Daml SDK Documentation

DAML

Digital Asset

Version : sdk

Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Getting started 1
11 Installing the SDK o e e e 1
1.1.1 1. Installing the Dependencies 1

11.2 2. Installing the SDK o e 1

11.3 Installing Daml Enterprise. o i e 1

114 DownloadingManually e 2

1.1.5 Next Steps o e e 2

1.2 Getting Started with Daml L e 6
1.2.1 Prerequisites 6

122 Runningthe App o i i e e 6

1.3 App Architecture e 10
1.3.1 TheDamlModel. e n

1.3.2 TypeScriptCode Generation ittt 13

133 TheUl .. e e 13

14 YourFirstFeature. e 16
1.4 DamlChanges e 16

142 Messaging Ul e 17

143 RunningtheUpdated Ul 21

1.4.4 NexXt StepsS . . . o o e e e e 23

2 Daml Guide 24
21 Writing Daml oL e e e 24
2.11 AnintroductiontoDaml L e 24

2.1.2 Languagereference doCsS o it it e e 109

213 Thestandard library e 155

214 Gooddesignpatterns 226

2.2 Building Applications e e 244
221 Application architecture e 244

2.2.2 JavaScriptClientLibraries. i 249

223 HTTPJSON APISErVICE . & o v vt it e 268

224 DamlScript e 321

225 DamlIREPL e e e e 334

2.2.6 Upgrading and Extending Daml applications 336

227 Authorization e e 347

228 Theledger APl e 351

229 Commanddeduplication. e 476
2.210 DamlTriggers - Off-Ledger AutomationinDaml 483

2211 Trigger ServiCe i e e e 501

2.2.12 Auth Middleware o o e e e e e 514

2.3 DeployingtoDamlledgers. i e 521
2.3.01 OverviewofDamlledgers 521
2.3.2 DeployingtoagenericDamlledger 522
2.3.3 DamlLedgerTopologies i e 524
24 Operating Daml e e e e e 529
240 Operating Daml o e e e 529
24.2 DamlParticipantpruning e 556
2.5 DeveloperTools e e e e 559
251 DamlAssistant (daml) i e e 559
252 DamlStudio o e e 564
2.5.3 DamlSandbox 573
2.54 Navigator e e e 583
2.5.5 Damlcodegen e 593
256 DamlProfiler. e 595
Canton Guide 597
3.1 IntroductiontoCanton e 597
3.1.1 SUPPOIT . e 597
312 LICENSE . . e e 597
3.2 Tutorials e e 597
3.2.1 CantonDemo o i e 599
3.22 Getting Started 599
323 DamlSDKandCanton 619
324 KeyConcepts i e e 622
3.25 Composability. e 624
3.3 UserManual e 641
3.31 ObtainingCanton 641
3.3.2 InstallingCanton e e e 642
3.33 RunninginDocker 647
3.3.4 StaticConfiguration e 649
3.3.,5 Canton Administration APIS L L 665
3.3.6 Command-line Arguments e 705
3.37 CantonConsole e 708
3.3.8 ContractKeysinCanton i, 793
3.3.9 Enterprise DomainIntegrations 803
33100 Errorcodest e e 812
3.3.11 High AvailabilityUsage e 853
3.3.12 IdentityManagement 859
3303 MONItOring . . o o e e e e e e 871
3.3.14 Operational Processes i e 889
3305 Versioning ot e e e e e e e 905
3.3.16 Frequently Asked Questions. e 907
34 Architecture In-Depth e e 910
3.4.1 High-Level Requirements 910
342 Overviewand Assumptions e e 926
3.4.3 Domain Architecture and Integrations 943
344 HighAvailability e 953
3.4.5 Identity Management 960
34.6 ResearchPublications 982

347 SECUNLY . o v ot e e e e e e e e e 983

4 Help 985
41 Troubleshooting e e 985
4.1.1 Error: <X>is not authorized tocommitanupdate 985

41.2 Error Argument is not of serializabletype 985

413 Modeling questions e 986

414 Testing questions 988

42 Getting Help . . . o o e e e 988
4.2.1 Supportexpectations L 988

4.3 Portability, Compatibility, and Support Durations., 989
4.3.1 Ledger API Compatibility: Application Portability 989

4.3.2 Driver and Participant Compatibility: Network Upgradeability 990

4.3.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability .. 990

434 Ledger APl SupportDuration e e 990

5 Reference 992
51 Glossaryof concepts e 992
5.11 Daml . . o e 992

512 Developertools e e 996

5.1.3 Building applications e 997

514 Generalconcepts i e e 999

52 DamlLedgerModel. e 999
5.2.1 Structure e 1000

522 INtegrity . . . o vttt e 1007

52.3 PrivaCy i e e e e 1019

524 Daml: Defining Contract Models Compactly 1027
525 EXCeptions e 1028
5.3 Identity and Package Management e 1034
53.1 IdentityManagement L 1035
53.2 Package Management e 1036
54 TIME . . o e e e e e e e e e e e e e e e e 1038
5.4.1 Ledgertime e e e e 1038
542 Recordtime 1038
543 GuUarantees. e e 1038
544 lLedgertimemodel L 1038
545 Assigningledgertime. 1039
55 Causalityand Local Ledgers o 1039
551 Causalityexamples e 1039
552 Causalitygraphs e 1042
553 Localledgers e 1046
5.6 DamlECOSYStEM OVEIVIEW o o i it e e e e e e e e e e e e e e e e 1049
5.6.1 Status Definitions e 1049
56.2 Featureand ComponentStatuses o, 1052
5.6.3 Architecture L 1055
56.4 DamlNetworks e 1055
5.6.5 ParticipantNodes e 1055
56.6 Ledger APl e e e 1056
5.6.7 DamlComponents i e e e e e e e e 1056

57 Releasesand Versioning it i e 1057
571 VErsioning . . . o v i i e e e 1057

572 CadencCe. e 1057

57.3 SupportDuration. e e 1057

574 Release NOtesS o i e e e e 1057

575 RoAadmMap . . . ot i e e e e e 1058
57.6 PrOCESS . . . i i i it e e e 1058
58 System Requirements. e 1058
6 Advanced 1060
6.1 Ledger EXport e e e e e 1060
6.1.1 Introduction L e 1060
6.1.2 USBEE . . it et e e e e e e 1060
B.1.3 OULPUL o e e e e e e e e 1061
6.1.4 Executing the Export e 1062
6.1.5 LedgerOffsets e 1062
6.1.6 Unknown Contractlds i 1062
6.17 Transaction TiMet it i e e 1063
B.1.8 Caveals e e 1063
6.2 Visualizing Daml Contracts i i i e e e e 1063
6.2.1 Example: Visualizing the Quickstartproject 1063
6.22 Visualizing Daml Contracts-WithinIDE 1064
6.2.3 Visualizing Daml Contracts - Interactive Graphs 1064
6.3 Ledger Interoperability e 1064
6.3.1 Interoperabilityexamples 1065
6.3.2 Multi-ledger causality graphs 1067
6.3.3 Ledger-aware projection 1071
6.34 Ledger APlordering guarantees i, 1075
6.4 Non-repudiation e e e e e e e e e 1076
6.4.1 Architecture o e e 1076
6.42 Runningthe server-side components 1076
643 Usingtheclient. e 1077
6.44 Non-repudiationoverthe HTTPJSONAPI i i .. 1077

6.45 TLSSUPPOrt e 1077

Chapter1

Getting started

1.1 Installing the SDK

1.1.1 1. Installing the Dependencies
The Daml SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.

2. JDK 8 or greater. If you don’t already have a JDK installed, try Eclipse Adoptium.
As part of the installation process you may need to set up the JAVA HOME variable. You can
find instructions for this process on Windows,macOS, and Linux here.

11.2 2. Installing the SDK
1.1.2.]1 Windows 10

Download and run the installer, which will install Daml and set up the PATH variable for you.

1.1.2.2 Mac and Linux

Open a terminal and run:

curl -sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out
and log in again.

If the dam1l command is not available in your terminal after logging out and logging in again, you need to
manually. You can find instructions on how to do this here.

11.3 Installing Daml Enterprise
If you have a license for Daml Enterprise, you can install it as follows:

On Windows, download the installer from Artifactory instead of Github releases.

On Linux and MacOS, download the corresponding tarball, extract it and run ./install.sh.
Afterwards, modify the global daml-config.yaml and add an entry with your Artifactory API key.
The API key can be found in your Artifactory user profile.

https://code.visualstudio.com/download
https://adoptium.net
https://github.com/digital-asset/daml/releases/download/v\{sdk\}/daml-sdk-\{sdk\}-windows.exe
https://digitalasset.jfrog.io/ui/repos/tree/General/sdk-ee

Daml SDK Documentation, {sdk}

artifactory-api-key: YOUR API KEY

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml-config. yaml.
To overwrite a previously installed version with the corresponding Daml Enterprise version, use daml
install --force VERSION.

1.1.4 Downloading Manually

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

1.1.5 Next Steps

Follow the getting started guide.
Use daml --help to see all the commands that the Daml assistant (daml) provides.
If you run into any other problems, you can use the support page to get in touch with us.

11.5.1 Setting JAVA_HOME and PATH Variables

Windows

To set up JAVA HOME and PATH variables on Windows:

Setting the JAVA_HOME Variable

1. Search for Advanced System Settings (open Search, type advanced system settings and hit
Enter).

2. Find the Advanced tab and click Environment Variables.

3. Click Newinthe System variables section (if you want to set JAVA HOME system wide) orin
the User variables section (if you want to set JAVA HOME for a single user). This will open
a modal window for Variable name.

4. Inthe Variable name window type JAVA HOME, and for the Variable value setthe pathto
the JDK installation.

5. Click OKin the Variable name window.

6. Click OK in the tab and click Apply to apply the changes.

Setting the PATH Variable

The PATH variable is automatically set by the Windows installer.

Mac OS

First, determine whether you are running Bash or zsh. Open a Terminal and run:

echo S$SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which
case you are running zsh.

If you get any other output, you have a non-standard setup. If you’re not sure how to set up environ-
ment variables in your setup, ask on the Dam| forum and we will be happy to help.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/latest
https://discuss.daml.com

Daml SDK Documentation, {sdk}

Open a terminal and run the following commands. Copy/paste one line at a time if possible. None of
these should produce any output on success.

To set the variables in bash:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.bash profile
echo 'export PATH="SHOME/.daml/bin:$PATH"' >> ~/.bash profile

To set the variables in zsh:

echo 'export JAVA HOME="S (/usr/libexec/java home)"' >> ~/.zprofile
echo 'export PATH="SHOME/.daml/bin:S$SPATH"' >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will
not affect any exsting one.

To test the configuration of JAVA HOME (on either shell), open a new terminal and run:

echo SJAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

daml version

You should see the header SDK versions: followed by a list of installed (or available) SDK versions
(possibly a list of just one if you just installed).

If you do not see the expected outputs, contact us on the Daml forum and we will be happy to help.

Linux

To set up JAVA HOME and PATH variables on Linux for bash:
Setting the JAVA_HOME Variable
Javais typically installed in a folder like /usr/1ib/jvm/java-version. Before runningthe follow-

ing command make sure to change the java-version with the actual folder found on your com-
puter:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

Setting the PATH Variable

The installer will ask to set the PATH variable for you. If you want to set the PATH variable manually
instead, run the following command:

echo 'export PATH="SHOME/.daml/bin:$SPATH"' >> ~/.bash profile

Verifying the Changes

In order for the changes to take effect you will need to restart your computer. After the restart, verify
that everything was set up correctly using the following steps:

1.1. Installing the SDK 3

https://discuss.daml.com

Daml SDK Documentation, {sdk}

Verify the JAVA_HOME variable by running:

echo $JAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Then verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/
your username/.daml/bin.

11.5.2 Manually Installing the SDK

If you require a higher level of security, you can instead install the Daml SDK by manually download-
ing the compressed tarball, verifying its signature, extracting it and manually running the install
script.

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install the latest
release (1.4.0 at the time of writing), you would download the files daml-sdk-1.4.0-macos.
tar.gz and daml-sdk-1.4.0-macos.tar.gz.asc. Note that for Windows you can choose
between the tarball (ends in . tar.gz), which follows the same instructions as the Linux and
macOS ones (but assumes you have a number of typical Unix tools installed), or the installer,
which ends with . exe. Regardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-
mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg -—-keyserver https://keys.openpgp.org --search!!
—~4911A8DFE976ACDFAQ07130DBE8372C0C1C734C51

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2019-05-16 and expiring on 023-04-18. If
any of those details are different, something is wrong. In that case please contact Digital Asset
immediately.
Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to
work reliably for us), you can find the full public key at the bottom of this page.

4. Oncethe keyisimported, you can ask gpg to verify that the file you have downloaded has indeed
been signed by that key. Continuing with our example of 1.4.0 on macOS, you should have both
files in the current directory and run:

gpg —--verify daml-sdk-1.4.0-macos.tar.gz.asc

and that should give you a result that looks like:

4 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, {sdk}

gpg: assuming signed data in 'daml-sdk-1.4.0-macos.tar.gz'

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key E8372C0C1C734C51

gpg: Good signature from "Digital Asset Holdings, LLC
—<security@digitalasset.com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to thell
—owner.

Primary key fingerprint: 4911 A8DF E976 ACDF A071 30DB E837 2C0C 1C73[]
—4C51

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows
installer, in which case the next step is to double-click it):

tar xzf daml-sdk-1.4.0-macos.tar.gz
cd sdk-1.4.0
./install.sh

6. Just like for the more automated install procedure, you may want to add ~/.daml/bin to your
SPATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following
Bash command:

gpg --import < < (cat <<EOF

mMQENBFzdsasBCADO+ZcfZQATP6ceTh4WEX1L2Z2tetvUZGETaEs/UfBoJPmQ53bN
90MxudKhgB2mi8DuifYnHfLCvkxSgzfhj2IogV1S+Fa2x99Y819GausJoYfK9gwc
8YWKEKM81F15jA5UWJITsssKNxUddr/sxJIHIFfgGRQ0e6YeAcc5b0OA0gBESUrmxE
uGfOot9/MvLpDewjDE+21Q0Fi9RZuy7S8RMILTigq2IWbO5yI500FKeMQy/AJPmV 7y
gAyYUIeZZxvrYeBWi5JDsZ2HOSJIPV7ttD2MvkyXcIJCW/X£8FcleAoWJIUO IRWVwWW
BhZSDz+9mipwZBHENILMUVyEygG5A+vc/Ypt ABEBAAGONORPZ210YWwgQXNzZXQg
SG9sZGluZ3MsIEXMQyA8c2VidXJpdH1AZGlnaXRhbGFzc2VOLmNvbT6JAVQEEWET
AD4CGWMFCwkIBWIGFQoJCAsCBBYCAWECHgECF4AAWIQRJIEa] f6Xas36BxMNvoONywM
HHNMUQUCYHxZ3AUJB2EPMAAKCRDoNywMHHNMUfJpB/ 9G] 7KcebqtrXj4f54eL0Of1
RpKYUnBcBWjmrnj8eSOAYLy7C1lnkpP4H80A1DIWxs1nY6MIMOYmMPNgGz£4 /MONxa
PuFbRAfyblkUfujXikI2GFXwyUDEPp9JOWOTCOLMZkRxf92bFxTy9rD+Lx9EeBPd1
nfyID2TOKHOfYOpawqg]jvnLyVb/WENUogkhLRpDXFWrykCWDaWQOmFgDkLU2nYkb+
YyEfWgdcgF3Sbsad3AToRUpUL 6r1dPwCImtDPS8Ba/SxvcU31+9ksdcTsIko8BEY
BwOK5xkRenEDDwpZvTA2bHLS3iBWWOoWC52wyUOLzar+ha/YRgNjb8YBl1kYbLbwaN
UQENBFzdsasBCACSfr5pgxFm+AWPc7wiBSt 7uKNdxiRJIYydeoPqgmYZTvc8Um8pI
6JHtUrNxnx4WWKtj6iSPn5pSUrJbuedNAUsSBEFS509LZ0fcQKb5di ZLGHKtEOZttCaj
IryplRm961skmPmi3yYaHXg4GC/05Ra/bo3C+ZByv/W0JzntOxA3Pvc3c8Pw5sBm
63xu7iRrnIBtyFGD+MUAZxbN8dwYX00cmwuSFGxf/wa+aB8b7Ut9RP76sbDvFaXx
Ef314k8AwxUv1v+ozdNWmEBxplwR/Fra9i8EbCOV6EkCcModRhjbaNSPIbgkCOka
2cg¥plUDgf9FrKvkuir70dg75gSrPRwvFghrABEBAAGIJATWEGAEIACYCGWWWIQRJ
EajfoXas36BxMNvoNywMHHNMUQUCYHxZ3AUJB2EPMQAKCRDoONywMHHNMUYXRB/ 0b

(continues on next page)

1.1. Installing the SDK 5

Daml SDK Documentation, {sdk}

(continued from previous page)

ILn55mfnhJUFwal49Le5174E0L4vCAya6abDDVX/C7PJ1VEr+cXZi9gNJn9RTAJCz3
4yQeg3AFhgvTK/bEHTRVAfqeUf8TgPjI/gDacSFDhZjdsg3GMDolXpOoubp 9mN+Y
JFowLzulJ7DXEFVyICozuWeixcjtKz1ePX0GW80kcPzXCNwukcMrwCf45+0zF6YMb
yA2FyBmjjgAlHKM/oUapVoD2hmO3ptC5CAkfslxrsIUAfoStez9MrGoX1JOCudgn
aODLV3M1ty4HhdtO20+Akh6ay5fnrXQ5r2kGalICrfoFFKs70WpSDbsTsgQKexFC
rLmmBKjG6RQEWJIyVSUc8

=pV1b

1.2 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. Through the
example of a simple social networking application, you will learn:

1. How to build and run the application
2. The design of its different components (App Architecture)
3. How to write a new feature for the app (Your First Feature)

The goal is that by the end of this tutorial, you’ll have a good idea of the following:

What Daml contracts and ledgers are
How a user interface (Ul) interacts with a Daml ledger
How Daml helps you build a real-life application fast.

This is not a comprehensive guide to all Daml concepts and tools or all deployment options; these
are covered in-depth in the User Guide. For a quick overview of the most important Daml concepts
used in this tutorial you can refer to the Daml cheat-sheet.

With that, let’s get started!

1.2.1 Prerequisites

Make sure that you have the Daml SDK, Java 8 or higher, and Visual Studio Code (the only supported
IDE) installed as per the instructions in Installing the SDK.

You will also need some common software tools to build and interact with the template project:
Node and the associated package manager npm. You need node --version toreport atleast
12.22;if you have an older version, see this link for additional installation options.

A terminal application for command line interaction.

1.2.2 Running the App

To get the app up and running:

1. Open a terminal, select a folder in which to create your first application, and instantiate the tem-
plate project.

daml new create-daml-app --template create-daml-app

6 Chapter 1. Getting started

https://docs.daml.com/cheat-sheet/
https://nodejs.org/en/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Daml SDK Documentation, {sdk}

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

2. Change to the new folder:

cd create-daml-app

3. Open two terminal windows.
4. In one terminal, at the root of the create-daml-app directory, run the command:

daml start

Any commands starting with daml are using the Daml| Assistant, a command line tool in the SDK for
building and running Daml apps.

The command has started successfully when you see the INFO com.daml.http.Main$ -
Started server: ServerBinding(/127.0.0.1:7575) message in the terminal. The com-
mand does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file

2. Generates a JavaScript library in ui/daml.js to connect the Ul with your Daml code

3. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in
this case the running Sandbox)

We’ll leave these processes running to serve requests from our Ul.

5. In the second terminal, navigate to the create-daml-app/ui folder and use npm to install
the project dependencies:

cd create-daml-app/ui
npm install

This step may take a couple of moments. You should see success Saved lockfile. intheoutput
if everything worked as expected.

6. Start the Ul with:

npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000.

Once the web Ul has been compiled and started, you should see Compiled successfully! inyour
terminal. If you don’t, open http://localhost:3000 in a web browser. Depending on your firewall set-
tings, you may be asked whether to allow the app to receive network connections. Itis safe to accept.

You should now see the login page for the social network. For simplicity, in this app there is no
password or sign-up required.

1. Enter auser name. Valid user names are bob, alice, or charlie (note that these are all lower-case,
although they are displayed in the social network Ul by their alias instead of their user id, with
the usual capitalization).

2. Click Logiin.

1.2. Getting Started with Daml 7

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, {sdk}

Create ,\ damlApp

You should see the main screen with two panels. The top panel displays the social network users
you are following; the bottom displays the aliases of the users who follow you. Initially these are
both empty as you are not following anyone and you don’t have any followers. To start following a
user, type their name into the text box or select it from the drop-down list and click the Follow button
in the top panel.

Welcome, Bob!

Bob
2

Users I'm following

lalice v

Follow

Z&» The Network
b\ d My followers and users they are following

The user you just started following appears in the Following panel. However, they do not yet appear in
the Network panel. This is either because they have not signed up and are not parties on the ledger
or they have not yet started following you. This social network is similar to Twitter and Instagram,
where by following someone, say Alice, you make yourself visible to her but not vice versa. We will
see how we encode this in Daml in the next section.

To make this relationship reciprocal, open a new browser window/tab at http://localhost:3000. (Hav-

8 Chapter 1. Getting started

http://localhost:3000

Daml SDK Documentation, {sdk}

Adaml You are logged in as bob. [cd

Welcome, Bob!
@ Bob
- . following

& Alice
Alice

Follow

& The Network
W My followers and users they are following

ing separate windows/tabs allows you to see both you and the screen of the user you are following
at the same time.) Once you log in as the user you are following (Alice in this example), you’ll notice
your name in her network. In fact, Alice can see the entire list of users you are following in the Net-
work panel. This is because this list is part of the user data that became visible when you started

following her.

Adaml You are logged in as alice. ®

Welcome, Alice!

@ Alice

-a® o following

Follow

& The Network

wr My followers and users they are following

& Bob &
8 Alice o

When Alice starts following you, you can see her in your network as well. Switch to the window where
you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding Daml’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get
the next one by implementing your first feature.

1.2. Getting Started with Daml 9

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, {sdk}

Adaml You are logged in as bob. ®
Welcome, Bob!

@ Bob
ab Users I'm following

& Alice
Alice v

Follow

& The Network

W My followers and users they are following

& Alice &
& Bob o

1.3 App Architecture

In this section we’ll look at the different components of the social network app we created in Building
Your App. The goal is to familiarize yourself with the basics of Daml architecture enough to feel com-
fortable extending the code with a new feature in the next section. There are two main components:

the Daml model
the React/TypeScript frontend

We generate TypeScript code to bridge the two.

Overall, the social networking app is following the recommended architecture of a fullstack Daml appli-
cation. Below you can see a simplified version of the architecture represented in the app.

10 Chapter 1. Getting started

https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html

Daml SDK Documentation, {sdk}

Application Frontend User Code

React Components

Y

Provided Component

Generated from DAML

@daml React Libraries model

Y

@daml2js Interface Library |-

Application Backend
DAR -4— DAML Model

JSOM API Server

v

DAML Sandbox -

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the
Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

1.3.1 The Daml Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (You may get a new tab pop
up with release notes for the latest version of Daml - close this.) Using the file Explorer on the left
sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-
tract template. Let’s look at the data portion first.

1.3. App Architecture n

https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, {sdk}

template User with
username: Party
following: [Party]
where
signatory username
observer following

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-
tract. In this case it is an identifier for the user and the list of users they are following. Both fields
use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization
is required to create or archive contracts, in this case the user herself. The observers are the parties
who are able to view the contract on the ledger. In this case all users that a particular useris following
are able to see the user contract.

It’s also important to distinguish between parties, users, and aliases in terms of naming:
Parties are unique across the entire Daml network. These must be allocated before you can
use them to log in, and allocation results in a random-looking (but not actually random)
string that identifies the party and is used in your Daml code. Parties are a builtin concept.
On each participant node you can create users with human-readable user ids. Each user
can be associated with a party allocated on that participant node, and refers to that party
only on that node. Users are a purely local concept, meaning you can never address a user
on another node by user id, and you never work with users in your Daml code; party ids are
always used for these purposes. Users are also a builtin concept.

Lastly we have user aliases. These are not a builtin concept, they are defined by an Alias
template within the specific model used in this guide. Aliases serve as a way to address
parties on all nodes via a human readable name.

The social network user discussed in this guide is really a combination of all three of these concepts.
Alice, Bob, and Charlie are all aliases that correspond to a single user id and party id each.

Let’'s seewhatthe signatoryand observer clauses meaninourapp more concretely. The user with
the alias Alice can see another user, alias Bob, in the network only when Bob is following Alice (only
if Alice is in the following list in his user contract). For this to be true, Bob must have previously
started to follow Alice, as he is the sole signatory on his user contract. If not, Bob will be invisible to
Alice.

This illustrates two concepts that are central to Daml: authorization and privacy. Authorization is
about who can do what, and privacy is about who can see what. In Daml you must answer these
questions upfront, as they are fundamental to the design of the application.

The last part of the Daml model is the operation to follow users, called a choice in Daml.

nonconsuming choice Follow: ContractId User with

userToFollow: Party

controller username

do
assertMsg "You cannot follow yourself" (userToFollow /= username)
assertMsg "You cannot follow the same user twice" (notElem

—userToFollow following)

archive self

(continues on next page)

12 Chapter 1. Getting started

Daml SDK Documentation, {sdk}

(continued from previous page)

create this with following = userToFollow :: following

Daml contracts are immutable (can not be changed in place), so the only way to update one is to
archive it and create a new instance. That is what the Follow choice does: after checking some
preconditions, it archives the current user contract and creates a new one with the new user to follow
added to the list. Here is a quick explanation of the code:

The choice starts with the nonconsuming choice keyword followed by the choice name
Follow.

The return type of a choice is defined next. In this case itis ContractId User.

After that we declare choice parameters with the with keyword. Here this is the user we want
to start following.

The keyword controller defines the Party thatis allowed to execute the choice. In this case,
itis the username party associated with the User contract.

The do keyword marks the start of the choice body where its functionality will be written.
After passing some checks, the current contract is archived with archive self.

A new User contract with the new user we have started following is created (the new user is
added to the following list).

More detailed information on choices can be found in our docs.

Let’s move on to how our Daml model is reflected and used on the Ul side.

1.3.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that
provides more support during development through its type system.

To build an application on top of Daml, we need a way to refer to our Daml templates and choices in
TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).
The daml codegen js command then takes this file as argument to produce a number of Type-
Script packages in the output folder.

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.]s

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll
use in our Ul code next.

1.3.3 The Ul

On top of TypeScript, we use the Ul framework React. React helps us write modular Ul components
using afunctional style-acomponentisrerendered wheneverone of its inputs changes - with careful
use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.
You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first
look at App . tsx, which is the entry point to our application.

const App: React.FC = () => {
const [credentials, setCredentials] = React.useState<

(continues on next page)

1.3. App Architecture 13

https://www.typescriptlang.org/
https://reactjs.org/

Daml SDK Documentation, {sdk}

(continued from previous page)

Credentials | undefined
>();
if (credentials) {
const PublicPartyLedger: React.FC = ({ children }) => {
const publicToken = usePublicToken();
const publicParty = usePublicParty();
if (publicToken && publicParty) {
return (
<publicContext.DamlLedger
token={publicToken.token}
party={publicParty}>
{children}
</publicContext.DamlLedger>

) ;

} else {
return <hl>Loading ...</hl>;
}
}i
const Wrap: React.FC = ({ children }) =>
isRunningOnHub () 2 (

<DamlHub token={credentials.token}>
<PublicPartyLedger>{children}</PublicPartyLedger>
</DamlHub>
) |
<div>{children}</div>
) ;
return (
<Wrap>
<userContext.DamlLedger
token={credentials.token}
party={credentials.party}
user={credentials.user}>

<MainScreen
getPublicParty={credentials.getPublicParty}
onLogout={ () => {
if (authConfig.provider === "daml-hub") {
damlHubLogout () ;

}
setCredentials (undefined) ;
+}
/>
</userContext.DamlLedger>
</Wrap>
) ;
} else {
return <LoginScreen onlLogin={setCredentials} />;
}
bi

An important tool in the design of our components is a React feature called Hooks. Hooks allow you

14 Chapter 1. Getting started

https://reactjs.org/docs/hooks-intro.html

Daml SDK Documentation, {sdk}

to share and update state across components, avoiding the need to thread it through manually. We
take advantage of hooks to share ledger state across components. Custom Daml React hooks query
the ledger for contracts, create new contracts, and exercise choices. This is the library you will use
most often when interacting with the ledger'.

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not
set, we render the LoginScreen with a callback to setCredentials. If they are set, we render the
MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a
handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame
around the MainView component, which houses the main functionality of our app. It uses Daml
React hooks to query and update ledger state.

const MainView: React.FC = () => {

const username = userContext.useParty();

const myUserResult = userContext.useStreamFetchByKeys (User.User, () =>[|
— [username], [username]);

const aliases = publicContext.useStreamQueries (User.Alias, () => []1, [1);

const myUser = myUserResult.contracts[0]?.payload;
const allUsers = userContext.useStreamQueries (User.User) .contracts;

The useParty hook returns the current user as stored in the DamlLedger context. A more interest-
ing example isthe allUsers line. This uses the useStreamQueries hook to get all User contracts
on the ledger. (User.User here is an object generated by daml codegen js - it stores metadata
of the User template defined in User.daml.) Note however that this query preserves privacy: only
users that follow the current user have their contracts revealed. This behaviour is due to the ob-
servers on the User contract being exactly in the list of users that the current user is following.

Afinal point on this is the streaming aspect of the query. Results are updated as they come in - there
is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the
User template.

const ledger = userContext.useledger();

const follow = async (userToFollow: Party): Promise<boolean> => ({

try {

await ledger.exerciseByKey(User.User.Follow, username, {userToFollow}
=)

return true;

} catch (error) {
alert (Unknown error:‘n JSON.stringify (error) }) ;
return false;

The useLedger hook returns an object with methods for exercising choices. The core of the follow
function here is the call to ledger.exerciseByKey. The key in this case is the username of the
current user, used to look up the corresponding User contract. The wrapper function follow is

Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger im-
plementation via the HTTP JSON API.

1.3. App Architecture 15

https://reactjs.org/docs/context.html

Daml SDK Documentation, {sdk}

then passed to the subcomponents of MainView. For example, follow is passed to the UserList
component as an argument (a prop in React terms). This is triggered when you click the icon next to
a user’s name in the Network panel.

<Userlist
users={followers}
partyToAlias={partyToAlias}
onFollow={follow}

/>

This should give you a taste of how the Ul works alongside a Daml ledger. You’ll see this more as you
develop your first feature for our social network.

1.4 Your First Feature

To get a better idea of how to develop Daml applications, let’s try implementing a new feature for our
social network app.

At the moment, our app lets us follow users in the network, but we have no way to communicate with
them. Let’s fix that by adding a direct messaging feature. This should let users that follow each other
send messages to each other, respecting authorization and privacy. This means:

You cannot send a message to someone unless they have given you the authority by following
you back.
You cannot see a message unless you sent it or it was sent to you.

Daml lets us implement these guarantees in a direct and intuitive way.
Creating a feature involves four steps:

1. Adding the necessary changes to the Daml model
2. Making the corresponding changes in the Ul
3. Running the app with the new feature

As usual, we must start with the Daml model and base our Ul changes on top of that.

1.4.1 Daml Changes

The Daml code defines the data and workflow of the application; you can read about this in more detail
in the architecture section. The workflow refers to the interactions between parties that are permitted
by the system. In the context of a messaging feature, these are essentially the authorization and
privacy concerns listed above.

For the authorization part, we take the following approach: a user Bob can message another user Al-
ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission
or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/
User.daml file and copy the following Message template to the bottom. Indentation is important:
it should be at the top level like the original User template.

template Message with
sender: Party
receiver: Party
content: Text

(continues on next page)

16 Chapter 1. Getting started

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, {sdk}

(continued from previous page)

where
signatory sender, receiver

This template is very simple: it contains the data for a message and no choices. The interesting part
is the signatory clause: both the sender and receiver are signatories on the template. This
enforces that creation and archival of Message contracts must be authorized by both parties.

Now we can add messaging into the workflow by adding a new choice to the User template. Copy the
following choice tothe User template afterthe Followchoice. The indentation for the SendMessage
choice must match the one of Follow. Make sure you save the file after copying the code.

nonconsuming choice SendMessage: ContractId Message with

sender: Party
content: Text

controller sender

do
assertMsg "Designated user must follow you back to send a message"ll

— (elem sender following)

create Message with sender, receiver = username, content

As with the Follow choice, there are a few aspects to note here.

By convention, the choice returns the ContractId of the resulting Message contract.

The parameters to the choice are the sender and content of this message; the receiver is the
party named on this User contract.

The controller clause states that it is the sender who can exercise the choice.

The body of the choice first ensures that the sender is a user that the receiver is following and
then creates the Message contractwiththe receiver being the signatory of the User contract.

This completes the workflow for messaging in our app.
Navigate to the terminal window where the daml start process is running and press ‘r. This will

Compile our Daml code into a DAR file containing the new feature
Update the JavaScript library under ui/daml. js to connect the Ul with your Daml code
Upload the new DAR file to the sandbox

As mentioned previously, Daml Sandbox uses an in-memory store, which means it loses its state -
which here includes all user data and follower relationships - when stopped or restarted.

Now let’s integrate the new functionality into the Ul

1.4.2 Messaging Ul

The Ul for messaging consists of a new Messages panel in addition to the Follow and Network panel.
This new panel has two parts:

1. Alist of messages you’ve received with their senders.
2. Aform with adropdown menu for follower selection and a text field for composing the message.

We implement each part as a React component, named MessageList and MessageEdit respec-
tively. Let’s start with the simpler MessageList.

1.4. Your First Feature 17

Daml SDK Documentation, {sdk}

1.4.2.1 Messagelist Component

The goal of the MessageList component is to query all Message contracts where the receiver is
the current user, and display their contents and senders in a list. The entire component is shown
below. Copy this into a new MessageList.tsx fileinui/src/components and save it.

import React from 'react'

import { List, ListItem } from 'semantic-ui-react';
import { User } from '@daml.js/create-daml-app';
import { userContext } from './App';

type Props = {
partyToAlias: Map<string, string>
}
/**
* React component displaying the 1list of messages for the current user.

*/

const MessagelList: React.FC<Props> = ({partyToAlias}) => {
const messagesResult = userContext.useStreamQueries (User.Message) ;
return (

<List relaxed>
{messagesResult.contracts.map (message => {
const {sender, receiver, content} = message.payload;
return (
<ListItem
className="'test-select-message—-item'
key={message.contractId}>
{partyToAlias.get (sender) ?? sender} →
—{partyToAlias.get (receiver) ?? receiver}: {content}
</ListItem>
);
1)}
</List>
)
bi

export default Messagelist;

In the component body, messagesResult gets the stream of all Message contracts visible to the
current user. The streaming aspect means that we don’t need to reload the page when new mes-
sages come in. For each contract in the stream, we destructure the payload (the data as opposed to
metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we
construct a ListItem Ul element with the details of the message.

An important point about privacy: no matter how we write our Message query in the Ul code, it is
impossible to break the privacy rules given by the Daml model. That is, it is impossible to see a
Message contract of which you are not the sender or the receiver (the only parties that can ob-
serve the contract). This is a major benefit of writing apps on Daml: the burden of ensuring privacy
and authorization is confined to the Daml model.

18 Chapter 1. Getting started

Daml SDK Documentation, {sdk}

1.4.2.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again
we show the entire component here; copy this into a new MessageEdit.tsx file in ui/src/
components and save it.

import React from 'react'

import { Form, Button } from 'semantic-ui-react';
import { Party } from '@daml/types';

import { User } from '@daml.js/create-daml-app';
import { userContext } from './App';

type Props = {
followers: Partyl[];
partyToAlias: Map<string, string>;

/**
* React component to edit a message to send to a follower.

*/

const MessageEdit: React.FC<Props> = ({followers, partyToAlias}) => {
const sender = userContext.useParty();
const [receiver, setReceiver] = React.useState<string | undefined>();
const [content, setContent] = React.useState("");
const [isSubmitting, setIsSubmitting] = React.useState (false);

const ledger = userContext.useledger();

const submitMessage = async (event: React.FormEvent) => {
try {
event.preventDefault () ;
if (receiver === undefined) {
return;

}

setIsSubmitting (true) ;

await ledger.exerciseByKey (User.User.SendMessage, receiver, {sender,!]
—content});

setContent ("") ;
} catch (error) {

alert (Error sending message:‘nS{JSON.stringify(error)3‘);
} finally {

setIsSubmitting (false) ;
}
}i

return (
<Form onSubmit={submitMessage}>
<Form.Select
fluid
search
className="'test-select-message-receiver'
placeholder={receiver ? partyToAlias.get (receiver) ?? receiver

"Salaect o fFollaowgar™l
SaSE= t—a— oWt —

(continues on next page)

1.4. Your First Feature 19

Daml SDK Documentation, {sdk}

(continued from previous page)

value={receiver}
options={followers.map(follower => ({ key: follower, text:
—partyToAlias.get(follower) ?? follower, value: follower }))}

onChange={ (event, data) => setReceiver (data.value?.toString())}

/>

<Form.Input
className="'test-select-message-content'
placeholder="Write a message"
value={content}
onChange={event => setContent (event.currentTarget.value)}

/>

<Button
fluid
className="'test-select-message-send-button'
type="submit"
disabled={isSubmitting || receiver === undefined || content === ""}
loading={isSubmitting}
content="Send"

/>

</Form>
) ;
}i

export default MessageEdit;

You will first notice a Props type near the top of the file with a single followers field. A prop in React
is an input to a component; in this case a list of users from which to select the message receiver.
The prop will be passed down from the MainView component, reusing the work required to query
users from the ledger. You can see this followers field bound at the start of the MessageEdit
component.

We use the React useState hook to get and set the current choices of message receiver and
content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-
erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with
the receiver’s username and exercises the SendMessage choice with the appropriate arguments.
If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage
setsthe isSubmitting state sothatthe Send button is disabled while the requestis processed. The
result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to
select a receiver from the followers, a text field for the message content, and a Send button which
triggers submitMessage.

Note how authorization is enforced here. Due to the logic of the SendMessage choice, itis impossible
to send a message to a user who is not following us (even if you could somehow access their User
contract). The assertion thatelem sender followingin SendMessage ensures this: no mistake
or malice by the Ul programmer could breach this.

1.4.2.3 MainView Component

Finally we can see these components come together in the MainvView component. We want to add a
new panel to house our messaging Ul.Openthe ui/src/components/MainView. tsx file and start

20 Chapter 1. Getting started

Daml SDK Documentation, {sdk}

by adding imports for the two new components.

import MessageEdit from './MessageEdit';
import Messagelist from './MessagelList';

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll
add a new Segment for Messages. Make sure you save the file after copying over the code.

<Segment>
<Header as='h2'>
<Icon name='pencil square' />
<Header.Content>
Messages
<Header.Subheader>Send a message to a follower</Header.
—Subheader>
</Header.Content>
</Header>
<MessageEdit
followers={followers.map (follower => follower.username) }
partyToAlias={partyToAlias}
/>
<Divider />
<Messagelist partyToAlias={partyToAlias}/>
</Segment>

Following the formatting of the previous panels, we include the new messaging components:
MessageEdit supplied with the usernames of all visible parties as props, and MessageList to
display all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.4.3 Running the Updated Ul

If you have the frontend Ul up and running you’re all set. If you don’t have the Ul running, open a
new terminal window and navigate to the create-daml-app/ui folder, then run the npm start
command to start the Ul.

You should see the same login page as before at http://localhost:3000.

create ,\ damlApp

Once you've logged in, you’ll see a familiar Ul but with our new Messages panel at the bottom!

1.4. Your First Feature 21

http://localhost:3000

Daml SDK Documentation, {sdk}

DAML Youare loggedinasBob. &

Welcome, Bob!

@ Bob

& o5 following

Follow

& The Network

W My followers and users they are following

Messages

Send a message to a follower

Go ahead and follow more users, and log in as some of those users in separate browser windows
to follow yourself back. Then click on the dropdown menu in the Messages panel to see a choice of
followers to message!

Messages

Send a message to a follower

Alice

Send some messages between users and make sure you can see each one from the other side. Notice
that each new message appears in the Ul as soon as it is sent (due to the streaming React hooks).

Messages

Send a message to a follower

Alice -

Bob - Alice: Hi Alice!

22 Chapter 1. Getting started

Daml SDK Documentation, {sdk}

Tip: You completed the second part of the Getting Started Guide! Join our forum and share a screen-
shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to
Daml Hub

1.4.4 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-
ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and
understand its core concepts such as parties, signatories, observers, and controllers. You can do
that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.4. Your First Feature 23

https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/interactive-tutorials/fundamental-concepts

Chapter 2

Daml Guide

2.1 Writing Daml

2.1.1 An introduction to Daml

Daml is a smart contract language designed to build composable applications on an abstract Dam|
Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-
plications that run on any Daml Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
Daml Ledger Model and how to use Daml’s developer tools to write, test, compile, package and ship
your application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the Daml code for each
section here ordownload them using the Daml assistant. Forexample, to load the sources for section
Tinto a folder called 1 _Token,rundaml new 1 Token --template daml-intro-1.

Prerequisites:
You have installed the Dam/ SDK

Next: 1 Basic contracts.

2.1.1.1 1 Basic contracts

To begin with, you’re going to write a very small Daml template, which represents a self-issued, non-
transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll make
it more useful later - but it’s enough that it can show you the most basic concepts:

Transactions

Daml Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder 1 Token by running
daml new 1 Token --template daml-intro-1

24

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, {sdk}

Daml ledger basics

Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll cover in more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are
collectively called a Daml model or contract model.

Daml files and modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with —-:

-— A Daml file defines a module.
module Token where

Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the createargumentsor simply arguments. Thewith block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type ,soyou can read this as template Token with a field owner of type Party .

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.

2.1. Writing Daml 25

Daml SDK Documentation, {sdk}

Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority
is required to create the contract or archive it - just like a real contract. Every contract must have at
least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

Next up

In 2 Testing templates using Daml Script, you’ll learn about how to try out the Token contract template
in DamlI’s inbuilt Daml Script testing language.

2.1.1.2 2 Testing templates using Daml Script

In this section you will test the Token model from 1 Basic contracts using the Daml Script integration
in Daml Studio. Youw’ll learn about the basic features of :

Allocating parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2
by running daml new daml-intro-2 --template daml-intro-2

Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of
transactions, to check that your templates behave as you’d expect. You can also script some external
information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called Alice .

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the scriptis indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to puta party called Alice inavariablealice. There are
two things of note there:

Use of <- instead of =.
The reason for that is allocateParty is an Action that can only be performed once the
Script is run in the context of a ledger. <- means run the action and bind the result . It

26 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

can only be run in that context because, depending on the ledger state the script is running
on,allocateParty will either give you back a party with the name you specified or append a
suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in Daml are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = alice is aCommands, which translates to a list of commands that will be submit-
ted to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You couldwritethisas submit alice (createCmd Token with owner = alice),butjustlike
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note however, that the commands submitted as part of a transaction are not allowed
to depend on each other.

Running scripts

There are a few ways to run Daml Scripts:

In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

Using the command line daml test also against a test ledger, useful for continuous integra-
tion.

Against a real ledger, take a look at the documentation for Dam/ Script for more information.
Interactively using Dam/ REPL.

In Daml Studio, you should see the text Script results just above the line token test 1 = do.
Click on it to display the outcome of the script.

>CPIPC resu

token test 1 = script do
alice <- allocateParty

1 A
AL

submit alice do
createCmd Token owner alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

The first column shows the ID of the contract. This will be explained later.

The second column shows the status of the contract, either active or archived.

2.1. Writing Daml 27

Daml SDK Documentation, {sdk}

= Script: token _test 1 X

B show archived M Show detailed disclosure
Token_Test:Token

]
-
HM

The next section of columns show the contract arguments, with one column per field. As ex-
pected, field owner is 'Alice'. The single quotation marks indicate that Alice is a party.
The remaining columns, labelled vertically, show which parties know about which contracts. In
this simple script, the sole party Alice knows about the contract she created.

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. If your file contains more than one script,
all of them will be run.

Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do
createCmd Token with owner
submit bob do
createCmd Token with owner = alice

bob

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

(continues on next page)

28 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

create of at DA.Internal.Prelude:381:
failed due to a missing authorization from 'Bob'

Ledger time: 1970-01-01T00:00:00Z

L~

-

owner = 'Bob’

(continued from previous page)

submitMustFail alice do

createCmd Token with owner = bob
submitMustFail bob do

createCmd Token with owner = alice
submit alice do

createCmd Token with owner = alice
submit bob do

createCmd Token with owner = bob

submitMustFail never has animpacton the ledger so the resulting tabular script view just shows
the two Tokens resulting from the successful submit statements. Note the new column for Bob as
well as the visibilities. Alice and Bob cannot see each others’ Tokens.

Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.
Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,
you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.
How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

(continues on next page)

2.1. Writing Daml 29

Daml SDK Documentation, {sdk}

(continued from previous page)

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you
want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

= Script: token_test 3 X

¥ Show archived l Show detailed disclosure
Token_Test:Token

]
-
HM

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

In the Daml Studio script runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.All transactions have this formatin the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contractis archived in sub-transaction 0 of commit 2.
referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that
'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that A1ice learned about the contract in commit #0.

Everything following with shows the create arguments.

30 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

= Script: token_test 3 X

Show table view

Transactions:
1970-01-01T00:00:00Z (

)

owner = 'Alice'

1970-01-01T00:00:00Z
actAs: {'Bob'} readAs: {} |

1970-01-01T00:00:00Z (
L_ '‘Alice' (2)
> 'Alice'’ Archive
Active contracts:

Return value: {}

2.1. Writing Daml 31

Daml SDK Documentation, {sdk}

Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

Next up

In 3 Data types you will learn about Daml’s type system, and how you can think of templates as tables
and contracts as database rows.

2.11.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using Daml Script, you learnt about the script view in Daml Studio, which displays
the current ledger state. It shows one table per template, with one row per contract of that type and
one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

Daml’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyou canload all the code for this section into a foldercalled 3 _Data byrunning
daml new 3 Data --template daml-intro-3

32 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Native types

You have already encountered a few native Daml types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using Daml Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0or =9999999999999999999999999999.99999999909.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result.

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"
my bool = False
my date = date 2020 Jan 01

my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time == time (addDays my date 1) 00 00U
—00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the Daml Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
Daml Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or Party. An integer
like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.

2.1. Writing Daml 33

Daml SDK Documentation, {sdk}

You can think of the 1let as turning variable declaration into an action.

Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so
if you declaremy int = 123, itcan inferthatmy int is also an Int. This means you don’t
have to write the type annotationmy int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. This is the case for 0.001 which could be any Numeric n. Here we specify 0.
001 : Decimal which is a synonym for Numeric 10. You can always choose to add type
annotations to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party
in the role of an accountant.

template CashBalance
with

accountant : Party
currency : Text

amount : Decimal
owner : Party
account number : Text

bank : Party
bank address : Text
bank telephone : Text

where

signatory accountant

cash balance test = script do

accountant <- allocateParty "Bob"
alice <- allocateParty "Alice"
bob <- allocateParty "Bank of Bob"

submit accountant do
createCmd CashBalance with

accountant
currency = "USD"
amount = 100.0
owner = alice
account number = "ABCI123"
bank = bob
bank address = "High Street"
bank telephone = "012 3456 789"

Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these

native types into much more expressive structures.

34 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple
import Daml.Script

tuple test = script do

let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)
assert (fst my key value == "Key")
assert (snd my key value == 1)
assert (my key value. 1 == "Key")
assert (my key value. 2 == 1)
assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3[]

—my coordinate))
assert (my coordinate == (my coordinate. 1, my coordinate. 2, my
—coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

Daml supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] oralist of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-
tions.

import DA.List
import Daml.Script

list test = script do

let
empty : [Int] = []
one = [1]
two = [2]
many = [3, 4, 5]

(continues on next page)

2.1. Writing Daml 35

Daml SDK Documentation, {sdk}

(continued from previous page)

-—- “head’ gets the first element of a list
assert (head one == 1)
assert (head many == 3)

-- “tail gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— “++ concatenates lists
assert (one ++ two ++ many == [1, 2, 3, 4, 51])
assert (empty ++ many ++ empty == many)

-— ':: adds an element to the beginning of a 1ist.
assert (1 :: 2 :: 3 :: 4 :: 5 1 empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It's necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-— Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

-- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = script do
let
my record = MyRecord with
my txt = "Text"

(continues on next page)

36 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N o< X
I
oo o

2
= 3

-— 'my text int’ has type "KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val = 1

-— 'my int decimal’ has type "KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick thenl]
—up
-— implicitly, writing just "my coord instead of "my coord = my
—coord .
my nested = Nested with
my coord
my record
my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with, one of the things that happens in the background is that this becomes a data Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert
(my record == my record) in the script, you may be surprised to get an error message No
instance for (Eg MyRecord) arising from a use of ‘==’. Equality in Daml is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

data EqRecord = EgqRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

(continues on next page)

2.1. Writing Daml 37

Daml SDK Documentation, {sdk}

(continued from previous page)

deriving

data MyContai
contents
deriving

(Eq)

ner a = MyContainer with
a

(Eq)

eq test = script do
let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my container = MyContainer with
contents = eg record

other container = MyContainer with
contents = eq record

assert (my container.contents == eq record)
assert (my container == other container)

Eqg is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-
guages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.
There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which
gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Eq and Show using deriving (Eq, Show). The record types cre-
ated using template T with do this automatically, and the native types have appropriate type-
class instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eqand Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text

(continues on next page)

38 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
account = Account with

owner

bank

number = "ABC123"
cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
cash
account
pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are
expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. Daml doesn’t have an equivalent tonull. Variants can express
that cash can either be in hand or at a bank.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

(continues on next page)

2.1. Writing Daml 39

Daml SDK Documentation, {sdk}

(continued from previous page)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand
| InAccount Account
deriving (Eq, Show)

template CashBalance
with
accountant : Party
owner : Party
cash : Cash
location : Location
where
signatory accountant

cash balance test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street”
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InHand

submit accountant do

(continues on next page)

40

Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

createCmd CashBalance with
accountant
owner
cash
location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the
closest Daml has to a null value:

data Optional a
= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday
| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if it is InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-—- Commented out as "Either 1is defined in the standard library.
data Either a b

= Left a
| Right b
-}
variant access test = script do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that "1 is a "Left , we can error on the "Right case.
1 value = case 1 of

(continues on next page)

2.1. Writing Daml 4]

Daml SDK Documentation, {sdk}

(continued from previous page)

Left i -> 1

Right i -> error "Expecting Left"
-— Comment out at your own peril
{_
r value = case r of

Left 1 -> 1

Right i -> error "Expecting Left"

-}

-- If we are unsure, we can return an Optional’ 1in both cases
ol value = case 1 of

Left i -> Some i

Right i -> None
or value = case r of

Left 1 -> Some i

Right i -> None

-— If we don't care about values or even constructors, we can usel]

—wildcards
1 value2 = case 1 of
Left i -> 1
Right _ -> error "Expecting Left"

1 value3 = case 1 of
Left i -> i
__ —> error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —> False
assert (1 value == 1)
assert (1 value2 == 1)
assert (1 value3d == 1)
assert (ol value == Some 1)
assert (or value == None)

assert weekend

Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you
manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

manipulation demo = script do

(continues on next page)

42 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

let
eq record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

-— A verbose way to change ‘“eq record’
changed record = EqRecord with

my txt = eq record.my txt

my int = 3

my dec = eg record.my dec

my list = eq record.my list

-— A better way
better changed record = eq record with

my int = 3

record with changed list = eqg record with
my list = "Zero" :: eq record.my list

assert (eq record.my int == 2)
assert (changed record == better changed record)

-— The list on "eq record’ can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])

-— The 1list on "record with changed list 1s a new one.

assert (record with changed list.my list == ["Zero", "One", "Two", "Three
(_}H])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

Contract keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most
database schemas have more than one table, Daml contract models often have multiple templates
thatreference each other. For example, you may not want to store your bank and accountinformation
on each individual cash balance contract, but instead store those on separate contracts.

You have already met the type ContractId a, which references a contract of type a. The below
shows a contract model where Account is split out into a separate template and referenced by
ContractId, but it also highlights a big problem with that kind of reference: just like data, con-
tracts are immutable. They can only be created and archived, so if you want to change the dataon a

2.1. Writing Daml 43

Daml SDK Documentation, {sdk}

contract, you end up archiving the original contract and creating a new one with the changed data.
That makes contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party

number : Text
bank : Bank
where
signatory accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : ContractId Account
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

(continues on next page)

44 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on thell
—account

Some account <- queryContractId accountant accountCid
new_account <- submit accountant do

archiveCmd accountCid

createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure ()

-- The ‘“account’ field on the balance now refers to the archived
-— contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account
optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active
contractusingits contractID.If thereis no active contract with the given identifier visible to the given
party, queryContractId returns None. Here, we use a pattern match on Some which will abort the
script if queryContractIdreturns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part
of that transaction. To create new _account, the accountant archives the old account and creates a
new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint
in the sense that only one contract of a given template and with a given key value can be active at a
time.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account
with

(continues on next page)

2.1. Writing Daml 45

Daml SDK Documentation, {sdk}

(continued from previous page)

accountant : Party
owner : Party
number : Text
bank : Bank

where
signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
AccountKey

maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

Some account <- queryContractId accountant accountCid
balanceCid <- submit accountant do

(continues on next page)

46 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

createCmd CashBalance with
accountant
cash
account = key account

-— Now the accountant updates the telephone number for the bank on thell
—account

Some account <- queryContractId accountant accountCid
new accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure cid

-—- Thanks to contract keys, the current account contract is fetched
Some balance <- queryContractId accountant balanceCid
(cid, account) <- submit accountant do
createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.
—account)
assert (cid == new_accountCid)

-—- Helper template to call "~fetchByKey .
template Helper
with
p : Party
where
signatory p
choice FetchAccountByKey : (ContractId Account, Account)
with
accountKey : AccountKey
controller p
do fetchByKey (@Account accountKey

Since Daml is designed to run on distributed systems, you have to assume that there is no
global entity that can guarantee uniqueness, which is why each key expression must come with
amaintainer expression. maintainer takes one or several parties, all of which have to be signa-
tories of the contract and be part of the key. That way the index can be partitioned amongst sets of
maintainers, and each set of maintainers can independently ensure the uniqueness constraint on
their piece of the index. The constraint that maintainers are part of the key is ensured by only having
the variable key in each maintainer expression.

Instead of calling queryContractId to get the contract arguments associated with a given con-
tract identifier, we use fetchByKey @Account. fetchByKey @Account takes a value of type
AccountKey and returns a tuple (ContractId Account, Account) if the lookup was success-
ful or fails the transaction otherwise. fetchByKey cannot be used directly in the list of commands
sent to the ledger. Therefore we create a Helper template with a FetchAccountByKey choice and
call that via createAndExerciseCmd. We will learn more about choices in the next section.

Since a single type could be used as the key for multiple templates, you need to tell the compiler
what type of contract is being fetched by using the @Account notation.

2.1. Writing Daml 47

Daml SDK Documentation, {sdk}

Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other
parties the right to manipulate data in restricted ways.

2.1.1.4 4 Transforming data using choices

In the example in Contract keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the
accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder called
4 Transformations by running daml new 4 Transformations --template daml-intro-
4

Choices as methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact

template Contact

with
owner : Party
party : Party
address : Text
telephone : Text
where

signatory owner
observer party

choice UpdateTelephone
ContractId Contact
with
newTelephone : Text
controller owner
do
create this with
telephone = newTelephone

48 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

The above defines a choicecalled UpdateTelephone. Choices are part of a contract template. They're
permissioned functions that result in an Update. Using choices, authority can be passed around,
allowing the construction of complex transactions.

Let’s unpack the code snippet above:

The firstline, choice UpdateTelephone indicates achoice definition,UpdateTelephoneis
the name of the choice. It starts a new block in which that choice is defined.

ContractId Contact is the return type of the choice.
This particular choice archives the current Contact, and creates a new one. What it returns is
a reference to the new contract, in the form of a ContractId Contact
The following with block is that of a record. Just like with templates, in the background, a new
record type is declared: data UpdateTelephone = UpdateTelephone with
The line controller owner says that this choice is controlled by owner, meaning owner is
the only party that is allowed to exercise them.
The do starts a block defining the action the choice should perform when exercised. In this
case a new Contact is created.
The new Contact is created using this with. this is a special value available within the
where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas
createCmd builds up a list of commands to be sent to the ledger, create builds up a more flex-
ible Update that is executed directly by the ledger. You might have noticed that create returns an
Update (ContractId Contact),notaContractId Contact. As a do block always returns the
value of the last statement within it, the whole do block returns an Update, but the return type on
the choice is just a ContractId Contact. This is a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice test = do
owner <- allocateParty "Alice"
party <- allocateParty "Bob"

contactCid <- submit owner do
createCmd Contact with

owner
party

address = "1 Bobstreet”
telephone = "012 345 6789"

-- Bob can't change his own telephone number as Alice controls
-—- that choice.
submitMustFail party do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

newContactCid <- submit owner do
exerciseCmd contactCid UpdateTelephone with

(continues on next page)

2.1. Writing Daml 49

Daml SDK Documentation, {sdk}

(continued from previous page)

newTelephone = "098 7654 321"

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exerciseCmdreturns a Commands r where risthe returntype specified onthe choice, allowing the
new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd
and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always
used on the client side to build up the list of commands on the ledger. The versions without the
suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-
vious section. This allows you to create a new contract with the given arguments and immediately
exercise a choice on it. For a consuming choice, this archives the contract so the contract is created
and archived within the same transaction.

Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
script:

choice UpdateAddress
ContractlId Contact
with
newAddress : Text
controller party
do
create this with
address = newAddress

newContactCid <- submit party do
exerciseCmd newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"”

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. This is because
party is specified as an observer in the template, and in this case Bob is the party. More on
observers later, but in short, they get to see any changes to the contract.

50 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Choices in the Ledger Model

In 1Basic contracts you learned about the high-level structure of a Daml ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and
nonconsuming. consuming is the default kind and changes the contract’s status from active
to archived.

A key assertion records the assertion that the given contract key (see Contract keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above script:

Transactions:

TX #0 1970-01-01T00:00:00Z (Contact:43:17)

#0:0

| consumed by: #2:0

| referenced by #2:0

| known to (since): 'Alice' (#0), 'Bob' (#0)

L> create Contact:Contact

with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone

—= "012 345 6789"

TX #1 1970-01-01T00:00:002
mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)
#2:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"
children:
#2:1
| consumed by: #4:0
| referenced by #3:0, #4:0

| known to (since): 'Alice' (#2), 'Bob' (#2)
L_> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet";[|
—~telephone = "098 7654 321"

(continues on next page)

2.1. Writing Daml 51

Daml SDK Documentation, {sdk}

(continued from previous page)

TX #3 1970-01-01T00:00:00Z (Contact:60:3)
#3:0
L> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)

#4:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)
with
newAddress = "1-10 Bobstreet”
children:
#4:1
| referenced by #5:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> create Contact:Contact
with
owner = 'Alice';
party = 'Bob';
address = "1-10 Bobstreet";
telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)
#5:0
L> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four submit statements in the script. Within each com-
mit, we see that it’s actually actions that have IDs of the form #commit number:action number
Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions
of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive choice

You may have noticed that there is no archive action. That’s because archive cidisjustshorthand
forexercise cid Archive,whereArchiveisachoiceimplicitlyaddedtoeverytemplate, withthe
signatories as controllers.

A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the
location of the physical cash, but merely with liabilities:

52 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

-- Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or 1itsll
—affiliates. All rights reserved.
-—- SPDX-License-Identifier: Apache-2.0

module SimpleIou where
import Daml.Script

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer
observer owner

choice Transfer
ContractId SimplelIou
with
newOwner : Party
controller owner
do
create this with owner = newOwner

test iou = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
charlie <- allocateParty "Charlie"
dora <- allocateParty "Dora"

-— Dora issues an Iou for S$100 to Alice.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Alice transfers it to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

(continues on next page)

2.1. Writing Daml 53

Daml SDK Documentation, {sdk}

(continued from previous page)

-— Bob transfers it to Charlie.
submit bob do
exerciseCmd iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner
could prove that Dora was dishonest and cancelled her debt.

Next up

You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In
that context, you will also learn about time on Daml ledgers, do blocks and <- notation within those.

2.11.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in Daml:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do blocks,
which will be good preparation for 7 Composing choices, where you will use do blocks to compose
choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Remember thatyou can load all the code for this section into a foldercalled 5 Restrictions
by running daml new 5 Restrictions --template daml-intro-5

Template preconditions

The first kind of restriction you may want to put on the contract model are called template pre-
conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

(continues on next page)

54 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

observer owner

ensure cash.amount > 0.0

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency == 3
&& T.isUpper cash.currency

Hint: The T here stands for the DA. Text standard library which has been imported using import
DA.Text as T.

test restrictions = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
dora <- allocateParty "Dora"

-—- Dora can't issue negative Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-— Or even zero Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"

-—- Nor positive Ious with invalid currencies.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-—- But positive Ious still work, of course.
iou <- submit dora do

(continues on next page)

2.1. Writing Daml 55

Daml SDK Documentation, {sdk}

(continued from previous page)

createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

Assertions

A second common kind of restriction is one on data transformations.

For example, the simple lou in A simple cash model allowed the no-op where the owner transfers to
themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsgqg,
which takes a custom error message:

choice Transfer

ContractId Simplelou

with
newOwner : Party

controller owner

do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create this with owner = newOwner

-— Alice can't transfer to herself...
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-
ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This
assumes that actual cash changes hands off-ledger.)

choice Redeem

()
controller owner
do
now <- getTime
let
today = toDateUTC now
dow = dayOfWeek today
timeofday = now "subTime time today 0 0 O

(continues on next page)

56 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

hrs = convertRelTimeToMicroseconds timeofday / 3600000000
assertMsg

("Cannot redeem outside business hours. Current time: " <> showl]

—timeofday)

(hrs >= 8 && hrs <= 18)
case dow of

Saturday -> abort "Cannot redeem on a Saturday."

Sunday -> abort "Cannot redeem on a Sunday."

_ —> return ()

-- June 1st 2019 is a Saturday.
setTime (time (date 2019 Jun 1) 0 0 0)
-— Bob cannot redeem on a Saturday.
submitMustFail bob do

exerciseCmd iou2 Redeem

-—- Not even at mid-day.
passTime (hours 12)
-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exerciseCmd iou2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
passTime (hours 42)
submitMustFail bob do

exerciseCmd iou2 Redeem

-— Bob can redeem at 8am on Monday.
passTime (hours 2)
submit bob do

exerciseCmd iou? Redeem

There are quite a few new time-related functions from the DA. Time and DA . Date libraries here. Their
names should be reasonably descriptive so how they work won’t be covered here, but given that Daml
assumes itis runin a distributed setting, we will still discuss time in Daml.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the
<- operator. do blocks and <- deserve a proper explanation at this point.

Time on Daml ledgers

Each transaction on a Daml ledger has two timestamps called the ledger time (LT) and the record time
(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. The
participant has to take a good guess at what the record time will be. If it’s too far off, the transaction
will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart
into day of week and hour of day using standard library functions from DA.Date and DA.Time. The
hour of the day is checked to be in the range from 8 to 18.

2.1. Writing Daml 57

Daml SDK Documentation, {sdk}

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Alice
submits a transaction to redeem an lou. One second later, the transaction is assigned a LT of 17:59:56,
but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even though it was
committed after business hours, it would be a valid transaction and be committed successfully as
getTime will return 17:59:56 so hrs == 17. Since the RT is 18:00:06, LT - RT <= 10 seconds
and the transaction won’t be rejected.

Time therefore has to be considered slightly fuzzy in Daml, with the fuzziness depending on the skew
parameter.

For details, see Background concepts - time.

Time in test scripts

For tests, you can set time using the following functions:

setTime, which sets the ledger time to the given time.
passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed Daml ledger, there are no guarantees that ledger time or record time are strictly
increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-
tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or
equal to that of TX1:

iou3 <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days (-3))
submitMustFail alice do
exerciseCmd iou3 Redeem

Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Script and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocksis therefore crucial to being able to construct correct contract
models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressionsin Damlare pureinthe sensethatthey have no side-effects: they neither read nor modify
any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

58 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

now <- getTime

You cannot work out the value of now based on any variable in scope. To put it another way, there is
no expression expr that you could put on the right hand side of now = expr. To get the ledger time,
you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a, and Update and Script are instances of Action. A value of such atypem a wherem
isaninstanceof Actioncanbeinterpreted as arecipeforan actionof typem, which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais a recipe to update a Daml ledger, which, when committed, has the effect of
changing the ledger, and returns a value of type a . An update to a Daml ledger is a transaction
so equivalently, an Update ais a recipe to construct atransaction, which, when executed in
the context of a ledger, returns a value of type a .

A Script ais arecipe for a test, which, when performed against a ledger, has the effect of
changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, allocateParty party,passTime time, submit party commands,
create contract and exercise choice should make more sense in that light. For example:

getTime : Update Time is the recipe for an empty transaction that also happens to return
a value of type Time.

passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any
transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou),whereiou : Iouisarecipeforatransaction
consisting of a single create action, and returns the contract id of the created contract if
successful.

submit alice (createCmd iou) : Script (ContractId Iou) is arecipe for a script
in which Alice sends the command createCmd iou to the ledger which produces a transac-
tion and a return value of type ContractId Iou and returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent
commands sent to the ledger. You can still use do blocks but if you have more than one command
in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.
In addition to that, the last statement in such a do block must be of the form return expr or pure
expr. Applicative is a more restricted version of Action that enforces that there are no depen-
dencies between commands. If you do have dependencies between commands, you can always wrap
itin a choice in a helper template and call that via createAndExerciseCmd just like we did to call

2.1. Writing Daml 59

Daml SDK Documentation, {sdk}

fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you can make
multiple calls to submit.

{—# LANGUAGE ApplicativeDo #-}
module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just
another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a
transaction.

A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So
a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,
using the results of earlier actions in later ones.

sub scriptl (alice, dora) = do
submit dora do
createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

sub script2 = do
passTime (days 1)
passTime (days (-1))
return 42

sub script3 (bob, dora) = do
submit dora do
createCmd SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main : Script () = do
dora <- allocateParty "Dora"
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

ioul <- sub scriptl (alice, dora)
sub script2

iou2 <- sub script3 (bob, dora)

submit dora do

(continues on next page)

60 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

archiveCmd ioul
archiveCmd iou?2
pure ()

Above, we see do blocks in action for both Script and Update.

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return xis a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_script2 : Script Int

Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can
fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on
the ledger.

Each has a special action abort txt thatrepresents failure, and that takes on type Update () or
Script () dependingon context.

Transactions succeed or fail atomically as a whole. Scripts on the other hand do not fail atomically:
while each submit is atomic, if a submit succeeded and the script fails later, the effects of that
submit will still be applied to the ledger.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.
It has type Update () and is either an abort or return depending on the day of week. So during
the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of
transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails
the entire transaction.

A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more
generally, by creating a new type thatis also an action. CoinGame aisanAction ainwhichaCoin
is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing
the random number generator’s state. Based on the Heads and Tails results, a return value of type
a is calculated.

data Face = Heads | Tails
deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with
play : Coin -> (Coin, a)

flipCoin : CoinGame Face
getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.
More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get

2.1. Writing Daml 61

Daml SDK Documentation, {sdk}

your hands on aCoinina Script context and an action £1ipCoin which represents the simplest
possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write
down a script or recipe for a game:

coin test = do
-— The coin 1is pseudo-random on LT so change the parameter to change the
—game.
setTime (time (date 2019 Jun 1) 0 0 0)
passTime (seconds 2)
coin <- getCoin
let
game = do
flr <- flipCoin
f2r <- flipCoin
f3r <- flipCoin

if all (== Heads) [flr, f2r, £f3r]
then return "Win"
else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return
Heads, theresultis "Win", or else "Loss".

Ina Script context you can get a Coin using the getCoin action, which uses the LT to calculate a
seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-
ing glass and understand in-depth what’s going on, you can look at the source file to see how the
CoinGame action is implemented, though be warned that the implementation uses a lot of Daml
features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general
course on functional programming, and Haskell in particular. See The Haskell Connection for some
suggestions.

Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-
tionsonly have an effect when they are performed, so the following script succeeds or fails depending
on the value of abortScript:

nonPerformedAbort = do
let abortScript = False
let failingAction : Script () = abort "Foo"
let successfulAction : Script () = return ()
if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a
function pow that takes an integer to the power of another positive integer. How do we handle that

62 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int
optPow base exponent
| exponent == 0 = Some 1
| exponent > 0 =
let Some result = optPow base (exponent - 1)
in Some (base * result)
| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always
handle it as we need to extract the result from an Optional. We can see the impact on convenience
in the definition of the above function. In cases, like division by zero or the above function, it can
therefore be preferable to fail catastrophically instead:

errPow : Int -> Int -> Int
errPow base exponent

| exponent == =1
| exponent > 0 = base * errPow base (exponent - 1)
| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following script will fail,
because failingComputation is evaluated:

nonPerformedError = script do
let causeError = False
let failingComputation = errPow 1 (-1)
let successfulComputation = errPow 1 1
return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and
where explicit partiality would unduly impact usability of the function.

Next up

You can now specify a precise data and data-transformation model for Daml ledgers. In 6 Parties and
authority, you will learn how to properly involve multiple parties in contracts, how authority works in
Daml, and how to build contract models with strong guarantees in contexts with mutually distrust-
ing entities.

2.11.6 6 Parties and authority

Daml is designed for distributed applications involving mutually distrusting parties. In a well-
constructed contract model, all parties have strong guarantees that nobody cheats or circumvents
the rules laid out by templates and choices.

In this section you will learn about Daml’s authorization rules and how to develop contract models
that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another
Write advanced choices
Reason through Daml’s Authorization model

2.1. Writing Daml 63

Daml SDK Documentation, {sdk}

Hint: Remember that you can load all the code for this section into a folder called 6 Parties by
running daml new 6 Parties --template daml-intro-6

Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract
has one major problem: The contract is only signed by the issuer. The signatories are the parties
with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange
for some goods, she could just archive it after receiving the goods. Bob would have a record of such
actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

simple iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-— Alice and Bob enter into a trade.
-—- Alice transfers the payment as a Simplelou.
iou <- submit alice do
createCmd SimpleIou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days 1)
-— Bob delivers the goods.

passTime (minutes 10)
-—- Alice just deletes the payment.
submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are actu-
ally followed, they either need to be a signatory themselves, or trust one of the signatories to not agree
to transactions that archive and re-create contracts in unexpected ways. To make the SimpleIou
safe for Bob, you need to add him as a signatory.

template Iou
with
issuer : Party

(continues on next page)

64 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

owner : Party
cash : Cash
where
signatory issuer, owner

choice Transfer

ContractId Iou

with
newOwner : Party

controller owner

do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create this with

owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this ITou to Bob. To get an
TIou with Bob’s signature as owner onto the ledger, his authority is needed.

iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.
-- Alice wants to give Bob an Iou, but she can't without Bob's authority.
submitMustFail alice do
createCmd Iou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

-—- She can issue herself an Iou.
iou <- submit alice do
createCmd Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-—- However, she can't transfer it to Bob.
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the ITou again. The above

Iou can contain negative values so Bob should be glad that A1ice cannot put his signature on any
ITou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above

2.1. Writing Daml 65

Daml SDK Documentation, {sdk}

Iou, before diving into the authorization model in full.

Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an lou to
Bob, giving him the choice to accept. You can do so byintroducing a proposal contract TouProposal:

template IouProposal
with
iou : Iou
where
signatory iou.issuer
observer iou.owner

choice IouProposal Accept
ContractId Iou
controller iou.owner
do
create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do
createCmd IouProposal with
iou = Iou with

issuer = alice

owner = bob

cash = Cash with
amount = 100.0
currency = "USD"

submit bob do
exerciseCmd iouProposal IouProposal Accept

The ITouProposal contract carries the authority of iou. issuer by virtue of them being a signatory.
By exercising the TouProposal Accept choice, Bob adds his authority to that of Alice, which is why
an Iou with both signatories can be created in the context of that choice.

The choice is called TouProposal Accept, not Accept, because propose-accept patterns are very
common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure
uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,
by creating a TransferProposal:

template IouTransferProposal

with
iou : Iou
newOwner : Party
where

signatory (signatory iou)

(continues on next page)

66 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

observer (observer iou), newOwner

choice IouTransferProposal Cancel
ContractId Iou
controller iou.owner
do
create iou

choice IouTransferProposal Reject
ContractId Iou
controller newOwner
do
create iou

choice IouTransferProposal Accept
ContractId Iou
controller newOwner
do
create iou with
owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the
signatories from another contract. Instead of writing signatory (signatory iou), you could
write signatory iou.issuer, iou.owner.

Note also how newOwner is given multiple choices using a single controller newOwner can
block. The TouProposal had a single signatory so it could be cancelled easily by archiving it. With-
out a Cancel choice, the newOwner could abuse an open TransferProposal as an option. The triple
Accept,Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a
transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a
IouTransferProposal is created instead of an Iou:

choice ProposeTransfer
ContractId IouTransferProposal

with
newOwner : Party
controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create IouTransferProposal with
iou = this
newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-- Alice 1issues an Iou using a transfer proposal.
tpab <- submit alice do

(continues on next page)

2.1. Writing Daml 67

Daml SDK Documentation, {sdk}

(continued from previous page)

createCmd IouTransferProposal with
newOwner = bob

iou = Iou with
issuer = alice
owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

-—- Bob accepts the transfer from Alice.
iou2 <- submit bob do
exerciseCmd tpab IouTransferProposal Accept

-—- Bob offers Charlie a transfer.
tpbc <- submit bob do
exerciseCmd iou2 ProposeTransfer with
newOwner = charlie

-— Charlie accepts the transfer from Bob.
submit charlie do
exerciseCmd tpbc IouTransferProposal Accept

Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this
succinctly in Daml through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script
above. In 7 Composing choices, you will see how to compose the ProposeTransfer and
IouTransferProposal Accept choices into a single new choice, but for now, here is a different
way. You can give them the joint right to transfer an IOU:

choice Mutual Transfer
ContractId Iou
with
newOwner : Party
controller owner, newOwner
do
create this with
owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner
variable is part of the choice arguments, not the Iou.

The above syntax is an alternative to controller ¢ can, which allows for this. Such choices live
outside any controller c can block. Theydeclared usingthe choice keyword, and have an extra
clause controller c,which takes the place of controller c can, and has access to the choice
arguments.

This is also the first time we have shown a choice with more than one controller. If multiple con-
trollers are specified, the authority of all the controllers is needed. Here, neither owner, nor newOwner

68 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

can execute a transfer unilaterally, hence the name Mutual Transfer.

template IouSender

with
sender : Party
receiver : Party
where

signatory receiver
observer sender

nonconsuming choice Send Iou
ContractId Iou
with
iouCid : ContractId Iou
controller sender
do
iou <- fetch iouCid
assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)
exercise iouCid Mutual Transfer with
newOwner = receiver

The above TouSender contract now gives one party, the sender the right to send Iou contracts with
positive amounts to a receiver. The nonconsuming keyword on the choice Send Iouchanges the
behaviour of the choice so that the contract it’s exercised on does not get archived when the choice
is exercised. That way the sender can use the contract to send multiple lous.

Here it is in action:

-— Bob allows Alice to send him Ious.
sab <- submit bob do
createCmd IouSender with
sender = alice
receiver = bob

—-— Charlie allows Bob to send him Ious.
sbc <- submit charlie do
createCmd IouSender with
sender = bob
receiver = charlie

-— Alice can now send the Iou she issued herself earlier.
ioud4 <- submit alice do
exerciseCmd sab Send Iou with
iouCid = iou

-— Bob sends it on to Charlie.
submit bob do
exerciseCmd sbc Send Iou with
iouCid = iou4

2.1. Writing Daml 69

Daml SDK Documentation, {sdk}

Daml’s authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in Daml.
In this section you’ll learn about the formal authorization model to allow you to reason through your
contract models. This will allow you to construct them in such a way that you don’t run into autho-
rization errors at runtime, or, worse still, allow malicious transactions.

In Choices in the Ledger Model you learned that a transaction is, equivalently, a tree of transactions, ora
forest of actions, where each transaction is a list of actions, and each action has a child-transaction
called its consequences.

Each action has a set of required authorizers - the parties that must authorize that action - and each
transaction has a set of authorizers - the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers
of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.
Remember that Archive and archive are just an implicit choice with the signatories as con-
trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat
dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.
The consequences of an exercise action are authorized by the actors of that action plus the
signatories of the contract on which the action was taken.

An authorization example

Consider the transaction from the script above where Bob sends an Iouto Charlieusing a Send Iou
contract. It is authorized as follows, ignoring fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send Iouona IouSender con-
tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the
sender, Bob is the required authorizer.

The consequences of the Send TIou action are authorized by its actors, Bob, as well as signa-
tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-
quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual Transfer with Charlie as
newOwner on an Iou with issuer Alice and owner Bob. The required authorizers of the ac-
tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.
The consequences of Mutual Transfer areauthorized by the actors (Bob and Charlie), as well
as the signatories on the lou (Alice and Bob).

The single action on the consequences, the creation of an lou with issuer Alice and owner
Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s
authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

70 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

TX #12 1970-01-01T00:00:00Z (Parties:269:3)
#12:0

| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> 'Bob' exercises Send Iou on #10:0 (Parties:IouSender)
with
iouCid = #11:3
children:
#12:1

| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> fetch #11:3 (Parties:Iou)

#12:2

currency = "USD"; amount = 100.0)

| known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)
L> 'Bob', 'Charlie' exercises Mutual Transfer on #11:3

with
newOwner = 'Charlie'
children:
#12:3
| known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)
L> create Parties:Iou
with
issuer = 'Alice';
owner = 'Charlie';
cash =
(Parties:Cash with

(Parties:Iou)

Note that authority is not automatically transferred transitively.

template NonTransitive
with
partyA : Party
partyB : Party
where
signatory partyA
observer partyB

choice TryA
ContractId NonTransitive
controller partyA
do
create NonTransitive with
partyA = partyB
partyB = partyA

choice TryB
ContractId NonTransitive
with
other : ContractId NonTransitive
controller partyB

(continues on next page)

2.1. Writing Daml

71

Daml SDK Documentation, {sdk}

(continued from previous page)

do
exercise other TryA

ntl <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob
nt2 <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob

submitMustFail bob do
exerciseCmd ntl TryB with
other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action Trya only has Alice
as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to
create the flipped NonTransitive so the transaction fails.

Next up

In 7 Composing choices you will put everything you have learned together to build a simple asset hold-
ing and trading model akin to that in the |OU Quickstart Tutorial. In that context you’ll learn a bit more
about the Update action and how to use it to compose transactions, as well as about privacy on
Daml ledgers.

2.1.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure Daml model for
asset issuance, management, transfer, and trading. This application will have capabilities similar
to the one in I0U Quickstart Tutorial. In the process you will learn about a few more concepts:

Daml projects, packages and modules
Composition of transactions
Observers and stakeholders

Daml’s execution model

Privacy

The model in this section is not a single Daml file, but a Daml project consisting of several files that
depend on each other.

Hint: Remember that you can load all the code for this section into a folder called 7 _Composing by
running daml new 7Composing --template daml-intro-7

72 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Daml projects

Daml is organized in projects, packages and modules. A Daml project is specified using a single
daml.yaml file, and compiles into a package in Daml’s intermediate language, or bytecode equiva-
lent, Daml-LF. Each Daml file within a project becomes a Daml module, which is a bit like a names-
pace. Each Daml project has a source root specified in the source parameter in the project’'s daml.
yaml file. The package will include all modules specified in *.daml files beneath that source direc-
tory.

You can start a new project with a skeleton structure using daml new project name inthe termi-
nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the chapter 7 project:

sdk-version: VERSION
name: __ PROJECT NAME
source: daml
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

- daml-script
sandbox-options:

- —--wall-clock-time

You can generally set name and version freely to describe your project. dependencies does what
the name suggests: It includes dependencies. You should always include daml-prim and daml-
stdlib. The former contains internals of compiler and Daml Runtime, the latter gives access to the
Daml Standard Library. daml-script contains the types and standard library for Daml Script.

You compile a Daml project by running daml build from the project root directory. This creates
a dar file in .daml/dist/dist/project name-project version.dar. A dar file is Damls
equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the package
and its dependencies. dar files are fully self-contained in that they contain all dependencies of the
main package. More on all of this in 9 Working with Dependencies.

Project structure

This project contains an asset holding model for transferable, fungible assets and a separate trade
workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and
Intro.Asset.Trade.

In addition, there are tests in modules Test.Intro.Asset,Test.Intro.Asset.Role,and Test.
Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project
source directory, and the last one to a file name. The folder structure therefore looks like this:

F—— daml
F— Intro
| F—— Asset

| | F—— Role.daml
| | L— Trade.daml

(continues on next page)

2.1. Writing Daml 73

Daml SDK Documentation, {sdk}

(continued from previous page)

| L— Asset.daml
L— Test

|

|

| L— Intro

| |— Asset

| | F—— Role.daml
| | L— Trade.daml
| L — Asset.daml

L— daml.yaml

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModules module
imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of
names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any Daml Scripts, you need to import the corresponding functionality:

import Daml.Script

Project overview

The project both changes and adds to the Tou model presented in 6 Parties and authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner
to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This
makes Asset safer than Iou from the issuer’s point of view.

With the Tou model, an issuer could end up owing cash to anyone as transfers were autho-
rized by just owner and newOwner. In this project, only parties having an AssetHolder con-
tract can end up owning assets. This allows the issuer to determine which parties may own
their assets.

The Trade template adds a swap of two assets to the model.

Composed choices and scripts

This project showcases how you can putthe Update and Script actions you learnt aboutin 6 Parties
and authority to good use. For example, the Merge and Split choices each perform several actions
in their consequences.

Two create actions in case of Split
One create and one archive action in case of Merge

74 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

choice Split
SplitResult
with
splitQuantity : Decimal
controller owner
do
splitAsset <- create this with
quantity = splitQuantity
remainder <- create this with
quantity = quantity - splitQuantity
return SplitResult with
splitAsset
remainder

choice Merge
ContractId Asset
with
otherCid : ContractId Asset
controller owner

do

other <- fetch otherCid

assertMsg
"Merge failed: issuer does not match”
(issuer == other.issuer)

assertMsg
"Merge failed: owner does not match"
(owner == other.owner)

assertMsg
"Merge failed: symbol does not match"
(symbol == other.symbol)

archive otherCid
create this with
quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return xisa
no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a
value with side-effects. The return name makes sense when it’s used as the last statementin a do
block as its argument is indeed the return -value of the do block in that case.

Taking transaction composition a step further, the Trade Settle choice on Trade composes two
exercise actions:

choice Trade_Settle

(ContractId Asset, ContractId Asset)

with
quoteAssetCid : ContractId Asset
baseApprovalCid : ContractlId TransferApproval

controller quoteAsset.owner

do
fetchedBaseAsset <- fetch baseAssetCid
assertMsg

(continues on next page)

21

Writing Daml 75

Daml SDK Documentation, {sdk}

(continued from previous page)

"Base asset mismatch"
(baseAsset fetchedBaseAsset with
observers baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid
assertMsg

"Quote asset mismatch"
(quoteAsset == fetchedQuoteAsset with
observers quoteAsset.observers)

transferredBaseCid <- exercise

baseApprovalCid TransferApproval Transfer with
assetCid = baseAssetCid

transferredQuoteCid <- exercise
quoteApprovalCid TransferApproval Transfer with
assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the
test trade scriptin Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)
#15:0
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> 'Bob' exercises Trade Settle on #13:1 (Intro.Asset.Trade:Trade)
with
quoteAssetCid = #10:1; baseApprovalCid = #14:2
children:
#15:1
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> fetch #11:1 (Intro.Asset:Asset)
#15:2
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)
#15:3
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)
L> ralice’,
'Bob' exercises TransferApproval Transfer on #14:2 (Intro.
—Asset:TransferApproval)
with
assetCid = #11:1
children:
#15:4
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)
L> fetch #11:1 (Intro.Asset:Asset)
(continues on next page)
76

Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

#15:5

| known to (since): 'Alice' (#15), 'USD Bank' (#15), 'Bob' (#15)

L> 'Alice’, 'USD Bank' exercises Archive on #11:1 (Intro.
—~Asset:Asset)

#15:6
| referenced by #17:0
| known to (since): 'Bob' (#15), 'USD Bank' (#15), 'Alice' (#15)
L> create Intro.Asset:Asset
with
issuer = 'USD Bank'; owner = 'Bob'; symbol = "USD"; quantity
—~= 100.0; observers = []
#15:7
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L> 'Bob’,

'Alice' exercises TransferApproval Transfer on #12:1 (Intro.
—~Asset:TransferApproval)
with
assetCid = #10:1
children:
#15:8
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L> fetch #10:1 (Intro.Asset:Asset)

#15:9

| known to (since): 'Bob' (#15), 'EUR Bank' (#15), 'Alice' (#15)

L> 'Bob’, 'EUR Bank' exercises Archive on #10:1 (Intro.
—Asset:Asset)

#15:10
| referenced by #16:0
| known to (since): 'Alice' (#15), 'EUR Bank' (#15), 'Bob' (#15)
L> create Intro.Asset:Asset
with
issuer = 'EUR Bank'; owner = 'Alice'; symbol = "EUR";
—quantity = 90.0; observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test issuance = do
setupResult@ (alice, bob, bank, aha, ahb) <- setupRoles

assetCid <- submit bank do
exerciseCmd aha Issue Asset
with
symbol = "USD"
quantity = 100.0

(continues on next page)

2.1. Writing Daml 77

Daml SDK Documentation, {sdk}

(continued from previous page)

Some asset <- queryContractId bank assetCid
assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

return (setupResult, assetCid)

In the above, the test issuance script in Test.Intro.Asset.Role uses the output of the
setupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResult <-
setupRoles and then accessing the components of setupResult using 1, 2,etc, you can give
them names. It’s equivalent to writing

setupResult <- setupRoles
case setupResult of
(alice, bob, bank, aha, ahb) ->

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but
setupResult is used in the return value of test issuance so it makes sense to give it a name,
too. The notation with @ allows you to give both the whole value as well as its constituents names in
one go.

Daml’s execution model

Daml’s execution model is fairly easy to understand, but has some important consequences. You
can imagine the life of a transaction as follows:

Command Submission Ausersubmits alist of Commands via the Ledger APl of a Participant Node,
acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update
corresponding to each Action is evaluated in the context of the ledger to calculate all conse-
quences, including transitive ones (consequences of consequences, etc.). The result of this is
a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.
This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ
from implementation to implementation. Validation also involves scheduling and collision
detection, ensuring that the transaction has a well-defined place in the (partial) ordering of
Commits, and no double spends occur.

Commitment The Commitis actually committed according to the commit or consensus protocol of
the Ledger.

Confirmation The network sends confirmations of the commitment back to all involved Participant
Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant

78 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-
ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade Settle choice shown above. The choice transfers a
baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no
chance that either party is left out of pocket.

The second consequence is that the requester of a transaction knows all consequences of their sub-
mitted transaction - there are no surprises in Daml. However, it also means that the requester must
have all the information to interpret the transaction. We also refer to this as Principle 2 a bit later on
this page.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that
transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about
some way for Alice to accept a transfer - remember, accepting a transfer needs the authority of
issuer in this example.

Observers

Observers are Daml’s mechanism to disclose contracts to other parties. They are declared just like
signatories, but using the ocbserver keyword, as shown in the Asset template:

template Asset
with
issuer : Party
owner : Party
symbol : Text
quantity : Decimal
observers : [Party]
where
signatory issuer, owner
ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice
uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if
she didn’t do that by removing that transaction.

usdCid <- submit alice do
exerciseCmd usdCid SetObservers with
newObservers = [bob]

Observers have guarantees in Daml. In particular, they are guaranteed to see actions that create and
archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each
other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and
using that to authorize the transfer in Trade Settle, Alice creates a one-time authorization in the
formof a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up
leaking them to each other.

2.1. Writing Daml 79

Daml SDK Documentation, {sdk}

Controllers declared in the choice syntax are not automatically made observers, as they can only be
calculated at the point in time when the choice arguments are known. On the contrary, controllers
declared via the controller cs can syntax are automatically made observers, but this syntax is
deprecated and will be removed in a future version of Daml.

Privacy

Daml’s privacy model is based on two principles:

Principle 1. Parties see those actions that they have a stake in. Principle 2. Every party that sees an
action sees its (transitive) consequences.

Principle 2 is necessary to ensure that every party can independently verify the validity of every trans-
action they see.

A party has a stake in an action if

they are a required authorizer of it
they are a signatory of the contract on which the action is performed
they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade Settle action from test trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade Settled action,
so both of them see it. According to rule 2. above, that means they get to see everything in the
transaction.

The consequences contain, next to some fetch actions, two exercise actions of the choice
TransferApproval Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see
the action on their contract. So the EUR_Bank sees the TransferApproval Transfer action
for the EUR Asset and the USD_Bank sees the TransferApproval Transfer action for the USD
Asset.

Some Daml ledgers, like the script runner and the Sandbox, work on the principle of data minimiza-
tion , meaning nothing more than the above information is distributed. That is, the projection of
the overall transaction that gets distributed to EUR_Bank in step 4 of Dam/’s execution model would
consistonly of the TransferApproval Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-
straints.

Divulgence

Note that Principle 2 of the privacy model means that sometimes parties see contracts that they are
not signatories or observers on. If you look at the final ledger state of the test trade script, for
example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in their
respective columns:

This is because the create action of these contracts are in the transitive consequences of the
Trade Settle action both of them have a stake in. This kind of disclosure is often called divul-
gence and needs to be considered when designing Daml models for privacy sensitive applications.

Next up

In 8 Exception Handling, we will learn about how errors in your model can be handled in Daml.

80 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Intro.Asset:Asset

]
T
]
(]
7]
=

2.1.1.8 8 Exception Handling

The default behavior in Daml is to abort the transaction on any error and roll back all changes that
have happened until then. However, this is not always appropriate. In some cases, it makes sense
to recover from an error and continue the transaction instead of aborting it.

One option for doing that is to represent errors explicitly via Either or Option as shown in 3 Data
types. This approach has the advantage that it is very explicit about which operations are allowed to
fail without aborting the entire transaction. However, it also has two major downsides. First, it can be
invasive for operations where aborting the transaction is often the desired behavior, e.g., changing
division to return Either or an Option to handle division by zero would be a very invasive change
and many callsites might not want to handle the error case explicitly. Second, and more importantly,
this approach does not allow rolling back ledger actions that have happened before the point where
failure is detected; if a contract got created before we hit the error, there is no way to undo that except
for aborting the entire transaction (which is what we were trying to avoid in the first place).

By contrast, exceptions provide a way to handle certain types of errors in such a way that, on the one
hand, most of the code that is allowed to fail can be written just like normal code, and, on the other
hand, the programmer can clearly delimit which part of the current transaction should be rolled
back on failure. All of that still happens within the same transaction and is thereby atomic contrary
to handling the error outside of Daml.

Hint: Remember that you can load all the code for this section into a folder called 8 Exceptions
by running daml new 8 Exceptions --template daml-intro-8

Our example for the use of exceptions will be a simple shop template. Users can order items by
calling a choice and transfer money (in the form of an lou issued by their bank) from their account
to the owner in return.

First, we need to setup a template to represent the account of a user.

template Account with
issuer : Party
owner : Party
amount : Decimal
where
signatory issuer, owner
ensure amount > 0.0

(continues on next page)

2.1. Writing Daml 81

Daml SDK Documentation, {sdk}

(continued from previous page)

key (issuer, owner) : (Party, Party)
maintainer key. 2

choice Transfer : () with

newOwner : Party

transferredAmount : Decimal
controller owner, newOwner
do create this with amount = amount - transferredAmount

create Iou with issuer = issuer, owner = newOwner, amount =|
—~transferredAmount
pure ()

Note that the template has an ensure clause that ensures that the amount is always positive so
Transfer cannot transfer more money than is available.

The shop is represented as a template signed by the owner. It has a field to represent the bank
accepted by the owner as well as a list of observers that can order items.

template Shop

with
owner : Party
bank : Party
observers : [Party]
where

signatory owner
observer observers
let price: Decimal = 100.0

The ordering process is then represented by a non-consuming choice on this template which calls
Transfer and creates an Order contract in return.

nonconsuming choice OrderItem : ContractId Order
with
shopper : Party
controller shopper
do exerciseByKey (@Account (bank, shopper) (Transfer owner price)
create Order
with
shopOwner = owner
shopper = shopper

However, the shop owner has realized that often orders fail because the account of their users is not
topped up. They have a small trusted userbase they know well so they decide that if the account
is not topped up, the shoppers can instead issue an lou to the owner and pay later. While it would
be possible to check the conditions under which Transfer will fail in OrderItem this can be quite
fragile: In this example, the condition is relatively simple but in larger projects replicating the con-
ditions outside the choice and keeping the two in sync can be challenging.

Exceptions allow us to handle this differently. Rather than replicating the checks in Transfer, we
can instead catch the exception thrown on failure. To do so we need to use a try-catch block. The
try block defines the scope within which we want to catch exceptions while the catch clauses
define which exceptions we want to catch and how we want to handle them. In this case, we want to

82 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

catch the exception thrown by a failed ensure clause. This exception is defined in daml-stdlib as
PreconditionFailed. Putting it together our order process for trusted users looks as follows:

nonconsuming choice OrderItemTrusted : ContractId Order
with
shopper : Party
controller shopper
do cid <- create Order

with
shopOwner = owner
shopper = shopper
try do
exerciseByKey (@Account (bank, shopper) (Transfer owner price)
catch
PreconditionFailed _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()

pure cid

Let’s walk through this code. First, as mentioned, the shop owner is the trusting kind, so he wants to
start by creating the Order matter what. Next, we try to charge the customer for the order. We could,
at this point, check their balance against the cost of the order, but that would amount to duplicating
the logic already present in Account. This logic is pretty simple in this case, but duplicating invari-
ants is a bad habit to get into. So, instead, we just try to charge the account. If that succeeds, we
justmerrily ignore the entire catch clause; if that fails, however, we do not want to destroy the Order
contract we had already created. Instead, we want to catch the error thrown by the ensure clause of
Account (in this case, it is of type PreconditionFailed) and try something else: create an Iou
contract to register the debt and move on.

Note that if the Iou creation still failed (unlikely with our definition of Tou here, but could happen
in more complex scenarios), because that one is not wrapped in a try block, we would revert to the
default Daml behaviour and the Order creation would be rolled back.

In addition to catching built-in exceptions like PreconditionFailed, you can also define your own
exception types which can be caught and thrown. As an example, let’s consider a variant of the
Transfer choice that only allows for transfers up to a given limit. If the amount is higher than the
limit, we throw an exception called TransferLimitExceeded.

We first have to define the exception and define a way to represent it as a string. In this case, our
exception should store the amount that someone tried to transfer as well as the limit.

exception TransferLimitExceeded
with
limit : Decimal
attempted : Decimal
where
message "Transfer of " <> show attempted <> " exceeds limit of " <>[]
—show limit

To throw our own exception, you can use throw in Update and Script or throwPure in other con-

2.1. Writing Daml 83

Daml SDK Documentation, {sdk}

texts.

choice TransferLimited : () with
newOwner : Party
transferredAmount : Decimal
controller owner, newOwner
do let limit = 50.0
when (transferredAmount > limit) $
throw TransferLimitExceeded with

limit = limit
attempted = transferredAmount
create this with amount = amount - transferredAmount
create Iou with issuer = issuer, owner = newOwner, amount =|

—transferredAmount
pure ()

Finally, we can adapt our choice to catch this exception as well:

nonconsuming choice OrderItemTrustedLimited : ContractId Order
with
shopper : Party
controller shopper

do try do
exerciseByKey (@Account (bank, shopper) (Transfer owner price)
pure ()
catch
PreconditionFailed _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
TransferLimitExceeded _ _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
create Order
with

shopOwner = owner
shopper = shopper

For more information on exceptions, take a look at the language reference.

Next up

We have now seen how to develop safe models and how we can handle errors in those models in a
robust and simple way. But the journey doesn’t stop there. In 9 Working with Dependencies you will
learn how to extend an already running application to enhance it with new features. In that context
you’ll learn a bit more about the architecture of Daml, about dependencies, and about identifiers.

84 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

2.1.1.9 9 Working with Dependencies

The application from Chapter 7 is a complete and secure model for atomic swaps of assets, but
there is plenty of room for improvement. However, one can’t implement all feature before going live
with an application so it’s important to understand way to change already running code. There are
fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to
have multiple signatories.
2. Extensions, which merely add new functionality though additional templates.

Upgrades are covered in their own section outside this introduction to Daml: Upgrading and Extending
Damlapplications soin this section we will extend the chapter 7 model with a simple second workflow:
a multi-leg trade. In doing so, you’ll learn about:

The software architecture of the Daml Stack
Dependencies and Data Dependencies
Identifiers

Since we are extending chapter 7, the setup for this chapter is slightly more complex:

1. In a base directory, load the chapter 7 project using daml new 7Composing --template
daml-intro-7.Thedirectory 7Composing hereisimportantas it’ll be referenced by the other
project we are creating.

2. In the same directory, load the chapter 8 project using daml new 9Dependencies --
template daml-intro-9.

8Dependencies contains a new module Intro.Asset.MultiTrade and a corresponding test
module Test.Intro.Asset.MultiTrade.

DAR, DALF, Daml-LF, and the Engine

In 7 Composing choices you already learnt a little about projects, Daml-LF, DAR files, and dependencies.
In this chapter we will actually need to have dependencies from the chapter 8 project to the chapter
7 project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of chapter 7. DAR files, like Java JAR files are just ZIP archives,
but the SDK also has a utility to inspect DARs out of the box:

1. Navigate into the 7Composing directory.
2. Build using daml build -o assets.dar
3. Rundaml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header DAR archive contains the following files: you’ll
see that the DAR contains

1. *.dalf files for the project and all its dependencies
2. The original Daml source code

3. *.hiand *.hie files for each *.daml file

4. Some meta-inf and config files

Thefirstfileis somethinglike 7Composing-1.0.0-887056cbb313b9%4ab%a6cafl34f7fedfbfel9cb0c86le
dalf which is the actual compiled package for the project. *.dalf files contain Daml-LF, which is

Daml’s intermediate language. The file contents are a binary encoded protobuf message from the

daml-If schema. Daml-LF is evaluated on the Ledger by the Daml Engine, which is a JVM component

thatis part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If DamlI-LF

is to Daml what Java Bytecode is to Java, the Daml Engine is to Daml what the JVM is to Java.

2.1. Writing Daml 85

https://github.com/digital-asset/daml/tree/main/daml-lf/archive

Daml SDK Documentation, {sdk}

Hashes and Identifiers

Under the heading DAR archive contains the following packages: you get a similar looking list
of package names, paired with only the long random string repeated. That hexadecimal string,
887056cbb313b9%4ab9abcafl34f7fedfbfel9chb0c861e50d1594c665567ab7625 in this case, is
the package hash and the primary and only identifier for a package that’s guaranteed to be avail-
able and preserved. Meta information like name (7ZComposing) and version (1.0.0) help make it
human readable but should not be relied upon. You may not always get DAR files from your compiler,
but be loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is
preserved.

1. Note down your main package hash from running inspect-dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch-dar --host localhost --port
6865 --main-package-id "887056cbb313b9%4ab%abcaf34f7fedfbfel9cb0c861e50d1594c665
-0 assets ledger.dar, making sure to replace the hash with the appropriate one.

4. Rundaml damlc inspect-dar assets ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only
identifiable by hash. We could of course also create a second project 7Composing-1.0.0 with com-
pletely different contents so even when name and version are available, package hash is the only safe
identifier.

That’'s why over the Ledger API, all types, like templates and records are identified by the triple
(entity name, module name, package hash). Your client application should know the pack-
age hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable
format for the information it emits: daml damlc inspect-dar --json assets ledger.dar
Themain package idfield in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data
dependencies.

Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the *.hi files. The information
in these files is crucial for dependencies like the Standard Library, which provide functions, types
and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this in-
formation may not even be desirable. Imagine we had built 7Composing with SDK 1.100.0, and are
building 8Dependencies with SDK 1.101.0. All the typeclasses and instances on the inbuilt types
may have changed and are now present twice - once from the current SDK and once from the de-
pendency. This gets messy fast, which is why the SDK does not support dependencies across SDK
versions. For dependencies on contract models that were fetched from a ledger, or come from an
older SDK version, there is a simpler kind of dependency called data-dependencies. The syntax
for data-dependencies is the same, but they only rely on the binary *.dalf files. The name
tries to confer that the main purpose of such dependencies is to handle data: Records, Choices,
Templates. The stuff one needs to use contract composability across projects.

For an extension model like this one, data-dependencies are appropriate so the chapter 8 project
includes the chapter 7 that way.

86 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

- daml-script
data-dependencies:
- ../7Composing/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the
Chapter 7 trade setup Scripts. data-dependencies is designed to use existing contracts and data
types. Daml Script is not imported. In practice, we also shouldn’t expect that the DAR file we down-
load from the ledger using daml ledger fetch-dar contains test scripts. For larger projects it’s
good practice to keep them separate and only deploy templates to the ledger.

Structuring Projects

As you’ve seen here, identifiers depend on the package as a whole and packages always bring all their
dependencies with them. Thus changing anything in a complex dependency graph can have signif-
icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate
concerns which are likely to change at different rates into separate packages.

Forexample,inallour projectsinthisintro,including this chapter, our scripts are in the same project
as our templates. In practice, that means changing a test changes all identifiers, which is not de-
sirable. It's better for maintainability to separate tests from main templates. If we had done that in
chapter 7, that would also have saved us from copying the chapter 7

Similarly, we included Trade in the same project as Asset inchapter7,even though Trade is a pure
extension to the core Asset model. If we expect Trade to need more frequent changes, it may be a
good idea to split it out into a separate project from the start.

Next up

The MultiTrade model has more complex control flow and data handling than previous models.
In 10 Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds,
common typeclasses, custom functions, and the Standard Library. We’ll be using the same projects
so don’t delete your chapter 7 and 8 folders just yet.

2.1.1.10 10 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like
Daml. Specifically, you’ll learn about

Function signatures and functions
Advanced control flow (i f. . .else, folds, recursion, when)

If you no longer have your chapter 7 and 8 projects set up, and want to look back at the code, please
follow the setup instructions in 9 Working with Dependencies to get hold of the code for this chapter.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

The Haskell Connection

The previous chapters of this introduction to Daml have mostly covered the structure of templates,
and their connection to the Daml Ledger Model. The logic of what happens within the do blocks of
choices has been kept relatively simple. In this chapter, we will dive deeper into Daml’s expression

2.1. Writing Daml 87

Daml SDK Documentation, {sdk}

language, the part that allows you to write logic inside those do blocks. But we can only scratch
the surface here. Daml borrows a lot of its language from Haskell. If you want to dive deeper, or
learn about specific aspects of the language you can refer to standard literature on Haskell. Some
recommendations:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)
Learn You a Haskell for Great Good! (Miran Lipova a)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing Daml to Haskell it’s worth noting:

Haskell is a lazy language, which allows you to write things like head [1..], meaning take
the first element of an infinite list . Daml by contrast is strict. Expressions are fully evaluated,
which means it is not possible to work with infinite data structures.

Daml has a with syntax for records, and dot syntax for record field access, neither of which
present in Haskell. But Daml supports Haskell’s curly brace record notation.

Daml has a number of Haskell compiler extensions active by default.

Daml doesn’t support all features of Haskell’s type system. For example, there are no existential
types or GADTs.

Actions are called Monads in Haskell.

Functions

In 3 Data types you learnt about one half of Daml’s type system: Data types. It’s now time to learn
about the other, which are Function types. Function types in Daml can be spotted by looking for ->
which can be read as maps to .

Forexample, the functionsignature Int -> Int mapsanintegertoanotherinteger. There are many
such functions, but one would be:

increment : Int -> Int
increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-
laration can be omitted in cases where the type can be inferred by the compiler, but for top-level
functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to
include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add
without a declaration:

add nm=n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name
in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one ->.
2. We have a type parameter a with a constraint Additive a.

88 Chapter 2. Daml Guide

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

Daml SDK Documentation, {sdk}

Defined at /tmp/daml-intro-9/dan l ml:20:1

add nm=n +m

Function Application

Let’s start by looking attheright hand parta -> a -> a.The->isrightassociative, meaninga ->
a -> aisequivalenttoa -> (a -> a). Usingthe maps to way of reading -> we get a maps
to a function that mapsatoa .

And this is indeed what happens. We can define a different version of increment by partially applying
add:

increment?2 = add 1

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again. It candoso
because of the literal 1 : Int.

Soif we have a functionf : a -> b -> ¢ -> dandavaluevalA : a,wegetf valA : b ->
c -> d, ie we can apply the function argument by argument. If we also had valB : b, we would
have £ valA valB : ¢ -> d. Whatthis tells you is that function application is left associative: £
valA valB == (f wvalA) wvalB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it
starts with a symbol. Functions that start with a symbol are infix by default which means they can
be written between two arguments. That’s why we can write 1 + 2 ratherthan+ 1 2. The rules for
converting between normal and infix functions are simple. Wrap an infix function in parentheses to
use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 “add® 2

With that knowledge, we could have defined add more succinctly as the alias that itis:

add?2 : Additive a => a -> a -> a
add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)
decrement = (- 1)

Note: While function application is left associative by default, infix operators can be declared left
or right associative and given a precedence. Good examples are the boolean operations && and | |,
which are declared right associative with precedences 3, and 2, respectively. This allows you to write

2.1. Writing Daml 89

Daml SDK Documentation, {sdk}

True || True && False and get value True. See section 4.4.2 of the Haskell 98 report for more
on fixities.

Type Constraints

The Additive a => part of the signature of add is a type constraint on the type parameter a.
Additive here is a typeclass. You already met typeclasses like Eq and Show in 3 Data types. The
Additive typeclass saysthatyoucanadd athing. lethereisafunction (+) : a -> a -> a.Now
the way to read the full signature of add is Given that a has an instance for the Additive typeclass,
a maps to a function which mapsatoa .

Typeclasses in Daml are a bit like interfaces in other languages. To be able to add two things using
the + function, those things need to expose the + interface.

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also
demonstrates the use of multiple constraints at the same time, is the signature of the exercise
function:

exercise : (Template t, Choice t ¢ r) => ContractlId t -> ¢ -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice c with return
type r, map a ContractId for a contract of type t to a function that takes the choice arguments of
type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to
parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses
and variables.

Pattern Matching in Arguments

You met pattern matching in 3 Data types, using case statements which is one way of pattern match-
ing. However, it can also be convenient to do the pattern matching at the level of function arguments.
Think about implementing the function uncurry:

uncurry : (a -> b -> c¢) -> (a, b) -> ¢

uncurry takes a function with two arguments (or more, since c could be a function), and turns it
into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,
case pattern matching, and function pattern matching:

uncurryl £ t = £ t. 1 t. 2

uncurry?2 £ t = case t of
(x, y) > £ x vy

uncurry £ (x, y) = f x vy

Using function pattern matchingis clearly the mostelegant here. We never need the tuple as awhole,
just its members. Any pattern matching you can do in case you can also do at the function level,
and the compiler helpfully warns you if you did not cover all cases, which is called non-exhaustive .

fromSome : Optional a -> a
fromSome (Some x) = X

90 Chapter 2. Daml Guide

https://www.haskell.org/onlinereport/decls.html

Daml SDK Documentation, {sdk}

The above will give you a warning:

warning:
Pattern match(es) are non-exhaustive
In an equation for ‘fromSome’: Patterns not matched: None

This means fromSome is a partial function. fromSome None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write
the function issueAsset in chapter 8:

issueAsset : Asset -> Script (ContractId Asset)

issueAsset assetl (Asset with ..) = do
assetHolders <- queryFilter (@AssetHolder issuer
(\ah -> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of
(ahCid, _)::_ -> submit asset.issuer do
exerciseCmd ahCid Issue_ Asset with
[-> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so
we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the
matching name. So the function succinctly transfers all fields except for owner, which is set explic-
itly, from the V1 Asset to the V2 Asset.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in Daml you can also put a
function. Even inside data types:

data Predicate a = Predicate with
test : a -> Bool

More commonly, it makes sense to define functions locally, inside a 1et clause or similar. A good
example of this are the validate and transfer functions defined locally in the Trade Settle
choice of the model from chapter 8:

let
validate (asset, assetCid) = do
fetchedAsset <- fetch assetCid
assertMsg
"Asset mismatch"
(asset == fetchedAsset with
observers = asset.observers)

mapA validate (zip baseAssets baseAssetCids)
mapA validate (zip quoteAssets quoteAssetCids)

let

(continues on next page)

2.1. Writing Daml 91

Daml SDK Documentation, {sdk}

(continued from previous page)

transfer (assetCid, approvalCid) = do
exercise approvalCid TransferApproval Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCids
—baseApprovalCids)

transferredQuoteCids <- mapA transfer (zip quoteAssetCidsl]
—quoteApprovalCids)

You can see that the function signature is inferred from the context here. If you look closely (or hover
over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Eqgq r, HasField "observers" r a) => (r, ContractId
—r) —-> Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-
guments, or as choice in- or outputs. They also don’t have instances of the Eq or Show typeclasses
which one would commonly want on data types.

You can probably guess what the mapA and mapA_s in the above choice do. They somehow loop
through the lists of assets, and approvals, and the functions validate and transfer to each, per-
forming the resulting Update action in the process. We’ll look at that more closely under Looping
below.

Lambdas
Like in most modern languages, Daml also supports inline functions called lambdas. They are de-

fined using (\x y z -> ...) syntax. For example, a lambda version of increment would be (\n
->n + 1).

Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to
translate procedural code into functional code.

Branching

Until Chapter 7 the only real kind of control flow introduced has been case, which is a powerful tool
for branching.

If..Else

Chapter 5 also showed a seemingly self-explanatory if. .else statement, but didn’t explain it fur-
ther. And they are actually the same thing. Let’s implement the function boolToInt : Bool ->
Int whichintypical fashion maps True to 1l and False to 0. Hereis an implementation using case:

boolToInt b = case b of
True -> 1
False -> 0

92 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if
Found:
case b of
True -> 1
False -> 0
Perhaps:
if b then 1 else 0

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b
then 1
else 0O

In short: 1. .else statements are equivalent to a case statement, but are easier to read.

Control Flow as Expressions

case statements and if..else really are control flow in the sense that they short circuit:

doError t = case t of
"True" =-> True
"False" -> False
_ => error ("Not a Bool: " <> t)

This function behaves as you expect. The error only gets evaluated if an invalid text is passed in.

This is different to functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e
boom = ifelse True 1 (error "RBoom")

In the above, boom is an error.

But while being proper control flow, case and if..else statements are also expressions in the
sense that they result in a value when evaluated. You can actually see that in the function defini-
tions above. Since each of the functions is defined just as a case or if statement, the value of the
evaluated function is just the value of the case/if statement. Things that have a value have a type.
Theif..elseexpressioninboolToInt2 hastype Int asthat’s whatthe functionreturns, the case
expression in doError has type Bool. To be able to give such expressions an unambiguous type,
each branch needs to have the same type. The below function does not compile as one branch tries
toreturn an Int and the other a Text:

typeError b = if Db
then 1
else "a"

If we need functions that can return two (or more) types of things we need to encode that in the return
type. For two possibilities, it’'s common to use the Either type:

2.1. Writing Daml 93

Daml SDK Documentation, {sdk}

intOrText : Bool -> Either Int Text
intOrText b = if b

then Left 1

else Right "a"

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a
contract of one type in one case, and of another type in another case. Let’s say we have two template
types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T
with
p : Party
where

signatory p

template S
with
p : Party
where

signatory p

It would be tempting to write a simple if. .else, but it won’t typecheck:

typeError b p = if b
then create T with p
else create S with p

We have two options:

1. Use the Either trick from above.
2. Getrid of the return types.

1fThenSElseTl b p = if b
then do
cid <- create S with p
return (Left cid)
else do
cid <- create T with p
return (Right cid)

ifThenSElseT2 b p
then do
create S with p
return ()
else do
create T with p
return ()

if b

The latter is so common that there is a utility function in DA.Action to get rid of the return type:
void : Functor £ => f a -> £ ().

94 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

1fThenSElseT3 b p = if b
then void (create S with p)
else void (create T with p)

void also helps express control flow of the type Create a T only if a condition is met.

conditionalS b p = if Db
then void (create S with p)
else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-
sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f
0 -> £ 0.

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does some magic so thatis short circuits
evaluation just like 1f..else. noop is a no-op, not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

With case, 1f..else, void and when, you can express all branching. However, one additional fea-
ture you may want to learn is guards. They are not covered here, but can help avoid deeply nested
if..else blocks. Here’s just one example. The Haskell sources at the beginning of the chapter cover
this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "RBig"

| d < 1000 = "Huge"

| otherwise = "Enormous"
Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to
iteratively modify some state. We’ll use JavaScriptin this section to illustrate the procedural way of
doing things.

function sum(intArr) {
var result = 0;
intarr.forEach (i => {
result += 1i;
}) s
return result;

A more general loop looks like this:

2.1. Writing Daml 95

Daml SDK Documentation, {sdk}

function whileFunction (arr) {

var rev = initialize (input);

while (doContinue (state)) {
state = process (state);

}

return finalize(state):;

The only real difference is that the iterator is explicit in the former, and implicit in the latter.

In both cases, state is being mutated: result in the former, state in the latter. Values in Daml are
immutable, so it needs to work differently. In Daml we will do this with folds and recursion.

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-
guages. The most common iteratoris alist, as is the case in the sum function above. For such cases,
Daml has the foldl function. The 1 stands for left and means the list is processed from the left.
There is also a corresponding foldr which processes from the right.

foldl : (b -=> a -> b) -> b -> [a] -> Db

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument
is a function which takes a state and an item and returns a new state. That’s the equivalent of the
inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which
is the iterator. The result is again a state. The sum function above can be translated to Daml almost
instantly with those correspondences in mind:

sum ints = foldl (+) 0O ints

If we wanted to be more verbose, we could replace (+) with alambda (\result i -> result +
i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care
with performance when it comes to translating for loops:

function sumArrs(arrl, arr2) {
var 1 = min (arrl.length, arr2.length);
var result = new int[1l];
for(var 1 = 0; i < 1; 1i++) {
result[i] = arrl[i] + arr2[i];
}

return result;

Translating the for into a forEach is easy if you can get your hands on an array containing values
[0..(1-1)]. And that’s literally how you do it in Daml, using ranges. [0.. (1-1)] is shorthand for
enumFromTo 0 (1-1),which returns the list you’d expect.

Daml also has anoperator (!!) : [a] -> Int -> awhichreturnsanelementin alist. You may
now be tempted to write sumArrs like this:

96 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

sumArrs : [Int] -> [Int] -> [Int]
sumArrs arrl arr2 =
let 1 = min (length arrl) (length arr2)

sumAtI i = (arrl !! i) + (arr2 !! 1)
in foldl (\state 1 =-> (sumAtI i) :: state) [] [1..(1-1)]
But you should immediately forget again that you just learnt about (!!). Lists in Daml are linked
lists, which makes access using (!!) slow and idiosyncratic. The way to do this in Daml is to get rid

of the i altogether and instead merge the lists first, and then iterate over the zipped up lists:

sumArrs2 arrl arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip
—arrl arr?2)

zip : [a] -> [b] -> [(a, Db)] takes two lists, and merges them into a single list where the
first element is the 2-tuple containing the first elements to the two input lists, and so on. It drops
any left-over elements of the longer list, thus making the min logic unnecessary.

Maps

You’ve probably noticed that what we’ve done in this second version of sumArr is pretty standard,
we have taken a list zip arrl arr2 applied a function \ (x, y) -> x + ytoeachelement, and
returned the list of results. This operation is called map : (a -> b) -> [a] -> [b]. We can
now write sumArr even more nicely:

sumArrs3 arrl arr2 = map (\(x, y) -> (x + y)) (zip arrl arr2)

As arule of thumb: Usemap if the result has the same shape as the input and you don’t need to carry
state from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,
for example. We want to avoid (!!) sothere is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of
[1 -> rev
X::Xs —-> reverseWorker (x::rev) Xxs
reverse xs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but Daml only
supports recursion for top-level functions so the recursive part recurseWorker has to be its own
top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in 5 Adding constraints to a contract:
The functions used to map or process items have no side-effects. In day-to-day Daml that’s the
exception rather than the rule. If you have looked at the chapter 8 models, you’ll have noticed mapa,
mapA ,and forA all over the place. A good example are the mapA in the testMultiTrade script:

2.1. Writing Daml 97

Daml SDK Documentation, {sdk}

[Relationship chfbank alice
, Relationship chfbank bob
, Relationship gbpbank alice
, Relationship gbpbank bob

[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

Here we have a list of relationships (type [Relationship] and a function setupRelationship

Relationship -> Script (ContractId AssetHolder). We want the AssetHolder con-
tracts for those relationships, ie something of type [ContractId AssetHolder]. Using the
map function almost gets us there. map setupRelationship rels : [Update (ContractId
AssetHolder)]. This is a list of Update actions, each resulting in a ContractId AssetHolder.
What we need is an Update action resulting in a [ContractId AssetHolder]. The list and
Update are the wrong way around for our purposes.

Intuitively, it’s clear how to fix this: we want the compound action consisting of performing each of
the actions in the list in turn. There’s a function for that, of course. sequence : : Applicative
m => [m a] -> m [a] implements thatintuition and allows us to take the Update out of the list.
So we could write sequence (map setupRelationship rels). Thisis so common thatit’s en-
capsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for Action of course, and you’ll find that many functions that have some-
thing to do with looping have an A equivalent. The most fundamental of all of these is foldlA
Action m => (b -> a -> m b) -> b -> [a] -> m b, a left fold with side effects. Here the
inner function has a side-effect indicated by the m so the end result m b also has a side effect: the
sum of all the side effects of the inner function.

Have a go at implementing foldlA in terms of foldl and sequence and mapA in terms of foldA
Here are some possible implementations:

foldlA2 fn init xs =
let
work accA x = do
acc <- acchA
fn acc x
in foldl work (pure init) xs

mapA2 fn xs
let
work ys x = do
y <- fn x
return (y :: ys)
in foldlA2 work [] xs

sequence?2 actions =
let
work ys action = do
y <- action

(continues on next page)

98 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

return (y :: ys)
in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is
already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <- forA [usdCid, chfCid] (\cid =-> submit alice do
exerciseCmd cid SetObservers with
newObservers = [bob]

Lastly, you’ll have noticed that in some cases we used mapA , not mapA. The underscore indicates
that the result is not used. mapA fn xs fn = void (mapA fn xs). The Daml Linter will alert
you if you could use mapA instead of mapA, and similarly for forA .

Next up

You now know the basics of functions and control flow, both in pure and Action contexts. The Chapter
8 example shows just how much can be done with just the tools you have encountered here, but
there are many more tools at your disposal in the Daml Standard Library. It provides functions and
typeclasses for many common circumstances and in 17 Intro to the Daml Standard Library, you’ll get an
overview of the library and learn how to search and browse it.

2.1.1.11 11 Intro to the Daml Standard Library

In chapters 3 Data types and 10 Functional Programming 101 you learnt how to define your own data types
and functions. But of course you don’t have to implement everything from scratch. Daml comes with
the Daml Standard Library which contains types, functions, and typeclasses that cover a large range
of use-cases. In this chapter, you’ll get an overview of the essentials, but also learn how to browse
and search this library to find functions. Being proficient with the Standard Library will make you
considerably more efficient writing Daml code. Specifically, this chapter covers:

The Prelude

Important types from the Standard Library, and associated functions and typeclasses
Typeclasses

Important typeclasses like Functor, Foldable, and Traversable

How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-
ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,
Traversable,Action (called Monadin Haskell),and many more, are the bread and butter of Haskell
programmers.

Note: There is a project template daml-intro-11 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions
like create,exercise,and (==),typeslike [1, (,),Optional, and typeclasses like Eq, Show, and

2.1. Writing Daml 929

Daml SDK Documentation, {sdk}

Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every
other Daml module and contains both Daml specific machinery as well as the essentials needed to
work with the inbuilt types and typeclasses.

Important Types from the Prelude

In addition to the Native types, the Prelude defines a number of common types:

Lists
You've already met lists. Lists have two constructors [] and x :: xs, the latter of which is
prepend in the sensethatl :: [2] == [1, 2]. Infact [1,2] is just syntactical sugar for 1
2 o [].
Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size
up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return
values from functions consisting of several pieces or passing around data in folds, as you saw in
Folds. An example of a relatively wide Tuple can be found in the test modules of the chapter 8 project.
Test.Intro.Asset.TradeSetup.tradeSetup returnsthe allocated parties and active contracts
in a long tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back into scope
using pattern matching.

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,
— eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,![!
—eurCid) <- tradeSetup

Tuples, like lists have some syntactic magic. Both the types as well as the constructors for tuples are
(+,,) where the number of commas determines the arity of the tuple. Type and data constructor
can be applied with values inside the brackets, or outside, and partial application is possible:

tl (Int, Text) = (1, "a")
t2 (,) Int Text = (1, "a")
t3 : (Int, Text) = (1,) "a"
td 1 a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records
with named fields for complex structures or long-lived values. Overuse of tuples can harm code
readability.

Optional

The Optional type represents avalue that may be missing. It’s the closest thing Daml hastoa nul-
lable value. Optional has two constructors: Some, which takes a value, and None, which doesn’t
take a value. In many languages one would write code like this:

100 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

lookupResult = lookupByKey (k) ;

if (lookupResult == null) {
// Do something

} else {
// Do something else

In Daml the same thing would be expressed as

lookupResult <- lookupByKey @T k
case lookupResult of

None -> do -- Do Something
return ()
Some cid -> do -- Do Something
return ()
Either

Either is used in cases where a value should store one of two types. It has two constructors, Left
and Right, each of which take a value of one or the other of the two types. One typical use-case of
Either is as anextended Optional where Right takes the role of Some and Left the role of None,
but with the ability to store an error value. Either Text, for example behaves just like Optional,
except that values with constructor Left have a text associated to them.

Note: As with tuples, it’s easy to overuse Either and harm readability. Consider writing your own
more explicit type instead. For example if you were returning South avs North b using your own
type over Either would make your code clearer.

Typeclasses

You’ve seen typeclasses in use all the way from 3 Data types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a g where
getQuantity : a -> g
setQuantity : g -> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To
implement this interface, you need to define instances of this typeclass:

data Foo = Foo with
amount : Decimal

instance HasQuantity Foo Decimal where
getQuantity foo = foo.amount
setQuantity amount foo = foo with amount

2.1. Writing Daml 101

Daml SDK Documentation, {sdk}

Typeclasses can have constraints like functions. For example: class Eg a => Ord a means ev-
erything that is orderable can also be compared for equality . And that’s almost all there’s to it.

Important Typeclasses from the Prelude

Eq

The Eqg typeclass allows values of a type to be compared for (in)-equality. It makes available two
function: == and /=. Most data types from the Standard Library have an instance of Eq. As you
already learned in 3 Data types, you can let the compiler automatically derive instances of Eg for you
using the deriving keyword.

Templates always have an Eg instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,
>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List
and Optional get an instance of Ord if the type they contain has one. You can let the compiler
automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text,ie shown in a shell. Its key function is show,
which takes a value and converts it to Text. All inbuilt data types have an instance for Show and
types like List and Optional get an instance if the type they contain has one. It also supports the
deriving keyword.

Functor

Functors are the closest thing to containers that Daml has. Whenever you see a type with a sin-
gle type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a,
Update a. Functors are things that can be mapped over and as such, the key function of Functor
is fmap, which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

Applicative Functor

Applicative Functors are a bit like Actions, which you metin 5Adding constraints to a contract, except that
you can’t use the result of one action as the input to another action. The only important Applicative
Functor that isn’t an action in Daml is the Commands type submitted in a submit block in Daml
Script. That’s why in order to use do notation in Daml Script, you have to enable the ApplicativeDo
language extension.

Actions

Actions were already covered in 5 Adding constraints to a contract. One way to think of them is as

recipes for a value, which need to be executed to get at that value. Actions are always Func-
tors (and Applicative Functors). The intuition for that is simply that fmap f xistherecipeinxwith
the extra instruction to apply the pure function £ to the result.

The really important Actions in Daml are Update and Script, but there are many others, like [1],
Optional,and Either a.

102 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for Text
and [1,where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, so that (+), (=), (*), and some other
functions can be used uniformly between Decimal and Int.

Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

Module DA.List for Lists

Module DA.Optional for Optional

Module DA.Tuple for Tuples

Module DA.Either for Either

Module DA.Functor for Functors

Module DA.Action for Actions

Module DA.Monoid and Module DA.Semigroup for Monoids and Semigroups
Module DA.Text for working with Text

Module DA.Time for working with Time

Module DA.Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve
already learnt about, which are worth knowing about: Foldable and Traversable. In Looping you
learned all about folds and their Action equivalents. All the examples there were based on lists, but
there are many other possible iterators. This is expressed in two additional typeclasses: Module
DA.Traversable, and Module DA.Foldable. For more detail on these concepts, please refer to the literature
in The Haskell Connection, or https://wiki.haskell.org/Foldable_and_Traversable.

Searching the Standard Library

Being able to browse the Standard Library starting from The standard library is a start, and the module
naming helps, but it’s not an efficient process for finding out what a function you’ve encountered
does, or even less so to find a function that does a thing you need to do.

Daml has it’'s own version of the Hoogle search engine, which offers search both by name and by
signature. It’s fully integrated into the search bar on https://docs.daml.com/, but for those wanting
a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Searching for functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of
theMultiTrade.

ensure (length baseAssetCids == length baseAssets) &&
(length quoteApprovalCids == length quoteAssets) &&
not (null baseAssets) &&
not (null gquoteAssets)

2.1. Writing Daml 103

https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

Daml SDK Documentation, {sdk}

You may be ableto guess whatnot andnull do, buttry searching those names inthe documentation
search. Search results from the Standard Library will show on top. not, for example, gives

not

Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a
function does.

Searching for functions by Signature

The other very common use-case for the search is that you have some values that you want to do
something with, but don’t know the standard library function you need. On the MultiTrade tem-
plate we have a list baseAssets, and thanks to your ensure clause we know it’'s non-empty. In the
original Trade we used baseAsset.owner as the signatory. How do you get the first element of
this list to extract the owner without going through the motions of a complete pattern match using
case?

The trick is to think about the signature of the function that’s needed, and then to search for that
signature. In this case, we want a single distinguished element from a list so the signature should
be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library
results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the 1et of the MultiTrade tem-
plate.

You may notice that in the search results you also get some hits that don’t mention [] explicitly. For
example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one atindexn. Remember

that (!!) operator from 10 Functional Programming 101? There are now two possible signatures we
could search for: [a] -> Int -> aand Int -> [a] -> a.Trysearching for both. You’ll see that
the search returns (!!) in both cases. You don’t have to worry about the order of arguments.

Next up

There’s little more to learn about writing Daml at this point that isn’t best learnt by practice and
consulting reference material for both Daml and Haskell. To finish off this course, you’ll learn a little
more about your options for testing and interacting with Daml code in 12 Testing Daml Contracts, and
about the operational semantics of some keywords and common associated failures.

2.1.1.12 12 Testing Daml Contracts

This chapter is all about testing and debugging the Daml contracts you’ve built using the tools from
chapters 1-10. You’ve already met Daml Script as a way of testing your code inside the IDE. In this
chapter you’ll learn about more ways to test with Daml Script and its other uses, as well as other
tools you can use for testing and debugging. You’ll also learn about a few error cases that are most
likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically
we will cover:

104 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Daml Test tooling - Script, REPL, and Navigator
The trace and debug functions
Contention

Note that this section only covers testing your Daml contracts. For more holistic application testing,
please refer to Testing Your Web App.

If you no longer have your projects set up, please follow the setup instructions in 9 Working with De-
pendencies to get hold of the code for this chapter. There is no code specific to this chapter.

Daml Test Tooling

There are three primary tools available in the SDK to test and interact with Daml contracts. Itis highly
recommended to explore the respective docs. The chapter 8 model lends itself well to being tested
using these tools.

Daml Script

Daml Script should be familiar by now. It's a way to script commands and queries from
multiple parties against a Daml Ledger. Unless you’ve browsed other sections of the doc-
umentation already, you have probably used it mostly in the IDE. However, Daml Script
can do much more than that. It has four different modes of operation:

1. Runon a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Starta Sandbox and run against that for regression testing against an actual Ledger
APL.

4. Run against any other already running Ledger.

Daml Navigator

Daml Navigator is a Ul that runs against a Ledger API and allows interaction with con-
tracts.

Daml REPL

If you want to do things interactively, Daml REPL is the tool to use. The best way to think
of Daml REPL is as an interactive version of Daml Script, but it doubles up as a language
REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect
the results.

Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as
you expected? Daml has two functions that allow you to do fine-grained printf debugging: debug and
trace. Both allow you to print something to StdOut if the code is reached. The difference between
debug and trace is similar to the relationship between abort and error:

debug : Text -> m () maps a text to an Action that has the side-effect of printing to Std-
Out.
trace : Text -> a -> aprintsto StdOut when the expression is evaluated.

daml> let a : Script () = debug "foo"

daml> let b : Script () = trace "bar" (debug "baz")
[Daml.Script:378]: "bar"

daml> a

(continues on next page)

2.1. Writing Daml 105

Daml SDK Documentation, {sdk}

(continued from previous page)

[DA.Internal.Prelude:532]: "foo"
daml> b
[DA.Internal.Prelude:532]: "baz"
daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the Daml file and line number that
triggered the printing, but often no more than that because full stacktraces could violate subtrans-
action privacy quite easily. If you want to enable stacktraces for some purely functional code in your
modules, you can use the machinery in Module DA.Stack to do so, but we won’t cover that any further
here.

Diagnosing Contention Errors

The above tools and functions allow you to diagnose most problems with Daml code, but they are all
synchronous. The sequence of commands is determined by the sequence of inputs. That means one
of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. Daml guarantees that there can only be one
consuming choice exercised per contract so what if two parties simultaneously submit an exercise
command on the same contract? Only one can succeed. Contention canalsooccurduetoincomplete
or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client
hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have
in common is that someone has incomplete knowledge of the state the ledger will be in at the time
a transaction will be processed and/or committed.

If we look back at Daml’s execution model we’ll see there are three places where ledger state is con-
sumed:

1. Acommand is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to Contractlds that the client believes are

active.

During interpretation, ledger state is used to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by
reinterpreting it.

n

Collisions can occur both between 1and 2 and between 2 and 3. Only during the commit phase is the
complete relevant ledger state at the time of the transaction known, which means the ledger state
at commit time is king. As a Daml contract developer, you need to understand the different causes
of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid
collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three
reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or
Contractlds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current
state

106 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Following the possible error messages, we’ll discuss a few possible causes and remedies.

Contractld Not Found During Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't find']
—contractl]
—ContractId(004481eb78464£f1ed3291b06504d5619db4£f110df71cb5764717elc4d3aa096

—

Pof) .

Contractld Not Found During Validation

Disputed: dependency error: couldn't find contract ContractId!
— (00c06£a370£8858b20£d100423d928b1d200d8e3c9975600b9c038307ed6e25d6f) .

fetchByKey Error during Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't find']
—key com.daml.lf.transaction.GlobalKey@11f4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.
—GlobalKey@11£4913d

lookupByKey Dispute During Validation

Disputed: recreated and original transaction mismatch!]
—VersionedTransaction(...) expected, but VersionedTransaction(...) isl!
—recreated.

Avoiding Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-
quester submitting a transaction with a consuming exercise on a contract while another requester
submits another exercise or fetch on the same contract. This type of contention cannot be elimi-
nated entirely, for there will always be some latency between a client submitting a command to a
participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)],where Text is a display name and Party the associated Party. If you
store this entire list on a single contract, any two users wanting to update their display name
atthe same time will cause a collision. If you instead keep each (Text, Party) onaseparate
contract, these write operations become independent from each other.
The Analogy to keep in mind when structuring your data is that a template defines a table, and
a contract is a row in that table. Keeping large pieces of data on a contract is like storing big
blobs in a database row. If these blobs can change through different actions, you get write
conflicts.

2.1. Writing Daml 107

Daml SDK Documentation, {sdk}

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.
Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract
IDs during the interpretation phase on the participant node. So it reduces latencies slightly
by moving resolution from the client layer to the participant layer, but it doesn’t remove the
issue. Going back to the auction example above, if Alice sent a command exerciseByKey
@Auction auctionKey Bid with amount = 100, this would be resolved to an exercise
cid Bid with amount = 100 during interpretation, where cid is the participant’s best
guess what Contractld the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-
ing choice on the same contract. For example,imagine an Auction contract containing a field
highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries
to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced
will be rejected as it has a write collision with the first. It's better to record the bids in sepa-
rate Bid contracts, which can be written to independently. Again, think about how you would
structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing Contractlds. Imagine you had created a sharded user directory
according to 1. Each user has a User contract that store their display name and party. Now you
write a chat application where each Message contract refers to the sender by ContractId
User. If the user changes their display name, that reference goes stale. You either have to
modify all messages that user ever sent, or become unable to use the sender contract in Daml.
If you need to be able to make this link inside Daml, Contract Keys help here. If the only place
you need to link Party to User is the Ul, it might be best to not store contract references in
Daml at all.

Collisions due to Ignorance

The Daml Ledger Model specifies authorization rules, and privacy rules. le it specifies what makes a
transaction conformant, and who gets to see which parts of a committed transaction. It does not
specify how a command is translated to a transaction. This may seem strange at first since the
commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in
the ledger model. But the subtlety comes in on the read side. What happens when the participant,
during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-
nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.
Alice may not be able to order these two nodes causally in the sense of one create came before the
other . See Causality and Local Ledgers for an in-depth treatment of causality on Daml Ledgers.

Sowhat should happen now if Alice’s participant encounters a fetchByKey @T korlookupByKey
@T k during interpretation? What if it encounters a fetch node? These decisions are part of the
operational semantics, and the decision of what should happen is based on the consideration that
the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not
witnessed an archive node for that contract - ie as long as it can’t guarantee that the contractis no
longer active. The rationale behind this is that fetch and exercise use Contractlds, which need
to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three
cases, someone believes the Contractld to be active still so it’s worth trying.

If a fetchByKey or LookupByKey node is encountered, the contract is only resolved if the requester
is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason
to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using

108 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

contract keys, make sure you make the likely requesters of transactions observers on your contracts.
If you don’t, fetchByKey will always fail, and 1ookupByKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized 1lookupByKey QT k during interpre-
tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This
transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey QT k Archive.

4. Depending on which of the transactions from 2 and 3 gets sequenced first, either just 3, or both
2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

As you can see, the behaviorof fetch, fetchByKeyand lookupByKey atinterpretation time depend
on what information is available to the requester at that time. That’s something to keep in mind
when writing Daml contracts, and something to think about when encountering frequent Disputed

errors.

Next up

You’ve reached the end of the Introduction to Daml. Congratulations. If you think you understand all
this material, you could test yourself by getting Daml certified at https://academy.daml.com. Or put
your skills to good use by developing a Daml application. There are plenty of examples to inspire you

on the Examples page.

2.1.2 Language reference docs

This section contains a reference to writing templates for Daml contracts. It includes:

2.1.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a Daml file outside a template, see Reference: Daml file structure.

Template outline structure

Here’s the structure of a Daml template:

template NameOfTemplate
with
exampleParty : Party

exampleParty2 : Party
exampleParty3 : Party
exampleParameter : Text
-—- more parameters here

where

signatory exampleParty
observer exampleParty?2

agreement
—-— some text

mn

ensure

(continues on next page)

2.1. Writing Daml

109

https://academy.daml.com
https://daml.com/examples

Daml SDK Documentation, {sdk}

(continued from previous page)

-- boolean condition

True
key (exampleParty, exampleParameter) : (Party, Text)
maintainer (exampleFunction key)
-— a choice goes here; see next section

template name template keyword
parameters with followed by the names of parameters and their types
template body where keyword
Can include:
template-local definitions let keyword
Lets you make definitions that have access to the contract arguments and are available
in the rest of the template definition.
signatories signatory keyword
Required. The parties (see the Party type) who must consent to the creation of this contract.
You won’t be able to create this contract until all of these parties have authorized it.
observers observer keyword
Optional. Parties that aren’t signatories but who you still want to be able to see this con-
tract.
an agreement agreement keyword
Optional. Text that describes the agreement that this contract represents.
a precondition ensure keyword
Only create the contract if the conditions after ensure evaluate to true.
a contract key key keyword
Optional. Lets you specify a combination of a party and other data that uniquely identifies
a contract of this template. See Contract keys.
maintainers maintainer keyword
Required if you have specified a key. Keys are only unique to amaintainer. See Contract
keys.
choices choice NameOfChoice : ReturnType controller nameOfParty do
or
controller nameOfParty can NameOfChoice : ReturnType do
Defines choices that can be exercised. See Choice structure for what can go in a choice.
Note that controller-first syntax is deprecated and will be removed in a future version
of Daml.

Choice structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

start with the choice keyword
start with the controller keyword

-— option 1 for specifying choices: choice name first
choice NameOfChoice
() —-—- replace () with the actual return type

with

party : Party —-- parameters here
controller party

do

(continues on next page)

1o Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

return () -- replace this line with the choice body

-—- option 2 for specifying choices (deprecated syntax): controller first
controller exampleParty can
NameOfAnotherChoice
() -— replace () with the actual return type

with
party : Party -- parameters here
do
return () -- replace the line with the choice body

a controller (or controllers) controller keyword
Who can exercise the choice.

choice observers observer keyword
Optional. Additional parties that are guaranteed to be informed of an exercise of the choice.
To specify choice observers, you must start you choice with the choice keyword.
The optional observer keyword must precede the mandatory controller keyword.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which
changes the behavior of the choice with respect to privacy and if and when the contract is
archived. See contract consumption in choices for more details.

aname Must begin with a capital letter. Must be unique - choices in different templates can’t have
the same name.

areturn type after a :, the return type of the choice

choice arguments with keyword
If you start your choice with choice and include a Party as a parameter, you can make that
Party the controller of the choice. This is a feature called flexible controllers , and it
means you don’t have to specify the controller when you create the contract - you can spec-
ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an
observer of the contract and must be explicitly declared as such.

a choice body After do keyword
What happens when someone exercises the choice. A choice body can contain update state-
ments: see Choice body structure below.

Choice body structure

A choice body contains Update expressions, wrapped in a do block.
The update expressions are:

create Create a new contract of this template.
create NameOfContract with contractArgumentl = valuel;
contractArgument?2 = value2;

exercise Exercise a choice on a particular contract.
exercise idOfContract NameOfChoiceOnContract with choiceArgumentl =

valuel; choiceArgument2 = value 2; .
fetch Fetch a contract using its ID. Often used with assert to check conditions on the contract’s
content.

fetchedContract <- fetch IdOfContract
fetchByKey Like fetch, but uses a contract key rather than an ID.
fetchedContract <- fetchByKey @QContractType contractKey
lookupByKey Confirm that a contract with the given contract key exists.

2.1. Writing Daml m

Daml SDK Documentation, {sdk}

fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.
if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be
supplied to a contract choice.
assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.
currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.
This means you only need to use return if you want to return something else.
return ContractID ExampleTemplate

The choice body can also contain:

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch
someContractId

2.1.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

Template name

template NameOfTemplate

This is the name of the template. It’s preceded by template keyword. Must begin with a capital
letter.

This is the highest level of nesting.

The name is used when creating a contract of this template (usually, from within a choice).

Template parameters

with
exampleParty : Party
exampleParty2 : Party
exampleParty3 : Party
exampleParam : Text
-- more parameters here

with keyword. The parameters are in the form of a record type.

Passed in when creating a contract from this template. These are then in scope inside the tem-
plate body.

A template parameter can’t have the same name as any choice arguments inside the template.
For all parties involved in the contract (whether they're a signatory, observer, or
controller)you must pass themin as parameters to the contract, whether individually or as
alist ([Party]l).

12 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Template-local Definitions

where
let
allParties = [exampleParty, exampleParty2?2, exampleParty3]

let keyword. Starts a block and is followed by any number of definitions, just like any other
let block.

Template parameters as well as this are in scope, but self is not.

Definitions from the let block can be used anywhere else in the template’s where block.

Signatory parties

signatory exampleParty

signatory keyword. After where. Followed by at least one Party.

Signatories are the parties (see the Party type) who must consent to the creation of this con-
tract. They are the parties who would be put into an obligable position when this contract is
created.

Daml won’t let you put someone into an obligable position without their consent. So if the
contract will cause obligations for a party, they must be a signatory. If they haven’t authorized
it, you won’t be able to create the contract. In this situation, you may see errors like:
NameOfTemplate requires authorizers Partyl,Party2,Party, but only
Partyl were given.

When a signatory consents to the contract creation, this means they also authorize the conse-
quences of choices that can be exercised on this contract.

The contractis visible to all signatories (as well as the other stakeholders of the contract). That
is, the compiler automatically adds signatories as observers.

Each template must have at least one signatory. A signatory declaration consists of the signa-
tory keyword followed by a comma-separated list of one or more expressions, each expression
denoting a Party or collection thereof.

Observers

observer exampleParty?2

observer keyword. After where. Followed by at least one Party.

Observers are additional stakeholders, so the contractis visible to these parties (see the Party
type).

Optional. You can have many, either as a comma-separated list or reusing the keyword. You
could pass in alist (of type [Party]).

Use when a party needs visibility on a contract, or be informed or contract events, but is not a
signatory or controller.

If you start your choice with choice rather than controller (see Choices below), you must
make sure to add any potential controller as an observer. Otherwise, they will not be able to
exercise the choice, because they won’t be able to see the contract.

Choices

2.1. Writing Daml n3

Daml SDK Documentation, {sdk}

-- option 1 for specifying choices: choice name first
choice NameOfChoicel

() -- replace () with the actual return type
with
exampleParameter : Text -- parameters here
controller exampleParty
do
return () -- replace this line with the choice body

-—- option 2 for specifying choices (deprecated syntax): controllerl]
~first
controller exampleParty can
NameOfChoice2
() -—- replace () with the actual return type
with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body
nonconsuming NameOfChoice3
() -— replace () with the actual return type

with
exampleParameter : Text —-- parameters here
do
return () -- replace this line with the choice body

A right that the contract gives the controlling party. Can be exercised.
This is essentially where all the logic of the template goes.

By default, choices are consuming: that is, exercising the choice archives the contract, so
no further choices can be exercised on it. You can make a choice non-consuming using the

nonconsuming keyword.

There are two ways of specifying a choice: start with the choice keyword or start with the

controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure

to add that party as an observer.
See Reference: choices for full reference information.

Agreements

agreement
-—- text representing the contract

mwn

agreement keyword, followed by text.

Represents what the contract means in text. They're usually the boundary between on-ledger

and off-ledger rights and obligations.
Usually, they look like agreement tx,where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenate with

<>.

N4 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Preconditions

ensure

True -- a boolean condition goes here

ensure keyword, followed by a boolean condition.

Used on contract creation. ensure limits the values on parameters that can be passed to the
contract: the contract can only be created if the boolean condition is true.

Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)
maintainer (exampleFunction key)

key and maintainer keywords.

This feature lets you specify a key thatyou can use to uniquely identify this contract as an
instance of this template.

If you specify a key, you must also specify amaintainer. This is a Party that will ensure the
uniqueness of all the keys it is aware of.

Because of this, the key must include themaintainer Party or parties (for example, as part
of a tuple or record), and the maintainer must be a signatory.
For a full explanation, see Contract keys.

2.1.2.3 Reference: choices

This page gives reference information on choices. For information on the high-level structure of a
choice, see Overview: template structure.

choice first or controller first

There are two ways you can start a choice:

start with the choice keyword
start with the controller keyword

-- option 1 for specifying choices: choice name first
choice NameOfChoice

() -—- replace () with the actual return type

with
party : Party —-- parameters here
controller party
do
return () -- replace this line with the choice body

-—- option 2 for specifying choices (deprecated syntax): controllerl]
~first

controller exampleParty can

NameOfAnotherChoice
() —— replace () with the actual return type
with
party : Party -- parameters here

(continues on next page)

2.1. Writing Daml N5

Daml SDK Documentation, {sdk}

(continued from previous page)

do
return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a
controller. If you do this, you must make sure that you add that party as an observer, otherwise
they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer
when you compile your Daml files.

A secondary difference is that starting with choice allows choice observers to be attached to the
choice using the observer keyword. The choice observers are a list of parties that, in addition to
the stakeholders, will see all consequences of the action.

-—- choice observers may be specified if option 1 is used
choice NameOfChoiceWithObserver

() -—- replace () with the actual return type
with
party : Party —-- parameters here
observer party —-- optional specification of choice observersl]

— (currently only available in Daml-LF 1.11)
controller exampleParty
do

return () -- replace this line with the choice body

Choice name

Listing 2: Option 1for specifying choices: choice name first

choice ExampleChoicel
() —-—- replace () with the actual return type

Listing 3: Option 2 for specifying choices (deprecated syn-
tax): controller first

ExampleChoice2
() —-—- replace () with the actual return type

The name of the choice. Must begin with a capital letter.

If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

Must be unique in your project. Choices in different templates can’t have the same name.

If you’re using controller-first, you can have multiple choices after one can, for tidiness. How-
ever, note that this syntax is deprecated and will be removed in a future version of Daml.

Controllers

Listing 4: Option 1for specifying choices: choice name first

controller exampleParty

16 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Listing 5: Option 2 for specifying choices (deprecated syn-
tax): controller first

controller exampleParty can

controller keyword

The controller is a comma-separated list of values, where each value is either a party or a col-
lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.

Contract consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of
the choice body and both the controllers and all contract stakeholders see all consequences of the
action.

Preconsuming choices

Listing 6: Option 1for specifying choices: choice name first

preconsuming choice ExampleChoiceb
() -- replace () with the actual return type

Listing 7: Option 2 for specifying choices (deprecated syn-
tax): controller first

preconsuming ExampleChoice?7
() —-—- replace () with the actual return type

preconsuming keyword. Optional.

Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-
ecuted.

The create arguments of the contract can still be used in the body of the exercise, but cannot
be fetched by its contract id.

The archival behavior is analogous to the consuming default behavior.

Only the controllers and signatories of the contract see all consequences of the action. Other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract before any-
thing else happens

Postconsuming choices

Listing 8: Option 1for specifying choices: choice name first

postconsuming choice ExampleChoice6
() —-—- replace () with the actual return type

2.1. Writing Daml 17

Daml SDK Documentation, {sdk}

Listing 9: Option 2 for specifying choices (deprecated syn-
tax): controller first

postconsuming ExampleChoice8
() —-- replace () with the actual return type

postconsuming keyword. Optional.

Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-
cuted.

The create arguments of the contract can still be used in the body of the exercise as well as the
contract id for fetching it.

Only the controllers and signatories of the contract see all consequences of the action. Other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract after the
choice has been exercised

Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name
first

nonconsuming choice ExampleChoice3
() -—- replace () with the actual return type

Listing 11: Option 2 for specifying choices (deprecated syn-
tax): controller first

nonconsuming ExampleChoice4
() -—- replace () with the actual return type

nonconsuming keyword. Optional.

Makes a choice non-consuming: that is, exercising the choice does not archive the contract.
Only the controllers and signatories of the contract see all consequences of the action.
Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

Return type is written immediately after choice name.

All choices have a return type. A contract returning nothing should be marked as returning a
unit ,ie ().

If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

Choice arguments

with
exampleParameter : Text

with keyword.
Choice arguments are similar in structure to Template parameters: a record type.

n8 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

A choice argument can’t have the same name as any parameter to the template the choice is in.
Optional - only if you need extra information passed in to exercise the choice.

Choice body

Introduced with do

The logic in this section is what is executed when the choice gets exercised.

The choice body contains Update expressions. For detail on this, see Reference: updates.

By default, the last expression in the choice is returned. You can return multiple updates in
tuple form or in a custom data type. To return something that isn’t of type Update, use the
return keyword.

2.1.2.4 Reference: updates

This page gives reference information on Updates. For the structure around them, see Overview: tem-
plate structure.

Background

An Update is ledger update. There are many different kinds of these, and they’re listed below.
They are what can go in a choice body.

Binding variables

boundVariable <- UpdateExpressionl

Oneofthe things youcandoinachoice bodyis bind (assign) an Update expression to avariable.
This works for any of the Updates below.

do
do
updateExpressionl
updateExpression?
do can be used to group Update expressions. You can only have one update expression in a
choice, so any choice beyond the very simple will use a do block.
Anything you can put into a choice body, you can put into a do block.
By default, do returns whatever is returned by the last expression in the block.
So if you want to return something else, you’ll need to use return explicitly - see return for an
example.
Create

create NameOfTemplate with exampleParameters

create function.

Creates a contract on the ledger. When a contract is committed to the ledger, it is given a
unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

Use with to specify the template parameters.

2.1. Writing Daml 19

Daml SDK Documentation, {sdk}

Requires authorization from the signatories of the contract being created. This is given by
being signatories of the contract from which the other contract is created, being the controller,

or explicitly creating the contract itself.
Ifthe required authorization is not given, the transaction fails. For more detail on authorization,

see Signatory parties.

exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgumentl = wvaluel

exercise function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice. If the authorization is not given,

the transaction fails.

exerciseByKey

exerciseByKey (@ContractType contractKey NameOfChoiceOnContract with!]
—choiceArgumentl = valuel

exerciseByKey function.
Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.
Requires authorization from the controller(s) of the choice and from at least one of the main-

tainers of the key. If the authorization is not given, the transaction fails.

fetch

fetchedContract <- fetch IdOfContract

fetch function.

Fetches the contract with that ID. Usually used with a bound variable, as in the example above.
Often used to check the details of a contract before exercising a choice on that contract. Also
used when referring to some reference data.

fetch cidfailsif cidis not the contract id of an active contract, and thus causes the entire
transaction to abort.

The submitting party must be an observer or signatory on the contract, otherwise fetch fails,
and similarly causes the entire transaction to abort.

fetchByKey

fetchedContract <- fetchByKey (@ContractType contractKey

fetchByKey function.
The same as fetch, but fetches the contract with that contract key, instead of the contract ID.

Like fetch, fetchByKey needs to be authorized by at least one stakeholder of the contract.
Fails if no contract can be found.

120

Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

lookupByKey

fetchedContractId <- lookupByKey (@ContractType contractKey

lookupByKey function.

Use this to confirm that a contract with the given contract key exists.

If the submitting party is a stakeholder of a matching contract, lookupByKey returns the
ContractId of the contract; otherwise, it returns None. Transactions may fail due to con-
tention because the key changes between the lookup and committing the transaction, or be-
casue the submitter didn’t know about the existence of a matching contract.

All of the maintainers of the key must authorize the lookup (by either being signatories or by
submitting the command to lookup).

abort

abort errorMessage

abort function.

Fails the transaction - nothing in it will be committed to the ledger.

errorMessage is of type Text. Use the error message to provide more context to an external
system (e.g., it gets displayed in Daml Studio script results).

You could use assert False as an alternative.

assert

assert (condition == True)

assert keyword.

Fails the transaction if the condition is false. So the choice can only be exercised if the boolean
expression evaluates to True.

Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a
parameter is on a blacklist:

choice Transfer : ContractlId RestrictedPayout
with newReceiver : Party
controller receiver
do
assert (newReceiver /= blacklisted)
create RestrictedPayout with receiver = newReceiver; giver;
—blacklisted; gty

getTime

currentTime <- getTime

getTime keyword.
Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be
able to access the value.)

2.1. Writing Daml 121

Daml SDK Documentation, {sdk}

Used to restrict when a choice can be made. For example, with an assert that the time is later
than a certain time.

Here’s an example of a choice that uses a check on the current time:

choice Complete : ()

controller party

do
-— bind the ledger effective time to the tchoose variable usingll

—~getTime

tchoose <- getTime
-— assert that tchoose is no earlier than the begin time
assert (begin <= tchoose && tchoose < addRelTime begin period)

return

return ()

return keyword.
Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a
tuple:

do
firstContract <- create SomeContractTemplate with argl; arg2
secondContract <- create SomeContractTemplate with argl; arg2
return (firstContract, secondContract)

let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument thatl]
—when

-— called will create the new contract using argument for issuer and]
—owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract partyl
createContract party2

this
this lets you refer to the current contract from within the choice body. This refers to the contract,
not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the
template.

122 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

2.1.2.5 Reference: data types

This page gives reference information on Daml’s data types.

Built-in types

2.1. Writing Daml 123

Daml SDK Documentation, {sdk}

Table of built-in primitive types

Type For Example Notes
Int integers 1, 1000000, | Int values are signed 64-bit integers which
1 000 000 represent numbers between -9,223,372,
036,854,775,808 and 9,223,372,036,
854,775,807 inclusive. Arithmetic opera-
tions raise an error on overflows and divi-
sion by 0. To make long numbers more read-
able you can optionally add underscores.
Decimal short for Numeric | 1.0 Decimal values are rational numbers with
10 precision 38 and scale 10.
Numeric n | fixed point decimal | 1.0 Numeric n values are rational numbers
numbers with 38 decimal digits. The scale param-
eter n controls the number of digits after
the decimal point, so for example, Numeric
10 values have 10 digits after the decimal
point,and Numeric 20 values have 20 dig-
its after the decimal point. The value of n
must be between 0 and 37 inclusive.
BigNumeric | large fixed point | 1.0 BigNumeric values are rational numbers
decimal numbers with up to 2716 decimal digits. They can
have up to 2715 digits before the decimal
point, and up to 2715 digits after the deci-
mal point.
Text strings "hello" Text values are strings of characters en-
closed by double quotes.
Bool boolean values True, False
Party unicode string rep- | alice <- Every party in a Daml system has a unique
resenting a party getParty identifier of type Party. To create a value
"Alice" of type Party, use binding on the result of
calling getParty. The party text can only
contain alphanumeric characters, -, and
spaces.
Date models dates date 2007 | Tocreate avalue of type Date, use the func-
Apr 5 tion date (to get this function, import DA.
Date).
Time models absolute | time Time values have microsecond precision.
time (UTC) (date To create a value of type Time, use a Date
2007 Apr and the function time (to get this function,
5) 14 30 import DA. Time).
05
RelTime models differences | seconds 1, | seconds 1 and seconds (-2) represent
between timevalues | seconds the values for 1 and -2 seconds. There are
(-2) no literals for RelTime. Instead they are
created using one of days,hours,minutes
and seconds (to get these functions, im-
port DA.Time).
124 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Escaping characters
Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).
Time

Definition of time on the ledger is a property of the execution environment. Daml assumes there is
a shared understanding of what time is among the stakeholders of contracts.

Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,
3, 2] isanexampleof alistof type [Int].

You can also construct lists using [] (the empty list) and : : (which is an operator that appends an
element to the front of a list). For example:

twoEquivalentListConstructions =
script do
assert ([1, 2, 3] == 1 ::: 2 2 3 ::1[1)

Summing a list

To sum a list, use a fold (because there are no loops in Daml). See Folding for details.

Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord
with
labell : typel
label2 : type?2

labelN : typeN
deriving (Eq, Show)

where:

labell, label2, ,labelN are labels, which must be unique in the record type
typel, type2, ,typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { labell : typel; label2 : type2; ...; labelN :[J
—~typeN }
deriving (Eq, Show)

The formatusing with and the formatusing { } are exactly the same syntactically. The main differ-
ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting
semicolons.

Thederiving (Eg, Show) ensures the data type can be compared (using ==) and displayed (us-
ing show). The line starting deriving is required for data types used in fields of a template.

2.1. Writing Daml 125

Daml SDK Documentation, {sdk}

In general, add the derivingunless the data type contains function types (e.g. Int -> Int),which
cannot be compared or shown.

For example:

-—- This is a record type with two fields, called first and second,
-—- both of type "Int’
data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type 1is:
newRecord = MyRecord with first = 1; second = 2

-- You can also write:
newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for
some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that
can be used to specify values of the Floor Int type: forexample, Floor 0,Floor 1.

In Daml, data constructors may take at most one argument.

An example of a data constructor with zero arguments isdata Empty = Empty {}.Theonlyvalue
of the Empty type is Empty.

Note: Indata Confusing = Int,the Int isadataconstructorwith noarguments. It has nothing
to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

-— Access the value of the field "first’
val.first

—-— Access the value of the field "second’
val.second

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select
fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord?2 = myRecord with second = 5

126 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, Daml lets you use this without assigning it
to make things look nicer:

-- if you have a variable called "second’ equal to 5
second = 5

-— you could construct the same value as before with
myRecord?2 = myRecord with second = second

-— or with
myRecord3 = MyRecord with first = 1; second = second

-- but Daml has a nicer way of putting this:
myRecord4 = MyRecord with first = 1; second

-— or even
myRecord5 = r with second

Note: The with keyword binds more strongly than function application. So for a function, say
return, either write return IntegerCoordinate with first = 1; second = 5orreturn
(IntegerCoordinate {first = 1; second = 5}),where the latter expression is enclosed in
parentheses.

Parameterized data types

Daml supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-— Here, a and b are type parameters.
—-— The Coordinate after the data keyword is a type constructor.
data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

Type synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used
interchangeably.

You can use the type keyword for any type, including Built-in types.

2.1. Writing Daml 127

Daml SDK Documentation, {sdk}

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has
type ParamTypel -> ParamType2 -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type
FooType = ParamTypel -> ParamType2 -> ReturnType.

Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The
enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in Daml: data AlternativeCoordinate a b =
AlternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:
a,; second: Db}.

These kinds of types are called product types.

Awayofthinking aboutthisisthattheCoordinate Int Inttypehasafirstandseconddimension
(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and
soon.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False
deriving (Eqg, Show), where True and False are data constructors with zero arguments . This
means that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive
at least from (Eq, Show).

A very useful sum type is data Optional a = None | Some a deriving (Eg,Show). It is
part of the Daml standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined
by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.
Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

import Daml.Script
import DA.Assert

(continues on next page)

128 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

(continued from previous page)

optionalIntegerToText (x : Optional Int) : Text =
case x of
None -> "Box is empty"
Some val -> "The content of the box is " <> show wval

optionalIntegerToTextTest =
script do

In the optionalIntegerToText function, the case construct first tries to match the x argument
against the None data constructor, and in case of a match, the "Box is empty" textisreturned. In
case of no match, a match is attempted for x against the next pattern in the list, i.e.,, with the Some
data constructor. In case of a match, the content of the value attached to the Some label is bound to
the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least
one pattern that matches. The patterns are tested from top to bottom, and the expression for the
first pattern that matches will be executed. Note that can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and
achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

tmp =
let
1 =11, 2, 3]
in case 1 of

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that Dam/ Studio
produces a warning for all variables that are not being used. This is useful in detecting unused
variables. You can suppress the warning by naming the variable with an initial underscore.

2.1.2.6 Reference: built-in functions

This page gives reference information on functions for.

Working with time

Daml has these built-in functions for working with time:

datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.
subTime: subtracts one time from another. Returns the RelTime difference between timel
and time?2.

addRelTime: add times. Takes a Time and RelTime and adds the Re1Time to the Time.
days,hours,minutes, seconds: constructs a RelTime of the specified length.

pass: (in Daml Script tests only) use pass : RelTime -> Script Time to advance the
ledger time by the argument amount. Returns the new time.

2.1. Writing Daml 129

Daml SDK Documentation, {sdk}

Working with numbers

Daml has these built-in functions for working with numbers:

round: rounds a Decimal number to Int.
round disthe nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:
round 2.5 == 3 round (-2.5) == -3
round 3.4 == 3 round (=3.7) == -4

truncate: converts a Decimal numberto Int,truncatingthe value towards zero, for example:

truncate 2.2 == 2 truncate (-2.2) == =2
truncate 4.9 == 4 v (-4.9) == -4

intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require
more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational
number, but not a Decimal.

Working with text

Daml has these built-in functions for working with text:

<> operator: concatenates two Text values.

show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to
a Text.

To escape text in Daml strings, use \:

Character How to escape it
\ A\
" \ll
1 \ 1
Newline \n
Tab \t
Carriage return \r

Unicode (using ! as an example
(& ple) Decimal code: \33

Octal code: \o41
Hexadecimal code: \x21

Working with lists

Daml has these built-in functions for working with lists:
foldl and foldr: see Folding below.

Folding

A fold takes:

a binary operator

130 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

a first accumulator value
a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a
foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs
to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.
This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the
list. This produces a third accumulator value.

3. This continues until there are no more elements in the list. Then, the last accumulator value is
returned.

As an example, to sum up a list of integers in Daml:

sumList =
script do
assert (foldl (+) O [1, 2, 3] == 0)

2.1.2.7 Reference: expressions
This page gives reference information for Daml expressions that are not updates.
Definitions

Use assignment to bind values or functions at the top level of a Daml file or in a contract template
body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention
it after a colon following the variable name:

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfacelArea r h =
2.0 * pi * r * h

2.1. Writing Daml 131

Daml SDK Documentation, {sdk}

Here you see:

the name of the function

the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

the definition= 2.0 * pi * r * h(which uses the previously defined pi)

Arithmetic operators

Operator Works for

+ Int,Decimal, RelTime

- Int,Decimal,RelTime

* Int, Decimal

/ (integer division) Int
% (integer remainder opera- | Int
tion)

~ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

7 / 3and (-7) / (-3) evaluateto?2
7) / 3and7 / (-3) evaluateto -2
% 3and7 % (-3) evaluatetol

(_
7
(-7) % 3and (-7) % (-3) evaluateto -1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2

is another way of writing 1 + 2.

Comparison operators

Operator Works for

< <=2, >= Bool, Text, Int, Decimal, Party, Time

tracts stemmming from the same contract template

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-

Logical operators

The logical operators in Daml are:

not for negation, e.g, not True == False
&& for conjunction,wherea && b == and a b
| | fordisjunction,wherea || b == or a b

for Bool variables a and b.

If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

132 Chapter 2.

Daml Guide

Daml SDK Documentation, {sdk}

Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =
-— let binds values or functions to be in scope beneath the expression
let
double (x : Int) = 2 * x
up = 5
in double up

You can use let inside do blocks:

blah = script
do
let
x =1
y = 2
-- x and y are 1in scope for all subsequent expressions of the doll
—~block,
-—- so can be used in expressionl and expressionZ.
expressionl
expression?2

Lastly, a template may contain a single let block.

template Iou

with
issuer : Party
owner : Party
where

signatory issuer

let updateOwner o = create this with owner = o
updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced
-—- from any and all of the signatory, consuming, ensure and
-— agreement expressions and from within any choice do blocks.

choice Transfer : ContractId Iou
with newOwner : Party
controller owner
do
updateOwner newOwner

2.1.2.8 Reference: functions
This page gives reference information on functions in Daml.

Damlis a functional language. It lets you apply functions partially and also have functions that take
other functions as arguments. This page discusses these higher-order functions.

2.1. Writing Daml 133

Daml SDK Documentation, {sdk}

Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

You can define this function equivalently using lambdas, involving \, a sequence of parameters, and
an arrow —> as:

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->
Decimal. An equivalent, but more instructive, way to read its type is: Decimal -> (Decimal -
> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns
another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type
Decimal -> Decimal. In other words, this function returns another function. Only the last appli-
cation of an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a
function that takes just a single argument and returns another function. In Daml, all functions are
curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to
all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a
function with partially defined arguments. For example:

import DA.Text
multiplyThreeNumbers : Int -> Int -> Int -> Int
multiplyThreeNumbers xx yy zz =

XX * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21l = multiplyTwoNumbersWith7 3

You could also define equivalent lambda functions:

multiplyWithl8 = multiplyThreeNumbers 3 6

multiplyWithl8 v2 : Int -> Int

134 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with
the lambda notation):

-- Type synonym for Decimal -> Decimal -> Decimal
type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as
when binding values,e.g,pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In
fact, in Daml, functions are values.

This means a function can take another function as an argument. For example, define a function
applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first ar-
gument, a higher-order function, to the second and the third arguments to yield the result.

-—- Higher order function

applyFilter (filter : Int -> Int -> Bool)
(x : Int)
(v : Int) = filter x vy

compute = script do
applyFilter (<) 3 2 === False
applyFilter (/=) 3 2 === True

round (2.5 : Decimal) ===
round (3.5 : Decimal) === 4

explode "me" === ["m", "e"]

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-
tion as an argument.

Note: Daml does not allow functions as parameters of contract templates and contract choices.
However, a follow up of a choice can use built-in functions, defined at the top level or in the contract
template body.

Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type
parameters. For example, you can define function composition as follows:

2.1. Writing Daml 135

Daml SDK Documentation, {sdk}

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose
not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas
not has type Bool -> Bool.

You can find many other generic functions including this one in the Dam| standard library.

Note: Daml currently does not support generic functions for a specific set of types, such as Int and
Decimal numbers. For example, sum (x: a) (y: a) = x + yisundefined when a equals the
type Party. Bounded polymorphism might be added to Daml in a later version.

2.1.2.9 Reference: Daml file structure

This page gives reference information on the structure of Daml files outside of templates.

File structure

This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the Daml
file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, usemodule Scenarios.Demo where.

Imports

You can import other modules (import OtherModuleName), including qualified
imports (import qualified AndYetOtherModuleName, import qualified
AndYetOtherModuleName as Signifier). Can’t have circular import references.

To import the Prelude module of . /Prelude.daml, use import Prelude.

To import a module of . /Scenarios/Demo.daml, use import Scenarios.Demo.

If you leave out qualified, and a module alias is specified, top-level declarations of the im-
ported module are imported into the module’s namespace as well as the namespace specified
by the given alias.

Libraries

A Daml library is a collection of related Daml modules.

Define a Daml library using a LibraryModules.daml file: a normal Daml file that imports the root
modules of the library. The library consists of the LibraryModules.damnl file and all its dependen-
cies, found by recursively following the imports of each module.

Errors are reported in Daml Studio on a per-library basis. This means that breaking changes on
shared Daml modules are displayed even when the files are not explicitly open.

Comments

Use -- for a single line comment. Use {- and -} for a comment extending over multiple lines.

Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique
identifier, of type ContractId <name of template>.

136 Chapter 2. Daml Guide

Daml SDK Documentation, {sdk}

The runtime representation of these identifiers depends on the execution environment: a contract
identifier from the Sandbox may look different to ones on other Daml Ledgers.

You can use == and /= on contract identifiers of the same type.

2.1.2.10 Reference: Daml packages

This page gives reference information on Daml package dependencies.

Building Daml archives

When a Daml project is compiled, the compiler produces a Daml archive. These are platform-
i