DAML SDK Documentation

DAML

Digital Asset

Version : 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Copyright 2020 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Getting started 1
11 Installing the SDK o e 1
111 1. Install the dependencies 1

11.2 2.Installthe SDK oo e 1

11.3 NeXt StepPS . . . it e e e e e e e e 1

114 Alternative: manualdownload o 1

1.2 Getting Started With DAML L. 5
1.2.1 Prerequisites e e e 5

122 Runningtheapp 5

1.3 Testing YOUTr APP . . o i it i e e e e e e e e e e e e e e e e 8
1.3.1 Settingupourtests e 9

1.3.2 Example: Logginginandout i e 9

1.3.3 AccessingUlelements e 10

1.3.4 WritingCSS Selectors 10

1.3.5 TheFullTestSuite e n

2 Writing DAML 12
21 Anintroductionto DAML L e 12
2.11 TBasiccontracts oo e 12

212 2Testing templatesusing DAMLScript 14

213 B Datatypes e e 20

214 4 Transforming datausingchoices 36

215 S5Addingconstraintstoacontract o o, 42

216 6 Partiesandauthority 51

217 7ComposingchoiCes i 60

2.1.8 8 Working with Dependencies 69

219 9 Functional Programming 101 e 71

2.110 10 Intro to the DAML Standard Library 83

2111 1M Testing DAMLCoONtracts o v it it e et et e e e 88

2.2 Languagereference doCS e e e e 93
221 Overview: template structure e 93

2.2.2 Reference:templates 96

223 Reference:choices 29

224 Reference:updates e 102

225 Reference:datatypes e 106

2.2.6 Reference: built-infunctions 13

2.27 Reference: eXpressions o it i e e e e 15

2.2.8 Reference: functions 18

2.2.9 Reference: SCeNariosS . . . v v v v i i i e e e e e e e 120

2.2.10 Reference: DAMLfilestructure i e 121
2.2.11 Reference: DAMLpackages ittt 122
2212 Contractkeys e e 129
2.3 Testing USIiNg SCENAriOS v i it ittt e e e e e 137
2301 Scenariosyntax. e 138
2.3.2 RunningscenariosinDAMLStudio 138
233 Examples e 138
24 Troubleshooting o . e e e e 140
2.4. Error: <X>is not authorized tocommitanupdate 140
24.2 Error Argumentis notof serializabletype, 141
243 Modelling questions. e 141
244 Testing questions e e 143
25 Gooddesignpatterns L e 144
2.5.1 Initiate and Accept L e e 144
2,52 Multiple party agreement 146
2.5.3 Delegation e 148
2.54 Authorization e 151
255 Locking ... e e 153
2.5.6 Diagramlegends e e e 161
Building applications 163
3.1 Application architecture e e e e 163
3.11 Backend e 165
312 Frontend 165
3.3 Authorization e 166
314 Developerworkflow 166
3.2 JavaScriptClient Libraries e 168
3.21 JavaScriptCode Generator. e 169
3.22 @daml/react e e 174
323 @daml/ledger. e 174
324 @AamI/types e e 174
3.3 HTTPJSON APISErVICE . . v ottt e e e e e e e e e e 174
3.3.1 DAML-LFJSON ENCOding o ittt i e e e e e e e e e e 174
332 Querylanguage e e 181
3.3.3 RunningtheJSON APl 183
3.34 HTTPStatus Codes it it e e e e 187
335 CreateanewContract. e e 189
3.3.6 CreatingaContractwithaCommandID............ 190
3.37 ExercisebyContractID e 191
3.3.8 ExercisebyContractKey 192
3.3.9 Create and Exercise in the Same Transaction 193
3.310 FetchContractbyContractID. 195
3311 FetchContractbyKey e 196
3.312 GetallActiveContracts ot i i e 197
3.3.13 Get all Active Contracts Matching a GivenQuery 198
3.3.14 Fetch Parties by Identifiers 200
3.315 Fetch AllKnown Parties i i e e 201
3.316 AllocateaNew Party e 201
3.3.17 ListAllDALF Packages i e 202

3.318 Download aDALFPackage 203

3.319 Upload aDARFile. . . . o e e 203

3.3.20 Streaming APl L . e e 204

34 DAML SCIiPt . o ot i e e e e e e e e e e 209
3.4.1 DAML ScriptLibrary o e 209

342 US8Be . . o e e 212

3.4.3 Using DAML Script for Ledger Initialization 215

344 Using DAML Scriptin Distributed Topologies 216

3.4.5 Running DAML Script against Ledgers with Authorization 217

3.4.6 Running DAML Script againstthe HTTPJSONAPI 217

3.5 DAML REPL . o o e e e e e e e 218
3.5.1 USBE & v i it e e e e e e 218

3.5.2 Whatisinscopeattheprompt? 219

3.5.3 Using DAMLREPLwithoutaledger 220

3.54 ConnectingVviaTLS 220

3.5.5 Connection to a Ledger with Authorization 220

3.5.6 Using DAMLREPLtoconverttoJSON 220

3.6 Upgrading and extending DAML applications 220
3.6.1 AutomatingtheUpgrade Process, 220

3.6.2 Structuringupgradecontracts L o 224

3.6.3 Building and deploying coin-1.0.0 225

3.6.4 Createsomecoin-1.0.0COINS it ittt ettt e 226

3.6.5 Building and deploying coin-2.0.0 e 226

3.6.6 Building and deploying coin-upgrade 227

3.6.7 Upgrade existing coins from coin-1.0.0tocoin-200 227

3.6.8 Further Steps e e e 228

37 Theledger APl . . . o o e e e e e e e 228
371 Theledger APISErViCeS . . . v v it ittt et e e e e e e e e 228

372 BRPC . . e e 232

37.3 Ledger APIReference e 234

374 How DAML types are translated to protobuf.o L. 268

37.5 HowDAMLtypes aretranslatedtoDAML-LF 274

37.6 Javabindings 278

377 Scalabindings e 310

37.8 Nodejsbindings 314

379 Creatingyourownbindings e 314
3710 What'sintheledger APl 317

3711 DAML-LF . o e 318

4 Deploying to DAML ledgers 319
41 Overview of DAMLledgers i e 319
4.1.1 Commercial Integrations e 319

41.2 Open Source Integrations e 319

413 DAMLLedgersinDevelopment 319

42 Deployingtoageneric DAMLledger e 320
421 ConnectingviaTLS o e 321

422 Configuring RequestTimeouts i 321

4.3 DAML LedgerTopologiest ittt i e 321
43.1 Global StateTopologies 321

4.3.2 Partitioned Ledger Topologies i 325

5 SDKtools 326
51 DAMLAssistant (daml)ttt e e e e e e 326

5.1 Full help forcommands e
512 Configurationfiles e
513 Building DAMLProjects o ittt i e
514 Managing SDKreleases i e
515 Terminal Command Completion
52 DAMLSEUIO . . . o o e e e e e e
5.2.1 Installing o e e e
52.2 CreatingyourfirstDAMLfile
5.2.3 Supported features
524 COMMONSCENANIOEITOIS . ¢ o v vt ittt e et et e e e e e e e e e et e e e e
52.5 Working with multiple packages
5.3 DAMLSandboxX e
53.1 ContractIdentifier Generation o,
53.2 Runningwith persistence e
5.3.3 Running with authentication
534 RunningwithTLS
53,5 Command-linereference. e
536 MetriCs . . . o e e
54 NaVigator e e e e e
5.4.1 Navigator functionality e
54.2 Installing and starting Navigator,
543 Choosing a party / changingtheparty
544 LOZGEINEOUL i it e e
54.5 Viewing templatesorcontracts
54.6 Using Navigator it
547 Authorizing Navigator. e
548 Advanced usage e
6 Background concepts
6.1 Glossaryofconcepts e
6.1.1 DAML . e e e e e e
6.1.2 SDKtoOls e
6.1.3 Building applications e
6.1.4 Generalconcepts e e e e
6.2 DAMLLedger Model e e e
6.2.1 Structure e e e
6.2.2 Integrity o e e
B.2.3 PriVACY . v v i ittt e e e
6.24 DAML: Defining Contract Models Compactly
7 Examples
70 DAMLexampleso e e e e
8 Early Access Features
81 NavigatorConsole e e
8.1.1 Querying the Navigator local database
812 Tryoutthe Navigator Console onthe Quickstart.
813 Displaying statusinformation o .
814 Choosingapartyt e e
815 Advancingtime
816 Inspectingtemplates
817 Inspecting contracts, transactions,andevents

361

361

361

365
366
368
368
369
376
388
396

398
398

818 Queryingdata 407

81.9 Creatingcontracts e 408
8110 Exercisingchoices 409
8111 Using Navigatoroutsidethe SDK 409
8.112 Using Navigatorwith DAML Ledgers, 410
8.2 EXTraCtor e 410
821 Introduction e 410
822 Settingup e 410
823 Tryingitout e e 411
824 Runningthe EXtractor i 41
8.2.5 Connecting the Extractortoaledger, 411
8.2.6 Connectingtoyourdatabase 41
8.27 Authorize Extractor e e 412
8.2.8 Fulllistofoptions e 412
829 Outputformat. e 414
8210 Transactions o i i i e e 414
8211 Contracts e e 415
8212 EXEICISES . o vt ittt e e e 415
8213 JUSONTformat o e e e e e e 416
8.214 Examplesofoutput e 416
8215 Dealingwith schemaevolution 417
8216 LOZEING . . o it e e 419
8217 ContinUIty it 419
8218 Faulttolerance e 419
8219 Troubleshooting 419
83 DAMLIntegration Kit. e 420
83.1 LedgerAPITestTool e 420
8.3.2 DAMLIntegration Kit statusandroadmap 424
8.3.3 Implementing yourown DAML Ledger 425
834 DeployingaDAMLLedger. o i 428
83.5 TestingaDAML Ledger e 429
83.6 Benchmarkinga DAMLLedger 429
84 DAMLTriggers - Off-Ledger Automation inDAML 429
840 DAMLTrigger Library 429
842 USAe . . . i e e e 441
843 Whennottouse DAMLtriggers. i 445
8.5 Visualizing DAMLContracts i e 445
8.5.1 Example: Visualizing the Quickstartproject 445
8.5.2 Visualizing DAML Contracts -WithinIDE 446
8.5.3 Visualizing DAML Contracts - Interactive Graphs 446
DAML Ecosystem 447
9.1 DAMLEcosystem OVEerview oo e e 447
9.11 Status Definitions L 447
9.1.2 Feature and Component Statuses o 450
9.1.3 Architecture e e 453
9.2 Releasesand Versioning it it e e 455
9.21 Versioning it i e e e e e e 455
922 CadencCe. e e 456
923 ReleaseNotes e 456

9.24 ROAAMAD . . . ¢ vt e e e e e e e e e e e 456

9.3

9.4

9.2.5 ProCEeSS . . . e e e e e e e e e 456

Portability, Compatibility, and Support Durations. 457
9.3.1 Ledger API Compatibility: Application Portability 457
9.3.2 Driver and Participant Compatibility: Network Upgradeability 458
9.3.3 SDK, Runtime Component, and Library Compatibility: SDK Upgradeability ... 458
9.34 Ledger API SupportDuration i 458
Getting Help . . . o oo e 459

9.4.1 Supportexpectations L 459

Chapter1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies
The SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.
2. JDK 8 or greater. If you don’t already have a JDK installed, try AdoptOpenJDK.
As part of the installation process you might need to set up the JAVA HOME variable. You can
find here the instructions on how to do it on Windows,mac0S, and Linux.
1.1.2 2. Install the SDK
1.1.2.1 Windows 10

Download and run the installer, which will install DAML and set up your PATH.

1.1.2.2 Mac and Linux
To install the SDK on Mac or Linux:

1. In a terminal, run:

curl -sSL https://get.daml.com/ | sh

2. Add ~/.daml/bin to your PATH. You can find the Mac OS and Linux instructions here.

1.1.3 Next steps

Follow the getting started guide.
Use daml --help to see all the commands that the DAML assistant (daml) provides.
If you run into any problems, use the support page to get in touch with us.

1.1.4 Alternative: manual download

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

https://code.visualstudio.com/download
https://adoptopenjdk.net
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/daml-sdk-1.6.0-snapshot.20201007.5314.0.b4a47d0b-windows.exe

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

11.4.1 Setting JAVA_HOME and PATH variables

Windows

We’ll explain here how to set up JAVA HOME and PATH variables on Windows.

Setting the JAVA_HOME variable

1. Open Search and type advanced system settings and hitEnter.

2. Find the Advanced tab and click on the Environment Variables.

3. Inthe System variables section click on New if you want to set JAVA HOME system wide. To
set JAVA HOME for a single user click on New under User variables.

4. In the opened modal window for Variable name type JAVA HOME and for the Variable
value set the path to the JDK installation. Click OK once you’re done.

5. Click OK and click Apply to apply the changes.

Setting the PATH variable

If you have downloaded and installed the DAML SDK using our Windows installer your PATH variable
is already set up.

Mac OS

we’ll explain here how to set up JAVA HOME and PATH variables on Mac OS with zsh shell. If you are
using bash all of the instructions are quite similar, except that you will be doing all of the changes
inthe .bash profile file.

Setting the JAVA_HOME variable

Run the following command in your terminal:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.zprofile

Setting the PATH variable

Run the following command in your terminal:

echo 'export PATH="S$HOME/.daml/bin:S$PATH"' >> ~/.zprofile

Verifying the changes

In order for the changes to take effect you will need to restart your computer, or, if you’re using the
macOS Terminal app, you only need to quit the Terminal app (Command+Q in the Terminal window)
and reopen it. Afterward, please follow the instructions below to verify that everything was set up
correctly.

Please verify the JAVA_HOME variable by running:

echo SJAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/latest

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Next, please verify the PATH variable by running:

echo SPATH

You should see a series of paths which includes the path to the DAML SDK, which is something like
/Users/your username/.daml/bin.

If you do not see the changes, you may be using bash as your default shell instead of zsh. Please try
these instructions again, but replace the ~/.zprofile with ~/.bash profile in the commands
above.

Linux

we’ll explain here how to set up JAVA HOME and PATH variables on Linux for bash.

Setting the JAVA_HOME variable

Java should be installed typically in a folder like /usr/1ib/jvm/java-version. Before running
the following command make sure to change the java-version with the actual folder found on
your computer:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

Setting the PATH variable

Run the following command:

echo 'export PATH="SHOME/.daml/bin:SPATH"' >> ~/.bash profile

Verifying the changes

In order for the changes to take effect you will need to restart your computer. After the restart, please
follow the instructions below to verify that everything was set up correctly.

Please verify the JAVA_HOME variable by running:

echo SJAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Next, please verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the DAML SDK, which is something like
/home/your username/.daml/bin.
1.1.4.2 Manually installing the SDK

If you require a higher level of security, you can instead install the SDK by manually downloading the
compressed tarball, verifying its signature, extracting it and manually running the install script.

1.1. Installing the SDK 3

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1.

2.

Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install release
1.4.0, you would download the files daml-sdk-1.4.0-macos.tar.gz and daml-sdk-1.4.
O-macos.tar.gz.asc. Note that for Windows you can choose between the tarball (ends in
.tar.gz), which follows the same instructions as the Linux and macOS ones (but assumes
you have a number of typical Unix tools installed), or the installer, which ends with .exe. Re-
gardless, the steps to verify the signature are the same.

. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —--keyserver pool.sks-keyservers.net --search!|
—~4911A8DFE976ACDFAQ07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2019-05-16 and expiring on 2021-05-15. |If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.

Oncethe keyis imported, you can ask gpg to verify that the file you have downloaded has indeed
been signed by that key. Continuing with our example of 1.4.0 on macOS, you should have both
files in the current directory and run:

gpg --verify daml-sdk-1.4.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-1.4.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC
—<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to thell
—owner.

Primary key fingerprint: 4911 A8DF E976 ACDF A071 30DB E837 2C0C 1C73[]
—4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

tar xzf daml-sdl-1.4.0-macos.tar.gz
cd sdk-1.4.0

(continues on next page)

Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

./install.sh

6. Just like for the more automated install procedure, you may want to add ~/.daml/bin to your
SPATH.

1.2 Getting Started with DAML

The goal of this tutorial is to get you up and running with full-stack DAML development. We do this
through the example of a simple social networking application, showing you three things:

1. How to build and run the application
2. The design of its different components (app-architecture)
3. How to write a new feature for the app (first-feature)

We do not aim to be comprehensive in all DAML concepts and tools (covered in Writing DAML) or in all
deployment options (see Deploying). For a quick overview of the most important DAML concepts
used in this tutorial open the DAML cheat-sheet in a separate tab. The goal is that by the end of
this tutorial, you’ll have a good idea of the following:

1. What DAML contracts and ledgers are
2. How a user interface (Ul) interacts with a DAML ledger
3. How DAML helps you build a real-life application fast.

With that, let’s get started!

1.2.1 Prerequisites

Please make sure that you have the DAML SDK, Java 8 or higher, and Visual Studio Code (the only
supported IDE) installed as per instructions from our Installing the SDK page.

You will also need some common software tools to build and interact with the template project.

Git version control system

Node package manager for JavaScript. Note: On Ubuntu 18.04, NodeJS 8.10 will be installed but
its too old.

A terminal application for command line interaction

1.2.2 Running the app

Wwe’ll start by getting the app up and running, and then explain the different components which we
will later extend.

First off, open a terminal and instantiate the template project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

Change to the new folder:

cd create-daml-app

Next we need to compile the DAML code to a DAR file:

1.2. Getting Started with DAML 5

https://docs.daml.com/cheat-sheet/
https://git-scm.com/downloads
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml build

Once the DAR file is created you will see this message in terminal Created .daml/dist/create-
daml-app-0.1.0.dar.

Any commands starting with daml are using the DAML Assistant, a command line tool in the DAML
SDK for building and running DAML apps. In order to connect the Ul code to this DAML, we need to
run a code generation step:

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o ui/daml.js

Now, changing to the ui folder, use npm to install the project dependencies:

cd ui
npm install

This step may take a couple of moments (it’s worth it!). You should see success Saved lockfile.
in the output if everything worked as expected.

We can now run the app in two steps. You’ll need two terminal windows running for this. In one
terminal, at the root of the create-daml-app directory, run the command:

daml start

You will know that the command has started successfully when you see the INFO com.daml.
http.Main$ - Started server: ServerBinding(/127.0.0.1:7575) message in the ter-
minal. The command does a few things:

1. Compiles the DAML code to a DAR file as in the previous daml build step.

2. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR.

3. Starts a server for the HTTP JSON API, a simple way to run commands against a DAML ledger (in
this case the running Sandbox).

We’ll leave these processes running to serve requests from our Ul

In a second terminal, navigate to the create-daml-app/ui folder and run the application:

cd ui
npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000. Once the web Ul
has been compiled and started, you should see Compiled successfully! in your terminal. If it
doesn’t, just open that link in a web browser. (Depending on your firewall settings, you may be asked
whether to allow the app to receive network connections. It is safe to accept.) You should now see the
login page for the social network. For simplicity of this app, there is no password or sign-up required.
First enter your name and click Log in.

You should see the main screen with two panels. One for the users you are following and one for
your followers. Initially these are both empty as you are not following anyone and you don’t have any
followers! Go ahead and start following users by typing their usernames in the text box and clicking
on the Follow button in the top panel.

6 Chapter 1. Getting started

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Create D,\ M I_ App

2

DAML You are logged in as Bob. ®

Welcome, Bob!

Bob
&%

Users I'm following

Follow

& The Network

wr My followers and users they are following

You’ll notice that the users you just started following appear in the Following panel. However they
do not yet appear in the Network panel. This is either because they have not signed up and are not
parties on the ledger or they have not yet started followiong you. This social network is similar to
Twitter and Instagram, where by following someone, say Alice, you make yourself visible to her but
not vice versa. We will see how we encode this in DAML in the next section.

DAML You are logged in as Bob.]

Welcome, Bob!

Bob
&%

Users I'm following

& Alice
Username to follow

Follow

& The Network
wr My followers and users they are following

To make this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-
ing separate windows/tabs allows you to see both you and the screen of the user you are following
at the same time.) Once you log in as the user you are following - Alice, you’ll notice your name in
her network. In fact, Alice can see the entire list of users you are follwing in the Network panel. This
is because this list is part of the user data that became visible when you started follwing her.

1.2. Getting Started with DAML 7

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML You are logged in as Alice. ®
Welcome, Alice!

@ Alice

a5 following

Follow

& The Network
wr My followers and users they are following

& Bob o
& Alice 2

When Alice starts follwing you, you can see her in your network as well. Just switch to the window
where you are logged in as yourself - the network should update automatically.

DAML You are logged in as Bob. ®
Welcome, Bob!
@ Bob

a5 following

& Alice

Follow

& The Network
v My followers and users they are following

& Alice o
& Bob o

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding DAML’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get
the next one by implementing your first feature.

1.3 Testing Your App

When developing your application, you will want to test that user flows work from end to end. This
means that actions performed in the web Ul trigger updates to the ledger and give the desired results
onthe page. In this section we show how you can do such testing automatically in TypeScript (equally

8 Chapter 1. Getting started

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

JavaScript). This will allow you to iterate on your app faster and with more confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

npm add --only=dev puppeteer wait-on @types/jest Qtypes/node @types/
wpuppeteer @types/wait-on

1.3.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suite in section The Full Test Suite at the bottom of this page. Torun this test suite, create a new fileui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes forthe daml start
and npm start commands, which run for the duration of our tests. We also have a single Puppeteer
browser that we share among tests, opening new browser pages for each one.

ThebeforeAll () section is a function run once before any of the tests run. We use it to spawn the
daml startandnpm start processesandlaunchthebrowser. OntheotherhandtheafterAll ()
sectionis used to shutdown these processes and close the browser. This step is important to prevent
child processes persisting in the background after our program has finished.

1.3.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

we’ll walk though this step by step.

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

1.3. Testing Your App 9

https://jestjs.io/
https://pptr.dev/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

getParty () gives us a new party name. Right now itis just a string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single User contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.3.3 Accessing Ul elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.test-
select-login-button', are CSS Selectors. You may have seen them before in CSS styling of web
pages. In this case we use class selectors, which look for CSS classes we’ve given to elements in our
React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.3.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic
Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the

10 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

x 4l Elements = Console Sources Network Performance

<!doctype
1

st-select-username-fiels
ui fluid t icon input">

Create D'\ M I_ App

input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS
selectors accordingly.

1.3.5 The Full Test Suite

1.3. Testing Your App n

Chapter 2

Writing DAML

2.1 An introduction to DAML

DAML is a smart contract language designed to build composable applications on an abstract DAML
Ledger Model.

In this introduction, you will learn about the structure of a DAML Ledger, and how to write DAML
applicationsthatrunon any DAML Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
DAML Ledger Model and how to use the DAML SDK Tools to write, test, compile, package and ship your
application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the DAML code for each
section here ordownload them using the DAML assistant. Forexample, to load the sources for section
Tinto a folder called 1 _Token,rundaml new 1 Token --template daml-intro-1.

Prerequisites:
You have installed the DAML SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small DAML template, which represents a self-issued, non-
transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make
it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

DAML Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder 1 _Token by running
daml new 1 Token --template daml-intro-1

12

https://github.com/digital-asset/daml/tree/master/docs/source/daml/intro/daml

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.1.1 DAML ledger basics

Like most structures called ledgers, a DAML Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll coverin more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it again.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

DAML specifies what transactions are legal on a DAML Ledger. The rules the DAML code specifies are
collectively called a DAML model or contract model.
2.1.1.2 DAML files and modules

Each .daml file defines a DAML Module. At the top of each DAML file is a pragma informing the com-
piler of the language version and the module name:

module Token where

Code comments in DAML are introduced with -:

-— The first line of a DAML file is a pragma telling the compiler thell
—language
-- version to use.

-—- A DAML file defines a module. The second line of a DAML file gives the
-- module a name.
module Token where

2.11.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

DAML is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the createargumentsor simply arguments. Thewith block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou canread this as template Token with a field owner of type Party .

2.1. An introduction to DAML 13

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.

2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract instance. These are the parties whose
authority is required to create the contract or archive it again - just like a real contract. Every contract
must have at least one signatory.

Furthermore, DAML ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

2.11.5 Next up

In 2 Testing templates using DAML Script, you’ll learn about how to try out the Token contract template
in DAML’s inbuilt DAML Script testing language.

2.1.2 2 Testing templates using DAML Script

In this section you will test the Token model from 1 Basic contracts using the DAML Script integration
in DAML Studio. You’ll learn about the basic features of :

Allocating parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2
by running daml new daml-intro-2 --template daml-intro-2

2.1.2.1 Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of
transactions, to check that your templates behave as you’d expect. You can also script some some
external information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called Alice .

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to puta partycalled Alice inavariablealice. Thereare
two things of note there:

14 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the
Script is run in the context of a ledger. <- means run the action and bind the result . It
can only be run in that context because, depending on the ledger state the script is running
on,allocateParty will either give you back a party with the name you specified or append a
suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in DAML are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: a Party and an Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = alice is aCommands, which translates to a list of commands that will be submit-
ted to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You couldwritethisas submit alice (createCmd Token with owner = alice),butjustlike
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note however, that the commands submitted as part of a transaction are not allowed
to depend n each other.

2.1.2.2 Running scripts
There are a few ways to run DAML Scripts:

In DAML Studio against a test ledger, providing visualizations of the resulting ledger

Using the command line daml test also against a test ledger, useful for continuous integra-
tion

Against a real ledger, take a look at the documentation for DAML Script for more information.
Interactively using DAML REPL.

In DAML Studio, you should see the text Script results just above the line token test 1 = do.
Click on it to display the outcome of the script.

Scripkt resulks
token test 1 = script do
alice <- allocateParty "Alic

submit alice do
createCmd Token owner = alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

2.1. An introduction to DAML 15

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

= Script: token_test 1 X

SRRl B show archived M show detailed disclosure

Main:Token

l

The first columns, labelled vertically, show which parties know about which contracts. In this
simple script, the sole party Alice knows about the contract she created.

The second column shows the ID of the contract. This will be explained later.

The third column shows the status of the contract, either active or archived.

The remaining columns show the contract arguments, with one column per field. As expected,
field owneris 'Alice'. The single quotation marks indicate that Alice is a party.

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. If your file contains more than one script,
all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do

createCmd Token with owner = bob
submit bob do
createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

(continues on next page)

16 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

create of at DA.Internal.Prelude:381:26
failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01TO0:00:007

Partial transaction:
Sub-transactions:

L~

-

owner = 'Bob’

(continued from previous page)

submitMustFail alice do

createCmd Token with owner = bob
submitMustFail bob do

createCmd Token with owner = alice
submit alice do

createCmd Token with owner = alice
submit bob do

createCmd Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular scenario view just
shows the two Tokens resulting from the successful submit statements. Note the new column for
Bob as well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.
Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,
you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.
How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

(continues on next page)

2.1. An introduction to DAML 17

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

2.1.2.5 Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you
want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

= Script: token_test 3 X

Show transaction view show archived I show detailed disclosure
Main:Token

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the DAML Studio script runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.All transactions have this formatin the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contractis archived in sub-transaction 0 of commit 2.
referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that
'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that Alice learned about the contract in commit #0.

Everything following with shows the create arguments.

18 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

= Script: token_test 3 X

Show table view

Transactions:
1970-01-01TO0:00:00Z |

owner = 'Alice’

1970-01-01TO0:00:00Z |

L "Alice’
= '"Alice’ Archive

Active contracts:

Return value: {}

2.1. An introduction to DAML 19

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.2.6 Exercises
To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

2.1.2.7 Next up

In 3 Data types you will learn about DAML’s type system, and how you can think of templates as tables
and contracts as database rows.

2.1.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using DAML Script, you learnt about the script view in DAML Studio, which displays
the current ledger state. It shows one table per template, with one row per contract of that type and
one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract instance of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

DAMVL’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a DAML ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyou canload all the code for this section into a foldercalled 3 _Data byrunning
daml new 3 Data --template daml-intro-3

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.3.1 Native types

You have already encountered a few native DAML types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using DAML Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0r =9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result.

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"
my bool = False
my date = date 2020 Jan 01

my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addbDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time == time (addDays my date 1) 00 0O[I
—00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the DAML Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
DAML Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or Party. An integer
like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.

2.1. An introduction to DAML 21

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You can think of the 1let as turning variable declaration into an action.

Most variables do not have annotations to say what type they are.

That’s because DAML is very good at inferring types. The compiler knows that 123 is an Int, so
if you declare my int = 123, itcan infer thatmy int is also an Int. This means you don’t
have to write the type annotationmy int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.
001 : Decimal which is a synonym for Numeric 10. You can always choose to add type
annotations to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party

in the role of an accountant.

template CashBalance

with
accountant : Party
currency : Text
amount : Decimal
owner : Party
account number : Text
bank : Party
bank address : Text
bank telephone : Text

where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
alice <- allocateParty "Alice"
bob <- allocateParty "Bank of Bob"

submit accountant do
createCmd CashBalance with

accountant
currency = "USD"
amount = 100.0
owner = alice
account number = "ABC123"
bank = bob
bank address = "High Street"
bank telephone = "012 3456 789"

2.1.3.2 Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, DAML’s type system has a number of ways to assemble these
native types into much more expressive structures.

22

Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In DAML, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple
import Daml.Script

tuple test = script do

let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)
assert (fst my key value == "Key")
assert (snd my key value == 1)
assert (my key value. 1 == "Key")
assert (my key value. 2 == 1)
assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3l
—my coordinate))
assert (my coordinate == (my coordinate. 1, my coordinate. 2, my

—coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

DAML supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

Lists

Lists in DAML take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] or alist of strings [Text], but not a list mixing integers and strings.

That’s because DAML is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-
tions.

import DA.List
import Daml.Script

list test = script do

let
empty [Int] = []
one = [1]
two = [2]
many = [3, 4, 5]

(continues on next page)

2.1. An introduction to DAML 23

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-— "head’ gets the first element of a 1ist
assert (head one == 1)
assert (head many == 3)

-—- ‘tail’ gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— '++ concatenates lists
assert (one ++ two ++ many == [1, 2, 3, 4, 5])
assert (empty ++ many ++ empty == many)

-— '::° adds an element to the beginning of a list.
assert (1 :: 2 :: 3 :: 4 :: 5 1 empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It's necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-—- Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

-- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = script do
let
my record = MyRecord with
my txt = "Text"

(continues on next page)

24 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N X
I
oo o

2
=3

-— '‘my text int has type KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val = 1

-— 'my int decimal’ has type "KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-—- If variables are in scope that match field names, we can pick them
—up
-— implicitly, writing just "my coord’ instead of 'my coord = my
—coord".
my nested = Nested with
my coord
my record
my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with, one of the things that happens in the background is that this becomes adata Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert
(my record == my record) in the script, you may be surprised to get an error message No
instance for (Eg MyRecord) arising from a use of ‘==’. Equality in DAML is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

data EqRecord = EqRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

(continues on next page)

2.1. An introduction to DAML 25

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

deriving (Eq)
data MyContainer a = MyContainer with
contents : a

deriving (Eq)

eq test = script do

let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my container = MyContainer with
contents = eqg record

other container = MyContainer with
contents = eqg_record

assert (my container.contents == eg record)
assert (my container == other container)

Eqg is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-
guages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eqg) to work on multiple types, with a specific implementation for each type they can

apply to.
There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which
gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eg, Show). The record types cre-
ated using template T with do this automatically, and the native types have appropriate type-
class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eqand Show

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text

(continues on next page)

26 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
owner
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
cash
account
pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are

expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. DAML doesn’t have an equivalent tonull. Variants can express

that cash can either be in hand or at a bank.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

(continues on next page)

2.1. An introduction to DAML

27

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand
| InAccount Account
deriving (Eq, Show)

template CashBalance
with
accountant : Party
owner : Party
cash : Cash
location : Location
where
signatory accountant

cash balance test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street”
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InHand

submit accountant do

(continues on next page)

28

Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

createCmd CashBalance with
accountant
owner
cash

location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the
closest DAML has to anull value:

data Optional a
= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if itis InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-- Commented out as ‘Either is defined in the standard library.
data Either a b

Left a
| Right b
-}
variant access test = script do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that "1° is a "Left ', we can error on the 'Right’ case.
1 value = case 1 of

(continues on next page)

2.1. An introduction to DAML 29

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Left 1 -> 1

Right i -> error "Expecting Left"
-—- Comment out at your own peril
{_
r value = case r of

Left 1 -> 1

Right i -> error "Expecting Left"
-}

-- If we are unsure, we can return an Optional’ in both cases
ol value = case 1 of

Left i -> Some i

Right i -> None
or value = case r of

Left i -> Some i

Right i -> None

-— If we don't care about values or even constructors, we can usell

—wildcards
1 value2 = case 1 of
Left i -> 1
Right _ -> error "Expecting Left"
1 value3 = case 1 of

Left i -> 1
_ => error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —-> False
assert (1 value == 1)
assert (1 value2 == 1)
assert (1 value3 == 1)
assert (ol value == Some 1)
assert (or value == None)

assert weekend

2.1.3.3 Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you
manipulate values once created?

All data in DAML is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

manipulation demo = script do
let

(continues on next page)

30 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

-— A verbose way to change “eq record’
changed record = EqRecord with
my txt = eq record.my txt

my int = 3
my dec = eq record.my dec
my list = eq record.my list

-— A better way
better changed record = eq record with
my int = 3

record with changed list = eqg record with
my list = "Zero" :: eq record.my list

assert (eq record.my int == 2)
assert (changed record == better changed record)

-— The list on "eq record’ can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])

-— The 1list on "record with changed list’ 1s a new one.

assert (record with changed list.my list == ["Zero", "One", "Two", "Three
(_}"])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

2.1.3.4 Contract keys

DAML’s type system lets you store richly structured data on DAML templates, but just like most
database schemas have more than one table, DAML contract models often have multiple templates
thatreference each other. For example, you may not want to store your bank and accountinformation
on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below
shows a contract model where Account is split out into a separate template and referenced by
ContractId, but it also highlights a big problem with that kind of reference: just like data, con-
tracts are immutable. They can only be created and archived, so if you want to change the dataon a
contract, you end up archiving the original contract and creating a new one with the changed data.

2.1. An introduction to DAML 31

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account
with
accountant : Party
owner : Party
number : Text
bank : Bank
where
signatory accountant

data Cash = Cash with

currency : Text

amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : ContractId Account
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

balanceCid <- submit accountant do

(continues on next page)

32 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

createCmd CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on thell
—account

Some account <- queryContractId accountant accountCid
new_account <- submit accountant do

archiveCmd accountCid

createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure ()

-— The “account’® field on the balance now refers to the archived
-—- contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account
optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active
contractusingits contractID. If there is no active contract with the given identifier visible to the given
party, queryContractId returns None. Here, we use a pattern match on Some which will abort the
script if queryContractIdreturns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part
of that transaction. To create new _account, the accountant archives the old account and creates a
new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint
in the sense that only one contract of a given template and with a given key value can be active at a
time.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account
with
accountant : Party

(continues on next page)

2.1. An introduction to DAML 33

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

owner : Party
number : Text
bank : Bank
where
signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
AccountKey

maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

Some account <- queryContractId accountant accountCid
balanceCid <- submit accountant do
createCmd CashBalance with

(continues on next page)

34 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

accountant
cash
account = key account

-- Now the accountant updates the telephone number for the bank on thell
—account

Some account <- queryContractId accountant accountCid
new accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure cid

-— Thanks to contract keys, the current account contract is fetched
Some balance <- queryContractId accountant balanceCid
(cid, account) <- submit accountant do
createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.
—account)
assert (cid == new_accountCid)

-—- Helper template to call "~fetchByKey .
template Helper
with
p : Party
where
signatory p
choice FetchAccountByKey : (ContractId Account, Account)
with
accountKey : AccountKey
controller p
do fetchByKey (@Account accountKey

Since DAML is designed to run on distributed systems, you have to assume that there is no
global entity that can guarantee uniqueness, which is why each key expression must come with
amaintainer expression. maintainer takes one or several parties, all of which have to be signa-
tories of the contract and be part of the key. That way the index can be partitioned amongst sets of
maintainers, and each set of maintainers can independently ensure the uniqueness constraint on
their piece of the index. The constraint that maintainers are part of the key is ensured by only having
the variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-
tract identifier, we use fetchByKey Q@Account. fetchByKey @Account takes a value of type
AccountKey and returns a tuple (ContractId Account, Account) if the lookup was success-
ful or fails the transaction otherwise. fetchByKey cannot be used directly in the list of commands
sent to the ledger. Therefore we create a Helper template with a FetchAccountByKey choice and
call thatvia createAndExerciseCmd. We will learn more about choices in the next section.

Since a single type could be used as the key for multiple templates, you need to tell the compiler
what type of contract is being fetched by using the @Account notation.

2.1. An introduction to DAML 35

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.3.5 Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other
parties the right to manipulate data in restricted ways.

2.1.4 4 Transforming data using choices

Inthe example in Contract keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the
accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder called
4 Transformations by running daml new 4 Transformations --template daml-intro-
4

2.1.4.1 Choices as methods
If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact:

template Contact

with
owner : Party
party : Party
address : Text
telephone : Text
where

signatory owner

controller owner can

UpdateTelephone
ContractId Contact
with
newTelephone : Text
do

create this with
telephone = newTelephone

The above defines a choicecalled UpdateTelephone. Choices are part of a contract template. They’re
permissioned functions that result in an Update. Using choices, authority can be passed around,

36 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

allowing the construction of complex transactions.
Let’s unpack the code snippet above:

Thefirstline,controller owner can says thatthe followingchoices are controlled by owner,

meaning owner is the only party that is allowed to exercise them. The line starts a new block in

which multiple choices can be defined.

UpdateTelephone is the name of achoice. It starts a new block in which that choiceis defined.
ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas
createCmd builds up a list of commands to be sent to the ledger, create builds up a more flex-
ible Update that is executed directly by the ledger. You might have noticed that create returns an
Update (ContractId Contact),notaContractId Contact. As a do block always returns the
value of the last statement within it, the whole do block returns an Update, but the return type on
the choice is justa ContractId Contact. Thisis a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice test = do
owner <- allocateParty "Alice"
party <- allocateParty "Bob"

contactCid <- submit owner do
createCmd Contact with

owner

party

address = "1 Bobstreet”
telephone = "012 345 6789"

-— The bank can't change its own telephone number as the accountantl]
—controls
-—- that choice.
submitMustFail party do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

newContactCid <- submit owner do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

(continues on next page)

2.1. An introduction to DAML 37

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exerciseCmdreturns a Commands r where risthe returntype specified onthe choice, allowing the
new ContractId Contact to be stored inthe variable new contactCid. Justlike for createCmd
and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always
used on the client side to build up the list of commands on the ledger. The versions without the
suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-
vious section. This allows you to create a new contract with the given arguments and immediately
exercise a choice on it. For a consuming choice, this archives the contract so the contract is created
and archived within the same transaction.

2.1.4.2 Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
script:

controller party can

UpdateAddress
ContractId Contact
with
newAddress : Text
do
create this with
address = newAddress

newContactCid <- submit party do
exerciseCmd newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"”

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. Controllers specified
via controller c can syntax become observers of the contract. More on observers later, but in
short, they get to see any changes to the contract.

38 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.4.3 Choices in the Ledger Model

In 1Basic contracts you learned about the high-level structure of a DAML ledger. With choices and the
exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and
nonconsuming. consuming is the default kind and changes the contract’s status from active
to archived.

A key assertion records the assertion that the given contract key (see Contract keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above script:

Transactions:

TX #0 1970-01-01T00:00:00Z (Contact:43:17)

#0:0

| consumed by: #2:0

| referenced by #2:0

| known to (since): 'Alice' (#0), 'Bob' (#0)

L_> create Contact:Contact

with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone

—= "012 345 6789"

TX #1 1970-01-01T00:00:002Z
mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)
#2:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"
children:
#2:1
| consumed by: #4:0
| referenced by #3:0, #4:0

| known to (since): 'Alice' (#2), 'Bob' (#2)
L-> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";[l
—~telephone = "098 7654 321"

(continues on next page)

2.1. An introduction to DAML 39

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

TX #3 1970-01-01T00:00:002
#3:0
L> fetch #2:1

TX #4 1970-01-01T00:00:00%2

(Contact:60:3)

(Contact:Contact)

(Contact:66:22)

#4:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)
with
newAddress = "1-10 Bobstreet”
children:
#4:1
| referenced by #5:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L_> create Contact:Contact
with
owner = 'Alice';
party = 'Bob';
address = "1-10 Bobstreet";
telephone = "098 7654 321"

TX #5 1970-01-01T00:00:002
#5:0
L> fetch #4:1

(Contact:70:3)

(Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four submit statements in the script. Within each com-
mit, we see that it’s actually actions that have IDs of the form #commit number:action number.
Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions
of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive choice

You may have noticed that there is no archive action. That’s because archive cidisjustshorthand
forexercise cid Archive,whereArchiveisachoiceimplicitlyaddedtoeverytemplate, withthe
signatories as controllers.

2.1.4.4 A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the
location of the physical cash, but merely with liabilities:

40 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-—- Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or 1itsll
—affiliates. All rights reserved.
-—- SPDX-License-Identifier: Apache-2.0

module SimpleIou where
import Daml.Script

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

controller owner can

Transfer
ContractlId SimpleIou
with
newOwner : Party
do
create this with owner = newOwner
test iou = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

charlie <- allocateParty "Charlie"
dora <- allocateParty "Dora"

-— The bank issues an Iou for $100 to Alice.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Alice transfers it to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

(continues on next page)

2.1. An introduction to DAML 4]

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-— Bob transfers it to Charlie.
submit bob do
exerciseCmd iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner
could prove that Dora was dishonest and cancelled her debt.

2.1.4.5 Next up

You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In
that context, you will also learn about time on DAML ledgers, do blocks and <- notation within those.

2.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in DAML:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do blocks,
which will be good preparation for 7 Composing choices, where you will use do blocks to compose
choices into complex transactions.

Lastly, you will learn about time on the ledger and in DAML Script.

Hint: Rememberthatyou can load all the code for this section into a foldercalled 5 Restrictions
by running daml new 5 Restrictions --template daml-intro-5

2.1.5.1 Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-
conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou

with
issuer : Party
owner : Party
cash : Cash
where

signatory issuer

ensure cash.amount > 0.0

42 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency == 3
&& T.isUpper cash.currency

Hint: The T here stands for the DA. Text standard library which has been imported using import
DA.Text as T.

test restrictions = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
dora <- allocateParty "Dora"

-—- Dora can't issue negative Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-— Or even zero Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"

-—- Nor positive Ious with invalid currencies.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-—- But positive Ious still work, of course.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0

(continues on next page)

2.1. An introduction to DAML 43

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

currency = "USD"

2.1.5.2 Assertions
A second common kind of restriction is one on data transformations.

For example, the simple lou in A simple cash model allowed the no-op where the owner transfers to
themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scripts.

assert does not return an informative error so often it's better to use the function assertMsg,
which takes a custom error message:

controller owner can

Transfer

ContractId SimpleIou

with
newOwner : Party

do
assertMsg "newOwner cannot be equal to owner." (owner /=

—newOwner)

create this with owner = newOwner

-— Alice can't transfer to herself...
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-
ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This
assumes that actual cash changes hands off-ledger.)

controller owner can
Redeem
()
do
now <- getTime
let
today = toDateUTC now
dow = dayOfWeek today
timeofday = now “subTime time today 0 0 0
hrs = convertRelTimeToMicroseconds timeofday / 3600000000
assertMsg
("Cannot redeem outside business hours. Current time: " <>
—~show timeofday)

(continues on next page)

44 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

(hrs >= 8 && hrs <= 18)
case dow of
Saturday -> abort "Cannot redeem on a Saturday."
Sunday -> abort "Cannot redeem on a Sunday."
_ —> return ()

-— June 1st 2019 is a Saturday.
setTime (time (date 2019 Jun 1) 0 0 0)
-— Bob cannot redeem on a Saturday.
submitMustFail bob do

exerciseCmd iou2 Redeem

-—- Not even at mid-day.
passTime (hours 12)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exerciseCmd iou2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
passTime (hours 42)
submitMustFail bob do

exerciseCmd iou2 Redeem

—-— Bob can redeem at 8am on Monday.
passTime (hours 2)
submit bob do

exerciseCmd iou2 Redeem

There are quite a few new time-related functions from the DA. Time and DA . Date libraries here. Their
names should be reasonably descriptive so how they work won’t be covered here, but given that DAML
assumes itis runin a distributed setting, we will still discuss time in DAML.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the
<- operator. do blocks and <- deserve a proper explanation at this point.

2.1.5.3 Time on DAML ledgers

Each transaction on a DAML ledger has two timestamps called the ledger time (LT) and the record time
(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each DAML ledger has a policy on the allowed difference between LT and RT called the skew. The
participant has to take a good guess at what the record time will be. If it’s too far off, the transaction
will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart
into day of week and hour of day using standard library functions from DA.Date and DA.Time. The
hour of the day is checked to be in the range from 8 to 18.

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Al-
ice submits a transaction to redeem an lou. One second later, the transaction is assigned a LET
of 17:59:56, but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even
though it was committed after business hours, it would be a valid transaction and be committed

2.1. An introduction to DAML 45

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

successfully as getTime will return 17:59:56 so hrs == 17. Since the RT is 18:00:06, LT - RT <=
10 seconds and the transaction won’t be rejected.

Time therefore has to be considered slightly fuzzy in DAML, with the fuzziness depending on the skew
parameter.

For details, see Background concepts - time.

Time in scenarios

In scenarios, record and ledger time are always equal. You can set them using the following functions:

setTime, which set the ledger time to the given time.
passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed DAML ledger, there are no guarantees that ledger time or record time are strictly
increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-
tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or
equal to that of TX1:

iou3 <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days (-3))
submitMustFail alice do
exerciseCmd iou3 Redeem

2.1.5.4 Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Scenario and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocks is therefore crucial to being able to construct correct contract

models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressions in DAML are pure in the sense that they have no side-effects: they neither read nor mod-
ify any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

getTime is a good example of an Action. Here’s the example we used earlier

46 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is
no expression expr that you could puton theright hand side of now = expr. To get the ledger time,
you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a, and Update and Script are instances of Action. A value of such atypem a wherem
isaninstanceof Actioncanbeinterpreted as arecipeforan actionof typem, which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais arecipe toupdate a DAML ledger, which, when committed, has the effect of
changing the ledger, and returns avalue of type a . An update to a DAML ledger is a transaction
so equivalently, an Update ais arecipe to construct a transaction, which, when executed in
the context of a ledger, returns a value of type a .

A Script ais arecipe for a test, which, when performed against a ledger, has the effect of
changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, allocateParty party,passTime time, submit party commands,
create contract and exercise choice should make more sense in that light. For example:

getTime : Update Time is the recipe for an empty transaction that also happens to return
a value of type Time.

passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any
transactions, but has the side-effect of changing the LET of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou),whereiou : Iouisarecipeforatransaction
consisting of a single create action, and returns the contract id of the created contract if
successful.

submit alice (createCmd iou) : Script (ContractId Iou) is arecipe for a script
in which Alice sends the command createCmd iou to the ledger which produces a transac-
tion and a return value of type ContractId Iou and returns that back to Alice.

Any DAML ledger knows how to perform actions of type Update a. Only some know how to run DAML
Scripts, meaning they can perform actions of type Script a.

Commands on the other hand is a bit more restricted than Script and Update as it represents a list
of independent commands sent to the ledger. You can still use do blocks but if you have more than
one command in a single do block you need to enable the ApplicativeDo extension at the begin-
ning of your file. In addition to that, the last statementin such a do block must be of the form return
expr or pure expr. Applicative is a more restricted version of Action that enforces that there
are no dependencies between commands. If you do have dependencies between commands, you can

2.1. An introduction to DAML 47

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

always wrap it in a choice in a helper template and call that via createAndExerciseCmd just like
we did to call fetchByKey. Alternatively, if you do not need them to be part of the same transaction,
you can make multiple calls to submit.

{—# LANGUAGE ApplicativeDo #-}
module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just
another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a
transaction.

A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So
a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,
using the results of earlier actions in later ones.

sub scriptl (alice, dora) = do
submit dora do
createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

sub script2 = do
passTime (days 1)
passTime (days (-1))
return 42

sub_script3 (bob, dora) = do
submit dora do
createCmd SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main : Script () = do
dora <- allocateParty "Dora"
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

ioul <- sub scriptl (alice, dora)
sub_script2
iou2 <- sub script3 (bob, dora)

(continues on next page)

48 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submit dora do
archiveCmd ioul
archiveCmd iou2
pure ()

Above, we see do blocks in action for both Script and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return xis a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_script2 : Script Int

2.1.5.5 Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can
fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on
the ledger.

Each has a special action abort txt that represents failure, and that takes on type Update () or
Script () dependingon context.

Transactions and scenarios succeed or fail atomically as a whole. So an occurrence of an abort action
will always fail the entire evaluation of the current Script or Update.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.
It has type Update () and is either an abort or return depending on the day of week. So during
the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of
transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails
the entire transaction.

2.1.5.6 A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more
generally, by creating a new type thatis also an action. CoinGame aisanAction ainwhichaCoin
is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing
the random number generator’s state. Based on the Heads and Tails results, a return value of type
a is calulated.

data Face = Heads | Tails
deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with
play : Coin -> (Coin, a)

flipCoin : CoinGame Face
getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.
More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get
your hands on a Coinin a Script context and an action £1ipCoin which represents the simplest

2.1. An introduction to DAML 49

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write
down a script or recipe for a game:

coin test = do
-— The coin 1is pseudo-random on LET so change the parameter to changel]
—the game.
setTime (time (date 2019 Jun 1) 0 0 0)
passTime (seconds 2)
coin <- getCoin
let
game = do
flr <- flipCoin
f2r <- flipCoin
f3r <- flipCoin

if all (== Heads) [flr, f2r, £f3r]
then return "Win"
else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return
Heads, the resultis "Win", or else "Loss".

Ina Scenario contextyoucangeta Coin usingthe getCoin action,which uses the LET to calculate
a seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-
ing glass and understand in-depth what’s going on, you can look at the source file to see how the
CoinGame action is implemented, though be warned that the implementation uses a lot of DAML
features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general
course on functional programming, and Haskell in particular. See The Haskell Connection for some
suggestions.

2.1.5.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-
tions only have an effect when they are performed, so the following scenario succeeds or fails de-
pending on the value of abortScenario:

nonPerformedAbort = do
let abortScript = False
let failingAction : Script () = abort "Foo"
let successfulAction : Script () = return ()
if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a
function pow that takes an integer to the power of another positive integer. How do we handle that
the second parameter has to be positive?

50 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int
optPow base exponent
| exponent == = Some 1
| exponent > 0 =
let Some result = optPow base (exponent - 1)
in Some (base * result)
| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always
handle it as we need to extract the result from an Optional. We can see the impact on convenience
in the definition of the above function. In cases, like division by zero or the above function, it can
therefore be preferrable to fail catastrophically instead:

errPow : Int -> Int -> Int
errPow base exponent

| exponent == =1
| exponent > 0 = base * errPow base (exponent - 1)
| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following scenario will fail,
because failingComputation is evaluated:

nonPerformedError = script do
let causeError = False
let failingComputation = errPow 1 (-1)
let successfulComputation = errPow 1 1
return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and
where explicit partiality would unduly impact usability of the function.

2.1.5.8 Next up

You can now specify a precise data and data-transformation model for DAML ledgers. In 6 Parties and
authority, you will learn how to properly involve multiple parties in contracts, how authority works in
DAML, and how to build contract models with strong guarantees in contexts with mutually distrust-
ing entities.

2.1.6 6 Parties and authority

DAML is designed for distributed applications involving mutually distrusting parties. In a well-
constructed contract model, all parties have strong guarantees that nobody cheats or circumvents
the rules laid out by templates and choices.

In this section you will learn about DAML’s authorization rules and how to develop contract models
that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another
Write advanced choices
Reason through DAML’s Authorization model

2.1. An introduction to DAML 51

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Hint: Remember that you can load all the code for this section into a folder called 6 Parties by
running daml new 6 Parties --template daml-intro-6

2.1.6.1 Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract
has one major problem: The contract is only signed by the issuer. The signatories are the parties
with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange
for some goods, she could just archive it again after receiving the goods. Bob would have a record of
such actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou

with
issuer : Party
owner : Party
cash : Cash
where

signatory issuer

simple iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.
-—- Alice transfers the payment as a Simplelou.
iou <- submit alice do
createCmd SimpleIou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days 1)
-— Bob delivers the goods.

passTime (minutes 10)
-- Alice just deletes the payment again.
submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are actu-
ally followed, they either need to be a signatory themselves, or trust one of the signatories to not agree
to transactions that archive and re-create contracts in unexpected ways. To make the SimpleIou
safe for Bob, you need to add him as a signatory.

template Iou
with
issuer : Party

(continues on next page)

52 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

owner : Party
cash : Cash
where

signatory issuer, owner

controller owner can
Transfer
ContractId Iou
with
newOwner : Party
do
assertMsg "newOwner cannot be equal to owner." (owner /=
—newOwner)
create this with
owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Tou to Bob. To get an
TIou with Bob’s signature as owner onto the ledger, his authority is needed.

iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-— Alice and Bob enter into a trade.
-- Alice wants to give Bob an Iou, but she can't without Bob's authority.
submitMustFail alice do
createCmd Iou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

-—- She can issue herself an Iou.
iou <- submit alice do
createCmd Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-—- However, she can't transfer it to Bob.
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above

Iou can contain negative values so Bob should be glad that A1ice cannot put his signature on any
Iou.

2.1. An introduction to DAML 53

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above
Iou, before diving into the authorization model in full.
2.1.6.2 Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an lou to
Bob, giving him the choice to accept. You can do so by introducing a proposal contract TouProposal:

template IouProposal
with
iou : Iou
where
signatory iou.issuer

controller iou.owner can
IouProposal Accept
ContractId Iou
do
create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do
createCmd IouProposal with
iou = Iou with

issuer = alice

owner = bob

cash = Cash with
amount = 100.0
currency = "USD"

submit bob do
exerciseCmd iouProposal IouProposal Accept

The IouProposal contract carries the authorithy of iou.issuer by virtue of them being a signa-
tory. By exercising the TouProposal Accept choice, Bob adds his authority to that of Alice, which
is why an Iou with both signatories can be created in the context of that choice.

The choice is called TouProposal Accept, not Accept, because propose-accept patterns are very
common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot
have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure
uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,
by creating a TransferProposal:

template IouTransferProposal

with
iou : Iou
newOwner : Party
where

signatory (signatory iou)

(continues on next page)

54 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller iou.owner can
IouTransferProposal Cancel
ContractId Iou
do
create iou

controller newOwner can
IouTransferProposal Reject
ContractId Iou
do
create iou

IouTransferProposal Accept
ContractId Iou
do
create iou with
owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the
signatories from another contract. Instead of writing signatory (signatory iou), you could

write signatory iou.issuer, iou.owner.

Note also how newOwner is given multiple choices using a single controller newOwner can
block. The TouProposal had a single signatory so it could be cancelled easily by archiving it. With-
out a Cancel choice, the newOwner could abuse an open TransferProposal as an option. The triple

Accept,Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a
transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a

TouTransferProposal is created instead of an Tou:

ProposeTransfer
ContractId IouTransferProposal
with
newOwner : Party
do
assertMsg "newOwner cannot be equal to owner." (owner /=
—newOwner)
create IouTransferProposal with
iou = this
newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-—- Alice issues an Iou using a transfer proposal.
tpab <- submit alice do
createCmd IouTransferProposal with
newOwner = bob
iou = Iou with

(continues on next page)

2.1. An introduction to DAML

55

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

issuer = alice

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

-—- Bob accepts the transfer from Alice.
iou2 <- submit bob do
exerciseCmd tpab IouTransferProposal Accept

-— Bob offers Charlie a transfer.
tpbc <- submit bob do
exerciseCmd iou2 ProposeTransfer with
newOwner = charlie

-— Charlie accepts the transfer from Bob.
submit charlie do
exerciseCmd tpbc IouTransferProposal Accept

2.1.6.3 Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this
succinctly in DAML through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script
above. In 7 Composing choices, you will see how to compose the ProposeTransfer and
IouTransferProposal Accept choices into a single new choice, but for now, here is a different
way. You can give them the joint right to transfer an IOU:

choice Mutual Transfer
ContractId Iou
with
newOwner : Party
controller owner, newOwner
do
create this with
owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner
variable is part of the choice arguments, not the Iou.

The above syntax is an alternative to controller ¢ can, which allows for this. Such choices live
outside any controller c can block. They declared using the choice keyword, and have an extra
clause controller c,which takes the place of controller c can, and has access to the choice
arguments.

This is also the first time we have shown a choice with more than one controller. If multiple con-
trollers are specified, the authority of allthe controllers is needed. Here, neither owner, nor newOwner
can execute a transfer unilaterally, hence the name Mutual Transfer.

56 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

template IouSender

with
sender : Party
receiver : Party
where

signatory receiver

controller sender can
nonconsuming Send Iou

ContractId Iou

with
iouCid : ContractId Iou

do
iou <- fetch iouCid
assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)
exercise iouCid Mutual Transfer with
newOwner = receiver

The above ITouSender contract now gives one party, the sender theright to send Iou contracts with
positive amounts to a receiver. The nonconsuming keyword on the choice Send Iouchanges the
behaviour of the choice so that the contract it’s exercised on does not get archived when the choice
is exercised. That way the sender can use the contract to send multiple lous.

Here it is in action:

-— Bob allows Alice to send him Ious.
sab <- submit bob do
createCmd IouSender with
sender = alice
receiver = bob

-— Charlie allows Bob to send him Ious.
sbc <- submit charlie do
createCmd IouSender with
sender = bob
receiver = charlie

-— Alice can now send the Iou she issued herself earlier.
ioud4 <- submit alice do
exerciseCmd sab Send Iou with
iouCid = iou

-— Bob sends it on to Charlie.
submit bob do
exerciseCmd sbc Send Iou with
iouCid = iou4

2.1. An introduction to DAML 57

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.6.4 DAML's authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in DAML.
In this section you’ll learn about the formal authorization model to allow you to reason through your
contract models. This will allow you to construct them in such a way that you don’t run into autho-
rization errors at runtime, or, worse still, allow malicious transactions.

In Choices in the Ledger Model you learned that a transaction is, equivalently, a tree of transactions, ora
forest of actions, where each transaction is a list of actions, and each action has a child-transaction
called its consequences.

Each action has a set of required authorizers - the parties that must authorize that action - and each
transaction has a set of authorizers - the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers
of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.
Remember that Archive and archive are just an implicit choice with the signatories as con-
trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat
dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.
The consequences of an exercise action are authorized by the actors of that action plus the
signatories of the contract on which the action was taken.

An authorization example

The final transaction in the script of the source file for this section is authorized as follows, ignoring
fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send Iouon a IouSender con-
tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the
sender, Bob is the required authorizer.

The consequences of the Send Tou action are authorized by its actors, Bob, as well as signa-
tories of the contract on which the action was taken. That’'s Charlie in this case, so the conse-
quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual Exercise with Charlie as
newOwner on an Iou with issuer alice and owner Bob. The required authorizers of the ac-
tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.
The consequences of Mutual Transfer areauthorized by the actors (Bob and Charlie), as well
as the signatories on the lou (Alice and Bob).

The single action on the consequences, the creation of an lou with issuer Alice and owner
Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s
authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

58 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

TX #12 1970-01-01T00:00:00Z (Parties:269:3)

#12:0
| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> 'Bob' exercises Send Iou on #10:0 (Parties:IouSender)
with
iouCid = #11:3

children:

#12:1

| known to (since): 'Bob' (#12), 'Charlie' (#12)

L> fetch #11:3 (Parties:Iou)

#12:2
| known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)
L> 'Bob', 'Charlie' exercises Mutual Transfer on #11:3 (Parties:Iou)
with
newOwner = 'Charlie'
children:
#12:3

| known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)
L> create Parties:Iou

with
issuer = 'Alice';
owner = 'Charlie';
cash =
(Parties:Cash with
currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive
with

partyA : Party

partyB : Party
where

signatory partyA

controller partyA can
TryA
ContractId NonTransitive
do
create NonTransitive with
partyA = partyB
partyB = partyA

controller partyB can

TryB
ContractId NonTransitive
with
other : ContractId NonTransitive
do

(continues on next page)

2.1. An introduction to DAML 59

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

exercise other TryA

ntl <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob
nt2 <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob

submitMustFail bob do
exerciseCmd ntl TryB with
other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action TryA only has Alice
as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to
create the flipped NonTransitive so the transaction fails.

2.1.6.5 Next up

In 7 Composing choices you will put everything you have learned together to build a simple asset hold-
ing and trading model akin to that in the |OU Quickstart Tutorial. In that context you’ll learn a bit more
about the Update action and how to use it to compose transactions, as well as about privacy on
DAML ledgers.

2.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure DAML model for
asset issuance, management, transfer, and trading. This application will have capabilities similar
to the one in I0U Quickstart Tutorial. In the process you will learn about a few more concepts:

DAML projects, packages and modules
Composition of transactions
Observers and stakeholders

DAML’s execution model

Privacy

The model in this section is not a single DAML file, but a DAML project consisting of several files that
depend on each other.

Hint: Remember that you can load all the code for this section into a folder called 7 _Composing by
running daml new 7Composing --template daml-intro-7

2.1.7.1 DAML projects

DAML is organized in projects, packages and modules. A DAML project is specified using a single
daml.yaml file, and compiles into a package in DAML’s intermediate language, or bytecode equiva-
lent, DAML-LF. Each DAML file within a project becomes a DAML module, which is a bit like a names-

60 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

pace. Each DAML project has a source root specified in the source parameterin the project’s daml.
yaml file. The package will include all modules specified in *.daml files beneath that source direc-
tory.

You can start a new project with a skeleton structure using daml new project name inthe termi-
nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the chapter 7 project:

sdk-version: VERSION
name: _ PROJECT NAME
source: daml
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

- daml-script
sandbox-options:

- —--wall-clock-time

You can generally set name and version freely to describe your project. dependencies does what
the name suggests: It includes dependencies. You should always include daml-prim and daml-
stdlib. The former contains internals of compiler and DAML Runtime, the latter gives access to the
DAML Standard Library.“daml-script” contains the types and standard library for DAML Script.

You compile a DAML project by running daml build from the project root directory. This creates
a dar file in .daml/dist/dist/project name-project version.dar. A dar file is DAMLs
equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the package
and its dependencies. dar files are fully self-contained in that they contain all dependencies of the
main package. More on all of this in 8 Working with Dependencies.

2.1.7.2 Project structure

This project contains an asset holding model for transferrable, fungible assets and a separate trade
workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and
Intro.Asset.Trade.

In addition, there are tests in modules Test.Intro.Asset,Test.Intro.Asset.Role,and Test.
Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project
source directory, and the last one to a file name. The folder structure therefore looks like this:

| F—— Role.daml
| L— Trade.daml
L— Asset.daml

I— Asset

| F—— Role.daml

(continues on next page)

2.1. An introduction to DAML 61

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

| L— Trade.daml
| L— Asset.daml
— daml.yaml

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModules module
imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of
names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any DAML Scripts, you need to import the corresponding functionality:

import Daml.Script

2.1.7.3 Project overview
The project both changes and adds to the Tou model presented in 6 Parties and authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner
to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This
makes Asset safer than Iou from the issuer’s point of view.

With the Tou model, an issuer could end up owing cash to anyone as transfers were autho-
rized by just owner and newOwner. In this project, only parties having an AssetHolder con-
tract can end up owning assets. This allows the issuer to determine which parties may own
their assets.

The Trade template adds a swap of two assets to the model.

2.1.7.4 Composed choices and scripts

This project showcases how you can putthe Update and Script actions you learnt aboutin 6 Parties
and authority to good use. For example, the Merge and Split choices each perform several actions
in their consequences.

Two create actions in case of Split
One create and one archive action in case of Merge

Split
SplitResult
with
splitQuantity : Decimal
do
splitAsset <- create this with
quantity = splitQuantity

(continues on next page)

62 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

remainder <- create this with
quantity = quantity - splitQuantity
return SplitResult with

splitAsset
remainder
Merge
ContractId Asset
with
otherCid : ContractId Asset
do
other <- fetch otherCid
assertMsg
"Merge failed: issuer does not match"
(issuer == other.issuer)
assertMsg
"Merge failed: owner does not match"
(owner == other.owner)
assertMsg
"Merge failed: symbol does not match"
(symbol == other.symbol)

archive otherCid
create this with
quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return xisa
no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a
value with side-effects. The return name makes sense when it’s used as the last statementin ado
block as its argument is indeed the return -value of the do block in that case.

Taking transaction composition a step further, the Trade Settle choice on Trade composes two
exercise actions:

Trade_Settle
(ContractId Asset, ContractId Asset)
with
quoteAssetCid : ContractId Asset
baseApprovalCid : ContractId TransferApproval
do
fetchedBaseAsset <- fetch baseAssetCid
assertMsg
"Base asset mismatch"
(baseAsset == fetchedBaseAsset with
observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg
"Quote asset mismatch"
(quoteAsset == fetchedQuoteAsset with

observers = quoteAsset.observers)

(continues on next page)

2.1.

An introduction to DAML 63

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

transferredBaseCid <- exercise
baseApprovalCid TransferApproval Transfer with
assetCid = baseAssetCid

transferredQuoteCid <- exercise
quoteApprovalCid TransferApproval Transfer with

assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the
test trade scriptin Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)
#15:0

| known to (since): 'Alice' (#15), 'Bob' (#15)
L> 'Bob' exercises Trade Settle on #13:1 (Intro.Asset.Trade:Trade)
with
quoteAssetCid = #10:1; baseApprovalCid = #14:2
children:
#15:1
| known to (since): 'Alice' (#15), 'Bob' (#15)

L> fetch #11:1 (Intro.Asset:Asset)

#15:2
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)

#15:3
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)
L> 'Alice’,
'Bob' exercises TransferApproval Transfer on #14:2 (Intro.
—~Asset:TransferApproval)

with
assetCid = #11:1
children:
#15:4
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)

L> fetch #11:1 (Intro.Asset:Asset)

#15:5

| known to (since): 'Alice' (#15), 'USD Bank' (#15), 'Bob' (#15)

L> 'Alice’, 'USD Bank' exercises Archive on #11:1 (Intro.
—~Asset:Asset)

#15:6
| referenced by #17:0
| known to (since): 'Bob' (#15), 'USD Bank' (#15), 'Alice' (#15)

(continues on next page)

64 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

L> create Intro.Asset:Asset

with
issuer = 'USD Bank'; owner = 'Bob'; symbol = "USD"; quantity
—~= 100.0; observers = []
#15:7
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
> 'Bob"',

'Alice' exercises TransferApproval Transfer on #12:1 (Intro.
—~Asset:TransferApproval)
with
assetCid = #10:1
children:
#15:8
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)

#15:9

| known to (since): 'Bob' (#15), 'EUR Bank' (#15), 'Alice' (#15)

L> 'Bob', 'EUR Bank' exercises Archive on #10:1 (Intro.
—Asset:Asset)

#15:10
| referenced by #16:0
| known to (since): 'Alice' (#15), 'EUR Bank' (#15), 'Bob' (#15)
L> create Intro.Asset:Asset
with
issuer = 'EUR Bank'; owner = 'Alice'; symbol = "EUR";[!
—quantity = 90.0; observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test issuance = do
setupResultl (alice, bob, bank, aha, ahb) <- setupRoles

assetCid <- submit bank do
exerciseCmd aha Issue Asset
with
symbol = "USD"
quantity = 100.0

Some asset <- queryContractId bank assetCid
assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

(continues on next page)

2.1. An introduction to DAML 65

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

return (setupResult, assetCid)

In the above, the test issuance script in Test.Intro.Asset.Role uses the output of the
setupRoles scriptin the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResults <-
setupRoles and then accessing the components of setupResults using 1, 2,etc,youcan give
them names. It’s equivalent to writing

setupResults <- setupRoles
case setupResults of
(alice, bob, bank, aha, ahb) ->

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but
setupResults is used in the return value of test issuance so it makes sense to give it a name,
too. The notation with @ allows you to give both the whole value as well as its constituents names in
one go.

2.1.7.5 DAML's execution model

DAML’s execution model is fairly easy to understand, but has some important consequences. You
can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,
acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update
corresponding to each Action is evaluated in the context of the ledger to calculate all conse-
quences, including transitive ones (consequences of consequences, etc.). The result of this is
a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.
This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ
from implementation to implementation. Validation also involves scheduling and collision
detection, ensuring that the transaction has a well-defined place in the (partial) ordering of
Commits, and no double spends occur.

Commitment The Commitis actually commited according to the commit or consensus protocol of

the Ledger.

Confirmation The network sends confirmations of the commitment back to all involved Participant
Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant
Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-
ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade Settle choice shown above. The choice transfers a
baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no
chance that either party is left out of pocket.

The second consequence, due to 2, is that the requester of a transaction knows all consequences
of their submitted transaction - there are no surprises in DAML. However, it also means that the

66 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

requester must have all the information to interpret the transaction.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that
transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about
some way for Alice to accept a transfer - remember, accepting a transfer needs the authority of
issuer in this example.

2.1.7.6 Observers

Observers are DAML’s mechanism to disclose contracts to other parties. They are declared just like
signatories, but using the observer keyword, as shown in the Asset template:

template Asset
with
issuer : Party
owner : Party
symbol : Text
quantity : Decimal
observers : [Party]
where
signatory issuer, owner
ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice
uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if
she didn’t do that by removing that transaction.

usdCid <- submit alice do
exerciseCmd usdCid SetObservers with
newObservers = [bob]

Observers have guarantees in DAML. In particular, they are guaranteed to see actions that create and
archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each
other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and
using that to authorize the transfer in Trade Settle, Alice creates a one-time authorization in the
formof a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up
leaking them to each other.

Controllers declared via the controller cs can syntax are automatically made observers. Con-
trollers declared in the choice syntax are not, as they can only be calculated at the point in time
when the choice arguments are known.

2.1.7.7 Privacy
DAMVL’s privacy model is based on two principles:

1. Parties see those actions that they have a stake in.
2. Every party that sees an action sees its (transitive) consequences.

Iltem 2. is necessary to ensure that every party can independently verify the validity of every trans-
action they see.

2.1. An introduction to DAML 67

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

A party has a stake in an action if

they are a required authorizer of it
they are a signatory of the contract on which the action is performed
they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade Settle action from test trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade Settled action,
so both of them see it. According to rule 2. above, that means they get to see everything in the
transaction.

The consequences contain, next to some fetch actions, two exercise actions of the choice
TransferApproval Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see
the action on their contract. So the EUR_Bank sees the TransferApproval Transfer action
for the EUR Asset and the USD_Bank sees the TransferApproval Transfer action for the USD
Asset.

Some DAML ledgers, like the script runner and the Sandbox, work on the principle of data minimiza-
tion , meaning nothing more than the above information is distributed. That is, the projection of
the overall transaction that gets distributed to EUR_Bank in step 4 of DAML’s execution model would
consistonly of the TransferApproval Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-
straints.

Divulgence

Note that principle 2. of the privacy model means that sometimes parties see contracts that they
are not signatories or observers on. If you look at the final ledger state of the test trade script, for
example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in their
respective columns:

Intro.Asset:Asset

51:'-11:1.15 issuer owner aymbnl quantlw ﬂth‘f"’."El‘b

=L
X[x[- [x[#55

This is because the create action of these contracts are in the transitive consequences of the
Trade Settle action both of them have a stake in. This kind of disclosure is often called divul-
gence and needs to be considered when designing DAML models for privacy sensitive applications.

2.1.7.8 Next up

The model presented here is safe and sound so we could deploy it to production and start trading.
But the journey doesn’t stop there. In 8 Working with Dependencies you will learn how to extend an

68 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

already running application to enhance it with new features. In that context you’ll learn a bit more
about the architecture of DAML, about dependencies, and identifiers.

2.1.8 8 Working with Dependencies

The application from Chapter 7 is a complete and secure model for atomic swaps of assets, but
there is plenty of room for improvement. However, one can’t implement all feature before going live
with an application so it’s important to understand way to change already running code. There are
fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to
have multiple signatories.
2. Extensions, which merely add new functionality though additional templates.

Upgrades are covered in their own own section outside this introduction to DAML: Upgrading and ex-
tending DAML applications so in this section we will extend the chapter 7 model with a simple second
workflow: A multi-leg trade. In doing so, you’ll learn about:

The software architecture of the DAML Stack
Dependencies and Data Dependencies
Identifiers

Since we are extending chapter 7, the setup for this chapter is slightly more complex:

1. In a base directory, load the chapter 7 project using daml new 7Composing --template
daml-intro-7. The directory 7Composing hereis important as it’ll be referenced by the other
project we are creating.

2. In the same directory, load the chapter 8 project using daml new 8Dependencies --
template daml-intro-8.

8Dependencies contains a new module Intro.Asset.MultiTrade and a corresponding test
module Test.Intro.Asset.MultiTrade.

2.1.8.1 DAR, DALF, DAML-LF, and the Engine

In 7 Composing choices you already learnt a little about projects, DAML-LF, DAR files, and dependencies.
In this chapter we will actually need to have dependencies from the chapter 8 project to the chapter
7 project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of chapter 7. DAR files, like Java JAR files are just ZIP archives,
but the DAML SDK also has a utility to inspect DARs out of the box:

1. Navigate into the 7Composing directory.
2. Build using daml build -o assets.dar
3. Rundaml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header DAR archive contains the following files: you’ll
see that the DAR contains

1. *.dalf files for the project and all its dependencies
2. The original DAML source code

3. *.hiand *.hie files for each *.daml file

4. Some meta-inf and config files

Thefirstfileis somethinglike 7Composing-1.0.0-887056cbb313b%4ab%a6caf34f7fedfbfel9cb0c86le
dalf which is the actual compiled package for the project. *.dalf files contain DAML-LF, which is
DAML’s intermediate language. The file contents are a binary encoded protobuf message from the

2.1. An introduction to DAML 69

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml-If schema. DAML-LF is evaluated on the Ledger by the DAML Engine, which is a JVM component
that is part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If
DAML-LF is to DAML what Java Bytecode is to Java, the DAML Engine is to DAML what the JVM is to
Java.

2.1.8.2 Hashes and Identifiers

Under the heading DAR archive contains the following packages: you get a similar looking list
of package names, paired with only the long random string repeated. That hexadecimal string,
887056cbb313b9%4ab9%9abcafl34f7fedfbfel9cb0c861e50d1594c665567ab7625 in this case, is
the package hash and the primary and only identifier for a package that’s guaranteed to be avail-
able and preserved. Meta information like name (7Composing) and version (1.0.0) help make it
human readable but should not be relied upon. You may not always get DAR files from your compiler,
but be loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is
preserved.

1. Note down your main package hash from running inspect-dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch-dar --host localhost --port
6865 --main-package-id "887056cbb313b9%4ab%abcaf34f7fedfbfel9cb0c861e50d1594c665
-0 assets_ ledger.dar, making sure to replace the hash with the appropriate one.

4. Rundaml damlc inspect-dar assets ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only
identifiable by hash. We could of course also create a second project 7Composing-1.0.0 with com-
pletely different contents so even when name and version are available, package hash is the only safe
identifier.

That’'s why over the Ledger API, all types, like templates and records are identified by the triple
(entity name, module name, package hash). Your client application should know the pack-
age hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable
format for the information it emits: daml damlc inspect-dar --json assets ledger.dar
Themain package idfield in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data
dependencies.

2.1.8.3 Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the *.hi files. The information
in these files is crucial for dependencies like the Standard Library, which provide functions, types
and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this in-
formation may not even be desireable. Imagine we had built 7Composing with SDK 1.100.0, and are
building 8Dependencies with SDK 1.101.0. All the typeclasses and instances on the inbuilt types
may have changed and are now present twice - once from the current SDK and once from the de-
pendency. This gets messy fast, which is why the SDK does not support dependencies across SDK
versions. For dependencies on contract models that were fetched from a ledger, or come from an
older SDK version, there is a simpler kind of dependency called data-dependencies. The syntax
for data-dependencies is the same, but they only rely on the binary *.dalf files. The name
tries to confer that the main purpose of such dependencies is to handle data: Records, Choices,
Templates. The stuff one needs to use contract composability across projects.

70 Chapter 2. Writing DAML

https://github.com/digital-asset/daml/tree/master/daml-lf/archive

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For an extension model like this one, data-dependencies are appropriate so the chapter 8 project
incldues the chapter 7 that way.

- daml-script
data-dependencies:
- ../7Composing/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the
Chapter 7 trade setup Scripts. data-dependencies is designed to use existing contracts and data
types. DAML Script is not imported. In practice, we also shouldn’t expect that the DAR file we down-
load from the ledger using daml ledger fetch-dar contains test scripts. For larger projects it’s
good practice to keep them separate and only deploy templates to the ledger.

2.1.8.4 Structuring Projects

As you’ve seen here, identifiers depend on the package as a whole and packages always bring all their
dependencies with them. Thus changing anything in a complex dependency graph can have signif-
icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate
concerns which are likely to change at different rates into separate packages.

Forexample,inallour projectsinthisintro,including this chapter,our scripts are in the same project
as our templates. In practice, that means changing a test changes all identifiers, which is not de-
sireable. It’s better for maintainability to separate tests from main templates. If we had done that
in chapter 7, that would also have saved us from copying the chapter 7

Similarly, we included Trade in the same project as Asset inchapter7,even though Trade is a pure
extension to the core Asset model. If we expect Trade to need more frequent changes, it may be a
good idea to split it out into a separate project from the start.

2.1.8.5 Next up

TheMultiTrade model has more complex control flow and data handling than previous models. In 9
Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds, common
typeclasses, custom functions, and the Standard Library. We’ll be using the same projects so don’t
delete your chapter 7 and 8 folders just yet.

2.1.9 9 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like
DAML. Specifically, you’ll learn about

Function signatures and functions
Advanced control flow (i f. . .else, folds, recursion, when)

If you no longer have your chapter 7 and 8 projects set up, and want to look back at the code, please
follow the setup instructions in 8 Working with Dependencies to get hold of the code for this chapter.

Note: There is a project template daml-intro-9 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

2.1.9.1 The Haskell Connection

The previous chapters of this introduction to DAML have mostly covered the structure of templates,
and their connection to the DAML Ledger Model. The logic of what happens within the do blocks of

2.1. An introduction to DAML 71

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

choices has been kept relatively simple. In this chapter, we will dive deeper into DAML’s expression
language, the part that allows you to write logic inside those do blocks. But we can only scratch
the surface here. DAML borrows a lot of its language from Haskell. If you want to dive deeper, or
learn about specific aspects of the language you can refer to standard literature on Haskell. Some
recommendations:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)
Learn You a Haskell for Great Good! (Miran Lipova a)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing DAML to Haskell it’s worth noting:

Haskell is a lazy language, which allows you to write things like head [1..], meaning take
the first element of an infinite list . DAML by contrast is strict. Expressions are fully evaluated,
which means it it not possible to work with infinite data structures.

DAML has a with syntax for records, and dot syntax for record field access, neither of which
present in Haskell. But DAML supports Haskell’s curly brace record notation.

DAML has a number of Haskell compiler extensions active by default.

DAMLdoesn’t support all features of Haskell’s type system. Forexample, there are no existential
types or GADTs.

Actions are called Monads in Haskell.

2.1.9.2 Functions

In 3 Data types you learnt about one half of DAML’s type system: Data types. It’s now time to learn
about the other, which are Function types. Function types in DAML can be spotted by looking for —>
which can be read as mapsto .

Forexample, the function signature Int -> Int mapsanintegertoanotherinteger. There are many
such functions, but one would be:

increment : Int -> Int
increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-
laration can be omitted in cases where the type can be inferred by the compiler, but for top-level
functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to
include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add
without a declaration:

add nm=n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name
in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one —>.

72 Chapter 2. Writing DAML

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

valigate
(re Fe
== (r, Contractld r) -> Update

r al

observers'

Defined at
JUsers/bernhardelsner/test/ch8/8Upgrade/daml/intro/Asset/MultiTrade.daml:55:13

validate (asset, assetCid) = do

2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking attheright hand parta -> a -> a.The->isrightassociative, meaninga ->
a -> aisequivalenttoa -> (a -> a). Usingthe mapsto way of reading -> we get a maps
to a function that maps a to a“.

And this is indeed what happens. We can define a different version of increment by partially applying
add:

increment?2 = add 1

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again.Itcandoso
because the literal 1 : Int.

So if we have a functionf : a -> b -> ¢ -> dandavaluevalaA : a,wegetf valA : b ->
c -> die we can apply the function argument by argument. If we also had valB : b, we have f
valA valB : c -> d. What this tells you is that function application is left associative: £ vala
valB == (f valA) wvalB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It's only special because it
starts with a symbol. Functions that start with a symbol are infix by default which means they can
be written between two arguments. That's why we can write 1 + 2 ratherthan+ 1 2. The rules for
converting between normal and infix functions are simple. Wrap an infix function in parentheses to
use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 “add® 2

With that knowledge, we could have defined add more succinctly as the alias that itis:

add?2 : Additive a => a -> a -> a
add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)
decrement = (- 1)

2.1. An introduction to DAML 73

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note: While function application is left associative by default, infix operators can be declared left
or right associative and given a precedence. Good examples are the boolean operations && and | |,
which are declared right associative with precedences 3, and 2, respectively. This allows you to write
False && True || True && True and getvalue True. See section 4.4.2 of the Haskell 98 report
for more on fixities.

Type Constraints

The Additive a => part of the signature of add is a type constraint on the type parameter a.
Additive here is a typeclass. You already met typeclasses like Eq and Show in 3 Data types. The
Additive typeclass saysthatyoucanadd athing. lethereisafunction (+) : a -> a -> a.Now
the way to read the full signature of add is Given that a has an instance for the Additive typeclass,
a maps to a function which mapsatoa .

Typeclasses in DAML are a bit like interfaces in other languages. To be able to add two things using
the + function, those things need to expose the + interface.

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also
demonstrates the use of multiple constraints at the same time, is the signature of the exercise
function:

exercise : (Template t, Choice t ¢ r) => ContractId t -> c -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice c with return
type r, map a ContractId for a contract of type t to a function that takes the choice arguments of
type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to
parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses
and variables.

Pattern Matching in Arguments

You met pattern matching in 3 Data types, using case statements which is one way of pattern match-
ing. However, it can also be convenient to do the pattern matching at the level of function arguments.
Think about implementing the function uncurry:

uncurry : (a -> b -> c) -> (a, b) -> c

uncurry takes a function with two arguments (or more, since c could be a function), and turns it
into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,
case pattern matching, and function pattern matching:

uncurryl £ t = £ t. 1 t. 2

uncurry?2 f t = case t of
(x, y) > £ x vy

uncurry £ (x, y) = f x vy

Using function pattern matchingis clearly the most elegant here. We never need the tuple as a whole,
just its members. Any pattern matching you can do in case you can also do at the function level,

74 Chapter 2. Writing DAML

https://www.haskell.org/onlinereport/decls.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

and the compiler helpfully warns you if you did not cover all cases, which is called non-exhaustive .

fromSome : Optional a -> a
fromSome (Some x) = x

The above will give you a warning:

warning:
Pattern match(es) are non-exhaustive
In an equation for ‘fromSome’: Patterns not matched: None

This means fromSome is a partial function. fromSome None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write
the function issueAsset in chapter 8:

issueAsset : Asset -> Script (ContractId Asset)

issueAsset asset(@ (Asset with ..) = do
assetHolders <- queryFilter (@AssetHolder issuer
(\ah -> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of
(ahCid, _)::_ -> submit asset.issuer do
exerciseCmd ahCid Issue Asset with
[] -> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so
we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the
matching name. So the function succinctly transfers all fields except for owner, which is set explic-
itly, from the V1 Asset to the V2 Asset.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in DAML you can also put a
function. Even inside data types:

data Predicate a = Predicate with
test : a -> Bool

More commonly, it makes sense to define functions locally, inside a 1et clause or similar. A good
example of this are the validate and transfer functions defined locally in the Trade Settle
choice of the model from chapter 8:

let
validate (asset, assetCid) = do
fetchedAsset <- fetch assetCid
assertMsg
"Asset mismatch"
(asset == fetchedAsset with
observers = asset.observers)

(continues on next page)

2.1. An introduction to DAML 75

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

mapA validate (zip baseAssets baseAssetCids)
mapA validate (zip quoteAssets quoteAssetCids)

let
transfer (assetCid, approvalCid) = do
exercise approvalCid TransferApproval Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCidsl]
—baseApprovalCids)

transferredQuoteCids <- mapA transfer (zip quoteAssetCids!]
—quoteApprovalCids)

You can see that the function signature is inferred from the context here. If you look closely (or hover
over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Eg r, HasField "observers" r a) => (r, ContractId]
—r) => Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-
guments, or as choice in- or outputs. They also don’t have instances of the Eg or Show typeclasses
which one would commonly want on data types.

You can probably guess what the mapA and mapA_s in the above choice do. They somehow loop
through the lists of assets, and approvals, and the functions validate and transfer to each, per-
forming the resulting Update action in the process. We’ll look at that more closely under Looping
below.

Lambdas

Like in most modern languages, DAML also supports inline functions called lambdas. They are de-
fined using (\x v z -> ...) syntax. For example, a lambda version of increment would be (\n
->n + 1).

2.1.9.3 Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to
translate procedural code into functional code.

Branching

Until Chapter 7 the only real kind of control flow introduced has been case, which is a powerful tool
for branching.

If..Else

Chapter 5 also showed a seemingly self-explanatory if. .else statement, but didn’t explain it fur-
ther. And they are actually the same thing. Let’s implement the function boolToInt : Bool ->
Int which in tyipcal fashion maps True to 1 and False to 0°. Here is an implementation
using ° “case:

76 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

boolToInt b = case b of
True -> 1
False -> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if
Found:
case b of
True -> 1
False -> 0
Perhaps:
if b then 1 else 0

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b
then 1
else 0O

In short: 1. .else statements are equivalent to a case statement, but are easier to read.

Control Flow as Expressions

case statements and if..else really are control flow in the sense that they short circuit:

doError t = case t of
"True" =-> True
"False" -> False
_ => error ("Not a Bool: " <> t)

This function behaves as you expect. The error only gets evaluated if an invalid text is passed in.

This is different to functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e
boom = ifelse True 1 (error "RBoom")

In the above, boom is an error.

But while being proper control flow, case and if..else statements are also expressions in the
sense that they result in a value when evaluated. You can actually see that in the function defini-
tions above. Since each of the functions is defined just as a case or if statement, the value of the
evaluated function is just the value of the case/if statement. Things that have a value have a type.
Theif..elseexpressioninboolToInt2 hastype Int asthat’s whatthe functionreturns, the case
expression in doError has type Bool. To be able to give such expressions an unambiguous type,
each branch needs to have the same type. The below function does not compile as one branch tries
toreturn an Int and the other a Text:

typeError b = if Db
then 1
else "a"

2.1. An introduction to DAML 77

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

If we need functions that can return two (or more) types of things we need to encode that in the return
type. For two possibilities, it’'s common to use the Either type:

intOrText : Bool -> Either Int Text
intOrText b = if b

then Left 1

else Right "a"

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a
contract of one type in one case, and of another type in another case. Let’s say we have two template
types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T
with
p : Party
where

signatory p

template S
with
p : Party
where

signatory p

It would be tempting to write a simple if. .else, but it won’t typecheck:

typeError b p = if b
then create T with p
else create S with p

We have two options:

1. Use the Either trick from above.
2. Getrid of the return types.

1ifThenSElseTl b p = if b
then do
cid <- create S with p
return (Left cid)
else do
cid <- create T with p
return (Right cid)

1fThenSElseT2 b p
then do
create S with p
return ()
else do
create T with p
return ()

if b

78 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The latter is so common that there is a utility function in DA.Action to get rid of the return type:
void : Functor £ => f a -> £ ().

1fThenSElseT3 b p = if b
then void (create S with p)
else void (create T with p)

void also helps express control flow of the type Create a T only if a condition is met.

conditionalS b p = if Db
then void (create S with p)
else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-
sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f
0 -> £ 0.

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does some magic so thatis short circuits
evaluation just like 1f..else. noop is a no-op, not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

With case, 1f..else, void and when, you can express all branching. However, one additional fea-
ture you may want to learn is guards. They are not covered here, but can help avoid deeply nested
if..else blocks. Here’s just one example. The Haskell sources at the beginning of the chapter cover
this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "RBig"

| d < 1000 = "Huge"

| otherwise = "Enormous"
Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to
iteratively modify some state. We’ll use JavaScriptin this section to illustrate the procedural way of
doing things.

function sum(intArr) {
var result = 0;
intarr.forEach (i => {
result += 1i;
}) s
return result;

2.1. An introduction to DAML 79

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

A more general loop looks like this:

function whileFunction (arr) {
var rev = initialize (input);
while (doContinue (state)) {

state = process (state);

}

return finalize (state);

The only real difference is that the iterator is explicit in the former, and implicit in the latter.

In both cases, state is being mutated: result in the former, state in the latter. Values in DAML are
immutable, so it needs to work differently. In DAML we will do this with folds and recursion.

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-
guages. The most common iteratoris alist, as is the case in the sum function above. For such cases,
DAML has the foldl function. The 1 stands for left and means the listis processed from the left.
There is also a corresponding foldr which processes from the right.

foldl : (b -> a -> b) -> b -> [a] -> Db

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument
is a function which takes a state and an item and returns a new state. That’s the equivalent of the
inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which
is the iterator. The resultis again a state. The sum function above can be translated to DAML almost
instantly with those correspondences in mind:

sum ints = foldl (+) 0O ints

If we wanted to be more verbose, we could replace (+) with alambda (\result i -> result +
i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care
with performance when it comes to translating for loops:

function sumArrs(arrl, arr2) {
var 1 = min (arrl.length, arr2.length);

var result = new int[1l];
for(var i = 0; 1 < 1; 1i++) {
result[i] = arrl[i] + arr2[i];

}

return result;

Translating the for into a forEach is easy if you can get your hands on an array containing values
[0..(1-1)]1.And that’s literally how you do it in DAML, using ranges. [0.. (1-1)] is shorthand for
enumFromTo 0 (1-1),which returns the list you’d expect.

DAML also has anoperator (!!) : [a] -> Int -> awhichreturnsanelementin alist. You may
now be tempted to write sumArrs like this:

80 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

sumArrs : [Int] -> [Int] -> [Int]
sumArrs arrl arr2 =
let 1 = min (length arrl) (length arr2)
sumAtI i = (arrl !! i) + (arr2 !! 1)
in foldl (\state i -> (sumAtI i) :: state) [] [1..(1-1)]

But you should immediately forget again that you just learnt about (!!). Lists in DAML are linked
lists, which makes access using (!!) slow and idiosyncratic. The way to do this in DAML is to get
rid of the i altogether and instead merge the lists first, and then iterate over the zipped up lists:

sumArrs2 arrl arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip
—~arrl arr2)

zip : [a]l -> [b]l -> [(a, Db)] takes two lists, and merges them into a single list where the
first element is the 2-tuple containing the first elements to the two input lists, and so on. It drops
any left-over elements of the longer list, thus making the min logic unnecessary.

Maps

You’ve probably noticed that what we’ve done in this second version of sumArr is pretty standard,
we have taken a list zip arrl arr2 applied a function\ (x, y) -> x + ytoeachelement, and
returned the list of results. This operation is called map : (a -> b) -> [a] -> [b]. Wecan
now write sumArr even more nicely:

sumArrs3 arrl arr2 = map (\(x, y) -> (x + y)) (zip arrl arr2)

As arule of thumb: Usemap if the result has the same shape as the input and you don’t need to carry
state from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,
for example. We want to avoid (!!) so there is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of
[1 -> rev
X::XsS => reverseWorker (x::rev) Xs
reverse xXs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but DAML only
supports recursion for top-level functions so the recursive part recurseWorker has to be its own
top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in 5 Adding constraints to a contract:
The functions used to map or process items have no side-effects. In day-to-day DAML that’s the
exception rather than the rule. If you have looked at the chapter 8 models, you’ll have noticed mapa,
mapA ,and forA all over the place. A good example are the mapA in the testMultiTrade script:

2.1. An introduction to DAML 81

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

let rels =
[Relationship chfbank alice
, Relationship chfbank bob
, Relationship gbpbank alice
, Relationship gbpbank bob

[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

Here we have a list of relationships (type [Relationship] and a function setupRelationship
Relationship -> Script (ContractId AssetHolder) °~°. We want the

" "AssetHolder contracts for those relationships, ie something of type [ContractId

AssetHolder]. Using the map function almost gets us there. map setupRelationship rels
[Update (ContractId AssetHolder)]. This is a list of Update actions, each resulting in

a ContractId AssetHolder. What we need is an Update action resulting in a [ContractId

AssetHolder]. The list and Update are the wrong way around for our purposes.

Intuitively, it's clear how to fix this: we want the compound action consisting of performing each of
the actions in the list in turn. There’s a function for that, of course. sequence : : Applicative
m => [m a] -> m [a] implementsthatintuition and allows us to take the Update out of the list.
So we could write sequence (map setupRelationship rels). Thisis so common thatit's en-
capsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for Action of course, and you’ll find that many functions that have some-
thing to do with looping have an A equivalent. The most fundamental of all of these is foldlA
Action m => (b -> a -> m b) -> b -> [a] -> m b, a left fold with side effects. Here the
inner function has a side-effect indicated by the m so the end resultm b also has a side effect: the
sum of all the side effects of the inner function.

Have a go at implementing foldlA in terms of foldl and sequence and mapA in terms of foldA.
Here are some possible implementations:

foldlA2 fn init xs =
let
work accA x = do
acc <- acchA
fn acc x
in foldl work (pure init) xs

mapA2 fn xs =
let
work ys x = do
y <- fn x
return (y :: ys)
in foldlA2 work [] xs

sequence? actions =
let
work ys action = do
y <- action

(continues on next page)

82 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

return (y :: ys)
in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is
already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <- forA [usdCid, chfCid] (\cid -> submit alice do
exerciseCmd cid SetObservers with
newObservers = [bob]

Lastly, you’ll have noticed that in some cases we used mapA , not mapA. The underscore indicates
that the result is not used. mapA fn xs fn = void (mapA fn xs). The DAML Linter will alert
you if you could use mapA instead of mapA, and similarly for fora .

2.1.9.4 Next up

You now know the basics of functions and control flow, both in pure and Action contexts. The Chapter
8 example shows just how much can be done with just the tools you have encountered here, but there
are many more tools at your disposal in the the DAML Standard Library. It provides functions and
typeclasses for many common circumstances and in 10 Intro to the DAML Standard Library, you’ll get an
overview of the library and learn how to search and browse it.

2.1.10 10 Intro to the DAML Standard Library

In chapters 3 Data types and 9 Functional Programming 101 you learnt how to define your own data types
and functions. But of course you don’t have to implement everything from scratch. DAMLcomes with
the DAML Standard Library which contains types, functions, and typeclasses that cover a large range
of use-cases. In this chapter, you’ll get an overview of the essentials, but also learn how to browse
and search this library to find functions. Being proficient with the Standard Library will make you
considerably more efficient writing DAML code. Specifically, this chapter covers:

The Prelude

Important types from the Standard Library, and associated functions and typeclasses
Typeclasses

Important typeclasses like Functor, Foldable, and Traversable

How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-
ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,
Traversable,Action (called Monadin Haskell),and many more, are the bread and butter of Haskell
programmers.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

2.1.10.1 The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions
like create,exercise,and (==),typeslike [1, (,),Optional, and typeclasses like Eq, Show, and
Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every

2.1. An introduction to DAML 83

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

other DAML module and contains both DAML specific machinery as well as the essentials needed to
work with the inbuilt types and typeclasses.

2.1.10.2 Important Types from the Prelude

In addition to the Native types, the Prelude defines a number of common types:

Lists
You've already met lists. Lists have two constructors [] and x :: xs, the latter of which is
prepend inthe sensethatl :: [2] == [1, 2]. Infact [1,2] is just syntactical sugar for 1
2 [].
Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size
up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return
values from functions consisting of several pieces or passing around data in folds, as you saw in
Folds. An example of a relatively wide Tuple can be found in the test modules of the chapter 8 project.
Test.Intro.Asset.TradeSetup.tradeSetup returnsthe allocated parties and active contracts
in along tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back into scope
using pattern matching.

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,
— eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,![!
—eurCid) <- tradeSetup

Tuples, like lists have some syntactic magic. Both the types as well as the constructors for tuples are
(+,,) where the number of commas determines the arity of the tuple. Type and data constructor
can be applied with values inside the brackets, or outside, and partial application is possible:

tl (Int, Text) = (1, "a")
t2 (,) Int Text = (1, "a")
t3 : (Int, Text) = (1,) "a"
td : a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records
with named fields for complex structures or long-lived values. Overuse of tuples can harm code
readability.

Optional

The Optional type represents avalue that may be missing. It’s the closest thing DAMLhastoa nul-
lable value. Optional has two constructors: Some, which takes a value, and None, which doesn’t
take a value. In many languages one would write code like this:

84 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

lookupResult = lookupByKey (k) ;

if (lookupResult == null) {
// Do something

} else {
// Do something else

In DAML the same thing would be expressed as

lookupResult <- lookupByKey @T k
case lookupResult of

None -> do -- Do Something
return ()
Some cid -> do -- Do Something
return ()
Either

Either is used in cases where a value should store one of two types. It has two constructors, Left
and Right, each of which take a value of one or the other of the two types. One typical use-case of
Either is as anextended Optional where Right takes the role of Some and Left the role of None,
but with the ability to store an error value. Either Text, for example behaves just like Optional,
except that values with constructor Left have a text associated to them.

Note: As with tuples, it’s easy to overuse Either and harm readability. Consider writing your own
more explicit type instead. For example if you were returning South avs North b using your own
type over Either would make your code clearer.

2.1.10.3 Typeclasses
You’ve seen typeclasses in use all the way from 3 Data types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a g where
getQuantity : a -> g
setQuantity : g -> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To
implement this interface, you need to define instances of this typeclass:

data Foo = Foo with
amount : Decimal

instance HasQuantity Foo Decimal where
getQuantity foo = foo.amount
setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eg a => Ord a means ev-
erything that is orderable can also be compared for equality . And that’s almost all there’s to it.

2.1. An introduction to DAML 85

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.10.4 Important Typeclasses from the Prelude
Eq

The Eqg typeclass allows values of a type to be compared for (in)-equality. It makes available two
function: == and /=. Most data types from the Standard Library have an instance of Eq. As you
already learned in 3 Data types, you can let the compiler automatically derive instances of Eg for you
using the deriving keyword.

Templates always have an Eqg instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,
>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List
and Optional get an instance of Ord if the type they contain has one. You can let the compiler
automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text,ie shown in a shell. Its key function is show,
which takes a value and converts it to Text. All inbuilt data types have an instance for Show and
types like List and Optional get an instance if the type they contain has one. It also supports the
deriving keyword.

Functor

Functors are the closest thing to containers that DAML has. Whenever you see a type with a sin-
gle type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a,
Update a. Functors are things that can be mapped over and as such, the key function of Functor
is fmap, which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

Applicative Functor

Applicative Functors are a bit like Actions, which you met in 5 Adding constraints to a contract, except
thatyou can’t use the result of one action as the input to another action. The only important Applica-
tive Functor thatisn’t an action in DAML is the Commands type submitted in a submit block in DAML
Script. That’s why in order to use do notation in DAML Script, you have to enable the ApplicativeDo
language extension.

Actions

Actions were already covered in 5 Adding constraints to a contract. One way to think of them is as

recipes for a value, which need to be executed to get at that value. Actions are always Func-
tors (and Applicative Functors). The intuition for that is simply that fmap f xistherecipeinxwith
the extra instruction to apply the pure function f to the result.

The really important Actions in DAML are Update and Script, but there are many others, like [],
Optional,and Either a.

86 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for
Text and [], where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, sothat (+), (=), (*),and some other
functions can be used uniformly between Decimal and Int.

2.1.10.5 Important Modules in the Standard Library
For almost all the types and typeclasses presented above, the Standard Library contains a module:

/daml/stdlib/DA-List for Lists

/daml/stdlib/DA-Optional for Optional

/daml/stdlib/DA-Tuple for Tuples

/daml/stdlib/DA-Either for Either

/daml/stdlib/DA-Functor for Functors

/daml/stdlib/DA-Action for Actions

/daml/stdlib/DA-Monoid and /daml/stdlib/DA-Semigroup for Monoids and Semigroups
/daml/stdlib/DA-Text for working with Text

/daml/stdlib/DA-Time for working with Time

/daml/stdlib/DA-Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve
already learnt about, which are worth knowing about: Foldable and Traversable. In Looping
you learned all about folds and their Action equivalents. All the examples there were based on
lists, but there are many other possible iterators. This is expressed in two additional typeclasses:
/daml/stdlib/DA-Traversable, and /daml/stdlib/DA-Foldable. For more detail on these concepts,
please refer to the literature in The Haskell Connection, or https://wiki.naskell.org/Foldable_and_
Traversable.

2.1.10.6 Searching the Standard Library

Being able to browse the Standard Library starting from /daml/stdlib/index is a start, and the mod-
ule naming helps, butit’s not an efficient process for finding out what a function you’ve encountered
does, or even less so to find a function that does a thing you need to do.

DAML has it’'s own version of the Hoogle search engine, which offers search both by name and by
signature. It’s fully integrated into the search bar on https://docs.daml.com/, but for those wanting
a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Searching for functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of
theMultiTrade.

ensure (length baseAssetCids == length baseAssets) &&
(length quoteApprovalCids == length quoteAssets) &&
not (null baseAssets) &&
not (null gquoteAssets)

2.1. An introduction to DAML 87

https://wiki.haskell.org/Foldable_and_Traversable
https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You may be ableto guess whatnot andnull do, buttry searchingthose namesinthe documentation
search. Search results from the Standard Library will show on top. not, for example, gives

not

Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a
function does.

Searching for functions by Signature

The other very common use-case for the search is that you have some values that you want to do
something with, but don’t know the standard library function you need. On the MultiTrade tem-
plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the
original Trade we used baseAsset.owner as the signatory. How do you get the first element of
this list to extract the owner without going through the motions of a complete pattern match using
case?

The trick is to think about the signature of the function that’s needed, and then to search for that
signature. In this case, we want a single distinguished element from a list so the signature should
be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library
results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the 1et of the MultiTrade tem-
plate.

You may notice that in the search results you also get some hits that don’t mention [] explicitly. For
example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one atindexn. Remember
that (!!) operator from 9 Functional Programming101? There are now two possible signatures we could
search for: [a] -> Int -> aand Int -> [a] -> a. Try searching for both. You’ll see that the
search returns (!!) in both cases. You don’t have to worry about the order of arguments.

2.1.10.7 Next up

There’s little more to learn about writing DAML at this point that isn’t best learnt by practice and
consulting reference material for both DAML and Haskell. To finish off this course, you’ll learn a little
more about your options for testing and interacting with DAML code in 11 Testing DAML Contracts, and
about the operational semantics of some keywords and common associated failures.

2.1.11 11 Testing DAML Contracts

This chapteris all about testing and debugging the DAML contracts you’ve built using the tools from
chapters 1-10. You’ve already met DAML Script as a way of testing your code inside the IDE. In this
chapter you’ll learn about more ways to test with DAML Script and its other uses, as well as other
tools you can use for testing and debugging. You’ll also learn about a few error cases that are most
likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically
we will cover:

88 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML Test tooling - Script, REPL, and Navigator

The trace and debug functions
Contention

Note that this section only covers testing your DAML contracts. For more holistic application testing,

please refer to Testing Your App.

If you no longer have your projects set up, please follow the setup instructions in 8 Working with De-
pendencies to get hold of the code for this chapter. There is no code specific to this chapter.

2.1.11.1 DAML Test Tooling

There are three primary tools available in the SDK to test and interact with DAML contracts. It is
highly recommended to explore the respective docs. The chapter 8 model lends itself well to being

tested using these tools.

DAML Script

DAML Script should be familiar by now. It’s a way to script commands and queries from
multiple parties against a DAML Ledger. Unless you’ve browsed other sections of the doc-
umentation already, you have probably used it mostly in the IDE. However, DAML Script
can do much more than that. It has four different modes of operation:

1. Runon a special Script Service in the IDE, providing the Script Views.
2. Run the Script Service via the CLI, which is useful for quick regression testing.
3. Starta Sandbox and run against that for regression testing against an actual Ledger

API.

4. Run against any other already running Ledger.

DAML Navigator

DAML Navigator is a Ul that runs against a Ledger APl and allows interaction with con-

tracts.

DAML REPL

If you want to do things interactively, DAML REPL is the tool to use. The best way to think
of DAML REPL is as an interactive version of DAML Script, but it doubles up as a language
REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect

the results.

2.111.2 Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as
you expected? DAML has two functions that allow you to do fine-grained printf debugging: debugand
trace. Both allow you to print something to StdOut if the code is reached. The difference between
debug and trace is similar to the relationship between abort and error:

Text -> m () maps atext to an Action that has the side-effect of printing to Std-

Text -> a -> a prints to StdOut when the expression is evaluated.

debug

Out.

trace
daml> let a Script () = debug "foo"
daml> let b Script () = trace "bar"

[Daml.Script:378]: "bar"

daml> a

(debug "baz")

(continues on next page)

2.1. An introduction to DAML

89

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

[DA.Internal.Prelude:540]: "foo"
daml> b
[DA.Internal.Prelude:540]: "baz"
daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the DAML file and line number that
triggered the printing, but often no more than that because full stacktraces could violate subtrans-
action privacy quite easily. If you want to enable stacktraces for some purely functional code in your
modules, you can use the machinery in /daml/stdlib/DA-Stack to do so, but we won’t cover that any
further here.

2.1.11.3 Diagnosing Contention Errors

The above tools and functions allow you to diagnose most problems with DAML code, but they are all
synchronous. The sequence of commands is determined by the sequence of inputs. That means one
of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. DAML guarantees that there can only be one
consuming choice exercised per contract so what if two parties simultaneously submit an exercise
command on the same contract? Only one can succeed. Contention can alsooccurduetoincomplete
or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client
hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have
in common is that someone has incomplete knowledge of the state the ledger will be in at the time
a transaction will be processed and/or committed.

If we look back at DAML’s execution model we’ll see there are three places where ledger state is con-
sumed:

1. Acommand is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to Contractlds that the client believes are

active.

During interpretation, ledger state is used to to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by
reinterpreting it.

n

Collisions can occur both between 1and 2 and between 2 and 3. Only during the commit phase is the
complete relevant ledger state at the time of the transaction known, which means the ledger state
at commit time is king. As a DAML contract developer, you need to understand the different causes
of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid
collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three
reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or
Contractlds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current
state

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Following the possible error messages, we’ll discuss a few possible causes and remedies.

Contractld Not Found During Interpretation

Command interpretation error in LF-DAMLe: dependency error: couldn't find
—contractl]
—ContractId(004481eb78464£f1ed3291b06504d5619db4£f110df71cb5764717elcd4d3aa096

—

bof) .

Contractld Not Found During Validation

Disputed: dependency error: couldn't find contract ContractIdl
—(00c06£fa370£8858b20£d100423d928b1d200d8e3c9975600b9c038307edbe25d6f) .

fetchByKey Error during Interpretation

Command interpretation error in LF-DAMLe: dependency error: couldn't find
—~key com.daml.lf.transaction.GlobalKey@11f4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.
—~GlobalKey@11f4913d

lookupByKey Distpute During Validation

Disputed: recreated and original transaction mismatchl]
—~VersionedTransaction(...) expected, but VersionedTransaction(...) is
—recreated.

Avoiding Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-
quester submitting a transaction with a consuming exercise on a contract while another requester
submits another exercise or fetch on the same contract. This type of contention cannot be elimi-
nated entirely, for there will always be some latency between a client submitting a command to a
participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)],where Text is a display name and Party the associated Party. If you
store this entire list on a single contract, any two users wanting to update their display name
atthe same time will cause a collision. If you instead keep each (Text, Party) onaseparate
contract, these write operations become independent from each other.
The Analogy to keep in mind when structuring your data is that a template defines a table, and
a contract is a row in that table. Keeping large pieces of data on a contract is like storing big
blobs in a database row. If these blobs can change through different actions, you get write
conflicts.

2.1. An introduction to DAML 9]

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.
Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract
IDs during the interpretation phase on the participant node. So it reduces latencies slightly
by moving resolution from the client layer to the participant layer, but it doesn’t remove the
issue. Going back to the auction example above, if Alice sent a command exerciseByKey
@Auction auctionKey Bid with amount = 100, this would be resolved to an exercise
cid Bid with amount = 100 during interpretation, where cid is the participant’s best
guess what Contractld the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-
ing choice on the same contract. For example, imagine an Auction contract containing a field
highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries
to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced
will be rejected as it has a write collision with the first. It’s better to record the bids in sepa-
rate Bid contracts, which can be written to independently. Again, think about how you would
structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing Contractlds. Imagine you had created a sharded user directory
according to 1. Each user has a User contract that store their display name and party. Now you
write a chat application where each Message contract refers to the sender by ContractId
User. If the user changes their display name, that reference goes stale. You either have to
modify all messages that user ever sent, or become unable to use the sender contract in DAML.
If you need to be able to make this link inside DAML, Contract Keys help here. If the only place
you need to link Party to User is the Ul, it might be best to not store contract references in
DAML at all.

Collisions due to Ignorance

The DAML Ledger Model specifies authorization rules, and privacy rules. le it specifies what makes a
transaction conformant, and who gets to see which parts of a committed transaction. It does not
specify how a command is translated to a transaction. This may seem strange at first since the
commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in
the ledger model. But the subtlety comes in on the read side. What happens when the participant,
during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-
nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.
Alice may not be able to order these two nodes causally in the sense of one create came before the
other . See /concepts/local-ledger for an in-depth treatment of causality on DAML Ledgers.

Sowhat should happen now if Alice’s participant encounters a fetchByKey QT kor lookupByKey
@T k during interpretation? What if it encounters a fetch node? These decisions are part of the
operational semantics, and the decision of what should happen is based on the consideration that
the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not
witnessed an archive node for that contract - ie as long as it can’t guarantee that the contractis no
longer active. The rationale behind this is that fetch and exercise use Contractlds, which need
to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three
cases, someone believes the Contractld to be active still so it’s worth trying.

If a fetchByKey or LookupByKey node is encountered, the contract is only resolved if the requester
is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason
to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using

92 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

contract keys, make sure you make the likely requesters of transactions observers on your contracts.
If you don’t, fetchByKey will always fail, and LookupBeyKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized lookupByKey @T k during interpre-
tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This
transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey QT k Archive.

4. Depending on which of the transactions from 2 and 3 gets sequenced first, either just 3, or both
2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

Asyou can see, the behaviorof fetch, fetchByKeyand lookupByKey atinterpretation time depend
on what information is available to the requester at that time. That’'s something to keep in mind
when writing DAML contracts, and something to think about when encountering frequent Disputed
errors.

2.1.11.4 Next up

You’ve reached the end of the Introduction to DAML. Congratulations. If you think you understand all
this material, you could test yourself by getting DAML certified at https://academy.daml.com. Or put
your skills to good use by developing a DAML application. There are plenty of examples to inspire you
on the DAML examples page.

2.2 Language reference docs
This section contains a reference to writing templates for DAML contracts. It includes:
2.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a DAML file outside a template, see Reference: DAML file structure.

2.2.1.1 Template outline structure

Here’s the structure of a DAML template:

template NameOfTemplate
with
exampleParty : Party
exampleParty?2 : Party
exampleParty3 : Party
exampleParameter : Text
-—- more parameters here
where
signatory exampleParty
observer exampleParty?2
agreement
-— some text

mwn

ensure

(continues on next page)

2.2. Language reference docs 93

https://academy.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- boolean condition

True
key (exampleParty, exampleParameter) : (Party, Text)
maintainer (exampleFunction key)
-— a choice goes here; see next section

template name template keyword
parameters with followed by the names of parameters and their types
template body where keyword
Caninclude:
template-local definitions let keyword
Lets you make definitions that have access to the contract arguments and are available
in the rest of the template definition.
signatories signatory keyword
Required. The parties (see the Party type) who must consent to the creation of an instance
of this contract. You won’t be able to create an instance of this contract until all of these
parties have authorized it.
observers observer keyword
Optional. Parties that aren’t signatories but who you still want to be able to see this con-
tract.
an agreement agreement keyword
Optional. Text that describes the agreement that this contract represents.
a precondition ensure keyword
Only create the contract if the conditions after ensure evaluate to true.
a contract key key keyword
Optional. Lets you specify a combination of a party and other data that uniquely identifies
an instance of this contract template. See Contract keys.
maintainers maintainer keyword
Required if you have specified a key. Keys are only unique to amaintainer. See Contract
keys.
choices choice NameOfChoice : ReturnType controller nameOfParty do
or
controller nameOfParty can NameOfChoice : ReturnType do
Defines choices that can be exercised. See Choice structure for what can go in a choice.

2.2.1.2 Choice structure
Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

start with the choice keyword
start with the controller keyword

-—- option 1 for specifying choices: choice name first
choice NameOfChoice
() -— replace () with the actual return type

with
party : Party -- parameters here
controller party
do
return () -- replace this line with the choice body

(continues on next page)

94 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-— option 2 for specifying choices: controller first
controller exampleParty can
NameOfAnotherChoice
() -—- replace () with the actual return type

with
party : Party —-- parameters here
do
return () -- replace the line with the choice body

a controller (or controllers) controller keyword
Who can exercise the choice.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which
changes the behavior of the choice with respect to privacy and if and when the contract is
archived. See contract consumption in choices for more details.

aname Must begin with a capital letter. Must be unique - choices in different templates can’t have
the same name.

areturn type after a :, the return type of the choice

choice arguments with keyword
If you start your choice with choice and include a Party as a parameter, you can make that
Party the controller of the choice. This is a feature called flexible controllers , and it
means you don’t have to specify the controller when you create the contract - you can spec-
ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an
observer of the contract and must be explicitly declared as such.

a choice body After do keyword
What happens when someone exercises the choice. A choice body can contain update state-
ments: see Choice body structure below.

2.2.1.3 Choice body structure
A choice body contains Update expressions, wrapped in a do block.
The update expressions are:

create Create a new contract instance of this template.
create NameOfContract with contractArgumentl = valuel;
contractArgument?2 = value2;

exercise Exercise a choice on a particular contract.
exercise idOfContract NameOfChoiceOnContract with choiceArgumentl =
valuel; choiceArgument2 = value 2; .

fetch Fetch a contract instance using its ID. Often used with assert to check conditions on the con-
tract’s content.
fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.
fetchedContract <- fetchByKey @ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.
fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.
if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be
supplied to a contract choice.

2.2. Language reference docs 95

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.
currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.
This means you only need to use return if you want to return something else.
return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch
someContractId

2.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

2.2.2.1 Template name

template NameOfTemplate

Thisis the name of the template. It’s preceded by template keyword. Must begin with a capital
letter.

This is the highest level of nesting.

The name is used when creating a contract instance of this template (usually, from within a
choice).

2.2.2.2 Template parameters

with
exampleParty : Party
exampleParty2 : Party
exampleParty3 : Party
exampleParam : Text
-— more parameters here

with keyword. The parameters are in the form of a record type.

Passed in when creating a contract instance from this template. These are then in scope inside
the template body.

A template parameter can’t have the same name as any choice arguments inside the template.
For all parties involved in the contract (whether theyre a signatory, observer, or
controller)you must passthem in as parameters to the contract, whether individually or as
alist([Party]).

2.2.2.3 Template-local Definitions

where
let
allParties = [exampleParty, exampleParty2, exampleParty3]

let keyword. Starts a block and is followed by any number of definitions, just like any other
let block.

96 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Template parameters as well as this are in scope, but self is not.
Definitions from the 1let block can be used anywhere else in the template’s where block.

2.2.2.4 Signatory parties

signatory exampleParty

signatory keyword. After where. Followed by at least one Party.

Signatories are the parties (see the Party type) who must consent to the creation of an in-
stance of this contract. They are the parties who would be put into an obligable position when
this contract is created.

DAML won’t let you put someone into an obligable position without their consent. So if the
contract will cause obligations for a party, they must be a signatory. If they haven’t authorized
it, you won’t be able to create the contract. In this situation, you may see errors like:
NameOfTemplate requires authorizers Partyl,Party2,Party, but only
Partyl were given.

When a signatory consents to the contract creation, this means they also authorize the conse-
quences of choices that can be exercised on this contract.

The contract instance is visible to all signatories (as well as the other stakeholders of the con-
tract). That is, the compiler automatically adds signatories as observers.

Each template must have at least one signatory. A signatory declaration consists of the signa-
tory keyword followed by a comma-separated list of one or more expressions, each expression
denoting a Party or collection thereof.

2.2.2.5 Observers

observer exampleParty?2

observer keyword. After where. Followed by at least one Party.

Observers are additional stakeholders, so the contract instance is visible to these parties (see
the Party type).

Optional. You can have many, either as a comma-separated list or reusing the keyword. You
could pass in alist (of type [Party]).

Use when a party needs visibility on a contract, or be informed or contract events, but is not a
signatory or controller.

If you start your choice with choice rather than controller (see Choices below), you must
make sure to add any potential controller as an observer. Otherwise, they will not be able to
exercise the choice, because they won’t be able to see the contract.

2.2.2.6 Choices

-— option 1 for specifying choices: choice name first
choice NameOfChoicel

() -— replace () with the actual return type
with
exampleParameter : Text —-- parameters here
controller exampleParty
do
return () -- replace this line with the choice body

-— option 2 for specifying choices: controller first

(continues on next page)

2.2.

Language reference docs 97

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller exampleParty can
NameOfChoice2
() —-- replace () with the actual return type

with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body

nonconsuming NameOfChoice3
() -— replace () with the actual return type

with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body

A right that the contract gives the controlling party. Can be exercised.

This is essentially where all the logic of the template goes.

By default, choices are consuming: that is, exercising the choice archives the contract, so
no further choices can be exercised on it. You can make a choice non-consuming using the
nonconsuming keyword.

There are two ways of specifying a choice: start with the choice keyword or start with the
controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure
to add that party as an observer.

See Reference: choices for full reference information.

2.2.2.7 Agreements

agreement
-— text representing the contract

mwn

agreement keyword, followed by text.

Represents what the contract means in text. They're usually the boundary between on-ledger
and off-ledger rights and obligations.

Usually, they look like agreement tx, where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenate with
<>

2.2.2.8 Preconditions

ensure
True -- a boolean condition goes here

ensure keyword, followed by a boolean condition.
Used on contract creation. ensure limits the values on parameters that can be passed to the
contract: the contract can only be created if the boolean condition is true.

98 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.2.9 Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)
maintainer (exampleFunction key)

key and maintainer keywords.

This feature lets you specify a key that you can use to uniquely identify an instance of this
contract template.

If you specify a key, you must also specify amaintainer. This is a Party that will ensure the
uniqueness of all the keys it is aware of.

Because of this, the key must include the maintainer Party or parties (for example, as part
of a tuple or record), and the maintainer must be a signatory.

For a full explanation, see Contract keys.

2.2.3 Reference: choices

This page gives reference information on choices:

choicefirstor controller first
Choice name
Controllers

- Contract consumption
Preconsuming choices
Postconsuming choices
Non-consuming choices

= Return type
Choice arguments
Choice body

For information on the high-level structure of a choice, see Overview: template structure.

2.2.3.1 choice firstor controller first
There are two ways you can start a choice:

start with the choice keyword
start with the controller keyword

-- option 1 for specifying choices: choice name first
choice NameOfChoice
() -— replace () with the actual return type

with
party : Party -- parameters here
controller party
do
return () -- replace this line with the choice body

-—- option 2 for specifying choices: controller first
controller exampleParty can
NameOfAnotherChoice
() -—- replace () with the actual return type

(continues on next page)

2.2. Language reference docs 929

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

with
party : Party -- parameters here
do
return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a
controller. If you do this, you must make sure that you add that party as an observer, otherwise
they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer
when you compile your DAML files.

2.2.3.2 Choice name

Listing 2: Option 1for specifying choices: choice name first

choice ExampleChoicel
() -—- replace () with the actual return type

Listing 3: Option 2 for specifying choices: controller first

ExampleChoice2
() -- replace () with the actual return type

The name of the choice. Must begin with a capital letter.

If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

Must be unique in your project. Choices in different templates can’t have the same name.
If you’re using controller-first, you can have multiple choices after one can, for tidiness.

2.2.3.3 Controllers

Listing 4: Option 1for specifying choices: choice name first

controller exampleParty

Listing 5: Option 2 for specifying choices: controller first

controller exampleParty can

controller keyword

The controller is a comma-separated list of values, where each value is either a party or a col-
lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.
Contract consumption
If no qualifier is present, choices are consuming: the contract is archived before the evaluation of

the choice body and both the controllers and all contract stakeholders see all consequences of the
action.

2.2.3.4 Preconsuming choices

100 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 6: Option 1for specifying choices: choice name first

preconsuming choice ExampleChoiceb
() —-—- replace () with the actual return type

Listing 7: Option 2 for specifying choices: controller first

preconsuming ExampleChoice?7
() —-— replace () with the actual return type

preconsuming keyword. Optional.

Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-
ecuted.

The archival behavior is analogous to the consuming default behavior.

Unlike what happens the in consuming behavior, though, only the controllers and signatories
of the contract see all consequences of the action. If the choice archives the contract, other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract before any-
thing else happens

2.2.3.5 Postconsuming choices

Listing 8: Option 1for specifying choices: choice name first

postconsuming choice ExampleChoice6
() -—- replace () with the actual return type

Listing 9: Option 2 for specifying choices: controller first

postconsuming ExampleChoice8
() —-—- replace () with the actual return type

postconsuming keyword. Optional.

Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-
cuted.

The contract can still be used in the body of the exercise.

Only the controllers and signatories of the contract see all consequences of the action. If the
choice archives the contract, other stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract after the
choice has been exercised

2.2.3.6 Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name
first

nonconsuming choice ExampleChoice3
() -- replace () with the actual return type

2.2. Language reference docs 101

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 11: Option 2 for specifying choices: controller first

nonconsuming ExampleChoice4
() —-—- replace () with the actual return type

nonconsuming keyword. Optional.

Makes a choice non-consuming: that is, exercising the choice does not archive the contract.
Only the controllers and signatories of the contract see all consequences of the action. If the
choice archives the contract, other stakeholders merely see an archive action.

Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

Return type is written immediately after choice name.

All choices have a return type. A contract returning nothing should be marked as returning a
unit ,ie ().

If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

2.2.3.7 Choice arguments

with
exampleParameter : Text

with keyword.

Choice arguments are similar in structure to Template parameters: a record type.

A choice argument can’t have the same name as any parameter to the template the choice is in.
Optional - only if you need extra information passed in to exercise the choice.

2.2.3.8 Choice body

Introduced with do

The logic in this section is what is executed when the choice gets exercised.

The choice body contains Update expressions. For detail on this, see Reference: updates.

By default, the last expression in the choice is returned. You can return multiple updates in
tuple form or in a custom data type. To return something that isn’t of type Update, use the
return keyword.

2.2.4 Reference: updates

This page gives reference information on Updates:

Background
Binding variables
do

create
exercise
exerciseByKey
fetch

102 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

fetchByKey
lookupByKey
abort

assert
getTime
return

let

this

For the structure around them, see Overview: template structure.

2.2.4.1 Background

An Update is ledger update. There are many different kinds of these, and they’re listed below.
They are what can go in a choice body.

2.2.4.2 Binding variables

boundVariable <- UpdateExpressionl

Oneofthethings youcandoinachoice bodyis bind (assign) an Update expression to avariable.
This works for any of the Updates below.

2.2.4.3 do

do
updateExpressionl
updateExpression?2

do can be used to group Update expressions. You can only have one update expression in a
choice, so any choice beyond the very simple will use a do block.

Anything you can put into a choice body, you can put into a do block.

By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an
example.

2.2.4.4 create

create NameOfTemplate with exampleParameters

create function.

Creates an instance of that contract on the ledger. When a contract is committed to the ledger,
itis given a unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

Use with to specify the template parameters.

Requires authorization from the signatories of the contract being created. This is given by
being signatories of the contract from which the other contract is created, being the controller,
or explicitly creating the contract itself.

Ifthe required authorization is not given, the transaction fails. For more detail on authorization,
see Signatory parties.

2.2. Language reference docs 103

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.4.5 exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgumentl = wvaluel

exercise function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice. If the authorization is not given,
the transaction fails.

2.2.4.6 exerciseByKey

exerciseByKey (@ContractType contractKey NameOfChoiceOnContract withl]
—choiceArgumentl = valuel

exerciseByKey function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice and from at least one of the main-
tainers of the key. If the authorization is not given, the transaction fails.

2.2.4.7 fetch

fetchedContract <- fetch IdOfContract

fetch function.

Fetches the contract instance with that ID. Usually used with a bound variable, as in the exam-
ple above.

Often used to check the details of a contract before exercising a choice on that contract. Also
used when referring to some reference data.

fetch cidfailsif cidis not the contract id of an active contract, and thus causes the entire
transaction to abort.

The submitting party must be an observer or signatory on the contract, otherwise fetch fails,
and similarly causes the entire transaction to abort.

2.2.4.8 fetchByKey

fetchedContract <- fetchByKey (@ContractType contractKey

fetchByKey function.

The same as fetch, but fetches the contract instance with that contract key, instead of the
contract ID.

Like fetch, fetchByKey needs to be authorized by at least one stakeholder of the contract.
Fails if no contract can be found.

2.2.4.9 lookupByKey

fetchedContractId <- lookupByKey (@ContractType contractKey

lookupByKey function.
Use this to confirm that a contract with the given contract key exists.

104 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

If the submitting party is a stakeholder of a matching contract, lookupByKey returns the
ContractId of the contract; otherwise, it returns None. Transactions may fail due to con-
tention because the key changes between the lookup and committing the transaction, or be-
casue the submitter didn’t know about the existence of a matching contract.

All of the maintainers of the key must authorize the lookup (by either being signatories or by
submitting the command to lookup).

2.2.4.10 abort

abort errorMessage

abort function.

Fails the transaction - nothing in it will be committed to the ledger.

errorMessage is of type Text. Use the error message to provide more context to an external
system (e.g., it gets displayed in DAML Studio scenario results).

You could use assert False as an alternative.

2.2.4.11 assert

assert (condition == True)

assert keyword.
Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.
Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a
parameter is on a blacklist:

Transfer : ContractId RestrictedPayout
with newReceiver : Party
do
assert (newReceiliver /= blacklisted)
create RestrictedPayout with receiver = newReceiver; giver;l[]
~blacklisted; gty

2.2.4.12 getTime

currentTime <- getTime

getTime keyword.

Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be
able to access the value.)

Used to restrict when a choice can be made. For example, with an assert that the timeis later
than a certain time.

Here’s an example of a choice that uses a check on the current time:

Complete : ()

do

(continues on next page)

2.2. Language reference docs 105

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- bind the ledger effective time to the tchoose variable usingll
—getTime
tchoose <- getTime

2.2.4.13 return

return ()

return keyword.
Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a
tuple:

do
firstContract <- create SomeContractTemplate with argl; arg2
secondContract <- create SomeContractTemplate with argl; arg2
return (firstContract, secondContract)

2.2.414 let
See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument thatl]
—when

-—- called will <create the new contract using argument for issuer and]
—owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract partyl
createContract party?2

2.2.4.15 this

this lets you refer to the current contract from within the choice body. This refers to the contract,
not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the
template.

2.2.5 Reference: data types

This page gives reference information on DAML’s data types:

Built-in types
- Table of built-in primitive types
- Escaping characters

106 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

- Time
Lists

- Summing a list
Records and record types

- Data constructors

- Accessing record fields

- Updating record fields

- Parameterized data types
Type synonyms

- Function types
Algebraic data types

- Product types

- Sumtypes

- Pattern matching

2.2.5.1 Built-in types

2.2. Language reference docs 107

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Table of built-in primitive types

Type For Example Notes
Int integers 1, 1000000, | Int values are signed 64-bit integers which
1 000 000 represent numbers between -9,223, 372,
036,854,775,808 and 9,223,372,036,
854,775,807 inclusive. Arithmetic opera-
tions raise an error on overflows and divi-
sion by 0. To make long numbers more read-
able you can optionally add underscores.
Decimal short for Numeric | 1.0 Decimal values are rational numbers with
10 precision 38 and scale 10.
Numeric n | fixed point decimal | 1.0 Numeric n values are rational numbers with
numbers up to 38 digits. The scale parameter n con-
trols the number of digits after the decimal
point, so for example, Numeric 10 values
have 10 decimal places, and Numeric 20
values have 20 decimal places. The value of
n must be between 0 and 37 inclusive.
Text strings "hello" Text values are strings of characters en-
closed by double quotes.
Bool boolean values True, False
Party unicode string rep- | alice <- Every party in a DAML system has a unique
resenting a party getParty identifier of type Party. To create a value
"Alice" of type Party, use binding on the result of
calling getParty. The party text can only
contain alphanumeric characters, -, and
spaces.
Date models dates date 2007 | Tocreate avalue of type Date, use the func-
Apr 5 tion date (to get this function, import DA.
Date).
Time models absolute | time Time values have microsecond precision.
time (UTC) (date To create a value of type Time, use a Date
2007 Apr and the function time (to get this function,
5) 14 30 import DA . Time).
05
RelTime models differences | seconds 1, | seconds 1 and seconds (-2) represent
between timevalues | seconds the values for 1 and -2 seconds. There are
(-2) no literals for RelTime. Instead they are

created using one of days, hours,minutes
and seconds (to get these functions, im-
port DA. Time).

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

108

Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Time

Definition of time on the ledger is a property of the execution environment. DAML assumes there is
a shared understanding of what time is among the stakeholders of contracts.

2.2.5.2 Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,
3, 2] isanexampleofalistoftype [Int].

You can also construct lists using [] (the empty list) and : : (which is an operator that appends an
element to the front of a list). For example:

twoEquivalentListConstructions =
scenario do
assert ([1, 2, 3] == 1 ::: 2 :: 3 :: 1[1)

Summing a list

To sum a list, use a fold (because there are no loops in DAML). See Folding for details.

2.2.5.3 Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord
with
labell : typel
label2 : type?2

labelN : typeN
deriving (Eq, Show)

where:

labell, label?2, , labelN are labels, which must be unique in the record type
typel, type2, ,typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { labell : typel; label2 : type2; ...; labelN :[]
—typeN }
deriving (Eq, Show)

The formatusing with and the formatusing { } are exactly the same syntactically. The main differ-
ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting
semicolons.

Thederiving (Eg, Show) ensures the data type can be compared (using ==) and displayed (us-
ing show). The line starting deriving is required for data types used in fields of a template.

In general,add the derivingunless the data type contains function types (e.g. Int -> Int),which
cannot be compared or shown.

For example:

2.2. Language reference docs 109

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-— This is a record type with two fields, called first and second,
-- both of type "Int"
data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type 1is:
newRecord = MyRecord with first = 1; second = 2

-— You can also write:
newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for
some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that
can be used to specify values of the Floor Int type: forexample, Floor 0,Floor 1.

In DAML, data constructors may take at most one argument.

An example of a data constructor with zero arguments isdata Empty = Empty {}.Theonlyvalue
of the Empty type is Empty.

Note: Indata Confusing = Int,the Intisadataconstructorwith noarguments. It has nothing
to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

—-— Access the value of the field "first’
val.first

—-— Access the value of the field "second’
val.second

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select
fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord?2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, DAML lets you use this without assigning it
to make things look nicer:

1o Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-—- 1f you have a variable called "second’ equal to 5
second = 5

-- you could construct the same value as before with
myRecord?2 = myRecord with second = second

-- or with
myRecord3 = MyRecord with first = 1; second = second

-—- but DAML has a nicer way of putting this:
myRecord4 = MyRecord with first = 1; second

-— or even
myRecordb = r with second

Note: The with keyword binds more strongly than function application. So for a function, say
return, either write return IntegerCoordinate with first = 1; second = 5or return
(IntegerCoordinate {first = 1; second = 5}),where the latter expression is enclosed in
parentheses.

Parameterized data types

DAML supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-— Here, a and b are type parameters.
-— The Coordinate after the data keyword is a type constructor.
data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

2.2.5.4 Type synonyms
To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used
interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has
type ParamTypel -> ParamTypeZ -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type
FooType = ParamTypel -> ParamType2 -> ReturnType

2.2. Language reference docs m

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.5.5 Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The
enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in DAML: data AlternativeCoordinate a b =
AlternativeCoordinate a b. Thisis because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:
a; second: b}l.

These kinds of types are called product types.

Awayofthinking aboutthisisthatthe Coordinate Int Inttypehasafirstandseconddimension
(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and
soon.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False
deriving (Eg, Show), where True and False are data constructors with zero arguments . This
means that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive
at least from (Eq, Show).

A very useful sum type is data Optional a = None | Some a deriving (Eqg, Show). Itis
part of the DAML standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined
by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.
Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

optionalIntegerToText (x : Optional Int) : Text =
case x of
None -> "Box is empty"
Some val -> "The content of the box is " <> show wval

optionallIntegerToTextTest =
scenario do

let
x = Some 3
assert (optionallntegerToText x == "The content of the box is 3")

12 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the optionalIntegerToText function, the case construct first tries to match the x argument
against the None data constructor, and in case of a match, the "Box is empty" textisreturned. In
case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some
data constructor. In case of a match, the content of the value attached to the Some label is bound to
the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least
one pattern that matches. The patterns are tested from top to bottom, and the expression for the
first pattern that matches will be executed. Note that can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and
achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

let
1 =11, 2, 3]
in case 1 of
[] -> "List is empty"
[] -> "List has one element"
: -> "List has at least two elements"

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that DAML Studio
produces a warning for all variables that are not being used. This is useful in detecting unused
variables. You can suppress the warning by naming the variable with an initial underscore.

2.2.6 Reference: built-in functions

This page gives reference information on functions for:

Working with time
Working with numbers
Working with text
Working with lists

- Folding

2.2.6.1 Working with time
DAML has these built-in functions for working with time:

datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.
subTime: subtracts one time from another. Returns the Re1Time difference between timel
and time?2.

addRelTime: add times. Takes a Time and RelTime and adds the Re1Time to the Time.
days, hours,minutes, seconds: constructs a Re1Time of the specified length.

pass: (in scenario tests only) use pass : RelTime -> Scenario Time to advance the
ledger time by the argument amount. Returns the new time.

2.2. Language reference docs N3

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.6.2 Working with numbers

DAML has these built-in functions for working with numbers:

round: rounds a Decimal number to Int.
round disthe nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-
ple:

round (

round 2.5 3 -2.
4 3 round (-3.

5) ==
round 3. 7

) ==

-4

truncate: converts a Decimal numberto Int, truncating the value towards zero, for example:

truncate 2.2
truncate 4.9 =

2 truncate (-2.2) == -2
4

(-4.9) == -4

\4

intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require

more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333..

. is a rational

number, but not a Decimal.

2.2.6.3 Working with text
DAML has these built-in functions for working with text:

<> operator: concatenates two Text values.

show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to

a Text.

To escape text in DAML strings, use \:

Character How to escape it
\ A\
" \ll
|l \ 1
Newline \n
Tab \t
Carriage return \r

Unicode (using ! as an example)

Decimal code: \33
Octal code: \o41
Hexadecimal code: \x21

2.2.6.4 Working with lists
DAML has these built-in functions for working with lists:

foldl and foldzr: see Folding below.

Folding

A fold takes:

a binary operator
a first accumulator value

N4

Chapter 2

. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a
foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs
to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.
This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the
list. This produces a third accumulator value.

3. This continues until there are no more elements in the list. Then, the last accumulator value is
returned.

As an example, to sum up a list of integers in DAML:

sumList =
scenario do
assert (foldl (+) O [1, 2, 3] == 0)

2.2.7 Reference: expressions

This page gives reference information for DAML expressions that are not updates:

Definitions

- Values

- Functions
Arithmetic operators
Comparison operators
Logical operators
If-then-else
Let

2.2.7.1 Definitions

Use assignement to bind values or functions at the top level of a DAML file or in a contract template
body.

Values

For example:

pi = 3.1415926535

The factthat pi has type Decimal is inferred from the value. To explicitly annotate the type, mention
it after a colon following the variable name:

2.2. Language reference docs N5

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

Here you see:

the name of the function

the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

the definition= 2.0 * pi * r * h(which uses the previously defined pi)

2.2.7.2 Arithmetic operators

Operator Works for

+ Int,Decimal,RelTime
- Int,Decimal,RelTime
* Int, Decimal

/ (integer division) Int

% (integer remainder opera- | Int

tion)

~ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

7 / 3and (-7) / (-3) evaluateto?2
(=7) / 3and7 / (-3) evaluateto -2

7 % 3and7 % (-3) evaluatetol

(-=7) % 3and (-7) % (-3) evaluateto-1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2
is another way of writing 1 + 2.

2.2.7.3 Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-
tract instances stemming from the same contract template

2.2.7.4 Logical operators
The logical operators in DAML are:

not for negation, e.g, not True == False
&& for conjunction, wherea && b == and a b

e Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

| | for disjunction,wherea || b == or a b

for Bool variables a and b.

2.2.7.5 If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

2276 Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =
-— let binds values or functions to be in scope beneath the expression
let
double (x : Int) = 2 * x
up = 5
in double up

You can use let inside do and scenario blocks:

blah = scenario
do
let
x =1
y = 2
-- x and y are in scope for all subsequent expressions of the do
—~block,
-—- so can be used in expressionl and expressionZ.
expressionl
expression?

Lastly, a template may contain a single let block.

template Iou

with
issuer : Party
owner : Party
where

signatory issuer

let updateOwner o = create this with owner = o
updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced
-- from any and all of the signatory, consuming, ensure and
-— agreement expressions and from within any choice do blocks.

controller owner can
Transfer : ContractId Iou

(continues on next page)

2.2. Language reference docs n7

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

with newOwner : Party
do
updateOwner newOwner

2.2.8 Reference: functions

This page gives reference information on functions in DAML:

Defining functions
Partial application
Functions are values
Generic functions

DAML is a functional language. It lets you apply functions partially and also have functions that take
other functions as arguments. This page discusses these higher-order functions.

2.2.8.1 Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

You can define this function equivalently using lambdas, involving ‘, a sequence of parameters, and
an arrow -> as:

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.2.8.2 Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->
Decimal. An equivalent, but more instructive, way to read its type is: Decmial -> (Decimal -
> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns
another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type
Decimal -> Decimal. In other words, this function returns another function. Only the last appli-
cation of an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a
function that takes just a single argument and returns another function. In DAML, all functions are
curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to
all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a
function with partially defined arguments. For example:

n8 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

multiplyThreeNumbers : Int -> Int -> Int -> Int
multiplyThreeNumbers xx yy zz =
XX * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21l

multiplyTwoNumbersWith7 3

multiplyWithl8 = multiplyThreeNumbers 3 6

You could also define equivalent lambda functions:

multiplyWithl8 v2 : Int -> Int
multiplyWithl8 v2 xx =
multiplyThreeNumbers 3 6 xx

2.2.8.3 Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with
the lambda notation):

-—- Type synonym for Decimal -> Decimal -> Decimal
type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as
when binding values,e.g,pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In
fact, in DAML, functions are values.

This means a function can take another function as an argument. For example, define a function
applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first ar-
gument, a higher-order function, to the second and the third arguments to yield the result.

applyFilter (filter : Int -> Int -> Bool)

(x : Int)
(v : Int) = filter x vy

compute = scenario do
assert (applyFilter (<) 3 2 == False)
assert (applyFilter (/=) 3 2 == True)
assert (round (2.5 : Decimal) == 3)
assert (round (3.5 : Decimal) == 4)
assert (explode "me" == ["m", "e"])

(continues on next page)

2.2. Language reference docs 19

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (applyFilter (\a b -> a /= b) 3 2 == True)

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-
tion as an argument.

Note: DAML does not allow functions as parameters of contract templates and contract choices.
However, a follow up of a choice can use built-in functions, defined at the top level or in the contract
template body.

2.2.8.4 Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type
parameters. For example, you can define function composition as follows:

compose (f : b ->c) (g : a -=>b) (x : a) : ¢ =1f (g x)

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose
not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas
not has type Bool -> Bool.

You can find many other generic functions including this one in the DAML standard library.

Note: DAML currently does not support generic functions for a specific set of types, such as Int
and Decimal numbers. For example, sum (x: a) (y: a) = x + yisundefined when a equals
the type Party. Bounded polymorphism might be added to DAML in a later version.

2.2.9 Reference: scenarios

This page gives reference information on scenario syntax, used for testing templates:

Scenario keyword
Submit
submitMustFail
Scenario body

- Updates

- Passingtime

- Binding variables

For an introduction to scenarios, see Testing using scenarios.

2.2.9.1 Scenario keyword

scenario function. Introduces a series of transactions to be submitted to the ledger.

2.2.9.2 Submit

submit keyword.

120 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Submits an action (a create or an exercise) to the ledger.
Takes two arguments, the party submitting followed by the expression, for example: submit
bankOfEngland do create

2.2.9.3 submitMustFail

submitMustFail keyword.
Like submit, but you’re asserting it should fail.
Takes two arguments, the party submitting followed by the expression by a party, for example:
submitMustFail bankOfEngland do create
2.2.9.4 Scenario body

Updates

Usually create and exercise. But you can also use other updates, like assert and fetch.
Parties can only be named explicitly in scenarios.
Passing time

In a scenario, you may want time to pass so you can test something properly. You can do this with
pass.

Here’s an example of passing time:

timeTravel =
scenario do
-—- Get current ledger effective time
tl <- getTime
assert (tl == datetime 1970 Jan 1 0 0 0)

-— Pass 1 day
pass (days 1)

-—- Get new ledger effective time
t2 <- getTime
assert (t2 == datetime 1970 Jan 2 0 0 0)

Binding variables

As in choices, you can bind to variables. Usually, you’d bind commits to variables in order to get the
returned value (usually the contract).

2.2.10 Reference: DAML file structure

This page gives reference information on the structure of DAML files outside of templates:

File structure
Imports

Libraries
Comments
Contract identifiers

2.2. Language reference docs 121

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.10.1 File structure

This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the DAML
file name, without the file extension.

For a file with path . /Scenarios/Demo.daml, usemodule Scenarios.Demo where.

2.2.10.2 Imports

You can import other modules (import OtherModuleName), including qualified
imports (import qualified AndYetOtherModuleName, import qualified
AndYetOtherModuleName as Signifier). Can’t have circular import references.
To import the Prelude module of . /Prelude.daml, use import Prelude.
To import a module of . /Scenarios/Demo.daml, use import Scenarios.Demo.
If you leave out qualified, and a module alias is specified, top-level declarations of the im-
ported module are imported into the module’s namespace as well as the namespace specified
by the given alias.

2.210.3 Libraries

A DAML library is a collection of related DAML modules.

Define a DAML library using a LibraryModules.daml file: a normal DAML file that imports the root
modules of the library. The library consists of the LibraryModules.daml file and all its dependen-
cies, found by recursively following the imports of each module.

Errors are reported in DAML Studio on a per-library basis. This means that breaking changes on
shared DAML modules are displayed even when the files are not explicitly open.
2.210.4 Comments

Use —- for a single line comment. Use {- and -} for a comment extending over multiple lines.

2.2.10.5 Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it's assigned a unique
identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract
identifier from the Sandbox may look different to ones on other DAML Ledgers.

You can use == and /= on contract identifiers of the same type.

2.2.11 Reference: DAML packages

This page gives reference information on DAML package dependencies:

Building DAML archives
Inspecting DARs
Importing DAML packages
- Importing a DAML package via dependencies
- Importing a DAML archive via data-dependencies
Handling module name collisions

122 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.11.1 Building DAML archives

When a DAML project is compiled, the compiler produces a DAML archive. These are platform-
independent packages of compiled DAML code that can be uploaded to a DAML ledger or imported
in other DAML projects.

DAML archives have a .dar file ending. By default, when you run daml build, it will generate the
.dar file in the .daml/dist folder in the project root folder. For example, running daml buildin
project foo with projectversion 0.0.1 will resultin a DAML archive .daml/dist/foo-0.0.1.dar.

You can specify a different path for the DAML archive by using the -o flag:

daml build -o foo.dar

For details on how to upload a DAML archive to the ledger, see the deploy documentation. The rest of
this page will focus on how to import a DAML packages in other DAML projects.
2.2.11.2 Inspecting DARs

To inspect a DAR and get information about the packages inside it, you can use the daml damlc
inspect-dar command. This is often useful to find the package id of the project you just built.

You canrundaml damlc inspect-dar /path/to/your.dar togetahuman-readable listing of
the files inside it and a list of packages and their package ids. Here is a (shortened) example output:

$ daml damlc inspect-dar .daml/dist/create-daml-app-0.1.0.dar
DAR archive contains the following files:

create-daml-app-0.1.0-
—290501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/create-
—daml-app-0.1.0-
—29p501bct541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml -
—prim-75b070729b1fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.
—~dalf

create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—stdlib-0.0.0-
—ab535cbc3657b8df953a50aaefb5adcd224574549¢c83ca4d4377e8219%aadealdf2la.dalt
create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad35e4b69966db5d/daml -
—stdlib-DA-Internal-Template-
—d14e08374fc7197d6a0ded468c968ae8bal3aadbf9315476£d39071831£5923662.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/data/
—~create-daml-app-0.1.0.conf

create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.
—~daml

create-daml-app-0.1.0-
—290501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.hi
create-daml-app-0.1.0-
~29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.hie

(continues on next page)

2.2. Language reference docs 123

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

META-INF/MANIFEST.MF
DAR archive contains the following packages:

create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d
—"29b501bct541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d"
daml-stdlib-DA-Internal-Template-
—d14e08374£c7197d6a0de468c968ae8bal3aadbf9315476£d39071831£5923662
—~"d14e08374fc7197d6a0ded68c968ae8bal3aadbf9315476£d39071831£5923662"
daml-prim-75b070729b1£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9£15
—~"75p070729p1fbd37a618493652121b0d6£5983b787e35179e52d048db70e9£15"
daml-stdlib-0.0.0-
—ab535cbc3657b8df953a50aaefbadcd224574549¢c83ca4377e8219%aadealdf2la
—~"ab35cbc3657b8df953a50aaefbadcd224574549¢c83ca4377e8219%aadealdf21la”

In addition to the human-readable output, you can also get the output as JSON. This is easier to
consume programatically and it is more robust to changes across SDK versions:

$ daml damlc inspect-dar --json .daml/dist/create-daml-app-0.1.0.dar

{
"packages": {

"29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d

"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad35e4b69966db5d/create-
—~daml-app-0.1.0-
—29p501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d.dalf",

"name": "create-daml-app",

"version": "0.1.0"

}I
"d14e08374fc7197d6a0ded68c968ae8bal3aadbf9315476£d39071831£5923662

"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—stdlib-DA-Internal-Template-
—d14e08374fc7197d6a0ded468c968ae8ba3aadbf9315476£d39071831£5923662.dalf",

"name": null,

"version": null

}y
"75b07072901£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9£15

"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—prim-75b070729b1fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.
—dalf",

"name": "daml-prim",

"version": "0.0.0"

by

(continues on next page)

124 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

"a535cbc3657b8df953a50aaef5adcd224574549¢c83cad377e821%aadealdf2la

"path": "create-daml-app-0.1.0-
—~29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—stdlib-0.0.0-
—ab535cbc3657b8df953a50aaef5ad4cd224574549¢c83cad4377e821%aadealdf2la.dalf",

"name": "daml-stdlib",

"version": "0.0.0"

b

"main package id":
"29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d",

"files": |

"create-daml-app-0.1.0-
—~29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/create-
—~daml-app-0.1.0-
—29p501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d.dalf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
oprim=-75b070729%901£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.
—dalf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—~stdlib-0.0.0-
—ab535cbc3657b8df953a50aaef5ad4cd224574549¢c83cad377e821%aadealdf2la.dalf",

"create-daml-app-0.1.0-
—290501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml -
—stdlib-DA-Internal-Template-
—d14e08374£fc7197d6a0ded68c968ae8bal3aadbf9315476£fd39071831£5923662.dalf",

"create-daml-app-0.1.0-
—~29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/data/
—~create-daml-app-0.1.0.conf",

"create-daml-app-0.1.0-
—290b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.
—daml",

"create-daml-app-0.1.0-
—~29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.hi

"
—

"create-daml-app-0.1.0-
—~290501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/User.hie

"
—

"META-INF/MANIFEST.MF"

Note that name and version will be null for packages in DAML-LF < 1.8.

2.2. Language reference docs 125

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.11.3 Importing DAML packages

There are two ways to import a DAML package in a project: via dependencies, and via data-
dependencies. They each have certain advantages and disadvantages. To summarize:

dependencies allow you to import a DAML archive as a library. The definitions in the depen-
dency will all be made available to the importing project. However, the dependency must be
compiled with the same DAML SDK version, so this method is only suitable for breaking up
large projects into smaller projects that depend on each other, or to reuse existing libraries.
data-dependencies allow you to import a DAML archive (.dar) or a DAML-LF package (.dalf),
including packages that have already been deployed to a ledger. These packages can be com-
piled with any previous SDK version. On the other hand, not all definitions can be carried over
perfectly, since the DAML interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

Importing a DAML package via dependencies

A DAML project can declare a DAML archive as a dependency in the dependencies field of daml.
yaml. This lets you import modules and reuse definitions from another DAML project. The main
limitation of this method is that the dependency must be for the same SDK version as the importing
project.

Let’s go through an example. Suppose you have an existing DAML project foo, located at /home/
user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the DAML archive of foo. Go into /home/user/foo and run daml
build -o foo.dar. This will create the DAML archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated DAML archive as a depndency. Go
into /home/user/bar and change the dependencies field in daml. yaml to point to the created
DAML archive:

dependencies:
- daml-prim
- daml-stdlib
- ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

- /home/user/foo/foo.dar

When you run daml buildinbar project, the compiler will make the definitions in foo.dar avail-
able for importing. For example, if foo exports the module Foo, you can import it in the usual way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit
which modules of foo get exported, you may add an exposed-modules field in the daml. yaml file
for foo:

exposed-modules:
- Foo

126 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Importing a DAML archive via data-dependencies

You can import a DAML archive (.dar) or DAML-LF package (.dalf) using data-dependencies. Unlike
dependencies, this can be used when the DAML SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

- daml-prim

- daml-stdlib
data-dependencies:
- ../foo/foo.dar

When importing packages this way, the DAML compiler will try to reconstruct the original DAML in-
terface from the compiled binaries. However, to allow data-dependencies to work across SDK
versions, the compiler has to abstract over some details which are not compatible across SDK ver-
sions. This means that there are some DAML features that cannot be recovered when using data-
dependencies. In particular:

1. Export lists cannot be recovered, so imports via data-dependencies can access definitions
that were originally hidden. This means it is up to the importing module to respect the data
abstraction of the original module. Note that this is the same for all code that runs on the
ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via exposed-
modules, you can get an error if you also have a data-dependency that references some-
thing from the hidden modules (even if it is only reexported). Since exposed-modules are not
available on the ledger in general, we recommend to not make use of them and instead rely
on naming conventions (e.g., suffix module names with .Internal) to make it clear which
modules are part of the public API.

3. Prior to DAML-LF version 1.8, typeclasses could not be reconstructed. This means if you have
a package that is compiled with an older version of DAML-LF, typeclasses and typeclass in-
stances will not be carried over via data-dependencies, and you won’t be able to call func-
tions that rely on typeclass instances. This includes the template functions, such as create,
signatory, and exercise, as these rely on typeclass instances.

4. Starting from DAML-LF version 1.8, when possible, typeclass instances will be reconstructed
by re-using the typeclass definitions from dependencies, such as the typeclasses exported
in daml-stdlib. However, if the typeclass signature has changed, you will get an instance
for a reconstructed typeclass instead, which will not interoperate with code from dependen-
cies. Furthermore, if the typeclass definition uses the FunctionalDependencies language
extension, this may cause additional problems, since the functional dependencies cannot be
recovered. So this is something to keep in mind when redefining typeclasses and when using
FunctionalDependencies.

5. Certain advanced type system features cannot be reconstructed. In particular, DA.Generics
and DeriveGeneric cannot be reconstructed. This may result in certain definitions being
unavailable when importing a module that uses these advanced features.

Because of their flexibility, data-dependencies are a tool that is recommended for performing DAML
model upgrades. See the upgrade documentation for more details.
2.2.11.4 Handling module name collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple
import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,
there are a few tools you can use to approach this problem.

2.2. Language reference docs 127

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The first is to use package qualified imports. Supposing you have packages with different names,
foo and bar, which both expose a module X. You can select which one you want with a package
qualified import.

To get X from foo:

import "foo" X

To get X from bar:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX
import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with
the same name. For example, if you’re loading different versions of the same package. To handle this
case, you need the --package build option.

Suppose you are importing packages foo-1.0.0 and foo-2.0.0. Notice they have the same name
foo butdifferentversions. To get modules that are exposed in both packages, you will need to provide
module aliases. You can do this by passing the --package build option. Open daml.yaml and add
the following build-options:

build-options:
- '—--package'
- '"foo-1.0.0 with (X as Fool.X)'
- '—--package'
- '"foo-2.0.0 with (X as Foo2.X)'

This will alias the Xin foo-1.0.0 as Fool.X,and aliastheXin foo-2.0.0 as Foo2.X. Now you will
be able to import both X by using the new names:

import qualified Fool.X
import qualified Foo2.X

It is also possible to add a prefix to all modules in a package using the module-prefixes field in
your daml.yaml. This is partiuclarly useful for upgrades where you can map all modules of version
v of your package under V$v. For the example above you can use the following:

module-prefixes:
foo-1.0.0: Fool
fo00-2.0.0: Foo2

That will allow you to import module X from package foo-1.0.0 as Fool.X and X from package
-foo-2.0.0as Foo2.

You can also use more complex module prefixes,e.g., foo-1.0.0: Fool.Bar whichwill make mod-
ule X available under Fool.Bar.X.

128 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.12 Contract keys

Contract keys are an optional addition to templates. They let you specify a way of uniquely identifying
contract instances, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with
bank : Party
number : Text
owner : Party
balance : Decimal
observers : [Party]
where
signatory [bank, owner]
observer observers

key (bank, number) : AccountKey
maintainer key. 1

2.2.12.1 What can be a contract key

The key can be an arbitrary serializable expression that does not contain contract IDs. However, it
must include every party that you want to use as amaintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

2.2.12.2 Specifying maintainers

If you specify a contract key for a template, you must also specify amaintainer or maintainers,in
a similar way to specifying signatories or observers. The maintainers own the keyinthe same way
the signatories own a contract. Just like signatories of contracts prevent double spends or use of
false contract data, maintainers of keys prevent double allocation orincorrect lookups. Since the key
is part of the contract, the maintainers must be signatories of the contract. However, maintainers
are computed from the key instead of the template arguments. In the example above, the bank is
ultimately the maintainer of the key.

Uniqueness of keys is guaranteed per template. Since multiple templates may use the same key
type, some key-related functions must be annotated using the @ContractType as shown in the
examples below.

When you are writing DAML models, the maintainers matter since they affect authorization - much
like signatories and observers. You don’t need to do anything to maintain the keys. In the above
example, it is guaranteed that there can only be one Account with a given number at a given bank.

Checking of the keys is done automatically at execution time, by the DAML exeuction engine: if some-
one tries to create a new contract that duplicates an existing contract key, the execution engine will
cause that creation to fail.

2.2. Language reference docs 129

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.12.3 Contract Lookups

The primary purpose of contract keys is to provide a stable, and possibly meaningful, identifier that
can be used in DAML to fetch contracts. There are two functions to perform such lookups: fetchByKey
and lookupByKey. Both types of lookup are performed at interpretation time on the submitting Parti-
pant Node, on a best-effort basis. Currently, that best-effort means lookups only return contracts if
the submitting Party is a stakeholder of that contract.

In particular, the above means that if multiple commands are submitted simultaneously, all us-
ing contract lookups to find and consume a given contract, there will be contention between these
commands, and at most one will succeed.

Limiting key usage to stakeholders also means that keys cannot be used to access a divulged con-
tract, i.e. there can be cases where fetch succeeds and fetchByKey does not. See the example at the
end of this section for details.

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType
contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative
to fetch and behaves the same in most ways.

It returns a tuple of the ID and the contract object (containing all its data).
Like fetch, fetchByKey needs to be authorized by at least one stakeholder.
fetchByKey fails and aborts the transaction if:

The submitting Party is not a stakeholder on a contract with the given key, or
A contract was found, but the fetchByKey violates the authorization rule, meaning no stake-
holder authorized the fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that
the submitting Party doesn’t know about it, or there are issues with authorization.

visibleByKey

boolean <- visibleByKey (@ContractType contractKey

UsevisibleByKeytocheck whetheryoucan seeanactive contractforthe given key with the current
authorizations. If the contract exists and you have permission to see it, returns True, otherwise
returns False.

To clarify, ignoring contention:

1. visibleByKey will return True if all of these are true: there exists a contract for the given key,
the submitter is a stakeholder on that contract, and at the point of call we have the authoriza-
tion of all of the maintainers of the key.

2. visibleByKey will return False if all of those are true: there is no contract for the given key,
and at the point of call we have authorization from all the maintainers of the key.

3. visibleByKey will abort the transaction at interpretation time if, at the point of call, we are
missing the authorization from any one maintainer of the key.

4. visibleByKey will fail at validation time (after returning False at interpretation time) if all
of these are true: at the point of call, we have the authorization of all the maintainers, and a
valid contract exists for the given key, but the submitter is not a stakeholder on that contract.

130 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

While it may at first seem too restrictive to require all maintainers to authorize the call, this is actu-
allyrequired in order tovalidate negative lookups. In the positive case, when you can see the contract,
it’s easy for the transaction to mention which contract it found, and therefore for validators to check
that this contract does indeed exist, and is active as of the time of executing the transaction.

For the negative case, however, the transaction submitted for execution cannot say _which_ con-
tract it has not found (as, by definition, it has not found it, and it may not even exist). Still, validators
have to be able to reproduce the result of not finding the contract, and therefore they need to be able
to look for it, which means having the authorization to ask the maintainers about it.

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

Use lookupByKey to check whether a contract with the specified key exists. If it does exist,
lookupByKey returns the Some contractId, where contractId is the ID of the contract; oth-
erwise, it returns None.

lookupByKey is conceptually equivalent to

lookupByKey : forall c k. (HasFetchByKey c k) => k -> Update (Optionall]
— (ContractlId c))
lookupByKey k = do
visible <- visibleByKey @c k
if visible then do
(contractId, ignoredContract) <- fetchByKey (Cc k
return $ Some contractId
else
return None

Therefore, lookupByKey needs all the same authorizations as visibleByKey, for the same reasons,
and fails in the same cases.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

2.2.12.4 exerciseByKey
exerciseByKey @ContractType contractKey

UseexerciseByKey toexercise achoice onacontractidentified byits key (compared toexercise,
which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need
authorization from the controllers of the choice and at least one stakeholder. This is equivalent to
the authorization needed to do a fetchByKey followed by an exercise.

2.2.12.5 Example

A complete example of possible success and failure scenarios of fetchByKey and lookupByKey is shown
below.

-— Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or itsll
—affiliates. All rights reserved.
-—- SPDX-License-Identifier: Apache-2.0

module Keys where

(continues on next page)

2.2. Language reference docs 131

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

import DA.Optional

template Keyed
with
sig : Party
obs : Party
where
signatory sig
observer obs

key sig : Party
maintainer key

template Divulger

with
divulgee : Party
sig : Party

where
signatory divulgee

controller sig can
nonconsuming DivulgeKeyed
Keyed
with
keyedCid : ContractId Keyed
do
fetch keyedCid

template Delegation

with
sig : Party
delegees : [Party]
where

signatory sig
observer delegees

nonconsuming choice CreateKeyed

ContractId Keyed

with
delegee : Party
obs : Party

controller delegee

do
create Keyed with sig; obs

nonconsuming choice ArchiveKeyed

()
with

(continues on next page)

132 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

delegee : Party

keyedCid : ContractId Keyed
controller delegee
do

archive keyedCid

nonconsuming choice UnkeyedFetch

Keyed

with
cid : ContractId Keyed
delegee : Party

controller delegee

do
fetch cid

nonconsuming choice VisibleKeyed

Bool

with
key : Party
delegee : Party

controller delegee

do
visibleByKey (@Keyed key

nonconsuming choice LookupKeyed
Optional (ContractId Keyed)
with
lookupKey : Party
delegee : Party
controller delegee
do
lookupByKey (@Keyed lookupKey

nonconsuming choice FetchKeyed
(ContractId Keyed, Keyed)
with
lookupKey : Party
delegee : Party
controller delegee
do
fetchByKey (@Keyed lookupKey

lookupTest = scenario do

-- Put four parties in the four possible relationships with a "Keyed’

sig <- getParty "s" -- Signatory

obs <- getParty "o" -- Observer
divulgee <- getParty "d" -- Divulgee
blind <- getParty "b" -- Blind

(continues on next page)

2.2. Language reference docs 133

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

keyedCid <- submit sig do create Keyed with
divulgercid <- submit divulgee do create Divulger with
submit sig do exercise divulgercid DivulgeKeyed with

-—- Now the signatory and observer delegate their choices
sigDelegationCid <- submit sig do
create Delegation with
sig
delegees = [obs, divulgee, blind]
obsDelegationCid <- submit obs do
create Delegation with
sig = obs
delegees = [divulgee, blind]

—-— TESTING LOOKUPS AND FETCHES

-— Maintainer can fetch

submit sig do
(cid, keyed) <- fetchByKey (@Keyed sig
assert (keyedCid == cid)

-- Maintainer can see

submit sig do
b <- visibleByKey @Keyed sig
assert b

-- Maintainer can lookup

submit sig do
mcid <- lookupByKey (@Keyed sig
assert (mcid == Some keyedCid)

-— Stakeholder can fetch
submit obs do
(cid, 1) <- fetchByKey (@Keyed sig
assert (keyedCid == cid)
-- Stakeholder can't see without authorization
submitMustFail obs do visibleByKey (@Keyed sig
-—- Stakeholder can see with authorization
submit obs do
b <- exercise sigDelegationCid VisibleKeyed with
delegee = obs
key = sig
assert b
-— Stakeholder can't lookup without authorization
submitMustFail obs do lookupByKey (@Keyed sig
-—- Stakeholder can lookup with authorization
submit obs do
mcid <- exercise sigDelegationCid LookupKeyed with
delegee = obs
lookupKey = sig

(continues on next page)

134 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (mcid == Some keyedCid)

-- Divulgee can fetch the contract directly
submit divulgee do
exercise obsDelegationCid UnkeyedFetch with
delegee = divulgee
cid = keyedCid
-— Divulgee can't fetch through the key
submitMustFail divulgee do fetchByKey (@Keyed sig
-- Divulgee can't see
submitMustFail divulgee do visibleByKey (@Keyed sig
-—- Divulgee can't see with stakeholder authority
submitMustFail divulgee do
exercise obsDelegati