
DAML SDK Documentation

Digital Asset

Version : 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Copyright 2020 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,

duplication or distribution is strictly prohibited.

Table of contents

Table of contents i

1 Getting started 1

1.1 Installing the SDK . 1

1.1.1 1. Install the dependencies . 1

1.1.2 2. Install the SDK . 1

1.1.3 Next steps . 1

1.1.4 Alternative: manual download . 1

1.2 Getting Started with DAML . 5

1.2.1 Prerequisites . 5

1.2.2 Running the app . 5

1.3 Testing Your App . 8

1.3.1 Setting up our tests . 9

1.3.2 Example: Logging in and out . 9

1.3.3 Accessing UI elements . 10

1.3.4 Writing CSS Selectors . 10

1.3.5 The Full Test Suite . 11

2 Writing DAML 12

2.1 An introduction to DAML . 12

2.1.1 1 Basic contracts . 12

2.1.2 2 Testing templates using DAML Script . 14

2.1.3 3 Data types . 20

2.1.4 4 Transforming data using choices . 36

2.1.5 5 Adding constraints to a contract . 42

2.1.6 6 Parties and authority . 51

2.1.7 7 Composing choices . 60

2.1.8 8 Working with Dependencies . 69

2.1.9 9 Functional Programming 101 . 71

2.1.10 10 Intro to the DAML Standard Library . 83

2.1.11 11 Testing DAML Contracts . 88

2.2 Language reference docs . 93

2.2.1 Overview: template structure . 93

2.2.2 Reference: templates . 96

2.2.3 Reference: choices . 99

2.2.4 Reference: updates . 102

2.2.5 Reference: data types . 106

2.2.6 Reference: built-in functions . 113

2.2.7 Reference: expressions . 115

2.2.8 Reference: functions . 118

i

2.2.9 Reference: scenarios . 120

2.2.10 Reference: DAML file structure . 121

2.2.11 Reference: DAML packages . 122

2.2.12 Contract keys . 129

2.3 Testing using scenarios . 137

2.3.1 Scenario syntax . 138

2.3.2 Running scenarios in DAML Studio . 138

2.3.3 Examples . 138

2.4 Troubleshooting . 140

2.4.1 Error: 0<X> is not authorized to commit an update0 140

2.4.2 Error 0Argument is not of serializable type0 . 141

2.4.3 Modelling questions . 141

2.4.4 Testing questions . 143

2.5 Good design patterns . 144

2.5.1 Initiate and Accept . 144

2.5.2 Multiple party agreement . 146

2.5.3 Delegation . 148

2.5.4 Authorization . 151

2.5.5 Locking . 153

2.5.6 Diagram legends . 161

3 Building applications 163

3.1 Application architecture . 163

3.1.1 Backend . 165

3.1.2 Frontend . 165

3.1.3 Authorization . 166

3.1.4 Developer workflow . 166

3.2 JavaScript Client Libraries . 168

3.2.1 JavaScript Code Generator . 169

3.2.2 @daml/react . 174

3.2.3 @daml/ledger . 174

3.2.4 @daml/types . 174

3.3 HTTP JSON API Service . 174

3.3.1 DAML-LF JSON Encoding . 174

3.3.2 Query language . 181

3.3.3 Running the JSON API . 183

3.3.4 HTTP Status Codes . 187

3.3.5 Create a new Contract . 189

3.3.6 Creating a Contract with a Command ID . 190

3.3.7 Exercise by Contract ID . 191

3.3.8 Exercise by Contract Key . 192

3.3.9 Create and Exercise in the Same Transaction . 193

3.3.10 Fetch Contract by Contract ID . 195

3.3.11 Fetch Contract by Key . 196

3.3.12 Get all Active Contracts . 197

3.3.13 Get all Active Contracts Matching a Given Query . 198

3.3.14 Fetch Parties by Identifiers . 200

3.3.15 Fetch All Known Parties . 201

3.3.16 Allocate a New Party . 201

3.3.17 List All DALF Packages . 202

3.3.18 Download a DALF Package . 203

3.3.19 Upload a DAR File . 203

3.3.20 Streaming API . 204

3.4 DAML Script . 209

3.4.1 DAML Script Library . 209

3.4.2 Usage . 212

3.4.3 Using DAML Script for Ledger Initialization . 215

3.4.4 Using DAML Script in Distributed Topologies . 216

3.4.5 Running DAML Script against Ledgers with Authorization 217

3.4.6 Running DAML Script against the HTTP JSON API . 217

3.5 DAML REPL . 218

3.5.1 Usage . 218

3.5.2 What is in scope at the prompt? . 219

3.5.3 Using DAML REPL without a Ledger . 220

3.5.4 Connecting via TLS . 220

3.5.5 Connection to a Ledger with Authorization . 220

3.5.6 Using DAML REPL to convert to JSON . 220

3.6 Upgrading and extending DAML applications . 220

3.6.1 Automating the Upgrade Process . 220

3.6.2 Structuring upgrade contracts . 224

3.6.3 Building and deploying coin-1.0.0 . 225

3.6.4 Create some coin-1.0.0 coins . 226

3.6.5 Building and deploying coin-2.0.0 . 226

3.6.6 Building and deploying coin-upgrade . 227

3.6.7 Upgrade existing coins from coin-1.0.0 to coin-2.0.0 227

3.6.8 Further Steps . 228

3.7 The Ledger API . 228

3.7.1 The Ledger API services . 228

3.7.2 gRPC . 232

3.7.3 Ledger API Reference . 234

3.7.4 How DAML types are translated to protobuf . 268

3.7.5 How DAML types are translated to DAML-LF . 274

3.7.6 Java bindings . 278

3.7.7 Scala bindings . 310

3.7.8 Node.js bindings . 314

3.7.9 Creating your own bindings . 314

3.7.10 What’s in the Ledger API . 317

3.7.11 DAML-LF . 318

4 Deploying to DAML ledgers 319

4.1 Overview of DAML ledgers . 319

4.1.1 Commercial Integrations . 319

4.1.2 Open Source Integrations . 319

4.1.3 DAML Ledgers in Development . 319

4.2 Deploying to a generic DAML ledger . 320

4.2.1 Connecting via TLS . 321

4.2.2 Configuring Request Timeouts . 321

4.3 DAML Ledger Topologies . 321

4.3.1 Global State Topologies . 321

4.3.2 Partitioned Ledger Topologies . 325

5 SDK tools 326

5.1 DAML Assistant (daml) . 326

5.1.1 Full help for commands . 326

5.1.2 Configuration files . 326

5.1.3 Building DAML projects . 329

5.1.4 Managing SDK releases . 329

5.1.5 Terminal Command Completion . 330

5.2 DAML Studio . 330

5.2.1 Installing . 330

5.2.2 Creating your first DAML file . 330

5.2.3 Supported features . 332

5.2.4 Common scenario errors . 336

5.2.5 Working with multiple packages . 339

5.3 DAML Sandbox . 340

5.3.1 Contract Identifier Generation . 341

5.3.2 Running with persistence . 341

5.3.3 Running with authentication . 342

5.3.4 Running with TLS . 344

5.3.5 Command-line reference . 344

5.3.6 Metrics . 344

5.4 Navigator . 350

5.4.1 Navigator functionality . 350

5.4.2 Installing and starting Navigator . 350

5.4.3 Choosing a party / changing the party . 351

5.4.4 Logging out . 352

5.4.5 Viewing templates or contracts . 352

5.4.6 Using Navigator . 355

5.4.7 Authorizing Navigator . 358

5.4.8 Advanced usage . 358

6 Background concepts 361

6.1 Glossary of concepts . 361

6.1.1 DAML . 361

6.1.2 SDK tools . 365

6.1.3 Building applications . 366

6.1.4 General concepts . 368

6.2 DAML Ledger Model . 368

6.2.1 Structure . 369

6.2.2 Integrity . 376

6.2.3 Privacy . 388

6.2.4 DAML: Defining Contract Models Compactly . 396

7 Examples 398

7.1 DAML examples . 398

8 Early Access Features 399

8.1 Navigator Console . 399

8.1.1 Querying the Navigator local database . 399

8.1.2 Try out the Navigator Console on the Quickstart . 401

8.1.3 Displaying status information . 404

8.1.4 Choosing a party . 405

8.1.5 Advancing time . 405

8.1.6 Inspecting templates . 406

8.1.7 Inspecting contracts, transactions, and events . 406

8.1.8 Querying data . 407

8.1.9 Creating contracts . 408

8.1.10 Exercising choices . 409

8.1.11 Using Navigator outside the SDK . 409

8.1.12 Using Navigator with DAML Ledgers . 410

8.2 Extractor . 410

8.2.1 Introduction . 410

8.2.2 Setting up . 410

8.2.3 Trying it out . 411

8.2.4 Running the Extractor . 411

8.2.5 Connecting the Extractor to a ledger . 411

8.2.6 Connecting to your database . 411

8.2.7 Authorize Extractor . 412

8.2.8 Full list of options . 412

8.2.9 Output format . 414

8.2.10 Transactions . 414

8.2.11 Contracts . 415

8.2.12 Exercises . 415

8.2.13 JSON format . 416

8.2.14 Examples of output . 416

8.2.15 Dealing with schema evolution . 417

8.2.16 Logging . 419

8.2.17 Continuity . 419

8.2.18 Fault tolerance . 419

8.2.19 Troubleshooting . 419

8.3 DAML Integration Kit . 420

8.3.1 Ledger API Test Tool . 420

8.3.2 DAML Integration Kit status and roadmap . 424

8.3.3 Implementing your own DAML Ledger . 425

8.3.4 Deploying a DAML Ledger . 428

8.3.5 Testing a DAML Ledger . 429

8.3.6 Benchmarking a DAML Ledger . 429

8.4 DAML Triggers - Off-Ledger Automation in DAML . 429

8.4.1 DAML Trigger Library . 429

8.4.2 Usage . 441

8.4.3 When not to use DAML triggers . 445

8.5 Visualizing DAML Contracts . 445

8.5.1 Example: Visualizing the Quickstart project . 445

8.5.2 Visualizing DAML Contracts - Within IDE . 446

8.5.3 Visualizing DAML Contracts - Interactive Graphs . 446

9 DAML Ecosystem 447

9.1 DAML Ecosystem Overview . 447

9.1.1 Status Definitions . 447

9.1.2 Feature and Component Statuses . 450

9.1.3 Architecture . 453

9.2 Releases and Versioning . 455

9.2.1 Versioning . 455

9.2.2 Cadence . 456

9.2.3 Release Notes . 456

9.2.4 Roadmap . 456

9.2.5 Process . 456

9.3 Portability, Compatibility, and Support Durations . 457

9.3.1 Ledger API Compatibility: Application Portability . 457

9.3.2 Driver and Participant Compatibility: Network Upgradeability 458

9.3.3 SDK, Runtime Component, and Library Compatibility: SDK Upgradeability . . . 458

9.3.4 Ledger API Support Duration . 458

9.4 Getting Help . 459

9.4.1 Support expectations . 459

Chapter 1

Getting started

1.1 Installing the SDK

1.1.1 1. Install the dependencies

The SDK currently runs on Windows, macOS and Linux.

You need to install:

1. Visual Studio Code.

2. JDK 8 or greater. If you don’t already have a JDK installed, try AdoptOpenJDK.

As part of the installation process you might need to set up the JAVA_HOME variable. You can

find here the instructions on how to do it on Windows,macOS, and Linux.

1.1.2 2. Install the SDK

1.1.2.1 Windows 10

Download and run the installer, which will install DAML and set up your PATH.

1.1.2.2 Mac and Linux

To install the SDK on Mac or Linux:

1. In a terminal, run:

curl -sSL https://get.daml.com/ | sh

2. Add ~/.daml/bin to your PATH. You can find the Mac OS and Linux instructions here.

1.1.3 Next steps

0 Follow the getting started guide.

0 Use daml --help to see all the commands that the DAML assistant (daml) provides.

0 If you run into any problems, use the support page to get in touch with us.

1.1.4 Alternative: manual download

If you want to verify the SDK download for security purposes before installing, you can look at our

detailed instructions for manual download and installation.

1

https://code.visualstudio.com/download
https://adoptopenjdk.net
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/daml-sdk-1.6.0-snapshot.20201007.5314.0.b4a47d0b-windows.exe

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

1.1.4.1 Setting JAVA_HOME and PATH variables

Windows

We’ll explain here how to set up JAVA_HOME and PATH variables on Windows.

Setting the JAVA_HOME variable

1. Open Search and type 0advanced system settings0 and hit Enter.

2. Find the Advanced tab and click on the Environment Variables.

3. In the System variables section click on New if you want to set JAVA_HOME system wide. To

set JAVA_HOME for a single user click on New under User variables.

4. In the opened modal window for Variable name type JAVA_HOME and for the Variable

value set the path to the JDK installation. Click OK once you’re done.

5. Click OK and click Apply to apply the changes.

Setting the PATH variable

If you have downloaded and installed the DAML SDK using our Windows installer your PATH variable

is already set up.

Mac OS

We’ll explain here how to set up JAVA_HOME and PATH variables on Mac OS with zsh shell. If you are

using bash all of the instructions are quite similar, except that you will be doing all of the changes

in the .bash_profile file.

Setting the JAVA_HOME variable

Run the following command in your terminal:

echo 'export JAVA_HOME="$(/usr/libexec/java_home)"' >> ~/.zprofile

Setting the PATH variable

Run the following command in your terminal:

echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.zprofile

Verifying the changes

In order for the changes to take effect you will need to restart your computer, or, if you’re using the

macOS Terminal app, you only need to quit the Terminal app (Command+Q in the Terminal window)

and reopen it. Afterward, please follow the instructions below to verify that everything was set up

correctly.

Please verify the JAVA_HOME variable by running:

echo $JAVA_HOME

You should see the path to the JDK installation, which is something like /Library/Java/

JavaVirtualMachines/jdk_version_number/Contents/Home.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/latest

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Next, please verify the PATH variable by running:

echo $PATH

You should see a series of paths which includes the path to the DAML SDK, which is something like

/Users/your_username/.daml/bin.

If you do not see the changes, youmay be using bash as your default shell instead of zsh. Please try

these instructions again, but replace the ~/.zprofile with ~/.bash_profile in the commands

above.

Linux

We’ll explain here how to set up JAVA_HOME and PATH variables on Linux for bash.

Setting the JAVA_HOME variable

Java should be installed typically in a folder like /usr/lib/jvm/java-version. Before running

the following command make sure to change the java-version with the actual folder found on

your computer:

echo "export JAVA_HOME=/usr/lib/jvm/java-version" >> ~/.bash_profile

Setting the PATH variable

Run the following command:

echo 'export PATH="$HOME/.daml/bin:$PATH"' >> ~/.bash_profile

Verifying the changes

In order for the changes to take effect you will need to restart your computer. After the restart, please

follow the instructions below to verify that everything was set up correctly.

Please verify the JAVA_HOME variable by running:

echo $JAVA_HOME

You should see the path you gave for the JDK installation, which is something like /usr/lib/jvm/

java-version.

Next, please verify the PATH variable by running:

echo $PATH

You should see a series of paths which includes the path to the DAML SDK, which is something like

/home/your_username/.daml/bin.

1.1.4.2 Manually installing the SDK

If you require a higher level of security, you can instead install the SDK bymanually downloading the

compressed tarball, verifying its signature, extracting it and manually running the install script.

1.1. Installing the SDK 3

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note that the Windows installer is already signed (within the binary itself), and that signature is

checked byWindows before starting it. Nevertheless, you can still follow the steps below to check its

external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-

tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the

corresponding signature file. For example, if you are on macOS and want to install release

1.4.0, you would download the files daml-sdk-1.4.0-macos.tar.gz and daml-sdk-1.4.

0-macos.tar.gz.asc. Note that for Windows you can choose between the tarball (ends in

.tar.gz), which follows the same instructions as the Linux and macOS ones (but assumes

you have a number of typical Unix tools installed), or the installer, which ends with .exe. Re-

gardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once

you have gpg installed, you can import the key by running:

gpg --keyserver pool.sks-keyservers.net --search�

↪→4911A8DFE976ACDFA07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC

<security@digitalasset.com>, created on 2019-05-16 and expiring on 2021-05-15. If

any of those details are different, something is wrong. In that case please contact Digital Asset

immediately.

4. Once the key is imported, you canaskgpg to verify that the file youhavedownloadedhas indeed

been signed by that key. Continuing with our example of 1.4.0 on macOS, you should have both

files in the current directory and run:

gpg --verify daml-sdk-1.4.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-1.4.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC

↪→<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the�

↪→owner.

Primary key fingerprint: 4911 A8DF E976 ACDF A071 30DB E837 2C0C 1C73�

↪→4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to

Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web

of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have

verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

tar xzf daml-sdl-1.4.0-macos.tar.gz

cd sdk-1.4.0

(continues on next page)

4 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

./install.sh

6. Just like for themore automated install procedure, youmay want to add ~/.daml/bin to your

$PATH.

1.2 Getting Started with DAML

The goal of this tutorial is to get you up and running with full-stack DAML development. We do this

through the example of a simple social networking application, showing you three things:

1. How to build and run the application

2. The design of its different components (app-architecture)

3. How to write a new feature for the app (first-feature)

We do not aim to be comprehensive in all DAML concepts and tools (covered inWriting DAML) or in all

deployment options (see Deploying). For a quick overview of the most important DAML concepts

used in this tutorial open the DAML cheat-sheet in a separate tab. The goal is that by the end of

this tutorial, you’ll have a good idea of the following:

1. What DAML contracts and ledgers are

2. How a user interface (UI) interacts with a DAML ledger

3. How DAML helps you build a real-life application fast.

With that, let’s get started!

1.2.1 Prerequisites

Please make sure that you have the DAML SDK, Java 8 or higher, and Visual Studio Code (the only

supported IDE) installed as per instructions from our Installing the SDK page.

You will also need some common software tools to build and interact with the template project.

0 Git version control system

0 Node package manager for JavaScript. Note: On Ubuntu 18.04, NodeJS 8.10 will be installed but

its too old.

0 A terminal application for command line interaction

1.2.2 Running the app

We’ll start by getting the app up and running, and then explain the different components which we

will later extend.

First off, open a terminal and instantiate the template project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run

daml new --list.

Change to the new folder:

cd create-daml-app

Next we need to compile the DAML code to a DAR file:

1.2. Getting Started with DAML 5

https://docs.daml.com/cheat-sheet/
https://git-scm.com/downloads
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml build

Once the DAR file is created you will see this message in terminal Created .daml/dist/create-

daml-app-0.1.0.dar.

Any commands starting with daml are using the DAML Assistant, a command line tool in the DAML

SDK for building and running DAML apps. In order to connect the UI code to this DAML, we need to

run a code generation step:

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o ui/daml.js

Now, changing to the ui folder, use npm to install the project dependencies:

cd ui

npm install

This stepmay takea couple ofmoments (it’sworth it!). You should seesuccess Saved lockfile.

in the output if everything worked as expected.

We can now run the app in two steps. You’ll need two terminal windows running for this. In one

terminal, at the root of the create-daml-app directory, run the command:

daml start

You will know that the command has started successfully when you see the INFO com.daml.

http.Main$ - Started server: ServerBinding(/127.0.0.1:7575) message in the ter-

minal. The command does a few things:

1. Compiles the DAML code to a DAR file as in the previous daml build step.

2. Starts an instance of the Sandbox, an in-memory ledger useful for development, loadedwith our

DAR.

3. Starts a server for the HTTP JSON API, a simple way to run commands against a DAML ledger (in

this case the running Sandbox).

We’ll leave these processes running to serve requests from our UI.

In a second terminal, navigate to the create-daml-app/ui folder and run the application:

cd ui

npm start

This starts the web UI connected to the running Sandbox and JSON API server. The command should

automatically open a window in your default browser at http://localhost:3000. Once the web UI

has been compiled and started, you should see Compiled successfully! in your terminal. If it

doesn’t, just open that link in a web browser. (Depending on your firewall settings, youmay be asked

whether to allow the app to receive network connections. It is safe to accept.) You should now see the

login page for the social network. For simplicity of this app, there is no password or sign-up required.

First enter your name and click Log in.

You should see the main screen with two panels. One for the users you are following and one for

your followers. Initially these are both empty as you are not following anyone and you don’t have any

followers! Go ahead and start following users by typing their usernames in the text box and clicking

on the Follow button in the top panel.

6 Chapter 1. Getting started

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You’ll notice that the users you just started following appear in the Following panel. However they

do not yet appear in the Network panel. This is either because they have not signed up and are not

parties on the ledger or they have not yet started followiong you. This social network is similar to

Twitter and Instagram, where by following someone, say Alice, you make yourself visible to her but

not vice versa. We will see how we encode this in DAML in the next section.

Tomake this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-

ing separate windows/tabs allows you to see both you and the screen of the user you are following

at the same time.) Once you log in as the user you are following - Alice, you’ll notice your name in

her network. In fact, Alice can see the entire list of users you are follwing in the Network panel. This

is because this list is part of the user data that became visible when you started follwing her.

1.2. Getting Started with DAML 7

http://localhost:3000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

When Alice starts follwing you, you can see her in your network as well. Just switch to the window

where you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.

Observe when a user becomes visible to others - this will be important to understanding DAML’s

privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and

share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get

the next one by implementing your first feature.

1.3 Testing Your App

When developing your application, you will want to test that user flows work from end to end. This

means that actions performed in thewebUI trigger updates to the ledger and give the desired results

on thepage. In this sectionwe showhowyou cando such testing automatically in TypeScript (equally

8 Chapter 1. Getting started

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

JavaScript). This will allow you to iterate on your app faster and with more confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to

choose from, but this is one combination that works.

0 Jest is ageneral-purpose testing framework for JavaScript that’swell integratedwithboth Type-

Script and React. Jest helps you structure your tests and express expectations of the app’s

behaviour.

0 Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer

allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command

in the ui directory:

npm add --only=dev puppeteer wait-on @types/jest @types/node @types/

↪→puppeteer @types/wait-on

1.3.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full

suite in section The Full Test Suite at the bottomof this page. To run this test suite, create a new fileui/

src/index.test.ts, copy the code in this section into that file and run the following command in

the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones

with the following descriptions (the first argument to each test):

0 ‘log in as a new user, log out and log back in’

0 ‘log in as three different users and start following each other’

0 ‘error when following self’

0 ‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have

some global state that we use throughout. Specifically, we have child processes for the daml start

and npm start commands, which run for the duration of our tests. We also have a single Puppeteer

browser that we share among tests, opening new browser pages for each one.

The beforeAll() section is a function run once before any of the tests run. We use it to spawn the

daml startandnpm startprocessesand launch thebrowser. On the other hand theafterAll()

section is used to shut down theseprocessesandclose thebrowser. This step is important to prevent

child processes persisting in the background after our program has finished.

1.3.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to

in each scenario we want to test. This means we use Puppeteer to type text into input forms, click

buttons and search for particular elements on the page. In order to find those elements, we do need

to make some adjustments in our React components, which we’ll show later. Let’s start at a higher

level with a test.

We’ll walk though this step by step.

0 The test syntax is provided by Jest to indicate a new test running the function given as an

argument (along with a description and time limit).

1.3. Testing Your App 9

https://jestjs.io/
https://pptr.dev/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 getParty() gives us a new party name. Right now it is just a string unique to this set of tests,

but in the future we will use the Party Management Service to allocate parties.

0 newUiPage() is a helper function that uses the Puppeteer browser to open a new page (we use

one page per party in these tests), navigate to the app URL and return a Page object.

0 Next we login() using the new page and party name. This should take the user to the main

screen. We’ll show how the login() function does this shortly.

0 We use the @daml/ledger library to check the ledger state. In this case, we want to ensure

there is a single User contract created for the new party. Hence we create a new connection to

the Ledger, query() it and state what we expect of the result. When we run the tests, Jest

will check these expectations and report any failures for us to fix.

0 The test also simulates the new user logging out and then logging back in. We again check the

state of the ledger and see that it’s the same as before.

0 Finally we must close() the browser page, which was opened in newUiPage(), to avoid run-

away Puppeteer processes after the tests finish.

You will likely use test, getParty(), newUiPage() and Browser.close() for all your tests. In

this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just

check the contents of the web page match our expectations.

1.3.3 Accessing UI elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual

actions in the app using Puppeteer. This was hidden in the login() and logout() functions. Let’s

see how login() is implemented.

We first wait to receive a handle to the username input element. This is important to ensure the page

and relevant elements are loaded by the time we try to act on them. We then use the element handle

to click into the input and type the party name. Next we click the login button (this time assuming

the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached

the menu on the main page.

The strings used to find UI elements, e.g. '.test-select-username-field' and '.test-

select-login-button', are CSS Selectors. You may have seen them before in CSS styling of web

pages. In this case we use class selectors, which look for CSS classes we’ve given to elements in our

React components.

This means we must manually add classes to the components we want to test. For example, here is

a snippet of the LoginScreen React component with classes added to the Form elements.

You can see the className attributes in the Input and Button, which we select in the login()

function. Note that you can use other features of an element in your selector, such as its type and

attributes. We’ve only used class selectors in these tests.

1.3.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered

HTML in your app by running it manually and inspecting elements using your browser’s developer

tools. For example, the image below is from inspecting the username field using the developer tools

in Google Chrome.

There is a subtlety to explain here due to the Semantic UI framework we use for our app. Semantic

UI provides a convenient set of UI elements which get translated to HTML. In the example of the

username field above, the original Semantic UI Input is translated to nested div nodes with the

10 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

input inside. You can see this highlighted on the right side of the screenshot. While harmless in

this case, in general youmay need to inspect the HTML translation of UI elements and write your CSS

selectors accordingly.

1.3.5 The Full Test Suite

1.3. Testing Your App 11

Chapter 2

Writing DAML

2.1 An introduction to DAML

DAML is a smart contract language designed to build composable applications on an abstract DAML

Ledger Model.

In this introduction, you will learn about the structure of a DAML Ledger, and how to write DAML

applications that runonanyDAML Ledger implementation, by building anasset-holding and -trading

application. You will gain an overview over most important language features, how they relate to the

DAML Ledger Model and how to use the DAML SDK Tools to write, test, compile, package and ship your

application.

This introduction is structured such that each section presents a new self-contained application

with more functionality than that from the previous section. You can find the DAML code for each

sectionhere or download themusing theDAMLassistant. For example, to load the sources for section

1 into a folder called 1_Token, run daml new 1_Token --template daml-intro-1.

Prerequisites:

0 You have installed the DAML SDK

Next: 1 Basic contracts.

2.1.1 1 Basic contracts

To begin with, you’re going to write a very small DAML template, which represents a self-issued, non-

transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make

it more useful later - but it’s enough that it can show you the most basic concepts:

0 Transactions

0 DAML Modules and Files

0 Templates

0 Contracts

0 Signatories

Hint: Remember that you can load all the code for this section into a folder 1_Token by running

daml new 1_Token --template daml-intro-1

12

https://github.com/digital-asset/daml/tree/master/docs/source/daml/intro/daml

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.1.1 DAML ledger basics

Like most structures called ledgers, a DAML Ledger is just a list of commits. When we say commit, we

mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll cover inmore detail through this introduction. Themost basic examples

are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the

point where there is a committed transaction that archives it again.

Individual contracts are immutable in the sense that an active contract can not be changed. You can

only change the active contract set by creating a new contract, or archiving an old one.

DAML specifies what transactions are legal on a DAML Ledger. The rules the DAML code specifies are

collectively called a DAML model or contract model.

2.1.1.2 DAML files and modules

Each .daml file defines a DAML Module. At the top of each DAML file is a pragma informing the com-

piler of the language version and the module name:

module Token where

Code comments in DAML are introduced with –:

-- The first line of a DAML file is a pragma telling the compiler the�

↪→language

-- version to use.

-- A DAML file defines a module. The second line of a DAML file gives the

-- module a name.

module Token where

2.1.1.3 Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts

are instances of templates.

Listing 1: A simple template

template Token

with

owner : Party

where

signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

DAML is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line

is indented, and thus part of the template’s body.

Contracts containdata, referred to as the create argumentsor simply arguments. Thewithblockdefines

the data type of the create arguments by listing field names and their types. The single colon :

means 0of type0, so you can read this as 0template Token with a field owner of type Party0.

2.1. An introduction to DAML 13

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Token contracts have a single field owner of type Party. The fields declared in a template’s with

block are in scope in the rest of the template body, which is contained in a where block.

2.1.1.4 Signatories

The signatory keyword specifies the signatories of a contract instance. These are the parties whose

authority is required to create the contract or archive it again – just like a real contract. Every contract

must have at least one signatory.

Furthermore, DAML ledgers guarantee that parties see all transactions where their authority is used.

This means that signatories of a contract are guaranteed to see the creation and archival of that

contract.

2.1.1.5 Next up

In 2 Testing templates using DAML Script, you’ll learn about how to try out the Token contract template

in DAML’s inbuilt DAML Script testing language.

2.1.2 2 Testing templates using DAML Script

In this section you will test the Tokenmodel from 1 Basic contracts using the DAML Script integration

in DAML Studio. You’ll learn about the basic features of :

0 Allocating parties

0 Submitting transactions

0 Creating contracts

0 Testing for failure

0 Archiving contracts

0 Viewing ledger and final ledger state

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2

by running daml new daml-intro-2 --template daml-intro-2

2.1.2.1 Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of

transactions, to check that your templates behave as you’d expect. You can also script some some

external information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called 0Alice0.

token_test_1 = script do

alice <- allocateParty "Alice"

submit alice do

createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a

block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above

script uses the function allocateParty to put a party called 0Alice0 in a variable alice. There are

two things of note there:

14 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the

Script is run in the context of a ledger. <- means 0run the action and bind the result0. It

can only be run in that context because, depending on the ledger state the script is running

on, allocateParty will either give you back a party with the name you specified or append a

suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quitemake sense yet, for the time being you can think of this arrow as extracting

the right-hand-side value from the ledger and storing it into the variable on the left.

0 The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-

tions in DAML are called using the syntax fn arg1 arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,

you do this using the submit function. submit takes two arguments: a Party and an Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token

with owner = alice is a Commands, which translates to a list of commands that will be submit-

ted to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You couldwrite this assubmit alice (createCmd Token with owner = alice), but just like

scripts, you can assemble commands using do blocks. A do block always takes the value of the last

statement within it so the syntax shown in the commands above gives the same result, whilst being

easier to read. Note however, that the commands submitted as part of a transaction are not allowed

to depend n each other.

2.1.2.2 Running scripts

There are a few ways to run DAML Scripts:

0 In DAML Studio against a test ledger, providing visualizations of the resulting ledger

0 Using the command line daml test also against a test ledger, useful for continuous integra-

tion

0 Against a real ledger, take a look at the documentation for DAML Script for more information.

0 Interactively using DAML REPL.

In DAML Studio, you should see the text 0Script results0 just above the line token_test_1 = do.

Click on it to display the outcome of the script.

This opens the script view in a separate column in VS Code. The default view is a tabular represen-

tation of the final state of the ledger:

What this display means:

0 The big title reading Token_Test:Token is the identifier of the type of contract that’s listed

below. Token_Test is the module name, Token the template name.

2.1. An introduction to DAML 15

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 The first columns, labelled vertically, show which parties know about which contracts. In this

simple script, the sole party 0Alice0 knows about the contract she created.

0 The second column shows the ID of the contract. This will be explained later.

0 The third column shows the status of the contract, either active or archived.

0 The remaining columns show the contract arguments, with one column per field. As expected,

field owner is 'Alice'. The single quotation marks indicate that Alice is a party.

To run the same test from the command line, save your module in a file Token_Test.daml and run

daml damlc -- test --files Token_Test.daml. If your file contains more than one script,

all of them will be run.

2.1.2.3 Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other

words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-

able attempt to test that would be:

failing_test_1 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

submit alice do

createCmd Token with owner = bob

submit bob do

createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. Thismeans that it only tested that

Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,

you can use the submitMustFail function:

token_test_2 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

(continues on next page)

16 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submitMustFail alice do

createCmd Token with owner = bob

submitMustFail bob do

createCmd Token with owner = alice

submit alice do

createCmd Token with owner = alice

submit bob do

createCmd Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular scenario view just

shows the two Tokens resulting from the successful submit statements. Note the new column for

Bob as well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1.2.4 Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.

Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the

type of contract that the ID refers to. For example, a reference to a Token would be a ContractId

Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,

you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.

How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token_test_3 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

alice_token <- submit alice do

createCmd Token with owner = alice

(continues on next page)

2.1. An introduction to DAML 17

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submitMustFail bob do

archiveCmd alice_token

submit alice do

archiveCmd alice_token

2.1.2.5 Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you

want to see the history of the ledger, e.g. to see how you got to that state, tick the 0Show archived0

box at the top of the ledger view:

You can see that therewas aToken contract, which is nowarchived, indicated both by the 0archived0

value in the status column as well as by a strikethrough.

Click on the adjacent 0Show transaction view0 button to see the entire transaction graph:

In the DAML Studio script runner, committed transactions are numbered sequentially. The lines

starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These

correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.

Identifiers #X:Ymean commit X, sub-transaction Y. All transactions have this format in the

script runner. However, this format is a testing feature. In general, you should consider Transaction

and Contract IDs to be opaque.

The lines above and below create Token_Test:Token give additional information:

0 consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit 2.

0 referenced by #2:0 tells you that the contract was used in other transactions, and lists

their IDs.

0 known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that

'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the

additional information that Alice learned about the contract in commit #0.

0 Everything following with shows the create arguments.

18 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1. An introduction to DAML 19

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.2.6 Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each

party and archiving one token for each party, leaving one token of each type in the final ledger

view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the

submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing

submit.

2.1.2.7 Next up

In 3 Data types you will learn about DAML’s type system, and how you can think of templates as tables

and contracts as database rows.

2.1.3 3 Data types

In 1 Basic contracts, you learnt about contract templates, which specify the types of contracts that can

be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates usingDAMLScript, you learnt about the script view inDAMLStudio, which displays

the current ledger state. It shows one table per template, with one row per contract of that type and

one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates

specify a data schema for the ledger:

0 each template corresponds to a table

0 each field in the with block of a template corresponds to a column in that table

0 each contract instance of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn

about:

0 DAML’s built-in and native data types

0 Record types

0 Derivation of standard properties

0 Variants

0 Manipulating immutable data

0 Contract keys

After this section, you should be able to use a DAML ledger as a simple database where individual

parties can write, read and delete complex data.

Hint: Remember that you can load all the code for this section into a folder called3_Databy running

daml new 3_Data --template daml-intro-3

20 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.3.1 Native types

You have already encountered a few native DAML types: Party in 1 Basic contracts, and Text and

ContractId in 2 Testing templates using DAML Script. Here are those native types and more:

0 Party Stores the identity of an entity that is able to act on the ledger, in the sense that they

can sign contracts and submit transactions. In general, Party is opaque.

0 Text Stores a unicode character string like "Alice".

0 ContractId a Stores a reference to a contract of type a.

0 Int Stores signed 64-bit integers. For example, -123.

0 Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.

For example, 0.0000000001 or -9999999999999999999999999999.9999999999.

0 Bool Stores True or False.

0 Date Stores a date.

0 Time Stores absolute UTC time.

0 RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests

the result.

import Daml.Script

import DA.Time

import DA.Date

native_test = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

let

my_int = -123

my_dec = 0.001 : Decimal

my_text = "Alice"

my_bool = False

my_date = date 2020 Jan 01

my_time = time my_date 00 00 00

my_rel_time = hours 24

assert (alice /= bob)

assert (-my_int == 123)

assert (1000.0 * my_dec == 1.0)

assert (my_text == "Alice")

assert (not my_bool)

assert (addDays my_date 1 == date 2020 Jan 02)

assert (addRelTime my_time my_rel_time == time (addDays my_date 1) 00 00�

↪→00)

Despite its simplicity, there are quite a few things to note in this script:

0 The import statements at the top import two packages from theDAML Standard Library, which

contain all the date and time related functions we use here as well as the functions used in

DAML Scripts. More on packages, imports and the standard library later.

0 Most of the variables are declared inside a let block.

That’s because the script do block expects script actions like submit or Party. An integer

like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.

2.1. An introduction to DAML 21

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You can think of the let as turning variable declaration into an action.

0 Most variables do not have annotations to say what type they are.

That’s because DAML is very good at inferring types. The compiler knows that 123 is an Int, so

if you declare my_int = 123, it can infer that my_int is also an Int. This means you don’t

have to write the type annotation my_int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type

annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.

001 : Decimal which is a synonym for Numeric 10. You can always choose to add type

annotations to aid readability.

0 The assert function is an action that takes a boolean value and succeeds with True and fails

with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a

relational database. Below, Token is extended into a simple CashBalance, administered by a party

in the role of an accountant.

template CashBalance

with

accountant : Party

currency : Text

amount : Decimal

owner : Party

account_number : Text

bank : Party

bank_address : Text

bank_telephone : Text

where

signatory accountant

cash_balance_test = script do

accountant <- allocateParty "Bob"

alice <- allocateParty "Alice"

bob <- allocateParty "Bank of Bob"

submit accountant do

createCmd CashBalance with

accountant

currency = "USD"

amount = 100.0

owner = alice

account_number = "ABC123"

bank = bob

bank_address = "High Street"

bank_telephone = "012 3456 789"

2.1.3.2 Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give

that data more structure. Fortunately, DAML’s type system has a number of ways to assemble these

native types into much more expressive structures.

22 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text

key and an Int value. In DAML, you could use a two-tuple of type (Text, Int) to do so. If you

wanted to express a coordinate in three dimensions, you could group three Decimal values using a

three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple

import Daml.Script

tuple_test = script do

let

my_key_value = ("Key", 1)

my_coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)

assert (fst my_key_value == "Key")

assert (snd my_key_value == 1)

assert (my_key_value._1 == "Key")

assert (my_key_value._2 == 1)

assert (my_coordinate == (fst3 my_coordinate, snd3 my_coordinate, thd3�

↪→my_coordinate))

assert (my_coordinate == (my_coordinate._1, my_coordinate._2, my_

↪→coordinate._3))

You can access the data in the tuples using:

0 functions fst, snd, fst3, snd3, thd3

0 a dot-syntax with field names _1, _2, _3, etc.

DAML supports tuples with up to 20 elements, but accessor functions like fst are only included for

2- and 3-tuples.

Lists

Lists in DAML take a single type parameter defining the type of thing in the list. So you can have a

list of integers [Int] or a list of strings [Text], but not a list mixing integers and strings.

That’s because DAML is statically and strongly typed. When you get an element out of a list, the

compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-

tions.

import DA.List

import Daml.Script

list_test = script do

let

empty : [Int] = []

one = [1]

two = [2]

many = [3, 4, 5]

(continues on next page)

2.1. An introduction to DAML 23

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- `head` gets the first element of a list

assert (head one == 1)

assert (head many == 3)

-- `tail` gets the remainder after head

assert (tail one == empty)

assert (tail many == [4, 5])

-- `++` concatenates lists

assert (one ++ two ++ many == [1, 2, 3, 4, 5])

assert (empty ++ many ++ empty == many)

-- `::` adds an element to the beginning of a list.

assert (1 :: 2 :: 3 :: 4 :: 5 :: empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It’s necessary because [] is ambiguous. It

could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:

data T = C with, where T is the type name and C is the data constructor. In practice, it’s a good

idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

-- Fields of same type can be declared in one line

data Coordinate = Coordinate with

x, y, z : Decimal

-- Custom data types can also have variables

data KeyValue k v = KeyValue with

my_key : k

my_val : v

data Nested = Nested with

my_coord : Coordinate

my_record : MyRecord

my_kv : KeyValue Text Int

record_test = script do

let

my_record = MyRecord with

my_txt = "Text"

(continues on next page)

24 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_coord = Coordinate with

x = 1.0

y = 2.0

z = 3.0

-- `my_text_int` has type `KeyValue Text Int`

my_text_int = KeyValue with

my_key = "Key"

my_val = 1

-- `my_int_decimal` has type `KeyValue Int Decimal`

my_int_decimal = KeyValue with

my_key = 2

my_val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick them�

↪→up

-- implicitly, writing just `my_coord` instead of `my_coord = my_

↪→coord`.

my_nested = Nested with

my_coord

my_record

my_kv = my_text_int

-- Fields can be accessed with dot syntax

assert (my_coord.x == 1.0)

assert (my_text_int.my_key == "Key")

assert (my_nested.my_record.my_dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.

That’s no accident because a template is really just a special record. When you write template

Token with, one of the things that happens in the background is that this becomes a data Token

= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert

(my_record == my_record) in the script, you may be surprised to get an error message No

instance for (Eq MyRecord) arising from a use of ‘==’. Equality in DAML is always

value equality and we haven’t written a function to check value equality for MyRecord values. But

don’t worry, you don’t have to implement this rather obvious function yourself. The compiler is smart

enough to do it for you, if you use deriving (Eq):

data EqRecord = EqRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

(continues on next page)

2.1. An introduction to DAML 25

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

deriving (Eq)

data MyContainer a = MyContainer with

contents : a

deriving (Eq)

eq_test = script do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_container = MyContainer with

contents = eq_record

other_container = MyContainer with

contents = eq_record

assert(my_container.contents == eq_record)

assert(my_container == other_container)

Eq is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-

guages: it is the mechanism by which you can define a set of functions (for example, == and /=

in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.

There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the functionshow (equivalent totoString inmany languages) andOrd, which

gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-

ated using template T with do this automatically, and the native types have appropriate type-

class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eq and Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

owner : Party

number : Text

bank : Bank

deriving (Eq, Show)

data Cash = Cash with

currency : Text

(continues on next page)

26 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : Account

where

signatory accountant

cash_balance_test = script do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

owner

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

cash

account

pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are

expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,

but you can’t just leave bank empty. DAML doesn’t have an equivalent to null. Variants can express

that cash can either be in hand or at a bank.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

(continues on next page)

2.1. An introduction to DAML 27

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

data Account = Account with

number : Text

bank : Bank

deriving (Eq, Show)

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

data Location

= InHand

| InAccount Account

deriving (Eq, Show)

template CashBalance

with

accountant : Party

owner : Party

cash : Cash

location : Location

where

signatory accountant

cash_balance_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

owner

cash

location = InHand

submit accountant do

(continues on next page)

28 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

createCmd CashBalance with

accountant

owner

cash

location = InAccount account

The way to read the declaration of Location is 0A Location either has value InHand OR has a value

InAccount a where a is of type Account0. This is quite an explicit way to say that there may or may

not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest DAML has to a null value:

data Optional a

= None

| Some a

deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek

= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you

can no longer access the account number of a Location directly, because if it is InHand, theremay

be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all

cases:

{-

-- Commented out as `Either` is defined in the standard library.

data Either a b

= Left a

| Right b

-}

variant_access_test = script do

let

l : Either Int Text = Left 1

r : Either Int Text = Right "r"

-- If we know that `l` is a `Left`, we can error on the `Right` case.

l_value = case l of

(continues on next page)

2.1. An introduction to DAML 29

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Left i -> i

Right i -> error "Expecting Left"

-- Comment out at your own peril

{-

r_value = case r of

Left i -> i

Right i -> error "Expecting Left"

-}

-- If we are unsure, we can return an `Optional` in both cases

ol_value = case l of

Left i -> Some i

Right i -> None

or_value = case r of

Left i -> Some i

Right i -> None

-- If we don't care about values or even constructors, we can use�

↪→wildcards

l_value2 = case l of

Left i -> i

Right _ -> error "Expecting Left"

l_value3 = case l of

Left i -> i

_ -> error "Expecting Left"

day = Sunday

weekend = case day of

Saturday -> True

Sunday -> True

_ -> False

assert (l_value == 1)

assert (l_value2 == 1)

assert (l_value3 == 1)

assert (ol_value == Some 1)

assert (or_value == None)

assert weekend

2.1.3.3 Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to

the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in DAML is immutable, meaning once a value is created, it will never change. Rather than

changing values, you create new values based on old ones with some changes applied:

manipulation_demo = script do

let

(continues on next page)

30 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

-- A verbose way to change `eq_record`

changed_record = EqRecord with

my_txt = eq_record.my_txt

my_int = 3

my_dec = eq_record.my_dec

my_list = eq_record.my_list

-- A better way

better_changed_record = eq_record with

my_int = 3

record_with_changed_list = eq_record with

my_list = "Zero" :: eq_record.my_list

assert (eq_record.my_int == 2)

assert (changed_record == better_changed_record)

-- The list on `eq_record` can't be changed.

assert (eq_record.my_list == ["One", "Two", "Three"])

-- The list on `record_with_changed_list` is a new one.

assert (record_with_changed_list.my_list == ["Zero", "One", "Two", "Three

↪→"])

changed_record and better_changed_record are each a copy of eq_record with the field

my_int changed. better_changed_record shows the recommended way to change fields on a

record. The syntax is almost the same as for a new record, but the record name is replaced with the

old value: eq_record with instead of EqRecord with. The with block no longer needs to give

values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq_record never changes. The expression "Zero" :: eq_record.

my_list doesn’t change the list in-place, but creates a new list, which is eq_record.my_list

with an extra element in the beginning.

2.1.3.4 Contract keys

DAML’s type system lets you store richly structured data on DAML templates, but just like most

database schemas have more than one table, DAML contract models often have multiple templates

that reference each other. For example, youmaynotwant to store your bankandaccount information

on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below

shows a contract model where Account is split out into a separate template and referenced by

ContractId, but it also highlights a big problem with that kind of reference: just like data, con-

tracts are immutable. They can only be created and archived, so if you want to change the data on a

contract, you end up archiving the original contract and creating a new one with the changed data.

2.1. An introduction to DAML 31

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : ContractId Account

where

signatory accountant

id_ref_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

balanceCid <- submit accountant do

(continues on next page)

32 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

createCmd CashBalance with

accountant

cash

account = accountCid

-- Now the accountant updates the telephone number for the bank on the�

↪→account

Some account <- queryContractId accountant accountCid

new_account <- submit accountant do

archiveCmd accountCid

createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure ()

-- The `account` field on the balance now refers to the archived

-- contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account

optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active

contract using its contract ID. If there is noactive contractwith thegiven identifier visible to the given

party, queryContractId returns None. Here, we use a pattern match on Some which will abort the

script if queryContractId returns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part

of that transaction. To create new_account, the accountant archives the old account and creates a

new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the

primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

in the sense that only one contract of a given template and with a given key value can be active at a

time.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data AccountKey = AccountKey with

accountant : Party

number : Text

bank_party : Party

deriving (Eq, Show)

template Account

with

accountant : Party

(continues on next page)

2.1. An introduction to DAML 33

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

owner : Party

number : Text

bank : Bank

where

signatory accountant

key AccountKey with

accountant

number

bank_party = bank.party

: AccountKey

maintainer key.accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : AccountKey

where

signatory accountant

id_ref_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

Some account <- queryContractId accountant accountCid

balanceCid <- submit accountant do

createCmd CashBalance with

(continues on next page)

34 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

accountant

cash

account = key account

-- Now the accountant updates the telephone number for the bank on the�

↪→account

Some account <- queryContractId accountant accountCid

new_accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure cid

-- Thanks to contract keys, the current account contract is fetched

Some balance <- queryContractId accountant balanceCid

(cid, account) <- submit accountant do

createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.

↪→account)

assert (cid == new_accountCid)

-- Helper template to call `fetchByKey`.

template Helper

with

p : Party

where

signatory p

choice FetchAccountByKey : (ContractId Account, Account)

with

accountKey : AccountKey

controller p

do fetchByKey @Account accountKey

Since DAML is designed to run on distributed systems, you have to assume that there is no

global entity that can guarantee uniqueness, which is why each key expression must come with

a maintainer expression. maintainer takes one or several parties, all of which have to be signa-

tories of the contract and be part of the key. That way the index can be partitioned amongst sets of

maintainers, and each set of maintainers can independently ensure the uniqueness constraint on

their piece of the index. The constraint thatmaintainers are part of the key is ensured by only having

the variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-

tract identifier, we use fetchByKey @Account. fetchByKey @Account takes a value of type

AccountKey and returns a tuple (ContractId Account, Account) if the lookup was success-

ful or fails the transaction otherwise. fetchByKey cannot be used directly in the list of commands

sent to the ledger. Therefore we create a Helper template with a FetchAccountByKey choice and

call that via createAndExerciseCmd. We will learn more about choices in the next section.

Since a single type could be used as the key for multiple templates, you need to tell the compiler

what type of contract is being fetched by using the @Account notation.

2.1. An introduction to DAML 35

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.3.5 Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use

keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other

parties the right to manipulate data in restricted ways.

2.1.4 4 Transforming data using choices

In the example in Contract keys the accountant party wanted to change some data on a contract. They

did so by archiving the contract and re-creating it with the updated data. That works because the

accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what

if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how

to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder called

4_Transformations by running daml new 4_Transformations --template daml-intro-

4

2.1.4.1 Choices as methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the

telephone number, just like on the Account in Contract keys. Rather than requiring them tomanually

look up the contract, archive the old one and create a new one, you can provide them a convenience

method on Contact:

template Contact

with

owner : Party

party : Party

address : Text

telephone : Text

where

signatory owner

controller owner can

UpdateTelephone

: ContractId Contact

with

newTelephone : Text

do

create this with

telephone = newTelephone

The abovedefines a choice calledUpdateTelephone. Choices are part of a contract template. They’re

permissioned functions that result in an Update. Using choices, authority can be passed around,

36 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

allowing the construction of complex transactions.

Let’s unpack the code snippet above:

0 The first line, controller owner can says that the following choices are controlled by owner,

meaning owner is the only party that is allowed to exercise them. The line starts a new block in

which multiple choices can be defined.

0 UpdateTelephone is thenameof a choice. It starts anewblock inwhich that choice is defined.

0 : ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

0 The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

0 The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

0 The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because

choices are consuming by default. Thatmeans when the above choice is exercised on a contract, that

contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas

createCmd builds up a list of commands to be sent to the ledger, create builds up a more flex-

ible Update that is executed directly by the ledger. You might have noticed that create returns an

Update (ContractId Contact), not a ContractId Contact. As a do block always returns the

value of the last statement within it, the whole do block returns an Update, but the return type on

the choice is just a ContractId Contact. This is a convenience. Choices always return an Update

so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice_test = do

owner <- allocateParty "Alice"

party <- allocateParty "Bob"

contactCid <- submit owner do

createCmd Contact with

owner

party

address = "1 Bobstreet"

telephone = "012 345 6789"

-- The bank can't change its own telephone number as the accountant�

↪→controls

-- that choice.

submitMustFail party do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

newContactCid <- submit owner do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

(continues on next page)

2.1. An introduction to DAML 37

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of

type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice

parameters using the with syntax you are already familiar with.

exerciseCmd returns a Commands rwhere r is the return type specified on the choice, allowing the

new ContractId Contact to be stored in the variable new_contactCid. Just like for createCmd

and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always

used on the client side to build up the list of commands on the ledger. The versions without the

suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-

vious section. This allows you to create a new contract with the given arguments and immediately

exercise a choice on it. For a consuming choice, this archives the contract so the contract is created

and archived within the same transaction.

2.1.4.2 Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party

field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,

nor change them in any way. It would be reasonable for the party for which a Contact is stored to

be able to update their own address and telephone number. In other words, the owner of a Contact

should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the

script:

controller party can

UpdateAddress

: ContractId Contact

with

newAddress : Text

do

create this with

address = newAddress

newContactCid <- submit party do

exerciseCmd newContactCid UpdateAddress with

newAddress = "1-10 Bobstreet"

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, youwill notice that Bob sees the Contact. Controllers specified

via controller c can syntax become observers of the contract. More on observers later, but in

short, they get to see any changes to the contract.

38 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.4.3 Choices in the Ledger Model

In 1 Basic contracts you learned about the high-level structure of a DAML ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger

and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch

and key assertion.

0 A create action creates a new contract with the given arguments and sets its status to active.

0 A fetch action checks the existence and activeness of a contract.

0 An exercise action exercises a choice on a contract resulting in a transaction (list of

sub-actions) called the consequences. Exercises come in two kinds called consuming and

nonconsuming. consuming is the default kind and changes the contract’s status from active

to archived.

0 A key assertion records the assertion that the given contract key (see Contract keys) is not

assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its

consequences. Every consequence may have further consequences. As fetch, create and key

assertion actions have no consequences, they are always leaf nodes. You can see the actions and

their consequences in the transaction view of the above script:

Transactions:

TX #0 1970-01-01T00:00:00Z (Contact:43:17)

#0:0

│ consumed by: #2:0

│ referenced by #2:0

│ known to (since): 'Alice' (#0), 'Bob' (#0)

└─> create Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone�

↪→= "012 345 6789"

TX #1 1970-01-01T00:00:00Z

mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)

#2:0

│ known to (since): 'Alice' (#2), 'Bob' (#2)

└─> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)

with

newTelephone = "098 7654 321"

children:

#2:1

│ consumed by: #4:0

│ referenced by #3:0, #4:0

│ known to (since): 'Alice' (#2), 'Bob' (#2)

└─> create Contact:Contact

with

owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";�

↪→telephone = "098 7654 321"

(continues on next page)

2.1. An introduction to DAML 39

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

TX #3 1970-01-01T00:00:00Z (Contact:60:3)

#3:0

└─> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)

#4:0

│ known to (since): 'Alice' (#4), 'Bob' (#4)

└─> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)

with

newAddress = "1-10 Bobstreet"

children:

#4:1

│ referenced by #5:0

│ known to (since): 'Alice' (#4), 'Bob' (#4)

└─> create Contact:Contact

with

owner = 'Alice';

party = 'Bob';

address = "1-10 Bobstreet";

telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)

#5:0

└─> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the foursubmit statements in the script. Within each com-

mit, we see that it’s actually actions that have IDs of the form #commit_number:action_number.

Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions

of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading

children:, making the tree structure apparent.

The Archive choice

Youmayhave noticed that there is no archive action. That’s becausearchive cid is just shorthand

forexercise cid Archive, whereArchive is a choice implicitly added to every template, with the

signatories as controllers.

2.1.4.4 A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash IOUs (I owe

you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the

location of the physical cash, but merely with liabilities:

40 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-- Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or its�

↪→affiliates. All rights reserved.

-- SPDX-License-Identifier: Apache-2.0

module SimpleIou where

import Daml.Script

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

controller owner can

Transfer

: ContractId SimpleIou

with

newOwner : Party

do

create this with owner = newOwner

test_iou = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

charlie <- allocateParty "Charlie"

dora <- allocateParty "Dora"

-- The bank issues an Iou for $100 to Alice.

iou <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- Alice transfers it to Bob.

iou2 <- submit alice do

exerciseCmd iou Transfer with

newOwner = bob

(continues on next page)

2.1. An introduction to DAML 41

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- Bob transfers it to Charlie.

submit bob do

exerciseCmd iou2 Transfer with

newOwner = charlie

The abovemodel is fine as long as everyone trusts Dora. Dora could revoke the SimpleIou at any point

by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

2.1.4.5 Next up

You can now store and transform data on the ledger, even giving other parties specific write access

through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In

that context, you will also learn about time on DAML ledgers, do blocks and <- notation within those.

2.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract

models. In this section, you will learn about the two main mechanisms provided in DAML:

0 The ensure keyword.

0 The assert, abort and error keywords.

Tomake sense of the latter, you’ll also learnmore about theUpdate andScript types anddo blocks,

which will be good preparation for 7 Composing choices, where you will use do blocks to compose

choices into complex transactions.

Lastly, you will learn about time on the ledger and in DAML Script.

Hint: Remember that you can load all the code for this section into a folder called 5_Restrictions

by running daml new 5_Restrictions --template daml-intro-5

2.1.5.1 Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-

conditions. These are simply restrictions on the data that can be stored on a contract from that

template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to

store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

ensure cash.amount > 0.0

42 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Theensure keyword takes a single expression of type Bool. If youwant to addmore restrictions, use

logical operators &&, || and not to build up expressions. The below shows the additional restriction

that currencies are three capital letters:

&& T.length cash.currency == 3

&& T.isUpper cash.currency

Hint: The T here stands for the DA.Text standard library which has been imported using import

DA.Text as T.

test_restrictions = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

dora <- allocateParty "Dora"

-- Dora can't issue negative Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = -100.0

currency = "USD"

-- Or even zero Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 0.0

currency = "USD"

-- Nor positive Ious with invalid currencies.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "Swiss Francs"

-- But positive Ious still work, of course.

iou <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

(continues on next page)

2.1. An introduction to DAML 43

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

currency = "USD"

2.1.5.2 Assertions

A second common kind of restriction is one on data transformations.

For example, the simple Iou in A simple cash model allowed the no-op where the owner transfers to

themselves. You can prevent that using an assert statement, which you have already encountered

in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsg,

which takes a custom error message:

controller owner can

Transfer

: ContractId SimpleIou

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=�

↪→newOwner)

create this with owner = newOwner

-- Alice can't transfer to herself...

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = alice

-- ... but can transfer to Bob.

iou2 <- submit alice do

exerciseCmd iou Transfer with

newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-

ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This

assumes that actual cash changes hands off-ledger.)

controller owner can

Redeem

: ()

do

now <- getTime

let

today = toDateUTC now

dow = dayOfWeek today

timeofday = now `subTime` time today 0 0 0

hrs = convertRelTimeToMicroseconds timeofday / 3600000000

assertMsg

("Cannot redeem outside business hours. Current time: " <>�

↪→show timeofday)

(continues on next page)

44 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

(hrs >= 8 && hrs <= 18)

case dow of

Saturday -> abort "Cannot redeem on a Saturday."

Sunday -> abort "Cannot redeem on a Sunday."

_ -> return ()

-- June 1st 2019 is a Saturday.

setTime (time (date 2019 Jun 1) 0 0 0)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Not even at mid-day.

passTime (hours 12)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Bob also cannot redeem at 6am on a Monday.

passTime (hours 42)

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Bob can redeem at 8am on Monday.

passTime (hours 2)

submit bob do

exerciseCmd iou2 Redeem

There are quite a fewnew time-related functions from theDA.Time andDA.Date libraries here. Their

names should be reasonably descriptive so how theyworkwon’t be covered here, but given that DAML

assumes it is run in a distributed setting, we will still discuss time in DAML.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the

<- operator. do blocks and <- deserve a proper explanation at this point.

2.1.5.3 Time on DAML ledgers

Each transaction on a DAML ledger has two timestamps called the ledger time (LT) and the record time

(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each DAML ledger has a policy on the allowed difference between LT and RT called the skew. The

participant has to take a good guess at what the record time will be. If it’s too far off, the transaction

will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart

into day of week and hour of day using standard library functions from DA.Date and DA.Time. The

hour of the day is checked to be in the range from 8 to 18.

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Al-

ice submits a transaction to redeem an Iou. One second later, the transaction is assigned a LET

of 17:59:56, but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even

though it was committed after business hours, it would be a valid transaction and be committed

2.1. An introduction to DAML 45

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

successfully as getTime will return 17:59:56 so hrs == 17. Since the RT is 18:00:06, LT - RT <=

10 seconds and the transaction won’t be rejected.

Time therefore has to be considered slightly fuzzy in DAML, with the fuzziness depending on the skew

parameter.

For details, see Background concepts - time.

Time in scenarios

In scenarios, recordand ledger timeare always equal. Youcanset themusing the following functions:

0 setTime, which set the ledger time to the given time.

0 passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed DAML ledger, there are no guarantees that ledger time or record time are strictly

increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-

tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or

equal to that of TX1:

iou3 <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days (-3))

submitMustFail alice do

exerciseCmd iou3 Redeem

2.1.5.4 Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Scenario and Update.

Both of these are examples of an Action, also called a Monad in functional programming. You can

construct Actions conveniently using do notation.

UnderstandingActionsanddoblocks is therefore crucial to beingable to construct correct contract

models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressions in DAML are pure in the sense that they have no side-effects: they neither read normod-

ify any external state. If you know the value of all variables in scope and write an expression, you can

work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take

getTime, which is an Action. Here’s the example we used earlier:

getTime is a good example of an Action. Here’s the example we used earlier

46 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is

no expression expr that you could put on the right hand side of now = expr. To get the ledger time,

you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you

come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write

account = fetch cid. To do so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such 0impure0 expressions. Action a is a type class with a single

parameter a, and Update and Script are instances of Action. A value of such a type m a where m

is an instance ofAction canbe interpreted as 0a recipe for anaction of typem, which, when executed,

returns a value a0.

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in

the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have

an effect – you change the state of the kitchen – and a return value – the thing you leave the kitchen

with.

0 An Update a is 0a recipe to update a DAML ledger, which, when committed, has the effect of

changing the ledger, and returns a value of type a0. An update to a DAML ledger is a transaction

so equivalently, an Update a is 0a recipe to construct a transaction, which, when executed in

the context of a ledger, returns a value of type a0.

0 A Script a is 0a recipe for a test, which, when performed against a ledger, has the effect of

changing the ledger in ways analogous to those available via the API, and returns a value of

type a0.

Expressions like getTime, allocateParty party, passTime time, submit party commands,

create contract and exercise choice should make more sense in that light. For example:

0 getTime : Update Time is the recipe for an empty transaction that also happens to return

a value of type Time.

0 passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any

transactions, but has the side-effect of changing the LET of the test ledger. It returns (), also

called Unit and can be thought of as a zero-tuple.

0 create iou : Update (ContractId Iou), where iou : Iou is a recipe for a transaction

consisting of a single create action, and returns the contract id of the created contract if

successful.

0 submit alice (createCmd iou) : Script (ContractId Iou) is a recipe for a script

in which Alice sends the command createCmd iou to the ledger which produces a transac-

tion and a return value of type ContractId Iou and returns that back to Alice.

Any DAML ledger knows how to perform actions of type Update a. Only some know how to run DAML

Scripts, meaning they can perform actions of type Script a.

Commands on the other hand is a bit more restricted than Script and Update as it represents a list

of independent commands sent to the ledger. You can still use do blocks but if you have more than

one command in a single do block you need to enable the ApplicativeDo extension at the begin-

ning of your file. In addition to that, the last statement in such adoblockmust be of the formreturn

expr or pure expr. Applicative is a more restricted version of Action that enforces that there

are no dependencies between commands. If you do have dependencies between commands, you can

2.1. An introduction to DAML 47

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

always wrap it in a choice in a helper template and call that via createAndExerciseCmd just like

we did to call fetchByKey. Alternatively, if you do not need them to be part of the same transaction,

you can make multiple calls to submit.

{-# LANGUAGE ApplicativeDo #-}

module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just

another action. Specifically:

0 A transaction is a list of actions. So a transaction followed by another transaction is again a

transaction.

0 A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So

a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,

using the results of earlier actions in later ones.

sub_script1 (alice, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

sub_script2 = do

passTime (days 1)

passTime (days (-1))

return 42

sub_script3 (bob, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

main_: Script () = do

dora <- allocateParty "Dora"

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

iou1 <- sub_script1 (alice, dora)

sub_script2

iou2 <- sub_script3 (bob, dora)

(continues on next page)

48 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submit dora do

archiveCmd iou1

archiveCmd iou2

pure ()

Above, we see do blocks in action for both Script and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return x is a no-op action

which returns value x so return 42 : Update Int. Since do blocks always return the value of

their last action, sub_script2 : Script Int.

2.1.5.5 Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can

fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on

the ledger.

Each has a special action abort txt that represents failure, and that takes on type Update () or

Script () depending on context .

Transactions andscenarios succeedor fail atomicallyasawhole. So anoccurrence of anabortaction

will always fail the entire evaluation of the current Script or Update.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.

It has type Update () and is either an abort or return depending on the day of week. So during

the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of

transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails

the entire transaction.

2.1.5.6 A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more

generally, by creating a new type that is also an action. CoinGame a is an Action a in which a Coin

is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing

the random number generator’s state. Based on the Heads and Tails results, a return value of type

a is calulated.

data Face = Heads | Tails

deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with

play : Coin -> (Coin, a)

flipCoin : CoinGame Face

getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.

More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get

your hands on a Coin in a Script context and an action flipCoin which represents the simplest

2.1. An introduction to DAML 49

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write

down a script or recipe for a game:

coin_test = do

-- The coin is pseudo-random on LET so change the parameter to change�

↪→the game.

setTime (time (date 2019 Jun 1) 0 0 0)

passTime (seconds 2)

coin <- getCoin

let

game = do

f1r <- flipCoin

f2r <- flipCoin

f3r <- flipCoin

if all (== Heads) [f1r, f2r, f3r]

then return "Win"

else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return

Heads, the result is "Win", or else "Loss".

In a Scenario context you can get a Coin using the getCoin action, which uses the LET to calculate

a seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-

ing glass and understand in-depth what’s going on, you can look at the source file to see how the

CoinGame action is implemented, though be warned that the implementation uses a lot of DAML

features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general

course on functional programming, and Haskell in particular. See The Haskell Connection for some

suggestions.

2.1.5.7 Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-

tions only have an effect when they are performed, so the following scenario succeeds or fails de-

pending on the value of abortScenario:

nonPerformedAbort = do

let abortScript = False

let failingAction : Script () = abort "Foo"

let successfulAction : Script () = return ()

if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a

function pow that takes an integer to the power of another positive integer. How do we handle that

the second parameter has to be positive?

50 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int

optPow base exponent

| exponent == 0 = Some 1

| exponent > 0 =

let Some result = optPow base (exponent - 1)

in Some (base * result)

| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always

handle it as we need to extract the result from an Optional. We can see the impact on convenience

in the definition of the above function. In cases, like division by zero or the above function, it can

therefore be preferrable to fail catastrophically instead:

errPow : Int -> Int -> Int

errPow base exponent

| exponent == 0 = 1

| exponent > 0 = base * errPow base (exponent - 1)

| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following scenario will fail,

because failingComputation is evaluated:

nonPerformedError = script do

let causeError = False

let failingComputation = errPow 1 (-1)

let successfulComputation = errPow 1 1

return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and

where explicit partiality would unduly impact usability of the function.

2.1.5.8 Next up

You can now specify a precise data and data-transformationmodel for DAML ledgers. In 6 Parties and

authority, you will learn how to properly involve multiple parties in contracts, how authority works in

DAML, and how to build contract models with strong guarantees in contexts with mutually distrust-

ing entities.

2.1.6 6 Parties and authority

DAML is designed for distributed applications involving mutually distrusting parties. In a well-

constructed contract model, all parties have strong guarantees that nobody cheats or circumvents

the rules laid out by templates and choices.

In this section you will learn about DAML’s authorization rules and how to develop contract models

that give all parties the required guarantees. In particular, you’ll learn how to:

0 Pass authority from one contract to another

0 Write advanced choices

0 Reason through DAML’s Authorization model

2.1. An introduction to DAML 51

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Hint: Remember that you can load all the code for this section into a folder called 6_Parties by

running daml new 6_Parties --template daml-intro-6

2.1.6.1 Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract

has one major problem: The contract is only signed by the issuer. The signatories are the parties

with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange

for some goods, she could just archive it again after receiving the goods. Bob would have a record of

such actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

simple_iou_test = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice transfers the payment as a SimpleIou.

iou <- submit alice do

createCmd SimpleIou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days 1)

-- Bob delivers the goods.

passTime (minutes 10)

-- Alice just deletes the payment again.

submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are actu-

ally followed, they either need tobea signatory themselves, or trust oneof the signatories tonot agree

to transactions that archive and re-create contracts in unexpected ways. To make the SimpleIou

safe for Bob, you need to add him as a signatory.

template Iou

with

issuer : Party

(continues on next page)

52 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

owner : Party

cash : Cash

where

signatory issuer, owner

controller owner can

Transfer

: ContractId Iou

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=�

↪→newOwner)

create this with

owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Iou to Bob. To get an

Iou with Bob’s signature as owner onto the ledger, his authority is needed.

iou_test = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice wants to give Bob an Iou, but she can't without Bob's authority.

submitMustFail alice do

createCmd Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

-- She can issue herself an Iou.

iou <- submit alice do

createCmd Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- However, she can't transfer it to Bob.

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above

Iou can contain negative values so Bob should be glad that Alice cannot put his signature on any

Iou.

2.1. An introduction to DAML 53

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above

Iou, before diving into the authorization model in full.

2.1.6.2 Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an Iou to

Bob, givinghim the choice to accept. You candosoby introducingaproposal contractIouProposal:

template IouProposal

with

iou : Iou

where

signatory iou.issuer

controller iou.owner can

IouProposal_Accept

: ContractId Iou

do

create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do

createCmd IouProposal with

iou = Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

submit bob do

exerciseCmd iouProposal IouProposal_Accept

The IouProposal contract carries the authorithy of iou.issuer by virtue of them being a signa-

tory. By exercising the IouProposal_Accept choice, Bob adds his authority to that of Alice, which

is why an Iou with both signatories can be created in the context of that choice.

The choice is called IouProposal_Accept, not Accept, because propose-accept patterns are very

common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure

uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,

by creating a TransferProposal:

template IouTransferProposal

with

iou : Iou

newOwner : Party

where

signatory (signatory iou)

(continues on next page)

54 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller iou.owner can

IouTransferProposal_Cancel

: ContractId Iou

do

create iou

controller newOwner can

IouTransferProposal_Reject

: ContractId Iou

do

create iou

IouTransferProposal_Accept

: ContractId Iou

do

create iou with

owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the

signatories from another contract. Instead of writing signatory (signatory iou), you could

write signatory iou.issuer, iou.owner.

Note also how newOwner is given multiple choices using a single controller newOwner can

block. The IouProposal had a single signatory so it could be cancelled easily by archiving it. With-

out a Cancel choice, the newOwner could abuse an open TransferProposal as an option. The triple

Accept, Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a

transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a

IouTransferProposal is created instead of an Iou:

ProposeTransfer

: ContractId IouTransferProposal

with

newOwner : Party

do

assertMsg "newOwner cannot be equal to owner." (owner /=�

↪→newOwner)

create IouTransferProposal with

iou = this

newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-- Alice issues an Iou using a transfer proposal.

tpab <- submit alice do

createCmd IouTransferProposal with

newOwner = bob

iou = Iou with

(continues on next page)

2.1. An introduction to DAML 55

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- Bob accepts the transfer from Alice.

iou2 <- submit bob do

exerciseCmd tpab IouTransferProposal_Accept

-- Bob offers Charlie a transfer.

tpbc <- submit bob do

exerciseCmd iou2 ProposeTransfer with

newOwner = charlie

-- Charlie accepts the transfer from Bob.

submit charlie do

exerciseCmd tpbc IouTransferProposal_Accept

2.1.6.3 Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this

succinctly in DAML through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script

above. In 7 Composing choices, you will see how to compose the ProposeTransfer and

IouTransferProposal_Accept choices into a single new choice, but for now, here is a different

way. You can give them the joint right to transfer an IOU:

choice Mutual_Transfer

: ContractId Iou

with

newOwner : Party

controller owner, newOwner

do

create this with

owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner

variable is part of the choice arguments, not the Iou.

The above syntax is an alternative to controller c can, which allows for this. Such choices live

outside any controller c can block. They declared using the choice keyword, and have an extra

clause controller c, which takes the place of controller c can, and has access to the choice

arguments.

This is also the first time we have shown a choice with more than one controller. If multiple con-

trollers are specified, the authority of all the controllers is needed. Here, neitherowner, nornewOwner

can execute a transfer unilaterally, hence the name Mutual_Transfer.

56 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

template IouSender

with

sender : Party

receiver : Party

where

signatory receiver

controller sender can

nonconsuming Send_Iou

: ContractId Iou

with

iouCid : ContractId Iou

do

iou <- fetch iouCid

assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)

exercise iouCid Mutual_Transfer with

newOwner = receiver

The above IouSender contract now gives one party, the sender the right to send Iou contracts with

positive amounts to a receiver. The nonconsuming keyword on the choice Send_Iou changes the

behaviour of the choice so that the contract it’s exercised on does not get archived when the choice

is exercised. That way the sender can use the contract to send multiple Ious.

Here it is in action:

-- Bob allows Alice to send him Ious.

sab <- submit bob do

createCmd IouSender with

sender = alice

receiver = bob

-- Charlie allows Bob to send him Ious.

sbc <- submit charlie do

createCmd IouSender with

sender = bob

receiver = charlie

-- Alice can now send the Iou she issued herself earlier.

iou4 <- submit alice do

exerciseCmd sab Send_Iou with

iouCid = iou

-- Bob sends it on to Charlie.

submit bob do

exerciseCmd sbc Send_Iou with

iouCid = iou4

2.1. An introduction to DAML 57

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.6.4 DAML’s authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in DAML.

In this section you’ll learn about the formal authorizationmodel to allow you to reason through your

contract models. This will allow you to construct them in such a way that you don’t run into autho-

rization errors at runtime, or, worse still, allow malicious transactions.

In Choices in the LedgerModel you learned that a transaction is, equivalently, a tree of transactions, or a

forest of actions, where each transaction is a list of actions, and each action has a child-transaction

called its consequences.

Each action has a set of required authorizers – the parties that must authorize that action – and each

transaction has a set of authorizers – the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers

of the parent transaction.

The required authorizers of actions are:

0 The required authorizers of an exercise action are the controllers on the corresponding choice.

Remember that Archive and archive are just an implicit choice with the signatories as con-

trollers.

0 The required authorizers of a create action are the signatories of the contract.

0 The required authorizers of a fetch action (which also includes fetchByKey) are somewhat

dynamic and covered later.

The authorizers of transactions are:

0 The root transaction of a commit is authorized by the submitting party.

0 The consequences of an exercise action are authorized by the actors of that action plus the

signatories of the contract on which the action was taken.

An authorization example

The final transaction in the script of the source file for this section is authorized as follows, ignoring

fetches:

0 Bob submits the transaction so he’s the authorizer on the root transaction.

0 The root transaction has a single action, which is to exercise Send_Iou on a IouSender con-

tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the

sender, Bob is the required authorizer.

0 The consequences of the Send_Iou action are authorized by its actors, Bob, as well as signa-

tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-

quences are authorized by both Bob and Charlie.

0 The consequences contain a single action, which is a Mutual_Exercise with Charlie as

newOwner on an Iou with issuer alice and owner Bob. The required authorizers of the ac-

tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.

0 The consequences ofMutual_Transfer are authorized by the actors (Bob andCharlie), aswell

as the signatories on the Iou (Alice and Bob).

0 The single action on the consequences, the creation of an Iou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s

authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

58 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

TX #12 1970-01-01T00:00:00Z (Parties:269:3)

#12:0

│ known to (since): 'Bob' (#12), 'Charlie' (#12)

└─> 'Bob' exercises Send_Iou on #10:0 (Parties:IouSender)

with

iouCid = #11:3

children:

#12:1

│ known to (since): 'Bob' (#12), 'Charlie' (#12)

└─> fetch #11:3 (Parties:Iou)

#12:2

│ known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)

└─> 'Bob', 'Charlie' exercises Mutual_Transfer on #11:3 (Parties:Iou)

with

newOwner = 'Charlie'

children:

#12:3

│ known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)

└─> create Parties:Iou

with

issuer = 'Alice';

owner = 'Charlie';

cash =

(Parties:Cash with

currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive

with

partyA : Party

partyB : Party

where

signatory partyA

controller partyA can

TryA

: ContractId NonTransitive

do

create NonTransitive with

partyA = partyB

partyB = partyA

controller partyB can

TryB

: ContractId NonTransitive

with

other : ContractId NonTransitive

do

(continues on next page)

2.1. An introduction to DAML 59

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

exercise other TryA

nt1 <- submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

nt2 <- submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

submitMustFail bob do

exerciseCmd nt1 TryB with

other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action TryA only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

2.1.6.5 Next up

In 7 Composing choices you will put everything you have learned together to build a simple asset hold-

ing and trading model akin to that in the IOU Quickstart Tutorial. In that context you’ll learn a bit more

about the Update action and how to use it to compose transactions, as well as about privacy on

DAML ledgers.

2.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure DAML model for

asset issuance, management, transfer, and trading. This application will have capabilities similar

to the one in IOU Quickstart Tutorial. In the process you will learn about a few more concepts:

0 DAML projects, packages and modules

0 Composition of transactions

0 Observers and stakeholders

0 DAML’s execution model

0 Privacy

Themodel in this section is not a single DAML file, but a DAML project consisting of several files that

depend on each other.

Hint: Remember that you can load all the code for this section into a folder called 7_Composing by

running daml new 7Composing --template daml-intro-7

2.1.7.1 DAML projects

DAML is organized in projects, packages and modules. A DAML project is specified using a single

daml.yaml file, and compiles into a package in DAML’s intermediate language, or bytecode equiva-

lent, DAML-LF. Each DAML file within a project becomes a DAML module, which is a bit like a names-

60 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

pace. Each DAML project has a source root specified in the source parameter in the project’s daml.

yaml file. The package will include all modules specified in *.daml files beneath that source direc-

tory.

You can start a new project with a skeleton structure using daml new project_name in the termi-

nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the chapter 7 project:

sdk-version: __VERSION__

name: __PROJECT_NAME__

source: daml

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

- daml-script

sandbox-options:

- --wall-clock-time

You can generally set name and version freely to describe your project. dependencies does what

the name suggests: It includes dependencies. You should always include daml-prim and daml-

stdlib. The former contains internals of compiler and DAML Runtime, the latter gives access to the

DAML Standard Library.‘‘daml-script‘‘ contains the types and standard library for DAML Script.

You compile a DAML project by running daml build from the project root directory. This creates

a dar file in .daml/dist/dist/project_name-project_version.dar. A dar file is DAML’s

equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the package

and its dependencies. dar files are fully self-contained in that they contain all dependencies of the

main package. More on all of this in 8 Working with Dependencies.

2.1.7.2 Project structure

This project contains an asset holdingmodel for transferrable, fungible assets and a separate trade

workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and

Intro.Asset.Trade.

In addition, there are tests inmodules Test.Intro.Asset, Test.Intro.Asset.Role, and Test.

Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project

source directory, and the last one to a file name. The folder structure therefore looks like this:

.

├── daml

│ ├── Intro

│ │ ├── Asset

│ │ │ ├── Role.daml

│ │ │ └── Trade.daml

│ │ └── Asset.daml

│ └── Test

│ └── Intro

│ ├── Asset

│ │ ├── Role.daml

(continues on next page)

2.1. An introduction to DAML 61

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

│ │ └── Trade.daml

│ └── Asset.daml

└── daml.yaml

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModulesmodule

imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of

names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any DAML Scripts, you need to import the corresponding functionality:

import Daml.Script

2.1.7.3 Project overview

The project both changes and adds to the Ioumodel presented in 6 Parties and authority:

0 Assets are fungible in the sense that they have Merge and Split choices that allow the owner

to manage their holdings.

0 Transfer proposals now need the authorities of both issuer and newOwner to accept. This

makes Asset safer than Iou from the issuer’s point of view.

With the Iou model, an issuer could end up owing cash to anyone as transfers were autho-

rized by just owner and newOwner. In this project, only parties having an AssetHolder con-

tract can end up owning assets. This allows the issuer to determine which parties may own

their assets.

0 The Trade template adds a swap of two assets to the model.

2.1.7.4 Composed choices and scripts

This project showcases how you can put the Update and Script actions you learnt about in 6 Parties

and authority to good use. For example, the Merge and Split choices each perform several actions

in their consequences.

0 Two create actions in case of Split

0 One create and one archive action in case of Merge

Split

: SplitResult

with

splitQuantity : Decimal

do

splitAsset <- create this with

quantity = splitQuantity

(continues on next page)

62 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

remainder <- create this with

quantity = quantity - splitQuantity

return SplitResult with

splitAsset

remainder

Merge

: ContractId Asset

with

otherCid : ContractId Asset

do

other <- fetch otherCid

assertMsg

"Merge failed: issuer does not match"

(issuer == other.issuer)

assertMsg

"Merge failed: owner does not match"

(owner == other.owner)

assertMsg

"Merge failed: symbol does not match"

(symbol == other.symbol)

archive otherCid

create this with

quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return x is a

no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a

value with side-effects. The return namemakes sense when it’s used as the last statement in a do

block as its argument is indeed the 0return0-value of the do block in that case.

Taking transaction composition a step further, the Trade_Settle choice on Trade composes two

exercise actions:

Trade_Settle

: (ContractId Asset, ContractId Asset)

with

quoteAssetCid : ContractId Asset

baseApprovalCid : ContractId TransferApproval

do

fetchedBaseAsset <- fetch baseAssetCid

assertMsg

"Base asset mismatch"

(baseAsset == fetchedBaseAsset with

observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg

"Quote asset mismatch"

(quoteAsset == fetchedQuoteAsset with

observers = quoteAsset.observers)

(continues on next page)

2.1. An introduction to DAML 63

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

transferredBaseCid <- exercise

baseApprovalCid TransferApproval_Transfer with

assetCid = baseAssetCid

transferredQuoteCid <- exercise

quoteApprovalCid TransferApproval_Transfer with

assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the

test_trade script in Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)

#15:0

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> 'Bob' exercises Trade_Settle on #13:1 (Intro.Asset.Trade:Trade)

with

quoteAssetCid = #10:1; baseApprovalCid = #14:2

children:

#15:1

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:2

│ known to (since): 'Alice' (#15), 'Bob' (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:3

│ known to (since): 'USD_Bank' (#15), 'Bob' (#15), 'Alice' (#15)

└─> 'Alice',

'Bob' exercises TransferApproval_Transfer on #14:2 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #11:1

children:

#15:4

│ known to (since): 'USD_Bank' (#15), 'Bob' (#15), 'Alice' (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:5

│ known to (since): 'Alice' (#15), 'USD_Bank' (#15), 'Bob' (#15)

└─> 'Alice', 'USD_Bank' exercises Archive on #11:1 (Intro.

↪→Asset:Asset)

#15:6

│ referenced by #17:0

│ known to (since): 'Bob' (#15), 'USD_Bank' (#15), 'Alice' (#15)

(continues on next page)

64 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

└─> create Intro.Asset:Asset

with

issuer = 'USD_Bank'; owner = 'Bob'; symbol = "USD"; quantity�

↪→= 100.0; observers = []

#15:7

│ known to (since): 'EUR_Bank' (#15), 'Alice' (#15), 'Bob' (#15)

└─> 'Bob',

'Alice' exercises TransferApproval_Transfer on #12:1 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #10:1

children:

#15:8

│ known to (since): 'EUR_Bank' (#15), 'Alice' (#15), 'Bob' (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:9

│ known to (since): 'Bob' (#15), 'EUR_Bank' (#15), 'Alice' (#15)

└─> 'Bob', 'EUR_Bank' exercises Archive on #10:1 (Intro.

↪→Asset:Asset)

#15:10

│ referenced by #16:0

│ known to (since): 'Alice' (#15), 'EUR_Bank' (#15), 'Bob' (#15)

└─> create Intro.Asset:Asset

with

issuer = 'EUR_Bank'; owner = 'Alice'; symbol = "EUR";�

↪→quantity = 90.0; observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test_issuance = do

setupResult@(alice, bob, bank, aha, ahb) <- setupRoles

assetCid <- submit bank do

exerciseCmd aha Issue_Asset

with

symbol = "USD"

quantity = 100.0

Some asset <- queryContractId bank assetCid

assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

(continues on next page)

2.1. An introduction to DAML 65

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

return (setupResult, assetCid)

In the above, the test_issuance script in Test.Intro.Asset.Role uses the output of the

setupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResults <-

setupRoles and then accessing the components of setupResults using _1, _2, etc., you can give

them names. It’s equivalent to writing

setupResults <- setupRoles

case setupResults of

(alice, bob, bank, aha, ahb) -> ...

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but

setupResults is used in the return value of test_issuance so it makes sense to give it a name,

too. The notation with @ allows you to give both the whole value as well as its constituents names in

one go.

2.1.7.5 DAML’s execution model

DAML’s execution model is fairly easy to understand, but has some important consequences. You

can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,

acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update

corresponding to each Action is evaluated in the context of the ledger to calculate all conse-

quences, including transitive ones (consequences of consequences, etc.). The result of this is

a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.

This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ

from implementation to implementation. Validation also involves scheduling and collision

detection, ensuring that the transaction has a well-defined place in the (partial) ordering of

Commits, and no double spends occur.

Commitment The Commit is actually commited according to the commit or consensus protocol of

the Ledger.

Confirmation The network sends confirmations of the commitment back to all involved Participant

Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant

Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-

ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade_Settle choice shown above. The choice transfers a

baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no

chance that either party is left out of pocket.

The second consequence, due to 2., is that the requester of a transaction knows all consequences

of their submitted transaction – there are no surprises in DAML. However, it also means that the

66 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

requester must have all the information to interpret the transaction.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that

transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about

some way for Alice to accept a transfer – remember, accepting a transfer needs the authority of

issuer in this example.

2.1.7.6 Observers

Observers are DAML’s mechanism to disclose contracts to other parties. They are declared just like

signatories, but using the observer keyword, as shown in the Asset template:

template Asset

with

issuer : Party

owner : Party

symbol : Text

quantity : Decimal

observers : [Party]

where

signatory issuer, owner

ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice

uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if

she didn’t do that by removing that transaction.

usdCid <- submit alice do

exerciseCmd usdCid SetObservers with

newObservers = [bob]

Observers have guarantees in DAML. In particular, they are guaranteed to see actions that create and

archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each

other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and

using that to authorize the transfer in Trade_Settle, Alice creates a one-time authorization in the

form of a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up

leaking them to each other.

Controllers declared via the controller cs can syntax are automatically made observers. Con-

trollers declared in the choice syntax are not, as they can only be calculated at the point in time

when the choice arguments are known.

2.1.7.7 Privacy

DAML’s privacy model is based on two principles:

1. Parties see those actions that they have a stake in.

2. Every party that sees an action sees its (transitive) consequences.

Item 2. is necessary to ensure that every party can independently verify the validity of every trans-

action they see.

2.1. An introduction to DAML 67

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

A party has a stake in an action if

0 they are a required authorizer of it

0 they are a signatory of the contract on which the action is performed

0 they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade_Settle action from test_trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade_Settled action,

so both of them see it. According to rule 2. above, that means they get to see everything in the

transaction.

The consequences contain, next to some fetch actions, two exercise actions of the choice

TransferApproval_Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see

the action on 0their0 contract. So the EUR_Bank sees the TransferApproval_Transfer action

for the EUR Asset and the USD_Bank sees the TransferApproval_Transfer action for the USD

Asset.

SomeDAML ledgers, like the script runner and the Sandbox, work on the principle of 0dataminimiza-

tion0, meaning nothing more than the above information is distributed. That is, the 0projection0 of

the overall transaction that gets distributed to EUR_Bank in step 4 of DAML’s execution model would

consist only of the TransferApproval_Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-

straints.

Divulgence

Note that principle 2. of the privacy model means that sometimes parties see contracts that they

are not signatories or observers on. If you look at the final ledger state of the test_trade script, for

example, youmay notice that both Alice and Bob now see both assets, as indicated by the Xs in their

respective columns:

This is because the create action of these contracts are in the transitive consequences of the

Trade_Settle action both of them have a stake in. This kind of disclosure is often called 0divul-

gence0 and needs to be considered when designing DAMLmodels for privacy sensitive applications.

2.1.7.8 Next up

The model presented here is safe and sound so we could deploy it to production and start trading.

But the journey doesn’t stop there. In 8 Working with Dependencies you will learn how to extend an

68 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

already running application to enhance it with new features. In that context you’ll learn a bit more

about the architecture of DAML, about dependencies, and identifiers.

2.1.8 8 Working with Dependencies

The application from Chapter 7 is a complete and secure model for atomic swaps of assets, but

there is plenty of room for improvement. However, one can’t implement all feature before going live

with an application so it’s important to understand way to change already running code. There are

fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to

have multiple signatories.

2. Extensions, which merely add new functionality though additional templates.

Upgrades are covered in their own own section outside this introduction to DAML: Upgrading and ex-

tending DAML applications so in this section we will extend the chapter 7 model with a simple second

workflow: A multi-leg trade. In doing so, you’ll learn about:

0 The software architecture of the DAML Stack

0 Dependencies and Data Dependencies

0 Identifiers

Since we are extending chapter 7, the setup for this chapter is slightly more complex:

1. In a base directory, load the chapter 7 project using daml new 7Composing --template

daml-intro-7. The directory 7Composing here is important as it’ll be referenced by the other

project we are creating.

2. In the same directory, load the chapter 8 project using daml new 8Dependencies --

template daml-intro-8.

8Dependencies contains a new module Intro.Asset.MultiTrade and a corresponding test

module Test.Intro.Asset.MultiTrade.

2.1.8.1 DAR, DALF, DAML-LF, and the Engine

In 7 Composing choices you already learnt a little about projects, DAML-LF, DAR files, and dependencies.

In this chapter we will actually need to have dependencies from the chapter 8 project to the chapter

7 project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of chapter 7. DAR files, like Java JAR files are just ZIP archives,

but the DAML SDK also has a utility to inspect DARs out of the box:

1. Navigate into the 7Composing directory.

2. Build using daml build -o assets.dar

3. Run daml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header 0DAR archive contains the following files:0 you’ll

see that the DAR contains

1. *.dalf files for the project and all its dependencies

2. The original DAML source code

3. *.hi and *.hie files for each *.daml file

4. Some meta-inf and config files

The first file is something like7Composing-1.0.0-887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625.

dalf which is the actual compiled package for the project. *.dalf files contain DAML-LF, which is

DAML’s intermediate language. The file contents are a binary encoded protobuf message from the

2.1. An introduction to DAML 69

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml-lf schema. DAML-LF is evaluated on the Ledger by the DAML Engine, which is a JVM component

that is part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If

DAML-LF is to DAML what Java Bytecode is to Java, the DAML Engine is to DAML what the JVM is to

Java.

2.1.8.2 Hashes and Identifiers

Under the heading 0DAR archive contains the following packages:0 you get a similar looking list

of package names, paired with only the long random string repeated. That hexadecimal string,

887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625 in this case, is

the package hash and the primary and only identifier for a package that’s guaranteed to be avail-

able and preserved. Meta information like name (07Composing0) and version (01.0.00) help make it

human readable but should not be relied upon. Youmay not always get DAR files from your compiler,

but be loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is

preserved.

1. Note down your main package hash from running inspect-dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch-dar --host localhost --port

6865 --main-package-id "887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625"

-o assets_ledger.dar, making sure to replace the hash with the appropriate one.

4. Run daml damlc inspect-dar assets_ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only

identifiable by hash. We could of course also create a second project 7Composing-1.0.0with com-

pletely different contents so evenwhennameand version are available, packagehash is the only safe

identifier.

That’s why over the Ledger API, all types, like templates and records are identified by the triple

(entity name, module name, package hash). Your client application should know the pack-

age hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable

format for the information it emits: daml damlc inspect-dar --json assets_ledger.dar.

The main_package_id field in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data

dependencies.

2.1.8.3 Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the *.hi files. The information

in these files is crucial for dependencies like the Standard Library, which provide functions, types

and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this in-

formation may not even be desireable. Imagine we had built 7Composing with SDK 1.100.0, and are

building 8Dependencies with SDK 1.101.0. All the typeclasses and instances on the inbuilt types

may have changed and are now present twice – once from the current SDK and once from the de-

pendency. This gets messy fast, which is why the SDK does not support dependencies across SDK

versions. For dependencies on contract models that were fetched from a ledger, or come from an

older SDK version, there is a simpler kind of dependency called data-dependencies. The syntax

for data-dependencies is the same, but they only rely on the 0binary0 *.dalf files. The name

tries to confer that the main purpose of such dependencies is to handle data: Records, Choices,

Templates. The stuff one needs to use contract composability across projects.

70 Chapter 2. Writing DAML

https://github.com/digital-asset/daml/tree/master/daml-lf/archive

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For an extensionmodel like this one, data-dependencies are appropriate so the chapter 8 project

incldues the chapter 7 that way.

- daml-script

data-dependencies:

- ../7Composing/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the

Chapter 7 trade setup Scripts. data-dependencies is designed to use existing contracts and data

types. DAML Script is not imported. In practice, we also shouldn’t expect that the DAR file we down-

load from the ledger using daml ledger fetch-dar contains test scripts. For larger projects it’s

good practice to keep them separate and only deploy templates to the ledger.

2.1.8.4 Structuring Projects

As you’ve seenhere, identifiers depend on the package as awhole andpackages always bring all their

dependencies with them. Thus changing anything in a complex dependency graph can have signif-

icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate

concerns which are likely to change at different rates into separate packages.

For example, in all our projects in this intro, including this chapter, our scripts are in the sameproject

as our templates. In practice, that means changing a test changes all identifiers, which is not de-

sireable. It’s better for maintainability to separate tests from main templates. If we had done that

in chapter 7, that would also have saved us from copying the chapter 7

Similarly, we included Trade in the same project as Asset in chapter 7, even though Trade is a pure

extension to the core Assetmodel. If we expect Trade to need more frequent changes, it may be a

good idea to split it out into a separate project from the start.

2.1.8.5 Next up

TheMultiTrademodel hasmore complex control flow anddata handling thanpreviousmodels. In 9

Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds, common

typeclasses, custom functions, and the Standard Library. We’ll be using the same projects so don’t

delete your chapter 7 and 8 folders just yet.

2.1.9 9 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like

DAML. Specifically, you’ll learn about

0 Function signatures and functions

0 Advanced control flow (if...else, folds, recursion, when)

If you no longer have your chapter 7 and 8 projects set up, and want to look back at the code, please

follow the setup instructions in 8 Working with Dependencies to get hold of the code for this chapter.

Note: There is a project template daml-intro-9 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

2.1.9.1 The Haskell Connection

The previous chapters of this introduction to DAML have mostly covered the structure of templates,

and their connection to the DAML Ledger Model. The logic of what happens within the do blocks of

2.1. An introduction to DAML 71

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

choices has been kept relatively simple. In this chapter, we will dive deeper into DAML’s expression

language, the part that allows you to write logic inside those do blocks. But we can only scratch

the surface here. DAML borrows a lot of its language from Haskell. If you want to dive deeper, or

learn about specific aspects of the language you can refer to standard literature on Haskell. Some

recommendations:

0 Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

0 Haskell Programming from first principles (Christopher Allen, Julie Moronuki)

0 Learn You a Haskell for Great Good! (Miran Lipova0a)

0 Programming in Haskell (Graham Hutton)

0 Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing DAML to Haskell it’s worth noting:

0 Haskell is a lazy language, which allows you to write things like head [1..], meaning 0take

the first element of an infinite list0. DAML by contrast is strict. Expressions are fully evaluated,

which means it it not possible to work with infinite data structures.

0 DAML has a with syntax for records, and dot syntax for record field access, neither of which

present in Haskell. But DAML supports Haskell’s curly brace record notation.

0 DAML has a number of Haskell compiler extensions active by default.

0 DAMLdoesn’t support all features ofHaskell’s type system. For example, there are no existential

types or GADTs.

0 Actions are called Monads in Haskell.

2.1.9.2 Functions

In 3 Data types you learnt about one half of DAML’s type system: Data types. It’s now time to learn

about the other, which are Function types. Function types in DAML can be spotted by looking for ->

which can be read as 0maps to0.

For example, the function signatureInt -> Intmapsan integer to another integer. There aremany

such functions, but one would be:

increment : Int -> Int

increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-

laration can be omitted in cases where the type can be inferred by the compiler, but for top-level

functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to

include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add

without a declaration:

add n m = n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name

in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one ->.

72 Chapter 2. Writing DAML

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking at the right hand part a -> a -> a. The -> is right associative, meaning a ->

a -> a is equivalent to a -> (a -> a). Using the 0maps to0 way of reading -> we get 0a maps

to a function that maps a to a‘‘.

And this is indeedwhat happens. We can define a different version of increment by partially applying

add:

increment2 = add 1

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again. It can do so

because the literal 1 : Int.

So if we have a function f : a -> b -> c -> d and a value valA : a, we get f valA : b ->

c -> d ie we can apply the function argument by argument. If we also had valB : b, we have f

valA valB : c -> d. What this tells you is that function application is left associative: f valA

valB == (f valA) valB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it

starts with a symbol. Functions that start with a symbol are infix by default which means they can

be written between two arguments. That’s why we can write 1 + 2 rather than + 1 2. The rules for

converting between normal and infix functions are simple. Wrap an infix function in parentheses to

use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 `add` 2

With that knowledge, we could have defined addmore succinctly as the alias that it is:

add2 : Additive a => a -> a -> a

add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)

decrement = (- 1)

2.1. An introduction to DAML 73

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note: While function application is left associative by default, infix operators can be declared left

or right associative and given a precedence. Good examples are the boolean operations && and ||,

which are declared right associative with precedences 3, and 2, respectively. This allows you to write

False && True || True && True and get value True. See section 4.4.2 of the Haskell 98 report

for more on fixities.

Type Constraints

The Additive a => part of the signature of add is a type constraint on the type parameter a.

Additive here is a typeclass. You already met typeclasses like Eq and Show in 3 Data types. The

Additive typeclass says that you can add a thing. Ie there is a function (+) : a -> a -> a. Now

the way to read the full signature of add is 0Given that a has an instance for the Additive typeclass,

a maps to a function which maps a to a0.

Typeclasses in DAML are a bit like interfaces in other languages. To be able to add two things using

the + function, those things need to expose the + interface.

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also

demonstrates the use of multiple constraints at the same time, is the signature of the exercise

function:

exercise : (Template t, Choice t c r) => ContractId t -> c -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice cwith return

type r, map a ContractId for a contract of type t to a function that takes the choice arguments of

type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to

parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses

and variables.

Pattern Matching in Arguments

Youmet patternmatching in 3 Data types, using case statements which is one way of patternmatch-

ing. However, it can also be convenient to do the patternmatching at the level of function arguments.

Think about implementing the function uncurry:

uncurry : (a -> b -> c) -> (a, b) -> c

uncurry takes a function with two arguments (or more, since c could be a function), and turns it

into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,

case pattern matching, and function pattern matching:

uncurry1 f t = f t._1 t._2

uncurry2 f t = case t of

(x, y) -> f x y

uncurry f (x, y) = f x y

Using function patternmatching is clearly themost elegant here. Wenever need the tuple as awhole,

just its members. Any pattern matching you can do in case you can also do at the function level,

74 Chapter 2. Writing DAML

https://www.haskell.org/onlinereport/decls.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

and the compiler helpfully warns you if you did not cover all cases, which is called 0non-exhaustive0.

fromSome : Optional a -> a

fromSome (Some x) = x

The above will give you a warning:

warning:

Pattern match(es) are non-exhaustive

In an equation for ‘fromSome’: Patterns not matched: None

This means fromSome is a partial function. fromSome None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write

the function issueAsset in chapter 8:

issueAsset : Asset -> Script (ContractId Asset)

issueAsset asset@(Asset with ..) = do

assetHolders <- queryFilter @AssetHolder issuer

(\ah -> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of

(ahCid, _)::_ -> submit asset.issuer do

exerciseCmd ahCid Issue_Asset with ..

[] -> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so

we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the

matching name. So the function succinctly transfers all fields except for owner, which is set explic-

itly, from the V1 Asset to the V2 Asset.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in DAML you can also put a

function. Even inside data types:

data Predicate a = Predicate with

test : a -> Bool

More commonly, it makes sense to define functions locally, inside a let clause or similar. A good

example of this are the validate and transfer functions defined locally in the Trade_Settle

choice of the model from chapter 8:

let

validate (asset, assetCid) = do

fetchedAsset <- fetch assetCid

assertMsg

"Asset mismatch"

(asset == fetchedAsset with

observers = asset.observers)

(continues on next page)

2.1. An introduction to DAML 75

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

mapA_ validate (zip baseAssets baseAssetCids)

mapA_ validate (zip quoteAssets quoteAssetCids)

let

transfer (assetCid, approvalCid) = do

exercise approvalCid TransferApproval_Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCids�

↪→baseApprovalCids)

transferredQuoteCids <- mapA transfer (zip quoteAssetCids�

↪→quoteApprovalCids)

You can see that the function signature is inferred from the context here. If you look closely (or hover

over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Eq r, HasField "observers" r a) => (r, ContractId�

↪→r) -> Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-

guments, or as choice in- or outputs. They also don’t have instances of the Eq or Show typeclasses

which one would commonly want on data types.

You can probably guess what the mapA and mapA_s in the above choice do. They somehow loop

through the lists of assets, and approvals, and the functions validate and transfer to each, per-

forming the resulting Update action in the process. We’ll look at that more closely under Looping

below.

Lambdas

Like in most modern languages, DAML also supports inline functions called lambdas. They are de-

fined using (\x y z -> ...) syntax. For example, a lambda version of increment would be (\n

-> n + 1).

2.1.9.3 Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to

translate procedural code into functional code.

Branching

Until Chapter 7 the only real kind of control flow introduced has been case, which is a powerful tool

for branching.

If..Else

Chapter 5 also showed a seemingly self-explanatory if..else statement, but didn’t explain it fur-

ther. And they are actually the same thing. Let’s implement the function boolToInt : Bool ->

Int which in tyipcal fashion maps True to 1 and False to 0`. Here is an implementation

using ``case:

76 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

boolToInt b = case b of

True -> 1

False -> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if

Found:

case b of

True -> 1

False -> 0

Perhaps:

if b then 1 else 0

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b

then 1

else 0

In short: if..else statements are equivalent to a case statement, but are easier to read.

Control Flow as Expressions

case statements and if..else really are control flow in the sense that they short circuit:

doError t = case t of

"True" -> True

"False" -> False

_ -> error ("Not a Bool: " <> t)

This function behaves as you expect. The error only gets evaluated if an invalid text is passed in.

This is different to functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e

boom = ifelse True 1 (error "Boom")

In the above, boom is an error.

But while being proper control flow, case and if..else statements are also expressions in the

sense that they result in a value when evaluated. You can actually see that in the function defini-

tions above. Since each of the functions is defined just as a case or if statement, the value of the

evaluated function is just the value of the case/if statement. Things that have a value have a type.

Theif..else expression inboolToInt2has typeInt as that’s what the function returns, thecase

expression in doError has type Bool. To be able to give such expressions an unambiguous type,

each branch needs to have the same type. The below function does not compile as one branch tries

to return an Int and the other a Text:

typeError b = if b

then 1

else "a"

2.1. An introduction to DAML 77

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

If we need functions that can return two (ormore) types of thingsweneed to encode that in the return

type. For two possibilities, it’s common to use the Either type:

intOrText : Bool -> Either Int Text

intOrText b = if b

then Left 1

else Right "a"

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a

contract of one type in one case, and of another type in another case. Let’s say we have two template

types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T

with

p : Party

where

signatory p

template S

with

p : Party

where

signatory p

It would be tempting to write a simple if..else, but it won’t typecheck:

typeError b p = if b

then create T with p

else create S with p

We have two options:

1. Use the Either trick from above.

2. Get rid of the return types.

ifThenSElseT1 b p = if b

then do

cid <- create S with p

return (Left cid)

else do

cid <- create T with p

return (Right cid)

ifThenSElseT2 b p = if b

then do

create S with p

return ()

else do

create T with p

return ()

78 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The latter is so common that there is a utility function in DA.Action to get rid of the return type:

void : Functor f => f a -> f ().

ifThenSElseT3 b p = if b

then void (create S with p)

else void (create T with p)

void also helps express control flow of the type 0Create a T only if a condition is met.

conditionalS b p = if b

then void (create S with p)

else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-

sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f

() -> f ().

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does somemagic so that is short circuits

evaluation just like if..else. noop is a no-op, not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

With case, if..else, void and when, you can express all branching. However, one additional fea-

ture you may want to learn is guards. They are not covered here, but can help avoid deeply nested

if..elseblocks. Here’s just one example. TheHaskell sources at the beginning of the chapter cover

this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "Big"

| d < 1000 = "Huge"

| otherwise = "Enormous"

Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to

iteratively modify some state. We’ll use JavaScript in this section to illustrate the procedural way of

doing things.

function sum(intArr) {

var result = 0;

intarr.forEach (i => {

result += i;

});

return result;

}

2.1. An introduction to DAML 79

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

A more general loop looks like this:

function whileFunction(arr) {

var rev = initialize(input);

while (doContinue (state)) {

state = process (state);

}

return finalize(state);

}

The only real difference is that the iterator is explicit in the former, and implicit in the latter.

In both cases, state is being mutated: result in the former, state in the latter. Values in DAML are

immutable, so it needs to work differently. In DAML we will do this with folds and recursion.

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-

guages. Themost common iterator is a list, as is the case in the sum function above. For such cases,

DAML has the foldl function. The l stands for 0left0 and means the list is processed from the left.

There is also a corresponding foldr which processes from the right.

foldl : (b -> a -> b) -> b -> [a] -> b

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument

is a function which takes a state and an item and returns a new state. That’s the equivalent of the

inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which

is the iterator. The result is again a state. The sum function above can be translated to DAML almost

instantly with those correspondences in mind:

sum ints = foldl (+) 0 ints

If we wanted to be more verbose, we could replace (+) with a lambda (\result i -> result +

i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care

with performance when it comes to translating for loops:

function sumArrs(arr1, arr2) {

var l = min (arr1.length, arr2.length);

var result = new int[l];

for(var i = 0; i < l; i++) {

result[i] = arr1[i] + arr2[i];

}

return result;

}

Translating the for into a forEach is easy if you can get your hands on an array containing values

[0..(l-1)]. And that’s literally how you do it in DAML, using ranges. [0..(l-1)] is shorthand for

enumFromTo 0 (l-1), which returns the list you’d expect.

DAML also has an operator (!!) : [a] -> Int -> a which returns an element in a list. Youmay

now be tempted to write sumArrs like this:

80 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

sumArrs : [Int] -> [Int] -> [Int]

sumArrs arr1 arr2 =

let l = min (length arr1) (length arr2)

sumAtI i = (arr1 !! i) + (arr2 !! i)

in foldl (\state i -> (sumAtI i) :: state) [] [1..(l-1)]

But you should immediately forget again that you just learnt about (!!). Lists in DAML are linked

lists, which makes access using (!!) slow and idiosyncratic. The way to do this in DAML is to get

rid of the i altogether and instead merge the lists first, and then iterate over the 0zipped0 up lists:

sumArrs2 arr1 arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip�

↪→arr1 arr2)

zip : [a] -> [b] -> [(a, b)] takes two lists, and merges them into a single list where the

first element is the 2-tuple containing the first elements to the two input lists, and so on. It drops

any left-over elements of the longer list, thus making the min logic unnecessary.

Maps

You’ve probably noticed that what we’ve done in this second version of sumArr is pretty standard,

we have taken a list zip arr1 arr2 applied a function \(x, y) -> x + y to each element, and

returned the list of results. This operation is called map : (a -> b) -> [a] -> [b]. We can

now write sumArr even more nicely:

sumArrs3 arr1 arr2 = map (\(x, y) -> (x + y)) (zip arr1 arr2)

As a rule of thumb: Use map if the result has the same shape as the input and you don’t need to carry

state from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,

for example. We want to avoid (!!) so there is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of

[] -> rev

x::xs -> reverseWorker (x::rev) xs

reverse xs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but DAML only

supports recursion for top-level functions so the recursive part recurseWorker has to be its own

top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in 5 Adding constraints to a contract:

The functions used to map or process items have no side-effects. In day-to-day DAML that’s the

exception rather than the rule. If you have looked at the chapter 8 models, you’ll have noticed mapA,

mapA_, and forA all over the place. A good example are the mapA in the testMultiTrade script:

2.1. An introduction to DAML 81

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

let rels =

[Relationship chfbank alice

, Relationship chfbank bob

, Relationship gbpbank alice

, Relationship gbpbank bob

]

[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

Here we have a list of relationships (type [Relationship] and a function setupRelationship

: Relationship -> Script (ContractId AssetHolder) ``. We want the

``AssetHolder contracts for those relationships, ie something of type [ContractId

AssetHolder]. Using the map function almost gets us there. map setupRelationship rels

: [Update (ContractId AssetHolder)]. This is a list of Update actions, each resulting in

a ContractId AssetHolder. What we need is an Update action resulting in a [ContractId

AssetHolder]. The list and Update are the wrong way around for our purposes.

Intuitively, it’s clear how to fix this: we want the compound action consisting of performing each of

the actions in the list in turn. There’s a function for that, of course. sequence : : Applicative

m => [m a] -> m [a] implements that intuition and allows us to take the Update out of the list.

So we could write sequence (map setupRelationship rels). This is so common that it’s en-

capsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for 0Action0 of course, and you’ll find that many functions that have some-

thing to do with 0looping0 have an A equivalent. The most fundamental of all of these is foldlA :

Action m => (b -> a -> m b) -> b -> [a] -> m b, a left fold with side effects. Here the

inner function has a side-effect indicated by the m so the end result m b also has a side effect: the

sum of all the side effects of the inner function.

Have a go at implementing foldlA in terms of foldl and sequence and mapA in terms of foldA.

Here are some possible implementations:

foldlA2 fn init xs =

let

work accA x = do

acc <- accA

fn acc x

in foldl work (pure init) xs

mapA2 fn xs =

let

work ys x = do

y <- fn x

return (y :: ys)

in foldlA2 work [] xs

sequence2 actions =

let

work ys action = do

y <- action

(continues on next page)

82 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

return (y :: ys)

in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is

already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <- forA [usdCid, chfCid] (\cid -> submit alice do

exerciseCmd cid SetObservers with

newObservers = [bob]

)

Lastly, you’ll have noticed that in some cases we used mapA_, not mapA. The underscore indicates

that the result is not used. mapA_ fn xs fn = void (mapA fn xs). The DAML Linter will alert

you if you could use mapA_ instead of mapA, and similarly for forA_.

2.1.9.4 Next up

You now know the basics of functions and control flow, both in pure and Action contexts. The Chapter

8 example shows just howmuch canbe donewith just the tools youhave encountered here, but there

are many more tools at your disposal in the the DAML Standard Library. It provides functions and

typeclasses for many common circumstances and in 10 Intro to the DAML Standard Library, you’ll get an

overview of the library and learn how to search and browse it.

2.1.10 10 Intro to the DAML Standard Library

In chapters 3 Data types and 9 Functional Programming 101 you learnt how to define your own data types

and functions. But of course you don’t have to implement everything fromscratch. DAML comeswith

the DAML Standard Library which contains types, functions, and typeclasses that cover a large range

of use-cases. In this chapter, you’ll get an overview of the essentials, but also learn how to browse

and search this library to find functions. Being proficient with the Standard Library will make you

considerably more efficient writing DAML code. Specifically, this chapter covers:

0 The Prelude

0 Important types from the Standard Library, and associated functions and typeclasses

0 Typeclasses

0 Important typeclasses like Functor, Foldable, and Traversable

0 How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-

ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,

Traversable, Action (calledMonad inHaskell), andmanymore, are the bread andbutter of Haskell

programmers.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

2.1.10.1 The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions

like create, exercise, and (==), types like [], (,), Optional, and typeclasses like Eq, Show, and

Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every

2.1. An introduction to DAML 83

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

other DAML module and contains both DAML specific machinery as well as the essentials needed to

work with the inbuilt types and typeclasses.

2.1.10.2 Important Types from the Prelude

In addition to the Native types, the Prelude defines a number of common types:

Lists

You’ve already met lists. Lists have two constructors [] and x :: xs, the latter of which is

0prepend0 in the sense that 1 :: [2] == [1, 2]. In fact [1,2] is just syntactical sugar for 1

:: 2 :: [].

Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size

up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return

values from functions consisting of several pieces or passing around data in folds, as you saw in

Folds. An example of a relatively wide Tuple can be found in the test modules of the chapter 8 project.

Test.Intro.Asset.TradeSetup.tradeSetup returns the allocated parties and active contracts

in a long tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back into scope

using pattern matching.

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,

↪→ eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,�

↪→eurCid) <- tradeSetup

Tuples, like lists have some syntacticmagic. Both the types as well as the constructors for tuples are

(,,,) where the number of commas determines the arity of the tuple. Type and data constructor

can be applied with values inside the brackets, or outside, and partial application is possible:

t1 : (Int, Text) = (1, "a")

t2 : (,) Int Text = (1, "a")

t3 : (Int, Text) = (1,) "a"

t4 : a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records

with named fields for complex structures or long-lived values. Overuse of tuples can harm code

readability.

Optional

TheOptional type represents a value thatmay bemissing. It’s the closest thingDAMLhas to a 0nul-

lable0 value. Optional has two constructors: Some, which takes a value, and None, which doesn’t

take a value. In many languages one would write code like this:

84 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

lookupResult = lookupByKey(k);

if(lookupResult == null) {

// Do something

} else {

// Do something else

}

In DAML the same thing would be expressed as

lookupResult <- lookupByKey @T k

case lookupResult of

None -> do -- Do Something

return ()

Some cid -> do -- Do Something

return ()

Either

Either is used in cases where a value should store one of two types. It has two constructors, Left

and Right, each of which take a value of one or the other of the two types. One typical use-case of

Either is as an extended Optional where Right takes the role of Some and Left the role of None,

but with the ability to store an error value. Either Text, for example behaves just like Optional,

except that values with constructor Left have a text associated to them.

Note: As with tuples, it’s easy to overuse Either and harm readability. Consider writing your own

more explicit type instead. For example if you were returning South a vs North b using your own

type over Either would make your code clearer.

2.1.10.3 Typeclasses

You’ve seen typeclasses in use all the way from 3 Data types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a q where

getQuantity : a -> q

setQuantity : q -> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To

implement this interface, you need to define instances of this typeclass:

data Foo = Foo with

amount : Decimal

instance HasQuantity Foo Decimal where

getQuantity foo = foo.amount

setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eq a => Ord ameans 0ev-

erything that is orderable can also be compared for equality0. And that’s almost all there’s to it.

2.1. An introduction to DAML 85

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.1.10.4 Important Typeclasses from the Prelude

Eq

The Eq typeclass allows values of a type to be compared for (in)-equality. It makes available two

function: == and /=. Most data types from the Standard Library have an instance of Eq. As you

already learned in 3 Data types, you can let the compiler automatically derive instances of Eq for you

using the deriving keyword.

Templates always have an Eq instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,

>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List

and Optional get an instance of Ord if the type they contain has one. You can let the compiler

automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text, ie 0shown0 in a shell. Its key function is show,

which takes a value and converts it to Text. All inbuilt data types have an instance for Show and

types like List and Optional get an instance if the type they contain has one. It also supports the

deriving keyword.

Functor

Functors are the closest thing to 0containers0 that DAML has. Whenever you see a type with a sin-

gle type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a,

Update a. Functors are things that can be mapped over and as such, the key function of Functor

is fmap, which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

Applicative Functor

Applicative Functors are a bit like Actions, which you met in 5 Adding constraints to a contract, except

that you can’t use the result of one action as the input to another action. The only important Applica-

tive Functor that isn’t an action in DAML is the Commands type submitted in a submit block in DAML

Script. That’s why in order to use do notation in DAML Script, you have to enable the ApplicativeDo

language extension.

Actions

Actions were already covered in 5 Adding constraints to a contract. One way to think of them is as

0recipes0 for a value, which need to be 0executed to get at that value. Actions are always Func-

tors (and Applicative Functors). The intuition for that is simply that fmap f x is the recipe in xwith

the extra instruction to apply the pure function f to the result.

The really important Actions in DAML are Update and Script, but there are many others, like [],

Optional, and Either a.

86 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for

Text and [], where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive andMultiplicative abstract out arithmetic operations, so that(+),(-),(*), and someother

functions can be used uniformly between Decimal and Int.

2.1.10.5 Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

0 /daml/stdlib/DA-List for Lists

0 /daml/stdlib/DA-Optional for Optional

0 /daml/stdlib/DA-Tuple for Tuples

0 /daml/stdlib/DA-Either for Either

0 /daml/stdlib/DA-Functor for Functors

0 /daml/stdlib/DA-Action for Actions

0 /daml/stdlib/DA-Monoid and /daml/stdlib/DA-Semigroup for Monoids and Semigroups

0 /daml/stdlib/DA-Text for working with Text

0 /daml/stdlib/DA-Time for working with Time

0 /daml/stdlib/DA-Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve

already learnt about, which are worth knowing about: Foldable and Traversable. In Looping

you learned all about folds and their Action equivalents. All the examples there were based on

lists, but there are many other possible iterators. This is expressed in two additional typeclasses:

/daml/stdlib/DA-Traversable, and /daml/stdlib/DA-Foldable. For more detail on these concepts,

please refer to the literature in The Haskell Connection, or https://wiki.haskell.org/Foldable_and_

Traversable.

2.1.10.6 Searching the Standard Library

Being able to browse the Standard Library starting from /daml/stdlib/index is a start, and the mod-

ule naming helps, but it’s not an efficient process for finding out what a function you’ve encountered

does, or even less so to find a function that does a thing you need to do.

DAML has it’s own version of the Hoogle search engine, which offers search both by name and by

signature. It’s fully integrated into the search bar on https://docs.daml.com/, but for those wanting

a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Searching for functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of

the MultiTrade.

ensure (length baseAssetCids == length baseAssets) &&

(length quoteApprovalCids == length quoteAssets) &&

not (null baseAssets) &&

not (null quoteAssets)

2.1. An introduction to DAML 87

https://wiki.haskell.org/Foldable_and_Traversable
https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Youmaybeable to guesswhatnotandnulldo, but try searching thosenames in thedocumentation

search. Search results from the Standard Library will show on top. not, for example, gives

not

: Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a

function does.

Searching for functions by Signature

The other very common use-case for the search is that you have some values that you want to do

something with, but don’t know the standard library function you need. On the MultiTrade tem-

plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the

original Trade we used baseAsset.owner as the signatory. How do you get the first element of

this list to extract the owner without going through the motions of a complete pattern match using

case?

The trick is to think about the signature of the function that’s needed, and then to search for that

signature. In this case, we want a single distinguished element from a list so the signature should

be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library

results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the let of the MultiTrade tem-

plate.

Youmay notice that in the search results you also get some hits that don’t mention [] explicitly. For

example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one at indexn. Remember

that(!!) operator from 9Functional Programming 101? There are now twopossible signatureswe could

search for: [a] -> Int -> a and Int -> [a] -> a. Try searching for both. You’ll see that the

search returns (!!) in both cases. You don’t have to worry about the order of arguments.

2.1.10.7 Next up

There’s little more to learn about writing DAML at this point that isn’t best learnt by practice and

consulting referencematerial for both DAML and Haskell. To finish off this course, you’ll learn a little

more about your options for testing and interacting with DAML code in 11 Testing DAML Contracts, and

about the operational semantics of some keywords and common associated failures.

2.1.11 11 Testing DAML Contracts

This chapter is all about testing and debugging the DAML contracts you’ve built using the tools from

chapters 1-10. You’ve already met DAML Script as a way of testing your code inside the IDE. In this

chapter you’ll learn about more ways to test with DAML Script and its other uses, as well as other

tools you can use for testing and debugging. You’ll also learn about a few error cases that are most

likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically

we will cover:

88 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 DAML Test tooling - Script, REPL, and Navigator

0 The trace and debug functions

0 Contention

Note that this section only covers testing your DAML contracts. Formore holistic application testing,

please refer to Testing Your App.

If you no longer have your projects set up, please follow the setup instructions in 8 Working with De-

pendencies to get hold of the code for this chapter. There is no code specific to this chapter.

2.1.11.1 DAML Test Tooling

There are three primary tools available in the SDK to test and interact with DAML contracts. It is

highly recommended to explore the respective docs. The chapter 8 model lends itself well to being

tested using these tools.

DAML Script

DAML Script should be familiar by now. It’s a way to script commands and queries from

multiple parties against a DAML Ledger. Unless you’ve browsed other sections of the doc-

umentation already, you have probably used it mostly in the IDE. However, DAML Script

can do much more than that. It has four different modes of operation:

1. Run on a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Start a Sandbox and run against that for regression testing against an actual Ledger

API.

4. Run against any other already running Ledger.

DAML Navigator

DAML Navigator is a UI that runs against a Ledger API and allows interaction with con-

tracts.

DAML REPL

If you want to do things interactively, DAML REPL is the tool to use. The best way to think

of DAML REPL is as an interactive version of DAML Script, but it doubles up as a language

REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect

the results.

2.1.11.2 Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as

youexpected? DAMLhas two functions that allowyou todo fine-grainedprintf debugging: debugand

trace. Both allow you to print something to StdOut if the code is reached. The difference between

debug and trace is similar to the relationship between abort and error:

0 debug : Text -> m ()maps a text to an Action that has the side-effect of printing to Std-

Out.

0 trace : Text -> a -> a prints to StdOut when the expression is evaluated.

daml> let a : Script () = debug "foo"

daml> let b : Script () = trace "bar" (debug "baz")

[Daml.Script:378]: "bar"

daml> a

(continues on next page)

2.1. An introduction to DAML 89

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

[DA.Internal.Prelude:540]: "foo"

daml> b

[DA.Internal.Prelude:540]: "baz"

daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the DAML file and line number that

triggered the printing, but often no more than that because full stacktraces could violate subtrans-

action privacy quite easily. If you want to enable stacktraces for some purely functional code in your

modules, you can use the machinery in /daml/stdlib/DA-Stack to do so, but we won’t cover that any

further here.

2.1.11.3 Diagnosing Contention Errors

The above tools and functions allow you to diagnosemost problems with DAML code, but they are all

synchronous. The sequence of commands is determined by the sequence of inputs. Thatmeans one

of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. DAML guarantees that there can only be one

consuming choice exercised per contract so what if two parties simultaneously submit an exercise

commandon the samecontract? Only one can succeed. Contention canalso occur due to incomplete

or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client

hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have

in common is that someone has incomplete knowledge of the state the ledger will be in at the time

a transaction will be processed and/or committed.

If we look back at DAML’s execution model we’ll see there are three places where ledger state is con-

sumed:

1. A command is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to ContractIds that the client believes are

active.

2. During interpretation, ledger state is used to to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by

reinterpreting it.

Collisions can occur both between 1 and 2 and between 2 and 3. Only during the commit phase is the

complete relevant ledger state at the time of the transaction known, which means the ledger state

at commit time is king. As a DAML contract developer, you need to understand the different causes

of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid

collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three

reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or

ContractIds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current

state

90 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Following the possible error messages, we’ll discuss a few possible causes and remedies.

ContractId Not Found During Interpretation

Command interpretation error in LF-DAMLe: dependency error: couldn't find�

↪→contract�

↪→ContractId(004481eb78464f1ed3291b06504d5619db4f110df71cb5764717e1c4d3aa096b9f).

↪→

ContractId Not Found During Validation

Disputed: dependency error: couldn't find contract ContractId�

↪→(00c06fa370f8858b20fd100423d928b1d200d8e3c9975600b9c038307ed6e25d6f).

fetchByKey Error during Interpretation

Command interpretation error in LF-DAMLe: dependency error: couldn't find�

↪→key com.daml.lf.transaction.GlobalKey@11f4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.

↪→GlobalKey@11f4913d

lookupByKey Distpute During Validation

Disputed: recreated and original transaction mismatch�

↪→VersionedTransaction(...) expected, but VersionedTransaction(...) is�

↪→recreated.

Avoiding Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-

quester submitting a transaction with a consuming exercise on a contract while another requester

submits another exercise or fetch on the same contract. This type of contention cannot be elimi-

nated entirely, for there will always be some latency between a client submitting a command to a

participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)], where Text is a display name and Party the associated Party. If you

store this entire list on a single contract, any two users wanting to update their display name

at the same timewill cause a collision. If you instead keep each (Text, Party) on a separate

contract, these write operations become independent from each other.

The Analogy to keep inmind when structuring your data is that a template defines a table, and

a contract is a row in that table. Keeping large pieces of data on a contract is like storing big

blobs in a database row. If these blobs can change through different actions, you get write

conflicts.

2.1. An introduction to DAML 91

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.

Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract

IDs during the interpretation phase on the participant node. So it reduces latencies slightly

by moving resolution from the client layer to the participant layer, but it doesn’t remove the

issue. Going back to the auction example above, if Alice sent a command exerciseByKey

@Auction auctionKey Bid with amount = 100, this would be resolved to an exercise

cid Bid with amount = 100 during interpretation, where cid is the participant’s best

guess what ContractId the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-

ing choice on the same contract. For example, imagine an Auction contract containing a field

highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries

to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced

will be rejected as it has a write collision with the first. It’s better to record the bids in sepa-

rate Bid contracts, which can be written to independently. Again, think about how you would

structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing ContractIds. Imagine you had created a sharded user directory

according to 1. Each user has a User contract that store their display name and party. Now you

write a chat application where each Message contract refers to the sender by ContractId

User. If the user changes their display name, that reference goes stale. You either have to

modify all messages that user ever sent, or become unable to use the sender contract in DAML.

If you need to be able to make this link inside DAML, Contract Keys help here. If the only place

you need to link Party to User is the UI, it might be best to not store contract references in

DAML at all.

Collisions due to Ignorance

The DAML Ledger Model specifies authorization rules, and privacy rules. Ie it specifies what makes a

transaction conformant, and who gets to see which parts of a committed transaction. It does not

specify how a command is translated to a transaction. This may seem strange at first since the

commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in

the ledger model. But the subtlety comes in on the read side. What happens when the participant,

during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-

nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.

Alice may not be able to order these two nodes causally in the sense of 0one create came before the

other0. See /concepts/local-ledger for an in-depth treatment of causality on DAML Ledgers.

So what should happen now if Alice’s participant encounters a fetchByKey @T k or lookupByKey

@T k during interpretation? What if it encounters a fetch node? These decisions are part of the

operational semantics, and the decision of what should happen is based on the consideration that

the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not

witnessed an archive node for that contract - ie as long as it can’t guarantee that the contract is no

longer active. The rationale behind this is that fetch and exercise use ContractIds, which need

to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three

cases, someone believes the ContractId to be active still so it’s worth trying.

If a fetchByKey or lookupByKey node is encountered, the contract is only resolved if the requester

is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason

to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using

92 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

contract keys,make sure youmake the likely requesters of transactions observers on your contracts.

If you don’t, fetchByKey will always fail, and lookupBeyKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized lookupByKey @T k during interpre-

tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This

transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey @T k Archive.

4. Depending onwhich of the transactions from2 and 3 gets sequenced first, either just 3, or both

2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

As you cansee, thebehavior offetch,fetchByKeyandlookupByKeyat interpretation timedepend

on what information is available to the requester at that time. That’s something to keep in mind

whenwritingDAMLcontracts, andsomething to thinkaboutwhenencountering frequent 0Disputed0

errors.

2.1.11.4 Next up

You’ve reached the end of the Introduction to DAML. Congratulations. If you think you understand all

thismaterial, you could test yourself by getting DAML certified at https://academy.daml.com. Or put

your skills to good use by developing a DAML application. There are plenty of examples to inspire you

on the DAML examples page.

2.2 Language reference docs

This section contains a reference to writing templates for DAML contracts. It includes:

2.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a DAML file outside a template, see Reference: DAML file structure.

2.2.1.1 Template outline structure

Here’s the structure of a DAML template:

template NameOfTemplate

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParameter : Text

-- more parameters here

where

signatory exampleParty

observer exampleParty2

agreement

-- some text

""

ensure

(continues on next page)

2.2. Language reference docs 93

https://academy.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- boolean condition

True

key (exampleParty, exampleParameter) : (Party, Text)

maintainer (exampleFunction key)

-- a choice goes here; see next section

template name template keyword

parameters with followed by the names of parameters and their types

template body where keyword

Can include:

template-local definitions let keyword

Lets you make definitions that have access to the contract arguments and are available

in the rest of the template definition.

signatories signatory keyword

Required. The parties (see the Party type) whomust consent to the creation of an instance

of this contract. You won’t be able to create an instance of this contract until all of these

parties have authorized it.

observers observer keyword

Optional. Parties that aren’t signatories but who you still want to be able to see this con-

tract.

an agreement agreement keyword

Optional. Text that describes the agreement that this contract represents.

a precondition ensure keyword

Only create the contract if the conditions after ensure evaluate to true.

a contract key key keyword

Optional. Lets you specify a combination of a party and other data that uniquely identifies

an instance of this contract template. See Contract keys.

maintainers maintainer keyword

Required if you have specified a key. Keys are only unique to a maintainer. See Contract

keys.

choices choice NameOfChoice : ReturnType controller nameOfParty do

or

controller nameOfParty can NameOfChoice : ReturnType do

Defines choices that can be exercised. See Choice structure for what can go in a choice.

2.2.1.2 Choice structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

0 start with the choice keyword

0 start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

(continues on next page)

94 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- option 2 for specifying choices: controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

a controller (or controllers) controller keyword

Who can exercise the choice.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which

changes the behavior of the choice with respect to privacy and if and when the contract is

archived. See contract consumption in choices for more details.

a name Must begin with a capital letter. Must be unique - choices in different templates can’t have

the same name.

a return type after a :, the return type of the choice

choice arguments with keyword

If you start your choice with choice and include a Party as a parameter, you can make that

Party the controller of the choice. This is a feature called 0flexible controllers0, and it

means you don’t have to specify the controller when you create the contract - you can spec-

ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an

observer of the contract and must be explicitly declared as such.

a choice body After do keyword

What happens when someone exercises the choice. A choice body can contain update state-

ments: see Choice body structure below.

2.2.1.3 Choice body structure

A choice body contains Update expressions, wrapped in a do block.

The update expressions are:

create Create a new contract instance of this template.

create NameOfContract with contractArgument1 = value1;

contractArgument2 = value2; ...

exercise Exercise a choice on a particular contract.

exercise idOfContract NameOfChoiceOnContract with choiceArgument1 =

value1; choiceArgument2 = value 2; ...

fetch Fetch a contract instance using its ID. Often used with assert to check conditions on the con-

tract’s content.

fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.

fetchedContract <- fetchByKey @ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.

fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.

if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be

supplied to a contract choice.

2.2. Language reference docs 95

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.

currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.

This means you only need to use return if you want to return something else.

return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch

someContractId

2.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

2.2.2.1 Template name

template NameOfTemplate

0 This is the name of the template. It’s preceded bytemplate keyword. Must beginwith a capital

letter.

0 This is the highest level of nesting.

0 The name is used when creating a contract instance of this template (usually, from within a

choice).

2.2.2.2 Template parameters

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParam : Text

-- more parameters here

0 with keyword. The parameters are in the form of a record type.

0 Passed in when creating a contract instance from this template. These are then in scope inside

the template body.

0 A template parameter can’t have the same name as any choice arguments inside the template.

0 For all parties involved in the contract (whether they’re a signatory, observer, or

controller) youmust pass them in as parameters to the contract, whether individually or as

a list ([Party]).

2.2.2.3 Template-local Definitions

where

let

allParties = [exampleParty, exampleParty2, exampleParty3]

0 let keyword. Starts a block and is followed by any number of definitions, just like any other

let block.

96 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Template parameters as well as this are in scope, but self is not.

0 Definitions from the let block can be used anywhere else in the template’s where block.

2.2.2.4 Signatory parties

signatory exampleParty

0 signatory keyword. After where. Followed by at least one Party.

0 Signatories are the parties (see the Party type) who must consent to the creation of an in-

stance of this contract. They are the parties who would be put into an obligable position when

this contract is created.

DAML won’t let you put someone into an obligable position without their consent. So if the

contract will cause obligations for a party, theymust be a signatory. If they haven’t authorized

it, you won’t be able to create the contract. In this situation, you may see errors like:

NameOfTemplate requires authorizers Party1,Party2,Party, but only

Party1 were given.

0 When a signatory consents to the contract creation, this means they also authorize the conse-

quences of choices that can be exercised on this contract.

0 The contract instance is visible to all signatories (as well as the other stakeholders of the con-

tract). That is, the compiler automatically adds signatories as observers.

0 Each templatemust have at least one signatory. A signatory declaration consists of the signa-

tory keyword followed by a comma-separated list of one or more expressions, each expression

denoting a Party or collection thereof.

2.2.2.5 Observers

observer exampleParty2

0 observer keyword. After where. Followed by at least one Party.

0 Observers are additional stakeholders, so the contract instance is visible to these parties (see

the Party type).

0 Optional. You can have many, either as a comma-separated list or reusing the keyword. You

could pass in a list (of type [Party]).

0 Use when a party needs visibility on a contract, or be informed or contract events, but is not a

signatory or controller.

0 If you start your choice with choice rather than controller (see Choices below), you must

make sure to add any potential controller as an observer. Otherwise, they will not be able to

exercise the choice, because they won’t be able to see the contract.

2.2.2.6 Choices

-- option 1 for specifying choices: choice name first

choice NameOfChoice1

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

controller exampleParty

do

return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first

(continues on next page)

2.2. Language reference docs 97

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller exampleParty can

NameOfChoice2

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

nonconsuming NameOfChoice3

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

0 A right that the contract gives the controlling party. Can be exercised.

0 This is essentially where all the logic of the template goes.

0 By default, choices are consuming: that is, exercising the choice archives the contract, so

no further choices can be exercised on it. You can make a choice non-consuming using the

nonconsuming keyword.

0 There are two ways of specifying a choice: start with the choice keyword or start with the

controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure

to add that party as an observer.

0 See Reference: choices for full reference information.

2.2.2.7 Agreements

agreement

-- text representing the contract

""

0 agreement keyword, followed by text.

0 Represents what the contract means in text. They’re usually the boundary between on-ledger

and off-ledger rights and obligations.

0 Usually, they look like agreement tx, where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenatewith

<> .

2.2.2.8 Preconditions

ensure

True -- a boolean condition goes here

0 ensure keyword, followed by a boolean condition.

0 Used on contract creation. ensure limits the values on parameters that can be passed to the

contract: the contract can only be created if the boolean condition is true.

98 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.2.9 Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)

maintainer (exampleFunction key)

0 key and maintainer keywords.

0 This feature lets you specify a 0key0 that you can use to uniquely identify an instance of this

contract template.

0 If you specify a key, you must also specify a maintainer. This is a Party that will ensure the

uniqueness of all the keys it is aware of.

Because of this, the keymust include the maintainer Party or parties (for example, as part

of a tuple or record), and the maintainermust be a signatory.

0 For a full explanation, see Contract keys.

2.2.3 Reference: choices

This page gives reference information on choices:

0 choice first or controller first

0 Choice name

0 Controllers

– Contract consumption

0 Preconsuming choices

0 Postconsuming choices

0 Non-consuming choices

– Return type

0 Choice arguments

0 Choice body

For information on the high-level structure of a choice, see Overview: template structure.

2.2.3.1 choice first or controller first

There are two ways you can start a choice:

0 start with the choice keyword

0 start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

-- option 2 for specifying choices: controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

(continues on next page)

2.2. Language reference docs 99

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a

controller. If you do this, you must make sure that you add that party as an observer, otherwise

they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer

when you compile your DAML files.

2.2.3.2 Choice name

Listing 2: Option 1 for specifying choices: choice name first

choice ExampleChoice1

: () -- replace () with the actual return type

Listing 3: Option 2 for specifying choices: controller first

ExampleChoice2

: () -- replace () with the actual return type

0 The name of the choice. Must begin with a capital letter.

0 If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

0 Must be unique in your project. Choices in different templates can’t have the same name.

0 If you’re using controller-first, you can have multiple choices after one can, for tidiness.

2.2.3.3 Controllers

Listing 4: Option 1 for specifying choices: choice name first

controller exampleParty

Listing 5: Option 2 for specifying choices: controller first

controller exampleParty can

0 controller keyword

0 The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.

Contract consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of

the choice body and both the controllers and all contract stakeholders see all consequences of the

action.

2.2.3.4 Preconsuming choices

100 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 6: Option 1 for specifying choices: choice name first

preconsuming choice ExampleChoice5

: () -- replace () with the actual return type

Listing 7: Option 2 for specifying choices: controller first

preconsuming ExampleChoice7

: () -- replace () with the actual return type

0 preconsuming keyword. Optional.

0 Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-

ecuted.

0 The archival behavior is analogous to the consuming default behavior.

0 Unlike what happens the in consuming behavior, though, only the controllers and signatories

of the contract see all consequences of the action. If the choice archives the contract, other

stakeholders merely see an archive action.

0 Can be thought as a non-consuming choice that implicitly archives the contract before any-

thing else happens

2.2.3.5 Postconsuming choices

Listing8: Option 1 for specifying choices: choice name first

postconsuming choice ExampleChoice6

: () -- replace () with the actual return type

Listing 9: Option 2 for specifying choices: controller first

postconsuming ExampleChoice8

: () -- replace () with the actual return type

0 postconsuming keyword. Optional.

0 Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-

cuted.

0 The contract can still be used in the body of the exercise.

0 Only the controllers and signatories of the contract see all consequences of the action. If the

choice archives the contract, other stakeholders merely see an archive action.

0 Can be thought as a non-consuming choice that implicitly archives the contract after the

choice has been exercised

2.2.3.6 Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name

first

nonconsuming choice ExampleChoice3

: () -- replace () with the actual return type

2.2. Language reference docs 101

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 11: Option 2 for specifying choices: controller first

nonconsuming ExampleChoice4

: () -- replace () with the actual return type

0 nonconsuming keyword. Optional.

0 Makes a choice non-consuming: that is, exercising the choice does not archive the contract.

0 Only the controllers and signatories of the contract see all consequences of the action. If the

choice archives the contract, other stakeholders merely see an archive action.

0 Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

0 Return type is written immediately after choice name.

0 All choices have a return type. A contract returning nothing should be marked as returning a

0unit0, ie ().

0 If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

2.2.3.7 Choice arguments

with

exampleParameter : Text

0 with keyword.

0 Choice arguments are similar in structure to Template parameters: a record type.

0 A choice argument can’t have the same name as any parameter to the template the choice is in.

0 Optional - only if you need extra information passed in to exercise the choice.

2.2.3.8 Choice body

0 Introduced with do

0 The logic in this section is what is executed when the choice gets exercised.

0 The choice body contains Update expressions. For detail on this, see Reference: updates.

0 By default, the last expression in the choice is returned. You can return multiple updates in

tuple form or in a custom data type. To return something that isn’t of type Update, use the

return keyword.

2.2.4 Reference: updates

This page gives reference information on Updates:

0 Background

0 Binding variables

0 do

0 create

0 exercise

0 exerciseByKey

0 fetch

102 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 fetchByKey

0 lookupByKey

0 abort

0 assert

0 getTime

0 return

0 let

0 this

For the structure around them, see Overview: template structure.

2.2.4.1 Background

0 An Update is ledger update. There are many different kinds of these, and they’re listed below.

0 They are what can go in a choice body.

2.2.4.2 Binding variables

boundVariable <- UpdateExpression1

0 Oneof the things youcando in a choice body is bind (assign) anUpdate expression to a variable.

This works for any of the Updates below.

2.2.4.3 do

do

updateExpression1

updateExpression2

0 do can be used to group Update expressions. You can only have one update expression in a

choice, so any choice beyond the very simple will use a do block.

0 Anything you can put into a choice body, you can put into a do block.

0 By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an

example.

2.2.4.4 create

create NameOfTemplate with exampleParameters

0 create function.

0 Creates an instance of that contract on the ledger. When a contract is committed to the ledger,

it is given a unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

0 Use with to specify the template parameters.

0 Requires authorization from the signatories of the contract being created. This is given by

being signatories of the contract fromwhich the other contract is created, being the controller,

or explicitly creating the contract itself.

If the required authorization is not given, the transaction fails. Formore detail on authorization,

see Signatory parties.

2.2. Language reference docs 103

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.4.5 exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgument1 = value1

0 exercise function.

0 Exercises the specified choice on the specified contract.

0 Use with to specify the choice parameters.

0 Requires authorization from the controller(s) of the choice. If the authorization is not given,

the transaction fails.

2.2.4.6 exerciseByKey

exerciseByKey @ContractType contractKey NameOfChoiceOnContract with�

↪→choiceArgument1 = value1

0 exerciseByKey function.

0 Exercises the specified choice on the specified contract.

0 Use with to specify the choice parameters.

0 Requires authorization from the controller(s) of the choice and from at least one of the main-

tainers of the key. If the authorization is not given, the transaction fails.

2.2.4.7 fetch

fetchedContract <- fetch IdOfContract

0 fetch function.

0 Fetches the contract instance with that ID. Usually used with a bound variable, as in the exam-

ple above.

0 Often used to check the details of a contract before exercising a choice on that contract. Also

used when referring to some reference data.

0 fetch cid fails if cid is not the contract id of an active contract, and thus causes the entire

transaction to abort.

0 The submitting party must be an observer or signatory on the contract, otherwise fetch fails,

and similarly causes the entire transaction to abort.

2.2.4.8 fetchByKey

fetchedContract <- fetchByKey @ContractType contractKey

0 fetchByKey function.

0 The same as fetch, but fetches the contract instance with that contract key, instead of the

contract ID.

0 Like fetch, fetchByKey needs to be authorized by at least one stakeholder of the contract.

0 Fails if no contract can be found.

2.2.4.9 lookupByKey

fetchedContractId <- lookupByKey @ContractType contractKey

0 lookupByKey function.

0 Use this to confirm that a contract with the given contract key exists.

104 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 If the submitting party is a stakeholder of a matching contract, lookupByKey returns the

ContractId of the contract; otherwise, it returns None. Transactions may fail due to con-

tention because the key changes between the lookup and committing the transaction, or be-

casue the submitter didn’t know about the existence of a matching contract.

0 All of the maintainers of the key must authorize the lookup (by either being signatories or by

submitting the command to lookup).

2.2.4.10 abort

abort errorMessage

0 abort function.

0 Fails the transaction - nothing in it will be committed to the ledger.

0 errorMessage is of type Text. Use the error message to provide more context to an external

system (e.g., it gets displayed in DAML Studio scenario results).

0 You could use assert False as an alternative.

2.2.4.11 assert

assert (condition == True)

0 assert keyword.

0 Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.

0 Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a

parameter is on a blacklist:

Transfer : ContractId RestrictedPayout

with newReceiver : Party

do

assert (newReceiver /= blacklisted)

create RestrictedPayout with receiver = newReceiver; giver;�

↪→blacklisted; qty

2.2.4.12 getTime

currentTime <- getTime

0 getTime keyword.

0 Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be

able to access the value.)

0 Used to restrict when a choice can bemade. For example, with an assert that the time is later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

Complete : ()

do

(continues on next page)

2.2. Language reference docs 105

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- bind the ledger effective time to the tchoose variable using�

↪→getTime

tchoose <- getTime

2.2.4.13 return

return ()

0 return keyword.

0 Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a

tuple:

do

firstContract <- create SomeContractTemplate with arg1; arg2

secondContract <- create SomeContractTemplate with arg1; arg2

return (firstContract, secondContract)

2.2.4.14 let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument that�

↪→when

-- called _will_ create the new contract using argument for issuer and�

↪→owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract party1

createContract party2

2.2.4.15 this

this lets you refer to the current contract from within the choice body. This refers to the contract,

not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the

template.

2.2.5 Reference: data types

This page gives reference information on DAML’s data types:

0 Built-in types

– Table of built-in primitive types

– Escaping characters

106 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

– Time

0 Lists

– Summing a list

0 Records and record types

– Data constructors

– Accessing record fields

– Updating record fields

– Parameterized data types

0 Type synonyms

– Function types

0 Algebraic data types

– Product types

– Sum types

– Pattern matching

2.2.5.1 Built-in types

2.2. Language reference docs 107

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Table of built-in primitive types

Type For Example Notes

Int integers 1, 1000000,

1_000_000

Int values are signed 64-bit integers which

represent numbers between -9,223,372,

036,854,775,808 and 9,223,372,036,

854,775,807 inclusive. Arithmetic opera-

tions raise an error on overflows and divi-

sion by0. Tomake longnumbersmore read-

able you can optionally add underscores.

Decimal short for Numeric

10

1.0 Decimal values are rational numbers with

precision 38 and scale 10.

Numeric n fixed point decimal

numbers

1.0 Numeric n values are rational numbers with

up to 38 digits. The scale parameter n con-

trols the number of digits after the decimal

point, so for example, Numeric 10 values

have 10 decimal places, and Numeric 20

values have 20 decimal places. The value of

nmust be between 0 and 37 inclusive.

Text strings "hello" Text values are strings of characters en-

closed by double quotes.

Bool boolean values True, False

Party unicode string rep-

resenting a party

alice <-

getParty

"Alice"

Every party in a DAML system has a unique

identifier of type Party. To create a value

of type Party, use binding on the result of

calling getParty. The party text can only

contain alphanumeric characters, -, _ and

spaces.

Date models dates date 2007

Apr 5

To create a value of type Date, use the func-

tion date (to get this function, import DA.

Date).

Time models absolute

time (UTC)

time

(date

2007 Apr

5) 14 30

05

Time values have microsecond precision.

To create a value of type Time, use a Date

and the function time (to get this function,

import DA.Time).

RelTime models differences

between time values

seconds 1,

seconds

(-2)

seconds 1 and seconds (-2) represent

the values for 1 and -2 seconds. There are

no literals for RelTime. Instead they are

created using one of days, hours, minutes

and seconds (to get these functions, im-

port DA.Time).

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

108 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Time

Definition of time on the ledger is a property of the execution environment. DAML assumes there is

a shared understanding of what time is among the stakeholders of contracts.

2.2.5.2 Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,

3, 2] is an example of a list of type [Int].

You can also construct lists using [] (the empty list) and :: (which is an operator that appends an

element to the front of a list). For example:

twoEquivalentListConstructions =

scenario do

assert ([1, 2, 3] == 1 :: 2 :: 3 :: [])

Summing a list

To sum a list, use a fold (because there are no loops in DAML). See Folding for details.

2.2.5.3 Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord

with

label1 : type1

label2 : type2

...

labelN : typeN

deriving (Eq, Show)

where:

0 label1, label2, 0, labelN are labels, which must be unique in the record type

0 type1, type2, 0, typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { label1 : type1; label2 : type2; ...; labelN :�

↪→typeN }

deriving (Eq, Show)

The format using with and the format using { } are exactly the same syntactically. Themain differ-

ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting

semicolons.

The deriving (Eq, Show) ensures the data type can be compared (using ==) and displayed (us-

ing show). The line starting deriving is required for data types used in fields of a template.

In general, add thederivingunless the data type contains function types (e.g. Int -> Int), which

cannot be compared or shown.

For example:

2.2. Language reference docs 109

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-- This is a record type with two fields, called first and second,

-- both of type `Int`

data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type is:

newRecord = MyRecord with first = 1; second = 2

-- You can also write:

newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for

some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that

can be used to specify values of the Floor Int type: for example, Floor 0, Floor 1.

In DAML, data constructors may take at most one argument.

An example of a data constructor with zero arguments is data Empty = Empty {}. The only value

of the Empty type is Empty.

Note: In data Confusing = Int, the Int is a data constructor with no arguments. It has nothing

to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

-- Access the value of the field `first`

val.first

-- Access the value of the field `second`

val.second

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select

fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, DAML lets you use this without assigning it

to make things look nicer:

110 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

-- if you have a variable called `second` equal to 5

second = 5

-- you could construct the same value as before with

myRecord2 = myRecord with second = second

-- or with

myRecord3 = MyRecord with first = 1; second = second

-- but DAML has a nicer way of putting this:

myRecord4 = MyRecord with first = 1; second

-- or even

myRecord5 = r with second

Note: The with keyword binds more strongly than function application. So for a function, say

return, either write return IntegerCoordinate with first = 1; second = 5 or return

(IntegerCoordinate {first = 1; second = 5}), where the latter expression is enclosed in

parentheses.

Parameterized data types

DAML supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-- Here, a and b are type parameters.

-- The Coordinate after the data keyword is a type constructor.

data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

2.2.5.4 Type synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used

interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has

type ParamType1 -> ParamType2 -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type

FooType = ParamType1 -> ParamType2 -> ReturnType.

2.2. Language reference docs 111

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.5.5 Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The

enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in DAML: data AlternativeCoordinate a b =

AlternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:

a; second: b}.

These kinds of types are called product types.

Awayof thinkingabout this is that theCoordinate Int Int typehasa first andseconddimension

(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and

so on.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False

deriving (Eq,Show), where True and False are data constructors with zero arguments . This

means that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive

at least from (Eq, Show).

A very useful sum type is data Optional a = None | Some a deriving (Eq,Show). It is

part of the DAML standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined

by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.

Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

optionalIntegerToText (x : Optional Int) : Text =

case x of

None -> "Box is empty"

Some val -> "The content of the box is " <> show val

optionalIntegerToTextTest =

scenario do

let

x = Some 3

assert (optionalIntegerToText x == "The content of the box is 3")

112 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the optionalIntegerToText function, the case construct first tries to match the x argument

against the None data constructor, and in case of amatch, the "Box is empty" text is returned. In

case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some

data constructor. In case of a match, the content of the value attached to the Some label is bound to

the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least

one pattern that matches. The patterns are tested from top to bottom, and the expression for the

first pattern that matches will be executed. Note that _ can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and

achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

let

l = [1, 2, 3]

in case l of

[] -> "List is empty"

_ :: [] -> "List has one element"

_ :: _ :: _ -> "List has at least two elements"

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that DAML Studio

produces a warning for all variables that are not being used. This is useful in detecting unused

variables. You can suppress the warning by naming the variable with an initial underscore.

2.2.6 Reference: built-in functions

This page gives reference information on functions for:

0 Working with time

0 Working with numbers

0 Working with text

0 Working with lists

– Folding

2.2.6.1 Working with time

DAML has these built-in functions for working with time:

0 datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.

0 subTime: subtracts one time from another. Returns the RelTime difference between time1

and time2.

0 addRelTime: add times. Takes a Time and RelTime and adds the RelTime to the Time.

0 days, hours, minutes, seconds: constructs a RelTime of the specified length.

0 pass: (in scenario tests only) use pass : RelTime -> Scenario Time to advance the

ledger time by the argument amount. Returns the new time.

2.2. Language reference docs 113

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.6.2 Working with numbers

DAML has these built-in functions for working with numbers:

0 round: rounds a Decimal number to Int.

round d is the nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:

round 2.5 == 3 round (-2.5) == -3

round 3.4 == 3 round (-3.7) == -4

0 truncate: converts aDecimalnumber toInt, truncating the value towards zero, for example:

truncate 2.2 == 2 truncate (-2.2) == -2

truncate 4.9 == 4 v (-4.9) == -4

0 intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require

more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational

number, but not a Decimal.

2.2.6.3 Working with text

DAML has these built-in functions for working with text:

0 <> operator: concatenates two Text values.

0 show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to

a Text.

To escape text in DAML strings, use \:

Character How to escape it

\ \\

" \"

' \'

Newline \n

Tab \t

Carriage return \r

Unicode (using ! as an example)
0 Decimal code: \33

0 Octal code: \o41

0 Hexadecimal code: \x21

2.2.6.4 Working with lists

DAML has these built-in functions for working with lists:

0 foldl and foldr: see Folding below.

Folding

A fold takes:

0 a binary operator

0 a first accumulator value

114 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a

foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs

to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.

This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the

list. This produces a third accumulator value.

3. This continues until there are nomore elements in the list. Then, the last accumulator value is

returned.

As an example, to sum up a list of integers in DAML:

sumList =

scenario do

assert (foldl (+) 0 [1, 2, 3] == 6)

2.2.7 Reference: expressions

This page gives reference information for DAML expressions that are not updates:

0 Definitions

– Values

– Functions

0 Arithmetic operators

0 Comparison operators

0 Logical operators

0 If-then-else

0 Let

2.2.7.1 Definitions

Use assignement to bind values or functions at the top level of a DAML file or in a contract template

body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention

it after a colon following the variable name:

2.2. Language reference docs 115

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

Here you see:

0 the name of the function

0 the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

0 the definition = 2.0 * pi * r * h (which uses the previously defined pi)

2.2.7.2 Arithmetic operators

Operator Works for

+ Int, Decimal, RelTime

- Int, Decimal, RelTime

* Int, Decimal

/ (integer division) Int

% (integer remainder opera-

tion)

Int

^ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

0 7 / 3 and (-7) / (-3) evaluate to 2

0 (-7) / 3 and 7 / (-3) evaluate to -2

0 7 % 3 and 7 % (-3) evaluate to 1

0 (-7) % 3 and (-7) % (-3) evaluate to -1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2

is another way of writing 1 + 2.

2.2.7.3 Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-

tract instances stemming from the same contract template

2.2.7.4 Logical operators

The logical operators in DAML are:

0 not for negation, e.g., not True == False

0 && for conjunction, where a && b == and a b

116 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 || for disjunction, where a || b == or a b

for Bool variables a and b.

2.2.7.5 If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

2.2.7.6 Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =

-- let binds values or functions to be in scope beneath the expression

let

double (x : Int) = 2 * x

up = 5

in double up

You can use let inside do and scenario blocks:

blah = scenario

do

let

x = 1

y = 2

-- x and y are in scope for all subsequent expressions of the do�

↪→block,

-- so can be used in expression1 and expression2.

expression1

expression2

Lastly, a templatemay contain a single let block.

template Iou

with

issuer : Party

owner : Party

where

signatory issuer

let updateOwner o = create this with owner = o

updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced

-- from any and all of the signatory, consuming, ensure and

-- agreement expressions and from within any choice do blocks.

controller owner can

Transfer : ContractId Iou

(continues on next page)

2.2. Language reference docs 117

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

with newOwner : Party

do

updateOwner newOwner

2.2.8 Reference: functions

This page gives reference information on functions in DAML:

0 Defining functions

0 Partial application

0 Functions are values

0 Generic functions

DAML is a functional language. It lets you apply functions partially and also have functions that take

other functions as arguments. This page discusses these higher-order functions.

2.2.8.1 Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

You can define this function equivalently using lambdas, involving ‘, a sequence of parameters, and

an arrow -> as:

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.2.8.2 Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->

Decimal. An equivalent, but more instructive, way to read its type is: Decmial -> (Decimal -

> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns

another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type

Decimal -> Decimal. In other words, this function returns another function. Only the last appli-

cation of an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a

function that takes just a single argument and returns another function. In DAML, all functions are

curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to

all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a

function with partially defined arguments. For example:

118 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

multiplyThreeNumbers : Int -> Int -> Int -> Int

multiplyThreeNumbers xx yy zz =

xx * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21 = multiplyTwoNumbersWith7 3

multiplyWith18 = multiplyThreeNumbers 3 6

You could also define equivalent lambda functions:

multiplyWith18_v2 : Int -> Int

multiplyWith18_v2 xx =

multiplyThreeNumbers 3 6 xx

2.2.8.3 Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with

the lambda notation):

-- Type synonym for Decimal -> Decimal -> Decimal

type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as

when binding values, e.g., pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In

fact, in DAML, functions are values.

This means a function can take another function as an argument. For example, define a function

applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first ar-

gument, a higher-order function, to the second and the third arguments to yield the result.

applyFilter (filter : Int -> Int -> Bool)

(x : Int)

(y : Int) = filter x y

compute = scenario do

assert (applyFilter (<) 3 2 == False)

assert (applyFilter (/=) 3 2 == True)

assert (round (2.5 : Decimal) == 3)

assert (round (3.5 : Decimal) == 4)

assert (explode "me" == ["m", "e"])

(continues on next page)

2.2. Language reference docs 119

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (applyFilter (\a b -> a /= b) 3 2 == True)

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-

tion as an argument.

Note: DAML does not allow functions as parameters of contract templates and contract choices.

However, a follow up of a choice can use built-in functions, defined at the top level or in the contract

template body.

2.2.8.4 Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type

parameters. For example, you can define function composition as follows:

compose (f : b -> c) (g : a -> b) (x : a) : c = f (g x)

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose

not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas

not has type Bool -> Bool.

You can find many other generic functions including this one in the DAML standard library.

Note: DAML currently does not support generic functions for a specific set of types, such as Int

and Decimal numbers. For example, sum (x: a) (y: a) = x + y is undefined when a equals

the type Party. Bounded polymorphism might be added to DAML in a later version.

2.2.9 Reference: scenarios

This page gives reference information on scenario syntax, used for testing templates:

0 Scenario keyword

0 Submit

0 submitMustFail

0 Scenario body

– Updates

– Passing time

– Binding variables

For an introduction to scenarios, see Testing using scenarios.

2.2.9.1 Scenario keyword

0 scenario function. Introduces a series of transactions to be submitted to the ledger.

2.2.9.2 Submit

0 submit keyword.

120 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Submits an action (a create or an exercise) to the ledger.

0 Takes two arguments, the party submitting followed by the expression, for example: submit

bankOfEngland do create ...

2.2.9.3 submitMustFail

0 submitMustFail keyword.

0 Like submit, but you’re asserting it should fail.

0 Takes two arguments, the party submitting followed by the expression by a party, for example:

submitMustFail bankOfEngland do create ...

2.2.9.4 Scenario body

Updates

0 Usually create and exercise. But you can also use other updates, like assert and fetch.

0 Parties can only be named explicitly in scenarios.

Passing time

In a scenario, you may want time to pass so you can test something properly. You can do this with

pass.

Here’s an example of passing time:

timeTravel =

scenario do

-- Get current ledger effective time

t1 <- getTime

assert (t1 == datetime 1970 Jan 1 0 0 0)

-- Pass 1 day

pass (days 1)

-- Get new ledger effective time

t2 <- getTime

assert (t2 == datetime 1970 Jan 2 0 0 0)

Binding variables

As in choices, you can bind to variables. Usually, you’d bind commits to variables in order to get the

returned value (usually the contract).

2.2.10 Reference: DAML file structure

This page gives reference information on the structure of DAML files outside of templates:

0 File structure

0 Imports

0 Libraries

0 Comments

0 Contract identifiers

2.2. Language reference docs 121

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.10.1 File structure

0 This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the DAML

file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, use module Scenarios.Demo where.

2.2.10.2 Imports

0 You can import other modules (import OtherModuleName), including qualified

imports (import qualified AndYetOtherModuleName, import qualified

AndYetOtherModuleName as Signifier). Can’t have circular import references.

0 To import the Preludemodule of ./Prelude.daml, use import Prelude.

0 To import a module of ./Scenarios/Demo.daml, use import Scenarios.Demo.

0 If you leave out qualified, and a module alias is specified, top-level declarations of the im-

portedmodule are imported into themodule’s namespace as well as the namespace specified

by the given alias.

2.2.10.3 Libraries

A DAML library is a collection of related DAML modules.

Define a DAML library using a LibraryModules.daml file: a normal DAML file that imports the root

modules of the library. The library consists of the LibraryModules.daml file and all its dependen-

cies, found by recursively following the imports of each module.

Errors are reported in DAML Studio on a per-library basis. This means that breaking changes on

shared DAML modules are displayed even when the files are not explicitly open.

2.2.10.4 Comments

Use -- for a single line comment. Use {- and -} for a comment extending over multiple lines.

2.2.10.5 Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique

identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract

identifier from the Sandbox may look different to ones on other DAML Ledgers.

You can use == and /= on contract identifiers of the same type.

2.2.11 Reference: DAML packages

This page gives reference information on DAML package dependencies:

0 Building DAML archives

0 Inspecting DARs

0 Importing DAML packages

– Importing a DAML package via dependencies

– Importing a DAML archive via data-dependencies

0 Handling module name collisions

122 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.11.1 Building DAML archives

When a DAML project is compiled, the compiler produces a DAML archive. These are platform-

independent packages of compiled DAML code that can be uploaded to a DAML ledger or imported

in other DAML projects.

DAML archives have a .dar file ending. By default, when you run daml build, it will generate the

.dar file in the .daml/dist folder in the project root folder. For example, running daml build in

project foowith project version 0.0.1will result in a DAML archive .daml/dist/foo-0.0.1.dar.

You can specify a different path for the DAML archive by using the -o flag:

daml build -o foo.dar

For details on how to upload a DAML archive to the ledger, see the deploy documentation. The rest of

this page will focus on how to import a DAML packages in other DAML projects.

2.2.11.2 Inspecting DARs

To inspect a DAR and get information about the packages inside it, you can use the daml damlc

inspect-dar command. This is often useful to find the package id of the project you just built.

You can run daml damlc inspect-dar /path/to/your.dar to get a human-readable listing of

the files inside it and a list of packages and their package ids. Here is a (shortened) example output:

$ daml damlc inspect-dar .daml/dist/create-daml-app-0.1.0.dar

DAR archive contains the following files:

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-

↪→daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→prim-75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.

↪→dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-0.0.0-

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-DA-Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/

↪→create-daml-app-0.1.0.conf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.

↪→daml

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie
(continues on next page)

2.2. Language reference docs 123

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

META-INF/MANIFEST.MF

DAR archive contains the following packages:

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d"

daml-stdlib-DA-Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662

↪→"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662"

daml-prim-75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15

↪→"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15"

daml-stdlib-0.0.0-

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a

↪→"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a"

In addition to the human-readable output, you can also get the output as JSON. This is easier to

consume programatically and it is more robust to changes across SDK versions:

$ daml damlc inspect-dar --json .daml/dist/create-daml-app-0.1.0.dar

{

"packages": {

"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d

↪→": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-

↪→daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf",

"name": "create-daml-app",

"version": "0.1.0"

},

"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662

↪→": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-DA-Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"name": null,

"version": null

},

"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15

↪→": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→prim-75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.

↪→dalf",

"name": "daml-prim",

"version": "0.0.0"

},

(continues on next page)

124 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a

↪→": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-0.0.0-

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"name": "daml-stdlib",

"version": "0.0.0"

}

},

"main_package_id":

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d",

"files": [

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-

↪→daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→prim-75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.

↪→dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-0.0.0-

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-

↪→stdlib-DA-Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/

↪→create-daml-app-0.1.0.conf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.

↪→daml",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi

↪→",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie

↪→",

"META-INF/MANIFEST.MF"

]

}

Note that name and version will be null for packages in DAML-LF < 1.8.

2.2. Language reference docs 125

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.11.3 Importing DAML packages

There are two ways to import a DAML package in a project: via dependencies, and via data-

dependencies. They each have certain advantages and disadvantages. To summarize:

0 dependencies allow you to import a DAML archive as a library. The definitions in the depen-

dency will all be made available to the importing project. However, the dependency must be

compiled with the same DAML SDK version, so this method is only suitable for breaking up

large projects into smaller projects that depend on each other, or to reuse existing libraries.

0 data-dependencies allow you to import a DAML archive (.dar) or a DAML-LF package (.dalf),

including packages that have already been deployed to a ledger. These packages can be com-

piled with any previous SDK version. On the other hand, not all definitions can be carried over

perfectly, since the DAML interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

Importing a DAML package via dependencies

A DAML project can declare a DAML archive as a dependency in the dependencies field of daml.

yaml. This lets you import modules and reuse definitions from another DAML project. The main

limitation of thismethod is that the dependencymust be for the same SDK version as the importing

project.

Let’s go through an example. Suppose you have an existing DAML project foo, located at /home/

user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the DAML archive of foo. Go into /home/user/foo and run daml

build -o foo.dar. This will create the DAML archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated DAML archive as a depndency. Go

into /home/user/bar and change the dependencies field in daml.yaml to point to the created

DAML archive:

dependencies:

- daml-prim

- daml-stdlib

- ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

- /home/user/foo/foo.dar

When you run daml build in bar project, the compiler will make the definitions in foo.dar avail-

able for importing. For example, if foo exports the module Foo, you can import it in the usual way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit

which modules of foo get exported, you may add an exposed-modules field in the daml.yaml file

for foo:

exposed-modules:

- Foo

126 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Importing a DAML archive via data-dependencies

You can import a DAML archive (.dar) or DAML-LF package (.dalf) using data-dependencies. Unlike

dependencies, this can be used when the DAML SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- ../foo/foo.dar

When importing packages this way, the DAML compiler will try to reconstruct the original DAML in-

terface from the compiled binaries. However, to allow data-dependencies to work across SDK

versions, the compiler has to abstract over some details which are not compatible across SDK ver-

sions. This means that there are some DAML features that cannot be recovered when using data-

dependencies. In particular:

1. Export lists cannot be recovered, so imports via data-dependencies can access definitions

that were originally hidden. This means it is up to the importing module to respect the data

abstraction of the original module. Note that this is the same for all code that runs on the

ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via exposed-

modules, you can get an error if you also have a data-dependency that references some-

thing from the hiddenmodules (even if it is only reexported). Since exposed-modules are not

available on the ledger in general, we recommend to not make use of them and instead rely

on naming conventions (e.g., suffix module names with .Internal) to make it clear which

modules are part of the public API.

3. Prior to DAML-LF version 1.8, typeclasses could not be reconstructed. This means if you have

a package that is compiled with an older version of DAML-LF, typeclasses and typeclass in-

stances will not be carried over via data-dependencies, and you won’t be able to call func-

tions that rely on typeclass instances. This includes the template functions, such as create,

signatory, and exercise, as these rely on typeclass instances.

4. Starting from DAML-LF version 1.8, when possible, typeclass instances will be reconstructed

by re-using the typeclass definitions from dependencies, such as the typeclasses exported

in daml-stdlib. However, if the typeclass signature has changed, you will get an instance

for a reconstructed typeclass instead, which will not interoperate with code from dependen-

cies. Furthermore, if the typeclass definition uses the FunctionalDependencies language

extension, this may cause additional problems, since the functional dependencies cannot be

recovered. So this is something to keep in mind when redefining typeclasses and when using

FunctionalDependencies.

5. Certain advanced type system features cannot be reconstructed. In particular, DA.Generics

and DeriveGeneric cannot be reconstructed. This may result in certain definitions being

unavailable when importing a module that uses these advanced features.

Because of their flexibility, data-dependencies are a tool that is recommended for performing DAML

model upgrades. See the upgrade documentation for more details.

2.2.11.4 Handling module name collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple

import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,

there are a few tools you can use to approach this problem.

2.2. Language reference docs 127

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The first is to use package qualified imports. Supposing you have packages with different names,

foo and bar, which both expose a module X. You can select which one you want with a package

qualified import.

To get X from foo:

import "foo" X

To get X from bar:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX

import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with

the same name. For example, if you’re loading different versions of the same package. To handle this

case, you need the --package build option.

Suppose you are importing packages foo-1.0.0 and foo-2.0.0. Notice they have the same name

foobutdifferent versions. To getmodules that are exposed inbothpackages, youwill need toprovide

module aliases. You can do this by passing the --package build option. Open daml.yaml and add

the following build-options:

build-options:

- '--package'

- 'foo-1.0.0 with (X as Foo1.X)'

- '--package'

- 'foo-2.0.0 with (X as Foo2.X)'

This will alias the X in foo-1.0.0 as Foo1.X, and alias the X in foo-2.0.0 as Foo2.X. Now you will

be able to import both X by using the new names:

import qualified Foo1.X

import qualified Foo2.X

It is also possible to add a prefix to all modules in a package using the module-prefixes field in

your daml.yaml. This is partiuclarly useful for upgrades where you can map all modules of version

v of your package under V$v. For the example above you can use the following:

module-prefixes:

foo-1.0.0: Foo1

foo-2.0.0: Foo2

That will allow you to import module X from package foo-1.0.0 as Foo1.X and X from package

-foo-2.0.0 as Foo2.

You can also usemore complexmodule prefixes, e.g., foo-1.0.0: Foo1.Barwhichwillmakemod-

ule X available under Foo1.Bar.X.

128 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.12 Contract keys

Contract keys are an optional addition to templates. They let you specify away of uniquely identifying

contract instances, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with

bank : Party

number : Text

owner : Party

balance : Decimal

observers : [Party]

where

signatory [bank, owner]

observer observers

key (bank, number) : AccountKey

maintainer key._1

2.2.12.1 What can be a contract key

The key can be an arbitrary serializable expression that does not contain contract IDs. However, it

must include every party that you want to use as a maintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

2.2.12.2 Specifying maintainers

If you specify a contract key for a template, you must also specify a maintainer or maintainers, in

a similar way to specifying signatories or observers. Themaintainers 0own0 the key in the sameway

the signatories 0own0 a contract. Just like signatories of contracts prevent double spends or use of

false contract data,maintainers of keys prevent double allocation or incorrect lookups. Since the key

is part of the contract, the maintainers must be signatories of the contract. However, maintainers

are computed from the key instead of the template arguments. In the example above, the bank is

ultimately the maintainer of the key.

Uniqueness of keys is guaranteed per template. Since multiple templates may use the same key

type, some key-related functions must be annotated using the @ContractType as shown in the

examples below.

When you are writing DAML models, the maintainers matter since they affect authorization – much

like signatories and observers. You don’t need to do anything to 0maintain0 the keys. In the above

example, it is guaranteed that there can only be one Account with a given number at a given bank.

Checking of the keys is done automatically at execution time, by theDAML exeuction engine: if some-

one tries to create a new contract that duplicates an existing contract key, the execution engine will

cause that creation to fail.

2.2. Language reference docs 129

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.2.12.3 Contract Lookups

The primary purpose of contract keys is to provide a stable, and possibly meaningful, identifier that

can be used in DAML to fetch contracts. There are two functions to perform such lookups: fetchByKey

and lookupByKey. Both types of lookup are performed at interpretation time on the submitting Parti-

pant Node, on a best-effort basis. Currently, that best-effort means lookups only return contracts if

the submitting Party is a stakeholder of that contract.

In particular, the above means that if multiple commands are submitted simultaneously, all us-

ing contract lookups to find and consume a given contract, there will be contention between these

commands, and at most one will succeed.

Limiting key usage to stakeholders also means that keys cannot be used to access a divulged con-

tract, i.e. there can be cases where fetch succeeds and fetchByKey does not. See the example at the

end of this section for details.

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType

contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative

to fetch and behaves the same in most ways.

It returns a tuple of the ID and the contract object (containing all its data).

Like fetch, fetchByKey needs to be authorized by at least one stakeholder.

fetchByKey fails and aborts the transaction if:

0 The submitting Party is not a stakeholder on a contract with the given key, or

0 A contract was found, but the fetchByKey violates the authorization rule, meaning no stake-

holder authorized the fetch..

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that

the submitting Party doesn’t know about it, or there are issues with authorization.

visibleByKey

boolean <- visibleByKey @ContractType contractKey

UsevisibleByKey to checkwhether youcanseeanactive contract for thegivenkeywith the current

authorizations. If the contract exists and you have permission to see it, returns True, otherwise

returns False.

To clarify, ignoring contention:

1. visibleByKeywill return True if all of these are true: there exists a contract for the given key,

the submitter is a stakeholder on that contract, and at the point of call we have the authoriza-

tion of all of the maintainers of the key.

2. visibleByKey will return False if all of those are true: there is no contract for the given key,

and at the point of call we have authorization from all the maintainers of the key.

3. visibleByKey will abort the transaction at interpretation time if, at the point of call, we are

missing the authorization from any one maintainer of the key.

4. visibleByKey will fail at validation time (after returning False at interpretation time) if all

of these are true: at the point of call, we have the authorization of all the maintainers, and a

valid contract exists for the given key, but the submitter is not a stakeholder on that contract.

130 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

While it may at first seem too restrictive to require allmaintainers to authorize the call, this is actu-

ally required in order to validatenegative lookups. In thepositive case, when youcansee the contract,

it’s easy for the transaction tomention which contract it found, and therefore for validators to check

that this contract does indeed exist, and is active as of the time of executing the transaction.

For the negative case, however, the transaction submitted for execution cannot say _which_ con-

tract it has not found (as, by definition, it has not found it, and it may not even exist). Still, validators

have to be able to reproduce the result of not finding the contract, and therefore they need to be able

to look for it, which means having the authorization to ask the maintainers about it.

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

Use lookupByKey to check whether a contract with the specified key exists. If it does exist,

lookupByKey returns the Some contractId, where contractId is the ID of the contract; oth-

erwise, it returns None.

lookupByKey is conceptually equivalent to

lookupByKey : forall c k. (HasFetchByKey c k) => k -> Update (Optional�

↪→(ContractId c))

lookupByKey k = do

visible <- visibleByKey @c k

if visible then do

(contractId, _ignoredContract) <- fetchByKey @c k

return $ Some contractId

else

return None

Therefore, lookupByKey needs all the same authorizations as visibleByKey, for the same reasons,

and fails in the same cases.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

2.2.12.4 exerciseByKey

exerciseByKey @ContractType contractKey

UseexerciseByKey to exercise a choice on a contract identified by itskey (compared toexercise,

which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need

authorization from the controllers of the choice and at least one stakeholder. This is equivalent to

the authorization needed to do a fetchByKey followed by an exercise.

2.2.12.5 Example

A complete example of possible success and failure scenarios of fetchByKey and lookupByKey is shown

below.

-- Copyright (c) 2020 Digital Asset (Switzerland) GmbH and/or its�

↪→affiliates. All rights reserved.

-- SPDX-License-Identifier: Apache-2.0

module Keys where

(continues on next page)

2.2. Language reference docs 131

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

import DA.Optional

template Keyed

with

sig : Party

obs : Party

where

signatory sig

observer obs

key sig : Party

maintainer key

template Divulger

with

divulgee : Party

sig : Party

where

signatory divulgee

controller sig can

nonconsuming DivulgeKeyed

: Keyed

with

keyedCid : ContractId Keyed

do

fetch keyedCid

template Delegation

with

sig : Party

delegees : [Party]

where

signatory sig

observer delegees

nonconsuming choice CreateKeyed

: ContractId Keyed

with

delegee : Party

obs : Party

controller delegee

do

create Keyed with sig; obs

nonconsuming choice ArchiveKeyed

: ()

with

(continues on next page)

132 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

delegee : Party

keyedCid : ContractId Keyed

controller delegee

do

archive keyedCid

nonconsuming choice UnkeyedFetch

: Keyed

with

cid : ContractId Keyed

delegee : Party

controller delegee

do

fetch cid

nonconsuming choice VisibleKeyed

: Bool

with

key : Party

delegee : Party

controller delegee

do

visibleByKey @Keyed key

nonconsuming choice LookupKeyed

: Optional (ContractId Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

lookupByKey @Keyed lookupKey

nonconsuming choice FetchKeyed

: (ContractId Keyed, Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

fetchByKey @Keyed lookupKey

lookupTest = scenario do

-- Put four parties in the four possible relationships with a `Keyed`

sig <- getParty "s" -- Signatory

obs <- getParty "o" -- Observer

divulgee <- getParty "d" -- Divulgee

blind <- getParty "b" -- Blind

(continues on next page)

2.2. Language reference docs 133

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

keyedCid <- submit sig do create Keyed with ..

divulgercid <- submit divulgee do create Divulger with ..

submit sig do exercise divulgercid DivulgeKeyed with ..

-- Now the signatory and observer delegate their choices

sigDelegationCid <- submit sig do

create Delegation with

sig

delegees = [obs, divulgee, blind]

obsDelegationCid <- submit obs do

create Delegation with

sig = obs

delegees = [divulgee, blind]

-- TESTING LOOKUPS AND FETCHES

-- Maintainer can fetch

submit sig do

(cid, keyed) <- fetchByKey @Keyed sig

assert (keyedCid == cid)

-- Maintainer can see

submit sig do

b <- visibleByKey @Keyed sig

assert b

-- Maintainer can lookup

submit sig do

mcid <- lookupByKey @Keyed sig

assert (mcid == Some keyedCid)

-- Stakeholder can fetch

submit obs do

(cid, l) <- fetchByKey @Keyed sig

assert (keyedCid == cid)

-- Stakeholder can't see without authorization

submitMustFail obs do visibleByKey @Keyed sig

-- Stakeholder can see with authorization

submit obs do

b <- exercise sigDelegationCid VisibleKeyed with

delegee = obs

key = sig

assert b

-- Stakeholder can't lookup without authorization

submitMustFail obs do lookupByKey @Keyed sig

-- Stakeholder can lookup with authorization

submit obs do

mcid <- exercise sigDelegationCid LookupKeyed with

delegee = obs

lookupKey = sig

(continues on next page)

134 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (mcid == Some keyedCid)

-- Divulgee _can_ fetch the contract directly

submit divulgee do

exercise obsDelegationCid UnkeyedFetch with

delegee = divulgee

cid = keyedCid

-- Divulgee can't fetch through the key

submitMustFail divulgee do fetchByKey @Keyed sig

-- Divulgee can't see

submitMustFail divulgee do visibleByKey @Keyed sig

-- Divulgee can't see with stakeholder authority

submitMustFail divulgee do

exercise obsDelegationCid VisibleKeyed with

delegee = divulgee

key = sig

-- Divulgee can't lookup

submitMustFail divulgee do lookupByKey @Keyed sig

-- Divulgee can't lookup with stakeholder authority

submitMustFail divulgee do

exercise obsDelegationCid LookupKeyed with

delegee = divulgee

lookupKey = sig

-- Divulgee can't do positive lookup with maintainer authority.

submitMustFail divulgee do

b <- exercise sigDelegationCid VisibleKeyed with

delegee = divulgee

key = sig

assert $ not b

-- Divulgee can't do positive lookup with maintainer authority.

-- Note that the lookup returns `None` so the assertion passes.

-- If the assertion is changed to `isSome`, the assertion fails,

-- which means the error message changes. The reason is that the

-- assertion is checked at interpretation time, before the lookup

-- is checked at validation time.

submitMustFail divulgee do

mcid <- exercise sigDelegationCid LookupKeyed with

delegee = divulgee

lookupKey = sig

assert (isNone mcid)

-- Divulgee can't fetch with stakeholder authority

submitMustFail divulgee do

(cid, keyed) <- exercise obsDelegationCid FetchKeyed with

delegee = divulgee

lookupKey = sig

assert (keyedCid == cid)

-- Blind party can't fetch

submitMustFail blind do fetchByKey @Keyed sig

(continues on next page)

2.2. Language reference docs 135

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- Blind party can't see

submitMustFail blind do visibleByKey @Keyed sig

-- Blind party can't see with stakeholder authority

submitMustFail blind do

exercise obsDelegationCid VisibleKeyed with

delegee = blind

key = sig

-- Blind party can't see with maintainer authority

submitMustFail blind do

b <- exercise sigDelegationCid VisibleKeyed with

delegee = blind

key = sig

assert $ not b

-- Blind party can't lookup

submitMustFail blind do lookupByKey @Keyed sig

-- Blind party can't lookup with stakeholder authority

submitMustFail blind do

exercise obsDelegationCid LookupKeyed with

delegee = blind

lookupKey = sig

-- Blind party can't lookup with maintainer authority.

-- The lookup initially returns `None`, but is rejected at

-- validation time

submitMustFail blind do

mcid <- exercise sigDelegationCid LookupKeyed with

delegee = blind

lookupKey = sig

assert (isNone mcid)

-- Blind party can't fetch with stakeholder authority as lookup is�

↪→negative

submitMustFail blind do

exercise obsDelegationCid FetchKeyed with

delegee = blind

lookupKey = sig

-- Blind party can see nonexistence of a contract

submit blind do

b <- exercise obsDelegationCid VisibleKeyed with

delegee = blind

key = obs

assert $ not b

-- Blind can do a negative lookup on a truly nonexistant contract

submit blind do

mcid <- exercise obsDelegationCid LookupKeyed with

delegee = blind

lookupKey = obs

assert (isNone mcid)

-- TESTING CREATES AND ARCHIVES

-- Divulgee can archive

(continues on next page)

136 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

submit divulgee do

exercise sigDelegationCid ArchiveKeyed with

delegee = divulgee

keyedCid

-- Divulgee can create

keyedCid2 <- submit divulgee do

exercise sigDelegationCid CreateKeyed with

delegee = divulgee

obs

-- Stakeholder can archive

submit obs do

exercise sigDelegationCid ArchiveKeyed with

delegee = obs

keyedCid = keyedCid2

-- Stakeholder can create

keyedCid3 <- submit obs do

exercise sigDelegationCid CreateKeyed with

delegee = obs

obs

return ()

2.3 Testing using scenarios

DAML has a built-in mechanism for testing templates called scenarios.

Scenarios emulate the ledger. You can specify a linear sequence of actions that various parties take,

and these are evaluated in order, according to the same consistency, authorization, andprivacy rules

as they would be on the sandbox ledger or ledger server. DAML Studio shows you the resulting Trans-

action graph.

For more on how scenarios work, see the Examples below.

On this page:

0 Scenario syntax

– Scenarios

– Transaction submission

– Asserting transaction failure

– Full syntax

0 Running scenarios in DAML Studio

0 Examples

– Simple example

– Example with two updates

– Example with submitMustFail

2.3. Testing using scenarios 137

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.3.1 Scenario syntax

2.3.1.1 Scenarios

example =

scenario do

A scenario emulates the ledger, in order to test that a DAML template or sequence of templates are

working as they should.

It consists of a sequence of transactions to be submitted to the ledger (after do), together with suc-

cess or failure assertions.

2.3.1.2 Transaction submission

-- Creates an instance of the Payout contract, authorized by "Alice"

submit alice do

The submit function attempts to submit a transaction to the ledger on behalf of a Party.

For example, a transaction could be creating a contract instance on the ledger, or exercising a choice

on an existing contract.

2.3.1.3 Asserting transaction failure

submitMustFail alice do

exercise payAlice Call

The submitMustFail function asserts that submitting a transaction to the ledger would fail.

This is essentially the same as submit, except that the scenario tests that the action doesn’t work.

2.3.1.4 Full syntax

For detailed syntax, see Reference: scenarios.

2.3.2 Running scenarios in DAML Studio

When you load a file that includes scenarios into DAML Studio, it displays a 0Scenario results0 link

above the scenario. Click the link to see a representation of the ledger after the scenario has run.

2.3.3 Examples

2.3.3.1 Simple example

A very simple scenario looks like this:

example =

scenario do

-- Creates the party Alice

alice <- getParty "Alice"

-- Creates an instance of the Payout contract, authorized by "Alice"

submit alice do

create Payout

(continues on next page)

138 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

-- There’s only one party: "Alice" is both the receiver and giver.

with receiver = alice; giver = alice

In this example, there is only one transaction, authorized by the party Alice (created using

getParty "Alice"). The ledger update is a create, and has to include the arguments for the tem-

plate (Payout with receiver = alice; giver = alice).

2.3.3.2 Example with two updates

This example tests a contract that gives both parties an explicit opportunity to agree to their obli-

gations.

example =

scenario do

-- Bank of England creates a contract giving Alice the option

-- to be paid.

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.

submit alice do

exercise payAlice Call

In the first transaction of the scenario, party bankOfEngland (created using getParty "Bank of

England") creates an instance of the CallablePayout contract with alice as the receiver and

bankOfEngland as the giver.

When the contract is submitted to the ledger, it is given a unique contract identifier of type

ContractId CallablePayout. payAlice <- assigns that identifier to the variable payAlice.

In the second statement, exercise payAlice Call, is an exercise of the Call choice on the con-

tract instance identified by payAlice. This causes a Payout agreement with her as the receiver

to be written to the ledger.

The workflow described by the above scenario models both parties explicitly exercising their rights

and accepting their obligations:

0 Party "Bank of England" is assumed to know the definition of the CallablePayout con-

tract template and the consequences of submitting a contract instance to the ledger.

0 Party "Alice" is assumed to know the definition of the contract template, as well as the con-

sequences of exercising the Call choice on it. If "Alice" does not want to receive five pounds,

she can simply not exercise that choice.

2.3.3.3 Example with submitMustFail

Because exercising a contract (by default) archives a contract, once party "Alice" exercises the

Call choice, she will be unable to exercise it again.

To test this expectation, use the submitMustFail function:

2.3. Testing using scenarios 139

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

exampleDoubleCall =

scenario do

bankOfEngland <- getParty "Bank of England"

alice <- getParty "Alice"

-- Bank of England creates a contract giving Alice the option

-- to be paid.

payAlice <- submit bankOfEngland do

create CallablePayout with

receiver = alice; giver = bankOfEngland

-- Alice exercises the contract, and receives payment.

submit alice do

exercise payAlice Call

-- If Alice tries to exercise the contract again, it must

-- fail.

submitMustFail alice do

exercise payAlice Call

When the Call choice is exercised, the contract instance is archived. The fails keyword checks

that if 'Alice' submits exercise payAlice Call again, it would fail.

2.4 Troubleshooting

0 Error: 0<X> is not authorized to commit an update0

0 Error 0Argument is not of serializable type0

0 Modelling questions

– How to model an agreement with another party

– How to model rights

– How to void a contract

– How to represent off-ledger parties

– How to limit a choice by time

– How to model a mandatory action

– When to use Optional

0 Testing questions

– How to test that a contract is visible to a party

– How to test that an update action cannot be committed

2.4.1 Error: “<X> is not authorized to commit an update”

This error occurs when there are multiple obligables on a contract.

A cornerstoneofDAML is that you cannot create a contract thatwill force someother party (or parties)

into an obligation. This error means that a party is trying to do something that would force another

parties into an agreement without their consent.

To solve this, make sure each party is entering into the contract freely by exercising a choice. A good

way of ensuring this is the 0initial and accept0 pattern: see the DAML patterns for more details.

140 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.4.2 Error “Argument is not of serializable type”

This error occurs when you’re using a function as a parameter to a template. For example, here is a

contract that creates a Payout controller by a receiver’s supervisor:

template SupervisedPayout

with

supervisor : Party -> Party

receiver : Party

giver : Party

amount : Decimal

where

controller (supervisor receiver) can

SupervisedPayout_Call

returning ContractId Payout

to create Payout with giver; receiver; amount

Hovering over the compilation error displays:

[Type checker] Argument expands to non-serializable type Party -> Party.

2.4.3 Modelling questions

2.4.3.1 How to model an agreement with another party

To enter into an agreement, create a contract instance from a template that has explicit signatory

and agreement statements.

You’ll need to use a series of contracts that give each party the chance to consent, via a contract

choice.

Because of the rules that DAML enforces, it is not possible for a single party to create an instance

of a multi-party agreement. This is because such a creation would force the other parties into that

agreement, without giving them a choice to enter it or not.

2.4.3.2 How to model rights

Use a contract choice to model a right. A party exercises that right by exercising the choice.

2.4.3.3 How to void a contract

To allow voiding a contract, provide a choice that does not create any new contracts. DAML contracts

are archived (but not deleted)when a consuming choice ismade - so exercising the choice effectively

voids the contract.

However, you should bear inmind who is allowed to void a contract, especially without the re-sought

consent of the other signatories.

2.4.3.4 How to represent off-ledger parties

You’d need to do this if you can’t set up all parties as ledger participants, because the DAML Party

type gets associated with a cryptographic key and can so only be used with parties that have been

set up accordingly.

To model off-ledger parties in DAML, they must be represented on-ledger by a participant who can

sign on their behalf. You could represent them with an ordinary Text argument.

2.4. Troubleshooting 141

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

This isn’t very private, so you could use a numeric ID/an accountId to identify the off-ledger client.

2.4.3.5 How to limit a choice by time

Some rights have a time limit: either a time by which it must be exercised or a time before which it

cannot be exercised.

You can use getTime to get the current time, and compare your desired time to it. Use assert to

abort the choice if your time condition is not met.

2.4.3.6 How to model a mandatory action

If you want to ensure that a party takes some action within a given time period. Might want to incur

a penalty if they don’t - because that would breach the contract.

For example: an Invoice that must be paid by a certain date, with a penalty (could be something like

an added interest charge or a penalty fee). To do this, you could have a time-limited Penalty choice

that can only be exercised after the time period has expired.

However, note that the penalty action can only ever create another contract on the ledger, which

represents an agreement between all parties that the initial contract has been breached. Ultimately,

the recourse for any breach is legal action of some kind. What DAML provides is provable violation

of the agreement.

2.4.3.7 When to use Optional

The Optional type, from the standard library, to indicate that a value is optional, i.e, that in some

cases it may be missing.

In functional languages, Optional is a better way of indicating amissing value than using themore

familiar value 0NULL0, present in imperative languages like Java.

To use Optional, include Optional.daml from the standard library:

import DA.Optional

Then, you can create Optional values like this:

Some "Some text" -- Optional value exists.

None -- Optional value does not exist.

You can test for existence in various ways:

-- isSome returns True if there is a value.

if isSome m

then "Yes"

else "No"

-- The inverse is isNone.

if isNone m

then "No"

else "Yes"

If you need to extract the value, use the optional function.

It returns a value of a defined type, and takes a Optional value and a function that can transform

the value contained in a Some value of the Optional to that type. If it is missing optional also

142 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

takes a value of the return type (the default value), which will be returned if the Optional value is

None

let f = \ (i : Int) -> "The number is " <> (show i)

let t = optional "No number" f someValue

If optionalValue is Some 5, the value of twould be "The number is 5". If it was None, twould

be "No number". Note that with optional, it is possible to return a different type from that con-

tained in the Optional value. This makes the Optional type very flexible.

There are many other functions in 0Optional.daml0 that let you perform familiar functional opera-

tions onstructures that containOptional values – suchasmap,filter, etc. onListsofOptional

values.

2.4.4 Testing questions

2.4.4.1 How to test that a contract is visible to a party

Use a submit block and a fetch operation. The submit block tests that the contract (as a

ContractId) is visible to that party, and the fetch tests that it is valid, i.e., that the contract does

exist.

For example, if we wanted to test for the existence and visibility of an Invoice, visible to ‘Alice’,

whose ContractId is bound to invoiceCid, we could say:

submit alice do

result <- fetch invoiceCid

You could also check (in the submit block) that the contract has some expected values:

assert (result == (Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0))

using an equality test and an assert:

submit alice do

result <- fetch invoiceCid

assert (result == (Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0))

2.4.4.2 How to test that an update action cannot be committed

Use the submitMustFail function. This is similar in form to the submit function, but is an asser-

tion that an update will fail if attempted by some Party.

2.4. Troubleshooting 143

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.5 Good design patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a

document of gooddesign practices. This document is a catalog of DAMLpatterns intended to provide

the same facility in the DA/DAML application world.

You can checkout the examples locally via daml new daml-patterns --template daml-

patterns.

Initiate and Accept The Initiate and Accept pattern demonstrates how to start a bilateral workflow.

One party initiates by creating a proposal or an invite contract. This gives another party the

chance to accept, reject or renegotiate.

Multiple party agreement The Multiple Party Agreement pattern uses a Pending contract as a wrap-

per for the Agreement contract. Any one of the signatory parties can kick off the workflow by

creating a Pending contract on the ledger, filling in themselves in all the signatory fields. The

Agreement contract is not created on the ledger until all parties have agreed to the Pending

contract, and replaced the initiator’s signature with their own.

Delegation The Delegation pattern gives one party the right to exercise a choice on behalf of another

party. The agent can control a contract instance on the ledger without the principal explicitly

committing the action.

Authorization The Authorization pattern demonstrates how to make sure a controlling party is au-

thorized before they take certain actions.

Locking The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the

specified locking party can lock the asset through an active and authorized action. When a

contract is locked, some or all choices specified on that contract may not be exercised.

2.5.1 Initiate and Accept

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates

by creating a proposal or an invite contract. This gives another party the chance to accept, reject or

renegotiate.

2.5.1.1 Motivation

It takes two to tango, but one party has to initiate. There is no difference in business world. The

contractual relationship between two businesses often starts with an invite, a business proposal, a

bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an on-boarding

process, in which they invite participants to sign master service agreements and fulfill differ-

ent roles in themarket. Receiving participants need to evaluate the rights and responsibilities

of each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The

proposal lays out what is expected frombuyers, andwhat they can expect from the issuer. Buy-

ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before

making a decision.

The Initiate and Accept pattern demonstrates how to write a DAML program to model the initiation

of an inter-company contractual relationship. DAML modelers often have to follow this pattern to

ensure no participants are forced into an obligation.

2.5.1.2 Implementation

The Initiate and Accept pattern in general involves 2 contracts:

144 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Initiate contract The Initiate contract can be created from a role contract or any other point in the

workflow. In this example, initiate contract is the proposal contract CoinIssueProposal the issuer

created from from the master contract CoinMaster.

template CoinMaster

with

issuer: Party

where

signatory issuer

controller issuer can

nonconsuming Invite : ContractId CoinIssueProposal

with owner: Party

do create CoinIssueProposal

with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinIssueProposal contract has Issuer as the signatory, and Owner as the controller to the

Accept choice. In its complete form, the CoinIssueProposal contract should define all choices

available to the owner, i.e. Accept, Reject or Counter (e.g. re-negotiate terms).

template CoinIssueProposal

with

coinAgreement: CoinIssueAgreement

where

signatory coinAgreement.issuer

controller coinAgreement.owner can

AcceptCoinProposal

: ContractId CoinIssueAgreement

do create coinAgreement

Result contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to

express their consent, it returns a result contract representing the agreement between the two

parties. In this example, the result contract is of type CoinIssueAgreement. Note, it has both

issuer and owner as the signatories, implying they both need to consent to the creation of this

contract. Both parties could be controller(s) on the result contract, depending on the business

case.

template CoinIssueAgreement

with

issuer: Party

owner: Party

where

signatory issuer, owner

controller issuer can

nonconsuming Issue : ContractId Coin

with amount: Decimal

do create Coin with issuer; owner; amount; delegates = []

2.5. Good design patterns 145

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 1: Initiate and Accept pattern diagram

2.5.1.3 Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to

progress the workflow.

2.5.2 Multiple party agreement

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-

tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on

the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on

the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature

with their own.

2.5.2.1 Motivation

The Initiate and Accept shows how to create bilateral agreements in DAML. However, a project or a

workflow often requires more than two parties to reach a consensus and put their signatures on

a multi-party contract. For example, in a large construction project, there are at least three major

stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on key

responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure

if there are conflicts between their two contracts and the third contract between their partners. If

the Initiate and Acceptwere used to collect three signatures on amulti-party agreement, unnecessary

restrictions would be put on the order of consensus and a number of additional contract templates

would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-

tiple signatories and have each party accept explicitly.

2.5.2.2 Implementation

Agreement contract The Agreement contract represents the final agreement among a group of

stakeholders. Its content can vary per business case, but in this pattern, it always has mul-

tiple signatories.

template Agreement

with

signatories: [Party]

(continues on next page)

146 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

where

signatory signatories

ensure

unique signatories

-- The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so

that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to

sign it. If you add these lists together, it has to be the same set of parties as the signatories

of the Agreement contract.

All of the toSign parties have the choice to Sign. This choice checks that the party is indeed a

member of toSign, then creates a new instance of the Pending contract where they have been

moved to the signed list.

template Pending

with

finalContract: Agreement

alreadySigned: [Party]

where

signatory alreadySigned

observer finalContract.signatories

ensure

-- Can't have duplicate signatories

unique alreadySigned

-- The parties who need to sign is the finalContract.signatories�

↪→with alreadySigned filtered out

let toSign = filter (`notElem` alreadySigned) finalContract.

↪→signatories

choice Sign : ContractId Pending with

signer : Party

controller signer

do

-- Check the controller is in the toSign list, and if they�

↪→are, sign the Pending contract

assert (signer `elem` toSign)

create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using

the Finalize choice. This checks that all of the signatories for the Agreement have signed the

Pending contract.

choice Finalize : ContractId Agreement with

signer : Party

controller signer

do

-- Check that all the required signatories have signed�

↪→Pending

(continues on next page)

2.5. Good design patterns 147

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (sort alreadySigned == sort finalContract.signatories)

create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it

cannot be created in that state by any one stakeholder.

However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[person1, person2, person3, person4] <- makePartiesFrom [

↪→"Alice", "Bob", "Clare", "Dave"]

let finalContract = Agreement with signatories = parties

-- Parties cannot create a contract already signed by someone else

initialFailTest <- person1 `submitMustFail` do

create Pending with finalContract; alreadySigned = [person1,�

↪→person2]

-- Any party can create a Pending contract provided they list�

↪→themselves as the only signatory

pending <- person1 `submit` do

create Pending with finalContract; alreadySigned = [person1]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example

code only has choices to express consensus (but you might want to add choices to Accept,

Reject, or Negotiate).

-- Each signatory of the finalContract can Sign the Pending contract

pending <- person2 `submit` do

exercise pending Sign with signer = person2

pending <- person3 `submit` do

exercise pending Sign with signer = person3

pending <- person4 `submit` do

exercise pending Sign with signer = person4

-- A party can't sign the Pending contract twice

pendingFailTest <- person3 `submitMustFail` do

exercise pending Sign with signer = person3

-- A party can't sign on behalf of someone else

pendingFailTest <- person3 `submitMustFail` do

exercise pending Sign with signer = person4

Once all of the parties have signed the Pending contract, any of them can then exercise the

Finalize choice. This creates the Agreement contract on the ledger.

person1 `submit` do

exercise pending Finalize with signer = person1

2.5.3 Delegation

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The

agent can control a contract instance on the ledger without the principal explicitly committing the

action.

148 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 2: Multiple Party Agreement Diagram

2.5.3.1 Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on

delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to

hold their securities and settle transactions on their behalf. The securities are not legally possessed

by the custodian banks, but the banks should have full rights to performactions in the client’s name,

such as making payments or changing investments.

The Delegation pattern enables DAMLmodelers to model the real-world business contractual agree-

ments between custodian banks and their customers. Ownership and administration rights can be

segregated easily and clearly.

2.5.3.2 Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-

egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to

delegate the Transfer choice.

--the original contract

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

(continues on next page)

2.5. Good design patterns 149

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition that�

↪→the issuer is the owner of the coin. This ensures the issuer cannot�

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

Delegation Contract

0 Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-

natory is required to authorize the Transfer choice on coin.

template CoinPoA

with

attorney: Party

principal: Party

where

signatory principal

controller principal can

WithdrawPoA

: ()

do return ()

0 Whether or not the Attorneyparty should be a signatory of CoinPoA is subject to the business

agreements between Principal and Attorney. For simplicity, in this example, Attorney is not

a signatory.

0 Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-

cipal exercises the choice Transfer on the Coin contract.

controller attorney can

nonconsuming TransferCoin

: ContractId TransferProposal

with

coinId: ContractId Coin

newOwner: Party

(continues on next page)

150 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

do

exercise coinId Transfer with newOwner

0 Coin contracts need to be disclosed to Attorney before they can be used in an exercise of

Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done

dynamically, for any specific Coin, by making the observers a List, and adding a choice to

add a party to that List:

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. DAML is actively researching future language

features for contract disclosure.

Fig. 3: Delegation pattern diagram

2.5.4 Authorization

The Authorization pattern demonstrates how to make sure a controlling party is authorized before

they take certain actions.

2.5.4.1 Motivation

Authorization is an universal concept in the business world as access tomost business resources is

a privilege, and not given freely. For example, security tradingmay seem to be a plain bilateral agree-

ment between the two trading counterparties, but this could not be further from truth. To be able to

trade, the trading parties need go through a series of authorization processes and gain permission

from a list of service providers such as exchanges, market data streaming services, clearing houses

and security registrars etc.

The Authorization pattern shows how tomodel these authorization checks prior to a business trans-

action.

2.5. Good design patterns 151

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.5.4.2 Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

Disclose : ContractId Coin

with p : Party

do create this with delegates = p :: delegates

--a coin can only be archived by the issuer under the condition that�

↪→the issuer is the owner of the coin. This ensures the issuer cannot�

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited

company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this

example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an

observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization

with

owner: Party

issuer: Party

where

signatory issuer

observer owner

(continues on next page)

152 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller issuer can

WithdrawAuthorization

: ()

do return ()

Authorization contracts canhavemuchmoreadvancedbusiness logic, but in its simplest form,

CoinOwnerAuthorization serves itsmain purpose, which is to prove the owner is a warranted coin

owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that

newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-

plied and is checkedby the twoassert statements in the choice before a coin canbe transferred.

controller newOwner can

AcceptTransfer

: ContractId Coin

with token: ContractId CoinOwnerAuthorization

do

t <- fetch token

assert (coin.issuer == t.issuer)

assert (newOwner == t.owner)

create coin with owner = newOwner

Fig. 4: Authorization Diagram

2.5.5 Locking

The Locking pattern exhibits how to achieve locking safely and efficiently in DAML. Only the specified

locking party can lock the asset through an active and authorized action. When a contract is locked,

some or all choices specified on that contract may not be exercised.

2.5. Good design patterns 153

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2.5.5.1 Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-

tlement process, once a trade is registered and novated to a central Clearing House, the trade is

considered locked-in. This means the securities under the ownership of seller need to be locked so

they cannot be used for other purposes, and so should be the funds on the buyer’s account. The

locked state should remain throughout the settlement Payment versus Delivery process. Once the

ownership is exchanged, the lock is lifted for the new owner to have full access.

2.5.5.2 Implementation

There are three ways to achieve locking:

Locking by archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is

used as the original contract to demonstrate locking and unlocking.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that�

↪→the issuer is the owner of the coin. This ensures the issuer cannot�

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

Archiving is a straightforward choice for locking because once a contract is archived, all choices

on the contract become unavailable. Archiving can be done either through consuming choice or

archiving contract.

Consuming choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

0 Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

154 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 The controller party on the Lockmay vary depending on business context. In this example, owner

is a good choice.

0 The parameters to this choice are also subject to business use case. Normally, it should have

at least locking terms (eg. lock expiry time) and a party authorized to unlock.

Lock : ContractId LockedCoin

with maturity: Time; locker: Party

do create LockedCoin with coin=this; maturity; locker

0 Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-

teristics, all in order to be able to recreate the original Coin:

– The signatories are the same as the original contract.

– It has all data of Coin, either through having a Coin as a field, or by replicating all data of

Coin.

– It has an Unlock choice to lift the lock.

template LockedCoin

with

coin: Coin

maturity: Time

locker: Party

where

signatory coin.issuer, coin.owner

controller locker can

Unlock

: ContractId Coin

do create coin

Fig. 5: Locking By Consuming Choice Diagram

Archiving contract

In the event that changing the original contract is not desirable and assuming the original contract

already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin

and create LockedCoin.

0 Examine the controller party and archiving logic in the Archives choice on the Coin contract. A

coin can only be archived by the issuer under the condition that the issuer is the owner of the

coin. This ensures the issuer cannot archive any coin at will.

2.5. Good design patterns 155

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

controller issuer can

Archives

: ()

do assert (issuer == owner)

0 Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment

with

owner: Party

issuer: Party

amount: Decimal

where

signatory issuer

0 The controller party and parameters on the Lock choice are the same as described in locking by

consuming choice. The additional logic required is to transfer the asset to the issuer, and then

explicitly call the Archive choice on the Coin contract.

0 Once a Coin is archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

controller owner can

nonconsuming LockCoin

: ContractId LockedCoin

with coinCid: ContractId Coin

maturity: Time

locker: Party

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&

↪→ inputCoin.amount == amount)

--the original coin firstly transferred to issuer and then�

↪→archivaed

prop <- exercise coinCid Transfer with newOwner = issuer

do

id <- exercise prop AcceptTransfer

exercise id Archives

--create a lockedCoin to represent the coin in locked state

create LockedCoin with

coin=inputCoin with owner; issuer; amount

maturity; locker

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

0 Locking by archiving disables all choices on the original contract. Usually for consuming

choices this is exactly what is required. But if a party needs to selectively lock only some

choices, remaining active choices need to be replicated on the LockedCoin contract, which can

lead to code duplication.

0 The choices on the original contract need to be altered for the lock choice to be added. If this

contract is shared across multiple participants, it will require agreement from all involved.

156 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 6: Locking By Archiving Contract Diagram

Locking by state

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that�

↪→the issuer is the owner of the coin. This ensures the issuer cannot�

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State

2.5. Good design patterns 157

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

requires introducing fields to track state. This allows for the creation of an active contract in two

possible states: locked or unlocked. A DAMLmodeler can selectivelymake certain choices actionable

only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin

through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag

or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

0 Add a locker party to the template parameters.

0 Define the states.

– if owner == locker, the coin is unlocked

– if owner != locker, the coin is in a locked state

0 The contract state is checked on choices.

– Transfer choice is only actionable if the coin is unlocked

– Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied

– Unlock is available to the locker party only if the coin is locked

template LockableCoin

with

owner: Party

issuer: Party

amount: Decimal

locker: Party

where

signatory issuer

signatory owner

ensure amount > 0.0

--Transfer can happen only if it is not locked

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

assert (locker == owner)

create TransferProposal

with coin=this; newOwner

--Lock can be done if owner decides to bring a locker on board

Lock : ContractId LockableCoin

with newLocker: Party

do

assert (newLocker /= owner)

create this with locker = newLocker

--Unlock only makes sense if the coin is in locked state

controller locker can

Unlock

: ContractId LockableCoin

do

(continues on next page)

158 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

assert (locker /= owner)

create this with locker = owner

Locking By State Diagram

Trade-offs

0 It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

0 If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to

the template parameters to track the state change, the template can get overloaded.

Locking by safekeeping

Safekeeping is a realistic way tomodel locking as it is a commonpractice inmany industries. For ex-

ample, during a real estate transaction, purchase funds are transferred to the sellers lawyer’s escrow

account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

controller owner can

Transfer : ContractId TransferProposal

with newOwner: Party

do

create TransferProposal

with coin=this; newOwner

(continues on next page)

2.5. Good design patterns 159

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

--a coin can only be archived by the issuer under the condition that�

↪→the issuer is the owner of the coin. This ensures the issuer cannot�

↪→archive coins at will.

controller issuer can

Archives

: ()

do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can

transfer the Coin ownership to a locker party.

0 Introduce a separate contract template LockRequest with the following features:

– LockRequest has a locker party as the single signatory, allowing the locker party to unilat-

erally initiate the process and specify locking terms.

– Once owner exercises Accept on the lock request, the ownership of coin is transferred to

the locker.

– The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest

with

locker: Party

maturity: Time

coin: Coin

where

signatory locker

controller coin.owner can

Accept : LockResult

with coinCid : ContractId Coin

do

inputCoin <- fetch coinCid

assert (inputCoin == coin)

tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer

lockCid <- create LockedCoinV2 with locker; maturity; coin

return LockResult {coinCid; lockCid}

0 LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described

in Consuming choice. The additional logic is to transfer ownership from the locker back to the

owner when Unlock or Clawback is called.

template LockedCoinV2

with

coin: Coin

maturity: Time

locker: Party

where

signatory locker, coin.owner

(continues on next page)

160 Chapter 2. Writing DAML

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller locker can

UnlockV2

: ContractId Coin

with coinCid : ContractId Coin

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

controller coin.owner can

ClawbackV2

: ContractId Coin

with coinCid : ContractId Coin

do

currTime <- getTime

assert (currTime >= maturity)

inputCoin <- fetch coinCid

assert (inputCoin == coin with owner=locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

Fig. 7: Locking By Safekeeping Diagram

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer

could run away with the funds. In a similar fashion, a malicious locker party could introduce code to

transfer assets away while they are under their ownership.

2.5.6 Diagram legends

2.5. Good design patterns 161

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

162 Chapter 2. Writing DAML

Chapter 3

Building applications

3.1 Application architecture

This section describes our recommended design of a full-stack DAML application.

163

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The above image shows the recommended architecture. Of course there aremany ways how you can

change the architecture and technology stack to fit your needs, which we’ll mention in the corre-

sponding sections.

To get started quickly with the recommended application architecture clone the create-daml-app

application template:

164 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

git clone https://github.com/digital-asset/create-daml-app

create-daml-app is a small, but fully functional demo application implementing the recom-

mended architecture, providing you with an excellent starting point for your own application. It

showcases

0 using DAML React libraries

0 quick iteration against the DAML Ledger Sandbox.

0 authorization

0 deploying your application in the cloud as a Docker container

3.1.1 Backend

The backend for your application can be any DAML ledger implementation running your DAR (DAML

Archive) file.

We recommend using the DAML JSON API as an interface to your frontend. It is served by the HTTP JSON

API server connected to the ledger API server. It provides simple HTTP endpoints to interact with the

ledger via GET/POST requests. However, if you prefer, you can also use the gRPC API directly.

When you use the create-daml-app template application, you can start a local sandbox together

with a JSON API server by running

daml start --start-navigator=no

in the root of the project. This is the most simple DAML ledger implementation. Once your applica-

tionmatures and becomes ready for production, the daml deploy command helps you deploy your

frontend and DAML artifacts of your project to a production ledger. See Deploying to DAML Ledgers for

an in depth manual for specific ledgers.

3.1.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-

ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,

we provide support libraries for Java and Scala and you can also interact with the gRPC API directly.

We provide two libraries to build your React frontend for a DAML application.

Name Summary

@daml/react React hooks to query/create/exercise DAML contracts

@daml/ledger DAML ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running npm install <library> in the ui directory of

your project, e.g. npm install @daml/react. Please explore the create-daml-app example

project to see the usage of these libraries.

To make your life easy when interacting with the ledger, the DAML assistant can generate JavaScript

libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your-project-name.dar> -o ui/daml.js

This command will generate a JavaScript library for each DALF in you DAR, containing meta-

data about types and templates in the DALF and TypeScript typings them. In create-daml-app,

3.1. Application architecture 165

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

ui/package.json refers to these libraries via the "create-daml-app": "file:../daml.js/

create-daml-app-0.1.0" entry in the dependencies field.

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,

@daml/types and the generated daml.js libraries provide you with the necessary code to connect

and issue commands against your ledger.

3.1.3 Authorization

When you deploy your application to a production ledger, you need to authenticate the identities of

your users.

DAML ledgers support a unified interface for authorization of commands. Some DAML ledgers, like

for example https://projectdabl.com, offer integrated authentication and authorization, but you can

also use an external service provider like https://auth0.com. The DAML react libraries support inter-

facing with a DAML ledger that validates authorization of incoming requests. Simply initialize your

DamlLedger object with the token obtained by the respective token issuer. How authorizationworks

and the form of the required tokens is described in the Authorization section.

3.1.4 Developer workflow

The DAML SDK enables a local development environment with fast iteration cycles. If you run daml-

reload-on-change.sh of the create-daml-app, a local DAML sandbox ledger is started that is

updated with yourmost recent DAML code on any change. Next, you can start your frontend in devel-

opment mode by changing to your ui directory and run npm start. This will reload your frontend

whenever you make changes to it. You can add unit tests for your DAML models by writing DAML

scenarios. These will also be reevaluated on change. A typical DAML developer workflow is to

1. Make a small change to your DAML data model

2. Optionally test your DAML code and with scenarios

3. Edit your React components to be aligned with changes made in DAML code

4. Extend the UI to make use of the newly introduced feature

5. Make further changes either to your DAML and/or React code until you’re happy with what

you’ve developed

3.1.4.1 Command deduplication

The interaction of a DAML application with the ledger is inherently asynchronous: applications send

commands to the ledger, and some time later they see the effect of that command on the ledger.

There are several things that can fail during this time window: the application can crash, the partici-

pant node can crash, messages can be lost on the network, or the ledgermay be just slow to respond

166 Chapter 3. Building applications

https://projectdabl.com
https://auth0.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

due to a high load.

If you want to make sure that a command is not executed twice, your application needs to robustly

handle all the various failure scenarios. DAML ledgers provide a mechanism for command deduplica-

tion to help deal this problem.

For each command applications provide a command ID and an optional parameter that specifies

the deduplication time. If the latter parameter is not specified in the command submission itself,

the ledger will fall back to using the configured maximum deduplication time. The ledger will then

guarantee that commands for the same submitting party and command ID will be ignored within

the deduplication time window.

To use command deduplication, you should:

0 Use generous values for the deduplication time. It should be large enough such that you can

assume the commandwas permanently lost if the deduplication time has passed and you still

don’t observe any effect of the command on the ledger (i.e. you don’t see a transaction with the

command ID via the transaction service).

0 Make sure you set command IDs deterministically, that is to say: the 0same0 command

must use the same command ID. This is useful for the recovery procedure after an applica-

tion crash/restart, in which the application inspects the state of the ledger (e.g. via the Active

contracts service) and sends commands to the ledger. When using deterministic command IDs,

any commands that had been sent before the application restart will be discarded by the ledger

to avoid duplicate submissions.

0 If you are not sure whether a commandwas submitted successfully, just resubmit it. If the new

commandwas submittedwithin the deduplication timewindow, the duplicate submissionwill

safely be ignored. If the deduplication timewindow has passed, you can assume the command

was lost or rejected and a new submission is justified.

For more details on command deduplication, see the Ledger API Services documentation.

3.1.4.2 Failing over between Ledger API endpoints

Some DAML Ledgers support exposing multiple eventually consistent Ledger API endpoints where

command deduplication works across these Ledger API endpoints. For example, these endpoints

might be hosted by separate Ledger API servers that replicate the same data and host the same

parties. Contact your ledger operator to find out whether this applies to your ledger.

Below we describe how you can build your application such that it can switch between such eventu-

ally consistent Ledger API endpoints to tolerate server failures. You can do this using the following

two steps.

First, your application must keep track of the last ledger offset received from the transaction service

or the command completion service. When switching to a new Ledger API endpoint, it must resume

consumption of the transaction (tree) and/or the command completion streams starting from this

last received offset.

Second, your applicationmust retry on OUT_OF_RANGE errors (see gRPC status codes) received from

a stream subscription – using an appropriate backoff strategy to avoid overloading the server. Such

errors can be raised because of eventual consistency. The Ledger API endpoint that the application

is newly subscribing to might be behind the endpoint that it subscribed to before the switch, and

needs time to catch up. Thanks to eventual consistency this is guaranteed to happen at some point

in the future.

Once the application successfully subscribes to its required streams on the new endpoint, it will

resume normal operation.

3.1. Application architecture 167

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.1.4.3 Dealing with time

The DAML language contains a function getTime which returns a rough estimate of 0current time0

called Ledger Time. The notion of time comes with a lot of problems in a distributed setting: differ-

ent participants might run different clocks, there may be latencies due to calculation and network,

clocks may drift against each other over time, etc.

In order to provide a useful notion of time in DAML without incurring severe performance or liveness

penalties, DAML has two notions of time: Ledger Time and Record Time:

0 As part of command interpretation, each transaction is automatically assigned a Ledger Time

by the participant server.

0 All calls to getTime within a transaction return the Ledger Time assigned to that transaction.

0 Ledger Time is chosen (and validated) to respect Causal Monotonicity: The Create action on a

contract c always precedes all other actions on c in Ledger Time.

0 As part of the commit/synchronization protocol of the underlying infrastructure, every trans-

action is assigned a Record Time, which can be thought of as the infrastructures 0system time0.

It’s the best available notion of 0real time0, but the only guarantees on it are the guarantees

the underlying infrastructure can give. It is also not known at interpretation time.

0 Ledger Time is kept close to 0real time0 by bounding it against Record Time. Transactions where

Ledger and Record Time are too far apart are rejected.

Some commands might take a long time to process, and by the time the resulting transaction is

about to be committed to the ledger, it might violate the condition that Ledger Time should be rea-

sonably close to Record Time (even when considering the ledger’s tolerance interval). To avoid such

problems, applications can set the optional parametersmin_ledger_time_abs ormin_ledger_time_rel

that specify (in absolute or relative terms) the minimal Ledger Time for the transaction. The ledger

will then process the command, but wait with committing the resulting transaction until Ledger Time

fits within the ledger’s tolerance interval.

How is this used in practice?

0 Be aware that getTime is only reasonably close to real time, and not completely monotonic.

Avoid DAML workflows that rely on very accurate time measurements or high frequency time

changes.

0 Set min_ledger_time_abs or min_ledger_time_rel if the duration of command interpre-

tation and transmission is likely to take a long time relative to the tolerance interval set by the

ledger.

0 In some corner cases, the participant nodemay be unable to determine a suitable Ledger Time

by itself. If you get an error that no Ledger Time could be found, check whether you have con-

tention on any contract referenced by your command or whether the referenced contracts are

sensitive to small changes of getTime.

For more details, see Background concepts - time.

3.2 JavaScript Client Libraries

The JavaScript Client Libraries are the recommended way to build a frontend for a DAML application.

The JavaScript CodeGenerator canautomatically generate JavaScript containingmetadataaboutDAML

packages that is required to use these libraries. We provide an integration for the React framework

with the @daml/react library. However, you can choose any JavaScript/TypeScript based framework

and use the @daml/ledger library directly to connect and interact with a DAML ledger via its HTTP

JSON API.

168 Chapter 3. Building applications

https://reactjs.org
daml-react/index.html
daml-ledger/index.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The@daml/types library contains TypeScript data types corresponding toprimitiveDAMLdata types,

such as Party or Text. It is used by the @daml/react and @daml/ledger libraries.

3.2.1 JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-

junction with the JavaScript Client Libraries for interacting with a DAML ledger via the HTTP JSON

API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-

taining metadata and types for all DAML packages included in the DAR files.

The generated packages use the library @daml/types.

3.2.1.1 Usage

In outline, the command to generate JavaScript and TypeScript typings fromDAML isdaml codegen

js -o OUTDIR DAR where DAR is the path to a DAR file (generated via daml build) and OUTDIR

is a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard 0skeleton0 template.

1 daml new my-proj --template skeleton # Create a new project based off the�

↪→skeleton template

2 cd my-proj # Enter the newly created project directory

3 daml build # Compile the project's DAML files into a DAR

4 daml codegen js -o daml.js .daml/dist/my-proj-0.0.1.dar # Generate�

↪→JavaScript packages in the daml.js directory

0 On execution of these commands:

– The directory my-proj/daml.js contains generated JavaScript packages with Type-

Script typings;

– The files are arranged into directories;

– One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-

responding to the DAML files in the project;

– For example, daml.js/my-proj-0.0.1/lib/index.js provides access to the defini-

tions for daml/Main.daml;

– The remaining directories correspond to modules of the DAML standard library;

– Those directories have numeric names (the names are hashes of the DAML-LF package

they are derived from).

To get a quickstart idea of how to usewhat has been generated, youmaywish to jump to the Templates

and choices section and return to the reference material that follows as needed.

3.2.1.2 Primitive DAML types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind

this quick reviewof the TypeScript equivalents of theprimitiveDAML typesprovidedby@daml/types.

Interfaces:

0 Template<T extends object, K = unknown>

0 Choice<T extends object, C, R, K = unknown>

Types:

3.2. JavaScript Client Libraries 169

daml-types/index.html
daml-react/index.html
daml-ledger/index.html
../json-api/index.html
../json-api/index.html
https://github.com/digital-asset/daml/tree/master/language-support/ts/daml-types

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric ν Numeric string

Text Text string

Time Time string

Party Party string

[τ] List<τ> τ[]

Date Date string

ContractId

τ
ContractId<τ> string

Optional τ Optional<τ> null | (null extends τ ? [] | [Exclude<τ,
null>] : τ)

TextMap τ TextMap<τ> { [key: string]: τ }

(τ1, τ2) Tuple2<τ1,
τ2>

{_1: τ1; _2: τ2}

Note: The types given in the 0TypeScript0 column are defined in @daml/types.

Note: For n-tuples where n 0 3, representation is analogous with the pair case (the last line of the

table).

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices

relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<τ> in the above table might look complicated. It

accounts for differences in the encoding of optional valueswhennested versuswhen they are not (i.e.

0top-level0). For example, null and "foo" are two possible values of Optional<Text> whereas,

[] and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another

possible value, [null] is not).

3.2.1.3 DAML to TypeScript mappings

The mappings from DAML to TypeScript are best explained by example.

Records

In DAML, we might model a person like this.

1 data Person =

2 Person with

(continues on next page)

170 Chapter 3. Building applications

../json-api/index.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

3 name: Text

4 party: Party

5 age: Int

Given the above definition, the generated TypeScript code will be as follows.

1 type Person = {

2 name: string;

3 party: daml.Party;

4 age: daml.Int;

5 }

Variants

This is a DAML type for a language of additive expressions.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add (Expr a, Expr a)

In TypeScript, it is represented as a discriminated union.

1 type Expr<a> =

2 | { tag: 'Lit'; value: a }

3 | { tag: 'Var'; value: string }

4 | { tag: 'Add'; value: {_1: Expr<a>, _2: Expr<a>} }

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields lhs and rhs.

This renders in TypeScript like so.

1 type Expr<a> =

2 | { tag: 'Lit2'; value: a }

3 | { tag: 'Var2'; value: string }

4 | { tag: 'Add'; value: Expr.Add<a> }

5

6 namespace Expr {

7 type Add<a> = {

8 lhs: Expr<a>;

9 rhs: Expr<a>;

(continues on next page)

3.2. JavaScript Client Libraries 171

https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

10 }

11 }

The thing to note is how the definition of the Add case has given rise to a record type definition

Expr.Add.

Enums

Given a DAML enumeration like this,

1 data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-

panion object.

1 type Color = 'Red' | 'Blue' | 'Yellow'

2

3 const Color = {

4 Red: 'Red',

5 Blue: 'Blue',

6 Yellow: 'Yellow',

7 keys: ['Red','Blue','Yellow'],

8 } as const;

Templates and choices

Here is a DAML template of a basic ‘IOU’ contract.

1 template Iou

2 with

3 issuer: Party

4 owner: Party

5 currency: Text

6 amount: Decimal

7 where

8 signatory issuer

9 choice Transfer: ContractId Iou

10 with

11 newOwner: Party

12 controller owner

13 do

14 create this with owner = newOwner

The daml codegen js command generates types for each of the choices defined on the template

as well as the template itself.

1 type Transfer = {

2 newOwner: daml.Party;

3 }

4

(continues on next page)

172 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

5 type Iou = {

6 issuer: daml.Party;

7 owner: daml.Party;

8 currency: string;

9 amount: daml.Numeric;

10 }

Each template results in the generation of a companion object. Here, is a schematic of the one gen-

erated from the Iou template2.

1 const Iou: daml.Template<Iou, undefined> & {

2 Archive: daml.Choice<Iou, DA_Internal_Template.Archive, {}, undefined>;

3 Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;

4 } = {

5 /* ... */

6 }

The exact details of these companion objects are not important - think of them as representing

0metadata0.

What is important is the use of the companion objects when creating contracts and exercising

choices using the @daml/ledger package. The following code snippet demonstrates their usage.

1 import Ledger from '@daml/ledger';

2 import {Iou, Transfer} from /* ... */;

3

4 const ledger = new Ledger(/* ... */);

5

6 // Contract creation; Bank issues Alice a USD $1MM IOU.

7

8 const iouDetails: Iou = {

9 issuer: 'Chase',

10 owner: 'Alice',

11 currency: 'USD',

12 amount: 1000000.0,

13 };

14 const aliceIouCreateEvent = await ledger.create(Iou, iouDetails);

15 const aliceIouContractId = aliceIouCreateEvent.contractId;

16

17 // Choice execution; Alice transfers ownership of the IOU to Bob.

18

19 const transferDetails: Transfer = {

20 newOwner: 'Bob',

21 }

22 const [bobIouContractId, _] = await ledger.exercise(Transfer,�

↪→aliceIouContractId, transferDetails);

Observe on line 14, the first argument to create is the Iou companion object and on line 22, the first

argument to exercise is the Transfer companion object.

The undefined type parameter captures the fact that Iou has no contract key.

3.2. JavaScript Client Libraries 173

https://github.com/digital-asset/daml/tree/master/language-support/ts/daml-ledger

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.2.2 @daml/react

@daml/react documentation

3.2.3 @daml/ledger

@daml/ledger documentation

3.2.4 @daml/types

@daml/types documentation

3.3 HTTP JSON API Service

The JSON API provides a significantly simpler way to interact with a ledger than the Ledger API by

providing basic active contract set functionality:

0 creating contracts,

0 exercising choices on contracts,

0 querying the current active contract set, and

0 retrieving all known parties.

The goal of this API is to get your distributed ledger application up and running quickly, so we have

deliberately excluded complicating concerns including, but not limited to:

0 inspecting transactions,

0 asynchronous submit/completion workflows,

0 temporal queries (e.g. active contracts as of a certain time), and

For these and other features, use the Ledger API instead.

We welcome feedback about the JSON API on our issue tracker on our forum, or on Slack.

3.3.1 DAML-LF JSON Encoding

We describe how to decode and encode DAML-LF values as JSON. For each DAML-LF type we explain

what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

The output format is parameterized by two flags:

encodeDecimalAsString: boolean

encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in

JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-

ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse

below.

Note that throughout the document the decoding is type-directed. In other words, the same JSON

value can correspond to many DAML-LF values, and the expected DAML-LF type is needed to decide

which one.

3.3.1.1 ContractId

Contract ids are expressed as their string representation:

174 Chapter 3. Building applications

daml-react/index.html
daml-ledger/index.html
daml-types/index.html
https://github.com/digital-asset/daml/issues/new?milestone=HTTP+JSON+API+Maintenance
https://discuss.daml.com
https://slack.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

"123"

"XYZ"

"foo:bar#baz"

3.3.1.2 Decimal

Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using

the same format that JSON accepts, and treated them as the equivalent JSON number:

-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+-]?\d+)?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings

because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,

and IEEE Doubles cannot express DAML-LF Decimals correctly. Therefore, we also accept strings so

that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [–(1038–1)01010, (1038–1)01010]. Numbers outside

those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s

rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42

42.0 --> 42

"42" --> 42

9999999999999999999999999999.9999999999 -->

9999999999999999999999999999.9999999999

-42 --> -42

"-42" --> -42

0 --> 0

-0 --> 0

0.30000000000000004 --> 0.3

2e3 --> 2000

A few invalid examples:

" 42 "

"blah"

99999999999999999999999999990

+42

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -?[0-9]{1,

28}(\.[0-9]{1,10})?. If encodeDecimalAsString is not set, they are encoded as JSON numbers,

also using the format -?[0-9]{1,28}(\.[0-9]{1,10})?.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume

Decimals safely with the standard JSON.parse.

3.3. HTTP JSON API Service 175

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.1.3 Int64

Input

Int64, much like Decimal, can be represented as JSON numbers and as strings, with the string

representation being [+-]?[0-9]+. The numbers must fall within [-9223372036854775808,

9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional

part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807

"9223372036854775807"

-9223372036854775808

"-9223372036854775808"

A few invalid examples:

42.3

+42

9223372036854775808

-9223372036854775809

"garbage"

" 42 "

Output

If encodeInt64AsString is set, Int64s are encoded as strings, using the format -?[0-9]+. If en-

codeInt64AsString is not set, they are encoded as JSON numbers, also using the format -?[0-9]+.

Note that the flag encodeInt64AsString is useful because it lets JavaScript consumers consume

Int64s safely with the standard JSON.parse.

3.3.1.4 Timestamp

Input

Timestamps are represented as ISO 8601 strings, rendered using the format yyyy-mm-

ddThh:mm:ss.ssssssZ:

1990-11-09T04:30:23.123456Z

9999-12-31T23:59:59.999999Z

Parsing is a little bit more flexible and uses the format yyyy-mm-ddThh:mm:ss(\.s+)?Z, i.e. it’s

OK to omit the microsecond part partially or entirely, or have more than 6 decimals. Sub-second

data beyond microseconds will be dropped. The UTC timezone designator must be included. The

rationale behind the inclusion of the timezone designator is minimizing the risk that users pass in

local times. Valid examples:

176 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

1990-11-09T04:30:23.1234569Z

1990-11-09T04:30:23Z

1990-11-09T04:30:23.123Z

0001-01-01T00:00:00Z

9999-12-31T23:59:59.999999Z

The timestamp must be between the bounds specified by DAML-LF and ISO 8601, [0001-01-

01T00:00:00Z, 9999-12-31T23:59:59.999999Z].

JavaScript

> new Date().toISOString()

'2019-06-18T08:59:34.191Z'

Python

>>> datetime.datetime.utcnow().isoformat() + 'Z'

'2019-06-18T08:59:08.392764Z'

Java

import java.time.Instant;

class Main {

public static void main(String[] args) {

Instant instant = Instant.now();

// prints 2019-06-18T09:02:16.652Z

System.out.println(instant.toString());

}

}

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss[.

ssssss]Z.

The sub-second part will be formatted as follows:

0 If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-

onds), the sub-second part will be omitted entirely;

0 If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-

liseconds, padding with trailing 0s if necessary;

0 Otherwise, the sub-second part will be up to microseconds, padding with trailing 0s if neces-

sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of

length 3, or a sub-second part of length 6.

3.3.1.5 Party

Represented using their string representation, without any additional quotes:

"Alice"

"Bob"

3.3. HTTP JSON API Service 177

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.1.6 Unit

Represented as empty object {}. Note that in JavaScript {} !== {}; however, null would be am-

biguous; for the type Optional Unit, null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually

an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in

Python.

3.3.1.7 Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18

9999-12-31

0001-01-01

The datesmust be between the bounds specified by DAML-LF and ISO 8601, [0001-01-01, 9999-99-99].

3.3.1.8 Text

Represented as strings.

3.3.1.9 Bool

Represented as booleans.

3.3.1.10 Record

Input

Records can be represented in two ways. As objects:

{ f1: v1, ..., f�: v� }

And as arrays:

[v1, ..., v�]

Note that DAML-LF record fields are ordered. So if we have

record Foo = {f1: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it

looks like in DAML. Note that a DAML tuple, i.e. (42, True), will be compiled to a DAML-LF record Tuple2

{ _1 = 42, _2 = True }.

Output

Records are always encoded as objects.

178 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.1.11 List

Lists are represented as

[v1, ..., v�]

3.3.1.12 TextMap

TextMaps are represented as objects:

{ k1: v1, ..., k�: v� }

3.3.1.13 GenMap

GenMaps are represented as lists of pairs:

[[k1, v1], [k�, v�]]

Order does not matter. However, any duplicate keys will cause the map to be treated as invalid.

3.3.1.14 Optional

Input

Optionals are encoded using null if the value is None, and with the value itself if it’s Some. However,

this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are

encoded using an empty list for None, and a list with one element for Some. Note that after the

top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> DAML-LF : Expected DAML-LF type

to make clear what the target DAML-LF type is:

null --> None : Optional Int64

null --> None : Optional (Optional Int64)

42 --> Some 42 : Optional Int64

[] --> Some None : Optional (Optional Int64)

[42] --> Some (Some 42) : Optional (Optional Int64)

[[]] --> Some (Some None) : Optional (Optional (Optional Int64))

[[42]] --> Some (Some (Some 42)) : Optional (Optional (Optional Int64))

...

Finally, if Optional values appear in records, they can be omitted to represent None. Given DAML-LF

types

record Depth1 = { foo: Optional Int64 }

record Depth2 = { foo: Optional (Optional Int64) }

We have

3.3. HTTP JSON API Service 179

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{ } --> Depth1 { foo: None } : Depth1

{ } --> Depth2 { foo: None } : Depth2

{ foo: 42 } --> Depth1 { foo: Some 42 } : Depth1

{ foo: [42] } --> Depth2 { foo: Some (Some 42) } : Depth2

{ foo: null } --> Depth1 { foo: None } : Depth1

{ foo: null } --> Depth2 { foo: None } : Depth2

{ foo: [] } --> Depth2 { foo: Some None } : Depth2

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-

sented as objects), since Map relies on absence of key to determine what keys are present in the

Map to begin with. Nor does it apply to the [f1, ..., f�] record form; Depth1 None in the array

notation must be written as [null].

Type variables may appear in the DAML-LF language, but are always resolved before deciding on a

JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it

may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> Oa { foo: Some 42 } : Oa Int

{ } --> Oa { foo: None } : Oa Int

{ foo: [] } --> Oa { foo: Some None } : Oa (Optional Int)

{ foo: [42] } --> Oa { foo: Some (Some 42) } : Oa (Optional Int)

In otherwords, the correct JSONencoding for any LF value is the one yougetwhen youhave eliminated

all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None

} will always encode as { foo: null }.

3.3.1.15 Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

variant Foo = Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

{"tag": "Bar", "value": 42}

{"tag": "Baz", "value": {}}

{"tag": "Quux", "value": null}

{"tag": "Quux", "value": 42}

Note thatDAMLdata typeswithnamed fields are compiledby factoring out the record. So for example

if we have

180 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

data Foo = Bar {f1: Int64, f2: Bool} | Baz

We’ll get in DAML-LF

record Foo.Bar = {f1: Int64, f2: Bool}

variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"f1": 42, "f2": true}}

{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-

ment example.

3.3.1.16 Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, 0Bar0 and 0Baz0.

3.3.2 Query language

The body of POST /v1/query looks like so:

{

"templateIds": [...template IDs...],

"query": {...query elements...}

}

The elements of that query are defined here.

3.3.2.1 Fallback rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-

ing to DAML-LF JSON Encoding, and compared for equality.

All types are supported by this simple equality comparison except:

0 lists

0 textmaps

0 genmaps

3.3.2.2 Simple equality

Match records having at least all the (potentially nested) keys expressed in the query. The result

record may contain additional properties.

Example: { person: { name: "Bob" }, city: "London" }

0 Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",

createdAt: "2019-04-30T12:34:12Z" }

0 No match: { person: { name: "Bob" }, city: "Zurich" }

3.3. HTTP JSON API Service 181

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its

type context is thus mutually exclusive with comparison queries.

3.3.2.3 Comparison query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a

value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

0 "%lt" for less than

0 "%gt" for greater than

0 "%lte" for less than or equal to

0 "%gte" for greater than or equal to

"%lt" and "%lte"may not be used at the same time, and likewise with "%gt" and "%gte", but all

other combinations are allowed.

Example: { "person" { "dob": { "%lt": "2000-01-01", "%gte": "1980-01-01" } }

}

0 Match: { person: { dob: "1986-06-21" } }

0 No match: { person: { dob: "1976-06-21" } }

0 No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than

these four operators occur where they are legal, so there is no ambiguity with field equality.

3.3.2.4 Appendix: Type-aware queries

This section is non-normative.

This is not a JSONquery language, it is aDAML-LFquery language. So, whilewe could theoretically treat

queries (where not otherwise interpreted by the 0may contain additional properties0 rule above)

without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery{"foo": "bar"}. This query conforms to types, among anunboundednum-

ber of others:

record A � { foo : Text }

record B � { foo : Optional Text }

variant C � foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;

// these are perfectly legal types in DAML-LF packages

In the cases of A and B, "foo" is part of the query language, and only "bar" is treated as an LF

value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous

interpretations about what elements are interpreted, and what elements treated as literal, and how

those elements are interpreted or compared, would preclude many techniques for efficient query

compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing

them, and impossible in many cases to suppress those unintended meanings within the query lan-

guage. For example, there is no way that the above query could be written to match A but never C.

182 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For these reasons, aswith LF value input via JSON, querieswritten in JSONare also always interpreted

with respect to some specified LF types (e.g. template IDs). For example:

{

"templateIds": ["Foo:A", "Foo:B", "Foo:C"],

"query": {"foo": "bar"}

}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data

types were permitted to be variants, which they are not, but for the sake of argument) as a whole

value equality query for C.

The above 0Typecheck failure0 happens because there is no LF type to which both "Bob" and

["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering

any contracts.

3.3.3 Running the JSON API

3.3.3.1 Start a DAML Ledger

You can run the JSON API alongside any ledger exposing the gRPC Ledger API you want. If you don’t

have an existing ledger, you can start an in-memory sandbox:

daml new my_project --template quickstart-java

cd my_project

daml build

daml sandbox --wall-clock-time --ledgerid MyLedger ./.daml/dist/quickstart-

↪→0.0.1.dar

3.3.3.2 Start the HTTP JSON API Service

Basic

The most basic way to start the JSON API is with the command:

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575

This will start the JSON API on port 7575 and connect it to a ledger running on localhost:6865.

Note: Your JSON API service should never be exposed to the internet. When running in production

the JSON API should be behind a reverse proxy, such as via NGINX.

Standalone JAR

The daml json-api command is great during development since it is included with the SDK and

integrates with daml start and other commands. Once you are ready to deploy your application,

you can download the standalone JAR from Github releases. It is much smaller than the whole SDK

and easier to deploy since it only requires a JVM but no other dependencies and no installation pro-

cess. The JAR accepts exactly the same command line parameters as daml json-api, so to start

the standalone JAR, you can use the following command:

3.3. HTTP JSON API Service 183

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://github.com/digital-asset/daml/releases

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

java -jar http-json-1.5.0.jar --ledger-host localhost --ledger-port 6865 --

↪→http-port 7575

Replace the version number 1.5.0 by the version of the SDK you are using.

With Query Store

To improve the performance of the JSON API you can configure it to use a PostgreSQL backend as

a cache. This is particularly beneficial if your ACS changes only very little (compared to the whole

ACS size) between queries. Note that the PostgreSQL backend acts purely as a cache. It is safe to

reinitialize the database at any time.

To enable the PostgreSQL backend you can use the --query-store-jdbc-config flag, an example

of which is below.

Note: When you use the Query Store you’ll want your first run to specify createSchema=true so

that all the necessary tables are created. After the first run make sure createSchema=false so

that it doesn’t attempt to create the tables again.

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575 \

--query-store-jdbc-config "driver=org.postgresql.Driver,

↪→url=jdbc:postgresql://localhost:5432/test?&ssl=true,user=postgres,

↪→password=password,createSchema=false"

Note: The JSON API provides many other useful configuration flags, run daml json-api --help

to see all of them.

3.3.3.3 Access Tokens

The JSON API essentially performs two separate tasks:

1. It talks to the Ledger API to get data it needs to operate, for this you need to provide an access

token if your Ledger requires authorization. Learn more in the /app-dev/authorization docs.

2. It accepts requests fromParties and passes themon to the Ledger API, for this each party needs

to provide an access token with each request it sends to the JSON API.

Note: By default, the DAML Sandbox does not does not require access tokens. In this case, you

can omit the token used by the JSON API to request packages. However, you still need to provide a

party-specific access token when submitting commands or queries as a party. The token will not

be validated in this case but it will be decoded to extract information like the party submitting the

command.

Internal Access Token

This access token is used exclusively by the JSON API service for maintaining the internal list of

known packages and templates that it gets from the Ledger API.

184 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note: At no point should this access token be provided to an end user, these are for internal use

only.

Every access token is different and will depend on your specific ledger operator’s requirements. The

JSONAPI server requires no access to party-specific data, only access to the ledger identity and pack-

age services. These services are public meaning that you need a valid token to access them but no

party-specific claims nor an admin claim. Please refer to your ledger operator’s documentation to

find out how to get these tokens from your ledger operator.

Once you have retrieved your access token, you can provide it to the JSON API by storing it in a file and

starting daml json-api with the flag --access-token-file /path/to/your/token.file.

If the token cannot be read from the provided path or the Ledger API reports an authentication error

(for example due to token expiration), the JSON API will report the error via logging.

Note: If the token file is updated with a new token it will be picked up at the next attempt to send a

request. You can use this to handle cases where an old token expires without restarting your JSON

API service.

Party-specific Access Tokens

Party-specific requests, i.e., command submissions and queries, require a JWT with some additional

restrictions compared to the the format described in the Token Payload section here. The set of parties

listed in actAs and readAs must contain exactly one party. In addition to that, the application id and

ledger id are mandatory. HTTP requests pass the token in a header, while WebSocket requests pass

the token in a subprotocol.

Note: While the JSON API receives the token it doesn’t validate it itself. Upon receiving a token it

will pass it, and all data contained within the request, on to the Ledger API’s AuthService which will

then determine if the token is valid and authorized. However, the JSON API does decode the token to

extract the ledger id, application id and party so it requires that you use the JWT format documented

below.

For a ledgerwithout authorization, e.g., the default configuration of DAMLSandbox, you canusehttps:

//jwt.io (or the JWT library of your choice) to generate your token. You canuse an arbitrary secret here.

The default 0header0 is fine. Under 0Payload0, fill in:

{

"https://daml.com/ledger-api": {

"ledgerId": "MyLedger",

"applicationId": "foobar",

"actAs": ["Alice"]

}

}

The value of the ledgerId field has tomatch the ledgerId of your underlying DAML Ledger. For the

Sandbox this corresponds to the --ledgerid MyLedger flag.

3.3. HTTP JSON API Service 185

https://jwt.io
https://jwt.io

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note: The value of applicationId will be used for commands submitted using that token.

The value for actAs is specified as a list and you provide it with the party that you want to use. Such

as the example which uses Alice for a party. Each request can only be for one party. For example

you couldn’t have actAs defined as ["Alice", "Bob"].

The party should reference an already allocated party.

Note: As mentioned above the JSON API does not validate tokens so if your ledger runs without

authorization you can use an arbitrary secret.

Then the 0Encoded0 box should have your token, ready for passing to the service as described in the

following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":

"HTTP-JSON-API-Gateway", "actAs": ["Alice"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":

"HTTP-JSON-API-Gateway", "actAs": ["Bob"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJCb2IiXX19.

↪→0uPPZtM1AmKvnGixt_Qo53cMDcpnziCjKKiWLvMX2VM

Auth via HTTP

Set HTTP header Authorization: Bearer paste-jwt-here

Example:

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

Auth via WebSockets

WebSocket clients support a 0subprotocols0 argument (sometimes simply called 0protocols0); this

is usually in a list form but occasionally in comma-separated form. Check documentation for your

WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

0 daml.ws.auth

0 jwt.token.paste-jwt-here

Example:

186 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

jwt.token.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk``

3.3.4 HTTP Status Codes

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes into 3

groups indicating:

1. success (200)

2. failure due to a client-side problem (400, 401, 404)

3. failure due to a server-side problem (500)

The JSON API can return one of the following HTTP status codes:

0 200 - OK

0 400 - Bad Request (Client Error)

0 401 - Unauthorized, authentication required

0 404 - Not Found

0 500 - Internal Server Error

If a client’s HTTP GET or POST request reaches an API endpoint, the corresponding response will al-

ways contain a JSON object with a status field, either an errors or result field and an optional

warnings:

{

"status": <400 | 401 | 404 | 500>,

"errors": <JSON array of strings>, | "result": <JSON object or array>,

["warnings": <JSON object>]

}

Where:

0 status – a JSON number which matches the HTTP response status code returned in the HTTP

header,

0 errors – a JSON array of strings, each string represents one error,

0 result – a JSON object or JSON array, representing one or many results,

0 warnings – an optional field with a JSON object, representing one or many warnings.

See the following blog post formore details about error handling best practices: REST API Error Codes

101.

3.3.4.1 Successful response, HTTP status: 200 OK

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": <JSON object>

}

3.3. HTTP JSON API Service 187

https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.4.2 Successful response with a warning, HTTP status: 200 OK

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": <JSON object>,

"warnings": <JSON object>

}

3.3.4.3 Failure, HTTP status: 400 | 401 | 404 | 500

0 Content-Type: application/json

0 Content:

{

"status": <400 | 401 | 404 | 500>,

"errors": <JSON array of strings>

}

3.3.4.4 Examples

Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [

↪→"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character 'f' at�

↪→input index 27 (line 1, position 28)"]}

Bad Request Error with Warnings:

{"status":400, "errors":["Cannot resolve any template ID from request"],

↪→"warnings":{"unknownTemplateIds":["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod(POST), uri: http://localhost:7575/

↪→v1/query1"]}

Internal Server Error:

188 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

3.3.5 Create a new Contract

To create an instance of an Iou contract from the Quickstart guide:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

3.3.5.1 HTTP Request

0 URL: /v1/create

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateId": "Iou:Iou",

"payload": {

"issuer": "Alice",

"owner": "Alice",

"currency": "USD",

"amount": "999.99",

"observers": []

}

}

Where:

0 templateId is the contract template identifier, which can be formatted as either:

– "<package ID>:<module>:<entity>" or

– "<module>:<entity>" if contract template canbeuniquely identified by itsmodule and

entity name.

0 payload field contains contract fields as defined in the DAML template and formatted accord-

ing to DAML-LF JSON Encoding.

3.3.5.2 HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

(continues on next page)

3.3. HTTP JSON API Service 189

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou

↪→"

}

}

Where:

0 status field matches the HTTP response status code returned in the HTTP header,

0 result field contains created contract details. Keep in mind that templateId in the JSON

API response is always fully qualified (always contains package ID).

3.3.6 Creating a Contract with a Command ID

When creating a new contract you may specify an optional meta field. This allows you to control the

commandId used when submitting a commend to the ledger.

Note: You cannot currently use commandIds anywhere else in the JSON API, but you can use it for

observing the results of its commands outside the JSON API in logs or via the Ledger API’s Command

Services

{

"templateId": "Iou:Iou",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"meta": {

"commandId": "a unique ID"

}

}

Where:

0 commandId – optional field, a unique string identifying the command.

190 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.7 Exercise by Contract ID

The JSON command below, demonstrates how to exercise an Iou_Transfer choice on an Iou con-

tract:

controller owner can

Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

do create IouTransfer with iou = this; newOwner

3.3.7.1 HTTP Request

0 URL: /v1/exercise

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateId": "Iou:Iou",

"contractId": "#124:0",

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Alice"

}

}

Where:

0 templateId – contract template identifier, same as in create request,

0 contractId – contract identifier, the value from the create response,

0 choice – DAML contract choice, that is being exercised,

0 argument – contract choice argument(s).

3.3.7.2 HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": {

"exerciseResult": "#201:1",

"events": [

{

"archived": {

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou

↪→"

}

},

(continues on next page)

3.3. HTTP JSON API Service 191

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

]

}

}

Where:

0 status field matches the HTTP response status code returned in the HTTP header,

0 result field contains contract choice execution details:

– exerciseResult field contains the return value of the exercised contract choice,

– events contains an array of contracts thatwere archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or

many {"created": {...}} elements. The order of the contracts is the same as on the

ledger.

3.3.8 Exercise by Contract Key

The JSON command below, demonstrates how to exercise the Archive choice on the Account con-

tract with a (Party, Text) contract key defined like this:

template Account with

owner : Party

number : Text

status : AccountStatus

where

signatory owner

key (owner, number) : (Party, Text)

maintainer key._1

192 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.8.1 HTTP Request

0 URL: /v1/exercise

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateId": "Account:Account",

"key": {

"_1": "Alice",

"_2": "abc123"

},

"choice": "Archive",

"argument": {}

}

Where:

0 templateId – contract template identifier, same as in create request,

0 key – contract key, formatted according to the DAML-LF JSON Encoding,

0 choice – DAML contract choice, that is being exercised,

0 argument – contract choice argument(s), empty, because Archive does not take any.

3.3.8.2 HTTP Response

Formatted similar to Exercise by Contract ID response.

3.3.9 Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in

the same transaction.

3.3.9.1 HTTP Request

0 URL: /v1/create-and-exercise

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateId": "Iou:Iou",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Bob"

(continues on next page)

3.3. HTTP JSON API Service 193

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

}

}

Where:

0 templateId – the initial contract template identifier, in the same format as in the create re-

quest,

0 payload – the initial contract fields as defined in the DAML template and formatted according

to DAML-LF JSON Encoding,

0 choice – DAML contract choice, that is being exercised,

0 argument – contract choice argument(s).

3.3.9.2 HTTP Response

Please note that the response below is for a consuming choice, so it contains:

0 created and archived events for the initial contract ("contractId": "#1:0"), which was

created and archived right away when a consuming choice was exercised on it,

0 a created event for the contract that is the result of exercising the choice ("contractId":

"#1:2").

0 Content-Type: application/json

0 Content:

{

"result": {

"exerciseResult": "#1:2",

"events": [

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou

↪→"

}

},

{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou

↪→"

(continues on next page)

194 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

}

},

{

"created": {

"observers": [

"Bob"

],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Bob"

},

"signatories": [

"Alice"

],

"contractId": "#1:2",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→"

}

}

]

},

"status": 200

}

3.3.10 Fetch Contract by Contract ID

3.3.10.1 HTTP Request

0 URL: /v1/fetch

0 Method: POST

0 Content-Type: application/json

0 Content:

application/json body:

{

"contractId": "#201:1"

}

3.3.10.2 Contract Not Found HTTP Response

0 Content-Type: application/json

0 Content:

3.3. HTTP JSON API Service 195

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{

"status": 200,

"result": null

}

3.3.10.3 Contract Found HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

3.3.11 Fetch Contract by Key

3.3.11.1 HTTP Request

0 URL: /v1/fetch

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateId": "Account:Account",

"key": {

"_1": "Alice",

"_2": "abc123"

}

}

196 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.11.2 Contract Not Found HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": null

}

3.3.11.3 Contract Found HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"owner": "Alice",

"number": "abc123",

"status": {

"tag": "Enabled",

"value": "2020-01-01T00:00:01Z"

}

},

"signatories": [

"Alice"

],

"key": {

"_1": "Alice",

"_2": "abc123"

},

"contractId": "#697:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→"

}

}

3.3.12 Get all Active Contracts

List all currently active contracts for all known templates.

Note: Retrieved contracts do not get persisted into a query store database. Query store is a search

index and can be used to optimize search latency. See Start HTTP service for information on how to

start JSON API service with a query store enabled.

3.3. HTTP JSON API Service 197

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note: You can only query active contracts with the /v1/query endpoint. Archived contracts (those

that were archived or consumed during an exercise operation) will not be shown in the results.

3.3.12.1 HTTP Request

0 URL: /v1/query

0 Method: GET

0 Content: <EMPTY>

3.3.12.2 HTTP Response

The response is the same as for the POST method below.

3.3.13 Get all Active Contracts Matching a Given Query

List currently active contracts that match a given query.

3.3.13.1 HTTP Request

0 URL: /v1/query

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"templateIds": ["Iou:Iou"],

"query": {"amount": 999.99}

}

Where:

0 templateIds – an array of contract template identifiers to search through,

0 query – search criteria to apply to the specified templateIds, formatted according to the

Query language.

3.3.13.2 Empty HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": []

}

3.3.13.3 Nonempty HTTP Response

0 Content-Type: application/json

0 Content:

198 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou

↪→"

}

],

"status": 200

}

Where

0 result contains an array of contracts, each contract formatted according to DAML-LF JSON En-

coding,

0 statusmatches the HTTP status code returned in the HTTP header.

3.3.13.4 Nonempty HTTP Response with Unknown Template IDs Warning

0 Content-Type: application/json

0 Content:

{

"warnings": {

"unknownTemplateIds": ["UnknownModule:UnknownEntity"]

},

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

(continues on next page)

3.3. HTTP JSON API Service 199

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou

↪→"

}

],

"status": 200

}

3.3.14 Fetch Parties by Identifiers

0 URL: /v1/parties

0 Method: POST

0 Content-Type: application/json

0 Content:

["Alice", "Bob", "Dave"]

If an empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{

"status": 400,

"errors": [

"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.

↪→DeserializationException: must be a list with at least 1 element"

]

}

3.3.14.1 HTTP Response

0 Content-Type: application/json

0 Content:

{

"status": 200,

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

},

{

"identifier": "Bob",

"displayName": "Bob & Co. LLC",

"isLocal": true

},

{

"identifier": "Dave",

(continues on next page)

200 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

"isLocal": true

}

]

}

Please note that the order of the party objects in the response is not guaranteed to match the order

of the passed party identifiers.

Where

0 identifier – a stable unique identifier of a DAML party,

0 displayName – optional human readablenameassociatedwith theparty. Mightnot beunique,

0 isLocal – true if party is hosted by the backing participant.

3.3.14.2 Response with Unknown Parties Warning

0 Content-Type: application/json

0 Content:

{

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

}

],

"warnings": {

"unknownParties": ["Erin"]

},

"status": 200

}

The resultmight be an empty JSON array if none of the requested parties is known.

3.3.15 Fetch All Known Parties

0 URL: /v1/parties

0 Method: GET

0 Content: <EMPTY>

3.3.15.1 HTTP Response

The response is the same as for the POST method above.

3.3.16 Allocate a New Party

This endpoint is a JSONAPI proxy for the Ledger API’s AllocatePartyRequest. Formore information about

party management, please refer to Provisioning Identifiers part of the Ledger API documentation.

3.3.16.1 HTTP Request

0 URL: /v1/parties/allocate

3.3. HTTP JSON API Service 201

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Method: POST

0 Content-Type: application/json

0 Content:

{

"identifierHint": "Carol",

"displayName": "Carol & Co. LLC"

}

Please refer to AllocateParty documentation for information about the meaning of the fields.

All fields in the request are optional, this means that an empty JSON object is a valid request to

allocate a new party:

{}

3.3.16.2 HTTP Response

{

"result": {

"identifier": "Carol",

"displayName": "Carol & Co. LLC",

"isLocal": true

},

"status": 200

}

3.3.17 List All DALF Packages

3.3.17.1 HTTP Request

0 URL: /v1/packages

0 Method: GET

0 Content: <EMPTY>

3.3.17.2 HTTP Response

{

"result": [

"c1f1f00558799eec139fb4f4c76f95fb52fa1837a5dd29600baa1c8ed1bdccfd",

"733e38d36a2759688a4b2c4cec69d48e7b55ecc8dedc8067b815926c917a182a",

"bfcd37bd6b84768e86e432f5f6c33e25d9e7724a9d42e33875ff74f6348e733f",

"40f452260bef3f29dede136108fc08a88d5a5250310281067087da6f0baddff7",

"8a7806365bbd98d88b4c13832ebfa305f6abaeaf32cfa2b7dd25c4fa489b79fb"

],

"status": 200

}

Where result is the JSON array containing the package IDs of all loaded DALFs.

202 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.18 Download a DALF Package

3.3.18.1 HTTP Request

0 URL: /v1/packages/<package ID>

0 Method: GET

0 Content: <EMPTY>

Note that the desired package ID is specified in the URL.

3.3.18.2 HTTP Response, status: 200 OK

0 Transfer-Encoding: chunked

0 Content-Type: application/octet-stream

0 Content: <DALF bytes>

The content (body) of the HTTP response contains raw DALF package bytes, without any encoding.

Note that the package ID specified in the URL is actually the SHA-256 hash of the downloaded DALF

package and can be used to validate the integrity of the downloaded content.

3.3.18.3 HTTP Response with Error, any status different from 200 OK

Any status different from 200 OK will be in the format specified below.

0 Content-Type: application/json

0 Content:

{

"errors": [

"io.grpc.StatusRuntimeException: NOT_FOUND"

],

"status": 500

}

3.3.19 Upload a DAR File

3.3.19.1 HTTP Request

0 URL: /v1/packages

0 Method: POST

0 Content-Type: application/octet-stream

0 Content: <DAR bytes>

The content (body) of the HTTP request contains raw DAR file bytes, without any encoding.

3.3.19.2 HTTP Response, status: 200 OK

0 Content-Type: application/json

0 Content:

{

"result": 1,

"status": 200

}

3.3. HTTP JSON API Service 203

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.3.19.3 HTTP Response with Error

0 Content-Type: application/json

0 Content:

{

"errors": [

"io.grpc.StatusRuntimeException: INVALID_ARGUMENT: Invalid�

↪→argument: Invalid DAR: package-upload, content: [}]"

],

"status": 500

}

3.3.20 Streaming API

Two subprotocols must be passed with every request, as described in Passing token with WebSockets.

JavaScript/Node.js example demonstrating how to establish Streaming API connection:

const wsProtocol = "daml.ws.auth";

const tokenPrefix = "jwt.token.";

const jwt =

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdp";

const subprotocols = [`${tokenPrefix}${jwt}`, wsProtocol];

const ws = new WebSocket("ws://localhost:7575/v1/stream/query",�

↪→subprotocols);

ws.addEventListener("open", function open() {

ws.send(JSON.stringify({templateIds: ["Iou:Iou"]}));

});

ws.addEventListener("message", function incoming(data) {

console.log(data);

});

Please note that Streaming API does not allow multiple requests over the same WebSocket connec-

tion. The server returns an error and disconnects if second request received over the same Web-

Socket connection.

3.3.20.1 Error and Warning Reporting

Errors and warnings reported as part of the regular on-message flow: ws.

addEventListener("message", ...).

Streaming API error messages formatted the same way as synchronous API errors.

Streaming API reports only one type of warnings – unknown template IDs, which is formatted as:

{"warnings":{"unknownTemplateIds":<JSON Array of template ID strings>>}}

204 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Error and Warning Examples

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

{

"errors":["JsonReaderError. Cannot read JSON: <{\"templateIds\":[]}>.�

↪→Cause: spray.json.DeserializationException: search requires at least one�

↪→item in 'templateIds'"],

"status":400

}

{

"errors":["Multiple requests over the same WebSocket connection are not�

↪→allowed."],

"status":400

}

{

"errors":["Could not resolve any template ID from request."],

"status":400

}

3.3.20.2 Contracts Query Stream

0 URL: /v1/stream/query

0 Scheme: ws

0 Protocol: WebSocket

List currently active contracts that match a given query, with continuous updates.

application/json body must be sent first, formatted according to the Query language:

{"templateIds": ["Iou:Iou"]}

Multiple queries may be specified in an array, for overlapping or different sets of template IDs:

[

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%lte": 50}}},

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%gt": 50}}},

{"templateIds": ["Iou:Iou"]}

]

An optional offset returned by a prior query (see output examples below) may be specified before

the above, as a separate body. Itmust be a string, and if specified, the streamwill begin immediately

after the response body that included that offset:

{"offset": "5609"}

The output is a series of JSON documents, each payload formatted according to DAML-LF JSON En-

coding:

3.3. HTTP JSON API Service 205

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{

"events": [{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou

↪→"

},

"matchedQueries": [1, 2]

}]

}

where matchedQueries indicates the 0-based indices into the request list of queries thatmatched

this contract.

Every events block following the end of contracts that existed when the request started includes

an offset. The stream is guaranteed to send an offset immediately at the beginning of this 0live0

data, which may or may not contain any events; if it does not contain events and no events were

emitted before, it may be null if there was no transaction on the ledger or a string representing the

current ledger end; otherwise, it will be a string. For example, you might use it to turn off an initial

0loading0 indicator:

{

"events": [],

"offset": "2"

}

To keep the stream alive, you’ll occasionally see messages like this, which can be safely ignored if

you do not need to capture the last seen ledger offset:

{"events":[],"offset":"5609"}

where offset is the last seen ledger offset.

After submitting an Iou_Split exercise, which creates two contracts and archives the one above,

the same stream will eventually produce:

{

"events": [{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou

↪→"

(continues on next page)

206 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

}

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "42.42",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:1",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou

↪→"

},

"matchedQueries": [0, 2]

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "957.57",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:2",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou

↪→"

},

"matchedQueries": [1, 2]

}],

"offset": "3"

}

If any template IDs are found not to resolve, the first element of the stream will report them:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

and the stream will continue, provided that at least one template ID resolved properly.

Aside from "created" and "archived" elements, "error" elements may appear, which contain

a string describing the error. The stream will continue in these cases, rather than terminating.

Some notes on behavior:

3.3. HTTP JSON API Service 207

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

1. Each result array means 0this is what would have changed if you just polled /v1/query itera-

tively.0 In particular, just as polling search can 0miss0 contracts (as a create and archive can

be paired between polls), such contracts may or may not appear in any result object.

2. No archived ever contains a contract ID occurring within a created in the same array. So,

for example, supposing you are keeping an internal map of active contracts keyed by contract

ID, you can apply the created first or the archived first, forwards, backwards, or in random

order, and be guaranteed to get the same results.

3. Within a given array, if an archived and created refer to contracts with the same template

ID and contract key, the archived is guaranteed to occur before the created.

4. Except in cases of #3, within a single response array, the order of created and archived is

undefined and does not imply that any element occurred 0before0 or 0after0 any other one.

5. You will almost certainly receive contract IDs in archived that you never received a created

for. These are contracts that query filtered out, but for which the server no longer is aware

of that. You can safely ignore these. However, such 0phantom archives0 are guaranteed to

represent an actual archival on the ledger, so if you are keeping a more global dataset outside

the context of this specific search, you can use that archival information as you wish.

3.3.20.3 Fetch by Key Contracts Stream

0 URL: /v1/stream/fetch

0 Scheme: ws

0 Protocol: WebSocket

List currently active contracts that match one of the given {templateId, key} pairs, with contin-

uous updates.

application/json body must be sent first, formatted according to the following rule:

[

{"templateId": "<template ID 1>", "key": <key 1>},

{"templateId": "<template ID 2>", "key": <key 2>},

...

{"templateId": "<template ID N>", "key": <key N>}

]

Where:

0 templateId – contract template identifier, same as in create request,

0 key – contract key, formatted according to the DAML-LF JSON Encoding,

Example:

[

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "abc123

↪→"}},

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345

↪→"}}

]

The output stream has the same format as the output from the Contracts Query Stream. We fur-

ther guarantee that for every archived event appearing on the stream there has been a matching

created event earlier in the stream, except in the case of missing contractIdAtOffset fields in

the case described below.

208 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You may supply an optional offset for the stream, exactly as with query streams. However, you

should supply with each {templateId, key} pair a contractIdAtOffset, which is the contract

ID currently associated with that pair at the point of the given offset, or null if no contract ID was

associated with the pair at that offset. For example, with the above keys, if you had one "abc123"

contract but no "def345" contract, you might specify:

[

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "abc123

↪→"},

"contractIdAtOffset": "#1:0"},

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345

↪→"},

"contractIdAtOffset": null}

]

If every contractIdAtOffset is specified, as is so in the example above, you will not receive any

archived events for contracts created before the offset unless those contracts are identified in a

contractIdAtOffset. By contrast, if any contractIdAtOffset is missing, archived event fil-

tering will be disabled, and you will receive 0phantom archives0 as with query streams.

3.4 DAML Script

3.4.1 DAML Script Library

The DAML Script library defines the API used to implement DAML scripts. See DAML Script:: for more

information on DAML script.

3.4.1.1 Module Daml.Script

Data Types

data Commands a

This is used to build up the commands send as part of submit. If you enable the

ApplicativeDo extension by adding {-# LANGUAGE ApplicativeDo #-} at the top

of your file, you can use do-notation but the individual commands must not depend on

each other and the last statement in a do block must be of the form return expr or

pure expr.

instance Functor Commands

instance HasSubmit Script Commands

instance Applicative Commands

instance HasField 0commands0 (SubmitCmd a) (Commands a)

instance HasField 0commands0 (SubmitMustFailCmd a) (Commands a)

data ParticipantName

ParticipantName

Field Type Description

participantName Text

3.4. DAML Script 209

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

instance HasField 0participantName0 ParticipantName Text

data PartyDetails

The party details returned by the party management service.

PartyDetails

Field Type Description

party Party Party id

displayName Optional

Text

Optional display name

isLocal Bool True if party is hosted by the backingpar-

ticipant.

instance Eq PartyDetails

instance Ord PartyDetails

instance Show PartyDetails

instance HasField 0continue0 (ListKnownPartiesPayload a) ([PartyDetails] -> a)

instance HasField 0displayName0 PartyDetails (Optional Text)

instance HasField 0isLocal0 PartyDetails Bool

instance HasField 0party0 PartyDetails Party

data PartyIdHint

A hint to the backing participant what party id to allocate. Must be a valid PartyIdString

(as described in @value.proto@).

PartyIdHint

Field Type Description

partyIdHint Text

instance HasField 0partyIdHint0 PartyIdHint Text

data Script a

This is the type of A DAML script. Script is an instance of Action, so you can use do

notation.

instance Functor Script

instance CanAbort Script

instance HasSubmit Script Commands

instance HasTime Script

instance Action Script

instance ActionFail Script

instance Applicative Script

210 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

instance HasField 0dummy0 (Script a) ()

instance HasField 0runScript0 (Script a) (() -> Free ScriptF (a, ()))

Functions

query : Template t => Party -> Script [(ContractId t, t)]

Query the set of active contracts of the template that are visible to the given party.

queryFilter : Template c => Party -> (c -> Bool) -> Script [(ContractId c, c)]

Query the set of active contracts of the template that are visible to the given party and match

the given predicate.

queryContractId : Template t => Party -> ContractId t -> Script (Optional t)

Query for the contract with the given contract id.

Returns None if there is no active contract the party is a stakeholder on. This is semantically

equivalent to calling query and filtering on the client side.

queryContractKey : TemplateKey t k => Party -> k -> Script (Optional (ContractId t, t))

setTime : Time -> Script ()

Set the time via the time service.

This is only supported in static timemode when running over the gRPC API and in DAML Studio.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in DAML Studio.

passTime : RelTime -> Script ()

Advance ledger time by the given interval.

Only supported in static time mode when running over the gRPC API and in DAML Studio. Note

that this is not an atomic operation over the gRPC API so no other clients should try to change

time while this is running.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in DAML Studio.

allocateParty : Text -> Script Party

Allocate a party with the given display name using the party management service.

allocatePartyWithHint : Text -> PartyIdHint -> Script Party

Allocate a party with the given display name and id hint using the party management service.

allocatePartyOn : Text -> ParticipantName -> Script Party

Allocate a party with the given display name on the specified participant using the party man-

agement service.

allocatePartyWithHintOn : Text -> PartyIdHint -> ParticipantName -> Script Party

Allocate a party with the given display name and id hint on the specified participant using the

party management service.

listKnownParties : Script [PartyDetails]

List the parties known to the default participant.

listKnownPartiesOn : ParticipantName -> Script [PartyDetails]

List the parties known to the given participant.

sleep : RelTime -> Script ()

Sleep for the given duration.

This is primarily useful in tests where you repeatedly call query until a certain state is reached.

Note that this will sleep for the same duration in both wallcock and static time mode.

3.4. DAML Script 211

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

createCmd : Template t => t -> Commands (ContractId t)

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Commands r

Exercise a choice on the given contract.

exerciseByKeyCmd : (TemplateKey t k, Choice t c r) => k -> c -> Commands r

Exercise a choice on the contract with the given key.

createAndExerciseCmd : Choice t c r => t -> c -> Commands r

Create a contract and exercise a choice on it in the same transacton.

archiveCmd : Choice t Archive () => ContractId t -> Commands ()

Archive the given contract.

archiveCmd cid is equivalent to exerciseCmd cid Archive.

script : Script a -> Script a

Convenience helper to declare you are writing a Script.

This is only useful for readability and to improve type inference. Any expression of type Script

a is a valid script regardless of whether it is implemented using script or not.

DAML scenarios provide a simple way for testing DAML models and getting quick feedback in DAML

studio. However, scenarios are run in a special process and do not interact with an actual ledger.

This means that you cannot use scenarios to test other ledger clients, e.g., your UI or DAML triggers.

DAML Script addresses this problemby providing youwith an API with the simplicity of DAML scenar-

ios and all the benefits such as being able to reuse your DAML types and logic while running against

an actual ledger in addition to allowing you to experiment in DAML Studio. This means that you can

use it to test automation logic, your UI but also for ledger initializationwhere scenarios cannot be used

(with the exception of DAML Sandbox).

You can also use DAML Script interactively using DAML REPL.

3.4.2 Usage

Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin

with

issuer : Party

owner : Party

where

signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the

issuer as signatories.

Second, we have a template called CoinProposal:

template CoinProposal

with

coin : Coin

where

signatory coin.issuer

(continues on next page)

212 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

observer coin.owner

choice Accept : ContractId Coin

controller coin.owner

do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when

exercised by the controller will create the corresponding Coin.

Having defined the templates, we can nowmove on to write DAML scripts that operate on these tem-

plates. To get access to the API used to implement DAML scripts, you need to add the daml-script

library to the dependencies field in daml.yaml.

dependencies:

- daml-prim

- daml-stdlib

- daml-script

We also enable the ApplicativeDo extension. We will see below why this is useful.

{-# LANGUAGE ApplicativeDo #-}

module ScriptExample where

import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the

parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with

bank : Party

alice : Party

bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2

of them. This function takes the LedgerParties as an argument and return something of type

Script () which is DAML script’s equivalent of Scenario ().

initialize : LedgerParties -> Script ()

initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transac-

tion. The first argument is the party submitting the transaction. In our case, we want all

proposals to be created by the bank so we use parties.bank. The second argument must

be of type Commands a so in our case Commands (ContractId CoinProposal, ContractId

CoinProposal, ContractId CoinProposal) corresponding to the 3 proposals that we cre-

ate. Commands is similar to Update which is used in the submit function in scenarios. However,

Commands requires that the individual commands do not depend on each other. This matches

the restriction on the Ledger API where a transaction consists of a list of commands. Using

ApplicativeDo we can still use do-notation as long as we respect this and the last statement in

the do-block is of the form return expr or pure expr. In Commands we use createCmd instead

of create and exerciseCmd instead of exercise.

3.4. DAML Script 213

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(coinProposalAlice, coinProposalBob, coinProposalBank) <- submit parties.

↪→bank $ do

coinProposalAlice <- createCmd (CoinProposal (Coin parties.bank�

↪→parties.alice))

coinProposalBob <- createCmd (CoinProposal (Coin parties.bank parties.

↪→bob))

coinProposalBank <- createCmd (CoinProposal (Coin parties.bank parties.

↪→bank))

pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposals, we want Alice and Bob to accept the proposal while

the Bank will ignore the proposal that it has created for itself. To do so we use separate submit

statements for Alice and Bob and call exerciseCmd.

coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept

coinBob <- submit parties.bob $ exerciseCmd coinProposalBob Accept

Finally, we call pure () on the last line of our script to match the type Script ().

pure ()

Wehavenowdefinedaway to initialize the ledger sowecanwrite a test that checks that the contracts

that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does

not take any arguments.

test : Script ()

test = do

Now, we create the parties using the allocateParty function. This uses the party management

service to create new parties with the given display name. Note that the display name does not

identify a party uniquely. If you call allocateParty twice with the same display name, it will create

2 different parties. This is very convenient for testing since a new party cannot see any old contracts

on the ledger so using new parties for each test removes the need to reset the ledger.

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

bank <- allocateParty "Bank"

let parties = LedgerParties bank alice bob

We now call the initialize function that we defined before on the parties that we have just allo-

cated.

initialize parties

To verify the contracts on the ledger, we use the query function. We pass it the type of the template

and a party. It will then give us all active contracts of the given type visible to the party. In our

example, we expect to see one active CoinProposal for bank and one Coin contract for each of

Alice and Bob. We get back list of (ContractId t, t) pairs from query. In our tests, we do not

need the contract ids, so we throw them away using map snd.

214 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

proposals <- query @CoinProposal bank

assertEq [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <- query @Coin alice

assertEq [Coin bank alice] (map snd aliceCoins)

bobCoins <- query @Coin bob

assertEq [Coin bank bob] (map snd bobCoins)

To run our script, we first build it with daml build and then run it by pointing to the DAR, the name

of our script, the host and port our ledger is running on and the time mode of the ledger.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name

ScriptExample:test --ledger-host localhost --ledger-port 6865

Up to now, we have worked with parties that we have allocated in the test. We can also pass in the

path to a file containing the input in the DAML-LF JSON Encoding.

{

"alice": "Alice",

"bob": "Bob",

"bank": "Bank"

}

We can then initialize our ledger passing in the json file via --input-file.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name

ScriptExample:initialize --ledger-host localhost --ledger-port 6865 --

input-file ledger-parties.json

If you open Navigator, you can now see the contracts that have been created.

While we will not use it here, there is also an --output-file option that you can use to write the

result of a script to a file using the DAML-LF JSON encoding. This is particularly useful if you need to

consume the result from another program.

3.4.3 Using DAML Script for Ledger Initialization

You can use DAML script to initialize a ledger on startup. To do so, specify an init-script:

ScriptExample:initializeFixed field in your daml.yaml. This will automatically be picked

up by daml start and used to initialize sandbox. Since it is often useful to create a party with a

specific party identifier during development, you can use the allocatePartyWithHint function

which accepts not only the display name but also a hint for the party identifier. On Sandbox, the hint

will be used directly as the party identifier of the newly allocated party. This allows us to implement

initializeFixed as a small wrapper around the initialize function we defined above:

initializeFixed : Script ()

initializeFixed = do

bank <- allocatePartyWithHint "Bank" (PartyIdHint "Bank")

alice <- allocatePartyWithHint "Alice" (PartyIdHint "Alice")

bob <- allocatePartyWithHint "Bob" (PartyIdHint "Bob")

let parties = LedgerParties{..}

initialize parties

3.4. DAML Script 215

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.4.3.1 Migrating from Scenarios

Existing scenarios that you used for ledger initialization can be translated to DAML script but there

are a few things to keep in mind:

1. You need to add daml-script to the list of dependencies in your daml.yaml.

2. You need to import the Daml.Scriptmodule.

3. Calls to create, exercise, exerciseByKey and createAndExercise need to be suffixed

with Cmd, e.g., createCmd.

4. Instead of specifying a scenario field in your daml.yaml, you need to specify an init-

script field. The initialization script is specified via Module:identifier for both fields.

5. In DAML script, submit and submitMustFail are limited to the functionality provided by

the ledger API: A list of independent commands consisting of createCmd, exerciseCmd,

createAndExerciseCmd and exerciseByKeyCmd. There are two issues you might run into

when migrating an existing scenario:

1. Your commands depend on each other, e.g., you use the result of a createwithin a follow-

ing command in the samesubmit. In this case, you have two options: If it is not important

that they are part of a single transaction, split them into multiple calls to submit. If you

do need them to be within the same transaction, you can move the logic to a choice and

call that using createAndExerciseCmd.

2. You use something that is not part of the 4 ledger API command types, e.g.,

fetch. For fetch and fetchByKey, you can instead use queryContractId and

queryContractKey with the caveat that they do not run within the same transac-

tion. Other types of Update statements can be moved to a choice that you call via

createAndExerciseCmd.

6. Instead of Scenario’s getParty, DAML Script provides you with allocateParty and

allocatePartyWithHint. There are a few important differences:

1. Allocating a party always gives you back a new party (or fails). If you havemultiple calls to

getPartywith the same string and expect to get back the sameparty, you should instead

allocate the party once at the beginning and pass it along to the rest of the code.

2. If you want to allocate a party with a specific party id, you can use

allocatePartyWithHint x (PartyIdHint x) as a replacement for getParty x.

Note that while this is supported in DAML Studio and DAML for PostgreSQL, other ledgers

can behave differently and ignore the party id hint or interpret it another way. Try to not

rely on any specific party id.

7. Instead of pass and passToDate, DAML Script provides passTime and setTime.

3.4.4 Using DAML Script in Distributed Topologies

So far, we have run DAML script against a single participant node. It is also more possible to run

it in a setting where different parties are hosted on different participant nodes. To do so, pass the

--participant-config participants.json file to daml script instead of --ledger-host

and ledger-port. The file should be of the format

{

"default_participant": {"host": "localhost", "port": 6866, "access_

↪→token": "default_jwt", "application_id": "myapp"},

"participants": {

"one": {"host": "localhost", "port": 6865, "access_token": "jwt_

↪→for_alice", "application_id": "myapp"},

"two": {"host": "localhost", "port": 6865, "access_token": "jwt_

↪→for_bob", "application_id": "myapp"}

(continues on next page)

216 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

},

"party_participants": {"alice": "one", "bob": "two"}

}

This will define a participant called one, a default participant and it defines that the party alice is

on participant one. Whenever you submit something as party, we will use the participant for that

party or if none is specified default_participant. If default_participant is not specified,

using a party with an unspecified participant is an error.

allocateParty will also use the default_participant. If you want to allocate a party on a spe-

cific participant, you can use allocatePartyOn which accepts the participant name as an extra

argument.

3.4.5 Running DAML Script against Ledgers with Authorization

To run DAML Script against a ledger that verifies authorization, you need to specify an access token.

There are two ways of doing that:

1. Specify a single access token via --access-token-file path/to/jwt. This tokenwill then

be used for all requests so it must provide claims for all parties that you use in your script.

2. If you need multiple tokens, e.g., because you only have single-party tokens you can use the

access_token field in the participant config specified via--participant-config. The sec-

tion on using DAML Script in distributed topologies contains an example. Note that you can specify

the same participant twice if you want different auth tokens.

If you specify both --access-token-file and --participant-config, the participant config

takes precedence and the token from the file will be used for any participant that does not have a

token specified in the config.

3.4.6 Running DAML Script against the HTTP JSON API

In some cases, you only have access to the HTTP JSON API but not to the gRPC of a ledger, e.g., on

project:DABL. For this usecase, DAML script can be run against the JSON API. Note that if you do have

access to the gRPC API, running DAML script against the JSON API does not have any advantages.

To run DAML script against the JSON API you have to pass the --json-api parameter to daml

script. There are a few differences and limitations compared to running DAML Script against the

gRPC API:

1. When running against the JSON API, the --host argument has to contain an http://

or https:// prefix, e.g., daml script --host http://localhost --port 7575 --

json-api.

2. The JSON API only supports single-command submissions. This means that within a single

call to submit you can only execute one ledger API command, e.g., one createCmd or one

exerciseCmd.

3. The JSON API requires authorization tokens even when it is run against a ledger that doesn’t

verify authorization. The section on authorization describes how to specify the tokens.

4. The tokensmust contain exactly one party in actAs and/or readAs. This party will be used for

submit and query. Passing a party as the argument to submit and query that is different

from the party in the token is an error.

5. If you use multiple parties within your DAML Script, you need to specify one token per party.

6. getTime will always return the Unix epoch in static time mode since the time service is not

exposed via the JSON API.

3.4. DAML Script 217

https://projectdabl.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

7. setTime is not supported and will throw a runtime error.

3.5 DAML REPL

The DAML REPL allows you to use the DAML Script API interactively. This is useful for debugging and

for interactively inspecting and manipulating a ledger.

3.5.1 Usage

First create a new project based on the script-example template. Take a look at the documenta-

tion for DAML Script for details on this template.

daml new script-example --template script-example # create a project�

↪→called script-example based on the template

cd script-example # switch to the new project

Now, build the project and start DAML Sandbox, the in-memory ledger included in the DAML SDK. Note

that we are starting Sandbox in wallclock mode. Static time is not supported in daml repl.

daml build

daml sandbox --wall-clock-time --port=6865 .daml/dist/script-example-0.0.1.

↪→dar

Now that the ledger has been started, you can launch the REPL in a separate terminal using the

following command.

daml repl --ledger-host=localhost --ledger-port=6865 .daml/dist/script-

↪→example-0.0.1.dar --import script-example

The --ledger-host and --ledger-port parameters point to the host and port your ledger is run-

ning on. In addition to that, you also need to pass in the name of a DAR containing the templates

and other definitions that will be accessible in the REPL. We also specify that we want to import all

modules from the script-example package. If your modules provide colliding definitions you can

also import modules individually fromwithin the REPL. Note that you can also specify multiple DARs

and they will all be available.

You should now see a prompt looking like

daml>

You can think of this prompt like a line in a do-block of the Script action. Each line of input has to

have one of the following two forms:

1. An expression expr of type Script a for some type a. This will execute the script and print

the result if a is an instance of Show and not ().

2. A pure expression expr of type a for some type a where a is an instance of Show. This will

evaluate expr and print the result. If you are only interest in pure expressions you can also use

DAML REPL without connecting to a ledger.

3. A binding of the form pat <- expr where pat is pattern, e.g., a variable name x to bind the

result to and expr is an expression of type Script a. This will execute the script and match

the result against the pattern pat bindings the matches to the variables in the pattern. You

can then use those variables on subsequent lines.

218 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4. A let binding of the form let pat = y, where pat is a pattern and y is a pure expression or

let f x = y to define a function. The bound variables can be used on subsequent lines.

5. Next to DAML code the REPL also understands REPL commands which are prefixed by :. Enter

:help to see a list of supported REPL commands.

First create two parties: A party with the display name "Alice" and the party id "alice" and a

party with the display name "Bob" and the party id "bob".

daml> alice <- allocatePartyWithHint "Alice" (PartyIdHint "alice")

daml> bob <- allocatePartyWithHint "Bob" (PartyIdHint "bob")

Next, create a CoinProposal from Alice to Bob

daml> submit alice (createCmd (CoinProposal (Coin alice bob)))

As Bob, you can now get the list of active CoinProposal contracts using the query function. The

debug : Show a => a -> Script () function can be used to print values.

daml> proposals <- query @CoinProposal bob

daml> debug proposals

[Daml.Script:39]: [(<contract-id>,CoinProposal {coin = Coin {issuer =

↪→'alice', owner = 'bob'}})]

Finally, accept all proposals using the forA function to iterate over them.

daml> forA proposals $ \(contractId, _) -> submit bob (exerciseCmd�

↪→contractId Accept)

Using the query function we can now verify that there is one Coin and no CoinProposal:

daml> coins <- query @Coin bob

daml> debug coins

[Daml.Script:39]: [(<contract-id>,Coin {issuer = 'alice', owner = 'bob'})]

daml> proposals <- query @CoinProposal bob

[Daml.Script:39]: []

To exit daml repl press Control-D.

3.5.2 What is in scope at the prompt?

In the prompt, all modules from DALFs specified in --import are imported automatically. In ad-

dition to that, the DAML.Scriptmodule is also imported and gives you access to the DAML Script

API.

You can use the commands :module + ModA ModB … to import additional modules and :module

- ModA ModB … to remove previously added imports. Modules can also be imported using regular

import declarations instead of module +. The command :show imports lists the currently active

imports.

daml> import DA.Time

daml> debug (days 1)

3.5. DAML REPL 219

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.5.3 Using DAML REPL without a Ledger

If you are only interested in pure expressions, e.g., because you want to test how some function be-

haves you can omit the --ledger-host and -ledger-port parameters. DAML REPL will work as

usual but any attempts to call DAML Script APIs that interact with the ledger, e.g., submit will result

in the following error:

daml> java.lang.RuntimeException: No default participant

3.5.4 Connecting via TLS

You can connect to a ledger that requires TLS by passing --tls. A custom root certificate used for

validating the server certificate can be set via --cacrt. Finally, you can also enable client authenti-

cation by passing --pem client.key --crt client.crt. If --cacrt or --pem and --crt are

passed TLS is automatically enabled so --tls is redundant.

3.5.5 Connection to a Ledger with Authorization

If your ledger requires an authorization token you can pass it via --access-token-file.

3.5.6 Using DAML REPL to convert to JSON

Using the :json command you can encode serializable DAML expressions as JSON. For example

using the definitions and imports from above:

daml> :json days 1

{"microseconds":86400000000}

daml> :json map snd coins

[{"issuer":"alice","owner":"bob"}]

3.6 Upgrading and extending DAML applications

3.6.1 Automating the Upgrade Process

In this section, we are going to automate the upgrade of our coin process using DAML Script and

DAML Triggers. Note that automation for upgrades is specific to an individual application, just like

the upgrade models. Nevertheless, we have found that the pattern shown here occurs frequently.

3.6.1.1 Structuring the Upgrade

There are three kinds of actions performed during the upgrade:

1. Alice creates UpgradeCoinProposal contracts. We assume here, that Alice wants to upgrade

all Coin contracts she has issued. Since the UpgradeCoinProposal proposal is specific to

eachowner, Alice has to create oneUpgradeCoinProposalper owner. There canbepotentially

many owners but this step only has to be performed once assuming Alice will not issue more

Coin contracts after this point.

2. Bob and other owners accept the UpgradeCoinProposal. To keep this example simple, we

assume that there are only coins issued by Alice. Therefore, each owner has to accept at most

one proposal.

3. As owners accept upgrade proposals, Alice has to upgrade each coin. This means that she has

to execute the upgrade choice once for each coin. Owners will not all accept the upgrade at the

220 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

same time and some might never accept it. Therefore, this should be a long-running process

that upgrades all coins of a given owner as soon as they accept the upgrade.

Given those constraints, we are going to use the following tools for the upgrade:

1. A DAML script that will be executed once by Alice and creates an UpgradeCoinProposal con-

tract for each owner.

2. Navigator to accept the UpgradeCoinProposal as Bob. While we could also use a DAML script

to accept theproposal, this stepwill oftenbe exposedaspart of awebUI sodoing it interactively

in Navigator resembles that workflow more closely.

3. A long-running DAML trigger that upgrades all Coin contracts for which there is a correspond-

ing UpgradeCoinAgreement.

3.6.1.2 Implementation of the DAML Script

In our DAML Script, we are first going to query the ACS (Active Contract Set) to find all Coin contracts

issued by us. Next, we are going to extract the owner of each of those contracts and remove any

duplicates coming frommultiple coins issued to the same owner. Finally, we iterate over the owners

and create an UpgradeCoinAgreement contract for each owner.

initiateUpgrade : Party -> Script ()

initiateUpgrade issuer = do

coins <- query @Coin issuer

let myCoins = filter (\(_cid, c) -> c.issuer == issuer) coins

let owners = dedup $ map (\(_cid, c) -> c.owner) myCoins

forA_ owners $ \owner -> do

debug ("Creating upgrade proposal for: " <> show owner)

submit issuer $ createCmd (UpgradeCoinProposal issuer owner)

3.6.1.3 Implementation of the DAML Trigger

Our trigger does not need any custom user state and no heartbeat so the only interesting field in its

definition is the rule.

upgradeTrigger : Trigger ()

upgradeTrigger = Trigger with

initialize = _acs -> ()

updateState = _acs _msg () -> ()

registeredTemplates = AllInDar

heartbeat = None

rule = triggerRule

In our rule, we first filter out all agreements and coins issued by us. Next, we iterate over all agree-

ments. For each agreement we filter the coins by the owner of the agreement and finally upgrade the

coin by exercising the Upgrade choice. We mark the coin as pending which temporarily removes it

from the ACS and therefore stops the trigger from trying to upgrade the same coin multiple times if

the rule is triggered in quick succession.

triggerRule : Party -> ACS -> Time -> Map CommandId [Command] -> () ->�

↪→TriggerA ()

triggerRule issuer acs _ _ _ = do

let agreements =

(continues on next page)

3.6. Upgrading and extending DAML applications 221

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

filter (\(_cid, agreement) -> agreement.issuer == issuer) $

getContracts @UpgradeCoinAgreement acs

let allCoins =

filter (\(_cid, coin) -> coin.issuer == issuer) $

getContracts @Coin acs

forA_ agreements $ \(agreementCid, agreement) -> do

let coinsForOwner = filter (\(_cid, coin) -> coin.owner == agreement.

↪→owner) allCoins

forA_ coinsForOwner $ \(coinCid, _) ->

emitCommands

[exerciseCmd agreementCid (Upgrade coinCid)]

[toAnyContractId coinCid]

The trigger is a long-running process and the rule will be executed whenever the state of the ledger

changes. So whenever an owner accepts an upgrade proposal, the trigger will run the rule and up-

grade all coins of that owner.

3.6.1.4 Deploying and Executing the Upgrade

Now that we defined our DAML script and our trigger, it is time to use them! If you still have Sandbox

running from the previous section, stop it to clear out all data before continuing.

First, we start sandbox passing in the coin-upgrade DAR. Since a DAR includes all transitive de-

pendencies, this includes coin-1.0.0 and coin-2.0.0.

$ cd example/coin-upgrade

$ daml sandbox .daml/dist/coin-upgrade-1.0.0.dar

To simplify the setup here, we use a DAML script to create 3 parties Alice, Bob and Charlie and two

Coin contracts issues by Alice, one owned by Bob and one owned by Charlie.

setup : Script ()

setup = do

alice <- allocatePartyWithHint "Alice" (PartyIdHint "Alice")

bob <- allocatePartyWithHint "Bob" (PartyIdHint "Bob")

charlie <- allocatePartyWithHint "Charlie" (PartyIdHint "Charlie")

bobProposal <- submit alice $ createCmd (CoinProposal alice bob)

submit bob $ exerciseCmd bobProposal CoinProposal_Accept

charlieProposal <- submit alice $ createCmd (CoinProposal alice charlie)

submit charlie $ exerciseCmd charlieProposal CoinProposal_Accept

pure ()

Run the script as follows:

$ cd example/coin-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/coin-initiate-upgrade-1.0.0.dar --script-

↪→name=InitiateUpgrade:setup --ledger-host=localhost --ledger-port=6865 --

↪→wall-clock-time

If you now start Navigator from the coin-initiate-upgrade directory and log in as Alice, you can

see the two Coin contracts.

222 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Next, we run the trigger for Alice. The trigger will keep running throughout the rest of this example.

$ cd example/coin-upgrade-trigger

$ daml build

$ daml trigger --dar=.daml/dist/coin-upgrade-trigger-1.0.0.dar --trigger-

↪→name=UpgradeTrigger:upgradeTrigger --ledger-host=localhost --ledger-

↪→port=6865 --ledger-party=Alice --wall-clock-time

With the trigger running, we can now run the script to create the UpgradeCoinProposal contracts

(we could also have done that before starting the trigger). The script takes an argument of type

Party. We can pass this in via the --input-file argument which we will point to a file party.

json containing "Alice". This allows us to change the party without having to change the code of

the script.

$ cd example/coin-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/coin-initiate-upgrade-1.0.0.dar --script-

↪→name=InitiateUpgrade:initiateUpgrade --ledger-host=localhost --ledger-

↪→port=6865 --wall-clock-time --input-file=party.json

At this point, our trigger is running and the UpgradeCoinProposal contracts for Bob and Charlie

have been created. What is left to do is to accept the proposals. Our trigger will then automatically

pick them up and upgrade the Coin contracts.

First, start Navigator and log in as Bob. Click on the UpgradeCoinProposal and accept it. If you

now go back to the contracts tab, you can see that the Coin contract has been archived and instead

there is a new CoinWithAmount upgrade. Our trigger has successfully upgraded the Coin!

Next, log in as Charlie and accept the UpgradeCoinProposal. Just like for Bob, you can see that

the Coin contract has been archived and instead there is a new CoinWithAmount contract.

Since we upgraded all Coin contracts issued by Alice, we can now stop the trigger and declare the

update successful.

Note: Cross-SDK upgrades require DAML-LF 1.8 or newer. This is the default starting from SDK 1.0. For

older releases add build-options: ["--target=1.8"] to your daml.yaml to select DAML-LF

1.8.

In applications backed by a centralized database controlled by a single operator, it is possible to

upgrade an application in a single step that migrates all existing data to a new data model.

However, in a DAML application running on a distributed ledger, the signatories of a contract have

agreed to one specific version of a template. Changing the definition of a template, e.g., by extend-

ing it with a new choice without agreement from signatories of contracts of that template would

completely break the authorization guarantees provided by DAML.

Therefore, DAML takes a different approach to upgrades and extensions. Rather than having a sep-

arate concept of data migration that sidesteps the fundamental guarantees provided by DAML, up-

grades are expressed as DAML contracts. This means that the same guarantees and rules that apply to

other DAML contracts also apply to upgrades.

In a DAML application, it therefore makes sense to think of upgrades as an extension of an existing

application instead of an operation that replaces exiting contracts with a newer version of those con-

tracts. The existing templates stay on the ledger and can still be used. Contracts of existing tem-

plates are not automatically replaced by newer versions. However, the application is extended with

3.6. Upgrading and extending DAML applications 223

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

new templates and if all signatories of a contract agree, a choice can archive the old version of a

contract and create a new contract instead.

3.6.2 Structuring upgrade contracts

Upgrade contracts are specific to the templates that are beingupgraded. However, there are common

patterns between most of them. We use the example of a simple Coin template as an example here.

We have some prescience that there will be future versions of Coin, and so place the definition of

Coin in a module named CoinV1

module CoinV1 where

template Coin

with

issuer : Party

owner : Party

where

signatory issuer, owner

A Coin has an issuer and an owner and both are signatories. Our goal is to extend this Coin template

with a field that represents the number of coins to avoid needing 1000 contracts to represent 1000

coins. (In a real application, you would also want choices for merging and splitting such a Coin. For

the sake of simplicity, we omit those here.) We use a different name for the new template here. This

is not required as templates are identified by the triple (PackageId, ModuleName, TemplateName)

module CoinV2 where

template CoinWithAmount

with

issuer : Party

owner : Party

amount : Int

where

signatory issuer, owner

Next, we need to provide a way for the signatories, issuer and owner, to agree to a contract being

upgraded. It would be possible to structure this such that issuer and owner have to agree to an

upgrade for each individual Coin contract separately. However, since the template definition for all of

them is the same, this is usually not necessary for most applications. Instead, we collect agreement

from the signatories only once and use that to upgrade all coins. Since there aremultiple signatories

involved here, we use a Propose-Accept workflow. First, we define an UpgradeCoinProposal template that

will be created by the issuer. This template has an Accept choice that the owner can exercise which

will then create an UpgradeCoinAgreement.

template UpgradeCoinProposal

with

issuer : Party

owner : Party

where

signatory issuer

observer owner

key (issuer, owner) : (Party, Party)
(continues on next page)

224 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

maintainer key._1

choice Accept : ContractId UpgradeCoinAgreement

controller owner

do create UpgradeCoinAgreement with ..

Now we can define the UpgradeCoinAgreement template. This template has one nonconsuming choice

that takes the contract ID of a Coin contract, archives this Coin contract and creates a CoinWithAmount

contract with the same issuer and owner and the amount set to 1.

template UpgradeCoinAgreement

with

issuer : Party

owner : Party

where

signatory issuer, owner

key (issuer, owner) : (Party, Party)

maintainer key._1

nonconsuming choice Upgrade : ContractId CoinWithAmount

with

coinId : ContractId Coin

controller issuer

do coin <- fetch coinId

assert (coin.issuer == issuer)

assert (coin.owner == owner)

archive coinId

create CoinWithAmount with

issuer = coin.issuer

owner = coin.owner

amount = 1

3.6.3 Building and deploying coin-1.0.0

Let’s see everything in action by first building and deploying coin-1.0.0. After this we’ll see how

to deploy and upgrade to coin-2.0.0 containing the CoinWithAmount template.

First we’ll need a sandbox ledger to which we can deploy.

$ daml sandbox --port 6865

Nowwe’ll setup the project for the original version of our coin. The project contains the DAML for just

the Coin template, along with a CoinProposal template which will allow us to issue some coins in

the example below.

Here is the project config.

name: coin

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy coin-1.0.0 of our Coin.

3.6. Upgrading and extending DAML applications 225

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

$ cd example/coin-1.0.0

$ daml build

$ daml ledger upload-dar --port 6865

3.6.4 Create some coin-1.0.0 coins

Let’s create some coins!

We’ll use the navigator to connect to the ledger, and create two coins issued by Alice, and owned by

Bob.

$ cd example/coin-1.0.0

$ daml navigator server localhost 6865

We point a browser to http://localhost:4000, and follow the steps:

1. Login as Alice:

1. Select Templates tab.

2. Create a CoinProposal with Alice as issuer and Bob as owner.

3. Create a 2nd proposal in the same way.

2. Login as Bob:

1. Exercise the CoinProposal_Accept choice on both proposal contracts.

3.6.5 Building and deploying coin-2.0.0

Now we setup the project for the improved coins containing the amount field. This project contains

only the CoinWithAmount template. The upgrade templates are in a third coin-upgrade package.

While it would be possible to include the upgrade templates in the same package, this means that

the package containing the new CoinWithAmount template depends on the previous version. With

the approach taken here of keeping the upgrade templates in a separate package, the coin-1.0.0

package is no longer needed once we have upgraded all coins.

It’s worth stressing here that extensions always need to go into separate packages. We cannot just

add the new definitions to the original project, rebuild and re-deploy. This is because the crypto-

graphically computed package identifier would change, and would notmatch the package identifier

of the original Coin contracts from coin-1.0.0 which are live on the ledger.

Here is the new project config:

name: coin

version: 2.0.0

dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy coin-2.0.0 of our Coin.

$ cd example/coin-2.0.0

$ daml build

$ daml ledger upload-dar --port 6865

226 Chapter 3. Building applications

http://localhost:4000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.6.6 Building and deploying coin-upgrade

Having built and deployed coin-1.0.0 and coin-2.0.0 we are now ready to build the upgrade

package coin-upgrade. The project config references both coin-1.0.0 and coin-2.0.0 via the

data-dependencies field. This allows us to import modules from the respective packages which

allows us to reference templates from packages that we already uploaded to the ledger.

When following this example, path/to/coin-1.0.0.dar and path/to/coin-2.0.0.dar should

be replaced by the relative or absolute path to theDAR file created by building the respective projects.

Commonly the coin-1.0.0 and coin-2.0.0 projects would be sibling directories in the file sys-

tems, so this path would be: ../coin-1.0.0/.daml/dist/coin-1.0.0.dar.

name: coin-upgrade

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- path/to/coin-1.0.0.dar

- path/to/coin-2.0.0.dar

The DAML for the upgrade contacts imports the modules for both the new and old coin versions.

module UpgradeFromCoinV1 where

import CoinV2

import CoinV1

Now we can build and deploy coin-upgrade. Note that uploading a DAR also uploads its depen-

dencies so if coin-1.0.0 and coin-2.0.0 had not already been deployed before, they would be

deployed as part of deploying coin-upgrade.

$ cd example/coin-upgrade

$ daml build

$ daml ledger upload-dar --port 6865

3.6.7 Upgrade existing coins from coin-1.0.0 to coin-2.0.0

We start the navigator again.

$ cd example/coin-upgrade

$ daml navigator server localhost 6865

Finally, we point a browser to http://localhost:4000 and can effect the coin upgrades:

1. Login as Alice

1. Select Templates tab.

2. Create an UpgradeCoinProposal with Alice as issuer and Bob as owner.

2. Login as Bob

1. Exercise the Accept choice of the upgrade proposal, creating an

UpgradeCoinAgreement.

3. Login again as Alice

1. Use the UpgradeCoinAgreement repeatedly to upgrade any coin for which Alice is

issuer and Bob is owner.

3.6. Upgrading and extending DAML applications 227

http://localhost:4000

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.6.8 Further Steps

For the upgrade of our coin model above, we performed all steps manually via Navigator. However, if

Alice had issued millions of coins, performing all upgrading steps manually becomes infeasible. It

thus becomes necessary to automate these steps. We will go through a potential implementation of

an automated upgrade in the next section.

3.7 The Ledger API

3.7.1 The Ledger API services

The Ledger API is structured as a set of services. The core services are implemented using gRPC and

Protobuf, but most applications access this API through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way

you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

3.7.1.1 Overview

The API is structured as two separate data streams:

0 A stream of commands TO the ledger that allow an application to submit transactions and

change state.

0 A stream of transactions and corresponding events FROM the ledger that indicate all state

changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events

are the only mechanism to read those changes.

For an application, themost important consequence of these architectural decisions and implemen-

tation is that the ledger API is asynchronous. This means:

0 The outcome of commands is only known some time after they are submitted.

0 The application must deal with successful and erroneous command completions separately

from command submission.

0 Ledger state changes are indicated by events received asynchronously from the command sub-

missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding

the consequences of the API characteristics is important for a successful application design.

For more help understanding these issues so you can build correct, performant and maintainable

applications, read the application architecture guide.

Glossary

0 The ledger is a list of transactions. The transaction service returns these

0 A transaction is a tree of actions, also called events, which are of type create, exercise

or archive. The transaction service can return the whole tree, or a flattened list.

0 A submission is a proposed transaction, consisting of a list of commands, which correspond

to the top-level actions in that transaction.

0 A completion indicates the success or failure of a submission.

228 Chapter 3. Building applications

https://grpc.io/
https://developers.google.com/protocol-buffers/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.1.2 Submitting commands to the ledger

Command submission service

Use the command submission service to submit commands to the ledger. Commands either create

a new contract instance, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the

command, and has either accepted or rejected it. This does not mean the command has been exe-

cuted, only that the server has looked at the command and decided that its format is acceptable, or

has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described

below. The completion status of the command is reported via the command completion service. Your

application should receive completions, correlate them with command submission, and handle er-

rors and failed commands. Alternatively, you can use the command service, which conveniently wraps

the command submission and completion services.

Commands can be labeled with two application-specific IDs, both of which are returned in comple-

tion events:

0 A commandId, returned to the submitting application only. It is generally used to implement

this correlation between commands and completions.

0 A workflowId, returned as part of the resulting transaction to all applications receiving it. It can

be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command deduplication

The command submission service deduplicates submitted commands based on the submitting

party and command ID:

0 Applications can provide a deduplication time for each command. If this parameter is not set,

the default maximum deduplication time is used.

0 A command submission is considered a duplicate submission if the ledger server receives the

command within the deduplication time of a previous command with the same command ID

from the same submitting party.

0 Duplicate commandsubmissionswill be ignoreduntil either the deduplication timeof the orig-

inal command has elapsed or the original submission was rejected (i.e. the command failed

and resulted in a rejected transaction), whichever comes first.

0 Command deduplication is only guaranteed to work if all commands are submitted to the same

participant. Ledgers are free to perform additional command deduplication across partici-

pants. Consult the respective ledger’s manual for more details.

0 A command submission will return:

– The result of the submission (Empty or a gRPC error), if the command was submitted out-

side of the deduplication time of a previous command with the same command ID on the

same participant.

– The status error ALREADY_EXISTS, if the command was discarded by the ledger server

because it was sent within the deduplication time of a previous command with the same

command ID.

0 If the ledger provides additional command deduplication across participants, the initial com-

mand submission might be successful, but ultimately the command can be rejected if the

deduplication check fails on the ledger.

For details on how to use command deduplication, see the Application Architecture Guide.

3.7. The Ledger API 229

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Command completion service

Use the command completion service to find out the completion status of commands you have

submitted.

Completions contain the commandId of the completed command, and the completion status of the

command. This status indicates failure or success, and your application should use it to update

what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. This

service is similar to the command submission service, but also receives completions andwaits until

it knows whether or not the submitted command has completed. It returns the completion status

of the command execution.

You can use either the command or command submission services to submit commands to effect

a ledger change. The command service is useful for simple applications, as it handles a basic form

of coordination between command submission and completion, correlating submissions with com-

pletions, and returning a success or failure status. This allow simple applications to be completely

stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

3.7.1.3 Reading from the ledger

Transaction service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-

actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive

of contracts) that had an effect in that transaction.

Transactions contain a transactionId (assigned by the server), the workflowId, the commandId, and

the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This is

important when starting or restarting and application, and to work in conjunction with the active

contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction trees

TransactionService offers several different subscriptions. The most commonly used is

GetTransactions. If you need more details, you can use GetTransactionTrees instead, which

returns transactions as flattened trees, represented as amap of event IDs to events and a list of root

event IDs.

Verbosity

The service works in a non-verbosemode by default, whichmeans that some identifiers are omitted:

0 Record IDs

230 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Record field labels

0 Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-

sage GetTransactionsRequest or GetActiveContractsRequest to true.

Active contracts service

Use the active contracts service to obtain a party-specific view of all contracts currently active on

the ledger.

The active contracts service returns the current contract set as a set of created events that would

re-create the state being reported. Each created event has a ledger offset where it occurs. You can

infer the ledger offset of the contract set from the ledger offset of the last event you receive.

This is most important at application start, if the application needs to synchronize its initial state

with a known view of the ledger. Without this service, the only way to do this would be to read the

Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a

large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

3.7.1.4 Utility services

Package service

Use the package service to obtain information about DAML packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in

a more useful way.

For full details, see the proto documentation for the service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to.

You need to include this identity string when submitting commands. Commands with an incorrect

identity string are rejected.

For full details, see the proto documentation for the service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes themaximumcommanddeduplication time (see CommandDeduplication

for details).

For full details, see the proto documentation for the service.

3.7. The Ledger API 231

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.1.5 Testing services

These are only for use for testing with the Sandbox, not for on production ledgers.

Time service

Use the time service to obtain the time as known by the ledger server.

For full details, see the proto documentation for the service.

Reset service

Use the reset service to reset the ledger state, as a quicker alternative to restarting the whole ledger

application.

This resets all state in the ledger, including the ledger ID, so clients will have to re-fetch the ledger ID

from the identity service after hitting this endpoint.

For full details, see the proto documentation for the service.

3.7.1.6 Services diagram

3.7.2 gRPC

If you want to write an application for the ledger API in other languages, you’ll need to use gRPC

directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart

and gRPC tutorials. This documentation is written assuming you already have an understanding of

gRPC.

3.7.2.1 Getting started

You can get the protobufs from a GitHub release, or from the daml repository here.

232 Chapter 3. Building applications

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/protobufs-1.6.0-snapshot.20201007.5314.0.b4a47d0b.zip
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.2.2 Protobuf reference documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger API Reference.

3.7.2.3 Example project

We have an example project demonstrating the use of the Ledger API with gRPC. To get the example

project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set up a Maven

project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.

PingPongGrpcMain as the main class.

About the example project

The example shows very simply how two parties can interact via a ledger, using two DAML contract

templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the DAML is

reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongGrpcMain.java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at�

↪→count 9

The first line shows:

0 Bob is exercising theRespondPong choice on the contract with ID#1:0 for theworkflowPing-

Alice-1.

0 Count 0means that this is the first choice after the initial Ping contract.

0 Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-

ferent participant nodes. However, if you have multiple parties registered on the same node, or are

running an application against the Sandbox, you can subscribe to transactions for multiple par-

ties in a single subscription by putting multiple entries into the filters_by_party field of the

TransactionFiltermessage. Subscribing to transactions for an unknown party will result in an

error.

3.7. The Ledger API 233

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.2.4 DAML types and protobuf

For information on how DAML types and contracts are represented by the Ledger API as protobuf

messages, see How DAML types are translated to protobuf.

3.7.2.5 Error handling

Tor the standard error codes that the server or the client might return, see the gRPC documentation .

For submitted commands, there are these response codes:

ABORTED The platform failed to record the result of the command due to a transient server-side

error or a time constraint violation. You can retry the submission. In case of a time constraint

violation, please refer to the section Dealing with time on how to handle commands with long

processing times.

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely

reject resubmissions of the same command.

OK, INTERNAL, UNKNOWN (when returned by the Command Submission Service) Assume that

the command was accepted, and wait for the resulting completion or a timeout from the

Command Completion Service.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) Resubmit the command with

the same command_id.

3.7.3 Ledger API Reference

3.7.3.1 com/daml/ledger/api/v1/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

filter
Transaction-

Filter

Templates to include in the served snapshot, per party. Re-

quired

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

234 Chapter 3. Building applications

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GetActiveContractsResponse

Field Type Label Description

offset
string Included in the last message. The client should start

consuming the transactions endpoint with this offset.

The format of this field is described in ledger_offset.

proto. Required

work-

flow_id

string The workflow that created the contracts. Must be a valid

LedgerString (as described in value.proto). Optional

ac-

tive_con-

tracts

CreatedE-

vent

repeated The list of contracts that were introduced by theworkflow

with workflow_id at the offset. Must be a valid Ledger-

String (as described in value.proto). Optional

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without reading

through all transactions that were committed since the ledger’s creation.

Method

name

Request

type

Response

type

Description

GetActive-

Contracts

GetActive-

ContractsRe-

quest

GetActive-

ContractsRe-

sponse

Returns a stream of the latest snapshot of active con-

tracts. If there are no active contracts, the stream re-

turns a single GetActiveContractsResponse message

with the offset at which the snapshot has been taken.

Clients SHOULD use the offset in the last GetActive-

ContractsResponse message to continue streaming

transactions with the transaction service. Clients

SHOULD NOT assume that the set of active contracts

they receive reflects the state at the ledger end.

3.7.3.2 com/daml/ledger/api/v1/admin/config_management_service.proto

GetTimeModelRequest

GetTimeModelResponse

Field Type Label Description

configura-

tion_gener-

ation

int64 The current configuration generation. The generation is a

monotonically increasing integer that is incremented on each

change. Used when setting the time model.

time_model
TimeModel The current ledger time model.

3.7. The Ledger API 235

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

SetTimeModelRequest

Field Type Label Description

submis-

sion_id

string Submission identifier used for tracking the request and to

reject duplicate submissions. Required.

maxi-

mum_record_time

google.pro-

to-

buf.Times-

tamp

Deadline for the configuration change after which the

change is rejected.

configura-

tion_gener-

ation

int64 The current configuration generation which we’re submit-

ting the change against. This is used to perform a compare-

and-swap of the configuration to safeguard against concur-

rent modifications. Required.

new_time_model
TimeModel The new timemodel that replaces the current one. Required.

SetTimeModelResponse

Field Type Label Description

configuration_genera-

tion

int64 The configuration generation of the committed time

model.

TimeModel

Field Type Label Description

avg_trans-

action_la-

tency

google.pro-

tobuf.Dura-

tion

The expected average latency of a transaction, i.e., the aver-

age time from submitting the transaction to a [[WriteSer-

vice]] and the transaction being assigned a record time. Re-

quired.

min_skew
google.pro-

tobuf.Dura-

tion

Theminimimumskewbetween ledger time and record time:

lt_TX >= rt_TX - minSkew Required.

max_skew
google.pro-

tobuf.Dura-

tion

The maximum skew between ledger time and record time:

lt_TX <= rt_TX + maxSkew Required.

ConfigManagementService

Ledger configurationmanagement service providesmethods for the ledger administrator to change

the current ledger configuration. The services provides methods to modify different aspects of the

configuration.

236 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Method

name

Request

type

Response

type

Description

GetTimeM-

odel

GetTimeMo-

delRequest

GetTimeMo-

delResponse

Return the currently active time model and the cur-

rent configuration generation.

SetTimeM-

odel

SetTimeMod-

elRequest

SetTimeMod-

elResponse

Set the ledger time model. In case of failure this

method responds with: - INVALID_ARGUMENT if argu-

ments are invalid, or the provided configuration gen-

eration does not match the current active configu-

ration generation. The caller is expected to retry by

again fetching current timemodel using ‘GetTimeMo-

del’, applying changes and resubmitting. - ABORTED

if the request is rejected or times out. Note that a

timed out request may have still been committed to

the ledger. Application should re-query the current

time model before retrying. - UNIMPLEMENTED if this

method is not supported by the backing ledger.

3.7.3.3 com/daml/ledger/api/v1/admin/package_management_service.proto

ListKnownPackagesRequest

ListKnownPackagesResponse

Field Type Label Description

pack-

age_details

PackageDe-

tails

repeated The details of all DAML-LF packages known to backing

participant. Required

PackageDetails

Field Type Label Description

pack-

age_id

string The identity of the DAML-LF package. Must be a valid Pack-

ageIdString (as describe in value.proto). Required

pack-

age_size

uint64 Size of the package in bytes. The size of the package is given

by the size of the daml_lf ArchivePayload. See further de-

tails in daml_lf.proto. Required

known_since
google.pro-

to-

buf.Times-

tamp

Indicates since when the package is known to the backing

participant. Required

source_de-

scription

string Description provided by the backing participant describing

where it got the package from. Optional

3.7. The Ledger API 237

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

UploadDarFileRequest

Field Type Label Description

dar_file
bytes Contains a DAML archive DAR file, which in turn is a jar like zipped

container for daml_lf archives. See further details in daml_lf.

proto. Required

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier.

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Query the DAML-LF packages supported by the ledger participant and uploadDAR files. We use ‘back-

ing participant’ to refer to this specific participant in the methods of this API. When the participant

is run inmode requiring authentication, all the calls in this interface will respond with UNAUTHENTI-

CATED, if the caller fails to provide a valid access token, and will respond with PERMISSION_DENIED,

if the claims in the token are insufficient to perform a given operation. Subsequently, only specific

errors of individual calls not related to authorization will be described.

Method

name

Request

type

Response

type

Description

ListKnown-

Packages

ListKnown-

PackagesRe-

quest

ListKnown-

PackagesRe-

sponse

Returns the details of all DAML-LF packages known to

the backing participant. This request will always suc-

ceed.

Upload-

DarFile

Upload-

DarFil-

eRequest

Upload-

DarFileRe-

sponse

Upload a DAR file to the backing participant. De-

pendingon the ledger implementation thismight also

make the package available on the whole ledger. This

call might not be supported by some ledger imple-

mentations. Canton could be an example, where up-

loading a DAR is not sufficient to render it usable,

it must be activated first. This call may: - Succeed,

if the package was successfully uploaded, or if the

same package was already uploaded before. - Re-

spond with UNIMPLEMENTED, if DAR package upload-

ing is not supported by the backing participant. - Re-

spond with INVALID_ARGUMENT, if the DAR file is too

big or malformed. The maximum supported size is

implementation specific.

3.7.3.4 com/daml/ledger/api/v1/admin/party_management_service.proto

238 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

AllocatePartyRequest

Field Type Label Description

party_id_hint
string A hint to the backing participant which party ID to allocate. It can

be ignored. Must be a valid PartyIdString (as described in value.

proto). Optional

dis-

play_name

string Human-readable name of the party to be added to the participant.

It doesn’t have to be unique. Optional

AllocatePartyResponse

Field Type Label Description

party_details
PartyDetails

GetParticipantIdRequest

GetParticipantIdResponse

Field Type Label Description

partici-

pant_id

string Identifier of the participant, which SHOULD be globally unique.

Must be a valid LedgerString (as describe in value.proto).

GetPartiesRequest

Field Type Label Description

parties
string repeated The stable, unique identifier of the DAML parties. Must be valid Par-

tyIdStrings (as described in value.proto). Required

GetPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of the requested DAML parties by the partici-

pant, if known. The party details may not be in the same

order as requested. Required

ListKnownPartiesRequest

ListKnownPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of all DAML parties hosted by the participant.

Required

3.7. The Ledger API 239

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

PartyDetails

Field Type Label Description

party
string The stable unique identifier of a DAML party. Must be a valid Par-

tyIdString (as described in value.proto). Required

dis-

play_name

string Human readable nameassociatedwith the party. Caution, itmight

not be unique. Optional

is_local
bool true if party is hosted by the backing participant. Required

PartyManagementService

Inspect the partymanagement state of a ledger participant andmodify the parts that aremodifiable.

We use ‘backing participant’ to refer to this specific participant in themethods of this API. When the

participant is run in mode requiring authentication, all the calls in this interface will respond with

UNAUTHENTICATED, if the caller fails to provide a valid access token, and will respond with PERMIS-

SION_DENIED, if the claims in the token are insufficient to perform a given operation. Subsequently,

only specific errors of individual calls not related to authorization will be described.

240 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Method

name

Request

type

Response

type

Description

GetPartici-

pantId

GetPar-

ticipan-

tIdRequest

GetPar-

ticipan-

tIdResponse

Return the identifier of the backing participant. All

horizontally scaled replicas should return the same

id. This method is expected to succeed provided the

backing participant is healthy, otherwise it responds

with INTERNAL grpc error. daml-on-sql: returns an

identifier supplied on command line at launch time

daml-on-kv-ledger: as above canton: returns globally

unique identifier of the backing participant

GetParties GetParties-

Request

GetParties-

Response

Get the party details of the given parties. Only known

parties will be returned in the list. This request will

always succeed.

ListKnown-

Parties

ListKnown-

PartiesRe-

quest

ListKnown-

PartiesRe-

sponse

List the parties known by the backing participant. The

list returned contains parties whose ledger access is

facilitated by backing participant and the onesmain-

tained elsewhere. This request will always succeed.

Allo-

cateParty

AllocatePar-

tyRequest

AllocatePar-

tyResponse

Adds a new party to the set managed by the backing

participant. Caller specifies a party identifier sugges-

tion, the actual identifier allocated might be differ-

ent and is implementation specific. This call may: -

Succeed, in which case the actual allocated identifier

is visible in the response. - Respond with UNIMPLE-

MENTED if synchronous party allocation is not sup-

ported by the backing participant. - Respond with IN-

VALID_ARGUMENT if the provided hint and/or display

name is invalid on the given ledger (see below). daml-

on-sql: suggestion’s uniqueness is checked and call

rejected if the identifier is already present daml-on-

kv-ledger: suggestion’s uniqueness is checked by the

validators in the consensus layer and call rejected if

the identifier is already present. canton: completely

different globally unique identifier is allocated. Be-

hind the scenes calls to an internal protocol aremade.

As that protocol is richer than the surface protocol,

the arguments take implicit values

3.7.3.5 com/daml/ledger/api/v1/command_completion_service.proto

Checkpoint

Checkpoints may be used to:

0 detect time out of commands.

0 provide an offset which can be used to restart consumption.

3.7. The Ledger API 241

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

record_time
google.pro-

to-

buf.Times-

tamp

All commands with a maximum record time below this

value MUST be considered lost if their completion has not

arrived before this checkpoint. Required

offset
LedgerOffset May be used in a subsequent CompletionStreamRequest to

resume the consumption of this stream at a later time. Re-

quired

CompletionEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Required Must be a valid Ledger-

String (as described in value.proto).

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CompletionEndResponse

Field Type Label Description

offset
LedgerOffset This offset can be used in a CompletionStreamRequest message.

Required

CompletionStreamRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger id reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

applica-

tion_id

string Only completions of commands submitted with the same

application_id will be visible in the stream. Must be a

valid LedgerString (as described in value.proto). Re-

quired

parties
string repeated Non-empty list of parties whose data should be included.

Must be a valid PartyIdString (as described in value.

proto). Required

offset
LedgerOffset This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.

Optional, if not set the ledger uses the current ledger end

offset instead.

242 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

CompletionStreamResponse

Field Type Label Description

checkpoint
Checkpoint This checkpoint may be used to restart consumption. The

checkpoint is after any completions in this response. Op-

tional

comple-

tions

Completion repeated If set, one or more completions.

CommandCompletionService

Allows clients to observe the status of their submissions. Commandsmaybe submitted via theCom-

mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-

tion Service. Commands may fail in 4 distinct manners:

1. INVALID_PARAMETER gRPC error on malformed payloads and missing required fields.

2. Failure communicated in the gRPC error.

3. Failure communicated in a Completion.

4. A Checkpoint with record_time > command mrt arrives through the Completion Stream, and

the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the

trace_context field. The server will return a child context of the submitted one, (or a new one

if the context was missing) on both the Completion and Transaction streams.

Method

name

Request type Response type Description

Completion-

Stream

CompletionStream-

Request

CompletionStreamRe-

sponse

Subscribe to command completion

events.

Completio-

nEnd

CompletionEn-

dRequest

CompletionEn-

dResponse

Returns the offset after the latest

completion.

3.7.3.6 com/daml/ledger/api/v1/command_service.proto

SubmitAndWaitForTransactionIdResponse

Field Type Label Description

transac-

tion_id

string The id of the transaction that resulted from the submitted com-

mand. Must be a valid LedgerString (as described in value.

proto). Required

SubmitAndWaitForTransactionResponse

Field Type Label Description

transaction
Transaction The flat transaction that resulted from the submitted com-

mand. Required

3.7. The Ledger API 243

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

SubmitAndWaitForTransactionTreeResponse

Field Type Label Description

transaction
Transaction-

Tree

The transaction tree that resulted from the submitted com-

mand. Required

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label Description

commands
Commands The commands to be submitted. Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CommandService

CommandService is able to correlate submitted commandswith completiondata, identify timeouts,

and return contextual information with each tracking result. This supports the implementation of

stateless clients.

Method

name

Request

type

Response

type

Description

Submi-

tAndWait

SubmitAnd-

WaitRequest

.google.pro-

to-

buf.Empty

Submits a single composite command and waits for

its result. Returns RESOURCE_EXHAUSTED if the num-

ber of in-flight commands reached the maximum (if

a limit is configured). Propagates the gRPC error of

failed submissions including DAML interpretation er-

rors.

Submi-

tAndWait-

ForTransac-

tionId

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

IdResponse

Submits a single composite command, waits for

its result, and returns the transaction id. Returns

RESOURCE_EXHAUSTED if the number of in-flight

commands reached the maximum (if a limit is con-

figured). Propagates the gRPC error of failed submis-

sions including DAML interpretation errors.

Submi-

tAndWait-

ForTransac-

tion

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

Response

Submits a single composite command, waits for

its result, and returns the transaction. Returns

RESOURCE_EXHAUSTED if the number of in-flight

commands reached the maximum (if a limit is con-

figured). Propagates the gRPC error of failed submis-

sions including DAML interpretation errors.

Submi-

tAndWait-

ForTransac-

tionTree

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transac-

tionTreeRe-

sponse

Submits a single composite command, waits for

its result, and returns the transaction tree. Re-

turns RESOURCE_EXHAUSTED if the number of in-

flight commands reached the maximum (if a limit is

configured). Propagates the gRPC error of failed sub-

missions including DAML interpretation errors.

244 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.3.7 com/daml/ledger/api/v1/command_submission_service.proto

SubmitRequest

The submitted commands will be processed atomically in a single transaction. Moreover, each

Command in commands will be executed in the order specified by the request.

Field Type Label Description

commands
Commands The commands to be submitted in a single transaction. Re-

quired

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of

their submissions are disclosed by the Command Completion Service. The on-ledger effects of their

submissions are disclosed by the Transaction Service. Commands may fail in 4 distinct manners:

1) INVALID_PARAMETER gRPC error on malformed payloads and missing required fields.

2) Failure communicated in the gRPC error.

3) Failure communicated in a Completion.

4) A Checkpoint with record_time > command mrt arrives through the Completion Stream, and

the command’s Completion was not visible before. In this case the command is lost.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Interprocess tracing of command submissions may be achieved via Zipkin by filling out the

trace_context field. The server will return a child context of the submitted one, (or a new one

if the context was missing) on both the Completion and Transaction streams.

Method

name

Request

type

Response type Description

Submit SubmitRequest .google.proto-

buf.Empty

Submit a single composite com-

mand.

3.7.3.8 com/daml/ledger/api/v1/commands.proto

Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label Description

create
CreateCommand

exercise
ExerciseCommand

exerciseByKey
ExerciseByKeyCommand

createAndExercise
CreateAndExerciseCommand

3.7. The Ledger API 245

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Commands

A composite command that groups multiple commands together.

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

work-

flow_id

string Identifier of the on-ledger workflow that this command

is a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application (or its part) that is-

sued the command. This is used in tracing across dif-

ferent components and to let applications subscribe to

their own submissions only. Must be a valid LedgerString

(as described in value.proto). Required

com-

mand_id

string Uniquely identified the command. This identifier should

be unique for each new command within an applica-

tion domain, i.e., the triple (application_id, party, com-

mand_id) must be unique. It can be used for matching

the requests with their respective completions. Must be

a valid LedgerString (as described in value.proto). Re-

quired

party
string Party on whose behalf the command should be executed.

It is up to the server to verify that theauthorisation canbe

granted and that the connection has been authenticated

for that party. Must be a valid PartyIdString (as described

in value.proto). Required

commands
Command repeated Individual elements of this atomic command. Must be

non-empty. Required

deduplica-

tion_time

google.pro-

tobuf.Dura-

tion

The length of the time window during which all com-

mands with the same party and command ID will be

deduplicated. Duplicate commands submitted before

the end of this window return an ALREADY_EXISTS error.

Optional

min_ledger_time_abs
google.pro-

to-

buf.Times-

tamp

Lower bound for the ledger time assigned to the resulting

transaction. Note: The ledger time of a transaction is as-

signed as part of command interpretation. Use this prop-

erty if you expect that command interpretation will take

a considerate amount of time, such that by the time the

resulting transaction is sequenced, its assigned ledger

time is not valid anymore. Must not be set at the same

time as min_ledger_time_rel. Optional

min_ledger_time_rel
google.pro-

tobuf.Dura-

tion

Same as min_ledger_time_abs, but specified as a du-

ration, starting from the time the command is received

by the server. Must not be set at the same time as

min_ledger_time_abs. Optional

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

246 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

tem-

plate_id

Identifier The template of the contract the clientwants to create. Required

create_ar-

guments

Record The arguments required for creating a contract from this tem-

plate. Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto). Required

choice_ar-

gument

Value The argument for this choice. Required

CreateCommand

Create a new contract instance based on a template.

Field Type Label Description

template_id
Identifier The template of contract the client wants to create. Required

create_argu-

ments

Record The arguments required for creating a contract from this

template. Required

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_key

Value The key of the contract the client wants to exercise upon. Re-

quired

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

ExerciseCommand

Exercise a choice on an existing contract.

3.7. The Ledger API 247

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_id

string The ID of the contract the client wants to exercise upon. Must be

a valid LedgerString (as described in value.proto). Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

3.7.3.9 com/daml/ledger/api/v1/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.

Field Type Label Description

com-

mand_id

string The ID of the succeeded or failed command. Must be a valid

LedgerString (as described in value.proto). Required

status
google.rpc.Sta-

tus

Identifies the exact type of the error. For example, mal-

formed or double spend transactions will result in a

INVALID_ARGUMENT status. Transactions with invalid time

time windows (whichmay be valid at a later date) will result

in an ABORTED error. Optional

transac-

tion_id

string The transaction_id of the transaction that resulted from the

command with command_id. Only set for successfully ex-

ecuted commands. Must be a valid LedgerString (as de-

scribed in value.proto). Optional

trace_con-

text

TraceContext The trace context submitted with the command. This field

is a future extension point and is currently not supported.

Optional

3.7.3.10 com/daml/ledger/api/v1/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

248 Chapter 3. Building applications

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the archived contract. Must be a valid LedgerString

(as described in value.proto). Required

tem-

plate_id

Identifier The template of the archived contract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. For ArchivedEvent‘s,

these are the intersection of the stakeholders of the contract in

question and the parties specified in the ‘TransactionFilter. The

stakeholders are the union of the signatories and the ob-

servers of the contract. Each one of its elements must be a

valid PartyIdString (as descibed in value.proto). Required

CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid Ledger-

String (as described in value.proto). Required

con-

tract_id

string The ID of the created contract. Must be a valid Ledger-

String (as described in value.proto). Required

tem-

plate_id

Identifier The template of the created contract. Required

con-

tract_key

Value The key of the created contract, if defined. Optional

create_ar-

guments

Record The arguments that have been used to create the con-

tract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. When a Cre-

atedEvent is returned as part of a transaction tree, this

will include all the parties specified in the TransactionFil-

ter that are informees of the event. If served as part of a

flat transaction those will be limited to all parties spec-

ified in the TransactionFilter that are stakeholders of the

contract (i.e. either signatories or observers). Required

signatories
string repeated The signatories for this contract as specified by the tem-

plate. Required

observers
string repeated The observers for this contract as specified explicitly by

the template or implicitly as choice controllers. Required

agree-

ment_text

google.pro-

to-

buf.String-

Value

The agreement text of the contract. We use StringValue

to properly reflect optionality on the wire for backwards

compatibility. This is necessary since the empty string

is an acceptable (and in fact the default) agreement text,

but also the default string in protobuf. This means a

newer client works with an older sandbox seamlessly.

Optional

3.7. The Ledger API 249

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in

the transaction filter. Each event message type below contains a witness_parties field which in-

dicates the subset of the requested parties that can see the event in question. In the flat transaction

stream you’ll only receive events that have witnesses.

Field Type Label Description

created
CreatedEvent

archived
ArchivedEvent

ExercisedEvent

Records that a choice has been exercised on a target contract.

250 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the target contract. Must be a valid LedgerString (as

described in value.proto). Required

tem-

plate_id

Identifier The template of the target contract. Required

choice
string The choice that’s been exercised on the target contract. Must

be a valid NameString (as described in value.proto). Re-

quired

choice_ar-

gument

Value The argument the choice was made with. Required

act-

ing_parties

string repeated The parties that made the choice. Each element must be

a valid PartyIdString (as described in value.proto). Re-

quired

consuming
bool If true, the target contract may no longer be exercised. Re-

quired

wit-

ness_par-

ties

string repeated Theparties that are notified of this event. Thewitnesses of an

exercise node will depend on whether the exercise was con-

suming or not. If consuming, the witnesses are the union

of the stakeholders and the actors. If not consuming, the

witnesses are the union of the signatories and the actors.

Note that the actors might not necessarily be observers and

thus signatories. This is the case when the controllers of a

choice are specified using 0flexible controllers0, using the

choice 0 controller syntax, and said controllers are not explic-

itly marked as observers. Each element must be a valid Par-

tyIdString (as described in value.proto). Required

child_event_ids
string repeated References to further events in the same transaction that ap-

peared as a result of this ExercisedEvent. It contains only

the immediate children of this event, not all members of the

subtree rooted at this node. Each element must be a valid

LedgerString (as described in value.proto). Optional

exer-

cise_result

Value The result of exercising the choice Required

3.7.3.11 com/daml/ledger/api/v1/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

3.7. The Ledger API 251

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GetLedgerConfigurationResponse

Field Type Label Description

ledger_configuration
LedgerConfiguration The latest ledger configuration.

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label Description

max_dedu-

plica-

tion_time

google.pro-

tobuf.Dura-

tion

Themaximum value for the deduplication_time param-

eter of command submissions (as described in commands.

proto). This defines the maximum time window during

which commands can be deduplicated.

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration.

Method

name

Request

type

Response

type

Description

GetLedger-

Configura-

tion

GetLedger-

Configura-

tionRequest

GetLedgerCon-

figurationRe-

sponse

Returns the latest configuration as the first re-

sponse, and publishes configuration updates in

the same stream.

3.7.3.12 com/daml/ledger/api/v1/ledger_identity_service.proto

GetLedgerIdentityRequest

Field Type Label Description

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetLedgerIdentityResponse

Field Type Label Description

ledger_id
string The ID of the ledger exposed by the server. Requests submitted with

the wrong ledger ID will result in NOT_FOUND gRPC errors. Must be a

valid LedgerString (as described in value.proto). Required

LedgerIdentityService

Allows clients to verify that the server they are communicating with exposes the ledger they wish to

operate on. Note that every ledger has a unique ID.

252 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Method

name

Request

type

Response

type

Description

GetLedgerI-

dentity

GetLedgerIden-

tityRequest

GetLedgerIden-

tityResponse

Clients may call this RPC to return the identifier

of the ledger they are connected to.

3.7.3.13 com/daml/ledger/api/v1/ledger_offset.proto

LedgerOffset

Describes a specific point on the ledger.

The Ledger API endpoints that take offsets allow to specify portions of the ledger that are relevant for

the client to read.

Offsets returned by the Ledger API can be used as-is (e.g. to keep track of processed transactions

and provide a restart point to use in case of need).

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is

guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label Description

absolute
string The format of this string is specific to the ledger and

opaque to the client.

boundary
LedgerOffset.Ledger-

Boundary

LedgerOffset.LedgerBoundary

Name Number Description

LEDGER_BEGIN
0 Refers to the first transaction.

LEDGER_END
1 Refers to the currently last transaction, which is a moving target.

3.7.3.14 com/daml/ledger/api/v1/package_service.proto

GetPackageRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

pack-

age_id

string The ID of the requested package. Must be a valid PackageId-

String (as described in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

3.7. The Ledger API 253

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GetPackageResponse

Field Type Label Description

hash_func-

tion

HashFunc-

tion

The hash function we use to calculate the hash. Required

archive_pay-

load

bytes Contains a daml_lf ArchivePayload. See further details in

daml_lf.proto. Required

hash
string The hash of the archive payload, can also used as a

package_id. Must be a valid PackageIdString (as de-

scribed in value.proto). Required

GetPackageStatusRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

pack-

age_id

string The ID of the requested package. Must be a valid PackageId-

String (as described in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetPackageStatusResponse

Field Type Label Description

package_status
PackageStatus The status of the package.

ListPackagesRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

ListPackagesResponse

Field Type Label Description

pack-

age_ids

string repeated The IDs of all DAML-LF packages supported by the server. Each

element must be a valid PackageIdString (as described in

value.proto). Required

254 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

HashFunction

Name Number Description

SHA256
0

PackageStatus

Name Number Description

UNKNOWN
0 The server is not aware of such a package.

REGISTERED
1 The server is able to execute DAML commands operating on this pack-

age.

PackageService

Allows clients to query the DAML-LF packages that are supported by the server.

Method

name

Request

type

Response

type

Description

ListPack-

ages

ListPack-

agesRequest

ListPackages-

Response

Returns the identifiers of all supported packages.

GetPackage GetPack-

ageRequest

GetPack-

ageResponse

Returns the contents of a single package, or a

NOT_FOUND error if the requested package is un-

known.

GetPack-

ageStatus

GetPack-

ageStatusRe-

quest

GetPack-

ageStatusRe-

sponse

Returns the status of a single package.

3.7.3.15 com/daml/ledger/api/v1/testing/reset_service.proto

ResetRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Required

ResetService

Service to reset the ledger state. The goal here is to be able to reset the state in a way that’s much

faster compared to restarting the whole ledger application (be it a sandbox or the real ledger server).

Note that all state present in the ledger implementation will be reset, most importantly including the

ledger ID. This means that clients will have to re-fetch the ledger ID from the identity service after

hitting this endpoint.

The semantics are as follows:

0 When the reset service returns the reset is initiated, but not completed;

3.7. The Ledger API 255

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 While the reset is performed, the ledger will not accept new requests. In fact we guarantee that

ledger stops accepting new requests by the time the response to Reset is delivered;

0 In-flight requests might be aborted, we make no guarantees on when or how quickly this hap-

pens;

0 The ledger might be unavailable for a period of time before the reset is complete.

Given the above, the recommended mode of operation for clients of the reset endpoint is to call it,

then call the ledger identity endpoint in a retry loop that will tolerate a brief window when the ledger

is down, and resume operation as soon as the new ledger ID is delivered.

Note that this service will be available on the sandbox and might be available in some other testing

environments, but will never be available in production.

Method

name

Request

type

Response

type

Description

Reset ResetRe-

quest

.google.pro-

to-

buf.Empty

Resets the ledger state. Note that loaded DARs won’t

be removed – this only rolls back the ledger to genesis.

3.7.3.16 com/daml/ledger/api/v1/testing/time_service.proto

GetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Required

GetTimeResponse

Field Type Label Description

cur-

rent_time

google.protobuf.Times-

tamp

The current time according to the ledger

server.

SetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Required

cur-

rent_time

google.pro-

to-

buf.Times-

tamp

MUST precisely match the current time as it’s known to the

ledger server. Onmismatch, an INVALID_PARAMETER gRPC

error will be returned.

new_time
google.pro-

to-

buf.Times-

tamp

The time the client wants to set on the ledger. MUST be a

point int time after current_time.

256 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

TimeService

Optional service, exposed for testing static time scenarios.

Method

name

Request

type

Response

type

Description

GetTime Get-

TimeRequest

GetTimeRe-

sponse

Returns a stream of time updates. Always returns at

least one response, where the first one is the current

time. Subsequent responses are emitted whenever

the ledger server’s time is updated.

SetTime Set-

TimeRequest

.google.pro-

to-

buf.Empty

Allows clients to change the ledger’s clock in an

atomic get-and-set operation.

3.7.3.17 com/daml/ledger/api/v1/trace_context.proto

TraceContext

Data structure to propagate Zipkin trace information. See https://github.com/openzipkin/

b3-propagation Trace identifiers are 64 or 128-bit, but all span identifiers within a trace are 64-bit.

All identifiers are opaque.

Field Type Label Description

trace_id_high
uint64 If present, this is the high 64 bits of the 128-bit identifier.

Otherwise the trace ID is 64 bits long.

trace_id
uint64 The TraceId is 64 or 128-bit in length and indicates the over-

all ID of the trace. Every span in a trace shares this ID.

span_id
uint64 The SpanId is 64-bit in length and indicates the position of

the current operation in the trace tree. The value should not

be interpreted: it may or may not be derived from the value

of the TraceId.

par-

ent_span_id

google.pro-

to-

buf.UInt64Value

The ParentSpanId is 64-bit in length and indicates the posi-

tion of the parent operation in the trace tree. When the span

is the root of the trace tree, the ParentSpanId is absent.

sampled
bool When the sampled decision is accept, report this span to

the tracing system. When it is reject, do not. When B3 at-

tributes are sent without a sampled decision, the receiver

should make one. Once the sampling decision is made, the

same value should be consistently sent downstream.

3.7.3.18 com/daml/ledger/api/v1/transaction.proto

Transaction

Filtered view of an on-ledger transaction.

3.7. The Ledger API 257

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://github.com/openzipkin/b3-propagation
https://github.com/openzipkin/b3-propagation
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.UInt64Value

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Must be a valid LedgerString (as

described in value.proto). Required

events
Event repeated The collection of events. Only contains CreatedEvent or

ArchivedEvent. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

TransactionTree

Complete view of an on-ledger transaction.

258 Chapter 3. Building applications

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Only set

if the workflow_id for the command was set. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

events_by_id
Transaction-

Tree.Events-

ByIdEntry

repeated Changes to the ledger that were caused by this transac-

tion. Nodes of the transaction tree. Each key be a valid

LedgerString (as describe in value.proto). Required

root_event_ids
string repeated Roots of the transaction tree. Each element must be a

valid LedgerString (as describe in value.proto). The

elements are in the same order as the commands in

the corresponding Commands object that triggerd this

transaction. Required

trace_con-

text

TraceContext Zipkin trace context. This field is a future extension point

and is currently not supported. Optional

TransactionTree.EventsByIdEntry

Field Type Label Description

key
string

value
TreeEvent

TreeEvent

Each tree event message type below contains a witness_parties field which indicates the subset

of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included

simply because they were children of events which have witnesses.

Field Type Label Description

created
CreatedEvent

exercised
ExercisedEvent

3.7. The Ledger API 259

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.3.19 com/daml/ledger/api/v1/transaction_filter.proto

Filters

Field Type Label Description

inclusive
InclusiveFilters If not set, no filters will be applied. Optional

InclusiveFilters

If no internal fields are set, no data will be returned.

Field Type Label Description

tem-

plate_ids

Identifier repeated A collection of templates. SHOULD NOT contain duplicates.

Required

TransactionFilter

Used for filtering Transaction and Active Contract Set streams. Determines which on-ledger events

will be served to the client.

Field Type Label Description

fil-

ters_by_party

Transaction-

Filter.Filters-

ByPartyEntry

repeated Keys of the map determine which parties’ on-ledger

transactions are being queried. Values of the map deter-

mine which events are disclosed in the stream per party.

At the minimum, a party needs to set an empty Filters

message to receive any events. Each key must be a valid

PartyIdString (as described in value.proto). Required

TransactionFilter.FiltersByPartyEntry

Field Type Label Description

key
string

value
Filters

3.7.3.20 com/daml/ledger/api/v1/transaction_service.proto

GetFlatTransactionResponse

Field Type Label Description

transaction
Transaction

260 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GetLedgerEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Required

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetLedgerEndResponse

Field Type Label Description

offset
LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Required

event_id
string The ID of a particular event. Must be a valid LedgerString

(as described in value.proto). Required

request-

ing_parties

string repeated The partieswhose events the client expects to see. Events

that are not visible for the parties in this collection will

not be present in the response. Each element must be a

valid PartyIdString (as described in value.proto). Re-

quired

trace_con-

text

TraceContext Server side tracingwill be registered as a child of the sub-

mitted context. This field is a future extension point and

is currently not supported. Optional

GetTransactionByIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

describe in value.proto). Required

transac-

tion_id

string The ID of a particular transaction. Must be a valid Ledger-

String (as describe in value.proto). Required

request-

ing_parties

string repeated The partieswhose events the client expects to see. Events

that are not visible for the parties in this collection will

not be present in the response. Each element be a valid

PartyIdString (as describe in value.proto). Required

trace_con-

text

TraceContext Server side tracingwill be registered as a child of the sub-

mitted context. This field is a future extension point and

is currently not supported. Optional

3.7. The Ledger API 261

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GetTransactionResponse

Field Type Label Description

transaction
TransactionTree

GetTransactionTreesResponse

Field Type Label Description

transac-

tions

Transaction-

Tree

repeated The list of transaction trees that matches the

filter in GetTransactionsRequest for the

GetTransactionTreesmethod.

GetTransactionsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribed in value.proto). Required

begin
LedgerOffset Beginning of the requested ledger section. Required

end
LedgerOffset End of the requested ledger section. Optional, if not set, the

stream will not terminate.

filter
Transaction-

Filter

Requesting parties with template filters. Required

verbose
bool If enabled, values served over the APIwill containmore infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

trace_con-

text

TraceContext Server side tracing will be registered as a child of the sub-

mitted context. This field is a future extension point and is

currently not supported. Optional

GetTransactionsResponse

Field Type Label Description

transac-

tions

Transaction repeated The list of transactions thatmatches the filter in GetTrans-

actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger.

262 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Method

name

Request

type

Response

type

Description

GetTransac-

tions

GetTransac-

tionsRequest

GetTrans-

actionsRe-

sponse

Read the ledger’s filtered transaction stream for a set

of parties.

GetTransac-

tionTrees

GetTransac-

tionsRequest

GetTransac-

tionTreesRe-

sponse

Read the ledger’s complete transaction tree stream

for a set of parties.

GetTransac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetTrans-

actionRe-

sponse

Lookupa transaction tree by the ID of an event that ap-

pears within it. Returns NOT_FOUND if no such trans-

action exists. For looking up a transaction instead

of a transaction tree, please see GetFlatTransaction-

ByEventId

GetTransac-

tionById

GetTrans-

action-

ByIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction tree by its ID. Returns

NOT_FOUND if no such transaction exists. For

looking up a transaction instead of a transaction

tree, please see GetFlatTransactionById

GetFlat-

Transac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by the ID of an event that ap-

pears within it. Returns NOT_FOUND if no such trans-

action exists.

GetFlat-

Transac-

tionById

GetTrans-

action-

ByIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by its ID. Returns NOT_FOUND if

no such transaction exists.

Ge-

tLedgerEnd

GetLedgerEn-

dRequest

GetLedgerEn-

dResponse

Get the current ledger end. Subscriptions startedwith

the returned offset will serve transactions created af-

ter this RPC was called.

3.7.3.21 com/daml/ledger/api/v1/value.proto

Enum

A value with finite set of alternative representations.

Field Type Label Description

enum_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

GenMap

Field Type Label Description

entries
GenMap.Entry repeated

3.7. The Ledger API 263

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

GenMap.Entry

Field Type Label Description

key
Value

value
Value

Identifier

Unique identifier of an entity.

Field Type Label Description

pack-

age_id

string The identifier of the DAML package that contains the entity. Must

be a valid PackageIdString. Required

mod-

ule_name

string The dot-separated module name of the identifier. Required

en-

tity_name

string The dot-separated name of the entity (e.g. record, template, 0)

within the module. Required

List

A homogenous collection of values.

Field Type Label Description

elements
Value repeated The elements must all be of the same concrete value type. Op-

tional

Map

Field Type Label Description

entries
Map.Entry repeated

Map.Entry

Field Type Label Description

key
string

value
Value

Optional

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to

wrap this in an additional message is that we need to be able to encode the None case in the Value

oneof.

264 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

value
Value optional

Record

Contains nested values.

Field Type Label Description

record_id
Identifier Omitted from the transaction streamwhen verbose stream-

ing is not enabled. Optional when submitting commands.

fields
RecordField repeated The nested values of the record. Required

RecordField

A named nested value within a record.

Field Type Label Description

label
string When reading a transaction stream, it’s omitted if verbose streaming

is not enabled. When submitting a commmand, it’s optional: - if all

keys within a single record are present, the order in which fields appear

does not matter. however, each key must appear exactly once. - if any

of the keys within a single record are omitted, the order of fields MUST

match the order of declaration in the DAML template. Must be a valid

NameString

value
Value A nested value of a record. Required

Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different four classes of strings as identifiers. Those classes are defined as

follow: - NameStrings are strings that match the regexp [A-Za-z\$_][A-Za-z0-9\$_]*. - Pack-

ageIdStrings are strings that match the regexp [A-Za-z0-9\-_]+. - PartyIdStrings are strings

thatmatch the regexp [A-Za-z0-9:\-_]+. - LedgerStrings are strings thatmatch the regexp [A-

Za-z0-9#:\-_/]+.

3.7. The Ledger API 265

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

record
Record

variant
Variant

con-

tract_id

string Identifier of an on-ledger contract. Commands which ref-

erence an unknown or already archived contract ID will fail.

Must be a valid LedgerString.

list
List Represents a homogeneous list of values.

int64
sint64

numeric
string A Numeric, that is a decimal value with precision 38 (at

most 38 significant digits) and a scale between 0 and 37

(significant digits on the right of the decimal point). The

field has to match the regex [+-]?d{1,38}(.d{0,37})? and

should be representable by a Numeric without loss of pre-

cision.

text
string A string.

timestamp
sfixed64 Microseconds since the UNIX epoch. Can go backwards.

Fixed since the vast majority of values will be greater than

2^28, since currently the number ofmicroseconds since the

epoch is greater than that. Range: 0001-01-01T00:00:00Z

to 9999-12-31T23:59:59.999999Z, so that we can convert

to/from https://www.ietf.org/rfc/rfc3339.txt

party
string An agent operating on the ledger. Must be a valid PartyId-

String.

bool
bool True or false.

unit
google.pro-

to-

buf.Empty

This value is used for example for choices that don’t take

any arguments.

date
int32 Days since the unix epoch. Can go backwards. Limited from

0001-01-01 to 9999-12-31, also to be compatible with https:

//www.ietf.org/rfc/rfc3339.txt

optional
Optional The Optional type, None or Some

map
Map The Map type

enum
Enum The Enum type

gen_map
GenMap The GenMap type

Variant

A value with alternative representations.

266 Chapter 3. Building applications

https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Label Description

variant_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

value
Value The value encoded within the Variant. Required

3.7.3.22 Scalar Value Types

.proto type Notes C++ type Java type Python

type

double
double double float

float
float float float

int32
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint32 instead.

int32 int int

int64
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint64 instead.

int64 long int/long

uint32
Uses variable-length encoding. uint32 int int/long

uint64
Uses variable-length encoding. uint64 long int/long

sint32
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int32s.

int32 int int

sint64
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int64s.

int64 long int/long

fixed32
Always four bytes. More efficient than

uint32 if values are often greater than

2^28.

uint32 int int

fixed64
Always eight bytes. More efficient than

uint64 if values are often greater than2^56.

uint64 long int/long

sfixed32
Always four bytes. int32 int int

sfixed64
Always eight bytes. int64 long int/long

bool
bool boolean boolean

string
A string must always contain UTF-8 en-

coded or 7-bit ASCII text.

string String str/unicode

bytes
May contain any arbitrary sequence of

bytes.

string ByteString str

3.7. The Ledger API 267

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.4 How DAML types are translated to protobuf

This page gives an overview and reference on how DAML types and contracts are represented by the

Ledger API as protobuf messages, most notably:

0 in the stream of transactions from the TransactionService

0 as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and

CommandService.

The DAML code in the examples below is written in DAML 1.1.

3.7.4.1 Notation

Thenotationusedon thispage for theprotobufmessages is the sameas youget if you invokeprotoc

--decode=Foo < some_payload.bin. To illustrate the notation, here is a simple definition of the

messages Foo and Bar:

message Foo {

string field_with_primitive_type = 1;

Bar field_with_message_type = 2;

}

message Bar {

repeated int64 repeated_field_inside_bar = 1;

}

A particular value of Foo is then represented by the Ledger API in this way:

{ // Foo

field_with_primitive_type: "some string"

field_with_message_type { // Bar

repeated_field_inside_bar: 17

repeated_field_inside_bar: 42

repeated_field_inside_bar: 3

}

}

The name of messages is added as a comment after the opening curly brace.

3.7.4.2 Records and primitive types

Records or product types are translated to Record. Here’s an example DAML record type that contains

a field for each primitive type:

data MyProductType = MyProductType {

intField: Int;

textField: Text;

decimalField: Decimal;

boolField: Bool;

partyField: Party;

timeField: Time;

listField: [Int];

contractIdField: ContractId SomeTemplate

}

268 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

And here’s an example of creating a value of type MyProductType:

alice <- getParty "Alice"

someCid <- submit alice do create SomeTemplate with owner=alice

let myProduct = MyProductType with

intField = 17

textField = "some text"

decimalField = 17.42

boolField = False

partyField = bob

timeField = datetime 2018 May 16 0 0 0

listField = [1,2,3]

contractIdField = someCid

For this data, the respective data on the Ledger API is shown below. Note that this value would be

enclosed by a particular contract containing a field of type MyProductType. See Contract templates for

the translation of DAML contracts to the representation by the Ledger API.

{ // Record

record_id { // Identifier

package_id: "some-hash"

name: "Types.MyProductType"

}

fields { // RecordField

label: "intField"

value { // Value

int64: 17

}

}

fields { // RecordField

label: "textField"

value { // Value

text: "some text"

}

}

fields { // RecordField

label: "decimalField"

value { // Value

decimal: "17.42"

}

}

fields { // RecordField

label: "boolField"

value { // Value

bool: false

}

}

fields { // RecordField

label: "partyField"

value { // Value

party: "Bob"

(continues on next page)

3.7. The Ledger API 269

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

}

}

fields { // RecordField

label: "timeField"

value { // Value

timestamp: 1526428800000000

}

}

fields { // RecordField

label: "listField"

value { // Value

list { // List

elements { // Value

int64: 1

}

elements { // Value

int64: 2

}

elements { // Value

int64: 3

}

}

}

}

fields { // RecordField

label: "contractIdField"

value { // Value

contract_id: "some-contract-id"

}

}

}

3.7.4.3 Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant

type with two constructors:

data MySumType = MySumConstructor1 Int |

MySumConstructor2 (Text, Bool)

The constructor MyConstructor1 takes a single parameter of type Integer, whereas the construc-

tor MyConstructor2 takes a record with two fields as parameter. The snippet below shows how you

can create values with either of the constructors.

let mySum1 = MySumConstructor1 17

let mySum2 = MySumConstructor2 ("it's a sum", True)

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySum1 and mySum2 respectively as they would be transmit-

ted on the Ledger API within a contract.

270 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 1: mySum1

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor1"

value { // Value

int64: 17

}

}

}

Listing 2: mySum2

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor2"

value { // Value

record { // Record

fields { // RecordField

label: "sumTextField"

value { // Value

text: "it's a sum"

}

}

fields { // RecordField

label: "sumBoolField"

value { // Value

bool: true

}

}

}

}

}

}

3.7.4.4 Contract templates

Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =

(continues on next page)

3.7. The Ledger API 271

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

MySimpleTemplateKey

with

party: Party

template MySimpleTemplate

with

owner: Party

where

signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey

Creating a contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-

mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown

below:

{ // CreateCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

}

Receiving a contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained

in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent

event_id: "some-event-id"

contract_id: "some-contract-id"

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

(continues on next page)

272 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

party: "Alice"

}

}

}

witness_parties: "Alice"

}

Exercising a choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,

exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_id: "some-contract-id"

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as

ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The

example above could be rewritten as follows:

{ // ExerciseByKeyCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_key { // Value

record { // Record

fields { // RecordField

label: "party"

value { // Value

party: "Alice"

}

}

(continues on next page)

3.7. The Ledger API 273

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

}

}

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

3.7.5 How DAML types are translated to DAML-LF

This page shows how types in DAML are translated into DAML-LF. It should help you understand and

predict the generated client interfaces, which is useful when you’re building a DAML-based applica-

tion that uses the Ledger API or client bindings in other languages.

For an introduction to DAML-LF, see DAML-LF.

3.7.5.1 Primitive types

Built-in data types in DAML have straightforward mappings to DAML-LF.

This section only covers the serializable types, as these are what client applications can interact

with via the generated DAML-LF. (Serializable types are ones whose values can be written in a text

or binary format. So not function types, Update and Scenario types, as well as any types built up

from those.)

Most built-in types have the same name in DAML-LF as in DAML. These are the exact mappings:

DAML primitive type DAML-LF primitive type

Int Int64

Time Timestamp

() Unit

[] List

Decimal Decimal

Text Text

Date Date

Party Party

Optional Optional

ContractId ContractId

Be aware that only the DAML primitive types exported by the Prelude module map to the DAML-LF

primitive types above. Thatmeans that, if you define your own type namedParty, it will not translate

to the DAML-LF primitive Party.

274 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.5.2 Tuple types

DAML tuple type constructors take types T1, T2, …, TN to the type (T1, T2, …, TN). These are

exposed in the DAML surface language through the Prelude module.

The equivalent DAML-LF type constructors are daml-prim:DA.Types:TupleN, for each particular

N (where 2 <= N <= 20). This qualified name refers to the package name (ghc-prim) and the module

name (GHC.Tuple).

For example: the DAML pair type (Int, Text) is translated to daml-prim:DA.Types:Tuple2

Int64 Text.

3.7.5.3 Data types

DAML-LF has three kinds of data declarations:

0 Record types, which define a collection of data

0 Variant or sum types, which define a number of alternatives

0 Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in DAML (starting with the data keyword) are translated to record, variant or

enum types. It’s sometimes not obvious what they will be translated to, so this section lists many

examples of data types in DAML and their translations in DAML-LF.

Record declarations

This section uses the syntax for DAML records with curly braces.

DAML declaration DAML-LF translation

data Foo = Foo { foo1: Int;

foo2: Text }

record Foo � { foo1: Int64; foo2: Text }

data Foo = Bar { bar1: Int;

bar2: Text }

record Foo � { bar1: Int64; bar2: Text }

data Foo = Foo { foo: Int } record Foo � { foo: Int64 }

data Foo = Bar { foo: Int } record Foo � { foo: Int64 }

data Foo = Foo {} record Foo � {}

data Foo = Bar {} record Foo � {}

3.7. The Ledger API 275

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Variant declarations

DAML declaration DAML-LF translation

data Foo = Bar Int | Baz

Text

variant Foo � Bar Int64 | Baz Text

data Foo a = Bar a | Baz

Text

variant Foo a � Bar a | Baz Text

data Foo = Bar Unit | Baz

Text

variant Foo � Bar Unit | Baz Text

data Foo = Bar Unit | Baz variant Foo � Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a � Bar Unit | Baz Unit

data Foo = Foo Int variant Foo � Foo Int64

data Foo = Bar Int variant Foo � Bar Int64

data Foo = Foo () variant Foo � Foo Unit

data Foo = Bar () variant Foo � Bar Unit

data Foo = Bar { bar: Int }

| Baz Text

variant Foo � Bar Foo.Bar | Baz Text, record

Foo.Bar � { bar: Int64 }

data Foo = Foo { foo: Int }

| Baz Text

variant Foo � Foo Foo.Foo | Baz Text, record

Foo.Foo � { foo: Int64 }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz Text

variant Foo � Bar Foo.Bar | Baz Text, record

Foo.Bar � { bar1: Int64; bar2: Decimal }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz {

baz1: Text; baz2: Date }

data Foo � Bar Foo.Bar | Baz Foo.Baz, record

Foo.Bar � { bar1: Int64; bar2: Decimal },

record Foo.Baz � { baz1: Text; baz2: Date }

Enum declarations

DAML declaration DAML-LF declaration

data Foo = Bar | Baz enum Foo � Bar | Baz

data Color = Red | Green |

Blue

enum Color � Red | Green | Blue

Banned declarations

There are two gotchas to be aware of: things youmight expect to be able to do in DAML that you can’t

because of DAML-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or

a variant type. Concretely, the data type declaration data Foo = Foo causes a compile-time error,

because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} to declare a record

type with no fields, or data Foo = Foo () for a variant with a single constructor taking unit argu-

ment.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled

argument type. This restriction is so that we can provide a straight-forward encoding of DAML-LF

types in a variety of client languages.

276 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} to produce record Foo � {} OR

data Foo = Foo () to produce variant Foo � Foo

Unit

data Foo = Bar data Foo = Bar {} to produce record Foo �

{} OR data Foo = Bar () to produce variant

Foo � Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,

for example data Foo = Foo { x: Int; y: Text }

data Foo = Bar Int Text Name constructor arguments using a record declaration,

for example data Foo = Bar { x: Int; y: Text }

data Foo = Bar | Baz Int

Text

Name arguments to the Baz constructor, for example

data Foo = Bar | Baz { x: Int; y: Text }

3.7.5.4 Type synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to DAML-LF. The

body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following DAML type declarations.

type Username = Text

data User = User { name: Username }

The Username type is eliminated in the DAML-LF translation, as follows:

record User � { name: Text }

3.7.5.5 Template types

A template declaration in DAML results in one ormore data type declarations behind the scenes. These

data types, detailed in this section, are not written explicitly in the DAML program but are created by

the compiler.

They are translated to DAML-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

Template data types

Every contract template defines a record type for the parameters of the contract. For example, the

template declaration:

template Iou

with

issuer: Party

owner: Party

currency: Text

amount: Decimal

where

results in this record declaration:

3.7. The Ledger API 277

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

data Iou = Iou { issuer: Party; owner: Party; currency: Text; amount:�

↪→Decimal }

This translates to the DAML-LF record declaration:

record Iou � { issuer: Party; owner: Party; currency: Text; amount:�

↪→Decimal }

Choice data types

Every choice within a contract template results in a record type for the parameters of that choice.

For example, let’s suppose the earlier Iou template has the following choices:

controller owner can

nonconsuming DoNothing: ()

do

return ()

Transfer: ContractId Iou

with newOwner: Party

do

updateOwner newOwner

This results in these two record types:

data DoNothing = DoNothing {}

data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The

data type is a record even if there are no fields.

These translate to the DAML-LF record declarations:

record DoNothing � {}

record Transfer � { newOwner: Party }

3.7.6 Java bindings

3.7.6.1 Generate Java code from DAML

Introduction

When writing applications for the ledger in Java, you want to work with a representation of DAML

templates and data types in Java that closely resemble the original DAML code while still being as

true to the native types in Java as possible. To achieve this, you can use DAML to Java code generator

(0Java codegen0) to generate Java types based on a DAML model. You can then use these types in

your Java code when reading information from and sending data to the ledger.

Download

You can download the latest version of the Java codegen. Make sure that the following versions are

aligned:

278 Chapter 3. Building applications

https://search.maven.org/artifact/com.daml/codegen-java

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 the downloaded Java codegen jar file, eg. x.y.z

0 the dependency to bindings-java, eg. x.y.z

0 the sdk-version attribute in the daml.yaml file, eg. x.y.z

Run the Java codegen

The Java codegen takes DAML archive (DAR) files as input and generates Java files for DAML tem-

plates, records, and variants. For information on creating DAR files see Building DAML projects. To use

the Java codegen, run this command in a terminal:

java -jar <path-to-codegen-jar>

Use this command to display the help text:

java -jar codegen.jar --help

Generate Java code from DAR files

Pass one or more DAR files as arguments to the Java codegen. Use the -o or --output-directory

parameter for specifying the directory for the generated Java files.

java -jar java-codegen.jar -o target/generated-sources/daml daml/my-

↪→project.dar

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To avoid possible name clashes in the generated Java sources, you should specify a Java package

prefix for each input file:

java -jar java-codegen.jar -o target/generated-sources/daml \

daml/project1.dar=com.example.daml.project1 \

^^^^^^^^^^^^^^^^^^^^^^^^^^

daml/project2.dar=com.example.daml.project2

^^^^^^^^^^^^^^^^^^^^^^^^^^

Generate the decoder utility class

When reading transactions from the ledger, you typically want to convert a CreatedEvent from the

Ledger API to the corresponding generated Contract class. The Java codegen can optionally gener-

ate a decoder class based on the input DAR files that calls the fromCreatedEvent method of the

respective generated Contract class (see Templates). The decoder class can do this for all templates

in the input DAR files.

To generate such a decoder class, provide the command line parameter -d or --decoderClasswith

a fully qualified class name:

java -jar java-codegen.jar -o target/generated-sources/daml \

-d com.myproject.DamModelDecoder daml/my-project.dar

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Receive feedback

By default, the logging is configured so that you’ll only see error messages.

3.7. The Ledger API 279

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

If you want to change this behavior, you can ask to receive more extensive feedback using the -V or

--verbosity command-line option. This option takes a numeric parameter from 0 to 4, where 0

corresponds to the default quiet behavior and 4 represents the most verbose output possible.

In the following example the logging is set to print most of the output with detailed debugging in-

formation:

java -jar java-codegen.jar -o target/generated-sources/daml -V 3

^^^^

Integrate with build tools

While we currently don’t provide direct integration with Maven, Groovy, SBT, etc., you can run the

Java codegen as described in Run the Java codegen just like any other external process (for example

the protobuf compiler).

Compile the generated Java code

To compile the generated Java code, add the Java Bindings library with the same version as the Java

codegen to the classpath.

With Maven you can do this by adding a dependency to the pom.xml file:

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>x.y.z</version>

</dependency>

Understand the generated Java model

The Java codegen generates source files in a directory tree under the output directory specified on

the command line.

Map DAML primitives to Java types

DAML built-in types are translated to the following equivalent types in Java:

280 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML

type

Java type Java Bind-

ings Value

Type

Int java.lang.Long Int64

Numeric java.math.BigDecimal Numeric

Text java.lang.String Text

Bool java.util.Boolean Bool

Party java.lang.String Party

Date java.time.LocalDate Date

Time java.time.Instant Timestamp

List or [] java.util.List DamlList

TextMap java.util.Map Restricted to using String keys. Daml-

TextMap

Optional java.util.Optional DamlOp-

tional

() (Unit) None since the Java language doesn’t have a direct equivalent of

DAML’s Unit type (), the generated code uses the Java Bindings

value type.

Unit

ContractId Fields of type ContractId X refer to the generated ContractId

class of the respective template X.

ContractId

Understand escaping rules

To avoid clashes with Java keywords, the Java codegen applies escaping rules to the following DAML

identifiers:

0 Type names (except the already mapped built-in types)

0 Constructor names

0 Type parameters

0 Module names

0 Field names

If any of these identifiers match one of the Java reserved keywords, the Java codegen appends a

dollar sign $ to the name. For example, a field with the name import will be generated as a Java

field with the name import$.

Understand the generated classes

Every user-defined data type in DAML (template, record, and variant) is represented by one or more

Java classes as described in this section.

The Java package for the generated classes is the equivalent of the lowercase DAML module name.

Listing 3: DAML

module Foo.Bar.Baz where

3.7. The Ledger API 281

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Int64.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Numeric.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Text.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Bool.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Party.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Date.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Timestamp.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlList.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Unit.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/ContractId.html
https://docs.oracle.com/javase/specs/jls/se12/html/jls-3.html#jls-3.9

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 4: Java

package foo.bar.baz;

Records (a.k.a product types)

A DAML record is represented by a Java class with fields that have the same name as the DAML record

fields. A DAML field having the type of another record is represented as a field having the type of the

generated class for that record.

Listing 5: Com/Acme/ProductTypes.daml

module Com.Acme.ProductTypes where

data Person = Person with name : Name; age : Decimal

data Name = Name with firstName : Text; lastName : Text

A Java file is generated that defines the class for the type Person:

Listing 6: com/acme/producttypes/Person.java

package com.acme.producttypes;

public class Person {

public final Name name;

public final BigDecimal age;

public static Person fromValue(Value value$) { /* ... */ }

public Person(Name name, BigDecimal age) { /* ... */ }

public Record toValue() { /* ... */ }

}

A Java file is generated that defines the class for the type Name:

282 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 7: com/acme/producttypes.Name.java

package com.acme.producttypes;

public class Name {

public final String fistName;

public final String lastName;

public static Person fromValue(Value value$) { /* ... */ }

public Name(String fistName, String lastName) { /* ... */ }

public Record toValue() { /* ... */ }

}

Templates

The Java codegen generates three classes for a DAML template:

TemplateName Represents the contract data or the template fields.

TemplateName.ContractId Used whenever a contract ID of the corresponding

template is used in another template or record, for example: data Foo =

Foo (ContractId Bar). This class also provides methods to generate an

ExerciseCommand for each choice that can be sent to the ledger with the Java

Bindings. .. TODO: refer to another section explaining exactly that, when we have it.

TemplateName.Contract Represents an actual contract on the ledger. It contains a

field for the contract ID (of type TemplateName.ContractId) and a field for the

template data (of type TemplateName). With the static method TemplateName.

Contract.fromCreatedEvent, you can deserialize a CreatedEvent to an instance

of TemplateName.Contract.

Listing 8: Com/Acme/Templates.daml

module Com.Acme.Templates where

data BarKey =

BarKey

with

p : Party

t : Text

template Bar

with

owner: Party

name: Text

where

signatory owner

key BarKey owner name : BarKey

maintainer key.p

(continues on next page)

3.7. The Ledger API 283

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

controller owner can

Bar_SomeChoice: Bool

with

aName: Text

do return True

A file is generated that defines three Java classes:

1. Bar

2. Bar.ContractId

3. Bar.Contract

Listing 9: com/acme/templates/Bar.java

package com.acme.templates;

public class Bar extends Template {

public static final Identifier TEMPLATE_ID = new Identifier("some-

↪→package-id", "Com.Acme.Templates", "Bar");

public final String owner;

public final String name;

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey�

↪→key, Bar_SomeChoice arg) { /* ... */ }

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey�

↪→key, String aName) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(Bar_

↪→SomeChoice arg) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(String�

↪→aName) { /* ... */ }

public static class ContractId {

public final String contractId;

public ExerciseCommand exerciseArchive(Unit arg) { /* ... */ }

public ExerciseCommand exerciseBar_SomeChoice(Bar_SomeChoice arg) { /*�

↪→... */ }

public ExerciseCommand exerciseBar_SomeChoice(String aName) { /* ... */

↪→ }

}

public static class Contract {

public final ContractId id;

(continues on next page)

284 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

public final Bar data;

public static Contract fromCreatedEvent(CreatedEvent event) { /* ... */

↪→ }

}

}

Note that the static methods returning an ExerciseByKeyCommand will only be generated for tem-

plates that define a key.

Variants (a.k.a sum types)

A variant or sum type is a type with multiple constructors, where each constructor wraps a value of

another type. The generated code is comprised of an abstract class for the variant type itself and

a subclass thereof for each constructor. Classes for variant constructors are similar to classes for

records.

Listing 10: Com/Acme/Variants.daml

module Com.Acme.Variants where

data BookAttribute = Pages Int

| Authors [Text]

| Title Text

| Published with year: Int; publisher: Text

The Java code generated for this variant is:

Listing 11: com/acme/variants/BookAttribute.java

package com.acme.variants;

public class BookAttribute {

public static BookAttribute fromValue(Value value) { /* ... */ }

public static BookAttribute fromValue(Value value) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 12: com/acme/variants/bookattribute/Pages.java

package com.acme.variants.bookattribute;

public class Pages extends BookAttribute {

public final Long longValue;

public static Pages fromValue(Value value) { /* ... */ }

public Pages(Long longValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

3.7. The Ledger API 285

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 13: com/acme/variants/bookattribute/Au-

thors.java

package com.acme.variants.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 14: com/acme/variants/bookattribute/Title.java

package com.acme.variants.bookattribute;

public class Title extends BookAttribute {

public final String stringValue;

public static Title fromValue(Value value) { /* ... */ }

public Title(String stringValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 15: com/acme/variants/bookattribute/Pub-

lished.java

package com.acme.variants.bookattribute;

public class Published extends BookAttribute {

public final Long year;

public final String publisher;

public static Published fromValue(Value value) { /* ... */ }

public Published(Long year, String publisher) { /* ... */ }

public Record toValue() { /* ... */ }

}

Parameterized types

Note: This section is only included for completeness: we don’t expect users to make use of

the fromValue and toValue methods, because they would typically come from a template that

doesn’t have any unbound type parameters.

286 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The Java codegen uses Java Generic types to represent DAML parameterized types.

This DAML fragment defines the parameterized type Attribute, used by the BookAttribute type

for modeling the characteristics of the book:

Listing 16: Com/Acme/ParametrizedTypes.daml

module Com.Acme.ParameterizedTypes where

data Attribute a = Attribute

with v : a

data BookAttributes = BookAttributes with

pages : (Attribute Int)

authors : (Attribute [Text])

title : (Attribute Text)

The Java codegen generates a Java file with a generic class for the Attribute a data type:

Listing 17: com/acme/parametrizedtypes/Attribute.java

package com.acme.parametrizedtypes;

public class Attribute<a> {

public final a value;

public Attribute(a value) { /* ... */ }

public Record toValue(Function<a, Value> toValuea) { /* ... */ }

public static <a> Attribute<a> fromValue(Value value$, Function<Value, a>

↪→ fromValuea) { /* ... */ }

}

Enums

An enum type is a simplified sum typewithmultiple constructors but without argument nor type pa-

rameters. The generated code is standard java Enumwhose constantsmap enum type constructors.

Listing 18: Com/Acme/Enum.daml

module Com.Acme.Enum where

data Color = Red | Blue | Green

The Java code generated for this variant is:

Listing 19: com/acme/enum/Color.java

package com.acme.enum;

public enum Color {
(continues on next page)

3.7. The Ledger API 287

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

RED,

GREEN,

BLUE;

/* ... */

public static final Color fromValue(Value value$) { /* ... */ }

public final DamlEnum toValue() { /* ... */ }

}

Listing 20: com/acme/enum/bookattribute/Authors.java

package com.acme.enum.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Convert a value of a generated type to a Java Bindings value

To convert an instance of the generic type Attribute<a> to a Java Bindings Value, call the toValue

method and pass a function as the toValuea argument for converting the field of type a to the

respective Java Bindings Value. The name of the parameter consists of toValue and the name of

the type parameter, in this case a, to form the name toValuea.

Below is a Java fragment that converts an attribute with a java.lang.Long value to the Java Bind-

ings representation using the method reference Int64::new.

Attribute<Long> pagesAttribute = new Attributes<>(42L);

Value serializedPages = pagesAttribute.toValue(Int64::new);

See DAML To Java Type Mapping for an overview of the Java Bindings Value types.

Note: If the DAML type is a record or variant with more than one type parameter, you need to pass a

conversion function to the toValuemethod for each type parameter.

Create a value of a generated type from a Java Bindings value

Analogous to the toValuemethod, to create a value of a generated type, call themethod fromValue

and pass conversion functions from a Java Bindings Value type to the expected Java type.

288 Chapter 3. Building applications

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Attribute<Long> pagesAttribute = Attribute.<Long>fromValue(serializedPages,

f -> f.asInt64().getOrElseThrow(() -> throw new�

↪→IllegalArgumentException("Expected Int field").getValue());

See Java Bindings Value class for themethods to transform the Java Bindings types into correspond-

ing Java types.

Non-exposed parameterized types

If the parameterized type is contained in a type where the actual type is specified (as in the

BookAttributes type above), then the conversion methods of the enclosing type provides the re-

quired conversion function parameters automatically.

Convert Optional values

The conversion of the Java Optional requires two steps. The Optionalmust be mapped in order

to convert its contains before to be passed to DamlOptional::of function.

Attribute<Optional<Long>> idAttribute = new Attribute<List<Long>>(Optional.

↪→of(42));

val serializedId = DamlOptional.of(idAttribute.map(Int64::new));

To convert back DamlOptional to Java Optional, onemust use the containersmethod toOptional.

This method expects a function to convert back the value possibiy contains in the container.

Attribute<Optional<Long>> idAttribute2 =

serializedId.toOptional(v -> v.asInt64().orElseThrow(() -> new�

↪→IllegalArgumentException("Expected Int64 element")));

Convert Collection values

DamlCollectors provides collectors to converted Java collection containers such as List and Map to

DamlValues in one pass. The builders for those collectors require functions to convert the element

of the container.

Attribute<List<String>> authorsAttribute =

new Attribute<List<String>>(Arrays.asList("Homer", "Ovid", "Vergil"));

Value serializedAuthors =

authorsAttribute.toValue(f -> f.stream().collect(DamlCollector.

↪→toList(Text::new));

To convert back DAML containers to Java ones, one must use the containers methods toList or

toMap. Those methods expect functions to convert back the container’s entries.

Attribute<List<String>> authorsAttribute2 =

Attribute.<List<String>>fromValue(

serializedAuthors,

f0 -> f0.asList().orElseThrow(() -> new IllegalArgumentException(

↪→"Expected DamlList field"))

(continues on next page)

3.7. The Ledger API 289

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlCollectors.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

.toList(

f1 -> f1.asText().orElseThrow(() -> new�

↪→IllegalArgumentException("Expected Text element"))

.getValue()

)

);

3.7.6.2 Example project

To try out the Java bindings library, use the examples on GitHub: PingPongReactive or

PingPongComponents.

The former example does not use the Reactive Components, and the latter example does. Both ex-

amples implement the PingPong application, which consists of:

0 a DAML model with two contract templates, Ping and Pong

0 two parties, Alice and Bob

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the DAML is

reached.

Setting up the example projects

To set up the example projects, clone the public GitHub repository at github.com/digital-asset/ex-

java-bindings and follow the setup instruction in the README file.

This project contains three examples of the PingPong application, built with gRPC (non-reactive),

Reactive and Reactive Component bindings respectively.

Example project

PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongMain.java. Look at this class to see:

0 how to connect to and interact with a DAML Ledger via the Java bindings

0 how to use the Reactive layer to build an automation for both parties.

At high level, the code does the following steps:

0 creates an instance of DamlLedgerClient connecting to an existing Ledger

0 connect this instance to the Ledger with DamlLedgerClient.connect()

0 create two instances of PingPongProcessor, which contain the logic of the automation

(This is where the application reacts to the new Ping or Pong contracts.)

0 run the PingPongProcessor forever by connecting them to the incoming transactions

0 inject some contracts for each party of both templates

290 Chapter 3. Building applications

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 wait until the application is done

PingPongProcessor.runIndefinitely()

The core of the application is the PingPongProcessor.runIndefinitely().

The PingPongProcessor queries the transactions first via the TransactionsClient of the

DamlLedgerClient. Then, for each transaction, it produces Commands that will be sent to the

Ledger via the CommandSubmissionClient of the DamlLedgerClient.

Output

The application prints statements similar to these:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at�

↪→count 9

The first line shows that:

0 Bob is exercising theRespondPong choice on the contract with ID#1:0 for theworkflowPing-

Alice-1.

0 Count 0means that this is the first choice after the initial Ping contract.

0 Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

The second line is analogous to the first one.

3.7.6.3 IOU Quickstart Tutorial

In this guide, you will learn about the SDK tools and DAML applications by:

0 developing a simple ledger application for issuing, managing, transferring and trading IOUs (0I

Owe You!0)

0 developing an integration layer that exposes some of the functionality via custom REST ser-

vices

Prerequisites:

0 You understand what an IOU is. If you are not sure, read the IOU tutorial overview.

0 You have installed the DAML SDK. See installation.

On this page:

0 Download the quickstart application

– Folder structure

0 Overview of what an IOU is

0 Run the application using prototyping tools

0 Try out the application

0 Get started with DAML

– Develop with DAML Studio

– Test using scenarios

0 Integrate with the ledger

0 Next steps

3.7. The Ledger API 291

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Download the quickstart application

You can get the quickstart application using the DAML assistant (daml):

1. Run daml new quickstart --template quickstart-java

This creates the quickstart-java application into a new folder called quickstart.

2. Run cd quickstart to change into the new directory.

Folder structure

The project contains the following files:

.

├── daml

│ ├── Iou.daml

│ ├── IouTrade.daml

│ ├── Main.daml

│ ├── Setup.daml

│ └── Tests

│ ├── Iou.daml

│ └── Trade.daml

├── daml.yaml

├── frontend-config.js

├── pom.xml

└── src

└── main

├── java

│ └── com

│ └── digitalasset

│ └── quickstart

│ └── iou

│ └── IouMain.java

└── resources

└── logback.xml

0 daml.yaml is a DAML project config file used by the SDK to find out how to build the DAML

project and how to run it.

0 daml contains the DAML code specifying the contract model for the ledger.

0 daml/Tests contains test scenarios for the DAML model.

0 frontend-config.js and ui-backend.conf are configuration files for the Navigator fron-

tend.

0 pom.xml and src/main/java constitute a Java application that provides REST services to in-

teract with the ledger.

You will explore these in more detail through the rest of this guide.

Overview of what an IOU is

To run through this guide, you will need to understand what an IOU is. This section describes the

properties of an IOU like a bank bill that make it useful as a representation and transfer of value.

A bank bill represents a contract between the owner of the bill and its issuer, the central bank. His-

torically, it is a bearer instrument - it gives anyone who holds it the right to demand a fixed amount

292 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

of material value, often gold, from the issuer in exchange for the note.

To do this, the note must have certain properties. In particular, the British pound note shown below

illustrates the key elements that are needed to describe money in DAML:

1) The Legal Agreement

For a long time, money was backed by physical gold or silver stored in a central bank. The British

pound note, for example, represented a promise by the central bank to provide a certain amount of

gold or silver in exchange for the note. This historical artifact is still represented by the following

statement:

I promise to pay the bearer on demand the sum of five pounds.

The true value of the note comes from the fact that it physically represents a bearer right that is

matched by an obligation on the issuer.

2) The Signature of the Counterparty

The value of a right described in a legal agreement is based on a matching obligation for a counter-

party. The British pound note would be worthless if the central bank, as the issuer, did not recognize

its obligation to provide a certain amount of gold or silver in exchange for the note. The chief cashier

confirms this obligation by signing the note as a delegate for the Bank of England. In general, deter-

mining the parties that are involved in a contract is key to understanding its true value.

3) The Security Token

Another feature of the poundnote is the security token embeddedwithin the physical paper. It allows

the note to be authenticatedwith limited effort by holding it against a light source. Even a third party

can verify the note without requiring explicit confirmation from the issuer that it still acknowledges

the associated obligations.

4) The Unique Identifier

Every note has a unique registration number that allows the issuer to track their obligations and

detect duplicate bills. Once the issuer has fulfilled the obligations associated with a particular note,

3.7. The Ledger API 293

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

duplicates with the same identifier automatically become invalid.

5) The Distribution Mechanism

The note itself is printed on paper, and its legal owner is the person holding it. The physical form of

the note allows the rights associated with it to be transferred to other parties that are not explicitly

mentioned in the contract.

Run the application using prototyping tools

In this section, you will run the quickstart application and get introduced to the main tools for pro-

totyping DAML:

1. To compile the DAML model, run daml build

This creates a DAR file (DAR is just the format that DAML compiles to) called .daml/dist/

quickstart-0.0.1.dar. The output should look like this:

Created .daml/dist/quickstart-0.0.1.dar.

2. To run the sandbox (a lightweight local version of the ledger), run daml sandbox .daml/

dist/quickstart-0.0.1.dar

The output should look like this:

DAML LF Engine supports LF versions: 0, 1.0, 1.1, 1.2, 1.3;�

↪→Transaction versions: 1, 2, 3, 4, 5; Value versions: 1, 2, 3, 4

Starting plainText server

listening on localhost:6865

____ ____

/ __/__ ____ ___/ / / ___ __ __

_\ \/ _ `/ _ \/ _ / _ \/ _ \\ \ /

/___/_,_/_//_/_,_/_.__/___/__\

Initialized sandbox version 100.13.10 with ledger-id = sandbox-

↪→5e12e502-817e-41f9-ad40-1c57b8845f9d, port = 6865, dar file =�

↪→DamlPackageContainer(List(target/daml/iou.dar),false), time mode =�

↪→WallClock, ledger = in-memory, daml-engine = {}

The sandbox is now running, and you can access its ledger API on port 6865.

3. Open a new terminal window and navigate to your project directory, quickstart.

4. To initialize the ledger with some parties and contracts we use DAML Script by run-

ning daml script --dar .daml/dist/quickstart-0.0.1.dar --script-name

Main:initialize --ledger-host localhost --ledger-port 6865 --static-

time

5. Start the Navigator, a browser-based leger front-end, by running daml navigator server

The Navigator automatically connects the sandbox. You can access it on port 4000.

Try out the application

Now everything is running, you can try out the quickstart application:

1. Go to http://localhost:4000/. This is the Navigator, which you launched earlier.

2. On the login screen, select Alice from the dropdown. This logs you in as Alice.

(The list of available parties is specified in the ui-backend.conf file.)

This takes you to the contracts view:

294 Chapter 3. Building applications

http://localhost:4000/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

This is showing you what contracts are currently active on the sandbox ledger and visible to

Alice. You can see that there is a single such contract, in our case with Id #9:1, created from a

template called Iou:Iou@ffb....

Your contract ID may vary. There’s a lot going on in a DAML ledger, so things could have hap-

pened in a different order, or other internal ledger eventsmight have occurred. The actual value

doesn’t matter. We’ll refer to this contract as #9:1 in the rest of this document, and you’ll need

to substitute your own value mentally.

3. On the left-hand side, you can see what the pages the Navigator contains:

0 Contracts

0 Templates

0 Issued Ious

0 Owned Ious

0 Iou Transfers

0 Trades

Contracts and Templates are standard views, available in any application. The others are cre-

ated just for this application, specified in the frontend-config.js file.

For information on creating custom Navigator views, see Customizable table views.

4. Click Templates to open the Templates page.

This displays all available contract templates. Instances of contracts (or just contracts) are

created from these templates. The names of the templates are of the format module.tem-

plate@hash. Including the hash disambiguates templates, even when identical module and

template names are used between packages.

On the far right, you see the number of contract instances that you can see for each template.

5. Try creating a contract from a template. Issue an Iou to yourself by clicking on the Iou:Iou

row, filling it out as shown below and clicking Submit.

6. On the left-hand side, click Issued Ious to go to that page. You can see the Iou you just issued

yourself.

7. Now, try transferring this Iou to someone else. Click on your Iou, select Iou_Transfer, enter Bob

as the new owner and hit Submit.

8. Go to the Owned Ious page.

3.7. The Ledger API 295

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The screen shows the same contract #9:1 that you already saw on the Contracts page. It is an

Iou for 0100, issued by EUR_Bank.

9. Go to the Iou Transfers page. It shows the transfer of your recently issued Iou to Bob, but Bob

has not accepted the transfer, so it is not settled.

This is an important part of DAML: nobody can be forced into owning an Iou, or indeed agreeing

to any other contract. They must explicitly consent.

You could cancel the transfer by using the IouTransfer_Cancel choice within it, but for this walk-

through, leave it alone for the time being.

10. Try asking Bob to exchange your 0100 for $110. To do so, you first have to show your Iou to Bob so

that he can verify the settlement transaction, should he accept the proposal.

Go back to Owned Ious, open the Iou for 0100 and click on the button Iou_AddObserver. Submit

Bob as the newObserver.

Contracts in DAML are immutable,meaning they cannot be changed, only created and archived.

If you head back to the Owned Ious screen, you can see that the Iou now has a new Contract ID.

In our case, it’s #13:1.

11. To propose the trade, go to the Templates screen. Click on the IouTrade:IouTrade template, fill in

the form as shown below and submit the transaction.

12. Go to the Trades page. It shows the just-proposed trade.

13. You are now going to switch user to Bob, so you can accept the trades you have just proposed.

Start by clicking on the logout button next to the username, at the top of the screen. On the

login page, select Bob from the dropdown.

14. First, accept the transfer of the AliceCoin. Go to the Iou Transfers page, click on the row of the

transfer, and click IouTransfer_Accept, then Submit.

15. Go to the Owned Ious page. It now shows the AliceCoin.

It also shows an Iou for $110 issued by USD_Bank. This matches the trade proposal you made

earlier as Alice.

Note its Contract Id.

16. Settle the trade. Go to the Trades page, and click on the row of the proposal. Accept the trade by

clicking IouTrade_Accept. In the popup, enter the Contract ID you just noted as the quoteIouCid,

then click Submit.

The two legs of the transfer are now settled atomically in a single transaction. The trade either

296 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7. The Ledger API 297

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

fails or succeeds as a whole.

17. Privacy is an important feature of DAML. You can check that Alice and Bob’s privacy relative to

the Banks was preserved.

To do this, log out, then log in as USD_Bank.

On the Contracts page, select Include archived. The page now shows all the contracts that

USD_Bank has ever known about.

There are just three contracts:

0 An IouTransfer that was part of the scenario during sandbox startup.

0 Bob’s original Iou for $110.

0 The new $110 Iou owned by Alice. This is the only active contract.

USD_Bank does not know anything about the trade or the EUR-leg. For more information on

privacy, refer to the DAML Ledger Model.

Note: USD_Bank does know about an intermediate IouTransfer contract that was created and

consumed as part of the atomic settlement in the previous step. Since that contract was never

active on the ledger, it is not shown in Navigator. You will see how to view a complete transac-

tion graph, including who knows what, in Test using scenarios below.

Get started with DAML

The contractmodel specifies the possible contracts, as well as the allowed transactions on the ledger,

and is written in DAML.

The core concept in DAML is a contract template - you used them earlier to create contracts. Contract

templates specify:

0 a type of contract that may exist on the ledger, including a corresponding data type

0 the signatories, who need to agree to the creation of a contract instance of that type

0 the rights or choices given to parties by a contract of that type

0 constraints or conditions on the data on a contract instance

0 additional parties, called observers, who can see the contract instance

For more information about DAML Ledgers, consult DAML Ledger Model for an in-depth technical de-

scription.

Develop with DAML Studio

Take a look at the DAML that specifies the contract model in the quickstart application. The core

template is Iou.

1. Open DAML Studio, a DAML IDE based on VS Code, by running daml studio from the root of your

project.

2. Using the explorer on the left, open daml/Iou.daml.

The first two lines specify language version and module name:

module Iou where

Next, a template called Iou is declared together with its datatype. This template has five fields:

template Iou

with

issuer : Party

(continues on next page)

298 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

owner : Party

currency : Text

amount : Decimal

observers : [Party]

Conditions for the creation of a contract instance are specified using the ensure and signatory key-

words:

ensure amount > 0.0

signatory issuer, owner

In this case, there are two conditions:

0 An Iou can only be created if it is authorized by both issuer and owner.

0 The amount needs to be positive.

Earlier, as Alice, you authorized the creation of an Iou. The amount was 100.0, and Alice as both

issuerandowner, so both conditionswere satisfied, and youcould successfully create the contract.

To see this in action, go back to the Navigator and try to create the same Iou again, but with Bob as

owner. It will not work.

Observers are specified using the observer keyword:

observer observers

Next, rights or choices are given to owner:

controller owner can

Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

do create IouTransfer with iou = this; newOwner

controller owner can starts the block. In this case, owner has the right to:

0 split the Iou

0 merge it with another one differing only on amount

0 initiate a transfer

0 add and remove observers

The Iou_Transfer choice above takes a parameter called newOwner and creates a new

IouTransfer contract and returns itsContractId. It is important to know that, by default, choices

consume the contract on which they are exercised. Consuming, or archiving, makes the contract no

longer active. So the IouTransfer replaces the Iou.

A more interesting choice is IouTrade_Accept. To look at it, open IouTrade.daml.

controller seller can

IouTrade_Accept : (IouCid, IouCid)

with

quoteIouCid : IouCid

do

(continues on next page)

3.7. The Ledger API 299

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

baseIou <- fetch baseIouCid

baseIssuer === baseIou.issuer

baseCurrency === baseIou.currency

baseAmount === baseIou.amount

buyer === baseIou.owner

quoteIou <- fetch quoteIouCid

quoteIssuer === quoteIou.issuer

quoteCurrency === quoteIou.currency

quoteAmount === quoteIou.amount

seller === quoteIou.owner

quoteIouTransferCid <- exercise quoteIouCid Iou_Transfer with

newOwner = buyer

transferredQuoteIouCid <- exercise quoteIouTransferCid�

↪→IouTransfer_Accept

baseIouTransferCid <- exercise baseIouCid Iou_Transfer with

newOwner = seller

transferredBaseIouCid <- exercise baseIouTransferCid IouTransfer_

↪→Accept

return (transferredQuoteIouCid, transferredBaseIouCid)

This choice uses the === operator from the DAML Standard Library to check pre-conditions. The

standard library is imported using import DA.Assert at the top of the module.

Then, it composes the Iou_Transfer and IouTransfer_Accept choices to build one big transac-

tion. In this transaction, buyer and seller exchange their Ious atomically, without disclosing the

entire transaction to all parties involved.

The Issuers of the two Ious, which are involved in the transaction because they are signatories on the

Iou and IouTransfer contracts, only get to see the sub-transactions that concern them, as we saw

earlier.

For a deeper introduction to DAML, consult the DAML Reference.

Test using scenarios

You can check the correct authorization and privacy of a contract model using scenarios: tests that

are written in DAML.

Scenarios are a linear sequence of transactions that is evaluated using the same consistency, con-

formance and authorization rules as it would be on the full ledger server or the sandbox ledger. They

are integrated into DAML Studio, which can show you the resulting transaction graph, making them

a powerful tool to test and troubleshoot the contract model.

To take a look at the scenarios in the quickstart application, open daml/Tests/Trade.daml in

DAML Studio.

A scenario test is defined with trade_test = scenario do. The submit function takes a sub-

mitting party and a transaction, which is specified the same way as in contract choices.

The following block, for example, issues an Iou and transfers it to Alice:

-- Banks issue IOU transfers.

iouTransferAliceCid <- submit eurBank do

(continues on next page)

300 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

createAndExerciseCmd

Iou with

issuer = eurBank

owner = eurBank

currency = "EUR"

amount = 100.0

Compare the scenario with the setup scenario in daml/Main.daml. You will see that the scenario

you used to initialize the sandbox is an initial segment of the trade_test scenario. The latter adds

transactions to perform the trade you performed through Navigator, and a couple of transactions in

which expectations are verified.

After a short time, the text Scenario results should appear above the test. Click on it to open the

visualization of the resulting ledger state.

Each row shows a contract on the ledger. The first four columns show which parties know of which

contracts. The remaining columns show the data on the contracts. You can see past contracts by

checking the Show archived box at the top. Click the adjacent Show transaction view button to

switch to a view of the entire transaction tree.

In the transaction view, transaction #6 is of particular interest, as it shows how the Ious are ex-

changed atomically in one transaction. The lines starting known to (since) show that the Banks

do indeed not know anything they should not:

TX #6 1970-01-01T00:00:00Z (Tests.Trade:61:14)

#6:0

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> 'Bob' exercises IouTrade_Accept on #5:0 (IouTrade:IouTrade)

with

quoteIouCid = #3:1

children:

#6:1

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> fetch #4:1 (Iou:Iou)

#6:2

(continues on next page)

3.7. The Ledger API 301

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

│ known to (since): 'Alice' (#6), 'Bob' (#6)

└─> fetch #3:1 (Iou:Iou)

#6:3

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> 'Bob' exercises Iou_Transfer on #3:1 (Iou:Iou)

with

newOwner = 'Alice'

children:

#6:4

│ consumed by: #6:5

│ referenced by #6:5

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer = 'USD_Bank';

owner = 'Bob';

currency = "USD";

amount = 110.0;

observers = []);

newOwner = 'Alice'

#6:5

│ known to (since): 'Bob' (#6), 'USD_Bank' (#6), 'Alice' (#6)

└─> 'Alice' exercises IouTransfer_Accept on #6:4 (Iou:IouTransfer)

with

children:

#6:6

│ referenced by #7:0

│ known to (since): 'Alice' (#6), 'USD_Bank' (#6), 'Bob' (#6)

└─> create Iou:Iou

with

issuer = 'USD_Bank';

owner = 'Alice';

currency = "USD";

amount = 110.0;

observers = []

#6:7

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> 'Alice' exercises Iou_Transfer on #4:1 (Iou:Iou)

with

newOwner = 'Bob'

children:

#6:8

│ consumed by: #6:9

│ referenced by #6:9

(continues on next page)

302 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer = 'EUR_Bank';

owner = 'Alice';

currency = "EUR";

amount = 100.0;

observers = ['Bob']);

newOwner = 'Bob'

#6:9

│ known to (since): 'Alice' (#6), 'EUR_Bank' (#6), 'Bob' (#6)

└─> 'Bob' exercises IouTransfer_Accept on #6:8 (Iou:IouTransfer)

with

children:

#6:10

│ referenced by #8:0

│ known to (since): 'Bob' (#6), 'EUR_Bank' (#6), 'Alice' (#6)

└─> create Iou:Iou

with

issuer = 'EUR_Bank'; owner = 'Bob'; currency = "EUR"; amount�

↪→= 100.0; observers = []

The submit function used in this scenario tries to perform a transaction and fails if any of the ledger

integrity rules are violated. There is also a submitMustFail function, which checks that certain

transactions are not possible. This is used in daml/Tests/Iou.daml, for example, to confirm that

the ledger model prevents double spends.

Integrate with the ledger

A distributed ledger only forms the core of a full DAML application.

To build automations and integrations around the ledger, theSDKhas languagebindings for the Ledger

API in several programming languages.

To compile the Java integration for the quickstart application, we first need to run the Java codegen

on the DAR we built before:

daml codegen java

Once the code has been generated, we can now compile it using mvn compile.

Now start the Java integration with mvn exec:java@run-quickstart. Note that this step re-

quires that the sandbox started earlier is running.

The application provides REST services on port8080 to performbasic operations on behalf onAlice.

Note: To start the same application on another port, use the command-line parameter -

Drestport=PORT. To start it for another party, use -Dparty=PARTY.

3.7. The Ledger API 303

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For example, to start the application for Bob on 8081, run mvn exec:java@run-quickstart -

Drestport=8081 -Dparty=Bob

The following REST services are included:

0 GET on http://localhost:8080/iou lists all active Ious, and their Ids.

Note that the Ids exposed by the REST API are not the ledger contract Ids, but integers. You can

open the address in your browser or run curl -X GET http://localhost:8080/iou.

0 GET on http://localhost:8080/iou/ID returns the Iou with Id ID.

For example, to get the content of the Iou with Id 0, run:

curl -X GET http://localhost:8080/iou/0

0 PUT on http://localhost:8080/iou creates a new Iou on the ledger.

To create another AliceCoin, run:

curl -X PUT -d '{"issuer":"Alice","owner":"Alice",

"currency":"AliceCoin","amount":1.0,"observers":[]}' http://

localhost:8080/iou

0 POST on http://localhost:8080/iou/ID/transfer transfers the Iou with Id ID.

Check the Id of your new AliceCoin by listing all active Ious. If you have followed this guide, it

will be 0 so you can run:

curl -X POST -d '{ "newOwner":"Bob" }' http://localhost:8080/iou/0/

transfer

to transfer it to Bob. If it’s not 0, just replace the 0 in iou/0 in the above command.

The automation is based on the Java bindings and the output of the Java code generator, which are

included as a Maven dependency and Maven plugin respectively:

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>__VERSION__</version>

<exclusions>

<exclusion>

<groupId>com.google.protobuf</groupId>

<artifactId>protobuf-lite</artifactId>

</exclusion>

</exclusions>

</dependency>

It consists of the application in file IouMain.java. It uses the class Iou from Iou.java, which is

generated from the DAML model with the Java code generator. The Iou class provides better serial-

ization and de-serialization to JSON via gson.

1. A connection to the ledger is established using a LedgerClient object.

// Create a client object to access services on the ledger.

DamlLedgerClient client = DamlLedgerClient.

↪→forHostWithLedgerIdDiscovery(ledgerhost, ledgerport, Optional.

↪→empty());

// Connects to the ledger and runs initial validation.

client.connect();

2. An in-memory contract store is initialized. This is intended to provide a live view of all active

304 Chapter 3. Building applications

https://github.com/google/gson

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

contracts, with mappings between ledger and external Ids.

AtomicLong idCounter = new AtomicLong(0);

ConcurrentHashMap<Long, Iou> contracts = new ConcurrentHashMap<>();

BiMap<Long, Iou.ContractId> idMap = Maps.synchronizedBiMap(HashBiMap.

↪→create());

3. The Active Contracts Service (ACS) is used to quickly build up the contract store to a recent

state.

client.getActiveContractSetClient().getActiveContracts(iouFilter, true)

.blockingForEach(response -> {

response.getOffset().ifPresent(offset -> acsOffset.set(new�

↪→LedgerOffset.Absolute(offset)));

response.getCreatedEvents().stream()

.map(Iou.Contract::fromCreatedEvent)

.forEach(contract -> {

long id = idCounter.getAndIncrement();

contracts.put(id, contract.data);

idMap.put(id, contract.id);

});

});

Note theuseofblockingForEach to ensure that the contract store is fully built and the ledger-

offset up to which the ACS provides data is known before moving on.

4. The Transaction Service is wired up to update the contract store on occurrences of

ArchiveEvent and CreateEvent for Ious. Since getTransactions is called without end

offset, it will stream transactions indefinitely, until the application is terminated.

Disposable ignore = client.getTransactionsClient().

↪→getTransactions(acsOffset.get(), iouFilter, true)

.forEach(t -> {

for (Event event : t.getEvents()) {

if (event instanceof CreatedEvent) {

CreatedEvent createdEvent = (CreatedEvent) event;

long id = idCounter.getAndIncrement();

Iou.Contract contract = Iou.Contract.

↪→fromCreatedEvent(createdEvent);

contracts.put(id, contract.data);

idMap.put(id, contract.id);

} else if (event instanceof ArchivedEvent) {

ArchivedEvent archivedEvent = (ArchivedEvent)�

↪→event;

long id = idMap.inverse().get(new Iou.

↪→ContractId(archivedEvent.getContractId()));

contracts.remove(id);

idMap.remove(id);

}

}

});

5. Commands are submitted via the Command Submission Service.

3.7. The Ledger API 305

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

private static Empty submit(LedgerClient client, String party, Command�

↪→c) {

return client.getCommandSubmissionClient().submit(

UUID.randomUUID().toString(),

"IouApp",

UUID.randomUUID().toString(),

party,

Optional.empty(),

Optional.empty(),

Optional.empty(),

Collections.singletonList(c))

.blockingGet();

}

You can find examples of ExerciseCommand and CreateCommand instantiation in the bodies

of the transfer and iou endpoints, respectively.

Listing 21: ExerciseCommand

Iou.ContractId contractId = idMap.get(Long.parseLong(req.params("id

↪→")));

ExerciseCommand exerciseCommand = contractId.exerciseIou_Transfer(m.

↪→get("newOwner").toString());

Listing 22: CreateCommand

Iou iou = g.fromJson(req.body(), Iou.class);

CreateCommand iouCreate = iou.create();

The rest of the application sets up the REST services using Spark Java, and does dynamic package

Id detection using the Package Service. The latter is useful during development when package Ids

change frequently.

For a discussion of ledger application design and architecture, take a look at Application Architecture

Guide.

Next steps

Great - you’ve completed the quickstart guide!

Some steps you could take next include:

0 Explore examples for guidance and inspiration.

0 Learn DAML.

0 Language reference.

0 Learn more about application development.

0 Learn about the conceptual models behind DAML.

The Java bindings is a client implementation of the Ledger API based on RxJava, a library for compos-

ing asynchronous and event-based programs using observable sequences for the Java VM. It pro-

vides an idiomatic way to write DAML Ledger applications.

See also:

This documentation for the Java bindings API includes the JavaDoc reference documentation.

306 Chapter 3. Building applications

http://sparkjava.com/
https://github.com/ReactiveX/RxJava
javadocs/index.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.6.4 Overview

The Java bindings library is composed of:

0 The Data Layer A Java-idiomatic layer based on the Ledger API generated classes. This layer

simplifies the code required to work with the Ledger API.

Can be found in the java package com.daml.ledger.javaapi.data.

0 The Reactive Layer A thin layer built on top of the Ledger API services generated classes.

For each Ledger API service, there is a reactive counterpart with a matching

name. For instance, the reactive counterpart of ActiveContractsServiceGrpc is

ActiveContractsClient.

The Reactive Layer also exposes the main interface representing a client connecting via

the Ledger API. This interface is calledLedgerClient and themain implementationwork-

ing against a DAML Ledger is the DamlLedgerClient.

Can be found in the java package com.daml.ledger.rxjava.

0 The Reactive Components A set of optional components you can use to assemble DAML

Ledger applications. These components are deprecated as of 2020-10-14.

The most important components are:

– the LedgerView, which provides a local view of the Ledger

– the Bot, which provides utility methods to assemble automation logic for the Ledger

Can be found in the java package com.daml.ledger.rxjava.components.

Code generation

When writing applications for the ledger in Java, you want to work with a representation of DAML

templates and data types in Java that closely resemble the original DAML code while still being as

true to the native types in Java as possible.

To achieve this, you can use DAML to Java code generator (0Java codegen0) to generate Java types

based on a DAML model. You can then use these types in your Java code when reading information

from and sending data to the ledger.

For more information on Java code generation, see Generate Java code from DAML.

Connecting to the ledger: LedgerClient

Connections to the ledger are made by creating instance of classes that implement the interface

LedgerClient. The class DamlLedgerClient implements this interface, and is used to connect

to a DAML ledger.

This class provides access to the ledgerId, and all clients that give access to the various ledger ser-

vices, such as the active contract set, the transaction service, the time service, etc. This is described

below. Consult the JavaDoc for DamlLedgerClient for full details.

3.7.6.5 Reference documentation

Click here for the JavaDoc reference documentation.

3.7.6.6 Getting started

The Java bindings library can be added to a Maven project.

Set up a Maven project

To use the Java bindings library, add the following dependencies to your project’s pom.xml:

3.7. The Ledger API 307

javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
javadocs/index.html
https://maven.apache.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

<dependencies>

<dependency>

<groupId>com.daml.ledger</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>x.y.z</version>

</dependency>

</dependencies>

Replace x.y.z for both dependencies with the version that you want to use. You can find the avail-

able versions by checking the Maven Central Repository.

Note: As of DAML SDK release 0.13.3, the Java Bindings libraries are available via the public Maven

Central repository. Earlier releases are available from the DAML Bintray repository.

You can also take a look at the pom.xml file from the quickstart project.

Connecting to the ledger

Before any ledger services can be accessed, a connection to the ledger must be estab-

lished. This is done by creating a instance of a DamlLedgerClient using one of the

factory methods DamlLedgerClient.forLedgerIdAndHost and DamlLedgerClient.

forHostWithLedgerIdDiscovery. This instance can then be used to access service clients

directly, or passed to a call to Bot.wire to connect a Bot instance to the ledger.

Authorizing

Some ledgers will require you to send an access token along with each request.

To learn more about authorization, read the Authorization overview.

To use the same token for all Ledger API requests, the DamlLedgerClient builders expose a

withAccessTokenmethod. This will allow you to not pass a token explicitly for every call.

If your application is long-lived and your tokens are bound to expire, you can reload the necessary

token when needed and pass it explicitly for every call. Every client method has an overload that

allows a token to be passed, as in the following example:

transactionClient.getLedgerEnd(); // Uses the token specified when�

↪→constructing the client

transactionClient.getLedgerEnd(accessToken); // Override the token for�

↪→this call exclusively

If you’re communicating with a ledger that verifies authorization it’s very important to secure the

communication channel to prevent your tokens to be exposed to man-in-the-middle attacks. The

next chapter describes how to enable TLS.

Connecting securely

The Java bindings library lets you connect to a DAML Ledger via a secure connection. The builders

created by DamlLedgerClient.newBuilder default to a plaintext connection, but you can invoke

withSslContext` to pass an ``SslContext. Using the default plaintext connection is useful

only when connecting to a locally running Sandbox for development purposes.

308 Chapter 3. Building applications

https://search.maven.org/artifact/com.daml/bindings-java
https://digitalassetsdk.bintray.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Secure connections to a DAML Ledger must be configured to use client authentication certificates,

which can be provided by a Ledger Operator.

For information on how to set up an SslContextwith the provided certificates for client authentica-

tion, please consult the gRPC documentation on TLS with OpenSSL as well as the HelloWorldClientTls

example of the grpc-java project.

Advanced connection settings

Sometimes the default settings for gRPC connections/channels are not suitable for a given situation.

These use cases are supported by creating a a custom NettyChannelBuilder object and passing the

it to the newBuilder static method defined over DamlLedgerClient.

Reactive Components

The Reactive Components are deprecated as of 2020-10-14.

Accessing data on the ledger: LedgerView

The LedgerView of an application is the 0copy0 of the ledger that the application has locally. You

can query it to obtain the contracts that are active on the Ledger and not pending.

Note:

0 A contract is active if it exists in the Ledger and has not yet been archived.

0 A contract is pending if the application has sent a consuming command to the Ledger and has

yet to receive an completion for the command (that is, if the command has succeeded or not).

The LedgerView is updated every time:

0 a new event is received from the Ledger

0 new commands are sent to the Ledger

0 a command has failed to be processed

For instance, if an incoming transaction is received with a create event for a contract that is relevant

for the application, the application LedgerView is updated to contain that contract too.

Writing automations: Bot

The Bot is an abstraction used to write automation for a DAML Ledger. It is conceptually defined by

two aspects:

0 the LedgerView

0 the logic that produces commands, given a LedgerView

When the LedgerView is updated, to see if the bot has new commands to submit based on the

updated view, the logic of the bot is run.

The logic of the bot is a Java function from the bot’s LedgerView to a

Flowable<CommandsAndPendingSet>. Each CommandsAndPendingSet contains:

0 the commands to send to the Ledger

0 the set of contractIds that should be considered pending while the command is in-flight (that

is, sent by the client but not yet processed by the Ledger)

3.7. The Ledger API 309

https://github.com/grpc/grpc-java/blob/master/SECURITY.md#tls-with-openssl
https://github.com/grpc/grpc-java/blob/70b1b1696a258ffe042c7124217e3a7894821444/examples/src/main/java/io/grpc/examples/helloworldtls/HelloWorldClientTls.java#L46-L57
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyChannelBuilder.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You can wire a Bot to a LedgerClient implementation using Bot.wire:

Bot.wire(String applicationId,

LedgerClient ledgerClient,

TransactionFilter transactionFilter,

Function<LedgerViewFlowable.LedgerView<R>, Flowable

↪→<CommandsAndPendingSet>> bot,

Function<CreatedContract, R> transform)

In the above:

0 applicationId The id used by the Ledger to identify all the queries from the same applica-

tion.

0 ledgerClient The connection to the Ledger.

0 transactionFilter The server-side filter to the incoming transactions. Used to reduce the

traffic between Ledger and application and make an application more efficient.

0 bot The logic of the application,

0 transform The function that, given a new contract, returns which information for that con-

tracts are useful for the application. Can be used to reduce space used by discard-

ing all the info not required by the application. The input to the function contains the

templateId, the arguments of the contract created and the context of the created con-

tract. The context contains the workflowId.

3.7.6.7 Example project

Example projects using the Java bindings are available on GitHub. Read more about them here.

3.7.7 Scala bindings

The Scala bindings are deprecated as of 2020-10-14.

This page provides a basic Scala programmer’s introduction to working with DAML Ledgers, using

the Scala programming language and the Ledger API.

3.7.7.1 Introduction

The Scala bindings is a client implementation of the Ledger API. The Scala bindings library lets you

write applications that connect to a DAML Ledger using the Scala programming language.

There are two main components:

0 Scala codegen DAML to Scala code generator. Use this to generate Scala classes from DAML

models. The generated Scala code provides a type safe way of creating contracts (Create-

Command) and exercising contract choices (ExerciseCommand).

0 Akka Streams-based API The API that you use to send commands to the ledger and receive

transactions back.

In order to use the Scala bindings, you should be familiar with:

0 DAML language

0 Ledger API

0 Akka Streams API

0 Scala programming language

0 Building DAML projects

0 DAML codegen

310 Chapter 3. Building applications

https://github.com/digital-asset/ex-java-bindings
https://doc.akka.io/docs/akka/current/stream/index.html
https://www.scala-lang.org

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3.7.7.2 Getting started

If this is your first experiencewith theScala bindings library, we recommend that you start by looking

at the quickstart-scala example.

To use the Scala bindings, set up the following dependencies in your project:

lazy val codeGenDependencies = Seq(

"com.daml" %% "bindings-scala" % daSdkVersion

)

lazy val applicationDependencies = Seq(

"com.daml" %% "bindings-akka" % daSdkVersion

)

We recommend separating generated code and application code into different modules. There are

two modules in the quickstart-scala example:

0 scala-codegen This module will contain only generated Scala classes.

0 application This is the application code that makes use of the generated Scala classes.

lazy val `scala-codegen` = project

.in(file("scala-codegen"))

.settings(

name := "scala-codegen",

commonSettings,

libraryDependencies ++= codeGenDependencies

)

lazy val `application` = project

.in(file("application"))

.settings(

name := "application",

commonSettings,

libraryDependencies ++= codeGenDependencies ++ applicationDependencies

)

.dependsOn(`scala-codegen`)

3.7.7.3 Generating Scala code

1) Install the latest version of the DAML SDK.

2) Build a DAR file from a DAMLmodel. Refer to Building DAML projects for more instructions.

3) Configure codegen in the daml.yaml (for more details see DAML codegen documentation).

codegen:

scala:

package-prefix: com.daml.quickstart.iou.model

output-directory: scala-codegen/src/main/scala

verbosity: 2

4) Run Scala codegen:

3.7. The Ledger API 311

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

$ daml codegen scala

If the command is successful, it should print:

Scala codegen

Reading configuration from project configuration file

[INFO] Scala Codegen verbosity: INFO

[INFO] decoding archive with Package ID:�

↪→5c96aa21d5f38386833ff47fe1a7562afb5b3fe5be520f289c42892dfb0ef42b

[INFO] decoding archive with Package ID:�

↪→748d55be531976e941076a44fe8c06ad4a7bdb36160711dd0204b5ab8dc77e44

[INFO] decoding archive with Package ID:�

↪→d841a5e45897aea965ab7699f3e51613c9d00b9fbd1bb09658d7fb00486f5b57

[INFO] Scala Codegen result:

Number of generated templates: 3

Number of not generated templates: 0

Details:

The output above tells that Scala codegen read configuration from daml.yaml and produced Scala

classes for 3 templates without errors (empty Details: line).

3.7.7.4 Example code

In this section we will demonstrate how to use the Scala bindings library.

This section refers to the IOU DAML example from the Quickstart guide and quickstart-scala example

that we already mentioned above.

Please keep in mind that quickstart-scala example compiles with -Xsource:2.13 scalac option,

this is to activate the fix for a Scala bug that forced users to add extra imports for implicits that

should not be needed.

Create a contract and send a CreateCommand

To create a Scala class representing an IOU contract, you need the following imports:

import com.daml.ledger.client.binding.{Primitive => P}

import com.daml.quickstart.iou.model.{Iou => M}

the definition of the issuer Party:

private val issuer = P.Party("Alice")

and the following code to create an instance of the M.Iou class:

val iou = M.Iou(

issuer = issuer,

owner = issuer,

currency = "USD",

amount = BigDecimal("1000.00"),

observers = List())

312 Chapter 3. Building applications

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

To send a CreateCommand (keep inmind the following code snippet is part of the Scala for comprehen-

sion expression):

createCmd = iou.create

_ <- clientUtil.submitCommand(issuer, issuerWorkflowId, createCmd)

_ = logger.info(s"$issuer created IOU: $iou")

_ = logger.info(s"$issuer sent create command: $createCmd")

For more details on how to submit a command, please refer to the implementation of

com.daml.quickstart.iou.ClientUtil#submitCommand.

Receive a transaction, exercise a choice and send an ExerciseCommand

To receive a transaction as a newOwner and decode a CreatedEvent for IouTransfer contract, you

need the definition of the newOwner Party:

private val newOwner = P.Party("Bob")

and the following code that handles subscription and decoding:

_ <- clientUtil.subscribe(newOwner, offset0, None) { tx =>

logger.info(s"$newOwner received transaction: $tx")

decodeCreated[M.IouTransfer](tx).foreach { contract: Contract[M.

↪→IouTransfer] =>

logger.info(s"$newOwner received contract: $contract")

To exercise IouTransfer_Accept choice on the IouTransfer contract that you received and send

a corresponding ExerciseCommand:

val exerciseCmd = contract.contractId.exerciseIouTransfer_

↪→Accept(actor = newOwner)

clientUtil.submitCommand(newOwner, newOwnerWorkflowId,�

↪→exerciseCmd) onComplete {

case Success(_) =>

logger.info(s"$newOwner sent exercise command: $exerciseCmd")

logger.info(s"$newOwner accepted IOU Transfer: $contract")

case Failure(e) =>

logger.error(s"$newOwner failed to send exercise command:

↪→$exerciseCmd", e)

}

Fore more details on how to subscribe to receive events for a particular party, please refer to the

implementation of com.daml.quickstart.iou.IouMain#newOwnerAcceptsAllTransfers.

3.7.7.5 Authorization

Some ledgers will require you to send an access token along with each request. To learn more about

authorization, read the Authorization overview.

To use the same token for all ledger API requests, use the token field of

LedgerClientConfiguration:

3.7. The Ledger API 313

https://github.com/digital-asset/daml/blob/master/language-support/scala/examples/quickstart-scala/application/src/main/scala/com/digitalasset/quickstart/iou/ClientUtil.scala
https://github.com/digital-asset/daml/blob/master/language-support/scala/examples/quickstart-scala/application/src/main/scala/com/digitalasset/quickstart/iou/IouMain.scala

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

private val clientConfig = LedgerClientConfiguration(

applicationId = ApplicationId.unwrap(applicationId),

ledgerIdRequirement = LedgerIdRequirement.none,

commandClient = CommandClientConfiguration.default,

sslContext = None,

token = None

)

To specify the token for an individual call, use the token parameter:

transactionClient.getLedgerEnd() // Uses the token specified in�

↪→LedgerClientConfiguration

transactionClient.getLedgerEnd(token = acessToken) // Uses the given token

Note that if your tokens can change at run time (e.g., because they expire or because you switch

users), you will need to specify them on a per-call basis as shown above.

3.7.8 Node.js bindings

The Node.js bindings are deprecated as of 2020-10-14.

The documentation for the Node.js bindings has been moved to digital-asset.github.io/daml-js.

You can also try the Node.js bindings tutorial, which is at github.com/digital-asset/ex-tutorial-

nodejs.

3.7.9 Creating your own bindings

This page gets you started with creating custom bindings for a DAML Ledger.

Bindings for a language consist of two main components:

0 Ledger API Client 0stubs0 for the programming language, – the remote API that allows sending

ledger commandsand receiving ledger transactions. Youhave to generate Ledger API from

the gRPC protobuf definitions in the daml repository on GitHub. Ledger API is documented

on this page: gRPC. The gRPC tutorial explains how to generate client 0stubs0.

0 Codegen A code generator is a program that generates classes representing DAML contract

templates in the language. These classes incorporate all boilerplate code for constructing:

CreateCommand and ExerciseCommand corresponding for each DAML contract template.

Technically codegen is optional. Youcanconstruct the commandsmanually fromtheauto-generated

Ledger API classes. However, it is very tedious and error-prone. If you are creating ad hoc bindings

for a project with a few contract templates, writing a proper codegen may be overkill. On the other

hand, if you have hundreds of contract templates in your project or are planning to build language

bindings that you will share across multiple projects, we recommend including a codegen in your

bindings. It will save you and your users time in the long run.

Note that for different reasons we chose codegen, but that is not the only option. There is really a

broad category of metaprogramming features that can solve this problem just as well or even better

than codegen; they are language-specific, but often much easier to maintain (i.e. no need to add a

build step). Some examples are:

0 F# Type Providers

0 Template Haskell

314 Chapter 3. Building applications

http://digital-asset.github.io/daml-js/
https://github.com/digital-asset/ex-tutorial-nodejs
https://github.com/digital-asset/ex-tutorial-nodejs
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://grpc.io/docs/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider#a-type-provider-that-is-backed-by-local-data
https://wiki.haskell.org/Template_Haskell

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Scala macro annotations (not future-proof enough to use when implementing the last Scala

codegen)

3.7.9.1 Building Ledger Commands

No matter what approach you take, either manually building commands or writing a codegen to do

this, you need to understand how ledger commands are structured. This section demonstrates how

to build create and exercise commands manually and how it can be done using contract classes

generated by Scala codegen.

Create Command

Let’s recall an IOU example from the Quickstart guide, where Iou template is defined like this:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

Here is how to manually build a CreateCommand for the above contract template in Scala:

def iouCreateCommand(

templateId: Identifier,

issuer: String,

owner: String,

currency: String,

amount: BigDecimal): Command.Create = {

val fields = Seq(

RecordField("issuer", Some(Value(Value.Sum.Party(issuer)))),

RecordField("owner", Some(Value(Value.Sum.Party(owner)))),

RecordField("currency", Some(Value(Value.Sum.Text(currency)))),

RecordField("amount", Some(Value(Value.Sum.Numeric(amount.

↪→toString)))),

RecordField("observers", Some(Value(Value.Sum.List(List())))),

)

Command.Create(

CreateCommand(

templateId = Some(templateId),

createArguments = Some(Record(Some(templateId), fields))))

}

If you do not specify any of the above fields or type their names or values incorrectly, or do not or-

der them exactly as they are in the DAML template, the above code will compile but fail at run-time

because you did not structure your create command correctly.

Codegen should simplify the command construction by providing auto-generated utilities to help

you construct commands. For example, when you use Scala codegen to generate contract classes, a

similar contract instantiation would look like this:

3.7. The Ledger API 315

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

val iou = M.Iou(

issuer = issuer,

owner = issuer,

currency = "USD",

amount = BigDecimal("1000.00"),

observers = List())

Exercise Command

To build ExerciseCommand for Iou_Transfer:

controller owner can

Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

do create IouTransfer with iou = this; newOwner

manually in Scala:

def iouTransferExerciseCommand(

templateId: Identifier,

contractId: String,

newOwner: String): Command.Exercise = {

val transferTemplateId = Identifier(

packageId = templateId.packageId,

moduleName = templateId.moduleName,

entityName = "Iou_Transfer")

val fields = Seq(RecordField("newOwner", Some(Value(Value.Sum.

↪→Party(newOwner)))))

Command.Exercise(

ExerciseCommand(

templateId = Some(templateId),

contractId = contractId,

choice = "Iou_Transfer",

choiceArgument = Some(Value(Value.Sum.

↪→Record(Record(Some(transferTemplateId), fields))))

))

}

versus creating the same command using a value class generated by Scala codegen:

exerciseCmd = iouContract.contractId.exerciseIou_Transfer(actor =�

↪→issuer, newOwner = newOwner)

3.7.9.2 Summary

When creating custom bindings for DAML Ledgers, you will need to:

0 generate Ledger API from the gRPC definitions

0 decide whether to write a codegen to generate ledger commands ormanually build them for all

contracts defined in your DAML model.

316 Chapter 3. Building applications

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The above examples should help you get started. If you are creating custom binding or have any

questions, see the Getting Help page for how to get in touch with us.

3.7.9.3 Links

0 A Scala example that demonstrates how to manually construct ledger commands:

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/

iou-no-codegen

0 A Scala codegen example: https://github.com/digital-asset/daml/tree/master/

language-support/scala/examples/quickstart-scala

0 gRPC documentation: https://grpc.io/docs/

0 Documentation for Protobuf 0well known types0: https://developers.google.com/

protocol-buffers/docs/reference/google.protobuf

0 DAML Ledger API gRPC Protobuf definitions

– current master: https://github.com/digital-asset/daml/tree/master/ledger-api/

grpc-definitions

– for specific versions: https://github.com/digital-asset/daml/releases

0 Required gRPC Protobuf definitions:

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.

proto

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/

health.proto

Towrite an application around aDAML ledger, you’ll need to interact with the Ledger API fromanother

language. Every ledger that DAML can run on exposes this same API.

3.7.10 What’s in the Ledger API

You can access the Ledger API via via the HTTP JSON API, Java bindings, Scala bindings or gRPC. In all

cases, the Ledger API exposes the same services:

0 Submitting commands to the ledger

– Use the command submission service to submit commands (create a contract or exercise a

choice) to the ledger.

– Use the command completion service to track the status of submitted commands.

– Use the command service for a convenient service that combines the command submission

and completion services.

0 Reading from the ledger

– Use the transaction service to stream committed transactions and the resulting events

(choices exercised, and contracts created or archived), and to look up transactions.

– Use the active contracts service to quickly bootstrap an application with the currently active

contracts. It saves you the work to process the ledger from the beginning to obtain its

current state.

0 Utility services

– Use the package service to query the DAML packages deployed to the ledger.

– Use the ledger identity service to retrieve the Ledger ID of the ledger the application is con-

nected to.

– Use the ledger configuration service to retrieve some dynamic properties of the ledger, like

maximum deduplication time for commands.

0 Testing services (on Sandbox only, not for production ledgers)

– Use the time service to obtain the time as known by the ledger.

– Use the reset service to reset the ledger state, as a quicker alternative to restarting the

whole ledger application.

3.7. The Ledger API 317

https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/iou-no-codegen
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/iou-no-codegen
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala
https://github.com/digital-asset/daml/tree/master/language-support/scala/examples/quickstart-scala
https://grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/tree/master/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/releases
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For full information on the services see The Ledger API services.

You may also want to read the protobuf documentation, which explains how each service is defined as

protobuf messages.

3.7.11 DAML-LF

When you compile DAML source into a .dar file, the underlying format is DAML-LF. DAML-LF is similar

to DAML, but is stripped down to a core set of features. The relationship between the surface DAML

syntax and DAML-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with DAML-LF directly. But inside the DAML SDK, it’s used for:

0 Executing DAML code on the Sandbox or on another platform

0 Sending and receiving values via the Ledger API (using a protocol such as gRPC)

0 Generating code in other languages for interacting with DAMLmodels (often called 0codegen0)

3.7.11.1 When you need to know about DAML-LF

DAML-LF is only really relevant when you’re dealing with the objects you send to or receive from the

ledger. If you use any of the provided language bindings for the Ledger API, you don’t need to know

about DAML-LF at all, because this generates idiomatic representations of DAML for you.

Otherwise, it can be helpful to know what the types in your DAML code look like at the DAML-LF level,

so you know what to expect from the Ledger API.

For example, if you are writing an application that creates some DAML contracts, you need to con-

struct values to pass as parameters to the contract. These values are determined by the DAML-LF

types in that contract template. This means you need an idea of how the DAML-LF types correspond

to the types in the original DAML model.

For the most part the translation of types from DAML to DAML-LF should not be surprising. This page

goes through all the cases in detail.

For the bindings to your specific programming language, you should refer to the language-specific

documentation.

318 Chapter 3. Building applications

Chapter 4

Deploying to DAML ledgers

4.1 Overview of DAML ledgers

This is an overview of DAML deployment options. Instructions on how to deploy to a specific ledger

are available in the following section.

4.1.1 Commercial Integrations

The following table lists commercially supported DAML ledgers and environments that are available

for production use today.

Product Ledger Vendor

DAML on Corda Corda Multiple. Contact Digital Asset

Sextant for DAML Amazon Aurora Blockchain Technology Partners

Sextant for DAML Hyperledger Sawtooth Blockchain Technology Partners

Sextant for DAML Amazon QLDB Blockchain Technology Partners

project : DABL Managed cloud enviroment Digital Asset

4.1.2 Open Source Integrations

The following table lists open source DAML integrations.

Ledger Developer More Information

Hyperledger Sawtooth Blockchain Technology Partners Github Repo

Hyperledger Fabric Digital Asset Github Repo

PostgreSQL Digital Asset DAML Sandbox Docs

4.1.3 DAML Ledgers in Development

The following table lists the ledgers that are implementing support for running DAML.

Ledger Developer More Information

VMware Blockchain VMware Press release, April 2019

Hyperledger Besu Blockchain Technology Partners Press release, March 2020

FISCO BCOS WeBank Press release, April 2020

Canton Digital Asset reference implementation canton.io

319

https://www.corda.net/
https://digitalasset.com/contact/
https://blockchaintp.com/sextant/daml/
https://aws.amazon.com/rds/aurora/
https://blockchaintp.com/
https://blockchaintp.com/sextant/daml/
https://sawtooth.hyperledger.org/
https://blockchaintp.com/
https://blockchaintp.com/sextant/daml/
https://aws.amazon.com/qldb/
https://blockchaintp.com/
https://projectdabl.com/
https://projectdabl.com/
https://digitalasset.com/
https://sawtooth.hyperledger.org/
https://blockchaintp.com/
https://github.com/blockchaintp/daml-on-sawtooth
https://www.hyperledger.org/projects/fabric
https://digitalasset.com/
https://github.com/digital-asset/daml-on-fabric
https://www.postgresql.org/
https://digitalasset.com/
https://docs.daml.com/tools/sandbox.html
https://blogs.vmware.com/blockchain
https://www.vmware.com/
http://hub.digitalasset.com/press-release/digital-asset-daml-smart-contract-language-now-extended-to-vmware-blockchain
https://besu.hyperledger.org/
https://blockchaintp.com/
https://hub.digitalasset.com/press-release/ethereum-compatible-hyperledger-besu-now-has-enterprise-grade-daml-smart-contracts
http://www.fisco-bcos.org/
https://fintech.webank.com/en/
https://hub.digitalasset.com/press-release/topic/fisco-bcos
https://www.canton.io/
https://digitalasset.com/
https://www.canton.io/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4.2 Deploying to a generic DAML ledger

DAML ledgers expose a unified administration API. This means that deploying to a DAML ledger is no

different from deploying to your local sandbox.

To deploy to a DAML ledger, run the following command from within your DAML project:

$ daml deploy --host=<HOST> --port=<PORT> --access-token-file=<TOKEN-FILE>

where <HOST> and <PORT> is the hostname and port your ledger is listening on, which defaults

to port 6564. The <TOKEN-FILE> is needed if your sandbox runs with authorization and needs to

contain a JWT token with an admin claim. If your sandbox is not setup to use any authentication it

can be omitted.

Instead of passing --host and --port flags to the command above, you can add the following

section to the project’s daml.yaml file:

ledger:

host: <HOSTNAME>

port: <PORT>

The daml deploy command will

1. upload the project’s compiled DAR file to the ledger. This willmake the DAML templates defined

in the current project available to the API users of the sandbox.

2. allocate the parties specified in the project’s daml.yaml on the ledger if they are missing.

For more further interactions with the ledger, use the daml ledger command. Try running daml

ledger --help to get a list of available ledger commands:

$ daml ledger --help

Usage: daml ledger COMMAND

Interact with a remote DAML ledger. You can specify the ledger in daml.

↪→yaml

with the ledger.host and ledger.port options, or you can pass the --host�

↪→and

--port flags to each command below. If the ledger is authenticated, you�

↪→should

pass the name of the file containing the token using the --access-token-

↪→file

flag.

Available options:

-h,--help Show this help text

Available commands:

list-parties List parties known to ledger

allocate-parties Allocate parties on ledger

upload-dar Upload DAR file to ledger

navigator Launch Navigator on ledger

320 Chapter 4. Deploying to DAML ledgers

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4.2.1 Connecting via TLS

To connect to the ledger via TLS, you can pass --tls to the various commands. If your ledger sup-

ports or requires mutual authentication you can pass your client key and certificate chain files via

--pem client_key.pem --crt client.crt. Finally, you can use a custom certificate authority

for validating the server certificate by passing --cacrt server.crt. If --pem, --crt or --cacrt

are specified TLS is enabled automatically so --tls is redundant.

4.2.2 Configuring Request Timeouts

You can configure the timeout used on API requests by passing --timeout=N to the various daml

ledger commands and daml deploy which will set the timeout to N seconds. Note that this is a

per-request timeout not a timeout for the whole command. That matters for commands like daml

deploy that consist of multiple requests.

4.3 DAML Ledger Topologies

The Ledger API provides parties with an abstraction of a virtual shared ledger, visualized as follows.

The real-world topologies of actual ledger implementations differ significantly, however. The topolo-

gies can impact both the functional and non-functional properties of the resulting ledger. This doc-

ument provides one useful categorization of the existing implementations’ topologies: the split into

global and partial state topologies, depending on whether single trust domains can see the entire

ledger, or just parts of it. The implementations with topologies from the same category share many

non-functional properties and trust assumptions. Additionally, their identity and package manage-

ment functions also behave similarly.

4.3.1 Global State Topologies

In global state topologies, there exists at least one trust domain whose systems contain a physical

copy of the entire virtual shared ledger that is accessible through the API.

4.3. DAML Ledger Topologies 321

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4.3.1.1 The Fully Centralized Ledger

The simplest global state topology is the onewhere the virtual shared ledger is implemented through

a single machine containing a physical copy of the shared ledger, whose real-world owner is called

the operator.

The DAML Sandbox uses this topology. While simple to deploy and operate, the single-machine setup

also has downsides:

1. it provides no scaling

2. it is not highly available

3. the operator is fully trusted with preserving the ledger’s integrity

4. the operator has full insight into the entire ledger, and is thus fully trusted with privacy

5. it provides no built-in way to interoperate (transactionally share data) across several deployed

ledgers; each deployment defines its own segregated virtual shared ledger.

The first four problems can be solved or mitigated as follows:

1. scaling by splitting the system up into separate functional components and parallelizing exe-

cution

2. availability by replication

3. trust for integrity by introducing multiple trust domains and distributing trust using Byzan-

tine fault tolerant replication, or by maintaining one trust domain but using hardware-based

Trusted Execution Environments (TEEs) or other cryptographicmeans to enforce or audit ledger

integrity without having to trust the operator.

4. trust for privacy through TEEs that restrict data access by hardware means.

The remainder of the section discusses these solutions and their implementations in the different

DAML ledgers. The last problem, interoperability, is inherent when the two deployments are operated

by different trust domains: by definition, a topology in which no single trust domain would hold the

entire ledger is not a global state topology.

4.3.1.2 Scaling

The main functionalities of a system providing the Ledger API are:

322 Chapter 4. Deploying to DAML ledgers

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

1. serving the API itself (handling the gRPC connections, authenticating users, etc),

2. allowing the API users to access their ledger projection (reading the ledger), and

3. allowing the API users to issue commands and thus attempt to append commits to the shared

ledger (writing to the ledger).

The implementation thus naturally splits up into components for serving the API, reading from the

ledger, and writing to the ledger. Serving the API and reading can be scaled out horizontally. Read-

ing can be scaled out by building caches of the ledger contents; as the projections are streams, no

synchronization between the different caches is necessary.

To ensure ledger integrity, the writing component must preserve the ledger’s validity conditions. Writ-

ing can thus be further split up into three sub-components, one for each of the three validity condi-

tions:

1. model conformance checks (i.e., DAML intepretation),

2. authorization checks, and

3. consistency checks.

Of these three, conformance and authorization checks can be checked in isolation for each commit.

Thus, such checks can be parallelized and scaled out. The consistency check cannot be done in

isolation and requires synchronization. However, to improve scaling, it can internally still use some

form of sharding, together with a commit protocol.

For example, the next versions of DAML on Amazon Aurora and on Hyperledger Fabric will use such

partitioned topologies. The next image shows an extreme version of this partitioning, where each

party is served by a separate system node running all the parallelizable functions. The writing sub-

system is split into two stages. The first stage checks conformance and authorization, and can be

arbitrarily replicated, while the second stage is centralized and checks consistency.

4.3.1.3 Replication: Availability and Distributing Trust

Availability is improved by replication. The scaling methodology described in the previous section

already improves the ledger’s availability properties, as it introduces replication for most functions.

4.3. DAML Ledger Topologies 323

https://aws.amazon.com/rds/aurora/
https://www.hyperledger.org/projects/fabric

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For example, if a node serving a client with the API fails, clients can fail over to other such nodes.

Replicating thewriter’s consistency-checking subsystemmust use a consensus algorithm to ensure

consistency of the replicated system (in particular, the linearizability of the virtual shared ledger).

Replication can also help to lower, or more precisely distribute the trust required to ensure the sys-

tem’s integrity. Trust can be distributed by introducing multiple organizations, i.e., multiple trust

domains into the system. In these situations, the system typically consists of two types of nodes:

1. Writer nodes, which replicate the physical shared ledger and can extend it with new commits.

Writer nodes are thus also referred to as committer nodes.

2. Participant nodes, (also called Client nodes in some platforms) which serve the Ledger API to

a subset of the system parties, which we say are hosted by this participant. A participant node

proposes new commits on behalf of the parties it hosts, and holds a portion of the ledger that

is relevant for those parties (i.e., the parties’ ledger projection). The term 0participant node0 is

sometimes also used more generally, for any physical node serving the Ledger API to a party.

The participant nodes need not be trusted by the other nodes, or by the committer(s); the partici-

pants can be operated bymutually distrusting entities, i.e., belong to different trust domains. In gen-

eral, the participant nodes do not necessarily even need to know each other. However, they have to be

known to and accepted by the committer nodes. The committer nodes are jointly trusted with ensur-

ing the ledger’s integrity. To distribute the trust, the committer nodes must implement a Byzantine

fault tolerant replicationmechanism. For example, the mechanism can ensure that the system pre-

serves integrity even if up to a third of the committer nodes (e.g., 2 out of 7) misbehave in arbitrary

ways. The resulting topology is visualized below.

DAML on VMware Concord and DAML on Hyperledger Sawtooth are examples of such a replicated

setup.

324 Chapter 4. Deploying to DAML ledgers

https://aphyr.com/posts/333-serializability-linearizability-and-locality
https://blogs.vmware.com/blockchain
https://sawtooth.hyperledger.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4.3.1.4 Trusted Execution Environments

Integrity and privacy can also be protected using hardware Trusted Execution Environments (TEEs),

such as Intel SGX. The software implementing the ledger can thenbedeployed inside of TEE enclaves,

which are code blocks that the processor isolates and protects from the rest of the software stack

(even the operating system). The hardware ensures that the enclave data never leaves the processor

unencrypted, offering privacy. Furthermore, hardware-based attestation can guarantee that the op-

erating entities process data using the prescribed code only, guaranteeing integrity. The hardware

is designed in such a way as to make any potential physical attacks by the operator extremely ex-

pensive. This moves the trust necessary to achieve these properties from the operators of the trust

domains that maintain the global state to the hardware manufacturer, who is anyway trusted with

correctly producing the hardware. Recent security research has, however, found scenarios where the

TEE protection mechanisms can be compromised.

4.3.2 Partitioned Ledger Topologies

In these topologies, the ledger is implemented as a distributed system. Unlike the global state

topologies, no single trust domain holds a physical copy of the entire shared ledger. Instead, the

participant nodes hold just the part of the ledger (i.e., the ledger projection) that is relevant to the

parties to whom they serve the Ledger API. The participants jointly extend the ledger by running a

distributed commit protocol.

The implementations might still rely on trusted third parties to facilitate the commit protocol. The

required trust in terms of privacy and integrity, however, can generally be lower than in global state

topologies. Moreover, unlike the previous topologies, they support interoperability: even if two trans-

actions are committedwith the help of disjoint sets of trusted third parties, their output contracts can

in general still be used within the same atomic transaction. The exact trust assumptions and the

degree of supported interoperability are implementation-dependent. Canton and DAML on R3 Corda

are two such implementations. The main drawback of this topology is that availability can be in-

fluenced by the participant nodes. In particular, transactions cannot be committed if they use data

that is only stored on unresponsive nodes. Spreading the data among additional trusted entities

can mitigate the problem.

4.3. DAML Ledger Topologies 325

http://canton.io
https://www.corda.net

Chapter 5

SDK tools

5.1 DAML Assistant (daml)

daml is a command-line tool that does a lot of useful things related to the SDK. Using daml, you can:

0 Create new DAML projects: daml new <path to create project in>

0 Create a new project based on create-daml-app: daml create-daml-app <path to

create project in>

0 Initialize a DAML project: daml init

0 Compile a DAML project: daml build

This builds the DAML project according to the project config file daml.yaml (see Configuration

files below).

In particular, it will download and install the specified version of the SDK (the sdk-version

field in daml.yaml) if missing, and use that SDK version to resolve dependencies and compile

the DAML project.

0 Launch the tools in the SDK:

– Launch DAML Studio: daml studio

– Launch Sandbox, Navigator and the HTTP JSON API Service: daml start You can disable the

HTTP JSONAPI by passing--json-api-port none todaml start. To specify additional

options for sandbox/navigator/the HTTP JSON API you can use --sandbox-option=opt,

--navigator-option=opt and --json-api-option=opt.

– Launch Sandbox: daml sandbox

– Launch Navigator: daml navigator

– Launch Extractor: daml extractor

– Launch the HTTP JSON API Service: daml json-api

– Run DAML codegen: daml codegen

0 Install new SDK versions manually: daml install <version>

Note that you need to update your project config file <#configuration-files> to use the new

version.

5.1.1 Full help for commands

To see information about any command, run it with --help.

5.1.2 Configuration files

The DAML assistant and the DAML SDK are configured using two files:

326

https://github.com/digital-asset/create-daml-app

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 The global config file, one per installation, which controls some options regarding SDK instal-

lation and updates

0 The project config file, one per DAML project, which controls how the DAML SDK builds and

interacts with the project

5.1.2.1 Global config file (daml-config.yaml)

The global config file daml-config.yaml is in the daml home directory (~/.daml on Linux and

Mac, C:/Users/<user>/AppData/Roaming/daml onWindows). It controls options related to SDK

version installation and upgrades.

By default it’s blank, and you usually won’t need to edit it. It recognizes the following options:

0 auto-install: whetherdamlautomatically installs amissingSDKversionwhen it is required

(defaults to true)

0 update-check: how often daml will check for new versions of the SDK, in seconds (default to

86400, i.e. once a day)

This setting is only used to inform you when an update is available.

Set update-check: <number> to check for new versions every N seconds. Set

update-check: never to never check for new versions.

Here is an example daml-config.yaml:

auto-install: true

update-check: 86400

5.1.2.2 Project config file (daml.yaml)

The project config file daml.yamlmust be in the root of your DAML project directory. It controls how

the DAML project is built and how tools like Sandbox and Navigator interact with it.

The existence of a daml.yaml file is what tells daml that this directory contains a DAML project, and

lets you use project-aware commands like daml build and daml start.

daml init creates a daml.yaml in an existing folder, so daml knows it’s a project folder.

daml new creates a skeleton application in a new project folder, which includes a config file. For

example, daml new my_project creates a new folder my_projectwith a project config file daml.

yaml like this:

sdk-version: __VERSION__

platform-version: __VERSION__

name: __PROJECT_NAME__

source: daml

scenario: Main:setup

parties:

- Alice

- Bob

version: 1.0.0

exposed-modules:

- Main

dependencies:

- daml-prim

- daml-stdlib

(continues on next page)

5.1. DAML Assistant (daml) 327

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

scenario-service:

grpc-max-message-size: 134217728

grpc-timeout: 60

jvm-options: []

build-options: ["--ghc-option", "-Werror",

"--ghc-option", "-v"]

Here is what each field means:

0 sdk-version: the SDK version that this project uses.

The assistant automatically downloads and installs this version if needed (see the

auto-install setting in the global config). We recommend keeping this up to date

with the latest stable release of the SDK. It is possible to override the version without

modifying the daml.yaml file by setting the DAML_SDK_VERSION environment vari-

able. This is mainly useful when you are working with an external project that you

want to build with a specific version.

The assistant will warn you when it is time to update this setting (see the update-

check setting in the global config to control how often it checks, or to disable this

check entirely).

0 platform-version: Optional SDK version of platform components. Not setting this is equiv-

alent to setting it to the same version as sdk-version. At themoment this includes Sandbox,

Sandbox classic and the HTTP JSON API both when invoked directly via daml sandbox as well

as when invoked via daml start. Changing the platform version is useful if you deploy to a

ledger that is running on a different SDK version than you use locally and you want to make

sure that you catch any issues during testing. E.g., you might compile your DAML code using

SDK 1.3.0 so you get improvements in DAML Studio but deploy to DABL which could still be run-

ning a ledger and the JSON API from SDK 1.2.0. In that case, you can set sdk-version: 1.3.0

and platform-version: 1.2.0. It is possible to override the platform version by setting the

DAML_PLATFORM_VERSION environment variable.

0 name: the name of the project. This determines the filename of the .dar file compiled by daml

build.

0 source: the root folder of your DAML source code files relative to the project root.

0 scenario: the name of the scenario to run when using daml start.

0 init-script: the name of the DAML script to run when using daml start.

0 parties: the parties to display in the Navigator when using daml start.

0 version: the project version.

0 exposed-modules: theDAMLmodules that are exposedby this project, which canbe imported

in other projects. If this field is not specified all modules in the project are exposed.

0 dependencies: library-dependencies of this project. See Reference: DAML packages.

0 data-dependencies: Cross-SDK dependencies of this project See Reference: DAML packages.

0 module-prefixes: Prefixes for all modules in package See Reference: DAML packages.

0 scenario-service: settings for the scenario service

– grpc-max-message-size: This option controls themaximum size of gRPCmessages. If

unspecified this defaults to 128MB (134217728 bytes). Unless you get errors, there should

be no reason to modify this.

– grpc-timeout: This option controls the timeout used for communicating with the sce-

nario service. If unspecified this defaults to 60s. Unless you get errors, there should be no

reason to modify this.

– jvm-options: A list of options passed to the JVMwhen starting the scenario service. This

can be used to limit maximum heap size via the -Xmx flag.

328 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 build-options: a list of tokens thatwill be appended to some invocationsofdamlc (currently

build and ide). Note that there is no further shell parsing applied.

0 sandbox-options: a list of options that will be passed to Sandbox in daml start.

0 navigator-options: a list of options that will be passed to Navigator in daml start.

0 json-api-options: a list of options that will be passed to the HTTP JSON API in daml start.

0 script-options: a list of options that will be passed to the DAML script runner when running

the init-script as part of daml start.

0 start-navigator: Controls whether navigator is started as part of daml start. Defaults

to true. If this is specified as a CLI argument, say daml start --start-navigator=true,

the CLI argument takes precedence over the value in daml.yaml.

5.1.3 Building DAML projects

To compile your DAML source code into a DAML archive (a .dar file), run:

daml build

You can control the build by changing your project’s daml.yaml:

sdk-version The SDK version to use for building the project.

name The name of the project.

source The path to the source code.

The generated .dar file is created in .daml/dist/${name}.dar by default. To override the default

location, pass the -o argument to daml build:

daml build -o path/to/darfile.dar

5.1.4 Managing SDK releases

You can manage SDK releases manually by using daml install.

To download and install the latest stable SDK release:

daml install latest

To download and install the latest snapshot release:

daml install latest --snapshots=yes

Please note that snapshot releases are not intended for production usage.

To install the SDK release specified in the project config, run:

daml install project

To install a specific SDK version, for example version 0.13.55, run:

daml install 0.13.55

Rarely, you might need to install an SDK release from a downloaded SDK release tarball. This is

an advanced feature: you should only ever perform this on an SDK release tarball that is released

through the official digital-asset/daml github repository. Otherwise your daml installationmay

become inconsistent with everyone else’s. To do this, run:

5.1. DAML Assistant (daml) 329

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml install path-to-tarball.tar.gz

By default, daml install will update the assistant if the version being installed is newer. You can

force the assistant to be updatedwith --install-assistant=yes and prevent the assistant from

being updated with --install-assistant=no.

See daml install --help for a full list of options.

5.1.5 Terminal Command Completion

The daml assistant comes with support for bash and zsh completions. These will be installed auto-

matically on Linux and Mac when you install or upgrade the DAML assistant.

If you use the bash shell, and your bash supports completions, you can use the TAB key to complete

many daml commands, such as daml install and daml version.

For Zsh you first need to add ~/.daml/zsh to your $fpath, e.g., by adding the following to the be-

ginning of your ~/.zshrc before you call compinit: fpath=(~/.daml/zsh $fpath)

You can override whether bash completions are installed for daml by passing --bash-

completions=yes or --bash-completions=no to daml install.

5.2 DAML Studio

DAML Studio is an integrated development environment (IDE) for DAML. It is an extension on top

of Visual Studio Code (VS Code), a cross-platform, open-source editor providing a rich code editing

experience.

5.2.1 Installing

DAML Studio is included in the DAML SDK.

5.2.2 Creating your first DAML file

1. Start DAML Studio by running daml studio in the current project.

This command starts Visual Studio Code and (if needs be) installs the DAML Studio extension,

or upgrades it to the latest version.

2. Make sure the DAML Studio extension is installed:

1. Click on the Extensions icon at the bottom of the VS Code sidebar.

2. Click on the DAML Studio extension that should be listed on the pane.

330 Chapter 5. SDK tools

https://code.visualstudio.com
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/editingevolved

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3. Open a new file (�N) and save it (�S) as Test.daml.

4. Copy the following code into your file:

module Test where

double : Int -> Int

double x = 2 * x

Your screen should now look like the image below.

5. Introduce a parse error by deleting the = sign and then clicking the 0 symbol on the lower-left

corner. Your screen should now look like the image below.

5.2. DAML Studio 331

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

6. Remove the parse error by restoring the = sign.

We recommend reviewing the Visual Studio Code documentation to learn more about how to use it.

To learn more about DAML, see Language reference docs.

5.2.3 Supported features

Visual Studio Code providesmany helpful features for editing DAML files and we recommend review-

ing Visual Studio Code Basics and Visual Studio Code Keyboard Shortcuts for OS X. The DAML Studio

extension for Visual Studio Code provides the following DAML-specific features:

5.2.3.1 Symbols and problem reporting

Use the commands listed below to navigate between symbols, rename them, and inspect any prob-

lems detected in your DAML files. Symbols are identifiers such as template names, lambda argu-

ments, variables, and so on.

Command Shortcut (OS X)

Go to Definition F12

Peek Definition �F12

Rename Symbol F2

Go to Symbol in File ��O

Go to Symbol in Workspace �T

Find all References �F12

Problems Panel ��M

Note: You can also start a command by typing its name into the command palette (press ��P or

F1). The command palette is also handy for looking up keyboard shortcuts.

332 Chapter 5. SDK tools

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Note:

0 Rename Symbol, Go to Symbol in File, Go to Symbol inWorkspace, and Find all References work

on: choices, record fields, top-level definitions, let-bound variables, lambda arguments, and

modules

0 Go to Definition and Peek Definition work on: top-level definitions, let-bound variables, lambda

arguments, and modules

5.2.3.2 Hover tooltips

You can hover over most symbols in the code to display additional information such as its type.

5.2.3.3 Scenario and DAML Script results

Top-level declarations of type Scenario or Script are decorated with a Scenario results or a

Script results code lens. You can click on the code lens to inspect the execution transaction

graph and the active contracts. The functionality for inspecting the results is identical for DAML

Scripts and scenarios.

For the scenario from the Iou module, you get the following table displaying all contracts that are

active at the end of the scenario. The first column displays the contract id. The columns afterwards

represent the fields of the contract and finally you get one column per party with an X if the party

can see the contract or a - if not.

If you want more details, you can click on the Show archived checkbox, which extends the table to

include archived contracts, and on the Show detailed disclosure checkbox, which displays why the

contract is visible to each party, based on four categories:

1. S, the party sees the contract because they are a signatory on the contract.

2. O, the party sees the contract because they are an observer on the contract.

3. W, the party sees the contract because theywitnessed the creation of this contract, e.g., because

they are an actor on the exercise that created it.

5.2. DAML Studio 333

https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_hover

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4. D, the party sees the contract because they have been divulged the contract, e.g., because they

witnessed an exercise that resulted in a fetch of this contract.

For details on the meaning of those four categories, refer to the DAML Ledger Model. For the example

above, the resulting table looks as follows. You can see the archived Bank contract and the active

Bank contract whose creation Alice has witnessed by virtue of being an actor on the exercise

that created it.

If you want to see the detailed transaction graph you can click on the Show transaction view

button. The transaction graph consists of transactions, each of which contain one or more updates

to the ledger, that is creates and exercises. The transaction graph also records fetches of contracts.

For example a scenario for the Ioumodule looks as follows:

Each transaction is the result of executing a step in the scenario. In the image below, the transaction

#0 is the result of executing the first line of the scenario (line 20), where the Iou is createdby thebank.

The following information can be gathered from the transaction:

0 The result of the first scenario transaction #0 was the creation of the Iou contract with the

arguments bank, 10, and "USD".

0 The created contract is referenced in transaction #1, step 0.

0 The created contract was consumed in transaction #1, step 0.

0 A new contract was created in transaction #1, step 1, and has been divulged to parties ‘Alice’,

‘Bob’, and ‘Bank’.

0 At the end of the scenario only the contract created in #1:1 remains.

0 The return value from running the scenario is the contract identifier #1:1.

0 And finally, the contract identifiers assigned in scenario execution correspond to the scenario

step that created them (e.g. #1).

You can navigate to the corresponding source code by clicking on the location shown in parenthesis

(e.g. Iou:25:12, whichmeans theIoumodule, line 25 and column 1). You can also navigate between

transactions by clicking on the transaction and contract ids (e.g. #1:0).

334 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 1: Scenario results

5.2.3.4 DAML snippets

You can automatically complete a number of 0snippets0 when editing a DAML source file. By default,

hitting ^-Space after typing a DAML keyword displays available snippets that you can insert.

To define your own workflow around DAML snippets, adjust your user settings in Visual Studio Code

to include the following options:

{

"editor.tabCompletion": true,

"editor.quickSuggestions": false

}

With those changes in place, you can simply hit Tab after a keyword to insert the code pattern.

5.2. DAML Studio 335

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You can develop your own snippets by following the instructions in Creating your own Snippets to

create an appropriate daml.json snippet file.

5.2.4 Common scenario errors

During DAML execution, errors can occur due to exceptions (e.g. use of 0abort0, or division by zero),

or due to authorization failures. You can expect to run into the following errors when writing DAML.

When a runtime error occurs in a scenario execution, the scenario result view shows the error to-

gether with the following additional information, if available:

Location of the failed commit If the failing part of the script was a submit, the source location of

the call to submit will be displayed.

Stack trace A list of source locations that were encoutered before the error occured. The last en-

countered location is the first entry in the list.

Ledger time The ledger time at which the error occurred.

Partial transaction The transaction that is being constructed, but not yet committed to the ledger.

Committed transaction Transactions that were successfully committed to the ledger prior to the

error.

Trace Any messages produced by calls to trace and debug.

5.2.4.1 Abort, assert, and debug

The abort, assert and debug inbuilt functions can be used in updates and scenarios. All three can

be used to output messages, but abort and assert can additionally halt the execution:

abortTest = scenario do

debug "hello, world!"

abort "stop"

Scenario execution failed:

Aborted: stop

(continues on next page)

336 Chapter 5. SDK tools

https://code.visualstudio.com/docs/editor/userdefinedsnippets

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Trace:

"hello, world!"

5.2.4.2 Missing authorization on create

If a contract is being created without approval from all authorizing parties the commit will fail. For

example:

template Example

with

party1 : Party; party2 : Party

where

signatory party1

signatory party2

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

submit alice (create Example with party1=alice; party2=bob)

Execution of the example scenario fails due to ‘Bob’ being a signatory in the contract, but not autho-

rizing the create:

Scenario execution failed:

#0: create of CreateAuthFailure:Example at unknown source

failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Sub-transactions:

#0

└─> create CreateAuthFailure:Example

with

party1 = 'Alice'; party2 = 'Bob'

To create the 0Example0 contract one would need to bring both parties to authorize the creation via

a choice, for example ‘Alice’ could create a contract giving ‘Bob’ the choice to create the ‘Example’

contract.

5.2.4.3 Missing authorization on exercise

Similarly to creates, exercises can also fail due to missing authorizations when a party that is not a

controller of a choice exercises it.

5.2. DAML Studio 337

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

template Example

with

owner : Party

friend : Party

where

signatory owner

controller owner can

Consume : ()

do return ()

controller friend can

Hello : ()

do return ()

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

cid <- submit alice (create Example with owner=alice; friend=bob)

submit bob do exercise cid Consume

The execution of the example scenario failswhen ‘Bob’ tries to exercise the choice ‘Consume’ ofwhich

he is not a controller

Scenario execution failed:

#1: exercise of Consume in ExerciseAuthFailure:Example at unknown source

failed due to a missing authorization from 'Alice'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Sub-transactions:

#0

└─> fetch #0:0 (ExerciseAuthFailure:Example)

#1

└─> 'Alice' exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since): 'Alice' (#0), 'Bob' (#0)

└─> create ExerciseAuthFailure:Example

with

owner = 'Alice'; friend = 'Bob'

From the error we can see that the parties authorizing the exercise (‘Bob’) is not a subset of the

required controlling parties.

338 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

5.2.4.4 Contract not visible

Contract not being visible is another common error that can occur when a contract that is being

fetched or exercised has not been disclosed to the committing party. For example:

template Example

with owner: Party

where

signatory owner

controller owner can

Consume : ()

do return ()

example = scenario do

alice <- getParty "Alice"

bob <- getParty "Bob"

cid <- submit alice (create Example with owner=alice)

submit bob do exercise cid Consume

In the above scenario the ‘Example’ contract is created by ‘Alice’ and makes no mention of the party

‘Bob’ and hence does not cause the contract to be disclosed to ‘Bob’. When ‘Bob’ tries to exercise the

contract the following error would occur:

Scenario execution failed:

Attempt to fetch or exercise a contract not visible to the committer.

Contract: #0:0 (NotVisibleFailure:Example)

Committer: 'Bob'

Disclosed to: 'Alice'

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since): 'Alice' (#0)

└─> create NotVisibleFailure:Example

with

owner = 'Alice'

To fix this issue the party ‘Bob’ should be made a controlling party in one of the choices.

5.2.5 Working with multiple packages

Often a DAML project consists of multiple packages, e.g., one containing your templates and one

containing a DAML trigger so that you can keep the templates stable whilemodifying the trigger. It is

possible to work onmultiple packages in a single session of DAML studio but you have to keep some

things in mind. You can see the directory structure of a simple multi-package project consisting of

two packages pkga and pkgb below:

5.2. DAML Studio 339

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

.

├── daml.yaml

├── pkga

│ ├── daml

│ │ └── A.daml

│ └── daml.yaml

└── pkgb

├── daml

│ └── B.daml

└── daml.yaml

pkga and pkgb are regular DAML projects with a daml.yaml and a DAML module. In addition to

the daml.yaml files for the respective packages, you also need to add a daml.yaml to the root of

your project. This file only needs to specify the SDK version. Replace X.Y.Z by the SDK version you

specified in the daml.yaml files of the individual packages. Note that this feature is only available

in SDK version 0.13.52 and newer.

sdk-version: X.Y.Z

You can then open DAML Studio once in the root of your project and work on files in both packages.

Note that if pkgb refers to pkga.dar in its dependencies field, changes will not be picked up auto-

matically. This is always the case even if you open DAML Studio in pkgb. However, for multi-package

projects there is an additional caveat: You have to both rebuild pkga.dar using daml build and

then build pkgb using daml build before restarting DAML Studio.

5.3 DAML Sandbox

The DAML Sandbox, or Sandbox for short, is a simple ledger implementation that enables rapid ap-

plication prototyping by simulating a DAML Ledger.

You can start Sandbox together with Navigator using the daml start command in a DAML SDK

project. This command will compile the DAML file and its dependencies as specified in the daml.

yaml. It will then launch Sandbox passing the just obtained DAR packages. Sandbox will also be

given the name of the startup scenario specified in the project’s daml.yaml. Finally, it launches the

navigator connecting it to the running Sandbox.

It is possible to execute the Sandbox launching step in isolation by typing daml sandbox.

Note: Sandbox has switched to use Wall Clock Time mode by default. To use Static Time Mode you

can provide the --static-time flag to the daml sandbox command or configure the time mode

for daml start in sandbox-options: section of daml.yaml. Please refer to DAML configuration

files for more information.

Sandbox can also be run manually as in this example:

$ daml sandbox Main.dar --static-time --scenario Main:example

____ ____

/ __/__ ____ ___/ / / ___ __ __

_\ \/ _ `/ _ \/ _ / _ \/ _ \\ \ /

/___/_,_/_//_/_,_/_.__/___/__\

initialized sandbox with ledger-id = sandbox-16ae201c-b2fd-45e0-af04-

↪→c61abe13fed7, port = 6865, (continues on next page)

340 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

dar file = DAR files at List(/Users/damluser/temp/da-sdk/test/Main.dar),�

↪→time mode = Static, daml-engine = {}

Initialized Static time provider, starting from 1970-01-01T00:00:00Z

listening on localhost:6865

Here, daml sandbox tells the SDK Assistant to run sandbox from the active SDK release and pass

it any arguments that follow. The example passes the DAR file to load (Main.dar) and the optional

--scenario flag tells Sandbox to run the Main:example scenario on startup. The scenario must

be fully qualified; here Main is the module and example is the name of the scenario, separated by a

:. We also specify that the Sandbox should run in Static Timemode so that the scenario can control

the time.

Note: The scenario is used for testing and development only, and is not supported by production

DAML Ledgers. It is therefore inadvisable to rely on scenarios for ledger initialization.

submitMustFail is only supported by the test-ledger used by daml test and the IDE, not by the

Sandbox.

5.3.1 Contract Identifier Generation

Sandbox supports two contract identifier generator schemes:

0 The so-called deterministic scheme that deterministically produces contract identifiers from

the state of the underlying ledger. Those identifiers are strings starting with #.

0 The so-called random scheme that produces contract identifiers indistinguishable from ran-

dom. In practice, the schemes use a cryptographically secure pseudorandom number genera-

tor initialized with a truly random seed. Those identifiers are hexadecimal strings prefixed by

00.

The sandbox can be configured to use one or the other scheme with one of the following command

line options:

0 --contract-id-seeding=<seeding-mode>. The Sandbox will use the seeding mode

<seeding-mode> to seed the generation of random contract identifiers. Possible seeding modes

are:

– no: The Sandbox uses the deterministic scheme.

– strong: The Sandbox uses the random scheme initialized with a high-entropy seed. De-

pending on the underlying operating system, the startup of the Sandbox may block as

entropy is being gathered to generate the seed.

– testing-weak: (For testing purposes only) The Sandbox uses the random scheme ini-

tialized with a low entropy seed. This may be used in a testing environment to avoid ex-

hausting the systementropy pool when a large number of Sandboxes are started in a short

time interval.

– testing-static: (For testing purposes only) The sandbox uses the random scheme

with a fixed seed. This may be used in testing for reproducible runs.

5.3.2 Running with persistence

By default, Sandbox uses an in-memory store, which means it loses its state when stopped or

restarted. If you want to keep the state, you can use a Postgres database for persistence. This al-

lows you to shut down Sandbox and start it up later, continuing where it left off.

5.3. DAML Sandbox 341

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

To set this up, you must:

0 create an initially empty Postgres database that the Sandbox application can access

0 have a database user for Sandbox that has authority to execute DDL operations

This is because Sandboxmanages its own database schema, applyingmigrations if necessary

when upgrading versions.

To start Sandbox using persistence, pass an --sql-backend-jdbcurl <value> option, where

<value> is a valid jdbc url containing the username, password and database name to connect to.

Here is an example for such a url: jdbc:postgresql://localhost/test?

user=fred&password=secret

Due to possible conflicts between the & character and various terminal shells, we recommend quot-

ing the jdbc url like so:

$ daml sandbox Main.dar --sql-backend-jdbcurl "jdbc:postgresql://localhost/

↪→test?user=fred&password=secret"

If you’re not familiar with JDBC URLs, see the JDBC docs for more information: https://jdbc.

postgresql.org/documentation/head/connect.html

5.3.3 Running with authentication

By default, Sandbox does not use any authentication and accepts all valid ledger API requests.

To start Sandbox with authentication based on JWT tokens, use one of the following command line

options:

0 --auth-jwt-rs256-crt=<filename>. The sandbox will expect all tokens to be signed

with RS256 (RSA Signature with SHA-256) with the public key loaded from the given

X.509 certificate file. Both PEM-encoded certificates (text files starting with -----BEGIN

CERTIFICATE-----) and DER-encoded certificates (binary files) are supported.

0 --auth-jwt-es256-crt=<filename>. The sandbox will expect all tokens to be signed

with ES256 (ECDSA using P-256 and SHA-256) with the public key loaded from the given

X.509 certificate file. Both PEM-encoded certificates (text files starting with -----BEGIN

CERTIFICATE-----) and DER-encoded certicates (binary files) are supported.

0 --auth-jwt-es512-crt=<filename>. The sandbox will expect all tokens to be signed

with ES512 (ECDSA using P-521 and SHA-512) with the public key loaded from the given

X.509 certificate file. Both PEM-encoded certificates (text files starting with -----BEGIN

CERTIFICATE-----) and DER-encoded certificates (binary files) are supported.

0 --auth-jwt-rs256-jwks=<url>. The sandboxwill expect all tokens to be signedwithRS256

(RSA Signature with SHA-256) with the public key loaded from the given JWKS URL.

Warning: For testing purposes only, the following options may also be used. None of them is

considered safe for production:

0 --auth-jwt-hs256-unsafe=<secret>. The sandbox will expect all tokens to be signed

with HMAC256 with the given plaintext secret.

5.3.3.1 Token payload

JWTs express claims which are documented in the authorization documentation.

The following is an example of a valid JWT payload:

342 Chapter 5. SDK tools

https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html
https://jwt.io/
https://tools.ietf.org/html/rfc7517

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

{

"https://daml.com/ledger-api": {

"ledgerId": "aaaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee",

"participantId": null,

"applicationId": null,

"admin": true,

"actAs": ["Alice"],

"readAs": ["Bob"]

},

"exp": 1300819380

}

where

0 ledgerId, participantId, applicationId restricts the validity of the token to the given

ledger, participant, or application

0 exp is the standard JWT expiration date (in seconds since EPOCH)

0 admin, actAs and readAs bear the same meaning as in the authorization documentation

The public claim is implicitly held by anyone bearing a valid JWT (even without being an admin or

being able to act or read on behalf of any party).

5.3.3.2 Generating JSONWeb Tokens (JWT)

To generate tokens for testing purposes, use the jwt.io web site.

5.3.3.3 Generating RSA keys

To generate RSA keys for testing purposes, use the following command

openssl req -nodes -new -x509 -keyout sandbox.key -out sandbox.crt

which generates the following files:

0 sandbox.key: the private key in PEM/DER/PKCS#1 format

0 sandbox.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

5.3.3.4 Generating EC keys

To generate keys to be used with ES256 for testing purposes, use the following command

openssl req -x509 -nodes -days 3650 -newkey ec:<(openssl ecparam -name�

↪→prime256v1) -keyout ecdsa256.key -out ecdsa256.crt

which generates the following files:

0 ecdsa256.key: the private key in PEM/DER/PKCS#1 format

0 ecdsa256.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

Similarly, you can use the following command for ES512 keys:

openssl req -x509 -nodes -days 3650 -newkey ec:<(openssl ecparam -name�

↪→secp521r1) -keyout ecdsa512.key -out ecdsa512.crt

5.3. DAML Sandbox 343

https://jwt.io/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

5.3.4 Running with TLS

To enable TLS, you need to specify the private key for your server and the certificate chain via daml

sandbox --pem server.pem --crt server.crt. By default, Sandbox requires client authen-

tication as well. You can set a custom root CA certificate used to validate client certificates via --

cacrt ca.crt. You can change the client authentication mode via --client-auth none which

will disable it completely, --client-auth optional which makes it optional or specify the de-

fault explicitly via -.client-auth require.

5.3.5 Command-line reference

To start Sandbox, run: sandbox [options] <archive>....

To see all the available options, run daml sandbox --help.

5.3.6 Metrics

5.3.6.1 Enable and configure reporting

To enable metrics and configure reporting, you can use the two following CLI options:

0 --metrics-reporter: passing a legal value will enable reporting; the accepted values are

console, csv:</path/to/metrics.csv> and graphite:<local_server_port>.

– console: prints captured metrics on the standard output

– csv://</path/to/metrics.csv>: saves the captured metrics in CSV format at the

specified location

– graphite://<server_host>[:<server_port>]: sends captured metrics to a

Graphite server. If the port is omitted, the default value 2003 will be used.

0 --metrics-reporting-interval: metrics are pre-aggregated on the sandbox and sent to

the reporter, this option allows the user to set the interval. The formats accepted are based on

the ISO-8601 duration format PnDTnHnMn.nSwith days considered to be exactly 24 hours. The

default interval is 10 seconds.

5.3.6.2 Types of metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when

reading the list of metrics.

Gauge

An individual instantaneous measurement.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred. The following data points are kept and

reported by any meter.

0 <metric.qualified.name>.count: number of registered data points overall

0 <metric.qualified.name>.m1_rate: number of registered data points per minute

0 <metric.qualified.name>.m5_rate: number of registered data points every 5 minutes

0 <metric.qualified.name>.m15_rate: number of registered data points every 15 minutes

344 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 <metric.qualified.name>.mean_rate: mean number of registered data points

Histogram

An histogram records aggregated statistics about collections of events. The exact meaning of the

number depends on themetric (e.g. timers are histograms about the time necessary to complete an

operation).

0 <metric.qualified.name>.mean: arithmetic mean

0 <metric.qualified.name>.stddev: standard deviation

0 <metric.qualified.name>.p50: median

0 <metric.qualified.name>.p75: 75th percentile

0 <metric.qualified.name>.p95: 95th percentile

0 <metric.qualified.name>.p98: 98th percentile

0 <metric.qualified.name>.p99: 99th percentile

0 <metric.qualified.name>.p999: 99.9th percentile

0 <metric.qualified.name>.min: lowest registered value overall

0 <metric.qualified.name>.max: highest registered value overall

Histograms only keep a small reservoir of statistically relevant data points to ensure that metrics

collection can be reasonably accurate without being too taxing resource-wise.

Unless mentioned otherwise all histograms (including timers, mentioned below) use exponentially

decaying reservoirs (i.e. the data is roughly relevant for the last five minutes of recording) to ensure

that recent and possibly operationally relevant changes are visible through the metrics reporter.

Note that min and max values are not affected by the reservoir sampling policy.

You can readmore about reservoir sampling and possible associated policies in the DropwizardMet-

rics library documentation.

Timers

A timer records all metrics registered by a meter and by an histogram, where the histogram

records the time necessary to execute a given operation (unless otherwise specified, the precision

is nanoseconds and the unit of measurement is milliseconds).

Database Metrics

A 0database metric0 is a collection of simpler metrics that keep track of relevant numbers when

interacting with a persistent relational store.

These metrics are:

0 <metric.qualified.name>.wait (timer): time to acquire a connection to the database

0 <metric.qualified.name>.exec (timer): time to run the query and read the result

0 <metric.qualified.name>.query (timer): time to run the query

0 <metric.qualified.name>.commit (timer): time to perform the commit

0 <metric.qualified.name>.translation (timer): if relevant, time necessary to turn seri-

alized DAML-LF values into in-memory objects

5.3.6.3 List of metrics

The following is a non-exhaustive list of selectedmetrics that can be particularly important to track.

Note that not all the following metrics are available unless you run the sandbox with a PostgreSQL

backend.

5.3. DAML Sandbox 345

https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/
https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml.commands.deduplicated_commands

A meter. Number of deduplicated commands.

daml.commands.delayed_submissions

Ameter. Number of delayed submissions (submission who have been evaluated to transaction with

a ledger time farther in the future than the expected latency).

daml.commands.failed_command_interpretation

A meter. Number of commands that have been deemed unacceptable by the interpreter and thus

rejected (e.g. double spends)

daml.commands.submissions

A timer. Time to fully process a submission (validation, deduplication and interpretation) before it’s

handed over to the ledger to be finalized (either committed or rejected).

daml.commands.valid_submissions

A meter. Number of submission that pass validation and are further sent to deduplication and in-

terpretation.

daml.commands.validation

A timer. Time to validate submitted commands before they are fed to the DAML interpreter.

daml.execution.get_lf_package

A timer. Time spent by the engine fetching the packages of compiled DAML code necessary for inter-

pretation.

daml.execution.lookup_active_contract_count_per_execution

A histogram. Number of active contracts fetched for each processed transaction.

daml.execution.lookup_active_contract_per_execution

A timer. Time to fetch all active contracts necessary to process each transaction.

daml.execution.lookup_active_contract

A timer. Time to fetch each individual active contract during interpretation.

daml.execution.lookup_contract_key_count_per_execution

A histogram. Number of contract keys looked up for each processed transaction.

daml.execution.lookup_contract_key_per_execution

A timer. Time to lookup all contract keys necessary to process each transaction.

346 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml.execution.lookup_contract_key

A timer. Time to lookup each individual contract key during interpretation.

daml.execution.retry

A meter. Overall number of interpretation retries attempted due to mismatching ledger effective

time.

daml.execution.total

A timer. Time spent interpreting a valid command into a transaction ready to be submitted to the

ledger for finalization.

daml.index.db.connection.sandbox.pool

This namespace holds a number of interesting metrics about the connection pool used to commu-

nicate with the persistent store that underlies the index.

These metrics include:

0 daml.index.db.connection.sandbox.pool.Wait (timer): time spent waiting to acquire

a connection

0 daml.index.db.connection.sandbox.pool.Usage (histogram): time spent using each

acquired connection

0 daml.index.db.connection.sandbox.pool.TotalConnections (gauge): number or to-

tal connections

0 daml.index.db.connection.sandbox.pool.IdleConnections (gauge): number of idle

connections

0 daml.index.db.connection.sandbox.pool.ActiveConnections (gauge): number of

active connections

0 daml.index.db.connection.sandbox.pool.PendingConnections (gauge): number of

threads waiting for a connection

daml.index.db.deduplicate_command

A timer. Time spent persisting deduplication information to ensure the continued working of the

deduplication mechanism across restarts.

daml.index.db.get_active_contracts

A database metric. Time spent retrieving a page of active contracts to be served from the active

contract service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_completions

A database metric. Time spent retrieving a page of command completions to be served from the

command completion service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_flat_transactions

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

5.3. DAML Sandbox 347

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml.index.db.get_ledger_end

Adatabasemetric. Time spent retrieving the current ledger end. The count for thismetric is expected

to be very high and always increasing as the indexed is queried for the latest updates.

daml.index.db.get_ledger_id

A database metric. Time spent retrieving the ledger identifier.

daml.index.db.get_transaction_trees

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

daml.index.db.load_all_parties

A database metric. Load the currently allocated parties so that they are served via the party man-

agement service.

daml.index.db.load_archive

A database metric. Time spent loading a package of compiled DAML code so that it’s given to the

DAML interpreter when needed.

daml.index.db.load_configuration_entries

A database metric. Time to load the current entries in the log of configuration entries. Used to verify

whether a configuration has been ultimately set.

daml.index.db.load_package_entries

A database metric. Time to load the current entries in the log of package uploads. Used to verify

whether a package has been ultimately uploaded.

daml.index.db.load_packages

A database metric. Load the currently uploaded packages so that they are served via the package

management service.

daml.index.db.load_parties

A database metric. Load the currently allocated parties so that they are served via the party service.

daml.index.db.load_party_entries

A database metric. Time to load the current entries in the log of party allocations. Used to verify

whether a party has been ultimately allocated.

daml.index.db.lookup_active_contract

A database metric. Time to fetch one contract on the index to be used by the DAML interpreter to

evaluate a command into a transaction.

348 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml.index.db.lookup_configuration

A database metric. Time to fetch the configuration so that it’s served via the configuration manage-

ment service.

daml.index.db.lookup_contract_by_key

A database metric. Time to lookup one contract key on the index to be used by the DAML interpreter

to evaluate a command into a transaction.

daml.index.db.lookup_flat_transaction_by_id

A database metric. Time to lookup a single flat transaction by identifier to be served by the transac-

tion service.

daml.index.db.lookup_maximum_ledger_time

A databasemetric. Time spent looking up the ledger effective time of a transaction as themaximum

ledger time of all active contracts involved to ensure causal monotonicity.

daml.index.db.lookup_transaction_tree_by_id

A database metric. Time to lookup a single transaction tree by identifier to be served by the trans-

action service.

daml.index.db.remove_expired_deduplication_data

A databasemetric. Time spent removing deduplication information after the expiration of the dedu-

plication window. Deduplication information is persisted to ensure the continued working of the

deduplication mechanism across restarts.

daml.index.db.stop_deduplicating_command

A database metric. Time spent removing deduplication information after the failure of a command.

Deduplication information is persisted to ensure the continued working of the deduplication mech-

anism across restarts.

daml.index.db.store_configuration_entry

A databasemetric. Time spent persisting a change in the ledger configuration provided through the

configuration management service.

daml.index.db.store_ledger_entry

A database metric. Time spent persisting a transaction that has been successfully interpreted and

is final.

daml.index.db.store_package_entry

A databasemetric. Time spent storing a DAML package uploaded through the packagemanagement

service.

5.3. DAML Sandbox 349

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

daml.index.db.store_party_entry

A database metric. Time spent storing party information as part of the party allocation endpoint

provided by the party management service.

daml.index.db.store_rejection

A database metric. Time spent persisting the information that a given command has been rejected.

daml.lapi

Everymetrics under this namespace is a timer, one for each service exposed by the Ledger API, in the

format:

daml.lapi.service_name.service_endpoint

As in the following example:

daml.lapi.command_service.submit_and_wait

Single call services return the time to serve the request, streaming services measure the time to

return the first response.

jvm

Under the jvm namespace there is a collection of metrics that tracks important measurements

about the JVM that the sandbox is running on, including CPU usage, memory consumption and the

current state of threads.

5.4 Navigator

The Navigator is a front-end that you can use to connect to any DAML Ledger and inspect andmodify

the ledger. You can use it during DAML development to explore the flow and implications of the DAML

models.

The first sections of this guide cover use of the Navigator with the DAML SDK. Refer to Advanced usage

for information on using Navigator outside the context of the SDK.

5.4.1 Navigator functionality

Connect Navigator to any DAML Ledger and use it to:

0 View templates

0 View active and archived contracts

0 Exercise choices on contracts

0 Advance time (This option applies only when using Navigator with the DAML Sandbox ledger.)

5.4.2 Installing and starting Navigator

Navigator ships with the DAML SDK. To launch it:

1. Start Navigator via a terminal window running SDK Assistant by typing daml start

2. The Navigator web-app is automatically started in your browser. If it fails to start, open a

browser window and point it to the Navigator URL

350 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

When running daml start you will see the Navigator URL. By default it will be http://

localhost:7500/.

Note: Navigator is compatible with these browsers: Safari, Chrome, or Firefox.

For information on how to launch and use Navigator outside of the SDK, see Advanced usage below.

5.4.3 Choosing a party / changing the party

The ledger is a record of transactions between authorized participants on the distributed network.

Before you can interact with the ledger, you must assume the role of a particular party. This deter-

mines the contracts that you can access and the actions you are permitted to perform on the ledger.

The first step in using Navigator is to use the drop-down list on the Navigator home screen to select

from the available parties.

Note: The party choices are configured on startup. (Refer to DAML Assistant (daml) or Advanced usage

for more instructions.)

The main Navigator screen will be displayed, with contracts that this party is entitled to view in

the main pane and the option to switch from contracts to templates in the pane at the left. Other

options allow you to filter the display, include or exclude archived contracts, and exercise choices as

described below.

5.4. Navigator 351

http://localhost:7500/
http://localhost:7500/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

To change the active party:

1. Click the name of the current party in the top right corner of the screen.

2. On the home screen, select a different party.

You can act as different parties in different browser windows. Use Chrome’s profile feature https:

//support.google.com/chrome/answer/2364824 and sign in as a different party for each Chrome

profile.

5.4.4 Logging out

To log out, click the name of the current party in the top-right corner of the screen.

5.4.5 Viewing templates or contracts

DAML contract templates aremodels that contain the agreement statement, all the applicable param-

eters, and the choices that can be made in acting on that data. They specify acceptable input and

the resulting output. A contract template contains placeholders rather than actual names, amounts,

dates, and so on. In a contract instance, the placeholders have been replaced with actual data.

The Navigator allows you to list templates or contracts, view contracts based on a template, and view

template and contract details.

5.4.5.1 Listing templates

To see what contract templates are available on the ledger you are connected to, choose Templates

in the left pane of the main Navigator screen.

352 Chapter 5. SDK tools

https://support.google.com/chrome/answer/2364824
https://support.google.com/chrome/answer/2364824

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Use the Filter field at the top right to select template IDs that include the text you enter.

5.4.5.2 Listing contracts

To view a list of available contracts, choose Contracts in the left pane.

In the Contracts list:

0 Changes to the ledger are automatically reflected in the list of contracts. To avoid the auto-

matic updates, select the Frozen checkbox. Contracts will still be marked as archived, but the

contracts list will not change.

0 Filter the displayed contracts by entering text in the Filter field at the top right.

0 Use the Include Archived checkbox at the top to include or exclude archived contracts.

5.4.5.3 Viewing contracts based on a template

You can also view the list of contracts that are based on a particular template.

1. You will see icons to the right of template IDs in the template list with a number indicating how

many contracts are based on this template.

2. Click the number to display a list of contracts based on that template.

Number of Contracts

5.4. Navigator 353

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

List of Contracts

5.4.5.4 Viewing template and contract details

To view template or contract details, click on a template or contract in the list. The template or

contracts detail page is displayed.

Template Details

354 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Contract Details

5.4.6 Using Navigator

5.4.6.1 Creating contracts

Contracts in a ledger are created automatically when you exercise choices. In some cases, you create

a contract directly from a template. This feature can be particularly useful for testing and experi-

menting during development.

To create a contract based on a template:

1. Navigate to the template detail page as described above.

2. Complete the values in the form

3. Choose the Submit button.

5.4. Navigator 355

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

When the command has been committed to the ledger, the loading indicator in the navbar at the top

will display a tick mark.

While loading0

When committed to the ledger0

5.4.6.2 Exercising choices

To exercise a choice:

1. Navigate to the contract details page (see above).

2. Click the choice you want to exercise in the choice list.

3. Complete the form.

4. Choose the Submit button.

356 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Or

1. Navigate to the choice form by clicking the wrench icon in a contract list.

2. Select a choice.

You will see the loading and confirmation indicators, as pictured above in Creating Contracts.

5.4.6.3 Advancing time

It is possible to advance time against the DAML Sandbox. (This is not true of all DAML Ledgers.) This

advance-time functionality can be useful when testing, for example, when entering a trade on one

date and settling it on a later date.

To advance time:

1. Click on the ledger time indicator in the navbar at the top of the screen.

2. Select a new date / time.

3. Choose the Set button.

5.4. Navigator 357

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

5.4.7 Authorizing Navigator

If you are running Navigator against a Ledger API server that verifies authorization, youmust provide

the access token when you start the Navigator server.

The access token retrieval depends on the specific DAML setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Navigator by storing it in a file and

provide the path to it using the --access-token-file command line option.

If the access token cannot be retrieved, is missing or wrong, you’ll be unable to move past the Navi-

gator’s frontend login screen and see the following:

5.4.8 Advanced usage

5.4.8.1 Customizable table views

Customizable table views is an advanced rapid-prototyping feature, intended for DAML developers

who wish to customize the Navigator UI without developing a custom application.

To use customized table views:

1. Create a file frontend-config.js in your project root folder (or the folder from which you

run Navigator) with the content below:

import { DamlLfValue } from '@da/ui-core';

export const version = {

schema: 'navigator-config',

major: 2,

minor: 0,

};

(continues on next page)

358 Chapter 5. SDK tools

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

export const customViews = (userId, party, role) => ({

customview1: {

type: "table-view",

title: "Filtered contracts",

source: {

type: "contracts",

filter: [

{

field: "id",

value: "1",

}

],

search: "",

sort: [

{

field: "id",

direction: "ASCENDING"

}

]

},

columns: [

{

key: "id",

title: "Contract ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.id

}),

sortable: true,

width: 80,

weight: 0,

alignment: "left"

},

{

key: "template.id",

title: "Template ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.template.id

}),

sortable: true,

width: 200,

weight: 3,

alignment: "left"

}

]

}

})

5.4. Navigator 359

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. Reload your Navigator browser tab. You should now see a sidebar item titled 0Filtered con-

tracts0 that links to a table with contracts filtered and sorted by ID.

To debug config file errors and learnmore about the config file API, open the Navigator /config page

in your browser (e.g., http://localhost:7500/config).

5.4.8.2 Using Navigator with a DAML Ledger

By default, Navigator is configured to use an unencrypted connection to the ledger. To run Navigator

against a secured DAML Ledger, configure TLS certificates using the --pem, --crt, and --cacrt

command line parameters. Details of these parameters are explained in the command line help:

daml navigator --help

360 Chapter 5. SDK tools

http://localhost:7500/config

Chapter 6

Background concepts

6.1 Glossary of concepts

6.1.1 DAML

DAML is a programming language for writing smart contracts, that you can use to build an application

based on a ledger. You can run DAML contracts on many different ledgers.

6.1.1.1 Contract, contract instance

A contract is an item on a ledger. They are created from blueprints called templates, and include:

0 data (parameters)

0 roles (signatory, observer)

0 choices (and controllers)

Contracts are immutable: once they are created on the ledger, the information in the contract cannot

be changed. The only thing that can happen to it is that the contract can be archived.

They’re sometimes referred to as a contract instance to make clear that this is an instantiated con-

tract, as opposed to a template.

Active contract, archived contract

When a contract is created on a ledger, it becomes active. But that doesn’t mean it will stay active

forever: it can be archived. This can happen:

0 if the signatories of the contract decide to archive it

0 if a consuming choice is exercised on the contract

Once the contract is archived, it is no longer valid, and choices on the contract can no longer be

exercised.

6.1.1.2 Template

A template is a blueprint for creating a contract. This is the DAML code you write.

For full documentation on what can be in a template, see Reference: templates.

361

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

6.1.1.3 Choice

A choice is something that a party can exercise on a contract. You write code in the choice body that

specifies what happens when the choice is exercised: for example, it could create a new contract.

Choices give you a way to transform the data in a contract: while the contract itself is immutable,

you can write a choice that archives the contract and creates a new version of it with updated data.

A choice can only be exercised by its controller. Within the choice body, you have the authorization of

all of the contract’s signatories.

For full documentation on choices, see Reference: choices.

Consuming choice

A consuming choicemeans that, when the choices is exercised, the contract it is on will be archived.

The alternative is a nonconsuming choice.

Consuming choices can be preconsuming or postconsuming.

Preconsuming choice

A choice marked preconsuming will be archived at the start of that exercise.

Postconsuming choice

A choice marked postconsuming will not be archived until the end of the exercise choice body.

Nonconsuming choice

A nonconsuming choice does NOT archive the contract it is on when exercised. This means the choice

can be exercised more than once on the same contract instance.

Disjunction choice, flexible controllers

A disjunction choice has more than one controller.

If a contract uses flexible controllers, this means you don’t specify the controller of the choice at

creation time of the contract, but at exercise time.

6.1.1.4 Party

A party represents a person or legal entity. Parties can create contracts and exercise choices.

Signatories, observers, controllers, and maintainers all must be parties, represented by the Party data

type in DAML.

Signatory

A signatory is a party on a contract instance. The signatories MUST consent to the creation of the con-

tract by authorizing it: if they don’t, contract creation will fail.

For documentation on signatories, see Reference: templates.

362 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Observer

An observer is a party on a contract instance. Being an observer allows them to see that instance and

all the information about it. They do NOT have to consent to the creation.

For documentation on observers, see Reference: templates.

Controller

A controller is a party that is able to exercise a particular choice on a particular contract instance.

Controllers must be at least an observer, otherwise they can’t see the contract to exercise it on. But

they don’t have to be a signatory. this enables the propose-accept pattern.

Stakeholder

Stakeholder is not a term used within the DAML language, but the concept refers to the signatories

and observers collectively. That is, it means all of the parties that are interested in a contract instance.

Maintainer

Themaintainer is a party that is part of a contract key. Theymust always be a signatory on the contract

that they maintain the key for.

It’s not possible for keys to be globally unique, because there is no party that will necessarily know

about every contract. However, by including a party as part of the key, this ensures that the main-

tainerwill know about all of the contracts, and so can guarantee the uniqueness of the keys that they

know about.

For documentation on contract keys, see Contract keys.

6.1.1.5 Authorization, signing

The DAML runtime checks that every submitted transaction is well-authorized, according to the

authorization rules of the ledger model, which guarantee the integrity of the underlying ledger.

A DAML update is the composition of update actions created with one of the items in the table below.

A DAML update is well-authorized when all its contained update actions are well-authorized. Each

operation has an associated set of parties that need to authorize it:

Table 1: Updates and required authorization

Update

action

Type Authorization

create (Template c) => c ->

Update (ContractId c)

All signatories of the created contract instance

exercise ContractId c -> e ->

Update r

All controllers of the choice

fetch ContractId c -> e ->

Update r

One of the union of signatories and observers

of the fetched contract instance

fetchByKey k -> Update (ContractId

c, c)

Same as fetch

lookupByKeyk -> Update (Optional

(ContractId c))

All key maintainers

6.1. Glossary of concepts 363

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

At runtime, the DAML execution engine computes the required authorizing parties from this map-

ping. It also computes which parties have given authorization to the update in question. A party is

giving authorization to an update in one of two ways:

0 It is the signatory of the contract that contains the update action.

0 It is element of the controllers executing the choice containing the update action.

Only if all required parties have given their authorization to an update action, the update action is

well-authorized and therefore executed. A missing authorization leads to the abortion of the update

action and the failure of the containing transaction.

It is noteworthy, that authorizing parties are always determined only from the local context of a

choice in question, that is, its controllers and the contract’s signatories. Authorization is never in-

herited from earlier execution contexts.

6.1.1.6 Standard library

The DAML standard library is a set of DAML functions, classes and more that make developing with

DAML easier.

For documentation, see /daml/stdlib/index.

6.1.1.7 Agreement

An agreement is part of a contract. It is text that explains what the contract represents.

It can be used to clarify the legal intent of a contract, but this text isn’t evaluated programmatically.

See Reference: templates.

6.1.1.8 Create

A create is an update that creates a contract instance on the ledger.

Contract creation requires authorization from all its signatories, or the create will fail. For how to get

authorization, see the propose-accept and multi-party agreement patterns.

A party submits a create command.

See Reference: updates.

6.1.1.9 Exercise

An exercise is an action that exercises a choice on a contract instance on the ledger. If the choice is

consuming, the exercise will archive the contract instance; if it is nonconsuming, the contract instance

will stay active.

Exercising a choice requires authorization from all of the controllers of the choice.

A party submits an exercise command.

See Reference: updates.

6.1.1.10 Scenario

A scenario is a way of testing DAML code during development. You can run scenarios inside DAML

Studio, or write them to be executed on Sandbox when it starts up.

They’re useful for:

364 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 expressing clearly the intended workflow of your contracts

0 ensuring that parties can exclusively create contracts, observe contracts, and exercise choices

that they are meant to

0 acting as regression tests to confirm that everything keeps working correctly

Scenarios emulate a real ledger. You specify a linear sequence of actions that various parties take,

and these are evaluated in order, according to the same consistency, authorization, andprivacy rules

as they would be on a DAML ledger. DAML Studio shows you the resulting transaction graph, and (if a

scenario fails) what caused it to fail.

See Testing using scenarios.

6.1.1.11 Contract key

A contract key allows you to uniquely identify a contract instance of a particular template, similarly to

a primary key in a database table.

A contract key requires amaintainer: a simple key would be something like a tuple of text and main-

tainer, like (accountId, bank).

See Contract keys.

6.1.1.12 DAR file, DALF file

A .dar file is the result of compiling DAML using the Assistant.

You upload .dar files to a ledger in order to be able to create contracts from the templates in that

file.

A .dar contains multiple .dalf files. A .dalf file is the output of a compiled DAML package or

library. Its underlying format is DAML-LF.

6.1.2 SDK tools

6.1.2.1 Assistant

DAML Assistant is a command-line tool for many tasks related to DAML. Using it, you can create

DAML projects, compile DAML projects into .dar files, launch other SDK tools, and download new SDK

versions.

See DAML Assistant (daml).

6.1.2.2 Studio

DAML Studio is a plugin for Visual Studio Code, and is the IDE for writing DAML code.

See DAML Studio.

6.1.2.3 Sandbox

Sandbox is a lightweight ledger implementation. In its normal mode, you can use it for testing.

You can also run the Sandbox connected to a PostgreSQL back end, which gives you persistence and

a more production-like experience.

See DAML Sandbox.

6.1. Glossary of concepts 365

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

6.1.2.4 Navigator

Navigator is a tool for exploring what’s on the ledger. You can use it to see what contracts can be

seen by different parties, and submit commands on behalf of those parties.

Navigator GUI

This is the version of Navigator that runs as a web app.

See Navigator.

Navigator Console

This is the version of Navigator that runs on the command-line. It has similar functionality to the

GUI.

See Navigator Console.

6.1.2.5 Extractor

Extractor is a tool for extracting contract data for a single party into a PostgreSQL database.

See Extractor.

6.1.3 Building applications

6.1.3.1 Application, ledger client, integration

Application, ledger client and integration are all terms for an application that sits on top of the

ledger. These usually read from the ledger, send commands to the ledger, or both.

There’s a lot of information available about application development, starting with the Application

architecture page.

6.1.3.2 Ledger API

The Ledger API is an API that’s exposed by any DAML ledger. It includes the following services.

Command submission service

Use the command submission service to submit commands - either create commands or exercise

commands - to the ledger. See Command submission service.

Command completion service

Use the command completion service to find out whether or not commands you have submitted have

completed, and what their status was. See Command completion service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. See

Command service.

366 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Transaction service

Use the transaction service to listen to changes in the ledger, reported as a stream of transactions.

See Transaction service.

Active contract service

Use the active contract service to obtain a party-specific view of all contracts currently active on the

ledger. See Active contracts service.

Package service

Use the package service to obtain information about DAML packages available on the ledger. See

Package service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to. See Ledger identity service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration. See Ledger

configuration service.

6.1.3.3 Ledger API libraries

The following libraries wrap the ledger API for more native experience applications development.

Java bindings

An idiomatic Java library for writing ledger applications. See Java bindings.

Scala bindings

An idiomatic Scala library for writing ledger applications. See Scala bindings.

gRPC API

The low-level ledger API that all of the other bindings use. Written in gRPC. See gRPC.

6.1.3.4 Reading from the ledger

Applications get information about the ledger by reading from it. You can’t query the ledger, but you

can subscribe to the transaction stream to get the events, or themore sophisticated active contract

service.

6.1.3.5 Submitting commands, writing to the ledger

Applications make changes to the ledger by submitting commands. You can’t change it directly: an

application submits a command of transactions. The command gets evaluated by the runtime, and

will only be accepted if it’s valid.

6.1. Glossary of concepts 367

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For example, a commandmight get rejected because the transactions aren’twell-authorized; because

the contract isn’t active (perhaps someone else archived it); or for other reasons.

This is echoed in scenarios, where you can mock an application by having parties submit transac-

tions/updates to the ledger. You can use submit or submitMustFail to express what should suc-

ceed and what shouldn’t.

Commands

A command is an instruction to add a transaction to the ledger.

6.1.3.6 DAML-LF

When you compile DAML source code into a .dar file, the underlying format is DAML-LF. DAML-LF is

similar to DAML, but is stripped down to a core set of features. The relationship between the surface

DAML syntax and DAML-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with DAML-LF directly. But inside the DAML SDK, it’s used for:

0 executing DAML code on the Sandbox or on another platform

0 sending and receiving values via the Ledger API (using a protocol such as gRPC)

0 generating code in other languages for interacting with DAMLmodels (often called 0codegen0)

6.1.4 General concepts

6.1.4.1 Ledger, DAML ledger

Ledger can refer to a lot of things, but a ledger is essentially the underlying storage mechanism for

a running DAML applications: it’s where the contracts live. A DAML ledger is a ledger that you can

store DAML contracts on, because it implements the ledger API.

DAML ledgers provide various guarantees about what you can expect from it, all laid out in the DAML

Ledger Model page.

When you’re developing, you’ll use Sandbox as your ledger.

If you would like to integrate DAML with a storage infrastructure not already in development (see

daml.com), please get in touch on Slack in the channel #daml-contributors.

6.1.4.2 Trust domain

A trust domain encompasses a part of the system (in particular, a DAML ledger) operated by a single

real-world entity. This subsystem may consist of one or more physical nodes. A single physical

machine is always assumed to be controlled by exactly one real-world entity.

6.2 DAML Ledger Model

DAML Ledgers enable multi-party workflows by providing parties with a virtual shared ledger, which

encodes the current state of their shared contracts, written in DAML. At a high level, the interactions

are visualized as follows:

368 Chapter 6. Background concepts

https://daml.com
https://damldriven.slack.com/sso/saml/start

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The DAML ledger model defines:

1. what the ledger looks like - the structure of DAML ledgers

2. who can request which changes - the integrity model for DAML ledgers

3. who sees which changes and data - the privacy model for DAML ledgers

The below sections review these concepts of the ledger model in turn. They also briefly describe the

link between DAML and the model.

6.2.1 Structure

This section looks at the structure of a DAML ledger and the associated ledger changes. The basic

building blocks of changes are actions, which get grouped into transactions.

6.2.1.1 Actions and Transactions

One of the main features of the DAML ledger model is a hierarchical action structure.

This structure is illustrated below on a toy example of a multi-party interaction. Alice (A) gets some

digital cash, in the formof an I-Owe-You (IOU for short) fromabank, and she needs her house painted.

She gets an offer from a painter (P) with reference number P123 to paint her house in exchange for

this IOU. Lastly, A accepts the offer, transfering the money and signing a contract with P, whereby he

is promising to paint her house.

This acceptance can be viewed as A exercising her right to accept the offer. Her acceptance has two

consequences. First, A transfers her IOU, that is, exercises her right to transfer the IOU, after which a

new IOU for P is created. Second, a new contract is created that requires P to paint A’s house.

Thus, the acceptance in this example is reduced to two types of actions: (1) creating contracts, and

(2) exercising rights on them. These are also the twomain kinds of actions in the DAML ledgermodel.

6.2. DAML Ledger Model 369

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The visual notation below records the relations between the actions during the above acceptance.

Formally, an action is one of the following:

1. a Create action on a contract, which records the creation of the contract

2. an Exercise action on a contract, which records that one ormore parties have exercised a right

they have on the contract, and which also contains:

1. An associated set of parties called actors. These are the parties who perform the action.

2. An exercise kind, which is either consuming or non-consuming. Once consumed, a con-

tract cannot be used again (for example, Alice should not be able to accept the painter’s

offer twice). Contracts exercised in a non-consuming fashion can be reused.

3. A list of consequences, which are themselves actions. Note that the consequences, as

well as the kind and the actors, are considered a part of the exercise action itself. This

nesting of actions within other actions through consequences of exercises gives rise to

the hierarchical structure. The exercise action is the parent action of its consequences.

3. a Fetch action on a contract, which demonstrates that the contract exists and is active at the

time of fetching. The action also contains actors, the parties who fetch the contract. A Fetch

behaves like a non-consuming exercise with no consequences, and can be repeated.

4. a Key assertion, which records the assertion that the given contract key is not assigned to any

unconsumed contract on the ledger.

An Exercise or a Fetch action on a contract is said to use the contract. Moreover, a consuming Ex-

ercise is said to consume (or archive) its contract.

The following EBNF-like grammar summarizes the structure of actions and transactions. Here, 0s |

t0 represents the choice between s and t, 0s t0 represents s followed by t, and 0s*0 represents the

repetition of s zero or more times. The terminal ‘contract’ denotes the underlying type of contracts,

and the terminal ‘party’ the underlying type of parties.

Action ::= 'Create' contract

| 'Exercise' party* contract Kind Transaction

| 'Fetch' party* contract

| 'NoSuchKey' key

Transaction ::= Action*

Kind ::= 'Consuming' | 'NonConsuming'

The visual notation presented earlier captures actions precisely with conventions that:

1. Exercise denotes consuming, ExerciseN non-consuming exercises, and Fetch a fetch.

370 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. double arrows connect exercises to their consequences, if any.

3. the consequences are ordered left-to-right.

4. to aid intuitions, exercise actions are annotated with suggestive names like 0accept0 or

0transfer0. Intuitively, these correspond to names of DAML choices, but they have no semantic

meaning.

An alternative shorthand notation, shown below uses the abbreviations Exe and ExeN for exercises,

and omits the Create labels on create actions.

To show an example of a non-consuming exercise, consider a different offer example with an easily

replenishable subject. For example, if P was a car manufacturer, and A a car dealer, P could make an

offer that could be accepted multiple times.

To see an example of a fetch, we can extend this example to the case where P produces exclusive cars

and allows only certified dealers to sell them. Thus, when accepting the offer, A has to additionally

show a valid quality certificate issued by some standards body S.

6.2. DAML Ledger Model 371

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the paint offer example, the underlying type of contracts consists of three sorts of contracts:

PaintOffer houseOwner painter obligor refNo Intuitively an offer (with a reference number) by

which the painter proposes to the house owner to paint her house, in exchange for a single

IOU token issued by the specified obligor.

PaintAgree painter houseOwner refNo Intuitively a contract whereby the painter agrees to paint

the owner’s house

Iou obligor owner An IOU token from an obligor to an owner (for simplicity, the token is of unit

amount).

In practice, multiple IOU contracts can exist between the same obligor and owner, in which case each

contract should have a unique identifier. However, in this section, each contract only appears once,

allowing us to drop the notion of identifiers for simplicity reasons.

A transaction is a list of actions. Thus, the consequences of an exercise form a transaction. In the

example, the consequences of the Alice’s exercise form the following transaction, where actions are

again ordered left-to-right.

For an action act, its proper subactions are all actions in the consequences of act, together with all

of their proper subactions. Additionally, act is a (non-proper) subaction of itself.

The subaction relation is visualized below. Both the green and yellow boxes are proper subactions of

Alice’s exercise on the paint offer. Additionally, the creation of Iou Bank P (yellow box) is also a proper

subaction of the exercise on the Iou Bank A.

372 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Similarly, a subtransaction of a transaction is either the transaction itself, or a proper subtransac-

tion: a transaction obtained by removing at least one action, or replacing it by a subtransaction of

its consequences. For example, given the transaction consisting of just one action, the paint offer

acceptance, the image below shows all its proper subtransactions on the right (yellow boxes).

To illustrate contract keys, suppose that the contract key for a PaintOffer consists of the reference

number and the painter. So Alice can refer to the PaintOffer by its key (P, P123). To make this explicit,

we use the notation PaintOffer @P A&P123 for contracts, where@ and&mark the parts that belong to

a key. (The difference between @ and & will be explained in the integrity section.) The ledger integrity

constraints in the next section ensure that there is always at most one active PaintOffer for a given

key. So if the painter retracts its PaintOffer and later Alice tries to accept it, she can then record the

absence with a NoSuchKey (P, P123) key assertion.

6.2.1.2 Ledgers

The transaction structure records the contents of the changes, but not who requested them. This in-

formation is added by the notion of a commit: a transaction paired with the parties that requested

it, called the requesters of the commit. In the ledger model, a commit is allowed to have multiple

requesters, although the current DAML Ledger API offers the request functionality only to individual

parties. Given a commit (p, tx) with transaction tx = act1, 0, actn, every acti is called a top-level action

of the commit. A ledger is a sequence of commits. A top-level action of any ledger commit is also a

top-level action of the ledger.

The following EBNF grammar summarizes the structure of commits and ledgers:

6.2. DAML Ledger Model 373

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Commit ::= party Transaction

Ledger ::= Commit*

A DAML ledger thus represents the full history of all actions taken by parties.1 Since the ledger is a

sequence (of dependent actions), it induces an order on the commits in the ledger. Visually, a ledger

can be represented as a sequence growing from left to right as time progresses. Below, dashed ver-

tical lines mark the boundaries of commits, and each commit is annotated with its requester(s).

Arrows link the create and exercise actions on the same contracts. These additional arrows high-

light that the ledger forms a transaction graph. For example, the aforementioned house painting

scenario is visually represented as follows.

The definitions presented here are all the ingredients required to record the interaction between par-

ties in a DAML ledger. That is, they address the first question: 0what do changes and ledgers look

like?0. To answer the next question, 0who can request which changes0, a precise definition is needed

of which ledgers are permissible, and which are not. For example, the above paint offer ledger is in-

tuitively permissible, while all of the following ledgers are not.

Fig. 1: Alice spending her IOU twice (0double spend0), once transferring it to B and once to P.

The next section discusses the criteria that rule out the above examples as invalid ledgers.

Calling such a complete record 0ledger0 is standard in the distributed ledger technology community. In accounting ter-

minology, this record is closer to a journal than to a ledger.

374 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 2: Alice changing the offer’s outcome by removing the transfer of the Iou.

Fig. 3: An obligation imposed on the painter without his consent.

Fig. 4: Painter stealing Alice’s IOU. Note that the ledger would be intuitively permissible if it was Alice

performing the last commit.

6.2. DAML Ledger Model 375

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 5: Painter falsely claiming that there is no offer.

Fig. 6: Painter trying to create two different paint offers with the same reference number.

6.2.2 Integrity

This section addresses the question of who can request which changes.

6.2.2.1 Valid Ledgers

At the core is the concept of a valid ledger; changes are permissible if adding the corresponding com-

mit to the ledger results in a valid ledger. Valid ledgers are those that fulfill three conditions:

Consistency Exercises and fetches on inactive contracts are not allowed, i.e. contracts that have not

yet been created or have already been consumed by an exercise. A contract with a contract key

can be created only if the key is not associated to another unconsumed contract, and all key

assertions hold.

Conformance Only a restricted set of actions is allowed on a given contract.

Authorization The parties who may request a particular change are restricted.

Only the last of these conditions depends on the party (or parties) requesting the change; the other

two are general.

6.2.2.2 Consistency

Consistency consists of two parts:

1. Contract consistency: Contracts must be created before they are used, and they cannot be used

once they are consumed.

2. Key consistency: Keys are unique and key assertions are satisfied.

To define this precisely, notions of 0before0 and 0after0 are needed. These are given by putting all

actions in a sequence. Technically, the sequence is obtained by a pre-order traversal of the ledger’s

actions, noting that these actions form an (ordered) forest. Intuitively, it is obtained by always pick-

ing parent actions before their proper subactions, and otherwise always picking the actions on the

left before the actions on the right. The image below depicts the resulting order on the paint offer

example:

376 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the image, an action act happens before action act’ if there is a (non-empty) path from act to act’.

Then, act’ happens after act.

Contract consistency

Contract consistency ensures that contracts are used after they have been created and before they

are consumed.

Definition �contract consistency� A ledger is consistent for a contract c if all of the following

holds for all actions act on c:

1. either act is itself Create c or a Create c happens before act

2. act does not happen before any Create c action

3. act does not happen after any Exercise action consuming c.

The consistency condition rules out the double spend example. As the red path below indicates, the

second exercise in the example happens after a consuming exercise on the same contract, violating

the contract consistency criteria.

In addition to the consistency notions, the before-after relation on actions can also be used to define

the notion of contract state at any point in a given transaction. The contract state is changed by

creating the contract and by exercising it consumingly. At any point in a transaction, we can then

define the latest state change in the obvious way. Then, given a point in a transaction, the contract

state of c is:

1. active, if the latest state change of c was a create;

2. archived, if the latest state change of c was a consuming exercise;

6.2. DAML Ledger Model 377

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

3. inexistent, if c never changed state.

A ledger is consistent for c exactly ifExerciseand Fetchactions on chappenonlywhen c is active, and

Create actions only when c is inexistent. The figures below visualize the state of different contracts

at all points in the example ledger.

Fig. 7: Activeness of the PaintOffer contract

Fig. 8: Activeness of the Iou Bank A contract

The notion of order can be defined on all the different ledger structures: actions, transactions, lists of

transactions, and ledgers. Thus, the notions of consistency, inputs and outputs, and contract state

can also all be defined on all these structures. The active contract set of a ledger is the set of all

contracts that are active on the ledger. For the example above, it consists of contracts Iou Bank P and

PaintAgree P A.

Key consistency

Contract keys introduce a key uniqueness constraint for the ledger. To capture this notion, the con-

tract model must specify for every contract in the system whether the contract has a key and, if so,

the key. Every contract can have at most one key.

378 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Like contracts, every key has a state. An action act is an action on a key k if

0 act is a Create, Exercise, or a Fetch action on a contract c with key k, or

0 act is the key assertion NoSuchKey k.

Definition �key state� The key state of a key on a ledger is determined by the last action act on the

key:

0 If act is a Create, non-consuming Exercise, or Fetch action on a contract c, then the key

state is assigned to c.

0 If act is a consuming Exercise action or a NoSuchKey assertion, then the key state is free.

0 If there is no such action act, then the key state is unknown.

A key is unassigned if its key state is either free or unknown.

Key consistency ensures that there is at most one active contract for each key and that all key as-

sertions are satisfied.

Definition �key consistency� A ledger is consistent for a key k if for every action act on k, the key

state s before act satisfies

0 If act is a Create action or NoSuchKey assertion, then s is free or unknown.

0 If act is an Exercise or Fetch action on some contract c, then s is assigned to c orunknown.

Key consistency rules out the problematic examples around key consistency. For example, suppose

that the painter P hasmade a paint offer to A with reference number P123, but A has not yet accepted

it. When P tries to create another paint offer to David with the same reference number P123, then this

creation action would violate key uniqueness. The following ledger violates key uniqueness for the

key (P, P123).

Key assertions can be used in workflows to evidence the inexistence of a certain kind of contract. For

example, suppose that the painter P is a member of the union of painters U. This union maintains

a blacklist of potential customers that its members must not do business with. A customer A is

considered to be on the blacklist if there is an active contract Blacklist @U&A. To make sure that the

painter P does not make a paint offer if A is blacklisted, the painter combines its commit with a No-

SuchKey assertion on the key (U, A). The following ledger shows the transaction, where UnionMember

U P represents P’s membership in the union U. It grants P the choice to perform such an assertion,

which is needed for authorization.

6.2. DAML Ledger Model 379

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Key consistency extends to actions, transactions and lists of transactions just like the other consis-

tency notions.

Ledger consistency

Definition �ledger consistency� A ledger is consistent if it is consistent for all contracts and for

all keys.

Internal consistency

The above consistency requirement is too strong for actions and transactions in isolation. For exam-

ple, the acceptance transaction from the paint offer example is not consistent as a ledger, because

PaintOffer A P Bank and the Iou Bank A contracts are used without being created before:

However, the transaction can still be appended to a ledger that creates these contracts and yields

a consistent ledger. Such transactions are said to be internally consistent, and contracts such as

the PaintOffer A P Bank P123 and Iou Bank A are called input contracts of the transaction. Dually, output

contracts of a transaction are the contracts that a transaction creates and does not archive.

Definition �internal consistency for a contract� A transaction is internally consistent for a con-

tract c if the following holds for all of its subactions act on the contract c

1. act does not happen before any Create c action

2. act does not happen after any exercise consuming c.

A transaction is internally consistent if it is internally consistent for all contracts and consis-

tent for all keys.

Definition �input contract� For an internally consistent transaction, a contract c is an input con-

tract of the transaction if the transaction contains an Exercise or a Fetch action on c but not

a Create c action.

Definition �output contract� For an internally consistent transaction, a contract c is an output

contract of the transaction if the transaction contains a Create c action, but not a consuming

Exercise action on c.

Note that the input and output contracts are undefined for transactions that are not internally con-

sistent. The image below shows some examples of internally consistent and inconsistent transac-

tions.

Similar to input contracts, we define the input keys as the set that must be unassigned at the be-

ginning of a transaction.

380 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Fig. 9: The first two transactions violate the conditions of internal consistency. The first transaction

creates the Iou after exercising it consumingly, violating both conditions. The second transaction

contains a (non-consuming) exercise on the Iou after a consuming one, violating the second condi-

tion. The last transaction is internally consistent.

Definition �input key� A key k is an input key to an internally consistent transaction if the first

action act on k is either a Create action or a NoSuchKey assertion.

In the blacklisting example, P’s transaction has two input keys: (U, A) due to theNoSuchKey action and

(P, P123) as it creates a PaintOffer contract.

6.2.2.3 Conformance

The conformance condition constrains the actions that may occur on the ledger. This is done by con-

sidering a contract model M (or amodel for short), which specifies the set of all possible actions. A

ledger is conformant to M (or conforms to M) if all top-level actions on the ledger are members of

M. Like consistency, the notion of conformance does not depend on the requesters of a commit, so it

can also be applied to transactions and lists of transactions.

For example, the set of allowed actions on IOU contracts could be described as follows.

6.2. DAML Ledger Model 381

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

The boxes in the image are templates in the sense that the contract parameters in a box (such as

obligor or owner) can be instantiated by arbitrary values of the appropriate type. To facilitate un-

derstanding, each box includes a label describing the intuitive purpose of the corresponding set of

actions. As the image suggest, the transfer box imposes the constraint that the bank must remain

the same both in the exercised IOU contract, and in the newly created IOU contract. However, the

owner can change arbitrarily. In contrast, in the settle actions, both the bank and the owner must

remain the same. Furthermore, to be conformant, the actor of a transfer actionmust be the same as

the owner of the contract.

Of course, the constraints on the relationship between the parameters can be arbitrarily complex,

and cannot conveniently be reproduced in this graphical representation. This is the role of DAML – it

provides a muchmore convenient way of representing contract models. The link between DAML and

contract models is explained in more detail in a later section.

To see the conformance criterion in action, assume that the contractmodel allows only the following

actions on PaintOffer and PaintAgree contracts.

The problem with example where Alice changes the offer’s outcome to avoid transferring the money

now becomes apparent.

382 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

A’s commit is not conformant to the contract model, as the model does not contain the top-level

action she is trying to commit.

6.2.2.4 Authorization

The last criterion rules out the last two problematic examples, an obligation imposed on a painter, and

the painter stealing Alice’s money. The first of those is visualized below.

The reason why the example is intuitively impermissible is that the PaintAgree contract is supposed

to express that the painter has an obligation to paint Alice’s house, but he never agreed to that obli-

gation. On paper contracts, obligations are expressed in the body of the contract, and imposed on

the contract’s signatories.

Signatories, Agreements, and Maintainers

To capture these elements of real-world contracts, the contract model additionally specifies, for

each contract in the system:

1. A non-empty set of signatories, the parties bound by the contract.

2. An optional agreement text associated with the contract, specifying the off-ledger, real-world

obligations of the signatories.

3. If the contract is associated with a key, a non-empty set ofmaintainers, the parties that make

sure that at most one unconsumed contract exists for the key. The maintainers must be a

subset of the signatories and depend only on the key. This dependence is captured by the

function maintainers that takes a key and returns the key’s maintainers.

In the example, the contract model specifies that

1. an Iou obligor owner contract has only the obligor as a signatory, and no agreement text.

6.2. DAML Ledger Model 383

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. aMustPay obligor owner contract has both the obligor and the owner as signatories, with an agree-

ment text requiring the obligor to pay the owner a certain amount, off the ledger.

3. a PaintOffer houseOwner painter obligor refNo contract has only the painter as the signatory, with

no agreement text. Its associated key consists of the painter and the reference number. The

painter is the maintainer.

4. a PaintAgree houseOwner painter refNo contract has both the house owner and the painter as sig-

natories, with an agreement text requiring the painter to paint the house. The key consists of

the painter and the reference number. The painter is the only maintainer.

In the graphical representation below, signatories of a contract are indicated with a dollar sign (as

a mnemonic for an obligation) and use a bold font. Maintainers are marked with@ (as a mnemonic

who enforces uniqueness). Since maintainers are always signatories, parties marked with @ are

implicitly signatories. For example, annotating the paint offer acceptance action with signatories

yields the image below.

Authorization Rules

Signatories allow one to precisely state that the painter has an obligation. The imposed obligation

is intuitively invalid because the painter did not agree to this obligation. In other words, the painter

did not authorize the creation of the obligation.

In a DAML ledger, a party can authorize a subaction of a commit in either of the following ways:

0 Every top-level action of the commit is authorized by all requesters of the commit.

0 Every consequence of an exercise action act on a contract c is authorized by all signatories of c

and all actors of act.

The second authorization rule encodes the offer-acceptance pattern, which is a prerequisite for con-

tract formation in contract law. The contract c is effectively an offer by its signatories who act as

offerers. The exercise is an acceptance of the offer by the actors who are the offerees. The conse-

quences of the exercise can be interpreted as the contract body so the authorization rules of DA

ledgers closely model the rules for contract formation in contract law.

A commit is well-authorized if every subaction act of the commit is authorized by at least all of the

required authorizers of act, where:

1. the required authorizers of a Create action on a contract c are the signatories of c.

2. the required authorizers of an Exercise or a Fetch action are its actors.

3. the required authorizers of a NoSuchKey assertion are the maintainers of the key.

We lift this notion to ledgers, whereby a ledger is well-authorized exactly when all of its commits are.

384 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Examples

An intuition for how the authorization definitions work is most easily developed by looking at some

examples. Themain example, the paint offer ledger, is intuitively legitimate. It should therefore also

be well-authorized according to our definitions, which it is indeed.

In the visualizations below,ΠX act denotes that the partiesΠ authorize the action act. The resulting

authorizations are shown below.

In the first commit, the bank authorizes the creation of the IOU by requesting that commit. As the

bank is the sole signatory on the IOU contract, this commit is well-authorized. Similarly, in the sec-

ond commit, the painter authorizes the creation of the paint offer contract, and painter is the only

signatory on that contract, making this commit also well-authorized.

The third commit is more complicated. First, Alice authorizes the exercise on the paint offer by re-

questing it. She is the only actor on this exercise, so this complies with the authorization require-

ment. Since the painter is the signatory of the paint offer, and Alice the actor of the exercise, they

jointly authorize all consequences of the exercise. The first consequence is an exercise on the IOU,

with Alice as the actor; so this is permissible. The second consequence is the creation of the paint

agreement, which has Alice and the painter as signatories. Since they both authorize this action,

this is also permissible. Finally, the creation of the new IOU (for P) is a consequence of the exercise

on the old one (for A). As the old IOUwas signed by the bank, and as Alice was the actor of the exercise,

the bank and Alice jointly authorize the creation of the new IOU. Since the bank is the sole signatory

of this IOU, this action is also permissible. Thus, the entire third commit is also well-authorized, and

then so is the ledger.

Similarly, the intuitively problematic examples are prohibitied by our authorization criterion. In the

first example, Alice forced the painter to paint her house. The authorizations for the example are

shown below.

Alice authorizes the Create action on the PaintAgree contract by requesting it. However, the painter

is also a signatory on the PaintAgree contract, but he did not authorize the Create action. Thus, this

6.2. DAML Ledger Model 385

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

ledger is indeed not well-authorized.

In the second example, the painter steals money from Alice.

The bank authorizes the creation of the IOU by requesting this action. Similarly, the painter autho-

rizes the exercise that transfers the IOU to him. However, the actor of this exercise is Alice, who has

not authorized the exercise. Thus, this ledger is not well-authorized.

The rationale for making the maintainers required authorizers for a NoSuchKey assertion is dis-

cussed in the next section about privacy.

6.2.2.5 Valid Ledgers, Obligations, Offers and Rights

DAML ledgers are designed to mimic real-world interactions between parties, which are governed

by contract law. The validity conditions on the ledgers, and the information contained in contract

models have several subtle links to the concepts of the contract law that are worth pointing out.

First, in addition to the explicit off-ledger obligations specified in the agreement text, contracts also

specify implicit on-ledger obligations, which result from consequences of the exercises on con-

tracts. For example, the PaintOffer contains an on-ledger obligation for A to transfer her IOU in case

she accepts the offer. Agreement texts are therefore only necessary to specify obligations that are

not already modeled as permissible actions on the ledger. For example, P’s obligation to paint the

house cannot be sensibly modeled on the ledger, and must thus be specified by the agreement text.

Second, every contract on a DAML ledger can simultaneously model both:

0 a real-world offer, whose consequences (both on- and off-ledger) are specified by the Exercise

actions on the contract allowed by the contract model, and

0 a real-world contract 0proper0, specified through the contract’s (optional) agreement text.

Third, in DAML ledgers, as in the real world, one person’s rights are another person’s obligations. For

example, A’s right to accept the PaintOffer is P’s obligation to paint her house in case she accepts. In

DAML ledgers, a party’s rights according to a contract model are the exercise actions the party can

perform according to the authorization and conformance rules.

Finally, validity conditions ensure three important properties of the DA ledgermodel, thatmimic the

contract law.

1. Obligations need consent. DAML ledgers follow the offer-acceptance pattern of the contract

law, and thus ensures that all ledger contracts are formed voluntarily. For example, the follow-

ing ledger is not valid.

386 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

2. Consent is needed to take awayon-ledger rights. As onlyExerciseactions consumecontracts,

the rights cannot be taken away from the actors; the contract model specifies exactly who the

actors are, and the authorization rules require them to approve the contract consumption.

In the examples, Alice had the right to transfer her IOUs; painter’s attempt to take that right

away from her, by performing a transfer himself, was not valid.

Parties can still delegate their rights to other parties. For example, assume that Alice, instead

of accepting painter’s offer, decides to make him a counteroffer instead. The painter can then

accept this counteroffer, with the consequences as before:

Here, by creating the CounterOffer contract, Alice delegates her right to transfer the IOU contract

to the painter. In case of delegation, prior to submission, the requester must get informed

about the contracts that are part of the requested transaction, but where the requester is not

a signatory. In the example above, the painter must learn about the existence of the IOU for

Alice before he can request the acceptance of the CounterOffer. The concepts of observers and

divulgence, introduced in the next section, enable such scenarios.

3. On-ledger obligations cannot be unilaterally escaped. Once an obligation is recorded on a

DAML ledger, it can only be removed in accordance with the contract model. For example, as-

suming the IOU contract model shown earlier, if the ledger records the creation of a MustPay

contract, the bank cannot later simply record an action that consumes this contract:

6.2. DAML Ledger Model 387

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

That is, this ledger is invalid, as the action above is not conformant to the contract model.

6.2.3 Privacy

The previous sections have addressed two out of three questions posed in the introduction: 0what

the ledger looks like0, and 0who may request which changes0. This section addresses the last one,

0who sees which changes and data0. That is, it explains the privacy model for DAML ledgers.

The privacy model of DAML Ledgers is based on a need-to-know basis, and provides privacy on the

level of subtransactions. Namely, a party learns only those parts of ledger changes that affect con-

tracts in which the party has a stake, and the consequences of those changes. And maintainers see

all changes to the contract keys they maintain.

To make this more precise, a stakeholder concept is needed.

6.2.3.1 Contract Observers and Stakeholders

Intuitively, as signatories are bound by a contract, they have a stake in it. Actorsmight not be bound

by the contract, but they still haveastake in their actions, as theseare theactor’s rights. Generalizing

this, observers are parties whomight not be bound by the contract, but still have the right to see the

contract. For example, Alice should be an observer of the PaintOffer, such that she ismade aware that

the offer exists.

Signatories are already determined by the contract model discussed so far. The full contract model

additionally specifies the observers on each contract. A stakeholder of a contract (according to a

given contractmodel) is then either a signatory or an observer on the contract. Note that in DAML, as

detailed later, controllers specified using simple syntax are automatically made observers whenever

possible.

In the graphical representation of the paint offer acceptance below, observers who are not signato-

ries are indicated by an underline.

388 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

6.2.3.2 Projections

Stakeholders should see changes to contracts they hold a stake in, but that does notmean that they

have to see the entirety of any transaction that their contract is involved in. This is made precise

through projections of a transaction, which define the view that each party gets on a transaction. In-

tuitively, given a transaction within a commit, a party will see only the subtransaction consisting of

all actions on contracts where the party is a stakeholder. Thus, privacy is obtained on the subtrans-

action level.

An example is given below. The transaction that consists only of Alice’s acceptance of the PaintOffer

is projected for each of the three parties in the example: the painter, Alice, and the bank.

Since both the painter and Alice are stakeholders of the PaintOffer contract, the exercise on this con-

tract is kept in the projection of both parties. Recall that consequences of an exercise action are a

part of the action. Thus, both parties also see the exercise on the Iou Bank A contract, and the cre-

ations of the Iou Bank P and PaintAgree contracts.

The bank is not a stakeholder on the PaintOffer contract (even though it ismentioned in the contract).

6.2. DAML Ledger Model 389

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Thus, the projection for the bank is obtained by projecting the consequences of the exercise on the

PaintOffer. The bank is a stakeholder in the contract Iou Bank A, so the exercise on this contract is

kept in the bank’s projection. Lastly, as the bank is not a stakeholder of the PaintAgree contract, the

corresponding Create action is dropped from the bank’s projection.

Note the privacy implications of the bank’s projection. While the bank learns that a transfer has

occurred from A to P, the bank does not learn anything about why the transfer occurred. In practice,

thismeans that the bank does not learnwhat A is paying for, providing privacy to A and Pwith respect

to the bank.

As a design choice, DAML Ledgers show to observers on a contract only the state changing actions

on the contract. More precisely, Fetch and non-consuming Exercise actions are not shown to the

observers - except when they are the actors of these actions. Thismotivates the following definition:

a party p is an informee of an action A if one of the following holds:

0 A is a Create on a contract c and p is a stakeholder of c.

0 A is a consuming Exercise on a contract c, and p is a stakeholder of c or an actor on A. Note that

a DAML 0flexible controller0 can be an exercise actor without being a contract stakeholder.

0 A is a non-consuming Exercise on a contract c, and p is a signatory of c or an actor on A.

0 A is a Fetch on a contract c, and p is a signatory of c or an actor on A.

0 A is a NoSuchKey k assertion and p is a maintainer of k.

Then, we can formally define the projection of a transaction tx = act1, 0, actn for a party p is the sub-

transaction obtained by doing the following for each action acti:

1. If p is an informee of acti, keep acti as-is.

2. Else, if acti has consequences, replace acti by the projection (for p) of its consequences, which

might be empty.

3. Else, drop acti.

Finally, the projection of a ledger l for a party p is a list of transactions obtained by first projecting

the transaction of each commit in l for p, and then removing all empty transactions from the result.

Note that the projection of a ledger is not a ledger, but a list of transactions. Projecting the ledger of

our complete paint offer example yields the following projections for each party:

390 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Examine each party’s projection in turn:

1. The painter does not see any part of the first commit, as he is not a stakeholder of the Iou Bank A

contract. Thus, this transaction is not present in the projection for the painter at all. However,

the painter is a stakeholder in the PaintOffer, so he sees both the creation and the exercise of

this contract (again, recall that all consequences of an exercise action are a part of the action

6.2. DAML Ledger Model 391

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

itself).

2. Alice is a stakeholder in both the Iou Bank A and PaintOffer A B Bank contracts. As all top-level

actions in the ledger are performed on one of these two contracts, Alice’s projection includes

all the transactions from the ledger intact.

3. The Bank is only a stakeholder of the IOU contracts. Thus, the bank sees the first commit’s

transaction as-is. The second commit’s transaction is, however dropped from the bank’s pro-

jection. The projection of the last commit’s transaction is as described above.

Ledger projections do not always satisfy the definition of consistency, even if the ledger does. For

example, in P’s view, Iou Bank A is exercised without ever being created, and thus without beingmade

active. Furthermore, projections can in general be non-conformant. However, the projection for a

party p is always

0 internally consistent for all contracts,

0 consistent for all contracts on which p is a stakeholder, and

0 consistent for the keys that p is a maintainer of.

In other words, p is never a stakeholder on any input contracts of its projection. Furthermore, if the

contract model is subaction-closed, which means that for every action act in the model, all subac-

tions of act are also in the model, then the projection is guaranteed to be conformant. As we will see

shortly, DAML-based contract models are conformant. Lastly, as projections carry no information

about the requesters, we cannot talk about authorization on the level of projections.

6.2.3.3 Privacy through authorization

Setting the maintainers as required authorizers for a NoSuchKey assertion ensures that parties

cannot learn about the existence of a contract without having a right to know about their existence.

So we use authorization to impose access controls that ensure confidentiality about the existence

of contracts. For example, suppose now that for a PaintAgreement contract, both signatories are key

maintainers, not only the painter. That is, we consider PaintAgreement @A@P&P123 instead of PaintA-

greement $A @P &P123. Then, when the painter’s competitor Q passes by A’s house and sees that

the house desperately needs painting, Q would like to know whether there is any point in spending

marketing efforts and making a paint offer to A. Without key authorization, Q could test whether a

ledger implementation accepts the action NoSuchKey (A, P, refNo) for different guesses of the refer-

ence number refNo. In particular, if the ledger does not accept the transaction for some refNo, then Q

knows that P has some business with A and his chances of A accepting his offer are lower. Key autho-

rization prevents this flow of information because the ledger always rejects Q’s action for violating

the authorization rules.

For these access controls, it suffices if one maintainer authorizes a NoSuchKey assertion. However,

we demand that all maintainers must authorize it. This is to prevent spam in the projection of the

maintainers. If only one maintainer sufficed to authorize a key assertion, then a valid ledger could

contain NoSuchKey k assertions where the maintainers of k include, apart from the requester, arbi-

trary other parties. Unlike Create actions to observers, such assertions are of no value to the other

parties. Since processing such assertions may be expensive, they can be considered spam. Requir-

ing all maintainers to authorize a NoSuchKey assertion avoids the problem.

6.2.3.4 Divulgence: When Non-Stakeholders See Contracts

The guiding principle for the privacy model of DAML ledgers is that contracts should only be shown

to their stakeholders. However, ledger projections can cause contracts to become visible to other

parties as well.

In the example of ledger projections of the paint offer, the exercise on the PaintOffer is visible to both the

painter and Alice. As a consequence, the exercise on the Iou Bank A is visible to the painter, and the

392 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

creation of Iou Bank P is visible to Alice. As actions also contain the contracts they act on, Iou Bank A

was thus shown to the painter and Iou Bank P was shown to Alice.

Showing contracts to non-stakeholders through ledger projections is called divulgence. Divulgence

is a deliberate choice in the design of DAML ledgers. In the paint offer example, the only proper way

to accept the offer is to transfer the money from Alice to the painter. Conceptually, at the instant

where the offer is accepted, its stakeholders also gain a temporary stake in the actions on the two

Iou contracts, even though they are never recorded as stakeholders in the contractmodel. Thus, they

are allowed to see these actions through the projections.

More precisely, every action act on c is shown to all informees of all ancestor actions of act. These

informees are called thewitnesses of act. If one of the witnessesW is not a stakeholder on c, then act

and c are said to be divulged toW. Note that only Exercise actions can be ancestors of other actions.

Divulgence can be used to enable delegation. For example, consider the scenario where Alice makes

a counteroffer to the painter. Painter’s acceptance entails transferring the IOU to him. To be able to

construct the acceptance transaction, the painter first needs to learn about the details of the IOU

that will be transferred to him. To give him these details, Alice can fetch the IOU in a context visible

to the painter:

6.2. DAML Ledger Model 393

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the example, the context is provided by consuming a ShowIou contract on which the painter is a

stakeholder. This now requires an additional contract type, compared to the original paint offer ex-

ample. An alternative approach to enable this workflow, without increasing the number of contracts

required, is to replace the original Iou contract by one on which the painter is an observer. This would

require extending the contract model with a (consuming) exercise action on the Iou that creates a

new Iou, with observers of Alice’s choice. In addition to the different number of commits, the two

approaches differ in one more aspect. Unlike stakeholders, parties who see contracts only through

divulgence have no guarantees about the state of the contracts in question. For example, consider

what happens if we extend our (original) paint offer example such that the painter immediately set-

tles the IOU.

394 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

While Alice sees the creation of the Iou Bank P contract, she does not see the settlement action. Thus,

she does know whether the contract is still active at any point after its creation. Similarly, in the

previous example with the counteroffer, Alice could spend the IOU that she showed to the painter

by the time the painter attempts to accept her counteroffer. In this case, the painter’s transaction

could not be added to the ledger, as it would result in a double spend and violate validity. But the

painter has no way to predict whether his acceptance can be added to the ledger or not.

6.2. DAML Ledger Model 395

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

6.2.4 DAML: Defining Contract Models Compactly

As described in preceeding sections, both the integrity and privacy notions depend on a contract

model, and such a model must specify:

1. a set of allowed actions on the contracts, and

2. the signatories, observers, and

3. an optional agreement text associated with each contract, and

4. the optional key associated with each contract and its maintainers.

The sets of allowed actions can in general be infinite. For instance, the actions in the IOU contract

model considered earlier can be instantiated for an arbitrary obligor and an arbitrary owner. As enu-

merating all possible actions from an infinite set is infeasible, a more compact way of representing

models is needed.

DAML provides exactly that: a compact representation of a contract model. Intuitively, the allowed

actions are:

1. Create actions on all instances of templates such that the template arguments satisfy the

ensure clause of the template

2. Exercise actions on a contract instance corresponding to choices on that template, with given

choice arguments, such that:

1. The actors match the controllers of the choice. That is, the controllers define the required

authorizers of the choice.

2. The exercise kind matches.

3. All assertions in the update block hold for the given choice arguments.

4. Create, exercise, fetch and key statements in the update block are represented as create,

exercise and fetch actions and key assertions in the consequences of the exercise action.

3. Fetch actions on a contract instance corresponding to a fetch of that instance inside of an

update block. The actors must be a non-empty subset of the contract stakeholders. The actors

are determined dynamically as follows: if the fetch appears in an update block of a choice ch on

a contract c1, and the fetched contract ID resolves to a contract c2, then the actors are defined as

the intersection of (1) the signatories of c1 union the controllers of ch with (2) the stakeholders

of c2.

A fetchByKey statement also produces a Fetch action with the actors determined in the same

way. A lookupByKey statement that finds a contract also translates into a Fetch action, but all

maintainers of the key are the actors.

4. NoSuchKey assertions corresponding to a lookupByKey update statement for the given key that

does not find a contract.

An instance of a template, that is, a DAML contract or contract instance, is a triple of:

1. a contract identifier

2. the template identifier

3. the template arguments

The signatories of a DAML contract are derived from the template arguments and the explicit signa-

tory annotations on the contract template. The observers are also derived from the template argu-

ments and include:

1. the observers as explicitly annotated on the template

2. all controllers c of every choice defined using the syntax controller c can... (as opposed

to the syntax choice ... controller c)

For example, the following template exactly describes the contract model of a simple IOU with a unit

amount, shown earlier.

396 Chapter 6. Background concepts

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

template MustPay with

obligor : Party

owner : Party

where

signatory obligor, owner

agreement

show obligor <> " must pay " <>

show owner <> " one unit of value"

template Iou with

obligor : Party

owner : Party

where

signatory obligor

controller owner can

Transfer

: ContractId Iou

with newOwner : Party

do create Iou with obligor; owner = newOwner

controller owner can

Settle

: ContractId MustPay

do create MustPay with obligor; owner

In this example, the owner is automatically made an observer on the contract, as the Transfer and

Settle choices use the controller owner can syntax.

The template identifiers of contracts are created through a content-addressing scheme. Thismeans

every contract is self-describing in a sense: it constrains its stakeholder annotations and all DAML-

conformant actions on itself. As a consequence, one can talk about 0the0 DAML contract model,

as a single contract model encoding all possible instances of all possible templates. This model

is subaction-closed; all exercise and create actions done within an update block are also always

permissible as top-level actions.

6.2. DAML Ledger Model 397

Chapter 7

Examples

7.1 DAML examples

Wehave plenty of example code, both of DAML and of applications aroundDAML, on our public GitHub

organization.

0 12+ examples of different use cases: A repository containing a wide variety of DAML examples

0 Bond trading example: DAML code and automation using the Java bindings

0 Collateral management example: DAML code

0 Repurchase agreement example: DAML code and automation using the Java bindings

0 Java bindings tutorial: Three examples using the Java bindings with a very simple DAMLmodel

0 Node.js tutorial: Step-by-step running through using the Node.js bindings

398

https://github.com/digital-asset
https://github.com/digital-asset
https://github.com/digital-asset/ex-models
https://github.com/digital-asset/ex-bond-trading
https://github.com/digital-asset/ex-collateral
https://github.com/digital-asset/ex-repo-market
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-tutorial-nodejs

Chapter 8

Early Access Features

8.1 Navigator Console

The Navigator Console is currently an Early Access Feature in Labs status.

8.1.1 Querying the Navigator local database

You can query contracts, transactions, events, or commands in any way you’d like, by querying the

Navigator Console’s local database(s) directly. This page explains how you can run queries.

Note: Because of the strong DAML privacymodel, each party will see a different subset of the ledger

data. For this reason, each party has its own local database.

The Navigator database is implemented on top of SQLite. SQLite understands most of the standard

SQL language. For information on how to compose SELECT statements, see to the SQLite SELECT

syntax specification.

To run queries, use the sql Navigator Console command. Take a look at the examples below to see

how you might use this command.

On this page:

0 How the data is structured

0 Example query using plain SQL

0 Example queries using JSON functions

8.1.1.1 How the data is structured

To get full details of the schema, run sql_schema.

Semi-structured data (such as contract arguments or template parameters) are stored in columns

of type JSON.

You can compose queries against the content of JSON columns by using the SQLite functions

json_extract and json_tree.

399

https://sqlite.org/index.html
https://www.sqlite.org/lang_select.html
https://www.sqlite.org/lang_select.html
https://www.sqlite.org/json1.html
https://www.sqlite.org/json1.html#jex
https://www.sqlite.org/json1.html#jtree

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

8.1.1.2 Example query using plain SQL

Filter on the template id of contracts:

sql select count (*) from contract where template_id like '%Offer%'

8.1.1.3 Example queries using JSON functions

Select JSON fields from a JSON column by specifying the path:

sql select json_extract(value, '$.argument.landlord') from contract

Filter on the value of a JSON field:

sql select contract.id, json_tree.fullkey from contract, json_

↪→tree(contract.value) where atom is not null and json_tree.value like '

↪→%BANK1%'

Filter on the JSON key and value:

sql select contract.id from contract, json_tree(contract.value) where atom�

↪→is not null and json_tree.key = 'landlord' and json_tree.value like '

↪→%BANK1%'

Filter on the value of a JSON field for a given path:

sql select contract.id from contract where json_extract(contract.value, '$.

↪→argument.landlord') like '%BANK1%'

Identical query using json_tree:

sql select contract.id from contract, json_tree(contract.value) where atom�

↪→is not null and json_tree.fullkey = '$.argument.landlord' and json_tree.

↪→value like '%BANK1%'

Filter on the content of an array if the index is specified:

sql select contract.id from contract where json_extract(contract.value, '$.

↪→template.choices[0].name') = 'Accept'

Filter on the content of an array if the index is not specified:

sql select contract.id from contract, json_tree(contract.value) where atom�

↪→is not null and json_tree.path like '$.template.choices[%]' and json_

↪→tree.value ='Accept'

The Navigator Console is a terminal-based front-end for inspecting and modifying a DAML Ledger.

It’s useful for DAML developers, app developers, or business analysts who want to debug or analyse

a ledger by exploring it manually.

You can use the Console to:

0 inspect available templates

0 query active contracts

0 exercise commands

400 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 list blocks and transactions

If you prefer to use a graphical user interface for these tasks, use the Navigator instead.

On this page:

0 Try out the Navigator Console on the Quickstart

– Installing and starting Navigator Console

– Getting help

– Exiting Navigator Console

– Using commands

0 Displaying status information

0 Choosing a party

0 Advancing time

0 Inspecting templates

0 Inspecting contracts, transactions, and events

0 Querying data

0 Creating contracts

0 Exercising choices

– Advanced usage

0 Using Navigator outside the SDK

0 Using Navigator with DAML Ledgers

8.1.2 Try out the Navigator Console on the Quickstart

With the sandbox running the quickstart application

1. To start the shell, run daml navigator console localhost 6865

This connects Navigator Console to the sandbox, which is still running.

You should see a prompt like this:

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version 1.1.0

Welcome to the console. Type 'help' to see a list of commands.

2. Since you are connected to the sandbox, you canbe any party you like. Switch to Bobby running:

party Bob

The prompt should change to Bob>.

3. Issue a BobsCoin to yourself. Start by writing the following, then hit Tab to auto-complete and

get the full name of the Iou.Iou template:

create Iou.Iou <TAB>

This full name includes a hash of the DAML package, so don’t copy it from the command below

- it’s better to get it from the auto-complete feature.

You can then create the contract by running:

create Iou.Iou@317057d06d4bc4bb91bf3cfe3292bf3c2467c5e004290e0ba20b993eb1e40931

with {issuer="Bob", owner="Bob", currency="BobsCoin", amount="1.0",

observers=[]}

You should see the following output:

8.1. Navigator Console 401

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

CommandId: 1b8af77a91ad1102

Status: Success

TransactionId: 10

4. You can see details of that contract using the TransactionId. First, run:

transaction 10

to get details of the transaction that created the contract:

Offset: 11

Effective at: 1970-01-01T00:00:00Z

Command ID: 1b8af77a91ad1102

Events:

- [#10:0] Created #10:0 as Iou

Then, run:

contract #10:0

to see the contract for the new BobsCoin:

Id: #10:0

TemplateId: Iou.

↪→Iou@317057d06d4bc4bb91bf3cfe3292bf3c2467c5e004290e0ba20b993eb1e40931

Argument:

observers:

issuer: Bob

amount: 1.0

currency: BobsCoin

owner: Bob

Created:

EventId: #10:0

TransactionId: 10

WorkflowId: 1ba8521c395096e3

Archived: Contract is active

5. You can transfer the coin to Alice by running:

exercise #10:0 Iou_Transfer with {newOwner="Alice"}

There are lots of other things you can do with the Navigator Console.

0 One of its most powerful features is that you can query its local databases using SQL, with the

sql command.

For example, you could see all of the Iou contracts by runningsql select * from contract

where template_id like 'Iou.Iou@%'. For more examples, take a look at the Navigator

Console database documentation.

0 For a full list of commands, run help. You can also look at the Navigator Console documentation

page.

0 For help on a particular command, run help <name of command>.

0 When you are done exploring the shell, run quit to exit.

8.1.2.1 Installing and starting Navigator Console

Navigator Console is installed as part of the DAML SDK. See Installing the SDK for instructions on how

to install the DAML SDK.

If you want to use Navigator Console independent of the SDK, see the Advanced usage section.

402 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

To run Navigator Console:

1. Open a terminal window and navigate to your DAML SDK project folder.

2. If the Sandbox isn’t already running, run it with the command daml start.

The sandbox prints out the port on which it is running - by default, port 6865.

3. Rundaml navigator console localhost 6865. Replace6865 by the port reported by the

sandbox, if necessary.

When Navigator Console starts, it displays a welcome message:

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version X.Y.Z

Welcome to the console. Type 'help' to see a list of commands.

8.1.2.2 Getting help

To see all available Navigator Console commands and how to use them, use the help command:

>help

Available commands:

choice Print choice details

command Print command details

commands List submitted commands

contract Print contract details

create Create a contract

diff_contracts Print diff of two contracts

event Print event details

exercise Exercises a choice

help Print help

graphql Execute a GraphQL query

graphql_examples Print some example GraphQL queries

graphql_schema Print the GraphQL schema

info Print debug information

package Print DAML-LF package details

packages List all DAML-LF packages

parties List all parties available in Navigator

party Set the current party

quit Quit the application

set_time Set the (static) ledger effective time

templates List all templates

template Print template details

time Print the ledger effective time

transaction Print transaction details

version Print application version

sql_schema Return the database schema

sql Execute a SQL query

To see the help for the given command, run help <command>:

8.1. Navigator Console 403

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

>help create

Usage: create <template> with <argument>

Create a contract

Parameters:

<template> Template ID

<argument> Contract argument

8.1.2.3 Exiting Navigator Console

To exit Navigator Console, use the quit command:

>quit

Bye.

8.1.2.4 Using commands

This section describes how to use some common commands.

Note: Navigator Console has several features to help with typing commands:

0 Press the Tab key one or more times to use auto-complete and see a list of suggested text to

complete the command.

0 Press the Up or Down key to scroll through the history of recently used commands.

0 Press Ctrl+R to search in the history of recently used commands.

8.1.3 Displaying status information

To see useful information about the status of both Navigator Console and the ledger, use the info

command:

>info

_ __ _ __

/ |/ /__ __ __(_)__ ____ _/ /____ ____

/ / _ `/ |/ / / _ `/ _ `/ __/ _ \/ __/

/_/|_/_,_/|___/_/_, /_,_/__/___/_/

/___/

Version 1.0.14 commit a3e1d1c30d84261fa9b6db95c69036da14bc9e7e

General info:

Ledger host: localhost

Ledger port: 6865

Secure connection: false

Application ID: Navigator-c06fae89-d8ed-4656-b085-388e24569ecf

↪→#5b21103194967935

Ledger info:

Connection status: Connected

Ledger ID: sandbox-051e2468-c679-43df-b99f-9c72dcd8ffa0

Ledger time: 1970-01-01T00:16:40Z

Ledger time type: static

(continues on next page)

404 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Akka system:

OPERATOR: Actor running

BANK2: Actor running

BANK1: Actor running

Local data:

BANK1:

Packages: 1

Contracts: 0

Active contracts: 0

Last transaction: ???

BANK2:

Packages: 1

Contracts: 0

Active contracts: 0

Last transaction: ???

OPERATOR:

Packages: 1

Contracts: 1001

Active contracts: 1001

Last transaction: scenario-transaction-2002

8.1.4 Choosing a party

Privacy is an important aspect of a DAML Ledger: parties can only access the contracts on the ledger

that they are authorized to. This means that, before you can interact with the ledger, you must as-

sume the role of a particular party.

The currently active party is displayed left of the prompt sign (>). To assume the role of a different

party, use the party command:

BANK1>party BANK2

BANK2>

Note: The list of available parties is configured when the Sandbox starts. (See the DAML Assistant

(daml) or Advanced usage for more instructions.)

8.1.5 Advancing time

You can advance the time of the DAML Sandbox. This can be useful when testing, for example, when

entering a trade on one date and settling it on a later date.

(For obvious reasons, this feature does not exist on all DAML Ledgers.)

To display the current ledger time, use the time command:

>time

1970-01-01T00:16:40Z

To advance the time to the time you specify, use the set_time command:

8.1. Navigator Console 405

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

>set_time 1970-01-02T00:16:40Z

New ledger effective time: 1970-01-02T00:16:40Z

8.1.6 Inspecting templates

To see what templates are available on the ledger you are connected to, use the templates com-

mand:

>templates

╔════════════════════════╤════════╤═══════╗

║Name │Package │Choices║

╠════════════════════════╪════════╪═══════╣

║Main.RightOfUseAgreement│07ca8611│0 ║

║Main.RightOfUseOffer │07ca8611│1 ║

╚════════════════════════╧════════╧═══════╝

To get detailed information about a particular template, use the template command:

>template Offer<Tab>

>template Main.

↪→RightOfUseOffer@07ca8611d05ec14ea4b973192ef6caa5d53323bba50720a8d7142c2a246cfb73

Name: Main.RightOfUseOffer

Parameter:

landlord: Party

tenant: Party

address: Text

expirationDate: Time

Choices:

- Accept

Note: Remember to use the Tab key. In the above example, typing 0Offer0 followed by the Tab key

auto-completes the fully qualified name of the 0RightOfUseOffer0 template.

To get detailed information about a choice defined by a template, use the choice command:

>choice Main.RightOfUseOffer Accept

Name: Accept

Consuming: true

Parameter: Unit

8.1.7 Inspecting contracts, transactions, and events

The ledger is a record of transactions between authorized participants on the distributed network.

Transactions consist of events that create or archive contracts, or exercise choices on them.

To get detailed information about a ledger object, use the singular form of the command

(transaction, event, contract):

>transaction 2003

Offset: 1004

(continues on next page)

406 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Effective at: 1970-01-01T00:16:40Z

Command ID: 732f6ac4a63c9802

Events:

- [#2003:0] Created #2003:0 as RightOfUseOffer

>event #2003:0

Id: #2003:0

ParentId: ???

TransactionId: 2003

WorkflowId: e13067beec13cf4c

Witnesses:

- Scrooge_McDuck

Type: Created

Contract: #2003:0

Template: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

expirationDate: 2020-01-01T00:00:00Z

>contract #2003:0

Id: #2003:0

TemplateId: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

expirationDate: 2020-01-01T00:00:00Z

Created:

EventId: #2003:0

TransactionId: 2003

WorkflowId: e13067beec13cf4c

Archived: Contract is active

Exercise events:

8.1.8 Querying data

To query contracts, transactions, events, or commands in any way you’d like, you can query the Nav-

igator Console’s local database(s) directly.

Because of the strong DAML privacy model, each party will see a different subset of the ledger data.

For this reason, each party has its own local database.

To execute a SQL query against the local database for the currently active party, use the sql com-

mand:

>sql select id, template_id, archive_transaction_id from contract

╔═══════╤════════════════════╤══════════════════════╗

║id │template_id │archive_transaction_id║

(continues on next page)

8.1. Navigator Console 407

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

╠═══════╪════════════════════╪══════════════════════╣

║#2003:0│Main.RightOfUseOffer│null ║

║#2004:0│Main.RightOfUseOffer│null ║

╚═══════╧════════════════════╧══════════════════════╝

See the Navigator Local Database documentation for details on the database schema and how to write

SQL queries.

Note: The local database contains a copy of the ledger data, created using the Ledger API. If you

modify the local database, you might break Navigator Console, but it will not affect the data on the

ledger in any way.

8.1.9 Creating contracts

Contracts in a ledger can be created directly from a template, or when you exercise a choice. You can

do both of these things using Navigator Console.

To create a contract of a given template, use the create command. The contract argument is written

in JSON format (DAML primitives are strings, DAML records are objects, DAML lists are arrays):

>create Main.

↪→RightOfUseOffer@07ca8611d05ec14ea4b973192ef6caa5d53323bba50720a8d7142c2a246cfb73�

↪→with {"landlord": "BANK1", "tenant": "BANK2", "address": "Example Street

↪→", "expirationDate": "2018-01-01T00:00:00Z"}

CommandId: 1e4c1610eadba6b

Status: Success

TransactionId: 2005

Note: Again, you can use the Tab key to auto-complete the template name.

The Console waits briefly for the completion of the create command and prints basic information

about its status. To get detailed information about your create command, use the command com-

mand:

>command 1e4c1610eadba6b

Command:

Id: 1e4c1610eadba6b

WorkflowId: a31ea1ca20cd5971

PlatformTime: 1970-01-02T00:16:40Z

Command: Create contract

Template: Main.RightOfUseOffer

Argument:

landlord: Scrooge_McDuck

tenant: Bentina_Beakley

address: McDuck Manor, Duckburg

expirationDate: 2020-01-01T00:00:00Z

Status:

(continues on next page)

408 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Status: Success

TransactionId: 2005

8.1.10 Exercising choices

To exercise a choice on a contract with the given ID, use the exercise command:

>exercise #2005:0 Accept

CommandID: 8dbbcbc917c7beee

Status: Success

TransactionId: 2006

>exercise #2005:0 Accept with {tenant="BANK2"}

CommandID: 8dbbcbc917c7beee

Status: Success

TransactionId: 2006

8.1.10.1 Advanced usage

8.1.11 Using Navigator outside the SDK

This section explains how to work with the Navigator if you have a project created outside of the

normal SDK workflow and want to use the Navigator to inspect the ledger and interact with it.

Note: If you are using the Navigator as part of the DAML SDK, you do not need to read this section.

The Navigator is released as a 0fat0 Java .jar file that bundles all required dependencies. This JAR is

part of the SDK release and can be found using the SDK Assistant’s path command:

da path navigator

To launch the Navigator JAR and print usage instructions:

da run navigator

Provide arguments at the end of a command, following a double dash. For example:

da run navigator -- console \

--config-file my-config.conf \

--port 8000 \

localhost 6865

The Navigator needs a configuration file specifying each user and the party they act as. It has a

.conf ending by convention. The file has this format:

users {

<USERNAME> {

party = <PARTYNAME>

}

(continues on next page)

8.1. Navigator Console 409

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

..

}

In many cases, a simple one-to-one correspondence between users and their respective parties is

sufficient to configure the Navigator. Example:

users {

BANK1 { party = "BANK1" }

BANK2 { party = "BANK2" }

OPERATOR { party = "OPERATOR" }

}

8.1.12 Using Navigator with DAML Ledgers

By default, Navigator is configured to use an unencrypted connection to the ledger.

To run Navigator against a secured DAML Ledger, configure TLS certificates using the --pem, --crt,

and --cacrt command line parameters.

Details of these parameters are explained in the command line help:

daml navigator --help

8.2 Extractor

The Extractor is currently an Early Access Feature in Labs status.

8.2.1 Introduction

You can use the Extractor to extract contract data for a single party from a Ledger node into a Post-

greSQL database.

It is useful for:

0 Application developers to access data on the ledger, observe the evolution of data, and debug

their applications

0 Business analysts to analyze ledger data and create reports

0 Support teams to debug any problems that happen in production

Using the Extractor, you can:

0 Take a full snapshot of the ledger (from the start of the ledger to the current latest transaction)

0 Take a partial snapshot of the ledger (between specific offsets)

0 Extract historical data and then stream indefinitely (either from the start of the ledger or from

a specific offset)

8.2.2 Setting up

Prerequisites:

0 A PostgreSQL database that is reachable from the machine the Extractor runs on. Use Post-

greSQL version 9.4 or later to have JSONB type support that is used in the Extractor.

0 We recommend using an empty database to avoid schema and table collisions. To see which

tables to expect, see Output format.

410 Chapter 8. Early Access Features

../../app-dev/grpc/proto-docs.html#ledgeroffset

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 A running Sandbox or Ledger Node as the source of data.

0 You’ve installed the SDK.

Once you have the prerequisites, you can start the Extractor like this:

$ daml extractor --help

8.2.3 Trying it out

This example extracts:

0 all contract data from the beginning of the ledger to the current latest transaction

0 for the party Scrooge_McDuck

0 from a Ledger node or Sandbox running on host 192.168.1.12 on port 6865

0 to PostgreSQL instance running on localhost

0 identified by the user postgres without a password set

0 into a database called daml_export

$ daml extractor postgresql --user postgres --connecturl�

↪→jdbc:postgresql:daml_export --party Scrooge_McDuck -h 192.168.1.12 -

↪→p 6865 --to head

This terminates after reaching the transaction which was the latest at the time the Extractor started

streaming.

To run the Extractor indefinitely, and thus keeping the database up to date as new transactions

arrive on the ledger, omit the--to headparameter to fall back to the default streaming-indefinitely

approach, or state explicitly by using the --to follow parameter.

8.2.4 Running the Extractor

The basic command to run the Extractor is:

$ daml extractor [options]

For what options to use, see the next sections.

8.2.5 Connecting the Extractor to a ledger

To connect to the Sandbox, provide separate address and port parameters. For example, --host

10.1.1.10 --port 6865, or in short form -h 10.1.1.168 -p 6865.

The default host is localhost and the default port is 6865, so you don’t need to pass those.

To connect to a Ledger node, you might have to provide SSL certificates. The options for doing this

are shown in the output of the --help command.

8.2.6 Connecting to your database

As usual for a Java application, the database connection is handled by the well-known JDBC API, so

you need to provide:

0 a JDBC connection URL

0 a username

0 an optional password

8.2. Extractor 411

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

For more on the connection URL, visit https://jdbc.postgresql.org/documentation/80/connect.html.

This example connects to a PostgreSQL instance running on localhost on the default port, with a

user postgres which does not have a password set, and a database called daml_export. This is a

typical setup on a developer machine with a default PostgreSQL install

$ daml extractor postgres --connecturl jdbc:postgresql:daml_export --user�

↪→postgres --party [party]

This example connects to a database on host 192.168.1.12, listening on port 5432. The database

is called daml_export, and the user and password used for authentication are daml_exporter

and ExamplePassword

$ daml extractor postgres --connecturl jdbc:postgresql://192.168.1.12:5432/

↪→daml_export --user daml_exporter --password ExamplePassword --party�

↪→[party]

8.2.7 Authorize Extractor

If you are running Extractor against a Ledger API server that verifies authorization, youmust provide

the access token when you start it.

The access token retrieval depends on the specific DAML setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Extractor by storing it in a file and

provide the path to it using the --access-token-file command line option.

Both in the case in which the token cannot be read from the provided path or if the Ledger API reports

an authorization error (for example due to token expiration), Extractor will keep trying to read and

use it and report the error via logging. This retry mechanism allows expired token to be overwritten

with valid ones and keep Extractor going from where it left off.

8.2.8 Full list of options

To see the full list of options, run the --help command, which gives the following output:

Usage: extractor [prettyprint|postgresql] [options]

Command: prettyprint [options]

Pretty print contract template and transaction data to stdout.

--width <value> How wide to allow a pretty-printed value to�

↪→become before wrapping.

Optional, default is 120.

--height <value> How tall to allow each pretty-printed output to�

↪→become before

it is truncated with a `...`.

Optional, default is 1000.

Command: postgresql [options]

Extract data into a PostgreSQL database.

--connecturl <value> Connection url for the `org.postgresql.Driver`�

↪→driver. For examples,

(continues on next page)

412 Chapter 8. Early Access Features

https://jdbc.postgresql.org/documentation/80/connect.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

visit https://jdbc.postgresql.org/documentation/

↪→80/connect.html

--user <value> The database user on whose behalf the�

↪→connection is being made.

--password <value> The user's password. Optional.

Common options:

-h, --ledger-host <h> The address of the Ledger host. Default is 127.

↪→0.0.1

-p, --ledger-port <p> The port of the Ledger host. Default is 6865.

--ledger-api-inbound-message-size-max <bytes>

Maximum message size from the ledger API.�

↪→Default is 52428800 (50MiB).

--party <value> The party or parties whose contract data should�

↪→be extracted.

Specify multiple parties separated by a comma, e.

↪→g. Foo,Bar

-t, --templates <module1>:<entity1>,<module2>:<entity2>...

The list of templates to subscribe for.�

↪→Optional, defaults to all ledger templates.

--from <value> The transaction offset (exclusive) for the�

↪→snapshot start position.

Must not be greater than the current latest�

↪→transaction offset.

Optional, defaults to the beginning of the�

↪→ledger.

Currently, only the integer-based Sandbox�

↪→offsets are supported.

--to <value> The transaction offset (inclusive) for the�

↪→snapshot end position.

Use “head” to use the latest transaction offset�

↪→at the time

the extraction first started, or “follow” to�

↪→stream indefinitely.

Must not be greater than the current latest�

↪→offset.

Optional, defaults to “follow”.

--help Prints this usage text.

TLS configuration:

--pem <value> TLS: The pem file to be used as the private key.

--crt <value> TLS: The crt file to be used as the cert chain.

Required if any other TLS parameters are set.

--cacrt <value> TLS: The crt file to be used as the trusted�

↪→root CA.

Authorization:

--access-token-file <value>

provide the path from which the access token�

↪→will be read, required if the Ledger API server verifies authorization,�

↪→no default
(continues on next page)

8.2. Extractor 413

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

Some options are tied to a specific subcommand, like --connecturl only makes sense for the

postgresql, while others are general, like --party.

8.2.9 Output format

To understand the format that Extractor outputs into a PostgreSQL database, youneed to understand

how the ledger stores data.

The DAML Ledger is composed of transactions, which contain events. Events can represent:

0 creation of contracts (0create event0), or

0 exercise of a choice on a contract (0exercise event0).

A contract on the ledger is either active (created, but not yet archived), or archived. The relationships

between transactions and contracts are captured in the database: all contracts have pointers (for-

eign keys) to the transaction in which they were created, and archived contracts have pointers to the

transaction in which they were archived.

8.2.10 Transactions

Transactionsare stored in thetransaction table in thepublic schema, with the following struc-

ture

CREATE TABLE transaction

(transaction_id TEXT PRIMARY KEY NOT NULL

,seq BIGSERIAL UNIQUE NOT NULL

,workflow_id TEXT

,effective_at TIMESTAMP NOT NULL

,extracted_at TIMESTAMP DEFAULT NOW()

,ledger_offset TEXT NOT NULL

);

0 transaction_id: The transaction ID, as appears on the ledger. This is the primary key of the

table.

0 transaction_id, effective_at, workflow_id, ledger_offset: These columns are the properties

of the transaction on the ledger. For more information, see the specification.

0 seq: Transaction IDs should be treated as arbitrary text values: you can’t rely on them for order-

ing transactions in the database. However, transactions appear on the Ledger API transaction

stream in the same order as they were accepted on the ledger. You can use this to work around

the arbitrary nature of the transaction IDs, which is the purpose of the seq field: it gives you

a total ordering of the transactions, as they happened from the perspective of the ledger. Be

aware that seq is not the exact index of the given transaction on the ledger. Due to the privacy

model of DAML Ledgers, the transaction stream won’t deliver a transaction which doesn’t con-

cern the party which is subscribed. The transaction with seq of 100might be the 1000th trans-

action on the ledger; in the other 900, the transactions contained only events which mustn’t

be seen by you.

0 extracted_at: The extracted_at field means the date the transaction row and its events

were inserted into the database. When extracting historical data, this field will point to a pos-

sibly much later time than effective_at.

414 Chapter 8. Early Access Features

../../app-dev/grpc/proto-docs.html#transactiontree

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

8.2.11 Contracts

Create events and contracts that are created in those events are stored in the contract table in the

public schema, with the following structure

CREATE TABLE contract

(event_id TEXT PRIMARY KEY NOT NULL

,archived_by_event_id TEXT DEFAULT NULL

,contract_id TEXT NOT NULL

,transaction_id TEXT NOT NULL

,archived_by_transaction_id TEXT DEFAULT NULL

,is_root_event BOOLEAN NOT NULL

,package_id TEXT NOT NULL

,template TEXT NOT NULL

,create_arguments JSONB NOT NULL

,witness_parties JSONB NOT NULL

);

0 event_id, contract_id, create_arguments, witness_parties: These fields are the properties

of the corresponding CreatedEvent class in a transaction. For more information, see the

specification.

0 package_id, template: The fields package_id and template are the exploded version of the

template_id property of the ledger event.

0 transaction_id: The transaction_id field refers to the transaction in which the contract

was created.

0 archived_by_event_id, archived_by_transaction_id: These fields will contain the event id

and the transaction id in which the contract was archived once the archival happens.

0 is_root_event: Indicateswhether the event inwhich the contract was createdwas a root event

of the corresponding transaction.

Every contract is placed into the same table, with the contract parameters put into a single column

in a JSON-encoded format. This is similar to what you would expect from a document store, like

MongoDB. For more information on the JSON format, see the later section.

8.2.12 Exercises

Exercise events are stored in theexercise table in thepublic schema, with the following structure:

CREATE TABLE

exercise

(event_id TEXT PRIMARY KEY NOT NULL

,transaction_id TEXT NOT NULL

,is_root_event BOOLEAN NOT NULL

,contract_id TEXT NOT NULL

,package_id TEXT NOT NULL

,template TEXT NOT NULL

,contract_creating_event_id TEXT NOT NULL

,choice TEXT NOT NULL

,choice_argument JSONB NOT NULL

,acting_parties JSONB NOT NULL

,consuming BOOLEAN NOT NULL

,witness_parties JSONB NOT NULL

(continues on next page)

8.2. Extractor 415

../../app-dev/grpc/proto-docs.html#createdevent

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

,child_event_ids JSONB NOT NULL

);

0 package_id, template: The fields package_id and template are the exploded version of the

template_id property of the ledger event.

0 is_root_event: Indicateswhether the event inwhich the contract was createdwas a root event

of the corresponding transaction.

0 transaction_id: The transaction_id field refers to the transaction in which the contract

was created.

0 The other columns are properties of the ExercisedEvent class in a transaction. For more

information, see the specification.

8.2.13 JSON format

Extractor stores create and choice arguments using the DAML-LF JSON Encoding. The parameters of

the JSON schema are instantiated as follows in Extractor:

encodeDecimalAsString: true

encodeInt64AsString: false

8.2.14 Examples of output

The following examples show you what output you should expect. The Sandbox has al-

ready run the scenarios of a DAML model that created two transactions: one creating a

Main:RightOfUseOffer and one accepting it, thus archiving the original contract and creating

a new Main:RightOfUseAgreement contract. We also added a new offer manually.

This is how the transaction table looks after extracting data from the ledger:

You can see that the transactions which were part of the scenarios have the format scenario-

transaction-{n}, while the transaction created manually is a simple number. This is why the

seq field is needed for ordering. In this output, the ledger_offset field has the same values as

the seq field, but you should expect similarly arbitrary values there as for transaction IDs, so better

rely on the seq field for ordering.

This is how the contract table looks:

You can see that the archived_by_transacion_id and archived_by_event_id fields of con-

tract #0:0 is not empty, thus this contract is archived. These fields of contracts #1:1 and #2:0 are

NULL s, which mean they are active contracts, not yet archived.

This is how the exercise table looks:

416 Chapter 8. Early Access Features

../../app-dev/grpc/proto-docs.html#exercisedevent

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

You can see that there was one exercise Accept on contract #0:0, which was the consuming choice

mentioned above.

8.2.15 Dealing with schema evolution

When updating packages, you can end up withmultiple versions of the same package in the system.

Let’s say you have a template called My.Company.Finance.Account:

module My.Company.Finance.Account where

template Account

with

provider: Party

accountId: Text

owner: Party

observers: [Party]

where

[...]

This is built into apackagewitha resultinghash6021727fe0822d688ddd545997476d530023b222d02f1919567bd82b205a5ce3.

Later you add a new field, displayName:

module My.Company.Finance.Account where

template Account

with

provider: Party

accountId: Text

owner: Party

observers: [Party]

displayName: Text

where

[...]

Thehashof thenewpackagewith theupdate is1239d1c5df140425f01a5112325d2e4edf2b7ace223f8c1d2ebebe76a8ececfe.

There are contract instances of first version of the template which were created before the new field

is added, and there are contract instances of the new version which were created since. Let’s say you

have one instance of each:

{

"owner":"Bob",

"provider":"Bob",

"accountId":"6021-5678",

"observers":[

"Alice"

]

}

8.2. Extractor 417

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

and:

{

"owner":"Bob",

"provider":"Bob",

"accountId":"1239-4321",

"observers":[

"Alice"

],

"displayName":"Personal"

}

They will look like this when extracted:

To have a consistent view of the two versions with a default value NULL for the missing field of in-

stances of older versions, you can create a view which contains all Account rows:

CREATE VIEW account_view AS

SELECT

create_arguments->>'owner' AS owner

,create_arguments->>'provider' AS provider

,create_arguments->>'accountId' AS accountId

,create_arguments->>'displayName' AS displayName

,create_arguments->'observers' AS observers

FROM

contract

WHERE

package_id =

↪→'1239d1c5df140425f01a5112325d2e4edf2b7ace223f8c1d2ebebe76a8ececfe'

AND

template = 'My.Company.Finance.Account'

UNION

SELECT

create_arguments->>'owner' AS owner

,create_arguments->>'provider' AS provider

,create_arguments->>'accountId' AS accountId

,NULL as displayName

,create_arguments->'observers' AS observers

FROM

contract

WHERE

package_id =

↪→'6021727fe0822d688ddd545997476d530023b222d02f1919567bd82b205a5ce3'

AND

template = 'My.Company.Finance.Account';

Then, account_view will contain both contract instances:

418 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

8.2.16 Logging

By default, the Extractor logs to stderr, with INFO verbose level. To change the level, use the -

DLOGLEVEL=[level] option, e.g. -DLOGLEVEL=TRACE.

You can supply your own logback configuration file via the standard method: https://logback.qos.

ch/manual/configuration.html

8.2.17 Continuity

When you terminate the Extractor and restart it, it will continue from where it left off. This hap-

pens because, when running, it saves its state into the state table in the public schema of the

database. When started, it reads the contents of this table. If there’s a saved state from a previ-

ous run, it restarts from where it left off. There’s no need to explicitly specify anything, this is done

automatically.

DO NOT modify content of the state table. Doing so can result in the Extractor not being able to

continue running against the database. If that happens, youmust delete all data from the database

and start again.

If you try to restart the Extractor against the same database but with different configuration, you will

get an error message indicating which parameter is incompatible with the already exported data.

This happens when the settings are incompatible: for example, if previously contract data for the

party Alice was extracted, and now you want to extract for the party Bob.

The only parameters that you can change between two sessions running against the same database

are the connection parameters to both the ledger and the database. Both could have moved to dif-

ferent addresses, and the fact that it’s still the same Ledger will be validated by using the Ledger ID

(which is saved when the Extractor started its work the first time).

8.2.18 Fault tolerance

Once the Extractor connects to the Ledger Node and the database and creates the table structure

from the fetched DAML packages, it wraps the transaction stream in a restart logic with an expo-

nential backoff. This results in the Extractor not terminating even when the transaction stream is

aborted for some reason (the ledger node is down, there’s a network partition, etc.).

Once the connection is back, it continues the stream from where it left off. If it can’t reach the node

on the host/port pair the Extractor was started with, you need to manually stop it and restart with

the updated address.

Transactions on the ledger are inserted into PostgreSQL as atomic SQL transactions. This means

either the whole transaction is inserted or nothing, so you can’t end up with inconsistent data in the

database.

8.2.19 Troubleshooting

8.2.19.1 Can’t connect to the Ledger Node

If the Extractor can’t connect to the Ledger node on startup, you’ll see amessage like this in the logs,

and the Extractor will terminate:

8.2. Extractor 419

https://logback.qos.ch/manual/configuration.html
https://logback.qos.ch/manual/configuration.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

16:47:51.208 ERROR c.d.e.Main$@[akka.actor.default-dispatcher-7] - FAILURE:

io.grpc.StatusRuntimeException: UNAVAILABLE: io exception.

Exiting...

To fix this, make sure the Ledger node is available from where you’re running the Extractor.

8.2.19.2 Can’t connect to the database

If the database isn’t available before the transaction stream is started, the Extractor will terminate,

and you’ll see the error from the JDBC driver in the logs:

17:19:12.071 ERROR c.d.e.Main$@[kka.actor.default-dispatcher-5] - FAILURE:

org.postgresql.util.PSQLException: FATAL: database "192.153.1.23:daml_

↪→export" does not exist.

Exiting…

To fix this, make sure make sure the database exists and is available from where you’re running

the Extractor, the username and password your using are correct, and you have the credentials to

connect to the database from the network address where the you’re running the Extractor.

If the database connection is broken while the transaction stream was already running, you’ll see a

similar message in the logs, but in this case it will be repeated: as explained in the Fault tolerance

section, the transaction stream will be restarted with an exponential backoff, giving the database,

network or any other trouble resource to get back into shape. Once everything’s back in order, the

stream will continue without any need for manual intervention.

8.3 DAML Integration Kit

The DAML Integration Kit is currently an Early Access Feature in Labs status. It comprises the compo-

nents needed to build your own DAML Drivers.

8.3.1 Ledger API Test Tool

The Ledger API Test Tool is a command line tool for testing the correctness of implementations of the

Ledger API, i.e. DAML ledgers. For example, it will show you if there are consistency or conformance

problem with your implementation.

Its intended audience are developers of DAML ledgers, who are using the DAML Ledger Implementa-

tion Kit to develop a DAML ledger on top of their distributed-ledger or database of choice.

Use this tool to verify if your Ledger API endpoint conforms to the DA Ledger Model.

8.3.1.1 Downloading the tool

Download the Ledger API Test Tool fromMaven and save it as ledger-api-test-tool.jar in your

current directory.

8.3.1.2 Running the tool against a custom Ledger API endpoint

Run this command to test your Ledger API endpoint exposed at host <host> and at a port <port>:

$ java -jar ledger-api-test-tool.jar <host>:<port>

For example:

420 Chapter 8. Early Access Features

https://repo1.maven.org/maven2/com/daml/ledger-api-test-tool/1.6.0-snapshot.20201007.5314.0.b4a47d0b/ledger-api-test-tool-1.6.0-snapshot.20201007.5314.0.b4a47d0b.jar

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

$ java -jar ledger-api-test-tool.jar localhost:6865

The tool will upload the required DARs to the ledger, and then run all tests.

If any test embedded in the tool fails, it will print out details of the failure for further debugging.

8.3.1.3 Exploring options the tool provides

Run the tool with --help flag to obtain the list of options the tool provides:

$ java -jar ledger-api-test-tool.jar --help

Selecting tests to run

Running the tool without any argument runs only the default tests.

Those include all tests that are known to be safe to be run concurrently as part of a single run.

Tests that either change the global state of the ledger (e.g. configuration management) or are de-

signed to stress the implementation need to be explicitly included using the available command

line options.

Use the following command line flags to select which tests to run:

0 --list: print all available test suites to the console, shows if they are run by default

0 --list-all: print all available tests to the console, shows if they are run by default

0 --include: only run the tests that match the argument

0 --exclude: do not run the tests that match the argument

0 --perf-tests: list performance tests to run; cannot be combined with normal tests

Include and exclude arematched as prefixes, e.g. --exclude=SemanticTestswill exclude all tests

whose name starts with SemanticTests. Test names always start with their suite name followed

by a colon, so the test suite names shown by --list can be useful for coarse-grained inclusion/ex-

clusion.

Both --include and --exclude (and --perf-tests) can be specifiedmultiple times and/or pro-

vide comma-separated lists, i.e. all of these are equivalent:

0 --include=a,b,c

0 --include=a --include=b --include=c

0 --include=a,b --include=c

The logic is always to first select included tests, then remove from that the excluded ones, i.e. include

directives never override a corresponding exclude directive.

If no --include flag is given, all of the tests are included. You cannot run performance and non-

performance tests in the same invocation. --exclude is ignored when running performance tests,

and the programwill stop if it detects that both--perf-tests and--includehave been specified.

Examples (hitting a single participant at localhost:6865):

Listing 1: Only run TestA

$ java -jar ledger-api-test-tool.jar --include TestA localhost:6865

8.3. DAML Integration Kit 421

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Listing 2: Run all tests, but not TestB

$ java -jar ledger-api-test-tool.jar --exclude TestB localhost:6865

Listing 3: Run all tests

$ java -jar ledger-api-test-tool.jar localhost:6865

Listing 4: Run all tests, but not TestC

$ java -jar ledger-api-test-tool.jar --exclude TestC

Performance tests

The available performance tests allow to establish the 0performance envelope0 of the ledger under

test (a term borrowed from aeronautics), which offers an indication of the amount of the parameters

under which a ledger implementation is supposed to perform.

Those tests include tail latency, throughput and maximum size of a single transaction. You can run

the tool with the --list option to see a list of available test suites that includes individual perfor-

mance envelope test cases. You can mix and match those tests to produce a test suite tailored to

match the expected performance envelope of a given ledger implementation using a specific hard-

ware setup.

For example, the following will verify that the ledger under test can have a tail latency of one sec-

ond when processing twenty pings, perform twenty pings per seconds and being able to process a

transaction one megabyte in size:

$ java -jar ledger-api-test-tool.jar \

--perf-tests=PerformanceEnvelope.Latency.1000ms \

--perf-tests=PerformanceEnvelope.Throughput.TwentyOPS \

--perf-tests=PerformanceEnvelope.TransactionSize.1000KB \

localhost:6865

Note: A 0ping0 is a collective name for two templates used to evaluate the performance envelope.

Each of the two templates, 0Ping0 and 0Pong0, have a single choice allowing the controller to create

an instance of the complementary template, directed to the original sender.

The test run will also produce a short summary of statistics which is printed to standard output by

default but that can be written to a specific file path using the --perf-tests-report command

line option.

8.3.1.4 Try out the Ledger API Test Tool against DAML Sandbox

If you wanted to test out the tool, you can run it against DAML Sandbox. To do this:

$ java -jar ledger-api-test-tool.jar --extract

$ daml sandbox *.dar

$ java -jar ledger-api-test-tool.jar localhost:6865

422 Chapter 8. Early Access Features

https://en.wikipedia.org/wiki/Flight_envelope

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

This should always succeed, as the Sandbox is tested to correctly implement the Ledger API. This is

useful if you do not have yet a custom Ledger API endpoint.

8.3.1.5 Using the tool with a known-to-be-faulty Ledger API implementation

Use flag --must-fail if you expect one or more or the scenario tests to fail. If enabled, the tool will

return the success exit code when at least one test fails, and it will return a failure exit code when

all tests succeed:

java -jar ledger-api-test-tool.jar --must-fail localhost:6865

This is useful during development of a DAML ledger implementation, when tool needs to be used

against a known-to-be-faulty implementation (e.g. in CI). It will still print information about failed

tests.

8.3.1.6 Tuning the testing behaviour of the tool

Use the command line option --timeout-scale-factor to tune timeouts applied by the tool.

0 Set --timeout-scale-factor to a floating point value higher than 1.0 to make the tool wait

longer for expected events coming from the DAML ledger implementation under test. Con-

versely use values smaller than 1.0 to make it wait shorter.

8.3.1.7 Accomodating different ledger clock intervals

Use the command line option --ledger-clock-granularity to indicate the maximum

interval at which the ledger’s clock will increment.

0 If running on a ledger where ledger time increments in a time period greater than 10s, set --

ledger-clock-granularity to a value higher than 10000 (10,000ms). Tests that are sensi-

tive to the ledger clock will then wait for a corresponding longer period of time to ensure com-

pletion of operations, avoiding timeouts and premature failures. The command deduplication

test suite is particularly sensitive to this value.

8.3.1.8 Verbose output

Use the command line option --verbose to print full stack traces on failures.

8.3.1.9 Concurrent test runs

To minimize concurrent runs of tests, --concurrent-test-runs can be set to 1 or 2. The default

value is the number of processors available.

Note that certain tests, known to be possibly interfering with others (e.g. configuration manage-

ment), are always run sequentially and as the last tests in a run.

8.3.1.10 Retired tests

A few tests can be retired over time as they could be deemed not providing the necessary signal to a

developer or operator that an integration correctly implements the DAML Ledger API. Those test will

nominally be kept in the test suite for a time to prevent unwanted breakages of existing CI pipelines.

They will however not be run and they will eventually be removed. You are advised to remove any

explicit reference to those tests while they are in their deprecation period.

Retired tests are not listed when using --list or --list-all but can be included in a run using

--include. In this case, nothing will be run and the test report will mention that the test has been

retired and skipped.

8.3. DAML Integration Kit 423

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

DAML Applications run on DAML Ledgers. A DAML Ledger is a server serving the Ledger API as per the

semantics defined in the DAML Ledger Model and the DAML-LF specification.

The DAML Integration Kit helps third-party ledger developers to implement a DAML Ledger on top of

their distributed ledger or database of choice.

We provide the resources in the kit, which include guides to

0 DAML Integration Kit status and roadmap

0 Implementing your own DAML Ledger

0 Deploying a DAML Ledger

0 Testing a DAML Ledger

0 Benchmarking a DAML Ledger

Using these guides, you can focus on your own distributed-ledger or database and reuse our DAML

Ledger server and DAML interpreter code for implementing the DAML Ledger API. For example uses of

the integration kit, see below.

8.3.2 DAML Integration Kit status and roadmap

The current status of the integration kit is ALPHA. We are working towards BETA, and General Avail-

ability (GA) will come quite a bit later. The roadmap below explains what we mean by these different

statuses, and what’s missing to progress.

ALPHA (current status) In the ALPHA status, the DAML Integration Kit is ready to be used by third-

parties willing to accept the following caveats:

0 The architecture includes everything required to run DAML Applications using the DAML

Ledger API. However, it misses support for testing DAML Applications in a uniform way

against different DAML Ledgers.

0 Ledger API authorization, package upload, party on-boarding, ledger reset, and time ma-

nipulation are specific to each DAML Ledger, until the uniform administrative DAML ledger

access API is introduced, which is different to the uniform per-party DAML ledger access that

the DAML Ledger API provides. We will address this before reaching BETA status.

0 The architecture is likely to change due to learnings from integrators like you! Where pos-

sible we strive to make these changes backwards compatible. though this might not al-

ways be possible.

0 The documentation might be spotty in some places, and you might have to infer some of

the documentation from the code.

0 Some of our code might be fresh off the press and might therefore have a higher rate of

bugs.

That said: wehighly value your feedbackand input onwhere you findDAMLsoftware and this in-

tegration kitmost useful. You can get into contact with us using the feedback form on this doc-

umentation page or by creating issues or pull-requests against the digital-asset/daml GitHub

repository.

BETA For us, BETA status means that we have architectural stability and solid documentation in

place. At this point, third-parties should have everything they need to integrate DAML with

their ledger of choice completely on their own.

Before reaching BETA status, we expect to have:

0 hardened our test tooling

0 built tooling for benchmarking DAML ledgers

0 completed several integrations of DAML for different ledgers

0 implementeduniform administrativeDAML ledger access to provideaportableway for testing

DAML applications against different DAML ledgers

Related links

424 Chapter 8. Early Access Features

https://github.com/digital-asset/daml/blob/master/daml-lf/spec/daml-lf-1.rst
https://github.com/digital-asset/daml

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Tracking GitHub issue

0 GitHub milestone tracking work to reach BETA status

GA For usGA (General Availability)means that there are several production-readyDAML ledgers built

using the DAML Integration Kit. We expect to reach GA in 2019.

Related links

0 Tracking GitHub issue

8.3.3 Implementing your own DAML Ledger

Each X ledger requires at least the implementation of a specific daml-on-<X>-server, which im-

plements theDAML Ledger API. Itmight also require the implementation of a<X>-daml-validator,

which provides the ability for nodes to validate DAML transactions.

For more about these parts of the architecture, read the Architectural overview.

8.3.3.1 Step-by-step guide

Prerequisite knowledge

Before you can decide on an appropriate architecture and implement your own server and validator,

you need a significant amount of context about DAML. To acquire this context, you should:

1. Complete the IOU Quickstart Tutorial.

2. Get an in-depth understanding of the DAML Ledger Model.

3. Build a mental model of how the Ledger API is used to build DAML Applications.

Deciding on the architecture and writing the code

Once you have the necessary context, we recommend the steps to implement your own server and

validator:

1. Clone our example DAML Ledger (which is backed by an in-memory key-value store) from the

digital-asset/daml-on-x-example.

1. Read the example code jointly with the Architectural overview, Resources we provide, and the Library

infrastructure overview below.

1. Combine all the knowledge gained to decide on the architecture for your DAML on X ledger.

1. Implement your architecture; and let the world know about it by creating a PR against the

digital-asset/daml repository to add your ledger to the list of DAML Ledgers built or in develop-

ment.

If you need help, then feel free to use the feedback formon this documentation page or GitHub issues

on the digital-asset/daml repository to get into contact with us.

8.3.3.2 Architectural overview

This section explains the architecture of a DAML ledger backed by a specific ledger X.

The backing ledger can be a proper distributed ledger or also just a database. The goal of a DAML

ledger implementation is to allowmultiple DAML applications, which are potentially run by different

entities, to execute multi-party workflows using the ledger X.

This is a likely architecture for a setup with a distributed ledger:

8.3. DAML Integration Kit 425

https://github.com/digital-asset/daml/issues/660
https://github.com/digital-asset/daml/milestone/13
https://github.com/digital-asset/daml/issues/661
https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml
https://github.com/digital-asset/daml

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

It assumes that the X ledger allows entities to participate in the evolution of the ledger via particular

nodes. In the remainder of this documentation, we call these nodes participant nodes.

In the diagram:

0 The boxes labeled daml-on-<X>-server denote the DAML Ledger API servers, which implement the

DAML Ledger API on top of the services provided by the X participant nodes.

0 The boxes labeled <X>-daml-validator denote X-specific DAML transaction validation services. In

a distributed ledger they provide the ability for nodes to validate DAML transactions at the appro-

priate stage in the X ledger’s transaction commit process.

Whether they are needed, by what nodes they are used, and whether they are run in-process

or out-of-process depends on the X ledger’s architecture. Above we depict a common case

where the participant nodes jointly maintain the ledger’s integrity and therefore need to vali-

date DAML transactions.

Message flow

TODO (BETA):

0 explain to readers the life of a transaction at a high-level, so they have a mental framework in

place when looking at the example code. (GitHub issue)

8.3.3.3 Resources we provide

0 Scala libraries for validating DAML transactions and serving the Ledger API given implemen-

tations of two specific interfaces. See the Library infrastructure overview for an overview of these

libraries.

0 A complete example of a DAML Ledger backed by an in-memory key-value store, in the digital-

asset/daml-on-x-example GitHub repository. It builds on our Scala libraries and demonstrates

how they can be assembled to serve the Ledger API and validate DAML transactions.

For ledgers where data is shared between all participant nodes, we recommend using this ex-

ample as a starting point for implementing your server and validator.

For ledgers with stronger privacy models, this example can serve as an inspiration. You will

need to dive deeper into how transactions are represented and how to communicate them to

implement DAML’s privacy model at the ledger level instead of just at the Ledger API level.

426 Chapter 8. Early Access Features

https://github.com/digital-asset/daml/issues/672
https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml-on-x-example

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Library infrastructure overview

To help you implement your server and validator, we provide the following four Scala libraries as part

of the DAML SDK. Changes to them are explained as part of the Release Notes.

As explained in Deciding on the architecture and writing the code, this section is best read jointly with

the code in digital-asset/daml-on-x-example.

participant-state.jar (source code) Contains interfaces abstracting over the state of a par-

ticipant node relevant for a DAML Ledger API server.

These are the interfaces whose implementation is specific to a particular X ledger. These inter-

faces are optimized for ease of implementation.

participant-state-kvutils.jar (source code) These utilities provide methods to succintly

implement interfaces from participant-state.jar on top of a key-value state storage.

See documentation in package.scala

ledger-api-server.jar (source code for API server, source code for indexer) Contains code

that implements a DAML Ledger API server and the SQL-backed indexer given implementations

of the interfaces in participant-state.jar.

daml-engine.jar (source code) Contains code for serializing and deserializing DAML transac-

tions and for validating them.

An <X>-daml-validator is typically implemented by wrapping this code in the X-ledger’s SDK for

building transaction validators. daml-engine.jar also contains code for interpreting com-

mandssent over the Ledger API. It is usedby the daml-on-<X>-server to construct the transactions

submitted to its participant node.

This diagram shows how the classes and interfaces provided by these libraries are typically com-

bined to instantiate a DAML Ledger API server backed by an X ledger:

TODO: Update this diagram to mention ledger server classes above instead of deprecated daml-on-x-server

In the diagram above:

0 Boxes labeled with fully qualified class names denote class instances.

0 Solid arrows labeled with fully qualified interface names denote that an instance depends on

another instance providing that interface.

0 Dashed arrows denote that a class instance provides or depends on particular services.

8.3. DAML Integration Kit 427

https://github.com/digital-asset/daml-on-x-example
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/package.scala
https://github.com/digital-asset/daml/tree/master/ledger/participant-state/kvutils/src/main/scala/com/daml/ledger/participant/state/kvutils
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/kvutils/src/main/scala/com/daml/ledger/participant/state/kvutils/package.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/StandaloneApiServer.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/indexer/StandaloneIndexerServer.scala
https://github.com/digital-asset/daml/blob/master/daml-lf/engine/src/main/scala/com/digitalasset/daml/lf/engine/Engine.scala

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 Boxes embedded in other boxes denote that the outer class instance creates the contained

instances.

Explaining this diagram in detail (for brevity, we drop prefixes of their qualified names where unam-

biguous):

Ledger API is the collection of gRPC services that you would like your daml-on-<X>-server to provide.

<X> services are the services provided by which underly your ledger, which you aim to leverage

to build your daml-on-<X>-server.

<x>.LedgerApiServer is the class whose main method or constructor creates the contained in-

stances and wires them up to provide the Ledger API backed by the <X> services. You need

to implement this for your DAML on X ledger.

WriteService (source code) is an interface abstracting over the mechanism to submit DAML

transactions to the underlying X ledger via a participant node.

ReadService (source code) is an interface abstracting over the ability to subscribe to changes of

the X ledger visible to a particular participant node. The changes are exposed as a stream that

is resumable from any particular offset, which supports restarts of the consumer. We typically

expect there to be a single consumer of the data provided on this interface. That consumer is

responsible for assembling the streamed changes into a view onto the participant state suit-

able for querying.

<x>.Backend is a class implementing the ReadService and the WriteService on top of the <X>

services. You need to implement this for your DAML on X ledger.

StandaloneIndexerServer (source code) is a standalone service that subscribe to ledger

changes using ReadService and inserts the data into a SQL backend (0index0) for the pur-

pose of serving the data over the Ledger API.

StandaloneIndexServer (source code) is a class containing all the code to implement the

Ledger API on top of an ledger backend. It serves the data from a SQL database populated by

the StandaloneIndexerServer.

8.3.4 Deploying a DAML Ledger

TODO (BETA):

0 explain recommended approach for Ledger API authorization (GitHub issue)

0 explain option of using a persistent SQL-backed participant state index (GitHub issue).

0 explain how testing of DAML applications (ledger reset, time manipulation, scripted package

upload) can be supported by a uniform admin interface (GitHub issue).

8.3.4.1 Authorization

To implement authorization on your ledger, do the following modifications to your code:

0 Implement the com.daml.ledger.api.auth.AuthService (source code) interface. An

AuthService receives all HTTP headers attached to a gRPC ledger API request and returns a set

of Claims (source code), which describe the authorization of the request.

0 Instantiate a com.daml.ledger.api.auth.interceptor.AuthorizationInterceptor

(source code), and pass it an instance of your AuthService implementation. This interceptor

will be responsible for storing the decoded Claims in a place where ledger API services can

access them.

0 When starting the com.daml.platform.apiserver.LedgerApiServer (source code), add

the above AuthorizationInterceptor to the list of interceptors (see interceptors parameter

of LedgerApiServer.create).

For reference, you can have a look at how authorization is implemented in the sandbox:

428 Chapter 8. Early Access Features

https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/WriteService.scala
https://github.com/digital-asset/daml/blob/master/ledger/participant-state/src/main/scala/com/daml/ledger/participant/state/v1/ReadService.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/indexer/StandaloneIndexerServer.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/StandaloneApiServer.scala
https://github.com/digital-asset/daml/issues/669
https://github.com/digital-asset/daml/issues/581
https://github.com/digital-asset/daml/issues/347
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthService.scala
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/Claims.scala
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/interceptor/AuthorizationInterceptor.scala
https://github.com/digital-asset/daml/blob/master/ledger/sandbox/src/main/scala/com/digitalasset/platform/apiserver/LedgerApiServer.scala

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

0 The com.daml.ledger.api.auth.AuthServiceJWT class (source code) reads a JWT token

from HTTP headers.

0 The com.daml.ledger.api.auth.AuthServiceJWTPayload class (source code) defines

the format of the token payload.

0 The token signature algorithmand the correspondingpublic key is specified as a sandbox com-

mand line parameter.

8.3.5 Testing a DAML Ledger

You can test your DAML ledger implementation using Ledger API Test Tool, which will assess correct-

ness of implementation of the Ledger API. For example, it will show you if there are consistency or

conformance problem with your implementation.

Assuming that your Ledger API endpoint is accessible at localhost:6865, you can use the tool in

the following manner:

1. Download the Ledger API Test Tool from Maven and save it as ledger-api-test-tool.jar

in your current directory.

2. Obtain the DAML archives required to run the tests:

java -jar ledger-api-test-tool.jar --extract

3. Load all .dar files extracted in the current directory into your Ledger.

4. Run the tool against your ledger:

java -jar ledger-api-test-tool.jar localhost:6865

See more in Ledger API Test Tool.

8.3.6 Benchmarking a DAML Ledger

TODO (BETA):

0 explain how to use the ledger-api-bench tool to evaluate the performance of your imple-

mentation of the Ledger API (GitHub issue).

8.4 DAML Triggers - Off-Ledger Automation in DAML

8.4.1 DAML Trigger Library

The DAML Trigger library defines the API used to declare a DAML trigger. See DAML Triggers - Off-Ledger

Automation in DAML:: for more information on DAML triggers.

8.4.1.1 Module Daml.Trigger

Data Types

data Trigger s

This is the type of your trigger. s is the user-defined state type which you can often leave

at ().

Trigger

8.4. DAML Triggers - Off-Ledger Automation in DAML 429

https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthServiceJWT.scala
https://jwt.io/
https://github.com/digital-asset/daml/blob/master/ledger/ledger-api-auth/src/main/scala/com/digitalasset/ledger/api/auth/AuthServiceJWTPayload.scala
https://repo1.maven.org/maven2/com/daml/ledger-api-test-tool/1.6.0-snapshot.20201007.5314.0.b4a47d0b/ledger-api-test-tool-1.6.0-snapshot.20201007.5314.0.b4a47d0b.jar
https://github.com/digital-asset/daml/issues/671

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Description

initialize ACS -> s Initialize the user-defined state based on

the ACS.

updateState ACS -> Mes-

sage -> s -> s

Update the user-defined state based on

the ACS and a transaction or completion

message.

rule Party ->

ACS -> Time

-> Map

CommandId

[Command]

-> s ->

TriggerA ()

The rule defines the main logic of your

trigger. It can send commands to the

ledger using emitCommands to change

the ACS. The rule depends on the follow-

ing arguments: * The party your trigger

is running as. * The current state of the

ACS. * The current time (UTC in wallclock

mode, Unix epoch in static mode) * The

commands in flight. * The user-defined

state.

registeredTem-

plates

Regis-

teredTem-

plates

The templates the trigger will receive

events for.

heartbeat Optional

RelTime

Send a heartbeat message at the given

interval.

instance HasField 0heartbeat0 (Trigger s) (Optional RelTime)

instance HasField 0initialize0 (Trigger s) (ACS -> s)

instance HasField 0registeredTemplates0 (Trigger s) RegisteredTemplates

instance HasField 0rule0 (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] ->

s -> TriggerA ())

instance HasField 0updateState0 (Trigger s) (ACS -> Message -> s -> s)

Functions

getTemplates : Template a => ACS -> [(ContractId a, a)]

getContracts : Template a => ACS -> [(ContractId a, a)]

Extract the contracts of a given template from the ACS.

emitCommands : [Command] -> [AnyContractId] -> TriggerA CommandId

Send a transaction consisting of the given commands to the ledger. The second argument can

be used tomark a list of contract ids as pending. These contracts will automatically be filtered

from getContracts until we either get the corresponding transaction event for this command

or a failing completion.

dedupCreate : (Eq t, Template t) => t -> TriggerA ()

Create the template if it’s not already in the list of commands in flight (it will still be created if

it is in the ACS).

Note that this will send the create as a single-command transaction. If you need to send mul-

tiple commands in one transaction, use emitCommands with createCmd and handle filtering

yourself.

dedupCreateAndExercise : (Eq t, Eq c, Template t, Choice t c r) => t -> c -> TriggerA ()

430 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Create the template and exercise a choice on it it’s not already in the list of commands in flight

(it will still be created if it is in the ACS).

Note that this will send the create and exercise as a single-command transaction. If

you need to send multiple commands in one transaction, use emitCommands with

createAndExerciseCmd and handle filtering yourself.

dedupExercise : (Eq c, Choice t c r) => ContractId t -> c -> TriggerA ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

If you are calling a consuming choice, you might be better off by using emitCommands and

adding the contract id to the pending set.

dedupExerciseByKey : (Eq c, Eq k, Choice t c r, TemplateKey t k) => k -> c -> TriggerA ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

runTrigger : Trigger s -> Trigger (TriggerState s)

Transform the high-level trigger type into the one from Daml.Trigger.LowLevel.

8.4.1.2 Module Daml.Trigger.Assert

Data Types

data ACSBuilder

Used to construct an ‘ACS’ for ‘testRule’.

instanceMonoid ACSBuilder

instance Semigroup ACSBuilder

Functions

toACS : Template t => ContractId t -> ACSBuilder

Include the given contract in the ‘ACS’.

testRule : Trigger s -> Party -> ACSBuilder -> Map CommandId [Command] -> s -> Script [Commands]

Execute a trigger’s rule once in a scenario.

flattenCommands : [Commands] -> [Command]

Drop ‘CommandId’s and extract all ‘Command’s.

assertCreateCmd : (Template t, CanAbort m) => [Command] -> (t -> Either Text ()) -> m ()

Check that at least one command is a create command whose payload fulfills the given asser-

tions.

assertExerciseCmd : (Template t, Choice t c r, CanAbort m) => [Command] -> ((ContractId t, c) -> Either

Text ()) -> m ()

Check that at least one command is an exercise command whose contract id and choice argu-

ment fulfill the given assertions.

assertExerciseByKeyCmd : (TemplateKey t k, Choice t c r, CanAbort m) => [Command] -> ((k, c) -> Either

Text ()) -> m ()

8.4. DAML Triggers - Off-Ledger Automation in DAML 431

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Check that at least one command is an exercise by key command whose key and choice argu-

ment fulfill the given assertions.

8.4.1.3 Module Daml.Trigger.Internal

Data Types

data ACS

Active contract set, you can use getContracts to access the templates of a given type.

ACS

Field Type Description

activeContracts [(AnyCon-

tractId,

AnyTem-

plate)]

pendingContracts Map Com-

mandId

[AnyContrac-

tId]

instance HasField 0acs0 (TriggerState s) ACS

instance HasField 0activeContracts0 ACS [(AnyContractId, AnyTemplate)]

instance HasField 0initialize0 (Trigger s) (ACS -> s)

instance HasField 0pendingContracts0 ACS (Map CommandId [AnyContractId])

instance HasField 0rule0 (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] ->

s -> TriggerA ())

instance HasField 0updateState0 (Trigger s) (ACS -> Message -> s -> s)

data TriggerA a

TriggerA is the type used in the rule of a DAML trigger. Its main feature is that you can

call emitCommands to send commands to the ledger.

TriggerA (State TriggerAState a)

instance Functor TriggerA

instance Action TriggerA

instance Applicative TriggerA

instance HasField 0rule0 (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] ->

s -> TriggerA ())

data TriggerAState

TriggerAState

432 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Description

commandsIn-

Flight

Map Com-

mandId

[Command]

emittedCom-

mands

[Commands] Emitted commands in reverse because I

can’t be bothered to implement a dlist.

pendingContracts Map Com-

mandId

[AnyContrac-

tId]

Map from command ids to the contract

ids marked pending by that command.

nextCommandId Int Command id used for the next submit

instance HasField 0commandsInFlight0 TriggerAState (Map CommandId [Command])

instance HasField 0emittedCommands0 TriggerAState [Commands]

instance HasField 0nextCommandId0 TriggerAState Int

instance HasField 0pendingContracts0 TriggerAState (Map CommandId [AnyContractId])

data TriggerState s

TriggerState

Field Type Description

acs ACS

party Party

userState s

commandsIn-

Flight

Map Com-

mandId

[Command]

nextCommandId Int

instance HasField 0acs0 (TriggerState s) ACS

instance HasField 0commandsInFlight0 (TriggerState s) (Map CommandId [Command])

instance HasField 0nextCommandId0 (TriggerState s) Int

instance HasField 0party0 (TriggerState s) Party

instance HasField 0userState0 (TriggerState s) s

Functions

addCommands : Map CommandId [Command] -> Commands -> Map CommandId [Command]

insertTpl : AnyContractId -> AnyTemplate -> ACS -> ACS

groupActiveContracts : a -> a

deleteTpl : AnyContractId -> ACS -> ACS

lookupTpl : Template a => AnyContractId -> ACS -> Optional a

8.4. DAML Triggers - Off-Ledger Automation in DAML 433

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

applyEvent : Event -> ACS -> ACS

applyTransaction : Transaction -> ACS -> ACS

runRule : (Party -> ACS -> Time -> Map CommandId [Command] -> s -> TriggerA ()) -> Time -> TriggerState s

-> (TriggerState s, [Commands])

runTriggerA : TriggerA a -> TriggerAState -> (a, TriggerAState)

8.4.1.4 Module Daml.Trigger.LowLevel

Data Types

data ActiveContracts

ActiveContracts

Field Type Description

activeContracts [Created]

instance HasField 0activeContracts0 ActiveContracts [Created]

instance HasField 0initialState0 (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

data AnyContractId

This type represents the contract id of an unknown template. You can use

fromAnyContractId to check which template it corresponds to.

instance Eq AnyContractId

instance Show AnyContractId

instance HasField 0activeContracts0 ACS [(AnyContractId, AnyTemplate)]

instance HasField 0contractId0 AnyContractId (ContractId ())

instance HasField 0contractId0 Archived AnyContractId

instance HasField 0contractId0 Command AnyContractId

instance HasField 0contractId0 Created AnyContractId

instance HasField 0pendingContracts0 ACS (Map CommandId [AnyContractId])

instance HasField 0pendingContracts0 TriggerAState (Map CommandId [AnyContractId])

instance HasField 0templateId0 AnyContractId TemplateTypeRep

data Archived

The data in an Archived event.

Archived

434 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Description

eventId EventId

contractId AnyContrac-

tId

instance Eq Archived

instance Show Archived

instance HasField 0contractId0 Archived AnyContractId

instance HasField 0eventId0 Archived EventId

data Command

A ledger API command. To construct a command use createCmd and exerciseCmd.

CreateCommand

Field Type Description

templateArg AnyTem-

plate

ExerciseCommand

Field Type Description

contractId AnyContrac-

tId

choiceArg AnyChoice

CreateAndExerciseCommand

Field Type Description

templateArg AnyTem-

plate

choiceArg AnyChoice

ExerciseByKeyCommand

Field Type Description

tplTypeRep Template-

TypeRep

contractKey AnyCon-

tractKey

choiceArg AnyChoice

8.4. DAML Triggers - Off-Ledger Automation in DAML 435

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

instance HasField 0choiceArg0 Command AnyChoice

instance HasField 0commands0 Commands [Command]

instance HasField 0commandsInFlight0 TriggerAState (Map CommandId [Command])

instance HasField 0commandsInFlight0 (TriggerState s) (Map CommandId [Command])

instance HasField 0contractId0 Command AnyContractId

instance HasField 0contractKey0 Command AnyContractKey

instance HasField 0rule0 (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] ->

s -> TriggerA ())

instance HasField 0templateArg0 Command AnyTemplate

instance HasField 0tplTypeRep0 Command TemplateTypeRep

data CommandId

CommandId Text

instance Eq CommandId

instance Ord CommandId

instance Show CommandId

instance HasField 0commandId0 Commands CommandId

instance HasField 0commandId0 Completion CommandId

instance HasField 0commandId0 Transaction (Optional CommandId)

instance HasField 0commandsInFlight0 TriggerAState (Map CommandId [Command])

instance HasField 0commandsInFlight0 (TriggerState s) (Map CommandId [Command])

instance HasField 0pendingContracts0 ACS (Map CommandId [AnyContractId])

instance HasField 0pendingContracts0 TriggerAState (Map CommandId [AnyContractId])

instance HasField 0rule0 (Trigger s) (Party -> ACS -> Time -> Map CommandId [Command] ->

s -> TriggerA ())

instanceMapKey CommandId

data Commands

A set of commands that are submitted as a single transaction.

Commands

Field Type Description

commandId CommandId

commands [Command]

instance HasField 0commandId0 Commands CommandId

instance HasField 0commands0 Commands [Command]

instance HasField 0emittedCommands0 TriggerAState [Commands]

436 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

instance HasField 0initialState0 (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

instance HasField 0update0 (Trigger s) (Time -> Message -> s -> (s, [Commands]))

data Completion

A completion message. Note that you will only get completions for commands emitted

from the trigger. Contrary to the ledger API completion stream, this also includes syn-

chronous failures.

Completion

Field Type Description

commandId CommandId

status Completion-

Status

instance Show Completion

instance HasField 0commandId0 Completion CommandId

instance HasField 0status0 Completion CompletionStatus

data CompletionStatus

Failed

Field Type Description

status Int

message Text

Succeeded

Field Type Description

transactionId Transac-

tionId

instance Show CompletionStatus

instance HasField 0message0 CompletionStatus Text

instance HasField 0status0 Completion CompletionStatus

instance HasField 0status0 CompletionStatus Int

instance HasField 0transactionId0 CompletionStatus TransactionId

data Created

The data in a Created event.

Created

8.4. DAML Triggers - Off-Ledger Automation in DAML 437

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Description

eventId EventId

contractId AnyContrac-

tId

argument AnyTem-

plate

instance HasField 0activeContracts0 ActiveContracts [Created]

instance HasField 0argument0 Created AnyTemplate

instance HasField 0contractId0 Created AnyContractId

instance HasField 0eventId0 Created EventId

data Event

An event in a transaction. This definition should be kept consistent with the

object EventVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

CreatedEvent Created

ArchivedEvent Archived

instance HasField 0events0 Transaction [Event]

data EventId

EventId Text

instance Eq EventId

instance Show EventId

instance HasField 0eventId0 Archived EventId

instance HasField 0eventId0 Created EventId

data Message

Either a transaction or a completion. This definition should be kept consistent with

the object MessageVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

MTransaction Transaction

MCompletion Completion

MHeartbeat

instance HasField 0update0 (Trigger s) (Time -> Message -> s -> (s, [Commands]))

instance HasField 0updateState0 (Trigger s) (ACS -> Message -> s -> s)

data RegisteredTemplates

AllInDar

Listen to events for all templates in the given DAR.

438 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

RegisteredTemplates [RegisteredTemplate]

instance HasField 0registeredTemplates0 (Trigger s) RegisteredTemplates

instance HasField 0registeredTemplates0 (Trigger s) RegisteredTemplates

data Transaction

Transaction

Field Type Description

transactionId Transac-

tionId

commandId Optional

CommandId

events [Event]

instance HasField 0commandId0 Transaction (Optional CommandId)

instance HasField 0events0 Transaction [Event]

instance HasField 0transactionId0 Transaction TransactionId

data TransactionId

TransactionId Text

instance Eq TransactionId

instance Show TransactionId

instance HasField 0transactionId0 CompletionStatus TransactionId

instance HasField 0transactionId0 Transaction TransactionId

data Trigger s

Trigger is (approximately) a left-fold over Message with an accumulator of type s.

Trigger

8.4. DAML Triggers - Off-Ledger Automation in DAML 439

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Field Type Description

initialState Party ->

Time ->

ActiveCon-

tracts ->

(s, [Com-

mands])

update Time ->Mes-

sage -> s -

> (s, [Com-

mands])

registeredTem-

plates

Regis-

teredTem-

plates

heartbeat Optional

RelTime

instance HasField 0heartbeat0 (Trigger s) (Optional RelTime)

instance HasField 0initialState0 (Trigger s) (Party -> Time -> ActiveContracts -> (s, [Com-

mands]))

instance HasField 0registeredTemplates0 (Trigger s) RegisteredTemplates

instance HasField 0update0 (Trigger s) (Time -> Message -> s -> (s, [Commands]))

Functions

toAnyContractId : Template t => ContractId t -> AnyContractId

Wrap a ContractId t in AnyContractId.

fromAnyContractId : Template t => AnyContractId -> Optional (ContractId t)

Check if a AnyContractId corresponds to the given template or return None otherwise.

fromCreated : Template t => Created -> Optional (EventId, ContractId t, t)

Check if a Created event corresponds to the given template.

fromArchived : Template t => Archived -> Optional (EventId, ContractId t)

Check if an Archived event corresponds to the given template.

registeredTemplate : Template t => RegisteredTemplate

createCmd : Template t => t -> Command

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Command

Exercise the given choice.

createAndExerciseCmd : (Template t, Choice t c r) => t -> c -> Command

Create a contract of the given template and immediately exercise the given choice on it.

exerciseByKeyCmd : (Choice t c r, TemplateKey t k) => k -> c -> Command

fromCreate : Template t => Command -> Optional t

Check if the command corresponds to a create command for the given template.

440 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

fromCreateAndExercise : (Template t, Choice t c r) => Command -> Optional (t, c)

Check if the command corresponds to a create and exercise command for the given template.

fromExercise : Choice t c r => Command -> Optional (ContractId t, c)

Check if the command corresponds to an exercise command for the given template.

fromExerciseByKey : (Choice t c r, TemplateKey t k) => Command -> Optional (k, c)

Check if the command corresponds to an exercise by key command for the given template.

DAML Triggers are currently an Early Access Feature in Alpha status. We welcome feedback about DAML

triggers on our issue tracker, our forum, or on Slack.

In addition to the actual DAML logic which is uploaded to the Ledger and the UI, DAML applications

often need to automate certain interactions with the ledger. This is commonly done in the form of

a ledger client that listens to the transaction stream of the ledger and when certain conditions are

met, e.g., when a template of a given type has been created, the client sends commands to the ledger,

e.g., it creates a template of another type.

It is possible to write these clients in a language of your choice, e.g., JavaScript, using the HTTP JSON

API. However, that introduces an additional layer of friction: You now need to translate between the

template and choice types in DAML and a representation of those DAML types in the language you

are using for your client. DAML triggers address this problem by allowing you to write certain kinds

of automation directly in DAML reusing all the DAML types and logic that you have already defined.

Note that while the logic for DAML triggers is written in DAML, they act like any other ledger client:

They are executed separately from the ledger, they do not need to be uploaded to the ledger and they

do not allow you to do anything that any other ledger client could not do.

8.4.2 Usage

Our example for this tutorial consists of 3 templates.

First, we have a template called Original:

template Original

with

owner : Party

name : Text

textdata : Text

where

signatory owner

key (owner, name) : (Party, Text)

maintainer key._1

This template has an owner, a name that identifies it and some textdata that we just represent as

Text to keep things simple. We have also added a contract key to ensure that each owner can only

have one Original with a given name.

Second, we have a template called Subscriber:

template Subscriber

with

subscriber : Party

subscribedTo : Party

where

(continues on next page)

8.4. DAML Triggers - Off-Ledger Automation in DAML 441

https://github.com/digital-asset/daml/issues/new?milestone=DAML+Triggers
https://discuss.daml.com
https://slack.daml.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

signatory subscriber

observer subscribedTo

key (subscriber, subscribedTo) : (Party, Party)

maintainer key._1

This template allows the subscriber to subscribe to Original s where subscribedTo is the

owner. For each of theseOriginal s, our DAML trigger should then automatically create an instance

of third template called Copy:

template Copy

with

original : Original

subscriber : Party

where

signatory (signatory original)

observer subscriber

Our trigger should also ensure that the Copy contracts stay in sync with changes on the ledger. That

means that we need to archive Copy contracts if there is more than one for the same Original,

we need to archive Copy contracts if the corresponding Original has been archived and we need

to archive all Copy s for a given subscriber if the corresponding Subscriber contract has been

archived.

8.4.2.1 Implementing a DAML Trigger

Having defined what our DAML trigger is supposed to do, we can nowmove on to its implementation.

A DAML trigger is a regular DAML project that you can build using daml build. To get access to the

API used to build a trigger, you need to add the daml-triggers library to the dependencies field

in daml.yaml.

dependencies:

- daml-prim

- daml-stdlib

- daml-trigger

In addition to that you also need to import the Daml.Triggermodule.

DAML triggers automatically track the active contract set (ACS), i.e., the set of contracts that have

been created and have not been archived, and the commands in flight for you. In addition to that,

they allow you to have user-defined state that is updated based on new transactions and command

completions. For our copy trigger, the ACS is sufficient, so we will simply use () as the type of the

user defined state.

To create a trigger you need to define a value of type Trigger s where s is the type of your user-

defined state:

data Trigger s = Trigger

{ initialize : ACS -> s

, updateState : ACS -> Message -> s -> s

, rule : Party -> ACS -> Time -> Map CommandId [Command] -> s ->�

↪→TriggerA ()

(continues on next page)

442 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

(continued from previous page)

, registeredTemplates : RegisteredTemplates

, heartbeat : Optional RelTime

}

The initialize function is called on startup and allows you to initialize your user-defined state

based on the active contract set.

The updateState function is called on new transactions and command completions and can be

used to update your user-defined state based on the ACS and the transaction or completion. Since

our DAML trigger does not have any interesting user-defined state, we will not go into details here.

The rule function is the core of a DAML trigger. It defines which commands need to be sent to the

ledger based on the party the trigger is executed at, the current state of the ACS, the current time, the

commands in flight and the user defined state. The type TriggerA allows you to emit commands

that are then sent to the ledger. Like Scenario or Update, you can use do notation with TriggerA.

We can specify the templates that our trigger will operate on. In our case, we will sim-

ply specify AllInDar which means that the trigger will receive events for all template

types defined in the DAR. It is also possible to specify an explicit list of templates, e.g.,

RegisteredTemplates [registeredTemplate @Original, registeredTemplate

@Subscriber, registeredTemplate @Copy]. This is mainly useful for performance rea-

sons if your DAR contains many templates that are not relevant for your trigger.

Finally, you can specify an optional heartbeat interval at which the trigger will be sent a MHeartbeat

message. This is useful if you want to ensure that the trigger is executed at a certain rate to issue

timed commands.

For our DAML trigger, the definition looks as follows:

copyTrigger : Trigger ()

copyTrigger = Trigger

{ initialize = _acs -> ()

, updateState = _acs _message () -> ()

, rule = copyRule

, registeredTemplates = AllInDar

, heartbeat = None

}

Nowwe canmove on to themost complex part of our DAML trigger, the implementation of copyRule.

First let’s take a look at the signature:

copyRule : Party -> ACS -> Time -> Map CommandId [Command] -> () ->�

↪→TriggerA ()

copyRule party acs _time commandsInFlight () = do

We will need the party and the ACS to get the Original contracts where we are the owner, the

Subscriber contracts where we are in the subscribedTo field and the Copy contracts where we

are the owner of the corresponding Original.

The commands in flight will be useful to avoid sending the same command multiple times if

copyRule is run multiple times before we get the corresponding transaction. Note that DAML trig-

gers are expected to be designed such that they can cope with this, e.g., after a restart or a crash

where the commands in flight do not contain commands in flight from before the restart, so this is

an optimization rather than something required for them to function correctly.

8.4. DAML Triggers - Off-Ledger Automation in DAML 443

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

First, we get all Subscriber, Original and Copy contracts from the ACS. For that, the DAML trigger

API provides a getContracts function that given the ACS will return a list of all contracts of a given

template.

let subscribers : [(ContractId Subscriber, Subscriber)] = getContracts�

↪→@Subscriber acs

let originals : [(ContractId Original, Original)] = getContracts�

↪→@Original acs

let copies : [(ContractId Copy, Copy)] = getContracts @Copy acs

Now, we can filter those contracts to the ones where we are the owner as described before.

let ownedSubscribers = filter (\(_, s) -> s.subscribedTo == party)�

↪→subscribers

let ownedOriginals = filter (\(_, o) -> o.owner == party) originals

let ownedCopies = filter (\(_, c) -> c.original.owner == party) copies

We also need a list of all parties that have subscribed to us.

let subscribingParties = map (\(_, s) -> s.subscriber) ownedSubscribers

As we have mentioned before, we only want to keep one Copy per Original and Subscriber and

archive all others. Therefore, we group identical Copy contracts and keep the first of each group

while archiving the others.

let groupedCopies : [[(ContractId Copy, Copy)]]

groupedCopies = groupOn snd $ sortOn snd $ ownedCopies

let copiesToKeep = map head groupedCopies

let archiveDuplicateCopies = concatMap tail groupedCopies

In addition to duplicate copies, we also need to archive copies where the corresponding Original

or Subscriber no longer exists.

let archiveMissingOriginal = filter (\(_, c) -> c.original `notElem` map�

↪→snd ownedOriginals) copiesToKeep

let archiveMissingSubscriber = filter (\(_, c) -> c.subscriber `notElem`�

↪→subscribingParties) copiesToKeep

let archiveCopies = dedup $ map fst $ archiveDuplicateCopies <>�

↪→archiveMissingOriginal <> archiveMissingSubscriber

To send the corresponding archive commands to the ledger, we iterate over archiveCopies us-

ing forA and call the emitCommands function. Each call to emitCommands takes a list of com-

mands which will be submitted as a single transaction. The actual commands can be created using

exerciseCmd and createCmd. In addition to that, we also pass in a list of contract ids. Those

contracts will bemarked pending and not be included in the result of getContracts until the com-

mands have either been comitted to the ledger or the command submission failed.

forA archiveCopies $ \cid -> emitCommands [exerciseCmd cid Archive]�

↪→[toAnyContractId cid]

Finally, we also need to create copies that do not already exists. We want to avoid creating copies for

which there is already a command in flight. The DAML Trigger API provides a dedupCreate helper

for this which only sends the commands if it is not already in flight.

444 Chapter 8. Early Access Features

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

let neededCopies = [Copy m o | (_, m) <- ownedOriginals, o <-�

↪→subscribingParties]

let createCopies = filter (\c -> c `notElem` map snd copiesToKeep)�

↪→neededCopies

mapA dedupCreate createCopies

8.4.2.2 Running a DAML Trigger

To try this example out, you can replicate it using daml new copy-trigger --template copy-

trigger. You first have to build the trigger like you would build a regular DAML project using daml

build. Then start the sandbox and navigator using daml start.

Now we are ready to run the trigger using daml trigger:

daml trigger --dar .daml/dist/copy-trigger-0.0.1.dar --trigger-name�

↪→CopyTrigger:copyTrigger --ledger-host localhost --ledger-port 6865 --

↪→ledger-party Alice

The first argument specifies the .dar file that we have just built. The second argument specifies the

identifier of the trigger using the syntax ModuleName:identifier. Finally, we need to specify the

ledger host, port, the party that our trigger is executed as, and the time mode of the ledger which is

the sandbox default, i.e, static time.

Now open Navigator at http://localhost:7500/.

First, login as Alice and create an Original contract with party set to Alice. Now, logout and

login as Bob and create a Subscriber contract with subscriber set to Bob and subscribedTo

set to Alice. After a short delay you should now see a Copy contract corresponding to the Original

that you have created as Alice. Once you archive the Subscriber contract, you can see that the

Copy contract will also be archived.

When using DAML triggers against a Ledger with authentication, you can pass --access-token-

file token.jwt to daml trigger which will read the token from the file token.jwt.

8.4.3 When not to use DAML triggers

DAML Triggers are not suited for automation that needs to interact with services or data outside of

the ledger. For those cases, you canwrite a ledger client using the JavaScript bindings running against

the HTTP JSON API or the Java bindings running against the gRPC Ledger API.

DAML triggers deliberately only allow you to express automation that listens for ledger events and

reacts to them by sending commands to the ledger.

8.5 Visualizing DAML Contracts

Visualizing DAML Contracts is currently an Early Access Feature in Labs status.

You can generate visual graphs for the contracts in your DAML project. To do this:

1. Install Graphviz.

2. Generate a DAR from your project by running daml build.

3. Generate a dot file from that DAR by running daml damlc visual <path_to_project>/

dist/<project_name.dar> --dot <project_name>.dot

8.5. Visualizing DAML Contracts 445

http://localhost:7500/
http://www.graphviz.org/download/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

4. Generate the visual graph with Graphviz by running dot -Tpng <project_name>.dot >

<project_name>.png

8.5.1 Example: Visualizing the Quickstart project

Here’s an example visualization based on the quickstart. You’ll need to install Graphviz to try this out.

1. Generate the dar using daml build

2. Generate a dot file daml damlc visual dist/quickstart-0.0.1.dar --dot

quickstart.dot

3. Generate the visual graph with Graphviz by running dot -Tpng quickstart.dot -o

quickstart.png

Running the above should produce an image which looks something like this:

8.5.2 Visualizing DAML Contracts - Within IDE

You can generate visual graphs from VS Code IDE. Open the daml project in VS Code and use com-

mand palette. Should reveal a new window pane with dot image. Also visual generates only the

currently open daml file and its imports.

Note: You will need to install the Graphviz/dot packages as mentioned above.

8.5.3 Visualizing DAML Contracts - Interactive Graphs

This does not require any packages installed. You can generate D3 graphs for the contracts in your

DAML project. To do this

1. Generate a DAR from your project by running daml build

2. Generate HTML file daml damlc visual-web .daml/dist/quickstart-0.0.1.dar -o

quickstart.html

Running the above should produce an image which looks something like this:

446 Chapter 8. Early Access Features

http://www.graphviz.org/download/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://d3js.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

8.5. Visualizing DAML Contracts 447

Chapter 9

DAML Ecosystem

9.1 DAML Ecosystem Overview

9.1.1 Status Definitions

Throughout the documentation, we use labels to mark features of APIs not yet deemed stable. This

page gives meaning to those labels.

9.1.1.1 Early Access Features

Features or components covered by these docs are Stable by default. Stable features and components

constitute DAML’s 0public API0 in the sense of Semantic Versioning. Feature and components that are

not Stable are called 0Early Access0 and called out explicitly.

Early Access features are opt-in whenever possible, needing to be activated with special commands

or flags needing to be started up separately, or requiring the use of additional endpoints, for example.

Within the Early Access category, we distinguish three labels:

Labs

Labs components and features are experiments, introduced for evaluation, testing, or

project-internal use. There is no intent to develop them into a stable feature other than

to see whether they add value and find uptake. They can be changed or discontinued

without advance notice. They may be poorly documented and it is not recommended to

start relying on them.

Alpha

Alpha components and features are early preview versions of features being actively de-

veloped to become a stable part of the ecosystem. At the Alpha stage, they are not yet

feature complete, may have poor runtime characteristics, are still subject to frequent

change, and may not be fully documented. Alpha features can be evaluated, and used in

PoCs, but should not yet be relied upon for large projects or production use where break-

ages or changes to APIs would be costly.

Beta

Beta components and features are preview versions of features that are close tomaturity.

They are characterized by being considered feature complete, and the APIs close to the

final public APIs. It is relatively safe to build on Beta features as long as the documented

448

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

caveats to runtime characteristics are understood and bugs and minor API adjustments

are not too costly.

9.1.1.2 Deprecation

In addition to being labelled Early Access, features and components can also be labelled 0Depre-

cated0. Deprecation follows a deprecation cycle laid out in the table below. The date of deprecation

is documented in DAML Ecosystem Overview.

Deprecated features can be relied upon during the deprecation cycle to the same degree as their

non-deprecated counterparts, but building on deprecated features may hinder an upgrade to new

DAML versions following the deprecation cycle.

9.1.1.3 Comparison of Statuses

The table below gives a concise overview of the labels used for DAML features and components.

9.1. DAML Ecosystem Overview 449

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Table 1: Feature Maturities

Stable Beta Alpha Labs

Func-

tional-

ity

Func-

tional

Com-

plete-

ness

Functionally com-

plete

Considered func-

tionally complete,

but subject to

change according

to usability testing

MVP-level function-

ality covering at

least a few core

use-cases

Functionality cov-

ering one specific

use-case it was

made for

Non-

functional

Re-

quire-

ments

Perfor-

mance

Unless stated

otherwise, the fea-

ture can be used

without concern

about system

performance.

Current perfor-

mance impacts

and expected per-

formance for the

stable release are

documented.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Com-

patibil-

ity

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

The feature may

only work against

specific DAML

integrations, or

specific API ver-

sions, including

Early Access ones.

The feature may

only work against

specific DAML

integrations, or

specific API ver-

sions, including

Early Access ones.

Stability

& Error

Recov-

ery

The feature is long-

term stable and

supports recovery

fit for a production

system.

No known repro-

ducible crashes

which can’t be

recovered from.

There is still an

expectation that

new issues may be

discovered.

The featuremaynot

be stable and lack

error recovery.

The featuremaynot

be stable and lack

error recovery.

Re-

leases

and

Support

Distri-

bution

and Re-

leases

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Releases and dis-

tribution may be

separate.

Support Covered by stan-

dard commercial

support terms.

Hotfixes for critical

bugs and secu-

rity issues are

available.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Only receives fixes

with low priority.

Depre-

cation

May be removed

with any newmajor

version 12 months

after the date of

deprecation.

May be removed

with any newminor

version 1 month

after the date of

deprecation.

May be removed

without warning.

May be removed

without warning.

Covered

by Se-

mantic

Version-

ing

Yes, part of the

0public API0.

No, but breaking

changes will be

documented.

No, and changes

may be poorly

documented.

No, and changes

may be poorly

documented.

Docu-

menta-

tion

Basic

Use

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Basic documenta-

tion as part of main

docs.

Documentation

may be sparse and

separate from the

main docs.

API,

Func-

tional-

ity, and

Gaps

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Rough indication of

targeted function-

ality and current

limitations.

May be undocu-

mented.

Com-

patibil-

ity

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Current compati-

bility documented

as part of main

docs.

May be undocu-

mented.

450 Chapter 9. DAML Ecosystem

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

9.1.2 Feature and Component Statuses

This page gives an overview of the statuses of released components and features according to Status

Definitions. Anything not listed here implicitly has status 0Labs0, but it’s possible that something

accidentally slipped the list so if in doubt, please contact us.

9.1.2.1 Ledger API

Component/Feature Status Dep-

re-

cated

on

Ledger API specification including all semantics of >= DAML-LF 1.6 Stable

Numbered (ie non-dev) Versions of Proto definitions distributed via GitHub

Releases

Stable

Dev Versions of Proto definitions distributed via GitHub Releases Alpha

9.1.2.2 Integration Components

Component/Feature Status Dep-

re-

cated

on

Integration Kit Components Labs

CLI and test names of Ledger API Test Tool Beta

9.1.2.3 Runtime components

Component / Feature Status Dep-

re-

cated

on

JSON API

HTTPendpointsunder/v1/ includingstatus codes, authentication, query lan-

guage and encoding.

Stable

daml json-api CLI for development. (as specified using daml json-api --

help)

Stable

Stand-alone distribution for production use, including CLI specified in --

help.

Stable

Triggers

DAML API of individual Triggers Beta

Development CLI to start individual triggers in dev environment (daml trigger) Beta

/tools/trigger-service (daml trigger-service) Alpha

Extractor

Extractor (daml extractor) Labs

9.1. DAML Ecosystem Overview 451

https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/protobufs-1.6.0-snapshot.20201007.5314.0.b4a47d0b.zip
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/protobufs-1.6.0-snapshot.20201007.5314.0.b4a47d0b.zip
https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/protobufs-1.6.0-snapshot.20201007.5314.0.b4a47d0b.zip

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

9.1.2.4 Libraries

Component / Feature Status Dep-

re-

cated

on

Scala Ledger API Bindings

daml codegen scala CLI and generated code Stable,

Depre-

cated

2020-

10-14

bindings-scala_2.12 library and its public API Stable,

Depre-

cated

2020-

10-14

Java Ledger API Bindings

daml codegen java CLI and generated code Stable

bindings-java library and its public API. Stable

bindings-rxjava library and its public API excluding the reactive components

in package com.daml.ledger.rxjava.components.

Stable

Java Reactive Components in the com.daml.ledger.rxjava.components

package of bindings-rxjava.

Stable,

Depre-

cated

2020-

10-14

Maven artifact daml-lf-1.6-archive-java-proto Stable

Maven artifact daml-lf-1.7-archive-java-proto Stable

Maven artifact daml-lf-1.8-archive-java-proto Stable

Maven artifact daml-lf-dev-archive-java-proto Alpha

Node.js Ledger API Bindings

@digital-asset/bindings-js Node.js library Stable,

Depre-

cated

2020-

10-14

JavaScript Client Libraries

daml codegen js CLI and generated code Stable

@daml/types library and its public API Stable

@daml/ledger library and its public API Stable

@daml/react library and its public API Stable

DAML Libraries

The DAML Standard Library Stable

The DAML Script Library Stable

The DAML Trigger Library Stable

9.1.2.5 Developer Tools

Component / Feature Status Dep-

re-

cated

on

SDK

Windows SDK (installer) Stable

Mac SDK Stable

Continued on next page

452 Chapter 9. DAML Ecosystem

https://github.com/digital-asset/daml/releases/download/v1.6.0-snapshot.20201007.5314.0.b4a47d0b/daml-sdk-1.6.0-snapshot.20201007.5314.0.b4a47d0b-windows.exe

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Table 2 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

Linux SDK Stable

DAML Assistant (daml) with top level commands

0 --help

0 version

0 install

0 uninstall

Stable

daml start helper command and associated CLI (daml start --help) Stable

daml deploy helper command and associated CLI (daml deploy --help) Stable

Assistant commands to start Runtime Components: daml json-api`,

``daml trigger, daml trigger-service, and daml extractor.

See

Run-

time

compo-

nents.

DAML Projects

daml.yaml project specification Stable

Assistant commands new, create-daml-app, and init. Note that the tem-

plates created by daml new and create-daml-app are considered example

code, and are not covered by semantic versioning.

Stable

DAML Studio

VSCode Extension Stable

daml studio assistant command Stable

Code Generation

daml codegen assistant commands See Li-

braries.

Sandbox Development Ledger

daml sandbox assistant command and documented CLI under daml

sandbox --help.

Stable

DAML Sandbox in Memory (ie without the --sql-backend-jdbcurl flag) Stable

DAML Sandbox on Postgres (iw with the --sql-backend-jdbcurl flag) Stable

DAML Sandbox Classic and associated CLIs daml sandbox-classic, daml

start --sandbox-classic

Stable,

Depre-

cated

2020-

04-09

DAML Compiler

daml build CLI Stable

daml damlc CLI Stable

Compilation and packaging (daml damlc build) Stable

Legacy packaging command (daml damlc package) Stable,

Depre-

cated

2020-

10-14

In-memory Scenario/Script testing (daml damlc test) Stable

DAR File inspection (daml damlc inspect-dar). The exact output is only

covered by semantic versioning when used with the --json flag.

Stable

DAR File validation (daml damlc validate-dar) Stable

Continued on next page

9.1. DAML Ecosystem Overview 453

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

Table 2 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

DAML Linter (daml damlc lint) Stable

DAML REPL (daml damlc repl) See

DAML

REPL

head-

ing

below

DAML Language Server CLI (daml damlc ide) Labs

DAML Documentation Generation (daml damlc docs) Labs

DAML Model Visualization (daml damlc visual and daml damlc visual-

web)

Labs

daml doctest Labs

Scenarios and Script

Scenario DAML API Stable

Script DAML API Stable

DAML Scenario IDE integration Stable

DAML Script IDE integration Stable

DAML Script Library See Li-

braries

daml test in-memory Script and Scenario test CLI Stable

daml test-script Sandbox-based Script Testing Stable

daml script CLI to run Scripts against live ledgers. Stable

Navigator

DAML Navigator Development UI (daml navigator server) Stable

Navigator Config File Creation (daml navigator create-config) Stable

DAML Navigator Console (daml navigator console) Labs

Navigator graphQL Schema (daml navigator dump-graphql-schema) Labs

DAML REPL Interactive Shell

daml repl CLI Stable

DAML and meta-APIs of the REPL Stable

Ledger Administration CLI

daml ledger CLI and all subcommands. Stable

This page is intended to give youanoverviewof the components that constitute theDAMLEcosystem,

what status they are in, and how they fit together. It lays out DAML’s 0public API0 in the sense of Se-

mantic Versioning, and is a prerequisite to understanding DAML’s Portability, Compatibility, and Support

Durations.

The pages Status Definitions and Feature and Component Statuses give a fine-grained view of what labels

like 0Alpha0 and 0Beta0 mean, which components expose public APIs and what status they are in.

9.1.3 Architecture

A high level view of the architecture of a DAML application or solution is helpful to make sense of

how individual components, APIs and features fit into the DAML Stack.

454 Chapter 9. DAML Ecosystem

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

9.1.3.1 DAML Networks

At the bottom of every DAML Application is a DAML Network, a distributed, or possibly centralized

persistence infrastructure together with DAML Drivers. DAML Drivers enable the persistence infras-

tructure to act as a consensus, messaging, and in some cases persistence layer for DAML Applica-

tions. Most DAML Drivers will have a public API, but there are no _uniform_ public APIs on DAML

Drivers. This does not harm application portability since applications only interact with DAML Net-

works through the Participant Node. A good example of a public API of a DAML Driver is the command

line interface of DAML for Postgres. It’s a public interface, but specific to the Postgres driver.

9.1.3.2 Participant Nodes

On top of, or integrated into the DAML Drivers sits a Participant Node, that has the primary purpose

of exposing the DAML Ledger API. In the case of _integrated_DAMLDrivers, the Participant Node usu-

ally interacts with the DAML Drivers through solution-specific APIs. In this case, Participant Nodes

can only communicate with DAMLDrivers of one DAMLNetwork. In the case of _interoperable_DAML

Drivers, the Participant Node communicates with the DAML Drivers through the uniform Canton Pro-

tocol. The Canton Protocol is versioned and has some cross-version compatibility guarantees, but is

not a public API. So Participant nodes may have public APIs like monitoring and logging, command

line interfaces or similar, but the only _uniform_ public API exposed by all Participant Nodes is the

Ledger API.

9.1.3.3 Integration Components

DAML Drivers and Participant Nodes share a lot of components between underlying DLTs or

Databases. These shared components are called the Integration Components, or sometimes the

DAML Integration Kit.

9.1. DAML Ecosystem Overview 455

https://github.com/digital-asset/daml/blob/master/ledger/daml-on-sql/README.rst
https://www.canton.io/docs/stable/user-manual/index.html
https://www.canton.io/docs/stable/user-manual/index.html

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

9.1.3.4 Ledger API

The Ledger API is the primary interface that offers forward andbackward compatibility betweenDAML

Networks and Applications. As you can see in the diagram above, all interaction between compo-

nents above the Participant Node and the Participant Node or DAML Network happen through the

Ledger API. The Ledger API is a public API and offers the lowest level of access to DAML Ledgers sup-

ported for application use.

9.1.3.5 Runtime Components

Runtime components are standalone components that run alongside Participant Nodes or Applica-

tions and expose additional services like query endpoints, automations, or integrations. Each Run-

time Component has public APIs, which are covered in Feature and Component Statuses. Typically there

is a command line interface, and one or more 0Runtime APIs0 as indicated in the above diagram.

9.1.3.6 Libraries

Libraries naturally provide public APIs in their target language, be it DAML, or secondary languages

like JavaScript or Java. For details on available libraries and their interfaces, see Feature and Compo-

nent Statuses.

9.1.3.7 Generated Code

The developer tools in the SDK allow the generation of code for some languages from a DAML Model.

This generated code has public APIs, but is not independently versioned, but depends on the SDK

version and source of the generated code, like a DAML package. In this case, the version of the SDK

used covers changes to the public API of the generated code.

9.1.3.8 SDK

The SDK consists of the developer tools used to develop user code, both DAML and in secondary

languages, to generate code, and to interact with running applications via Runtime, and Ledger API.

The SDK has a broad public API covering the DAML Language, CLIs, IDE, and Developer tools, but few of

those APIs are intended for runtime use in a production environment. Exceptions to that are called

out on Feature and Component Statuses.

9.2 Releases and Versioning

9.2.1 Versioning

All DAML components follow Semantic Versioning. In short, this means that there is a well defined

0public API0, changes or breakages to which are indicated by the version number.

Stable releaseshave versionsMAJOR.MINOR.PATCH. Segments of the version are incrementedaccord-

ing to the following rules:

1. MAJOR version when there are incompatible API changes,

2. MINOR version when functionality is added in a backwards compatible manner, and

3. PATCH version when there are only backwards compatible bug fixes.

DAML’s 0public API0 is laid out in the DAML Ecosystem Overview.

456 Chapter 9. DAML Ecosystem

https://semver.org/

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

9.2.2 Cadence

Regular snapshot releases are made every Wednesday, with additional snapshots released as

needed. These releases contain SDK, Libraries, Runtime Components, and Integration Components,

both from the daml repository as well as some others.

Stable versions are released once a month. See Process below for the usual schedule. This schedule

is a guide, not a guarantee, and additional releases may be made, or releases may be delayed for

skipped entirely.

No more than one major version is released every six months, barring exceptional circumstances.

Individual DAML Drivers follow their own release cadence, using already released Integration Com-

ponents as a dependency.

9.2.3 Release Notes

Release notes for each release are published on the Release Notes section of the DAML Driven blog.

9.2.4 Roadmap

Once a month Digital Asset publishes a community update to accompany the announcement of the

release candidate for the next release. The community update contains a section outlining the next

priorities for development. You can find community updates on the DAML Driven Blog, or subscribe

to the mailing list or social media profiles on https://daml.com/ to stay up to date.

9.2.5 Process

Weekly snapshot andmonthly stable releases follow a regular process and schedule. The process is

documented in the DAML repository so only the schedule for monthly releases is covered here.

Selecting a Release Candidate

This is done by the DAML core engineering teams on the first Monday of every month.

The monthly releases are time-based, not scope-based. Furthermore, DAML development

is fully HEAD-based so both the repository and every snapshot are intended to be in a

fully releasable state at every point. The release process therefore starts with 0selecting

a release candidate0. Typically the Snapshot from the preceding Wednesday is selected

as the release candidate.

Release Notes and Candidate Review

After selecting the release candidate, Release Notes are written and reviewed with a par-

ticular view towards unintended changes and violations of Semantic Versioning.

Release Candidate Refinement

If issues surface in the initial review, the issues are resolved and different Snapshot is

selected as the release candidate.

Release Candidate Announcement

Barring delays due to issues during initial review, the release candidate is announced

publicly with accompanying Release Notes on the Thursday following the first Monday

of every Month.

Communications, Testing and Feedback

9.2. Releases and Versioning 457

https://github.com/digital-asset/daml
https://daml.com/release-notes/
https://daml.com/daml-driven
https://daml.com/
https://github.com/digital-asset/daml/blob/master/release/RELEASE.md

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

In the days following the announcement, the release is presented and discussed with

both commercial and community users. It is also put through its paces by integrating it

in project:DABL and several ledger integrations.

Release Candidate Refinement II

Depending on feedback and test results, new release candidates may be issued itera-

tively. Depending on the severity of changes from release candidate to release candidate,

the testing period is extended more or less.

Release

Assuming the release is not postponed due to extended test periods or newly discovered

issues in the release candidate, the release is declared stable and given a regular version

number on the second Wednesday after the first Monday of the Month.

Fig. 1: The release process timeline illustrated by example of September 2020.

9.3 Portability, Compatibility, and Support Durations

The DAML Ecosystem offers a number of forward and backward compatibility guarantees aiming to

give the Ecosystem as a whole the following properties. See Architecture for the terms used here and

how they fit together.

Application Portability

A DAML application should not depend on the underlying Database or DLT used by a DAML

Network.

Network Upgradeability

Ledger Operators should be able to upgrade DAML Network or Participant Nodes seam-

lessly to stay up to date with the latest features and fixes. A DAML application should be

able to operate without significant change across such Network Upgrades.

SDK Upgradeability

Application Developers should be able to update their developer tools seamlessly to stay

up to date with the latest features and fixes, and stay able to maintain and develop their

existing applications.

9.3.1 Ledger API Compatibility: Application Portability

Application Portability and to some extent Network Upgradeability are achieved by intermediating

through the Ledger API. As per Versioning, and Architecture, the Ledger API is independently semanti-

cally versioned, and the compatibility guarantees derived from that semantic versioning extend to

the entire semantics of the API, including the behavior of DAML Packages on the Ledger. Since all

458 Chapter 9. DAML Ecosystem

https://projectdabl.com

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

interaction with a DAML Ledger happens through the DAML Ledger API, a DAML Application is guar-

anteed to work as long as the Participant Node exposes a compatible Ledger API version.

Specifically, if a DAML Application is built against Ledger API version X.Y.Z and a Participant Node

exposes Ledger API version X.Y2.Z2, the application is guaranteed to work as long as Y2.Z2 >= Y.Z.

Currently, the Ledger API version is the same as the version of the Integration Components used in

the Participant Node. This is mostly the case because there has been no need for the versions to

diverge yet. This will likely change at the latest when one part of the ecosystemmoves to version 2.X.

Integration Components, DAML Drivers, and Participant Nodes advertise the Ledger API version they

expose.

As a concrete example, DAML for Postgres 1.4.0 has the Participant Node integrated, and exposes

Ledger API version 1.4.0 and the DAML for VMware Blockchain 1.0 Participant Nodes expose Ledger API

version 1.6.0. So any application that runs onDAML for Postgres 1.4.0 will also run onDAML for VMware

Blockchain 1.0.

9.3.2 Driver and Participant Compatibility: Network Upgradeability

Given the Ledger API Compatibility above, network upgrades are seamless if they preserve data, and

Participant Nodes keep exposing the same or a newer minor version of the same major Ledger API

Version. The semantic versioning of DAML Drivers and Participant Nodes gives this guarantee. Up-

grades from one minor version to another are data preserving, and major Ledger API versions may

only be removed with a newmajor version of Integration Components, DAML Drivers and Participant

Nodes.

As an example, from an application standpoint, the only effect of upgrading DAML for Postgres 1.4.0

to DAML for Postgres 1.6.0 is an uptick in the Ledger API version. There may be significant changes to

components or database schemas, but these are not public APIs.

9.3.3 SDK, Runtime Component, and Library Compatibility: SDK Upgradeability

As long as a major Ledger API version is supported (see Ledger API Support Duration), there will be

supported versions of SDK, Runtime Components, and Libraries able to target all minor versions of

that major version. This has the obvious caveat that new features may not be available with old

Ledger API versions.

For example, an application built and compiled with SDK, Libraries and Runtime Components 1.4.0

against Ledger API 1.4.0, it can still be compiled using SDK 1.6.0 and can be run against Ledger API

1.4.0 using 1.6.0 libraries and runtime components.

9.3.4 Ledger API Support Duration

Major Ledger API versions behave like stable features in Status Definitions. They are supported from

the time they are first released as 0stable0 to the point where they are removed from Integration

Components and SDK following a 12 month deprecation cycle. The earliest point a major Ledger API

version canbedeprecated iswith the release of the nextmajor version. The earliest it can be removed

is 12 months later with a major version release of the Integration Components.

Other than for hotfix releases, new releases of the IntegrationComponentswill only support the latest

minor/patch version of each major Ledger API version.

As a result we can make this overall statement:

An application built using SDK, Libraries and Runtime Components U.V.W against Ledger API

X.Y.Z can be maintained using any SDK, Library amd Runtime Components version U2.V2.W2 >=

9.3. Portability, Compatibility, and Support Durations 459

DAML SDK Documentation, 1.6.0-snapshot.20201007.5314.0.b4a47d0b

U.V.W as long as Ledger API major version X is still supported at the time of release of U2.V2.W2,

and run against any DAML Network with Participant Nodes exposing Ledger API X.Y2.Z2 >= X.Y.Z.

9.4 Getting Help

Have questions or feedback? You’re in the right place.

0 Questions: Forum

For 0how do I?0, 0why does something work this way0 or 0I’ve got a programming problem I’m

trying to solve0 questions, the Questions category on our forum is the best place to ask.

If you’re not sure what makes a good question, take a look at our guide on the topic.

0 Feedback: Forum

If you want to give feedback, you canmake a topic in the General category on our forum or on

Slack in the #public channel.

When you’re in the community Forum or on Stack Overflow, please keep to our Code of Conduct.

9.4.1 Support expectations

For community users (ie on our Forum and Stack Overflow):

0 Timing: You can enjoy the support of the community, which is provided for you out of their own

good will and free time. On top of that, a Digital Asset employee will try to reply to unanswered

questions within two business days.

Business days are affected by public holidays. Engineers contributing to DAML are mostly lo-

cated in Zurich and New York, so please be mindful of the public holidays in those locations

(timeanddate.commaintains an unofficial list of holidays for both Switzerland and the United

States).

0 Public support: We only offer public support - for example, in the Questions category on our

forum or on Slack in the #public channel.

We can’t answer questions in private messages or over email, so please only ask questions in

public forums.

0 Level of support: We’re happy to answer questions about error messages you’re encountering,

or discuss DAML design questions. However, we can’t provide more extensive consultation on

how to build your DAML application or the languages, frameworks, libraries and tools you may

use to build it.

If you need private support, or want consultation from Digital Asset about how to build your DAML

application, they offer paid support. Please contact Digital Asset to ask about pricing.

460 Chapter 9. DAML Ecosystem

https://discuss.daml.com
https://discuss.daml.com/t/how-to-ask-questions/304
https://discuss.daml.com
https://slack.daml.com
https://github.com/digital-asset/daml/blob/master/CODE_OF_CONDUCT.md
https://www.timeanddate.com
https://www.timeanddate.com/holidays/switzerland/
https://www.timeanddate.com/holidays/us/
https://www.timeanddate.com/holidays/us/
https://discuss.daml.com
https://discuss.daml.com
https://slack.daml.com

	Table of contents
	Getting started
	Installing the SDK
	1. Install the dependencies
	2. Install the SDK
	Next steps
	Alternative: manual download

	Getting Started with DAML
	Prerequisites
	Running the app

	Testing Your App
	Setting up our tests
	Example: Logging in and out
	Accessing UI elements
	Writing CSS Selectors
	The Full Test Suite

	Writing DAML
	An introduction to DAML
	1 Basic contracts
	2 Testing templates using DAML Script
	3 Data types
	4 Transforming data using choices
	5 Adding constraints to a contract
	6 Parties and authority
	7 Composing choices
	8 Working with Dependencies
	9 Functional Programming 101
	10 Intro to the DAML Standard Library
	11 Testing DAML Contracts

	Language reference docs
	Overview: template structure
	Reference: templates
	Reference: choices
	Reference: updates
	Reference: data types
	Reference: built-in functions
	Reference: expressions
	Reference: functions
	Reference: scenarios
	Reference: DAML file structure
	Reference: DAML packages
	Contract keys

	Testing using scenarios
	Scenario syntax
	Running scenarios in DAML Studio
	Examples

	Troubleshooting
	Error: “<X> is not authorized to commit an update”
	Error “Argument is not of serializable type”
	Modelling questions
	Testing questions

	Good design patterns
	Initiate and Accept
	Multiple party agreement
	Delegation
	Authorization
	Locking
	Diagram legends

	Building applications
	Application architecture
	Backend
	Frontend
	Authorization
	Developer workflow

	JavaScript Client Libraries
	JavaScript Code Generator
	@daml/react
	@daml/ledger
	@daml/types

	HTTP JSON API Service
	DAML-LF JSON Encoding
	Query language
	Running the JSON API
	HTTP Status Codes
	Create a new Contract
	Creating a Contract with a Command ID
	Exercise by Contract ID
	Exercise by Contract Key
	Create and Exercise in the Same Transaction
	Fetch Contract by Contract ID
	Fetch Contract by Key
	Get all Active Contracts
	Get all Active Contracts Matching a Given Query
	Fetch Parties by Identifiers
	Fetch All Known Parties
	Allocate a New Party
	List All DALF Packages
	Download a DALF Package
	Upload a DAR File
	Streaming API

	DAML Script
	DAML Script Library
	Usage
	Using DAML Script for Ledger Initialization
	Using DAML Script in Distributed Topologies
	Running DAML Script against Ledgers with Authorization
	Running DAML Script against the HTTP JSON API

	DAML REPL
	Usage
	What is in scope at the prompt?
	Using DAML REPL without a Ledger
	Connecting via TLS
	Connection to a Ledger with Authorization
	Using DAML REPL to convert to JSON

	Upgrading and extending DAML applications
	Automating the Upgrade Process
	Structuring upgrade contracts
	Building and deploying coin-1.0.0
	Create some coin-1.0.0 coins
	Building and deploying coin-2.0.0
	Building and deploying coin-upgrade
	Upgrade existing coins from coin-1.0.0 to coin-2.0.0
	Further Steps

	The Ledger API
	The Ledger API services
	gRPC
	Ledger API Reference
	How DAML types are translated to protobuf
	How DAML types are translated to DAML-LF
	Java bindings
	Scala bindings
	Node.js bindings
	Creating your own bindings
	What’s in the Ledger API
	DAML-LF

	Deploying to DAML ledgers
	Overview of DAML ledgers
	Commercial Integrations
	Open Source Integrations
	DAML Ledgers in Development

	Deploying to a generic DAML ledger
	Connecting via TLS
	Configuring Request Timeouts

	DAML Ledger Topologies
	Global State Topologies
	Partitioned Ledger Topologies

	SDK tools
	DAML Assistant (daml)
	Full help for commands
	Configuration files
	Building DAML projects
	Managing SDK releases
	Terminal Command Completion

	DAML Studio
	Installing
	Creating your first DAML file
	Supported features
	Common scenario errors
	Working with multiple packages

	DAML Sandbox
	Contract Identifier Generation
	Running with persistence
	Running with authentication
	Running with TLS
	Command-line reference
	Metrics

	Navigator
	Navigator functionality
	Installing and starting Navigator
	Choosing a party / changing the party
	Logging out
	Viewing templates or contracts
	Using Navigator
	Authorizing Navigator
	Advanced usage

	Background concepts
	Glossary of concepts
	DAML
	SDK tools
	Building applications
	General concepts

	DAML Ledger Model
	Structure
	Integrity
	Privacy
	DAML: Defining Contract Models Compactly

	Examples
	DAML examples

	Early Access Features
	Navigator Console
	Querying the Navigator local database
	Try out the Navigator Console on the Quickstart
	Displaying status information
	Choosing a party
	Advancing time
	Inspecting templates
	Inspecting contracts, transactions, and events
	Querying data
	Creating contracts
	Exercising choices
	Using Navigator outside the SDK
	Using Navigator with DAML Ledgers

	Extractor
	Introduction
	Setting up
	Trying it out
	Running the Extractor
	Connecting the Extractor to a ledger
	Connecting to your database
	Authorize Extractor
	Full list of options
	Output format
	Transactions
	Contracts
	Exercises
	JSON format
	Examples of output
	Dealing with schema evolution
	Logging
	Continuity
	Fault tolerance
	Troubleshooting

	DAML Integration Kit
	Ledger API Test Tool
	DAML Integration Kit status and roadmap
	Implementing your own DAML Ledger
	Deploying a DAML Ledger
	Testing a DAML Ledger
	Benchmarking a DAML Ledger

	DAML Triggers - Off-Ledger Automation in DAML
	DAML Trigger Library
	Usage
	When not to use DAML triggers

	Visualizing DAML Contracts
	Example: Visualizing the Quickstart project
	Visualizing DAML Contracts - Within IDE
	Visualizing DAML Contracts - Interactive Graphs

	DAML Ecosystem
	DAML Ecosystem Overview
	Status Definitions
	Feature and Component Statuses
	Architecture

	Releases and Versioning
	Versioning
	Cadence
	Release Notes
	Roadmap
	Process

	Portability, Compatibility, and Support Durations
	Ledger API Compatibility: Application Portability
	Driver and Participant Compatibility: Network Upgradeability
	SDK, Runtime Component, and Library Compatibility: SDK Upgradeability
	Ledger API Support Duration

	Getting Help
	Support expectations

