuite e n

2 Writing DAML 12
21 Anintroductionto DAML L e 12
2.11 TBasiccontracts oo e 12

212 2Testing templatesusing DAMLScript 14

213 B Datatypes e e 20

214 4 Transforming datausingchoices 36

215 S5Addingconstraintstoacontract o o, 42

216 6 Partiesandauthority 51

217 7ComposingchoiCes i 60

2.1.8 8 Working with Dependencies 69

219 9 Functional Programming 101 e 71

2.110 10 Intro to the DAML Standard Library 83

2111 1M Testing DAMLCoONtracts o v it it e et et e e e 88

2.2 Languagereference doCS e e e e 93
221 Overview: template structure e 93

2.2.2 Reference:templates 96

223 Reference:choices 29

224 Reference:updates e 102

225 Reference:datatypes e 106

2.2.6 Reference: built-infunctions 13

2.27 Reference: eXpressions o it i e e e e 15

2.2.8 Reference: functions 18

2.2.9 Reference: SCeNariosS . . . v v v v i i i e e e e e e e 120

2.2.10 Reference: DAMLfilestructure i e 121
2.2.11 Reference: DAMLpackages ittt 122
2212 Contractkeys e e 129
2.3 Testing USIiNg SCENAriOS v i it ittt e e e e e 137
2301 Scenariosyntax. e 138
2.3.2 RunningscenariosinDAMLStudio 138
233 Examples e 138
24 Troubleshooting o . e e e e 140
2.4. Error: <X>is not authorized tocommitanupdate 140
24.2 Error Argumentis notof serializabletype, 141
243 Modelling questions. e 141
244 Testing questions e e 143
25 Gooddesignpatterns L e 144
2.5.1 Initiate and Accept L e e 144
2,52 Multiple party agreement 146
2.5.3 Delegation e 148
2.54 Authorization e 151
255 Locking ... e e 153
2.5.6 Diagramlegends e e e 161
Building applications 163
3.1 Application architecture e e e e 163
3.11 Backend e 165
312 Frontend 165
3.3 Authorization e 166
314 Developerworkflow 166
3.2 JavaScriptClient Libraries e 168
3.21 JavaScriptCode Generator. e 169
3.22 @daml/react e e 174
323 @daml/ledger. e 174
324 @AamI/types e e 174
3.3 HTTPJSON APISErVICE . . v ottt e e e e e e e e e e 174
3.3.1 DAML-LFJSON ENCOding o ittt i e e e e e e e e e e 174
332 Querylanguage e e 181
3.3.3 RunningtheJSON APl 183
3.34 HTTPStatus Codes it it e e e e 187
335 CreateanewContract. e e 189
3.3.6 CreatingaContractwithaCommandID............ 190
3.37 ExercisebyContractID e 191
3.3.8 ExercisebyContractKey 192
3.3.9 Create and Exercise in the Same Transaction 193
3.310 FetchContractbyContractID. 195
3311 FetchContractbyKey e 196
3.312 GetallActiveContracts ot i i e 197
3.3.13 Get all Active Contracts Matching a GivenQuery 198
3.3.14 Fetch Parties by Identifiers 200
3.315 Fetch AllKnown Parties i i e e 201
3.316 AllocateaNew Party e 201
3.3.17 ListAllDALF Packages i e 202

3.318 Download aDALFPackage 203

3.319 Upload aDARFile. . . . o e e 203

3.3.20 Streaming APl L . e e 204

34 DAML SCIiPt . o ot i e e e e e e e e e e 209
3.4.1 DAML ScriptLibrary o e 209

342 US8Be . . o e e 212

3.4.3 Using DAML Script for Ledger Initialization 215

344 Using DAML Scriptin Distributed Topologies 216

3.4.5 Running DAML Script against Ledgers with Authorization 217

3.4.6 Running DAML Script againstthe HTTPJSONAPI 217

3.5 DAML REPL . o o e e e e e e e 218
3.5.1 USBE & v i it e e e e e e 218

3.5.2 Whatisinscopeattheprompt? 219

3.5.3 Using DAMLREPLwithoutaledger 220

3.54 ConnectingVviaTLS 220

3.5.5 Connection to a Ledger with Authorization 220

3.5.6 Using DAMLREPLtoconverttoJSON 220

3.6 Upgrading and extending DAML applications 220
3.6.1 AutomatingtheUpgrade Process, 220

3.6.2 Structuringupgradecontracts L o 224

3.6.3 Building and deploying coin-1.0.0 225

3.6.4 Createsomecoin-1.0.0COINS it ittt ettt e 226

3.6.5 Building and deploying coin-2.0.0 e 226

3.6.6 Building and deploying coin-upgrade 227

3.6.7 Upgrade existing coins from coin-1.0.0tocoin-200 227

3.6.8 Further Steps e e e 228

37 Theledger APl . . . o o e e e e e e e 228
371 Theledger APISErViCeS . . . v v it ittt et e e e e e e e e 228

372 BRPC . . e e 232

37.3 Ledger APIReference e 234

374 How DAML types are translated to protobuf.o L. 268

37.5 HowDAMLtypes aretranslatedtoDAML-LF 274

37.6 Javabindings 278

377 Scalabindings e 310

37.8 Nodejsbindings 314

379 Creatingyourownbindings e 314
3710 What'sintheledger APl 317

3711 DAML-LF . o e 318

4 Deploying to DAML ledgers 319
41 Overview of DAMLledgers i e 319
4.1.1 Commercial Integrations e 319

41.2 Open Source Integrations e 319

413 DAMLLedgersinDevelopment 319

42 Deployingtoageneric DAMLledger e 320
421 ConnectingviaTLS o e 321

422 Configuring RequestTimeouts i 321

4.3 DAML LedgerTopologiest ittt i e 321
43.1 Global StateTopologies 321

4.3.2 Partitioned Ledger Topologies i 325

5 SDKtools 326
51 DAMLAssistant (daml)ttt e e e e e e 326

5.1 Full help forcommands e
512 Configurationfiles e
513 Building DAMLProjects o ittt i e
514 Managing SDKreleases i e
515 Terminal Command Completion
52 DAMLSEUIO . . . o o e e e e e e
5.2.1 Installing o e e e
52.2 CreatingyourfirstDAMLfile
5.2.3 Supported features
524 COMMONSCENANIOEITOIS . ¢ o v vt ittt e et et e e e e e e e e e et e e e e
52.5 Working with multiple packages
5.3 DAMLSandboxX e
53.1 ContractIdentifier Generation o,
53.2 Runningwith persistence e
5.3.3 Running with authentication
534 RunningwithTLS
53,5 Command-linereference. e
536 MetriCs . . . o e e
54 NaVigator e e e e e
5.4.1 Navigator functionality e
54.2 Installing and starting Navigator,
543 Choosing a party / changingtheparty
544 LOZGEINEOUL i it e e
54.5 Viewing templatesorcontracts
54.6 Using Navigator it
547 Authorizing Navigator. e
548 Advanced usage e
6 Background concepts
6.1 Glossaryofconcepts e
6.1.1 DAML . e e e e e e
6.1.2 SDKtoOls e
6.1.3 Building applications e
6.1.4 Generalconcepts e e e e
6.2 DAMLLedger Model e e e
6.2.1 Structure e e e
6.2.2 Integrity o e e
B.2.3 PriVACY . v v i ittt e e e
6.24 DAML: Defining Contract Models Compactly
7 Examples
70 DAMLexampleso e e e e
8 Early Access Features
81 NavigatorConsole e e
8.1.1 Querying the Navigator local database
812 Tryoutthe Navigator Console onthe Quickstart.
813 Displaying statusinformation o .
814 Choosingapartyt e e
815 Advancingtime
816 Inspectingtemplates
817 Inspecting contracts, transactions,andevents

361

361

361

365
366
368
368
369
376
388
396

398
398

818 Queryingdata 407

81.9 Creatingcontracts e 408
8110 Exercisingchoices 409
8111 Using Navigatoroutsidethe SDK 409
8.112 Using Navigatorwith DAML Ledgers, 410
8.2 EXTraCtor e 410
821 Introduction e 410
822 Settingup e 410
823 Tryingitout e e 411
824 Runningthe EXtractor i 41
8.2.5 Connecting the Extractortoaledger, 411
8.2.6 Connectingtoyourdatabase 41
8.27 Authorize Extractor e e 412
8.2.8 Fulllistofoptions e 412
829 Outputformat. e 414
8210 Transactions o i i i e e 414
8211 Contracts e e 415
8212 EXEICISES . o vt ittt e e e 415
8213 JUSONTformat o e e e e e e 416
8.214 Examplesofoutput e 416
8215 Dealingwith schemaevolution 417
8216 LOZEING . . o it e e 419
8217 ContinUIty it 419
8218 Faulttolerance e 419
8219 Troubleshooting 419
83 DAMLIntegration Kit. e 420
83.1 LedgerAPITestTool e 420
8.3.2 DAMLIntegration Kit statusandroadmap 424
8.3.3 Implementing yourown DAML Ledger 425
834 DeployingaDAMLLedger. o i 428
83.5 TestingaDAML Ledger e 429
83.6 Benchmarkinga DAMLLedger 429
84 DAMLTriggers - Off-Ledger Automation inDAML 429
840 DAMLTrigger Library 429
842 USAe . . . i e e e 441
843 Whennottouse DAMLtriggers. i 445
8.5 Visualizing DAMLContracts i e 445
8.5.1 Example: Visualizing the Quickstartproject 445
8.5.2 Visualizing DAML Contracts -WithinIDE 446
8.5.3 Visualizing DAML Contracts - Interactive Graphs 446
DAML Ecosystem 447
9.1 DAMLEcosystem OVEerview oo e e 447
9.11 Status Definitions L 447
9.1.2 Feature and Component Statuses o 450
9.1.3 Architecture e e 453
9.2 Releasesand Versioning it it e e 455
9.21 Versioning it i e e e e e e 455
922 CadencCe. e e 456
923 ReleaseNotes e 456

9.24 ROAAMAD . . . ¢ vt e e e e e e e e e e e 456

9.3

9.4

9.2.5 ProCEeSS . . . e e e e e e e e e 456

Portability, Compatibility, and Support Durations. 457
9.3.1 Ledger API Compatibility: Application Portability 457
9.3.2 Driver and Participant Compatibility: Network Upgradeability 458
9.3.3 SDK, Runtime Component, and Library Compatibility: SDK Upgradeability ... 458
9.34 Ledger API SupportDuration i 458
Getting Help . . . o oo e 459

9.4.1 Supportexpectations L 459

Chapter1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies
The SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.
2. JDK 8 or greater. If you don’t already have a JDK installed, try AdoptOpenJDK.
As part of the installation process you might need to set up the JAVA HOME variable. You can
find here the instructions on how to do it on Windows,mac0S, and Linux.
1.1.2 2. Install the SDK
1.1.2.1 Windows 10

Download and run the installer, which will install DAML and set up your PATH.

1.1.2.2 Mac and Linux
To install the SDK on Mac or Linux:

1. In a terminal, run:

curl -sSL https://get.daml.com/ | sh

2. Add ~/.daml/bin to your PATH. You can find the Mac OS and Linux instructions here.

1.1.3 Next steps

Follow the getting started guide.
Use daml --help to see all the commands that the DAML assistant (daml) provides.
If you run into any problems, use the support page to get in touch with us.

1.1.4 Alternative: manual download

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

https://code.visualstudio.com/download
https://adoptopenjdk.net
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/daml-sdk-1.6.0-snapshot.20201007.5314.0.b4a47d0b-windows.exe

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

11.4.1 Setting JAVA_HOME and PATH variables

Windows

We’ll explain here how to set up JAVA HOME and PATH variables on Windows.

Setting the JAVA_HOME variable

1. Open Search and type advanced system settings and hitEnter.

2. Find the Advanced tab and click on the Environment Variables.

3. Inthe System variables section click on New if you want to set JAVA HOME system wide. To
set JAVA HOME for a single user click on New under User variables.

4. In the opened modal window for Variable name type JAVA HOME and for the Variable
value set the path to the JDK installation. Click OK once you’re done.

5. Click OK and click Apply to apply the changes.

Setting the PATH variable

If you have downloaded and installed the DAML SDK using our Windows installer your PATH variable
is already set up.

Mac OS

we’ll explain here how to set up JAVA HOME and PATH variables on Mac OS with zsh shell. If you are
using bash all of the instructions are quite similar, except that you will be doing all of the changes
inthe .bash profile file.

Setting the JAVA_HOME variable

Run the following command in your terminal:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.zprofile

Setting the PATH variable

Run the following command in your terminal:

echo 'export PATH="S$HOME/.daml/bin:S$PATH"' >> ~/.zprofile

Verifying the changes

In order for the changes to take effect you will need to restart your computer, or, if you’re using the
macOS Terminal app, you only need to quit the Terminal app (Command+Q in the Terminal window)
and reopen it. Afterward, please follow the instructions below to verify that everything was set up
correctly.

Please verify the JAVA_HOME variable by running:

echo SJAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/latest

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Next, please verify the PATH variable by running:

echo SPATH

You should see a series of paths which includes the path to the DAML SDK, which is something like
/Users/your username/.daml/bin.

If you do not see the changes, you may be using bash as your default shell instead of zsh. Please try
these instructions again, but replace the ~/.zprofile with ~/.bash profile in the commands
above.

Linux

we’ll explain here how to set up JAVA HOME and PATH variables on Linux for bash.

Setting the JAVA_HOME variable

Java should be installed typically in a folder like /usr/1ib/jvm/java-version. Before running
the following command make sure to change the java-version with the actual folder found on
your computer:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

Setting the PATH variable

Run the following command:

echo 'export PATH="SHOME/.daml/bin:SPATH"' >> ~/.bash profile

Verifying the changes

In order for the changes to take effect you will need to restart your computer. After the restart, please
follow the instructions below to verify that everything was set up correctly.

Please verify the JAVA_HOME variable by running:

echo SJAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Next, please verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the DAML SDK, which is something like
/home/your username/.daml/bin.
1.1.4.2 Manually installing the SDK

If you require a higher level of security, you can instead install the SDK by manually downloading the
compressed tarball, verifying its signature, extracting it and manually running the install script.

1.1. Installing the SDK 3

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1.

2.

Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install release
1.4.0, you would download the files daml-sdk-1.4.0-macos.tar.gz and daml-sdk-1.4.
O-macos.tar.gz.asc. Note that for Windows you can choose between the tarball (ends in
.tar.gz), which follows the same instructions as the Linux and macOS ones (but assumes
you have a number of typical Unix tools installed), or the installer, which ends with .exe. Re-
gardless, the steps to verify the signature are the same.

. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —--keyserver pool.sks-keyservers.net --search!|
—~4911A8DFE976ACDFAQ07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2019-05-16 and expiring on 2021-05-15. |If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.

Oncethe keyis imported, you can ask gpg to verify that the file you have downloaded has indeed
been signed by that key. Continuing with our example of 1.4.0 on macOS, you should have both
files in the current directory and run:

gpg --verify daml-sdk-1.4.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-1.4.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC
—<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to thell
—owner.

Primary key fingerprint: 4911 A8DF E976 ACDF A071 30DB E837 2C0C 1C73[]
—4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

tar xzf daml-sdl-1.4.0-macos.tar.gz
cd sdk-1.4.0

(continues on next page)

Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

./install.sh

6. Just like for the more automated install procedure, you may want to add ~/.daml/bin to your
SPATH.

1.2 Getting Started with DAML

The goal of this tutorial is to get you up and running with full-stack DAML development. We do this
through the example of a simple social networking application, showing you three things:

1. How to build and run the application
2. The design of its different components (app-architecture)
3. How to write a new feature for the app (first-feature)

We do not aim to be comprehensive in all DAML concepts and tools (covered in Writing DAML) or in all
deployment options (see Deploying). For a quick overview of the most important DAML concepts
used in this tutorial open the DAML cheat-sheet in a separate tab. The goal is that by the end of
this tutorial, you’ll have a good idea of the following:

1. What DAML contracts and ledgers are
2. How a user interface (Ul) interacts with a DAML ledger
3. How DAML helps you build a real-life application fast.

With that, let’s get started!

1.2.1 Prerequisites

Please make sure that you have the DAML SDK, Java 8 or higher, and Visual Studio Code (the only
supported IDE) installed as per instructions from our Installing the SDK page.

You will also need some common software tools to build and interact with the template project.

Git version control system

Node package manager for JavaScript. Note: On Ubuntu 18.04, NodeJS 8.10 will be installed but
its too old.

A terminal application for command line interaction

1.2.2 Running the app

Wwe’ll start by getting the app up and running, and then explain the different components which we
will later extend.

First off, open a terminal and instantiate the template project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

Change to the new folder:

cd create-daml-app

Next we need to compile the DAML code to a DAR file:

1.2. Getting Started with DAML 5

https://docs.daml.com/cheat-sheet/
https://git-scm.com/downloads
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml build

Once the DAR file is created you will see this message in terminal Created .daml/dist/create-
daml-app-0.1.0.dar.

Any commands starting with daml are using the DAML Assistant, a command line tool in the DAML
SDK for building and running DAML apps. In order to connect the Ul code to this DAML, we need to
run a code generation step:

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o ui/daml.js

Now, changing to the ui folder, use npm to install the project dependencies:

cd ui
npm install

This step may take a couple of moments (it’s worth it!). You should see success Saved lockfile.
in the output if everything worked as expected.

We can now run the app in two steps. You’ll need two terminal windows running for this. In one
terminal, at the root of the create-daml-app directory, run the command:

daml start

You will know that the command has started successfully when you see the INFO com.daml.
http.Main$ - Started server: ServerBinding(/127.0.0.1:7575) message in the ter-
minal. The command does a few things:

1. Compiles the DAML code to a DAR file as in the previous daml build step.

2. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR.

3. Starts a server for the HTTP JSON API, a simple way to run commands against a DAML ledger (in
this case the running Sandbox).

We’ll leave these processes running to serve requests from our Ul

In a second terminal, navigate to the create-daml-app/ui folder and run the application:

cd ui
npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000. Once the web Ul
has been compiled and started, you should see Compiled successfully! in your terminal. If it
doesn’t, just open that link in a web browser. (Depending on your firewall settings, you may be asked
whether to allow the app to receive network connections. It is safe to accept.) You should now see the
login page for the social network. For simplicity of this app, there is no password or sign-up required.
First enter your name and click Log in.

You should see the main screen with two panels. One for the users you are following and one for
your followers. Initially these are both empty as you are not following anyone and you don’t have any
followers! Go ahead and start following users by typing their usernames in the text box and clicking
on the Follow button in the top panel.

6 Chapter 1. Getting started

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Create D,\ M I_ App

2

DAML You are logged in as Bob. ®

Welcome, Bob!

Bob
&%

Users I'm following

Follow

& The Network

wr My followers and users they are following

You’ll notice that the users you just started following appear in the Following panel. However they
do not yet appear in the Network panel. This is either because they have not signed up and are not
parties on the ledger or they have not yet started followiong you. This social network is similar to
Twitter and Instagram, where by following someone, say Alice, you make yourself visible to her but
not vice versa. We will see how we encode this in DAML in the next section.

DAML You are logged in as Bob.]

Welcome, Bob!

Bob
&%

Users I'm following

& Alice
Username to follow

Follow

& The Network
wr My followers and users they are following

To make this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-
ing separate windows/tabs allows you to see both you and the screen of the user you are following
at the same time.) Once you log in as the user you are following - Alice, you’ll notice your name in
her network. In fact, Alice can see the entire list of users you are follwing in the Network panel. This
is because this list is part of the user data that became visible when you started follwing her.

1.2. Getting Started with DAML 7

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML You are logged in as Alice. ®
Welcome, Alice!

@ Alice

a5 following

Follow

& The Network
wr My followers and users they are following

& Bob o
& Alice 2

When Alice starts follwing you, you can see her in your network as well. Just switch to the window
where you are logged in as yourself - the network should update automatically.

DAML You are logged in as Bob. ®
Welcome, Bob!
@ Bob

a5 following

& Alice

Follow

& The Network
v My followers and users they are following

& Alice o
& Bob o

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding DAML’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get
the next one by implementing your first feature.

1.3 Testing Your App

When developing your application, you will want to test that user flows work from end to end. This
means that actions performed in the web Ul trigger updates to the ledger and give the desired results
onthe page. In this section we show how you can do such testing automatically in TypeScript (equally

8 Chapter 1. Getting started

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

JavaScript). This will allow you to iterate on your app faster and with more confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

npm add --only=dev puppeteer wait-on @types/jest Qtypes/node @types/
wpuppeteer @types/wait-on

1.3.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suite in section The Full Test Suite at the bottom of this page. Torun this test suite, create a new fileui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes forthe daml start
and npm start commands, which run for the duration of our tests. We also have a single Puppeteer
browser that we share among tests, opening new browser pages for each one.

ThebeforeAll () section is a function run once before any of the tests run. We use it to spawn the
daml startandnpm start processesandlaunchthebrowser. OntheotherhandtheafterAll ()
sectionis used to shutdown these processes and close the browser. This step is important to prevent
child processes persisting in the background after our program has finished.

1.3.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

we’ll walk though this step by step.

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

1.3. Testing Your App 9

https://jestjs.io/
https://pptr.dev/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

getParty () gives us a new party name. Right now itis just a string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single User contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.3.3 Accessing Ul elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.test-
select-login-button', are CSS Selectors. You may have seen them before in CSS styling of web
pages. In this case we use class selectors, which look for CSS classes we’ve given to elements in our
React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.3.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic
Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the

10 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

x 4l Elements = Console Sources Network Performance

<!doctype
1

st-select-username-fiels
ui fluid t icon input">

Create D'\ M I_ App

input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS
selectors accordingly.

1.3.5 The Full Test Suite

1.3. Testing Your App n

Chapter 2

Writing DAML

2.1 An introduction to DAML

DAML is a smart contract language designed to build composable applications on an abstract DAML
Ledger Model.

In this introduction, you will learn about the structure of a DAML Ledger, and how to write DAML
applicationsthatrunon any DAML Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
DAML Ledger Model and how to use the DAML SDK Tools to write, test, compile, package and ship your
application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the DAML code for each
section here ordownload them using the DAML assistant. Forexample, to load the sources for section
Tinto a folder called 1 _Token,rundaml new 1 Token --template daml-intro-1.

Prerequisites:
You have installed the DAML SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small DAML template, which represents a self-issued, non-
transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make
it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

DAML Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder 1 _Token by running
daml new 1 Token --template daml-intro-1

12

https://github.com/digital-asset/daml/tree/master/docs/source/daml/intro/daml

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.1.1 DAML ledger basics

Like most structures called ledgers, a DAML Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll coverin more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it again.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

DAML specifies what transactions are legal on a DAML Ledger. The rules the DAML code specifies are
collectively called a DAML model or contract model.
2.1.1.2 DAML files and modules

Each .daml file defines a DAML Module. At the top of each DAML file is a pragma informing the com-
piler of the language version and the module name:

module Token where

Code comments in DAML are introduced with -:

-— The first line of a DAML file is a pragma telling the compiler thell
—language
-- version to use.

-—- A DAML file defines a module. The second line of a DAML file gives the
-- module a name.
module Token where

2.11.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

DAML is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the createargumentsor simply arguments. Thewith block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou canread this as template Token with a field owner of type Party .

2.1. An introduction to DAML 13

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.

2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract instance. These are the parties whose
authority is required to create the contract or archive it again - just like a real contract. Every contract
must have at least one signatory.

Furthermore, DAML ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

2.11.5 Next up

In 2 Testing templates using DAML Script, you’ll learn about how to try out the Token contract template
in DAML’s inbuilt DAML Script testing language.

2.1.2 2 Testing templates using DAML Script

In this section you will test the Token model from 1 Basic contracts using the DAML Script integration
in DAML Studio. You’ll learn about the basic features of :

Allocating parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2
by running daml new daml-intro-2 --template daml-intro-2

2.1.2.1 Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of
transactions, to check that your templates behave as you’d expect. You can also script some some
external information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called Alice .

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to puta partycalled Alice inavariablealice. Thereare
two things of note there:

14 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the
Script is run in the context of a ledger. <- means run the action and bind the result . It
can only be run in that context because, depending on the ledger state the script is running
on,allocateParty will either give you back a party with the name you specified or append a
suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in DAML are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: a Party and an Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = alice is aCommands, which translates to a list of commands that will be submit-
ted to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You couldwritethisas submit alice (createCmd Token with owner = alice),butjustlike
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note however, that the commands submitted as part of a transaction are not allowed
to depend n each other.

2.1.2.2 Running scripts
There are a few ways to run DAML Scripts:

In DAML Studio against a test ledger, providing visualizations of the resulting ledger

Using the command line daml test also against a test ledger, useful for continuous integra-
tion

Against a real ledger, take a look at the documentation for DAML Script for more information.
Interactively using DAML REPL.

In DAML Studio, you should see the text Script results just above the line token test 1 = do.
Click on it to display the outcome of the script.

Scripkt resulks
token test 1 = script do
alice <- allocateParty "Alic

submit alice do
createCmd Token owner = alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

2.1. An introduction to DAML 15

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

= Script: token_test 1 X

SRRl B show archived M show detailed disclosure

Main:Token

l

The first columns, labelled vertically, show which parties know about which contracts. In this
simple script, the sole party Alice knows about the contract she created.

The second column shows the ID of the contract. This will be explained later.

The third column shows the status of the contract, either active or archived.

The remaining columns show the contract arguments, with one column per field. As expected,
field owneris 'Alice'. The single quotation marks indicate that Alice is a party.

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. If your file contains more than one script,
all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do

createCmd Token with owner = bob
submit bob do
createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

(continues on next page)

16 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

create of at DA.Internal.Prelude:381:26
failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01TO0:00:007

Partial transaction:
Sub-transactions:

L~

-

owner = 'Bob’

(continued from previous page)

submitMustFail alice do

createCmd Token with owner = bob
submitMustFail bob do

createCmd Token with owner = alice
submit alice do

createCmd Token with owner = alice
submit bob do

createCmd Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular scenario view just
shows the two Tokens resulting from the successful submit statements. Note the new column for
Bob as well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.
Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,
you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.
How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

(continues on next page)

2.1. An introduction to DAML 17

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

2.1.2.5 Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you
want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

= Script: token_test 3 X

Show transaction view show archived I show detailed disclosure
Main:Token

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the DAML Studio script runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.All transactions have this formatin the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contractis archived in sub-transaction 0 of commit 2.
referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that
'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that Alice learned about the contract in commit #0.

Everything following with shows the create arguments.

18 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

= Script: token_test 3 X

Show table view

Transactions:
1970-01-01TO0:00:00Z |

owner = 'Alice’

1970-01-01TO0:00:00Z |

L "Alice’
= '"Alice’ Archive

Active contracts:

Return value: {}

2.1. An introduction to DAML 19

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.2.6 Exercises
To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

2.1.2.7 Next up

In 3 Data types you will learn about DAML’s type system, and how you can think of templates as tables
and contracts as database rows.

2.1.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using DAML Script, you learnt about the script view in DAML Studio, which displays
the current ledger state. It shows one table per template, with one row per contract of that type and
one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract instance of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

DAMVL’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a DAML ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyou canload all the code for this section into a foldercalled 3 _Data byrunning
daml new 3 Data --template daml-intro-3

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.3.1 Native types

You have already encountered a few native DAML types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using DAML Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0r =9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result.

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"
my bool = False
my date = date 2020 Jan 01

my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addbDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time == time (addDays my date 1) 00 0O[I
—00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the DAML Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
DAML Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or Party. An integer
like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.

2.1. An introduction to DAML 21

DAML SDK Documentation, 1.6.0-s