
Daml SDK Documentation

Digital Asset

Version : 2.1.1

Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,

duplication or distribution is strictly prohibited.

Table of contents

Table of contents i

1 Getting started 1

1.1 Installing the SDK . 1

1.1.1 1. Installing the Dependencies . 1

1.1.2 2. Choosing Daml Enterprise or Daml Open Source 1

1.1.3 3. Installing Daml Open Source SDK . 2

1.1.4 Installing Daml Enterprise . 2

1.1.5 Downloading Manually . 2

1.1.6 Next Steps . 3

1.2 Getting Started with Daml . 8

1.2.1 Prerequisites . 8

1.2.2 Running the App . 9

1.3 App Architecture . 12

1.3.1 The Daml Model . 13

1.3.2 TypeScript Code Generation . 16

1.3.3 The UI . 16

1.4 Your First Feature . 18

1.4.1 Daml Changes . 19

1.4.2 Messaging UI . 20

1.4.3 Running the Updated UI . 23

1.4.4 Next Steps . 25

1.5 Testing Your Web App . 25

1.5.1 Setting up our tests . 26

1.5.2 Example: Logging in and out . 26

1.5.3 Accessing UI elements . 27

1.5.4 Writing CSS Selectors . 28

1.5.5 The Full Test Suite . 29

2 Daml Guide 38

2.1 Writing Daml . 38

2.1.1 An introduction to Daml . 38

2.1.2 Language reference docs . 123

2.1.3 The standard library . 174

2.1.4 Good design patterns . 249

2.2 Building Applications . 266

2.2.1 Application architecture . 266

2.2.2 JavaScript Client Libraries . 273

2.2.3 HTTP JSON API Service . 278

2.2.4 Daml Script . 335

i

2.2.5 Daml REPL . 348

2.2.6 Upgrading and Extending Daml applications . 351

2.2.7 Authorization . 361

2.2.8 The Ledger API . 365

2.2.9 Command deduplication . 503

2.2.10 Daml Triggers - Off-Ledger Automation in Daml . 510

2.2.11 Trigger Service . 530

2.2.12 Auth Middleware . 544

2.3 Overview of Daml ledgers . 552

2.3.1 Deploying to a generic Daml ledger . 552

2.4 Operating Daml . 553

2.4.1 Participant Pruning . 554

2.4.2 Participant Metering . 557

2.4.3 System Requirements . 558

2.5 Developer Tools . 559

2.5.1 Daml Assistant (daml) . 559

2.5.2 Daml Studio . 564

2.5.3 Daml Sandbox . 574

2.5.4 Navigator . 586

2.5.5 Daml codegen . 597

2.5.6 Daml Profiler . 599

3 Canton Guide 601

3.1 Introduction to Canton . 601

3.2 Tutorials . 601

3.2.1 Canton Demo . 603

3.2.2 Getting Started . 603

3.2.3 Daml SDK and Canton . 622

3.2.4 Composability . 625

3.3 User Manual . 641

3.3.1 Obtaining Canton . 641

3.3.2 Installing Canton . 642

3.3.3 Running in Docker . 648

3.3.4 Static Configuration . 650

3.3.5 Canton Administration APIs . 664

3.3.6 Command-line Arguments . 702

3.3.7 Canton Console . 704

3.3.8 Contract Keys in Canton . 795

3.3.9 Enterprise Drivers . 805

3.3.10 Error codes . 821

3.3.11 High Availability Usage . 870

3.3.12 Identity Management . 876

3.3.13 Monitoring . 886

3.3.14 Operational Processes . 908

3.3.15 Security . 926

3.3.16 Versioning . 934

3.3.17 Frequently Asked Questions . 936

3.4 Architecture In-Depth . 942

3.4.1 High-Level Requirements . 942

3.4.2 Overview and Assumptions . 959

3.4.3 Domain Architecture and Integrations . 977

3.4.4 High Availability . 989

3.4.5 Identity Management . 996

3.4.6 Research Publications . 1018

4 Help 1020

4.1 Troubleshooting . 1020

4.1.1 Error: “<X> is not authorized to commit an update” 1020

4.1.2 Error “Argument is not of serializable type” . 1020

4.1.3 Modeling questions . 1021

4.1.4 Testing questions . 1023

4.2 Getting Help . 1023

4.2.1 Support expectations . 1024

4.3 Portability, Compatibility, and Support Durations . 1024

4.3.1 Ledger API Compatibility: Application Portability . 1025

4.3.2 Driver and Participant Compatibility: Network Upgradeability 1026

4.3.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability . . . 1026

4.3.4 Ledger API Support Duration . 1027

5 Reference 1028

5.1 Glossary of concepts . 1028

5.1.1 Key Concepts . 1028

5.1.2 Daml Language Concepts . 1029

5.1.3 Developer tools . 1034

5.1.4 Building applications . 1035

5.1.5 Canton Concepts . 1038

5.2 Daml Ledger Model . 1040

5.2.1 Structure . 1041

5.2.2 Integrity . 1048

5.2.3 Privacy . 1060

5.2.4 Daml: Defining Contract Models Compactly . 1069

5.2.5 Exceptions . 1070

5.3 Identity and Package Management . 1077

5.3.1 Identity Management . 1078

5.3.2 Package Management . 1079

5.4 Time . 1081

5.4.1 Ledger time . 1081

5.4.2 Record time . 1081

5.4.3 Guarantees . 1081

5.4.4 Ledger time model . 1081

5.4.5 Assigning ledger time . 1082

5.5 Causality and Local Ledgers . 1082

5.5.1 Causality examples . 1083

5.5.2 Causality graphs . 1086

5.5.3 Local ledgers . 1090

5.6 Daml Ecosystem Overview . 1093

5.6.1 Status Definitions . 1093

5.6.2 Feature and Component Statuses . 1096

5.6.3 Architecture . 1099

5.6.4 Daml Networks . 1100

5.6.5 Participant Nodes . 1100

5.6.6 Ledger API . 1101

5.6.7 Daml Components . 1101

5.7 Releases and Versioning . 1101

5.7.1 Versioning . 1101

5.7.2 Cadence . 1102

5.7.3 Support Duration . 1102

5.7.4 Release Notes . 1102

5.7.5 Roadmap . 1102

5.7.6 Process . 1102

6 Early Access 1104

6.1 Ledger Export . 1104

6.1.1 Introduction . 1104

6.1.2 Usage . 1104

6.1.3 Output . 1105

6.1.4 Executing the Export . 1106

6.1.5 Ledger Offsets . 1106

6.1.6 Unknown Contract Ids . 1107

6.1.7 Transaction Time . 1107

6.1.8 Caveats . 1107

6.2 Visualizing Daml Contracts . 1107

6.2.1 Example: Visualizing the Quickstart project . 1108

6.2.2 Visualizing Daml Contracts - Within IDE . 1108

6.2.3 Visualizing Daml Contracts - Interactive Graphs . 1108

6.3 Ledger Interoperability . 1109

6.3.1 Interoperability examples . 1109

6.3.2 Multi-ledger causality graphs . 1112

6.3.3 Ledger-aware projection . 1116

6.3.4 Ledger API ordering guarantees . 1120

6.4 Non-repudiation . 1121

6.4.1 Architecture . 1121

6.4.2 Running the server-side components . 1121

6.4.3 Using the client . 1122

6.4.4 Non-repudiation over the HTTP JSON API . 1122

6.4.5 TLS support . 1122

6.5 Daml Helm Chart . 1122

6.5.1 Credentials . 1123

6.5.2 Installing the Helm Chart Repository . 1123

6.5.3 Setting Up the imagePullSecret . 1123

6.5.4 Quickstart . 1124

6.5.5 Production Setup . 1125

6.5.6 Log Aggregation . 1125

6.5.7 Daml Metrics Options . 1126

6.5.8 Upgrading . 1126

6.5.9 Backing Up . 1126

6.5.10 Securing Daml . 1127

6.5.11 Helm Chart Options Reference . 1127

6.6 Setting Up Auth0 . 1139

6.6.1 Authentication v. Authorization . 1139

6.6.2 Prerequisites . 1140

6.6.3 Generating Party Allocation Credentials . 1140

6.6.4 JWKS Endpoint . 1141

6.6.5 Dynamic Party Allocation . 1142

6.6.6 Token Refresh for Trigger Service . 1144

6.6.7 Running Your App . 1145

Chapter 1

Getting started

1.1 Installing the SDK

1.1.1 1. Installing the Dependencies

The Daml SDK currently runs on Windows, macOS and Linux.

You need to install:

1. Visual Studio Code.

2. JDK 11 or greater. If you don’t already have a JDK installed, try Eclipse Adoptium.

As part of the installation process you may need to set up the JAVA_HOME variable. You can

find instructions for this process on Windows,macOS, and Linux here.

1.1.2 2. Choosing Daml Enterprise or Daml Open Source

Daml comes in two variants: Daml Enterprise or Daml Open Source. Both include the best in class

SDK, Canton and all of the components that you need to write and deploy multi-party applications

in production, but they differ in terms of enterprise and non-functional capabilities:

Capability Enterprise Open Source

Sub-Transaction Privacy Yes Yes

Transaction Processing Parallel (fast) Sequential (slow)

High Availability Yes No

Horizontal scalability Yes No

Ledger Pruning Yes No

Local contract store in PostgreSQL Yes Yes

Local contract store in Oracle Yes No

PostgreSQL driver Yes Yes

Oracle driver Yes No

Besu driver Yes No

Fabric driver Yes No

Profiler Yes No

Non-repudiation Middleware Yes (early access) No

1

https://code.visualstudio.com/download
https://adoptium.net
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/canton/architecture/overview.html#node-scaling
https://docs.daml.com/canton/usermanual/ha.html
https://docs.daml.com/canton/usermanual/ha.html#sequencer
https://docs.daml.com/canton/usermanual/operational_processes.html#ledger-pruning
https://docs.daml.com/tools/profiler.html
https://docs.daml.com/tools/non-repudiation.html

Daml SDK Documentation, 2.1.1

1.1.3 3. Installing Daml Open Source SDK

1.1.3.1 Windows 10

Download and run the installer, which will install Daml and set up the PATH variable for you.

1.1.3.2 Mac and Linux

Open a terminal and run:

curl -sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out

and log in again.

If the daml command is not available in your terminal after logging out and logging in again, you need to set the PATH environment variable

manually. You can find instructions on how to do this here.

1.1.4 Installing Daml Enterprise

If you have a license for Daml Enterprise, you can install it as follows:

• Canton can be downloaded from this repository , or you can use our Canton Enterprise Docker

images as described in our Docker instructions.

• On Windows, download the installer from Artifactory instead of Github releases.

• On Linux and MacOS, download the corresponding tarball, extract it and run ./install.sh.

Afterwards, modify the global daml-config.yaml and add an entry with your Artifactory API key.

The API key can be found in your Artifactory user profile.

artifactory-api-key: YOUR_API_KEY

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml-config.yaml.

To overwrite a previously installed versionwith the corresponding Daml Enterprise version, use daml

install --force VERSION.

1.1.5 Downloading Manually

If you want to verify the SDK download for security purposes before installing, you can look at our

detailed instructions for manual download and installation.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/download/v2.1.1/daml-sdk-2.1.1-windows.exe
https://digitalasset.jfrog.io/artifactory/canton-enterprise/
https://www.canton.io/docs/dev/user-manual/usermanual/docker.html#docker-instructions
https://digitalasset.jfrog.io/ui/repos/tree/General/sdk-ee

Daml SDK Documentation, 2.1.1

1.1.6 Next Steps

• Follow the getting started guide.

• Use daml --help to see all the commands that the Daml assistant (daml) provides.

• If you run into any other problems, you can use the support page to get in touch with us.

1.1.6.1 Setting JAVA_HOME and PATH Variables

Windows

To set up JAVA_HOME and PATH variables on Windows:

Setting the JAVA_HOME Variable

1. Search for Advanced System Settings (open Search, type “advanced system settings” and hit

Enter).

2. Find the Advanced tab and click Environment Variables.

3. Click New in the System variables section (if you want to set JAVA_HOME systemwide) or in

the User variables section (if you want to set JAVA_HOME for a single user). This will open

a modal window for Variable name.

4. In the Variable namewindow type JAVA_HOME, and for the Variable value set the path to

the JDK installation.

5. Click OK in the Variable name window.

6. Click OK in the tab and click Apply to apply the changes.

Setting the PATH Variable

The PATH variable is automatically set by the Windows installer .

Mac OS

First, determine whether you are running Bash or zsh. Open a Terminal and run:

echo $SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which

case you are running zsh.

If you get any other output, you have a non-standard setup. If you’re not sure how to set up environ-

ment variables in your setup, ask on the Daml forum and we will be happy to help.

Open a terminal and run the following commands. Copy/paste one line at a time if possible. None of

these should produce any output on success.

To set the variables in bash:

echo
export JAVA_HOME="$(/usr/libexec/java_home)"
 >> ~/.bash_profile

echo
export PATH="$HOME/.daml/bin:$PATH"
 >> ~/.bash_profile

To set the variables in zsh:

1.1. Installing the SDK 3

https://github.com/digital-asset/daml/releases/latest
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

echo
export JAVA_HOME="$(/usr/libexec/java_home)"
 >> ~/.zprofile

echo
export PATH="$HOME/.daml/bin:$PATH"
 >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will

not affect any exsting one.

To test the configuration of JAVA_HOME (on either shell), open a new terminal and run:

echo $JAVA_HOME

You should see the path to the JDK installation, which is something like /Library/Java/

JavaVirtualMachines/jdk_version_number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

daml version

You should see the header SDK versions: followed by a list of installed (or available) SDK versions

(possibly a list of just one if you just installed).

If you do not see the expected outputs, contact us on the Daml forum and we will be happy to help.

Linux

To set up JAVA_HOME and PATH variables on Linux for bash:

Setting the JAVA_HOME Variable

Java is typically installed in a folder like /usr/lib/jvm/java-version. Before running the follow-

ing command make sure to change the java-version with the actual folder found on your com-

puter:

echo "export JAVA_HOME=/usr/lib/jvm/java-version" >> ~/.bash_profile

Setting the PATH Variable

The installer will ask to set the PATH variable for you. If you want to set the PATH variable manually

instead, run the following command:

echo
export PATH="$HOME/.daml/bin:$PATH"
 >> ~/.bash_profile

4 Chapter 1. Getting started

https://discuss.daml.com

Daml SDK Documentation, 2.1.1

Verifying the Changes

In order for the changes to take effect you will need to restart your computer. After the restart, verify

that everything was set up correctly using the following steps:

Verify the JAVA_HOME variable by running:

echo $JAVA_HOME

You should see the path you gave for the JDK installation, which is something like /usr/lib/jvm/

java-version.

Then verify the PATH variable by running:

echo $PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/

your_username/.daml/bin.

1.1.6.2 Manually Installing the SDK

If you require a higher level of security, you can instead install the Daml SDK bymanually download-

ing the compressed tarball, verifying its signature, extracting it and manually running the install

script.

Note that the Windows installer is already signed (within the binary itself), and that signature is

checked byWindows before starting it. Nevertheless, you can still follow the steps below to check its

external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-

tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the

corresponding signature file. For example, if you are on macOS and want to install the latest

release (2.0.0 at the time of writing), you would download the files daml-sdk-2.0.0-macos.

tar.gz and daml-sdk-2.0.0-macos.tar.gz.asc. Note that for Windows you can choose

between the tarball (ends in .tar.gz), which follows the same instructions as the Linux and

macOS ones (but assumes you have a number of typical Unix tools installed), or the installer,

which ends with .exe. Regardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-

mation on that) and the Digital Asset Security Public Key imported into your keychain. Once

you have gpg installed, you can import the key by running:

gpg --keyserver hkp://pgp.mit.edu --search␣

↪→F26D8A0AADF666CCB28F2AB1650EC3253B6A8FF5

This should come back with a key belonging to Digital Asset Holdings, LLC

<security@digitalasset.com>, created on 2023-01-10 and expiring on 2025-01-09. If any

of those details are different, something is wrong. In that case please contact Digital Asset

immediately.

Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to

work reliably for us), you can find the full public key at the bottom of this page.

1.1. Installing the SDK 5

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, 2.1.1

4. Once the key is imported, you canaskgpg to verify that the file youhavedownloadedhas indeed

been signed by that key. Continuing with our example of 2.0.0 onmacOS, you should have both

files in the current directory and run:

gpg --verify daml-sdk-2.0.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in
daml-sdk-2.0.0-macos.tar.gz

gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key CADC3D1E3B5C4C5F94A65D78A7BF65AAADBBC494

gpg: Good signature from "Digital Asset Holdings, LLC <security@digitalasset.

↪→com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: F26D 8A0A ADF6 66CC B28F 2AB1 650E C325 3B6A 8FF5

Subkey fingerprint: CADC 3D1E 3B5C 4C5F 94A6 5D78 A7BF 65AA ADBB C494

Note: This warning means you have not told gnupg that you trust this key actually belongs to

Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web

of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have

verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows

installer, in which case the next step is to double-click it):

tar xzf daml-sdk-2.0.0-macos.tar.gz

cd sdk-2.0.0

./install.sh

6. Just like for themore automated install procedure, youmay want to add ~/.daml/bin to your

$PATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following

Bash command:

gpg --import < <(cat <<EOF

-----BEGIN PGP PUBLIC KEY BLOCK-----

mQINBGO9khIBEAC/D5WTgMJQGQso1JfN5RTq6YiCBwJ+L84YfKCPUo1yW7/RQHNZ

+5rYUQpGf1K5KCIhHtJeQyANzPy9KWnhDX6lIaoau6Dg9JK3SwNv20jDyCzZOjNW

Gfajy7xVTWXmYM/us8/A5kJN4pwEGIUL73n2uOtOzhpJ6TGLujNKB5EfGUO1L2Jr

v9BGx2ghv+dbdR3kPX6SYuj7U+tDvoaqJB8729kL14grpBqYy2YhF5eoLyvBaE9x

brDydUCu5t2Xpr7yI7xGOhUSn2ygoP3e9YSjOhowj5U5oFtTGxvqSf7xd9gkFaZY

uA58X3su0nxZ/9nbvb2RJPKtlUeOJS8pggXVSSGrHfWw3Bnu2G1pQNO+MYCS0Cu/

gMxQTnJ4itUNoFb3c9dSnB/VXWxsvlK3F+EdFg9HLNiStJVxPhPwgTo138ohTI1H

4eGdXpRPZSKNXGRRtWdbEseYBSDBzR0ulAn5TDXFDFjjJ5u7KJfdN7p9YaXWkXpB

+hvsiWJuvUDxTGlQE02PQjyN5vzj1NaU7CRRLvOYSstsOyTmuYg/xxvqA9XbPdti

g9AtaeYSjRzq7OBq79FhcmKDOfh7Zc07RRXHy2xTdvw+Iy5HEjk0fYFz+1Gtp78U

0iTv8tdqyh8dPvmuF7UbGWMJEMMD5d2goEw2ZnkqmLPFK5jq8qAshaQw9wARAQAB

tDdEaWdpdGFsIEFzc2V0IEhvbGRpbmdzLCBMTEMgPHNlY3VyaXR5QGRpZ2l0YWxh

c3NldC5jb20+iQJOBBMBCAA4FiEE8m2KCq32ZsyyjyqxZQ7DJTtqj/UFAmO9khIC

GwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AACgkQZQ7DJTtqj/WMbg/+K0Mte9y+

fCaWxFctfUbtd/JZBzpSCVMLN7PjZYZ50SwN/CqILUTFzzVLIx7uj/CyH/e1IV2O

RR7mWFTSADmkdrM45RBCvDs2UEIl3Rpsg/4iRpCZo01YQL9Y1XyUid8F3cQYmwPk

4YMY+tqqEhObAq0ngrGWiEWMUixbbRVqlPvRZDMeUNGdvmSOCs9LZLEnE9m4g2Kn

lNKddfLZ+sHaq2bfOiB+mZECX6wTusjqQWeJPRdflVWwMxZ7IkG9YoQHGlg8fTMd

3NqPE9OHOQiZhN4MbY6QZ70WexUNab8Pzf1Co4sSGhywVI3JibcqCNIbHW21+1py

OItJvdMxeSscOde2Fm5Dqmhf8UE+xgvPXa5xA5Yf40AqwuKt7boGsMf09Lf7zitX

(continues on next page)

6 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

5Zzl81saIPVC4OcM51t+sNDP6uJIynP5Dp1fxaIlb8gcQDqyWB/REr0vY1pRf/61

M8+jfUP3RJMbX/tUiCxEG+1uDSGTqj2Ac4TqiXfFKpg+TdEzNFj9VtrzTJT/tIgj

QlrKM9P9iB/JrNtqgeYrhaBZSpVKx4J7LNeIGdVJvRVzlW3tvCsTIT/lp/iJ1YjI

FCdb76leR/PgQNdk4wyU4JLXOYueEPAbyiBqQwgmOoT8GpY1PP4dsFfu7MoV0Cq7

//q+uwegRr5lLV6LwSBuFd1hqQ9ZdjAmmRi5Ag0EY72SEgEQAKP+D3bVJPC6sxSj

q/3UH9hixNhcmG61w6X1uW0x5jMMYN72ilnDLbgsgA3qEyZ8G/i34nUU4K/WZkWg

nJ59lOPIVf05yzEnesS6hbHXUzd6ayeWhPUzwxLBPy3yJUw7IRkFF9P9AMBaraAp

27ZuWy40Ta8bVKc9DgEeWuesyFAqs74W7cRfGm0SCAp8R3I+Syoj66+jpXYJ7sFt

eW4ITqrQcj64jBtGB8kQOe8JvC4COudXJ1BpKjExxIQlSK729tz0vsi+hzQfac/1

m3j082sH89ZU8y4GQpjWo6YyEzIxKBgoEogD0CvYOeJ9nK1Uv3pVFKyC1KdysQ+h

v+9V3zQoOaGF6115cIwQU1ewISUkiCOHzMYkrEXsbBOJlCmomuLnjMhsXht5tV4e

c8axn6QM7qRfSR/3R0RZwdAca0oZBN4ZOokUuZnR7/FxyiOhKilGW5iX+0m1VvKH

BImFM/VmCXw4hzcWZUZa5K6Ebpeg7zWN3a1kXZ+Kb2glqWYT5Pq3d1m+RtJOiuyn

uyr1BnX6OvjTNWTmKPqO8x223dZpNGdK6sfUUeZ67OokI/l2dALOuZRcuCLK32LB

uJmk/dLt4Bjem9ITFt2ECb1+RTa1aWOm8uS7BKUiDGedW6239h3HebdVenip1voY

3EdwpiQxgsCD3g2Sbzj9M5UGOsWzABEBAAGJAjwEGAEIACYCGwwWIQTybYoKrfZm

zLKPKrFlDsMlO2qP9QUCY72SxAUJA8JnsgAKCRBlDsMlO2qP9dfyD/9O76RZYI6w

8xIEOoK/cw//4IA0bbN/vC2tn5l1zUba6TrXhCYKr96//YJS9Fd239Gf4kC7AEbS

yf4ARLbezjtOVG33GlfrEFHfghMKhpjMQgb68NFw5U2eLMFc7BB/Fu4vSHqCMZ3I

ajM/465kq+jLxTNiuI14MFs1OLGD5WbAo9VEzBUbi3mK/CB4xv2UEd2y6ZAZuCXO

P2+Pr2P7W94ECu/N0dhnitkAirgXrS3nZSduLpjK/SkUzvdY642GHwy0i3M20Ztr

p7o1Uu7ztlD9yDUbksMyhskG7I+k2NGLAwz/CG91GRrYdUpoWsPlU5XLyxjHCmSC

q97qiRSKlGO3LbIiTRatrv+4fcdntN0EM/nJefdtKS8+qZqkPMGqURlDJcPnIpHk

jGccrEJz4aGB0/4Kr9UDBnWDPsH92E6lRa5QlzDOolEqgFHyyRP1JYJH3RGKVlYK

rcLlluADiRYXCadwtXvnkJGxfg2DGICn5bEInPtM+bEhO3IfqrjipvT/Qx3/N6T+

hiHyl2Yyi0loUhbWsTuuSz+D07wj/4X1evuaaAc56RSwv0x6rLSjkYj1I7V3nMvc

e2fwNFiJvLdGfMcIYyxrOwO24cFwzYMYoTDFmf8MkN/H/khKZiksdnIxfcBFfyWu

PA8s5O3Zs90Ack3IvK7uAhRDz1PpR6Y+1bkCDQRjvZKEARAAuTgK6INJWBEzfrDM

vM157ZGAM/7pyevj0WCDhqiCFdpH3MVt7+wq0tmR8Oo5Lt4AXqVtzn1bw1sMAkWK

U6yxLtS7cMiXOAPOtemTzWQkvk9o1FFygRQ8oyp4RUP4wj+W4lYaDhY+tJRDr/sR

6grYt/lZbfvEPuxL4jGW/dLSKHTLs8kh367Xm1qxqaG1C1tSLusTPb/8uNpOCANh

A2HAJRCGMox7f295+mEWXujif8yIfYtSQldqh+2bA6vaV3WKtHTPdLa1zzB20rf9

Mguz4ff3XDJCHPWOKeBOfqVS9CL67TZeOx0nJ6u2JnNDlwlzX7R63v1D/tSTYzPL

mJeosIjpRQg4ELyyLSkj0lANvY/AwlKeTPkvoc76UwsQRFgxx6ZZjKObjAok6TQK

HjszRNkeBWbbi8J+zvfS6U3+1qYtvf9Enpp1v1CWfEKZmC68MgspNCzLSOpkoAfe

k2iQ/XsjKXSsaUXY5A1DljQTVbSs9G3OkQA0Eyv4JPj2KEXPoF/0sIt2QRrayyqk

1lqN4k9a3zEZ2WpkQLIRK5DgCE/ORHXkperEWrDiAfSvuVl999jxr+Jqi8qvlPrm

aQd0X5Wc5gpb7X72FMsb2UHaWsUEs6nwoAWnXgA3PGd0r9LihZMJXfMc+LSF/dRK

fx+PizkTXQbfML8fi7Il9JA1p4UAEQEAAYkEcgQYAQgAJhYhBPJtigqt9mbMso8q

sWUOwyU7ao/1BQJjvZKEAhsCBQkDwmcAAkAJEGUOwyU7ao/1wXQgBBkBCAAdFiEE

ytw9HjtcTF+Upl14p79lqq27xJQFAmO9koQACgkQp79lqq27xJQG2hAAp4813NAu

AOg4C/Yvq8aqnDRDHw/ISs5XsQTfVwbIssSiSTqdJb4jX0rbKW1qzM6l15EmEsPV

5MCGfN8xfP5+UeeVIJaXLq3BMYJf1An8sun9f8Bp2Wdw6IDlr9VwFZ170JQ2xYvq

VJ+s/rxbCJ8K9neDPelzN/KXMyUV/uA5D1G92IlItinw4ZqD9e/CjPfIBwfNEMnZ

nYaku4VGJfzaMHezaUTB8UVyFVN6Zv2PGYEUBCwISM61IdnGKnJza0NMnEvGstXN

vtnWk7H/12Q4/rDpApy68Qbuo8gbZIifjNY00u2iyx4BEvji418NfTdF5HuPHR4m

g10cz+FcWxo13PGTXHKprNC9Y4M5nMAZW8z05/2geD8jzmY9Yz3m0GSVF/0cD3pB

rQ/LXirxgJ2prCuE7Ax8XTTBg7+cjgqk0InKh2pF0sK+2UCbnN4hR+SQvR256hWI

F+TP/rDryaqdubqCOh7kytPnPqZtL8VqK7yDRhfmgxv3+bpvm+B2qm1okUCkH3bb

AkvowTBOcyTqLw7hYsREHkYVROYg57GGhMStkzaD+lep9kEUgcaXZF41W02WJeS3

VYXwooxFBKMhzm+cluLV+ujC+FnRslh7q/u90+3N2VljEjxA4Oj3RNAARzpOs0V2

BtuUsiPCTvhRLBmdG3RH25jm2hUPexP2+pMyEw//V211M6+MT5a8kCybK5e93I3+

eT2bfAfd1k0kcQcfbocymxW5DJUqHgBj+G9ZC5PIAeFk+Jfld0y3M186NAvP8I4+

ZNsJExdQyp1CN53mSWtxAadgHNNhDKX0KwyCarCk04xbf0qjlsrWNbsUI04sM1zt

C46N/0JsCuG4uAztAfU9hjbLmSxpjf04Qqpc5NDlGLgZ2xQTVmXPlFg1DgrF6fIq

WZwPa7z1eihkrEERPjnisjuwMd4uO5BIkqh8F7HdOnARYXpftg9LReV973z7i8n9

(continues on next page)

1.1. Installing the SDK 7

Daml SDK Documentation, 2.1.1

(continued from previous page)

4rhpBedAHwVRqWo8owM8DOVTaHAQzMnnzB+6nCoOcZc7PzhWtKKhZupW2DYaLdIh

nlVCrmMSozkFn3shtOJ76XF2DMDpk0353w6i6rKghWC7TdpXPnWkHkExw4Pjnlse

1NP2vdz183NKqEKros463i+hOszQj7jb5DiFxxOnKUfxBNEMJXTqYzXdEzw7Sncw

NwTv4pFxnk3XFJD3IIXMdaCDYmHIJYK5Fwgc0Cop3dRAMJIB+0Q1/p+urDXqZphq

AGroZ22Z1DXzv7rm1x2drZyOBohc+dqn3zjEx+lwZ6CY8XPiQgbWEzSzY8YT4oUA

xRcs9cJ+0SK/HhW/EG51YNbr5IMDb3HvycHEreszEvwq2HdnsMIYdM8GC7fl7Zpp

0r+S1089BYMqKmhepps=

=srz3

-----END PGP PUBLIC KEY BLOCK-----

EOF

)

1.2 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. Through the

example of a simple social networking application, you will learn:

1. How to build and run the application

2. The design of its different components (App Architecture)

3. How to write a new feature for the app (Your First Feature)

The goal is that by the end of this tutorial, you’ll have a good idea of the following:

• What Daml contracts and ledgers are

• How a user interface (UI) interacts with a Daml ledger

• How Daml helps you build a real-life application fast.

This is not a comprehensive guide to all Daml concepts and tools or all deployment options; these

are covered in-depth in the User Guide. For a quick overview of themost important Daml concepts

used in this tutorial you can refer to the Daml cheat-sheet .

With that, let’s get started!

1.2.1 Prerequisites

Make sure that you have the Daml SDK, Java 11 or higher, and Visual Studio Code (the only supported

IDE) installed as per the instructions in Installing the SDK.

You will also need some common software tools to build and interact with the template project:

• Node and the associated package manager npm. You need node --version to report at least

14.8.3; if you have an older version, see this link for additional installation options.

• A terminal application for command line interaction.

8 Chapter 1. Getting started

https://docs.daml.com/cheat-sheet/
https://nodejs.org/en/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Daml SDK Documentation, 2.1.1

1.2.2 Running the App

To get the app up and running:

1. Open a terminal, select a folder in which to create your first application, and instantiate the tem-

plate project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run

daml new --list.

2. Change to the new folder:

cd create-daml-app

3. Open two terminal windows.

4. In one terminal, at the root of the create-daml-app directory, run the command:

daml start

Any commands starting with daml are using the Daml Assistant, a command line tool in the SDK for

building and running Daml apps.

The command has started successfully when you see the INFO com.daml.http.Main$ -

Started server: ServerBinding(/127.0.0.1:7575) message in the terminal. The com-

mand does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file

2. Generates a JavaScript library in ui/daml.js to connect the UI with your Daml code

3. Starts an instance of the Sandbox, an in-memory ledger useful for development, loadedwith our

DAR

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in

this case the running Sandbox)

We’ll leave these processes running to serve requests from our UI.

5. In the second terminal, navigate to the create-daml-app/ui folder and use npm to install

the project dependencies:

cd create-daml-app/ui

npm install

This stepmay take a couple ofmoments. You should see success Saved lockfile. in the output

if everything worked as expected.

6. Start the UI with:

npm start

This starts the web UI connected to the running Sandbox and JSON API server. The command should

automatically open a window in your default browser at http://localhost:3000.

Once the web UI has been compiled and started, you should see Compiled successfully! in

your terminal. If you don’t, open http://localhost:3000 in a web browser. Depending on your firewall

settings, you may be asked whether to allow the app to receive network connections. It is safe to

accept.

1.2. Getting Started with Daml 9

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, 2.1.1

You should now see the login page for the social network. For simplicity, in this app there is no

password or sign-up required.

1. Enter a user name. Valid user names are bob, alice, or charlie (note that these are all lower-case,

although they are displayed in the social network UI by their alias instead of their user id, with

the usual capitalization).

2. Click Log in.

You should see themain screen with two panels. The top panel displays the social network users you

are following; the bottom displays the aliases of the users who follow you. Initially these are both

empty as you are not following anyone and you don’t have any followers. To start following a user,

select their name in the drop-down list and click the Follow button in the top panel. At the moment,

you will notice that the drop-down shows only your own user because no other user has registered

yet.

Next, open a new browser window/tab at http://localhost:3000 and log in as a different user. (Having

separate windows/tabs allows you to see both your own screen and the screen of the user you are

following at the same time.)

Now that the other user (Alice in this example) has logged in, go back to the previous window/tab,

select them drop-down list and click the Follow button in the top panel.

The user you just started following appears in the Following panel. However, they do not yet appear

10 Chapter 1. Getting started

http://localhost:3000

Daml SDK Documentation, 2.1.1

in the Network panel. This is because they have not yet started following you. This social network is

similar to Twitter and Instagram, where by following someone, say Alice, you make yourself visible

to her but not vice versa. We will see how we encode this in Daml in the next section.

To make this relationship reciprocal, go back to the other window/tab where you logged in as the

second user (Alice in this example). You should now see your name in her network. In fact, Alice can

see the entire list of users you are following in the Network panel. This is because this list is part of

the user data that became visible when you started following her.

When Alice starts following you, you can see her in your network as well. Switch to the window where

you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.

Observe when a user becomes visible to others - this will be important to understanding Daml’s

privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and

share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get

1.2. Getting Started with Daml 11

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, 2.1.1

the next one by implementing your first feature.

1.3 App Architecture

In this sectionwe’ll look at the different components of the social network appwe created in Building

Your App. The goal is to familiarize yourself with the basics of Daml architecture enough to feel com-

fortable extending the code with a new feature in the next section. There are two main components:

• the Daml model

• the React/TypeScript frontend

We generate TypeScript code to bridge the two.

Overall, the social networking app is following the recommended architecture of a fullstack Daml appli-

cation. Below you can see a simplified version of the architecture represented in the app.

12 Chapter 1. Getting started

https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html

Daml SDK Documentation, 2.1.1

There are three types of building blocks that go into our application: user code, Daml components,

and generated code from Daml. The Daml model determines the DAR files that underpin both the

front end and back end. The front-end includes React application code, Daml react libraries, and

Typescript generated code, while the back-end consists of a JSON API server and a participant node.

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the

Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

1.3.1 The Daml Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (Youmay get a new tab pop

up with release notes for the latest version of Daml - close this.) Using the file Explorer on the left

sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-

tract template. Let’s look at the data portion first:

1.3. App Architecture 13

https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, 2.1.1

template User with

username: Party

following: [Party]

where

signatory username

observer following

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-

tract. In this case it is an identifier for the user and the list of users they are following. Both fields

use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization

is required to create or archive contracts, in this case the user herself. The observers are the parties

whoare able to view the contract on the ledger. In this case all users that a particular user is following

are able to see the user contract.

It’s also important to distinguish between parties, users, and aliases in terms of naming:

• Parties are unique across the entire Daml network. Thesemust be allocated before you can

use them to log in, and allocation results in a random-looking (but not actually random)

string that identifies the party and is used in your Daml code. Parties are a builtin concept.

• On each participant node you can create users with human-readable user ids. Each user

can be associated with one or more parties allocated on that participant node, and refers

to that party only on that node. Users are a purely local concept, meaning you can never

address a user on another node by user id, and you never work with users in your Daml

code; party ids are always used for these purposes. Users are also a builtin concept.

• Lastly we have user aliases. These are not a builtin concept, they are defined by an Alias

template (discussed below) within the specific model used in this guide. Aliases serve as

a way to address parties on all nodes via a human readable name.

The social network users discussed in this guide are really a combination of all three of these con-

cepts. Alice, Bob, and Charlie are all aliases that correspond to a single test user and a single party

id each. As part of running daml start, the init-script specified in daml.yaml is executed. This points

at the Setup:setup function which defines a Daml Script which creates 3 users alice, bob and charlie as

well as a corresponding party for each they can act as. In addition to that, we also create a separate

public party and allow the three users to read contracts for that party. This allows us to share the

alias contracts with that public party and have them be visible to all 3 users.

Now let’s see what the signatory and observer clauses mean in our app in more concrete terms.

The userwith the alias Alice can see another user, alias Bob, in the network onlywhenBob is following

Alice (only if Alice is in the following list in his user contract). For this to be true, Bob must have

previously started to follow Alice, as he is the sole signatory on his user contract. If not, Bob will be

invisible to Alice.

This illustrates two concepts that are central to Daml: authorization and privacy. Authorization is

about who can do what, and privacy is about who can see what. In Daml you must answer these

questions upfront, as they are fundamental to the design of the application.

The next part of the Daml model is the operation to follow users, called a choice in Daml:

nonconsuming choice Follow: ContractId User with

userToFollow: Party

controller username

do

(continues on next page)

14 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

assertMsg "You cannot follow yourself" (userToFollow /= username)

assertMsg "You cannot follow the same user twice" (notElem userToFollow␣

↪→following)

archive self

create this with following = userToFollow :: following

Daml contracts are immutable (can not be changed in place), so the only way to update one is to

archive it and create a new instance. That is what the Follow choice does: after checking some

preconditions, it archives the current user contract and creates a new onewith the newuser to follow

added to the list. Here is a quick explanation of the code:

• The choice starts with the nonconsuming choice keyword followed by the choice name Fol-

low.

• The return type of a choice is defined next. In this case it is ContractId User.

• After that we declare choice parameters with the with keyword. Here this is the user we want

to start following.

• The keyword controller defines the Party that is allowed to execute the choice. In this case,

it is the username party associated with the User contract.

• The do keyword marks the start of the choice body where its functionality will be written.

• After passing some checks, the current contract is archived with archive self.

• A new User contract with the new user we have started following is created (the new user is

added to the following list).

More detailed information on choices can be found in our docs.

Finally, the User.daml file contains the Alias template that manages the link between user ids and

their aliases. The alias template sets the public party we created in the setup script as the observer

of the contract. Because we allow all users to read contracts visible to the public party, this allows

e.g., Alice to see Bob’s Alias contract.

template Alias with

username: Party

alias: Text

public: Party

where

signatory username

observer public

key (username, public) : (Party, Party)

maintainer key._1

nonconsuming choice Change: ContractId Alias with

newAlias: Text

controller username

do

archive self

create this with alias = newAlias

Let’s move on to how our Daml model is reflected and used on the UI side.

1.3. App Architecture 15

Daml SDK Documentation, 2.1.1

1.3.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that

provides more support during development through its type system.

To build an application on top of Daml, we need a way to refer to our Daml templates and choices in

TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).

Thedaml codegen js command then takes this file as argument to produce anumber of TypeScript

packages in the output folder.

daml build

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.js

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll

use in our UI code next.

1.3.3 The UI

On top of TypeScript, we use the UI framework React. React helps us write modular UI components

usinga functional style - a component is rerenderedwhenever oneof its inputs changes -with careful

use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.

You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first

look at App.tsx, which is the entry point to our application.

const App: React.FC = () => {

const [credentials, setCredentials] = React.useState<

Credentials | undefined

>();

if (credentials) {

const PublicPartyLedger: React.FC = ({ children }) => {

const publicToken = usePublicToken();

const publicParty = usePublicParty();

if (publicToken && publicParty) {

return (

<publicContext.DamlLedger

token={publicToken.token}

party={publicParty}>

{children}

</publicContext.DamlLedger>

);

} else {

return <h1>Loading ...</h1>;

}

};

const Wrap: React.FC = ({ children }) =>

isRunningOnHub() ? (

<DamlHub token={credentials.token}>

<PublicPartyLedger>{children}</PublicPartyLedger>

</DamlHub>

) : (

<div>{children}</div>

(continues on next page)

16 Chapter 1. Getting started

https://www.typescriptlang.org/
https://reactjs.org/

Daml SDK Documentation, 2.1.1

(continued from previous page)

);

return (

<Wrap>

<userContext.DamlLedger

token={credentials.token}

party={credentials.party}

user={credentials.user}>

<MainScreen

getPublicParty={credentials.getPublicParty}

onLogout={() => {

if (authConfig.provider === "daml-hub") {

damlHubLogout();

}

setCredentials(undefined);

}}

/>

</userContext.DamlLedger>

</Wrap>

);

} else {

return <LoginScreen onLogin={setCredentials} />;

}

};

An important tool in the design of our components is a React feature called Hooks. Hooks allow you

to share and update state across components, avoiding the need to thread it through manually. We

take advantage of hooks to share ledger state across components. Custom Daml React hooks query

the ledger for contracts, create new contracts, and exercise choices. This is the library you will use

most often when interacting with the ledger1 .

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not

set, we render the LoginScreen with a callback to setCredentials. If they are set, we render the

MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a

handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame

around the MainView component, which houses the main functionality of our app. It uses Daml

React hooks to query and update ledger state.

const MainView: React.FC = () => {

const username = userContext.useParty();

const myUserResult = userContext.useStreamFetchByKeys(User.User, () =>␣

↪→[username], [username]);

const aliases = publicContext.useStreamQueries(User.Alias, () => [], []);

const myUser = myUserResult.contracts[0]?.payload;

const allUsers = userContext.useStreamQueries(User.User).contracts;

The useParty hook returns the current user as stored in the DamlLedger context. A more interest-

ing example is the allUsers line. This uses the useStreamQueries hook to get all User contracts

on the ledger. (User.User here is an object generated by daml codegen js - it stores metadata

of the User template defined in User.daml.) Note however that this query preserves privacy: only

users that follow the current user have their contracts revealed. This behaviour is due to the ob-

servers on the User contract being exactly in the list of users that the current user is following.

1 Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger

implementation via the HTTP JSON API.

1.3. App Architecture 17

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

Daml SDK Documentation, 2.1.1

A final point on this is the streaming aspect of the query. Results are updated as they come in - there

is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the

User template.

const ledger = userContext.useLedger();

const follow = async (userToFollow: Party): Promise<boolean> => {

try {

await ledger.exerciseByKey(User.User.Follow, username, {userToFollow});

return true;

} catch (error) {

alert(CUnknown error:\n${JSON.stringify(error)}C);

return false;

}

}

The useLedger hook returns an object withmethods for exercising choices. The core of the follow

function here is the call to ledger.exerciseByKey. The key in this case is the username of the

current user, used to look up the corresponding User contract. The wrapper function follow is

then passed to the subcomponents of MainView. For example, follow is passed to the UserList

component as an argument (a prop in React terms). This is triggered when you click the icon next to

a user’s name in the Network panel.

<UserList

users={followers}

partyToAlias={partyToAlias}

onFollow={follow}

/>

This should give you a taste of how the UI works alongside a Daml ledger. You’ll see this more as you

develop your first feature for our social network.

1.4 Your First Feature

To get a better idea of how to develop Daml applications, let’s try implementing a new feature for our

social network app.

At themoment, our app lets us follow users in the network, but we have no way to communicate with

them. Let’s fix that by adding a direct messaging feature. This should let users that follow each other

send messages to each other, respecting authorization and privacy. This means:

• You cannot send a message to someone unless they have given you the authority by following

you back.

• You cannot see a message unless you sent it or it was sent to you.

Daml lets us implement these guarantees in a direct and intuitive way.

Creating a feature involves four steps:

1. Adding the necessary changes to the Daml model

2. Making the corresponding changes in the UI

3. Running the app with the new feature

As usual, we must start with the Daml model and base our UI changes on top of that.

18 Chapter 1. Getting started

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, 2.1.1

1.4.1 Daml Changes

The Daml code defines the data andworkflow of the application; you can read about this inmore detail

in the architecture section. The workflow refers to the interactions between parties that are permitted

by the system. In the context of a messaging feature, these are essentially the authorization and

privacy concerns listed above.

For the authorization part, we take the following approach: a user Bob canmessage another user Al-

ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission

or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/

User.daml file and copy the following Message template to the bottom. Indentation is important:

it should be at the top level like the original User template.

template Message with

sender: Party

receiver: Party

content: Text

where

signatory sender, receiver

This template is very simple: it contains the data for amessage and no choices. The interesting part

is the signatory clause: both the sender and receiver are signatories on the template. This

enforces that creation and archival of Message contracts must be authorized by both parties.

Nowwe can addmessaging into the workflow by adding a new choice to the User template. Copy the

following choice to theUser template after theFollow choice. The indentation for theSendMessage

choice must match the one of Follow . Make sure you save the file after copying the code.

nonconsuming choice SendMessage: ContractId Message with

sender: Party

content: Text

controller sender

do

assertMsg "Designated user must follow you back to send a message" (elem␣

↪→sender following)

create Message with sender, receiver = username, content

As with the Follow choice, there are a few aspects to note here.

• By convention, the choice returns the ContractId of the resulting Message contract.

• The parameters to the choice are the sender and content of this message; the receiver is the

party named on this User contract.

• The controller clause states that it is the sender who can exercise the choice.

• The body of the choice first ensures that the sender is a user that the receiver is following and

thencreates theMessage contractwith thereceiverbeing the signatory of theUser contract.

This completes the workflow for messaging in our app.

Navigate to the terminal window where the daml start process is running and press ‘r’. This will

• Compile our Daml code into a DAR file containing the new feature

• Update the JavaScript library under ui/daml.js to connect the UI with your Daml code

• Upload the new DAR file to the sandbox

1.4. Your First Feature 19

Daml SDK Documentation, 2.1.1

As mentioned previously, Daml Sandbox uses an in-memory store, which means it loses its state –

which here includes all user data and follower relationships – when stopped or restarted.

Now let’s integrate the new functionality into the UI.

1.4.2 Messaging UI

The UI for messaging consists of a new Messages panel in addition to the Follow and Network panel.

This new panel has two parts:

1. A list of messages you’ve received with their senders.

2. A formwith a dropdownmenu for follower selection and a text field for composing themessage.

We implement each part as a React component, named MessageList and MessageEdit respec-

tively. Let’s start with the simpler MessageList.

1.4.2.1 MessageList Component

The goal of the MessageList component is to query all Message contracts where the receiver is

the current user, and display their contents and senders in a list. The entire component is shown

below. Copy this into a new MessageList.tsx file in ui/src/components and save it.

import React from
react

import { List, ListItem } from
semantic-ui-react
;

import { User } from
@daml.js/create-daml-app
;

import { userContext } from
./App
;

type Props = {

partyToAlias: Map<string, string>

}

/**

* React component displaying the list of messages for the current user.

*/

const MessageList: React.FC<Props> = ({partyToAlias}) => {

const messagesResult = userContext.useStreamQueries(User.Message);

return (

<List relaxed>

{messagesResult.contracts.map(message => {

const {sender, receiver, content} = message.payload;

return (

<ListItem

className=
test-select-message-item

key={message.contractId}>

{partyToAlias.get(sender) ?? sender} → {partyToAlias.

↪→get(receiver) ?? receiver}: {content}

</ListItem>

);

})}

</List>

);

};

export default MessageList;

20 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

In the component body, messagesResult gets the stream of all Message contracts visible to the

current user. The streaming aspect means that we don’t need to reload the page when new mes-

sages come in. For each contract in the stream, we destructure the payload (the data as opposed to

metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we

construct a ListItem UI element with the details of the message.

An important point about privacy: no matter how we write our Message query in the UI code, it is

impossible to break the privacy rules given by the Damlmodel. That is, it is impossible to see a Mes-

sage contract of which you are not the sender or the receiver (the only parties that can observe

the contract). This is a major benefit of writing apps on Daml: the burden of ensuring privacy and

authorization is confined to the Daml model.

1.4.2.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again

we show the entire component here; copy this into a new MessageEdit.tsx file in ui/src/

components and save it.

import React from
react

import { Form, Button } from
semantic-ui-react
;

import { Party } from
@daml/types
;

import { User } from
@daml.js/create-daml-app
;

import { userContext } from
./App
;

type Props = {

followers: Party[];

partyToAlias: Map<string, string>;

}

/**

* React component to edit a message to send to a follower.

*/

const MessageEdit: React.FC<Props> = ({followers, partyToAlias}) => {

const sender = userContext.useParty();

const [receiver, setReceiver] = React.useState<string | undefined>();

const [content, setContent] = React.useState("");

const [isSubmitting, setIsSubmitting] = React.useState(false);

const ledger = userContext.useLedger();

const submitMessage = async (event: React.FormEvent) => {

try {

event.preventDefault();

if (receiver === undefined) {

return;

}

setIsSubmitting(true);

await ledger.exerciseByKey(User.User.SendMessage, receiver, {sender,␣

↪→content});

setContent("");

} catch (error) {

alert(CError sending message:\n${JSON.stringify(error)}C);

} finally {

setIsSubmitting(false);

}

};

(continues on next page)

1.4. Your First Feature 21

Daml SDK Documentation, 2.1.1

(continued from previous page)

return (

<Form onSubmit={submitMessage}>

<Form.Select

fluid

search

className=
test-select-message-receiver

placeholder={receiver ? partyToAlias.get(receiver) ?? receiver : "Select␣

↪→a follower"}

value={receiver}

options={followers.map(follower => ({ key: follower, text: partyToAlias.

↪→get(follower) ?? follower, value: follower }))}

onChange={(event, data) => setReceiver(data.value?.toString())}

/>

<Form.Input

className=
test-select-message-content

placeholder="Write a message"

value={content}

onChange={event => setContent(event.currentTarget.value)}

/>

<Button

fluid

className=
test-select-message-send-button

type="submit"

disabled={isSubmitting || receiver === undefined || content === ""}

loading={isSubmitting}

content="Send"

/>

</Form>

);

};

export default MessageEdit;

Youwill first notice a Props type near the top of the file with a single followers field. A prop in React

is an input to a component; in this case a list of users from which to select the message receiver.

The prop will be passed down from the MainView component, reusing the work required to query

users from the ledger. You can see this followers field bound at the start of the MessageEdit

component.

We use the React useState hook to get and set the current choices of message receiver and

content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-

erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with

the receiver’s username and exercises the SendMessage choice with the appropriate arguments.

If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage

sets the isSubmitting state so that the Send button is disabled while the request is processed. The

result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to

select a receiver from the followers, a text field for the message content, and a Send button which

triggers submitMessage.

Note how authorization is enforced here. Due to the logic of the SendMessage choice, it is impossible

to send a message to a user who is not following us (even if you could somehow access their User

contract). The assertion that elem sender following in SendMessage ensures this: no mistake

22 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

or malice by the UI programmer could breach this.

1.4.2.3 MainView Component

Finally we can see these components come together in the MainView component. We want to add a

newpanel to house ourmessaging UI. Open the ui/src/components/MainView.tsx file and start

by adding imports for the two new components.

import MessageEdit from
./MessageEdit
;

import MessageList from
./MessageList
;

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll

add a new Segment for Messages. Make sure you save the file after copying over the code.

<Segment>

<Header as=
h2
>

<Icon name=
pencil square
 />

<Header.Content>

Messages

<Header.Subheader>Send a message to a follower</Header.

↪→Subheader>

</Header.Content>

</Header>

<MessageEdit

followers={followers.map(follower => follower.username)}

partyToAlias={partyToAlias}

/>

<Divider />

<MessageList partyToAlias={partyToAlias}/>

</Segment>

Following the formatting of the previous panels, we include the new messaging components: Mes-

sageEdit supplied with the usernames of all visible parties as props, and MessageList to display

all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.4.3 Running the Updated UI

If you have the frontend UI up and running you’re all set. If you don’t have the UI running, open a

new terminal window and navigate to the create-daml-app/ui folder, then run the npm start

command to start the UI.

You should see the same login page as before at http://localhost:3000.

Once you’ve logged in, you’ll see a familiar UI but with our new Messages panel at the bottom!

Go ahead and follow more users, and log in as some of those users in separate browser windows

to follow yourself back. Then click on the dropdown menu in the Messages panel to see a choice of

followers to message!

1.4. Your First Feature 23

http://localhost:3000

Daml SDK Documentation, 2.1.1

24 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

Send somemessages between users andmake sure you can see each one from the other side. Notice

that each new message appears in the UI as soon as it is sent (due to the streaming React hooks).

Tip: You completed the second part of the Getting Started Guide! Join our forumand share a screen-

shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to

Daml Hub

1.4.4 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-

ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and

understand its core concepts such as parties, signatories, observers, and controllers. You can do

that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.5 Testing Your Web App

When developing a UI for your Daml application, you will want to test that user flows work from end

to end. This means that actions performed in the web UI trigger updates to the ledger and give the

desired results on the page. In this section we show how you can do such testing automatically

in TypeScript (equally JavaScript). This will allow you to iterate on your app faster and with more

confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to

choose from, but this is one combination that works.

• Jest is ageneral-purpose testing framework for JavaScript that’swell integratedwithboth Type-

Script and React. Jest helps you structure your tests and express expectations of the app’s

behaviour.

• Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer

allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command

in the ui directory:

1.5. Testing Your Web App 25

https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/interactive-tutorials/fundamental-concepts
https://jestjs.io/
https://pptr.dev/

Daml SDK Documentation, 2.1.1

npm add --only=dev puppeteer wait-on @types/jest @types/node @types/puppeteer␣

↪→@types/wait-on

Because these things are easier to describewith concrete examples, this sectionwill showhow to set

up end-to-end tests for the application you would end with at the end of the Your First Feature section.

1.5.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full

suite in section The Full Test Suite at the bottomof this page. To run this test suite, create a new fileui/

src/index.test.ts, copy the code in this section into that file and run the following command in

the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones

with the following descriptions (the first argument to each test):

• ‘log in as a new user, log out and log back in’

• ‘log in as three different users and start following each other’

• ‘error when following self’

• ‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have

some global state that we use throughout. Specifically, we have child processes for the daml start

and npm start commands, which run for the duration of our tests. We also have a single Puppeteer

browser that we share among tests, opening new browser pages for each one.

The beforeAll() section is a function run once before any of the tests run. We use it to spawn the

daml start and npm start processes and launch the browser. On the other hand the afterAll()

section is used to shut down theseprocessesandclose thebrowser. This step is important to prevent

child processes persisting in the background after our program has finished.

1.5.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to

in each scenario we want to test. This means we use Puppeteer to type text into input forms, click

buttons and search for particular elements on the page. In order to find those elements, we do need

to make some adjustments in our React components, which we’ll show later. Let’s start at a higher

level with a test.

test("log in as a new user, log out and log back in", async () => {

const [user, party] = await getParty();

// Log in as a new user.

const page = await newUiPage();

await login(page, user);

// Check that the ledger contains the new User contract.

const token = authConfig.makeToken(user);

const ledger = new Ledger({ token });

const users = await ledger.query(User.User);

(continues on next page)

26 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

expect(users).toHaveLength(1);

expect(users[0].payload.username).toEqual(party);

// Log out and in again as the same user.

await logout(page);

await login(page, user);

// Check we have the same one user.

const usersFinal = await ledger.query(User.User);

expect(usersFinal).toHaveLength(1);

expect(usersFinal[0].payload.username).toEqual(party);

await page.close();

}, 40_000);

We’ll walk though this step by step.

• The test syntax is provided by Jest to indicate a new test running the function given as an

argument (along with a description and time limit).

• getParty() gives us a new party name. Right now it is just a string unique to this set of tests,

but in the future we will use the Party Management Service to allocate parties.

• newUiPage() is a helper function that uses the Puppeteer browser to open a new page (we use

one page per party in these tests), navigate to the app URL and return a Page object.

• Next we login() using the new page and party name. This should take the user to the main

screen. We’ll show how the login() function does this shortly.

• We use the @daml/ledger library to check the ledger state. In this case, we want to ensure

there is a single User contract created for the new party. Hence we create a new connection to

the Ledger, query() it and state what we expect of the result. When we run the tests, Jest

will check these expectations and report any failures for us to fix.

• The test also simulates the new user logging out and then logging back in. We again check the

state of the ledger and see that it’s the same as before.

• Finally we must close() the browser page, which was opened in newUiPage(), to avoid run-

away Puppeteer processes after the tests finish.

You will likely use test, getParty(), newUiPage() and Browser.close() for all your tests. In

this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just

check the contents of the web page match our expectations.

1.5.3 Accessing UI elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual

actions in the app using Puppeteer. This was hidden in the login() and logout() functions. Let’s

see how login() is implemented.

// Log in using a party name and wait for the main screen to load.

const login = async (page: Page, partyName: string) => {

const usernameInput = await page.waitForSelector(

".test-select-username-field",

);

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test-select-login-button");

(continues on next page)

1.5. Testing Your Web App 27

Daml SDK Documentation, 2.1.1

(continued from previous page)

await page.waitForSelector(".test-select-main-menu");

};

We first wait to receive a handle to the username input element. This is important to ensure the page

and relevant elements are loaded by the time we try to act on them. We then use the element handle

to click into the input and type the party name. Next we click the login button (this time assuming

the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached

the menu on the main page.

The strings used to find UI elements, e.g.
.test-select-username-field
 and
.

test-select-login-button
, are CSS Selectors. You may have seen them before in CSS styling

of web pages. In this case we use class selectors, which look for CSS classes we’ve given to elements

in our React components.

This means we must manually add classes to the components we want to test. For example, here is

a snippet of the LoginScreen React component with classes added to the Form elements.

<Form.Input

fluid

placeholder="Username"

value={username}

className="test-select-username-field"

onChange={(e, { value }) => setUsername(value?.toString() ?? "")}

/>

<Button

primary

fluid

className="test-select-login-button"

onClick={handleLogin}>

Log in

</Button>

You can see the className attributes in the Input and Button, which we select in the login()

function. Note that you can use other features of an element in your selector, such as its type and

attributes. We’ve only used class selectors in these tests.

1.5.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered

HTML in your app by running it manually and inspecting elements using your browser’s developer

tools. For example, the image below is from inspecting the username field using the developer tools

in Google Chrome.

There is a subtlety to explain here due to the Semantic UI framework we use for our app. Semantic

UI provides a convenient set of UI elements which get translated to HTML. In the example of the

username field above, the original Semantic UI Input is translated to nested div nodes with the

input inside. You can see this highlighted on the right side of the screenshot. While harmless in

this case, in general youmay need to inspect the HTML translation of UI elements and write your CSS

selectors accordingly.

28 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

Daml SDK Documentation, 2.1.1

1.5.5 The Full Test Suite

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

// Keep in sync with compatibility/bazel_tools/create-daml-app/index.test.ts

import { ChildProcess, spawn, spawnSync, SpawnOptions } from "child_process";

import { promises as fs } from "fs";

import puppeteer, { Browser, Page } from "puppeteer";

import waitOn from "wait-on";

import Ledger, { UserRightHelper } from "@daml/ledger";

import { User } from "@daml.js/create-daml-app";

import { authConfig } from "./config";

const JSON_API_PORT_FILE_NAME = "json-api.port";

const UI_PORT = 3000;

// Cdaml startC process

let startProc: ChildProcess | undefined = undefined;

// Cnpm startC process

let uiProc: ChildProcess | undefined = undefined;

// Chrome browser that we run in headless mode

let browser: Browser | undefined = undefined;

let publicUser: string | undefined;

let publicParty: string | undefined;

const adminLedger = new Ledger({

token: authConfig.makeToken("participant_admin"),

});

(continues on next page)

1.5. Testing Your Web App 29

Daml SDK Documentation, 2.1.1

(continued from previous page)

const toAlias = (userId: string): string =>

userId.charAt(0).toUpperCase() + userId.slice(1);

// Function to generate unique party names for us.

let nextPartyId = 1;

const getParty = async (): [string, string] => {

const allocResult = await adminLedger.allocateParty({});

const user = Cu${nextPartyId}C;

const party = allocResult.identifier;

const rights: UserRight[] = [UserRightHelper.canActAs(party)].concat(

publicParty !== undefined ? [UserRightHelper.canReadAs(publicParty)] : [],

);

await adminLedger.createUser(user, rights, party);

nextPartyId++;

return [user, party];

};

test("Party names are unique", async () => {

let r = [];

for (let i = 0; i < 10; ++i) {

r = r.concat((await getParty())[1]);

}

const parties = new Set(r);

expect(parties.size).toEqual(10);

}, 20_000);

const removeFile = async (path: string) => {

try {

await fs.stat(path);

await fs.unlink(path);

} catch (_e) {

// Do nothing if the file does not exist.

}

};

// Start the Daml and UI processes before the tests begin.

// To reduce test times, we reuse the same processes between all the tests.

// This means we need to use a different set of parties and a new browser page␣

↪→for each test.

beforeAll(async () => {

// If the JSON API server was previously shut down abruptly then the port file

// may not have been removed.

// Since we use this file to know when the server is up, we remove it first

// (if it exists) to be sure.

const jsonApiPortFilePath = C../${JSON_API_PORT_FILE_NAME}C; // relative to ui␣

↪→folder

await removeFile(jsonApiPortFilePath);

// Run Cdaml startC from the project root (where the Cdaml.yamlC is located).

// The path should include
.daml/bin
 in the environment where this is run,

// which contains the CdamlC assistant executable.

const startOpts: SpawnOptions = { cwd: "..", stdio: "inherit" };

// Arguments for Cdaml startC (besides those in the Cdaml.yamlC).

// The JSON API C--port-fileC gives us a file we can check to know that both

// the sandbox and JSON API server are up and running.

(continues on next page)

30 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

// We use the default ports for the sandbox and JSON API as done in the

// Getting Started Guide.

const startArgs = [

"start",

C--json-api-option=--port-file=${JSON_API_PORT_FILE_NAME}C,

];

console.debug("Starting daml start");

startProc = spawn("daml", startArgs, startOpts);

await waitOn({ resources: [Cfile:${jsonApiPortFilePath}C] });

console.debug("daml start API are running");

[publicUser, publicParty] = await getParty();

// Run Cnpm startC in another shell.

// Disable automatically opening a browser using the env var described here:

// https://github.com/facebook/create-react-app/issues/873#issuecomment-

↪→266318338

const env = { ...process.env, BROWSER: "none" };

console.debug("Starting npm start");

uiProc = spawn("npm-cli.js", ["run-script", "start"], {

env,

stdio: "inherit",

detached: true,

});

// Note(kill-npm-start): The CdetachedC flag starts the process in a new␣

↪→process group.

// This allows us to kill the process with all its descendents after the tests␣

↪→finish,

// following https://azimi.me/2014/12/31/kill-child_process-node-js.html.

// Ensure the UI server is ready by checking that the port is available.

await waitOn({ resources: [Ctcp:localhost:${UI_PORT}C] });

console.debug("npm start is running");

// Launch a single browser for all tests.

console.debug("Starting puppeteer");

browser = await puppeteer.launch();

console.debug("Puppeteer is running");

}, 60_000);

afterAll(async () => {

// Kill the Cdaml startC process, allowing the sandbox and JSON API server to

// shut down gracefully.

// The latter process should also remove the JSON API port file.

// TODO: Test this on Windows.

if (startProc) {

startProc.kill("SIGTERM");

}

// Kill the Cnpm startC process including all its descendents.

// The C-C indicates to kill all processes in the process group.

// See Note(kill-npm-start).

(continues on next page)

1.5. Testing Your Web App 31

Daml SDK Documentation, 2.1.1

(continued from previous page)

// TODO: Test this on Windows.

if (uiProc) {

process.kill(-uiProc.pid);

}

if (browser) {

browser.close();

}

});

test("create and look up user using ledger library", async () => {

const [user, party] = await getParty();

const token = authConfig.makeToken(user);

const ledger = new Ledger({ token });

const users0 = await ledger.query(User.User);

expect(users0).toEqual([]);

const userPayload = { username: party, following: [], public: publicParty };

const userContract1 = await ledger.create(User.User, userPayload);

const userContract2 = await ledger.fetchByKey(User.User, party);

expect(userContract1).toEqual(userContract2);

const users = await ledger.query(User.User);

expect(users[0]).toEqual(userContract1);

}, 20_000);

// The tests following use the headless browser to interact with the app.

// We select the relevant DOM elements using CSS class names that we embedded

// specifically for testing.

// See https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors.

const newUiPage = async (): Promise<Page> => {

if (!browser) {

throw Error("Puppeteer browser has not been launched");

}

const page = await browser.newPage();

await page.setViewport({ width: 1366, height: 1080 });

page.on("console", message =>

console.log(

C${message.type().substr(0, 3).toUpperCase()} ${message.text()}C,

),

);

await page.goto(Chttp://localhost:${UI_PORT}C); // ignore the Response

return page;

};

// Note that Follow is a consuming choice on a contract

// with a contract key so it is crucial to wait between follows.

// Otherwise, you get errors due to contention.

// Those can manifest in puppeteer throwing CTarget closedC

// but that is not the underlying error (the JSON API will

// output the contention errors as well so look through the log).

const waitForFollowers = async (page: Page, n: number) => {

await page.waitForFunction(

n => document.querySelectorAll(".test-select-following").length == n,

{},

n,

);

(continues on next page)

32 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

};

// LOGIN_FUNCTION_BEGIN

// Log in using a party name and wait for the main screen to load.

const login = async (page: Page, partyName: string) => {

const usernameInput = await page.waitForSelector(

".test-select-username-field",

);

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test-select-login-button");

await page.waitForSelector(".test-select-main-menu");

};

// LOGIN_FUNCTION_END

// Log out and wait to get back to the login screen.

const logout = async (page: Page) => {

await page.click(".test-select-log-out");

await page.waitForSelector(".test-select-login-screen");

};

// Follow a user using the text input in the follow panel.

const follow = async (page: Page, userToFollow: string) => {

const followInput = await page.waitForSelector(".test-select-follow-input");

await followInput.click();

await followInput.type(userToFollow);

await followInput.press("Enter");

await page.click(".test-select-follow-button");

// Wait for the request to complete, either successfully or after the error

// dialog has been handled.

// We check this by the absence of the CloadingC class.

// (Both the Ctest-...C and CloadingC classes appear in CdivCs surrounding

// the CinputC, due to the translation of Semantic UI
s CInputC element.)

await page.waitForSelector(".test-select-follow-input > :not(.loading)", {

timeout: 40_000,

});

};

// LOGIN_TEST_BEGIN

test("log in as a new user, log out and log back in", async () => {

const [user, party] = await getParty();

// Log in as a new user.

const page = await newUiPage();

await login(page, user);

// Check that the ledger contains the new User contract.

const token = authConfig.makeToken(user);

const ledger = new Ledger({ token });

const users = await ledger.query(User.User);

expect(users).toHaveLength(1);

expect(users[0].payload.username).toEqual(party);

// Log out and in again as the same user.

await logout(page);

(continues on next page)

1.5. Testing Your Web App 33

Daml SDK Documentation, 2.1.1

(continued from previous page)

await login(page, user);

// Check we have the same one user.

const usersFinal = await ledger.query(User.User);

expect(usersFinal).toHaveLength(1);

expect(usersFinal[0].payload.username).toEqual(party);

await page.close();

}, 40_000);

// LOGIN_TEST_END

// This tests following users in a few different ways:

// - using the text box in the Follow panel

// - using the icon in the Network panel

// - while the user that is followed is logged in

// - while the user that is followed is logged out

// These are all successful cases.

test("log in as three different users and start following each other", async () =>

↪→ {

const [user1, party1] = await getParty();

const [user2, party2] = await getParty();

const [user3, party3] = await getParty();

// Log in as Party 1.

const page1 = await newUiPage();

await login(page1, user1);

// Log in as Party 2.

const page2 = await newUiPage();

await login(page2, user2);

// Log in as Party 3.

const page3 = await newUiPage();

await login(page3, user3);

// Party 1 should initially follow no one.

const noFollowing1 = await page1.$$(".test-select-following");

expect(noFollowing1).toEqual([]);

// Follow Party 2 using the text input.

// This should work even though Party 2 has not logged in yet.

// Check Party 1 follows exactly Party 2.

await follow(page1, party2);

await waitForFollowers(page1, 1);

const followingList1 = await page1.$$eval(

".test-select-following",

following => following.map(e => e.innerHTML),

);

expect(followingList1).toEqual([toAlias(user2)]);

// Add Party 3 as well and check both are in the list.

await follow(page1, party3);

await waitForFollowers(page1, 2);

const followingList11 = await page1.$$eval(

".test-select-following",

(continues on next page)

34 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

following => following.map(e => e.innerHTML),

);

expect(followingList11).toHaveLength(2);

expect(followingList11).toContain(toAlias(user2));

expect(followingList11).toContain(toAlias(user3));

// Party 2 should initially follow no one.

const noFollowing2 = await page2.$$(".test-select-following");

expect(noFollowing2).toEqual([]);

// However, Party 2 should see Party 1 in the network.

await page2.waitForSelector(".test-select-user-in-network");

const network2 = await page2.$$eval(".test-select-user-in-network", users =>

users.map(e => e.innerHTML),

);

expect(network2).toEqual([toAlias(user1)]);

// Follow Party 1 using the
add user
 icon on the right.

await page2.waitForSelector(".test-select-add-user-icon");

const userIcons = await page2.$$(".test-select-add-user-icon");

expect(userIcons).toHaveLength(1);

await userIcons[0].click();

await waitForFollowers(page2, 1);

// Also follow Party 3 using the text input.

// Note that we can also use the icon to follow Party 3 as they appear in the

// Party 1
s Network panel, but that
s harder to test at the

// moment because there is no loading indicator to tell when it
s done.

await follow(page2, party3);

// Check the following list is updated correctly.

await waitForFollowers(page2, 2);

const followingList2 = await page2.$$eval(

".test-select-following",

following => following.map(e => e.innerHTML),

);

expect(followingList2).toHaveLength(2);

expect(followingList2).toContain(toAlias(user1));

expect(followingList2).toContain(toAlias(user3));

// Party 1 should now also see Party 2 in the network (but not Party 3 as they

// didn
t yet started following Party 1).

await page1.waitForSelector(".test-select-user-in-network");

const network1 = await page1.$$eval(

".test-select-user-in-network",

following => following.map(e => e.innerHTML),

);

expect(network1).toEqual([toAlias(user2)]);

// Party 3 should follow no one.

const noFollowing3 = await page3.$$(".test-select-following");

expect(noFollowing3).toEqual([]);

// However, Party 3 should see both Party 1 and Party 2 in the network.

await page3.waitForSelector(".test-select-user-in-network");

const network3 = await page3.$$eval(

(continues on next page)

1.5. Testing Your Web App 35

Daml SDK Documentation, 2.1.1

(continued from previous page)

".test-select-user-in-network",

following => following.map(e => e.innerHTML),

);

expect(network3).toHaveLength(2);

expect(network3).toContain(toAlias(user1));

expect(network3).toContain(toAlias(user2));

await page1.close();

await page2.close();

await page3.close();

}, 60_000);

test("error when following self", async () => {

const [user, party] = await getParty();

const page = await newUiPage();

const dismissError = jest.fn(dialog => dialog.dismiss());

page.on("dialog", dismissError);

await login(page, user);

await follow(page, party);

expect(dismissError).toHaveBeenCalled();

await page.close();

});

test("error when adding a user that you are already following", async () => {

const [user1, party1] = await getParty();

const [user2, party2] = await getParty();

const page = await newUiPage();

const dismissError = jest.fn(dialog => dialog.dismiss());

page.on("dialog", dismissError);

await login(page, user1);

// First attempt should succeed

await follow(page, party2);

// Second attempt should result in an error

await follow(page, party2);

expect(dismissError).toHaveBeenCalled();

await page.close();

}, 10000);

const failedLogin = async (page: Page, partyName: string) => {

let error: string | undefined = undefined;

await page.exposeFunction("getError", () => error);

const dismissError = jest.fn(async dialog => {

error = dialog.message();

await dialog.dismiss();

});

page.on("dialog", dismissError);

const usernameInput = await page.waitForSelector(

".test-select-username-field",

(continues on next page)

36 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

);

await usernameInput.click();

await usernameInput.type(partyName);

await page.click(".test-select-login-button");

await page.waitForFunction(

async () => (await window.getError()) !== undefined,

);

expect(dismissError).toHaveBeenCalled();

return error;

};

test("error on user id with invalid format", async () => {

// user ids must be lowercase

const invalidUser = "Alice";

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(/User ID \\"Alice\\" does not match regex/);

await page.close();

}, 40_000);

test("error on non-existent user id", async () => {

const invalidUser = "nonexistent";

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(

/getting user failed for unknown user \\"nonexistent\\"/,

);

await page.close();

}, 40_000);

test("error on user with no primary party", async () => {

const invalidUser = "noprimary";

await adminLedger.createUser(invalidUser, []);

const page = await newUiPage();

const error = await failedLogin(page, invalidUser);

expect(error).toMatch(/User
noprimary
 has no primary party/);

await page.close();

}, 40_000);

1.5. Testing Your Web App 37

Chapter 2

Daml Guide

2.1 Writing Daml

Daml is a smart contract language designed to build composable applications on the Daml Ledger

Model.

The Writing Daml section will teach you how to write Daml applications that run on any Daml Ledger

implementation, including key language features, how they relate to the Daml LedgerModel and how

to useDaml’s developer tools. It also covers the structure of a Daml Ledger as it pertains to designing

your application.

Youcan find theDaml code for the example applicationand features in eachsectionhere or download

it using the Daml assistant. For example, to load the sources for section 1 into a folder called intro1,

run daml new intro1 --template daml-intro-1.

To run the examples, you will first need to install the Daml SDK.

2.1.1 An introduction to Daml

Daml is a smart contract language designed to build composable applications on an abstract Daml

Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-

plications that run on any Daml Ledger implementation, by building an asset-holding and -trading

application. You will gain an overview over most important language features, how they relate to the

Daml Ledger Model and how to use Daml’s developer tools to write, test, compile, package and ship

your application.

This introduction is structured such that each section presents a new self-contained application

with more functionality than that from the previous section. You can find the Daml code for each

sectionhere or download themusing theDaml assistant. For example, to load the sources for section

1 into a folder called intro1, run daml new intro1 --template daml-intro-1.

Prerequisites:

• You have installed the Daml SDK

Next: 1 Basic contracts.

38

https://docs.daml.com/concepts/ledger-model/index.html#da-ledgers
https://docs.daml.com/concepts/ledger-model/index.html#da-ledgers
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, 2.1.1

2.1.1.1 1 Basic contracts

To begin with, you’re going to write a very small Daml template, which represents a self-issued,

non-transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll

make it more useful later - but it’s enough that it can show you the most basic concepts:

• Transactions

• Daml Modules and Files

• Templates

• Contracts

• Signatories

Hint: Remember that you can load all the code for this section into a folder 1_Token by running

daml new intro1 --template daml-intro-1

Daml ledger basics

Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we

mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a conceptwe’ll cover inmore detail through this introduction. Themost basic examples

are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the

point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can

only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are

collectively called a Daml model or contract model.

Daml files and modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with --:

-- A Daml file defines a module.

module Token where

2.1. Writing Daml 39

Daml SDK Documentation, 2.1.1

Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts

are instances of templates.

Listing 1: A simple template

template Token

with

owner : Party

where

signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line

is indented, and thus part of the template’s body.

Contracts containdata, referred to as the create argumentsor simply arguments. Thewithblockdefines

the data type of the create arguments by listing field names and their types. The single colon :

means “of type”, so you can read this as “template Token with a field owner of type Party”.

Token contracts have a single field owner of type Party. The fields declared in a template’s with

block are in scope in the rest of the template body, which is contained in a where block.

Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority

is required to create the contract or archive it – just like a real contract. Every contract must have at

least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.

This means that signatories of a contract are guaranteed to see the creation and archival of that

contract.

Next up

In 2 Testing templates using Daml Script, you’ll learn about how to try out the Token contract template

in Daml’s inbuilt Daml Script testing language.

2.1.1.2 2 Testing templates using Daml Script

In this section you will test the Tokenmodel from 1 Basic contracts using the Daml Script integration

in Daml Studio. You’ll learn about the basic features of :

• Allocating parties

• Submitting transactions

• Creating contracts

• Testing for failure

• Archiving contracts

• Viewing ledger and final ledger state

40 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2

by running daml new intro2 --template daml-intro-2

Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of

transactions, to check that your templates behave as you’d expect. You can also script some external

information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called “Alice”.

token_test_1 = script do

alice <- allocateParty "Alice"

submit alice do

createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a

block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above

script uses the function allocateParty to put a party called “Alice” in a variable alice. There are

two things of note there:

• Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the

Script is run in the context of a ledger. <- means “run the action and bind the result”. It

can only be run in that context because, depending on the ledger state the script is running

on, allocateParty will either give you back a party with the name you specified or append a

suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5 Adding constraints to a contract.

If that doesn’t quitemake sense yet, for the time being you can think of this arrow as extracting

the right-hand-side value from the ledger and storing it into the variable on the left.

• The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-

tions in Daml are called using the syntax fn arg1 arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,

you do this using the submit function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token

with owner = alice is a Commands, which translates to a list of commands that will be submitted

to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alice in 3 Data types.

You could write this as submit alice (createCmd Token with owner = alice), but just like

scripts, you can assemble commands using do blocks. A do block always takes the value of the last

statement within it so the syntax shown in the commands above gives the same result, whilst being

easier to read. Note however, that the commands submitted as part of a transaction are not allowed

to depend on each other.

2.1. Writing Daml 41

Daml SDK Documentation, 2.1.1

Running scripts

There are a few ways to run Daml Scripts:

• In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

• Using the command line daml test also against a test ledger, useful for continuous integra-

tion.

• Against a real ledger, take a look at the documentation for Daml Script for more information.

• Interactively using Daml REPL.

In Daml Studio, you should see the text “Script results” just above the line token_test_1 = do.

Click on it to display the outcome of the script.

This opens the script view in a separate column in VS Code. The default view is a tabular represen-

tation of the final state of the ledger:

What this display means:

• The big title reading Token_Test:Token is the identifier of the type of contract that’s listed

below. Token_Test is the module name, Token the template name.

• The first column shows the ID of the contract. This will be explained later.

• The second column shows the status of the contract, either active or archived.

• The next section of columns show the contract arguments, with one column per field. As ex-

pected, field owner is
Alice
. The single quotation marks indicate that Alice is a party.

• The remaining columns, labelled vertically, showwhich parties know about which contracts. In

this simple script, the sole party “Alice” knows about the contract she created.

To run the same test from the command line, save your module in a file Token_Test.daml and run

daml damlc -- test --files Token_Test.daml. If your file contains more than one script,

all of them will be run.

42 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other

words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-

able attempt to test that would be:

failing_test_1 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

submit alice do

createCmd Token with owner = bob

submit bob do

createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

The script failed, as expected, but scripts abort at the first failure. Thismeans that it only tested that

Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,

you can use the submitMustFail function:

token_test_2 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

submitMustFail alice do

createCmd Token with owner = bob

submitMustFail bob do

createCmd Token with owner = alice

submit alice do

createCmd Token with owner = alice

submit bob do

createCmd Token with owner = bob

submitMustFail never has an impact on the ledger so the resulting tabular script view just shows

the two Tokens resulting from the successful submit statements. Note the new column for Bob as

well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1. Writing Daml 43

Daml SDK Documentation, 2.1.1

Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.

Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a, where a is a type parameter representing the

type of contract that the ID refers to. For example, a reference to a Token would be a ContractId

Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,

you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.

How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token_test_3 = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

alice_token <- submit alice do

createCmd Token with owner = alice

submitMustFail bob do

archiveCmd alice_token

submit alice do

archiveCmd alice_token

Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you

want to see the history of the ledger, e.g. to see how you got to that state, tick the “Show archived”

box at the top of the ledger view:

You can see that therewas aToken contract, which is nowarchived, indicated both by the “archived”

value in the status column as well as by a strikethrough.

Click on the adjacent “Show transaction view” button to see the entire transaction graph:

44 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1. Writing Daml 45

Daml SDK Documentation, 2.1.1

In the Daml Studio script runner, committed transactions are numbered sequentially. The lines

starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These

correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.

Identifiers #X:Ymean commit X, sub-transaction Y. All transactions have this format in the

script runner. However, this format is a testing feature. In general, you should consider Transaction

and Contract IDs to be opaque.

The lines above and below create Token_Test:Token give additional information:

• consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit

2.

• referenced by #2:0 tells you that the contract was used in other transactions, and lists

their IDs.

• known to (since):
Alice
 (#0) tells you who knows about the contract. The fact that

Alice
 appears in the list is equivalent to a x in the tabular view. The (#0) gives you the

additional information that Alice learned about the contract in commit #0.

• Everything following with shows the create arguments.

Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each

party and archiving one token for each party, leaving one token of each type in the final ledger

view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the

submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing

submit.

Next up

In 3 Data types you will learn about Daml’s type system, and how you can think of templates as tables

and contracts as database rows.

2.1.1.3 3 Data types

In 1 Basic contracts, you learnt about contract templates, which specify the types of contracts that can

be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using Daml Script, you learnt about the script view in Daml Studio, which displays

the current ledger state. It shows one table per template, with one row per contract of that type and

one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates

specify a data schema for the ledger:

46 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

• each template corresponds to a table

• each field in the with block of a template corresponds to a column in that table

• each contract of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn

about:

• Daml’s built-in and native data types

• Record types

• Derivation of standard properties

• Variants

• Manipulating immutable data

• Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual

parties can write, read and delete complex data.

Hint: Remember that you can load all the code for this section into a folder calledintro3by running

daml new intro3 --template daml-intro-3

Native types

You have already encountered a few native Daml types: Party in 1 Basic contracts, and Text and

ContractId in 2 Testing templates using Daml Script. Here are those native types and more:

• Party Stores the identity of an entity that is able to act on the ledger, in the sense that they

can sign contracts and submit transactions. In general, Party is opaque.

• Text Stores a unicode character string like "Alice".

• ContractId a Stores a reference to a contract of type a.

• Int Stores signed 64-bit integers. For example, -123.

• Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.

For example, 0.0000000001 or -9999999999999999999999999999.9999999999.

• Bool Stores True or False.

• Date Stores a date.

• Time Stores absolute UTC time.

• RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests

the result.

import Daml.Script

import DA.Time

import DA.Date

native_test = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

let

my_int = -123

my_dec = 0.001 : Decimal

my_text = "Alice"

my_bool = False

(continues on next page)

2.1. Writing Daml 47

Daml SDK Documentation, 2.1.1

(continued from previous page)

my_date = date 2020 Jan 01

my_time = time my_date 00 00 00

my_rel_time = hours 24

assert (alice /= bob)

assert (-my_int == 123)

assert (1000.0 * my_dec == 1.0)

assert (my_text == "Alice")

assert (not my_bool)

assert (addDays my_date 1 == date 2020 Jan 02)

assert (addRelTime my_time my_rel_time == time (addDays my_date 1) 00 00 00)

Despite its simplicity, there are quite a few things to note in this script:

• The import statements at the top import two packages from the Daml Standard Library, which

contain all the date and time related functions we use here as well as the functions used in

Daml Scripts. More on packages, imports and the standard library later.

• Most of the variables are declared inside a let block.

That’s because the script do block expects script actions like submit or Party. An integer

like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.

You can think of the let as turning variable declaration into an action.

• Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so

if you declare my_int = 123, it can infer that my_int is also an Int. This means you don’t

have to write the type annotation my_int : Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type

annotation. This is the case for0.001which could be anyNumeric n. Herewe specify0.001 :

Decimalwhich is a synonym for Numeric 10. You can always choose to add type annotations

to aid readability.

• The assert function is an action that takes a boolean value and succeeds with True and fails

with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a

relational database. Below, Token is extended into a simple CashBalance, administered by a party

in the role of an accountant.

template CashBalance

with

accountant : Party

currency : Text

amount : Decimal

owner : Party

account_number : Text

bank : Party

bank_address : Text

bank_telephone : Text

where

signatory accountant

cash_balance_test = script do

accountant <- allocateParty "Bob"

alice <- allocateParty "Alice"

bob <- allocateParty "Bank of Bob"

(continues on next page)

48 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

submit accountant do

createCmd CashBalance with

accountant

currency = "USD"

amount = 100.0

owner = alice

account_number = "ABC123"

bank = bob

bank_address = "High Street"

bank_telephone = "012 3456 789"

Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give

that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these

native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text

key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you

wanted to express a coordinate in three dimensions, you could group three Decimal values using a

three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple

import Daml.Script

tuple_test = script do

let

my_key_value = ("Key", 1)

my_coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)

assert (fst my_key_value == "Key")

assert (snd my_key_value == 1)

assert (my_key_value._1 == "Key")

assert (my_key_value._2 == 1)

assert (my_coordinate == (fst3 my_coordinate, snd3 my_coordinate, thd3 my_

↪→coordinate))

assert (my_coordinate == (my_coordinate._1, my_coordinate._2, my_coordinate._3))

You can access the data in the tuples using:

• functions fst, snd, fst3, snd3, thd3

• a dot-syntax with field names _1, _2, _3, etc.

Daml supports tuples with up to 20 elements, but accessor functions like fst are only included for

2- and 3-tuples.

2.1. Writing Daml 49

Daml SDK Documentation, 2.1.1

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a

list of integers [Int] or a list of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the

compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-

tions.

import DA.List

import Daml.Script

list_test = script do

let

empty : [Int] = []

one = [1]

two = [2]

many = [3, 4, 5]

-- CheadC gets the first element of a list

assert (head one == 1)

assert (head many == 3)

-- CtailC gets the remainder after head

assert (tail one == empty)

assert (tail many == [4, 5])

-- C++C concatenates lists

assert (one ++ two ++ many == [1, 2, 3, 4, 5])

assert (empty ++ many ++ empty == many)

-- C::C adds an element to the beginning of a list.

assert (1 :: 2 :: 3 :: 4 :: 5 :: empty == 1 :: 2 :: many)

Note the type annotation on empty : [Int] = []. It’s necessary because [] is ambiguous. It

could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:

data T = C with, where T is the type name and C is the data constructor. In practice, it’s a good

idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

-- Fields of same type can be declared in one line

data Coordinate = Coordinate with

x, y, z : Decimal

(continues on next page)

50 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- Custom data types can also have variables

data KeyValue k v = KeyValue with

my_key : k

my_val : v

data Nested = Nested with

my_coord : Coordinate

my_record : MyRecord

my_kv : KeyValue Text Int

record_test = script do

let

my_record = MyRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_coord = Coordinate with

x = 1.0

y = 2.0

z = 3.0

-- Cmy_text_intC has type CKeyValue Text IntC

my_text_int = KeyValue with

my_key = "Key"

my_val = 1

-- Cmy_int_decimalC has type CKeyValue Int DecimalC

my_int_decimal = KeyValue with

my_key = 2

my_val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick them up

-- implicitly, writing just Cmy_coordC instead of Cmy_coord = my_coordC.

my_nested = Nested with

my_coord

my_record

my_kv = my_text_int

-- Fields can be accessed with dot syntax

assert (my_coord.x == 1.0)

assert (my_text_int.my_key == "Key")

assert (my_nested.my_record.my_dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.

That’s no accident because a template is really just a special record. When you write template

Token with, one of the things that happens in the background is that this becomes a data Token

= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert

(my_record == my_record) in the script, you may be surprised to get an error message No in-

stance for (Eq MyRecord) arising from a use of ‘==’. Equality in Daml is always

value equality and we haven’t written a function to check value equality for MyRecord values. But

don’t worry, you don’t have to implement this rather obvious function yourself. The compiler is smart

enough to do it for you, if you use deriving (Eq):

2.1. Writing Daml 51

Daml SDK Documentation, 2.1.1

data EqRecord = EqRecord with

my_txt : Text

my_int : Int

my_dec : Decimal

my_list : [Text]

deriving (Eq)

data MyContainer a = MyContainer with

contents : a

deriving (Eq)

eq_test = script do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

my_container = MyContainer with

contents = eq_record

other_container = MyContainer with

contents = eq_record

assert(my_container.contents == eq_record)

assert(my_container == other_container)

Eq is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-

guages: it is the mechanism by which you can define a set of functions (for example, == and /=

in the case of Eq) to work on multiple types, with a specific implementation for each type they can

apply to.

There are some other typeclasses that the compiler can derive automatically. Most prominently,

Show to get access to the functionshow (equivalent totoString inmany languages) andOrd, which

gives access to comparison operators <, >, <=, >=.

It’s a good idea to alwaysderiveEqandShowusingderiving (Eq, Show). The record types created

using template T with do this automatically, and the native types have appropriate typeclass

instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eq and Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

owner : Party

number : Text

bank : Bank

deriving (Eq, Show)

data Cash = Cash with

currency : Text

(continues on next page)

52 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : Account

where

signatory accountant

cash_balance_test = script do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

owner

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

cash

account

pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are

expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,

but you can’t just leave bank empty. Daml doesn’t have an equivalent to null. Variants can express

that cash can either be in hand or at a bank.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data Account = Account with

number : Text

bank : Bank

deriving (Eq, Show)

(continues on next page)

2.1. Writing Daml 53

Daml SDK Documentation, 2.1.1

(continued from previous page)

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

data Location

= InHand

| InAccount Account

deriving (Eq, Show)

template CashBalance

with

accountant : Party

owner : Party

cash : Cash

location : Location

where

signatory accountant

cash_balance_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

account = Account with

bank

number = "ABC123"

cash = Cash with

currency = "USD"

amount = 100.0

submit accountant do

createCmd CashBalance with

accountant

owner

cash

location = InHand

submit accountant do

createCmd CashBalance with

accountant

owner

cash

location = InAccount account

The way to read the declaration of Location is “A Location either has value InHand OR has a value

InAccount a where a is of type Account”. This is quite an explicit way to say that there may or may

not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the

closest Daml has to a null value:

54 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data Optional a

= None

| Some a

deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek

= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you

can no longer access the account number of a Location directly, because if it is InHand, theremay

be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all

cases:

{-

-- Commented out as CEitherC is defined in the standard library.

data Either a b

= Left a

| Right b

-}

variant_access_test = script do

let

l : Either Int Text = Left 1

r : Either Int Text = Right "r"

-- If we know that ClC is a CLeftC, we can error on the CRightC case.

l_value = case l of

Left i -> i

Right i -> error "Expecting Left"

-- Comment out at your own peril

{-

r_value = case r of

Left i -> i

Right i -> error "Expecting Left"

-}

-- If we are unsure, we can return an COptionalC in both cases

ol_value = case l of

Left i -> Some i

Right i -> None

or_value = case r of

Left i -> Some i

Right i -> None

-- If we don
t care about values or even constructors, we can use wildcards

(continues on next page)

2.1. Writing Daml 55

Daml SDK Documentation, 2.1.1

(continued from previous page)

l_value2 = case l of

Left i -> i

Right _ -> error "Expecting Left"

l_value3 = case l of

Left i -> i

_ -> error "Expecting Left"

day = Sunday

weekend = case day of

Saturday -> True

Sunday -> True

_ -> False

assert (l_value == 1)

assert (l_value2 == 1)

assert (l_value3 == 1)

assert (ol_value == Some 1)

assert (or_value == None)

assert weekend

Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to

the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than

changing values, you create new values based on old ones with some changes applied:

manipulation_demo = script do

let

eq_record = EqRecord with

my_txt = "Text"

my_int = 2

my_dec = 2.5

my_list = ["One", "Two", "Three"]

-- A verbose way to change Ceq_recordC

changed_record = EqRecord with

my_txt = eq_record.my_txt

my_int = 3

my_dec = eq_record.my_dec

my_list = eq_record.my_list

-- A better way

better_changed_record = eq_record with

my_int = 3

record_with_changed_list = eq_record with

my_list = "Zero" :: eq_record.my_list

assert (eq_record.my_int == 2)

assert (changed_record == better_changed_record)

(continues on next page)

56 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- The list on Ceq_recordC can
t be changed.

assert (eq_record.my_list == ["One", "Two", "Three"])

-- The list on Crecord_with_changed_listC is a new one.

assert (record_with_changed_list.my_list == ["Zero", "One", "Two", "Three"])

changed_record and better_changed_record are each a copy of eq_record with the field

my_int changed. better_changed_record shows the recommended way to change fields on a

record. The syntax is almost the same as for a new record, but the record name is replaced with the

old value: eq_record with instead of EqRecord with. The with block no longer needs to give

values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq_record never changes. The expression "Zero" :: eq_record.

my_list doesn’t change the list in-place, but creates a new list, which is eq_record.my_list

with an extra element in the beginning.

Contract keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most

database schemas have more than one table, Daml contract models often have multiple templates

that reference each other. For example, youmaynotwant to store your bankandaccount information

on each individual cash balance contract, but instead store those on separate contracts.

Youhave alreadymet the typeContractId a, which references a contract of typea. The belowshows

a contract model where Account is split out into a separate template and referenced by Contrac-

tId, but it also highlights a big problem with that kind of reference: just like data, contracts are

immutable. They can only be created and archived, so if you want to change the data on a contract,

you enduparchiving the original contract and creating a newonewith the changeddata. Thatmakes

contract IDs very unstable, and can cause stale references.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

(continues on next page)

2.1. Writing Daml 57

Daml SDK Documentation, 2.1.1

(continued from previous page)

account : ContractId Account

where

signatory accountant

id_ref_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

balanceCid <- submit accountant do

createCmd CashBalance with

accountant

cash

account = accountCid

-- Now the accountant updates the telephone number for the bank on the account

Some account <- queryContractId accountant accountCid

new_account <- submit accountant do

archiveCmd accountCid

createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure ()

-- The CaccountC field on the balance now refers to the archived

-- contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account

optAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active

contract using its contract ID. If there is noactive contractwith thegiven identifier visible to the given

party, queryContractId returns None. Here, we use a pattern match on Some which will abort the

script if queryContractId returns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part

of that transaction. To create new_account, the accountant archives the old account and creates a

new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the

primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

58 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

in the sense that only one contract of a given template and with a given key value can be active at a

time.

data Bank = Bank with

party : Party

address: Text

telephone : Text

deriving (Eq, Show)

data AccountKey = AccountKey with

accountant : Party

number : Text

bank_party : Party

deriving (Eq, Show)

template Account

with

accountant : Party

owner : Party

number : Text

bank : Bank

where

signatory accountant

key AccountKey with

accountant

number

bank_party = bank.party

: AccountKey

maintainer key.accountant

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template CashBalance

with

accountant : Party

cash : Cash

account : AccountKey

where

signatory accountant

id_ref_test = do

accountant <- allocateParty "Bob"

owner <- allocateParty "Alice"

bank_party <- allocateParty "Bank"

let

bank = Bank with

party = bank_party

address = "High Street"

telephone = "012 3456 789"

cash = Cash with

currency = "USD"

amount = 100.0

(continues on next page)

2.1. Writing Daml 59

Daml SDK Documentation, 2.1.1

(continued from previous page)

accountCid <- submit accountant do

createCmd Account with

accountant

owner

bank

number = "ABC123"

Some account <- queryContractId accountant accountCid

balanceCid <- submit accountant do

createCmd CashBalance with

accountant

cash

account = key account

-- Now the accountant updates the telephone number for the bank on the account

Some account <- queryContractId accountant accountCid

new_accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with

telephone = "098 7654 321"

pure cid

-- Thanks to contract keys, the current account contract is fetched

Some balance <- queryContractId accountant balanceCid

(cid, account) <- submit accountant do

createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.account)

assert (cid == new_accountCid)

-- Helper template to call CfetchByKeyC.

template Helper

with

p : Party

where

signatory p

choice FetchAccountByKey : (ContractId Account, Account)

with

accountKey : AccountKey

controller p

do fetchByKey @Account accountKey

Since Daml is designed to run on distributed systems, you have to assume that there is no global

entity that can guarantee uniqueness, which is why each key expression must come with a main-

tainer expression. maintainer takes one or several parties, all of which have to be signatories of

the contract and be part of the key. That way the index can be partitioned amongst sets of main-

tainers, and each set of maintainers can independently ensure the uniqueness constraint on their

piece of the index. The constraint that maintainers are part of the key is ensured by only having the

variable key in each maintainer expression.

Insteadof callingqueryContractId to get the contract arguments associatedwith agiven contract

identifier, we use fetchByKey @Account. fetchByKey @Account takes a value of type Accoun-

tKey and returns a tuple (ContractId Account, Account) if the lookup was successful or fails

the transaction otherwise. fetchByKey cannot be used directly in the list of commands sent to the

ledger. Therefore we create a Helper template with a FetchAccountByKey choice and call that via

createAndExerciseCmd. We will learn more about choices in the next section.

60 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Since a single type could be used as the key for multiple templates, you need to tell the compiler

what type of contract is being fetched by using the @Account notation.

Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use

keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other

parties the right to manipulate data in restricted ways.

2.1.1.4 4 Transforming data using choices

In the example in Contract keys the accountant party wanted to change some data on a contract. They

did so by archiving the contract and re-creating it with the updated data. That works because the

accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what

if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how

to delegate the right to exercise these choices to other parties.

Hint: Remember that you can load all the code for this section into a folder calledintro4by running

daml new intro4 --template daml-intro-4

Choices as methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the

telephone number, just like on the Account in Contract keys. Rather than requiring them tomanually

look up the contract, archive the old one and create a new one, you can provide them a convenience

method on Contact:

template Contact

with

owner : Party

party : Party

address : Text

telephone : Text

where

signatory owner

observer party

choice UpdateTelephone

: ContractId Contact

with

newTelephone : Text

controller owner

(continues on next page)

2.1. Writing Daml 61

Daml SDK Documentation, 2.1.1

(continued from previous page)

do

create this with

telephone = newTelephone

The abovedefines a choice calledUpdateTelephone. Choices are part of a contract template. They’re

permissioned functions that result in an Update. Using choices, authority can be passed around,

allowing the construction of complex transactions.

Let’s unpack the code snippet above:

• The first line, choice UpdateTelephone indicates a choice definition, UpdateTelephone is

the name of the choice. It starts a new block in which that choice is defined.

• : ContractId Contact is the return type of the choice.

This particular choice archives the current Contact, and creates a new one. What it returns is

a reference to the new contract, in the form of a ContractId Contact

• The following with block is that of a record. Just like with templates, in the background, a new

record type is declared: data UpdateTelephone = UpdateTelephone with

• The line controller owner says that this choice is controlled by owner, meaning owner is

the only party that is allowed to exercise them.

• The do starts a block defining the action the choice should perform when exercised. In this

case a new Contact is created.

• The new Contact is created using this with. this is a special value available within the

where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because

choices are consuming by default. Thatmeans when the above choice is exercised on a contract, that

contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas cre-

ateCmd builds up a list of commands to be sent to the ledger, create builds up a more flexible

Update that is executed directly by the ledger. You might have noticed that create returns an Up-

date (ContractId Contact), not a ContractId Contact. As a do block always returns the

value of the last statement within it, the whole do block returns an Update, but the return type on

the choice is just a ContractId Contact. This is a convenience. Choices always return an Update

so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice_test = do

owner <- allocateParty "Alice"

party <- allocateParty "Bob"

contactCid <- submit owner do

createCmd Contact with

owner

party

address = "1 Bobstreet"

telephone = "012 345 6789"

-- Bob can
t change his own telephone number as Alice controls

-- that choice.

submitMustFail party do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

(continues on next page)

62 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

newContactCid <- submit owner do

exerciseCmd contactCid UpdateTelephone with

newTelephone = "098 7654 321"

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of

type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice

parameters using the with syntax you are already familiar with.

exerciseCmd returns a Commands rwhere r is the return type specified on the choice, allowing the

new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd

and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always

used on the client side to build up the list of commands on the ledger. The versions without the

suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-

vious section. This allows you to create a new contract with the given arguments and immediately

exercise a choice on it. For a consuming choice, this archives the contract so the contract is created

and archived within the same transaction.

Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party

field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,

nor change them in any way. It would be reasonable for the party for which a Contact is stored to

be able to update their own address and telephone number. In other words, the owner of a Contact

should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the

script:

choice UpdateAddress

: ContractId Contact

with

newAddress : Text

controller party

do

create this with

address = newAddress

newContactCid <- submit party do

exerciseCmd newContactCid UpdateAddress with

newAddress = "1-10 Bobstreet"

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. This is because

2.1. Writing Daml 63

Daml SDK Documentation, 2.1.1

party is specified as an observer in the template, and in this case Bob is the party. More on

observers later, but in short, they get to see any changes to the contract.

Choices in the Ledger Model

In 1 Basic contracts you learned about the high-level structure of a Daml ledger. With choices and the

exercise function, you have the next important ingredient to understand the structure of the ledger

and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch

and key assertion.

• A create action creates a new contract with the given arguments and sets its status to active.

• A fetch action checks the existence and activeness of a contract.

• An exercise action exercises a choice on a contract resulting in a transaction (list of

sub-actions) called the consequences. Exercises come in two kinds called consuming and non-

consuming. consuming is the default kind and changes the contract’s status from active to

archived.

• A key assertion records the assertion that the given contract key (see Contract keys) is not

assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its

consequences. Every consequence may have further consequences. As fetch, create and key

assertion actions have no consequences, they are always leaf nodes. You can see the actions and

their consequences in the transaction view of the above script:

Transactions:

TX #0 1970-01-01T00:00:00Z (Contact:43:17)

#0:0

│ consumed by: #2:0

│ referenced by #2:0

│ known to (since):
Alice
 (#0),
Bob
 (#0)

└─> create Contact:Contact

with

owner =
Alice
; party =
Bob
; address = "1 Bobstreet"; telephone = "012␣

↪→345 6789"

TX #1 1970-01-01T00:00:00Z

mustFailAt
Bob
 (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)

#2:0

│ known to (since):
Alice
 (#2),
Bob
 (#2)

└─>
Alice
 exercises UpdateTelephone on #0:0 (Contact:Contact)

with

newTelephone = "098 7654 321"

children:

#2:1

│ consumed by: #4:0

│ referenced by #3:0, #4:0

│ known to (since):
Alice
 (#2),
Bob
 (#2)

└─> create Contact:Contact

with

owner =
Alice
; party =
Bob
; address = "1 Bobstreet"; telephone =

↪→"098 7654 321"

(continues on next page)

64 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

TX #3 1970-01-01T00:00:00Z (Contact:60:3)

#3:0

└─> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)

#4:0

│ known to (since):
Alice
 (#4),
Bob
 (#4)

└─>
Bob
 exercises UpdateAddress on #2:1 (Contact:Contact)

with

newAddress = "1-10 Bobstreet"

children:

#4:1

│ referenced by #5:0

│ known to (since):
Alice
 (#4),
Bob
 (#4)

└─> create Contact:Contact

with

owner =
Alice
;

party =
Bob
;

address = "1-10 Bobstreet";

telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)

#5:0

└─> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the foursubmit statements in the script. Within each com-

mit, we see that it’s actually actions that have IDs of the form #commit_number:action_number.

Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions

of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading

children:, making the tree structure apparent.

The Archive choice

Youmay have noticed that there is no archive action. That’s because archive cid is just shorthand

for exercise cid Archive, where Archive is a choice implicitly added to every template, with

the signatories as controllers.

2.1. Writing Daml 65

Daml SDK Documentation, 2.1.1

A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash IOUs (I owe

you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the

location of the physical cash, but merely with liabilities:

-- Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

-- SPDX-License-Identifier: Apache-2.0

module SimpleIou where

import Daml.Script

data Cash = Cash with

currency : Text

amount : Decimal

deriving (Eq, Show)

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

observer owner

choice Transfer

: ContractId SimpleIou

with

newOwner : Party

controller owner

do

create this with owner = newOwner

test_iou = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

charlie <- allocateParty "Charlie"

dora <- allocateParty "Dora"

-- Dora issues an Iou for $100 to Alice.

iou <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- Alice transfers it to Bob.

iou2 <- submit alice do

exerciseCmd iou Transfer with

newOwner = bob

(continues on next page)

66 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- Bob transfers it to Charlie.

submit bob do

exerciseCmd iou2 Transfer with

newOwner = charlie

The abovemodel is fine as long as everyone trusts Dora. Dora could revoke the SimpleIou at any point

by archiving it. However, the provenance of all transactions would be on the ledger so the owner

could prove that Dora was dishonest and cancelled her debt.

Next up

You can now store and transform data on the ledger, even giving other parties specific write access

through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In

that context, you will also learn about time on Daml ledgers, do blocks and <- notation within those.

2.1.1.5 5 Adding constraints to a contract

You will often want to constrain the data stored or the allowed data transformations in your contract

models. In this section, you will learn about the two main mechanisms provided in Daml:

• The ensure keyword.

• The assert, abort and error keywords.

Tomake sense of the latter, you’ll also learnmore about theUpdate andScript types anddo blocks,

which will be good preparation for 7 Composing choices, where you will use do blocks to compose

choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Remember that you can load all the code for this section into a folder calledintro5by running

daml new intro5 --template daml-intro-5

Template preconditions

The first kind of restriction you may want to put on the contract model are called template

pre-conditions. These are simply restrictions on the data that can be stored on a contract from that

template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to

store positive amounts. You can enforce this using the ensure keyword:

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

(continues on next page)

2.1. Writing Daml 67

Daml SDK Documentation, 2.1.1

(continued from previous page)

where

signatory issuer

observer owner

ensure cash.amount > 0.0

Theensure keyword takes a single expression of type Bool. If youwant to addmore restrictions, use

logical operators &&, || and not to build up expressions. The below shows the additional restriction

that currencies are three capital letters:

&& T.length cash.currency == 3

&& T.isUpper cash.currency

Hint: The T here stands for the DA.Text standard library which has been imported using import

DA.Text as T.

test_restrictions = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

dora <- allocateParty "Dora"

-- Dora can
t issue negative Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = -100.0

currency = "USD"

-- Or even zero Ious.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 0.0

currency = "USD"

-- Nor positive Ious with invalid currencies.

submitMustFail dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "Swiss Francs"

-- But positive Ious still work, of course.

iou <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

(continues on next page)

68 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

cash = Cash with

amount = 100.0

currency = "USD"

Assertions

A second common kind of restriction is one on data transformations.

For example, the simple Iou in A simple cash model allowed the no-op where the owner transfers to

themselves. You can prevent that using an assert statement, which you have already encountered

in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsg,

which takes a custom error message:

choice Transfer

: ContractId SimpleIou

with

newOwner : Party

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create this with owner = newOwner

-- Alice can
t transfer to herself...

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = alice

-- ... but can transfer to Bob.

iou2 <- submit alice do

exerciseCmd iou Transfer with

newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-

ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This

assumes that actual cash changes hands off-ledger.)

choice Redeem

: ()

controller owner

do

now <- getTime

let

today = toDateUTC now

dow = dayOfWeek today

timeofday = now CsubTimeC time today 0 0 0

hrs = convertRelTimeToMicroseconds timeofday / 3600000000

assertMsg

("Cannot redeem outside business hours. Current time: " <> show␣

↪→timeofday)

(hrs >= 8 && hrs <= 18)

case dow of

(continues on next page)

2.1. Writing Daml 69

Daml SDK Documentation, 2.1.1

(continued from previous page)

Saturday -> abort "Cannot redeem on a Saturday."

Sunday -> abort "Cannot redeem on a Sunday."

_ -> return ()

-- June 1st 2019 is a Saturday.

setTime (time (date 2019 Jun 1) 0 0 0)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Not even at mid-day.

passTime (hours 12)

-- Bob cannot redeem on a Saturday.

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Bob also cannot redeem at 6am on a Monday.

passTime (hours 42)

submitMustFail bob do

exerciseCmd iou2 Redeem

-- Bob can redeem at 8am on Monday.

passTime (hours 2)

submit bob do

exerciseCmd iou2 Redeem

There are quite a fewnew time-related functions from theDA.Time andDA.Date libraries here. Their

names should be reasonably descriptive so how theyworkwon’t be covered here, but given that Daml

assumes it is run in a distributed setting, we will still discuss time in Daml.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the

<- operator. do blocks and <- deserve a proper explanation at this point.

Time on Daml ledgers

Each transaction on a Daml ledger has two timestamps called the ledger time (LT) and the record time

(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. The

participant has to take a good guess at what the record time will be. If it’s too far off, the transaction

will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart

into day of week and hour of day using standard library functions from DA.Date and DA.Time. The

hour of the day is checked to be in the range from 8 to 18.

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Alice

submits a transaction to redeeman Iou. One second later, the transaction is assigned a LT of 17:59:56,

but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even though it was

committed after business hours, it would be a valid transaction and be committed successfully as

getTimewill return 17:59:56 so hrs == 17. Since the RT is 18:00:06, LT - RT <= 10 seconds and

the transaction won’t be rejected.

70 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Time therefore has to be considered slightly fuzzy in Daml, with the fuzziness depending on the skew

parameter.

For details, see Background concepts - time.

Time in test scripts

For tests, you can set time using the following functions:

• setTime, which sets the ledger time to the given time.

• passTime, which takes a RelTime (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed Daml ledger, there are no guarantees that ledger time or record time are strictly

increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-

tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or

equal to that of TX1:

iou3 <- submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days (-3))

submitMustFail alice do

exerciseCmd iou3 Redeem

Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Script and Update.

Both of these are examples of an Action, also called a Monad in functional programming. You can

construct Actions conveniently using do notation.

UnderstandingActionsanddoblocks is therefore crucial to beingable to construct correct contract

models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressions inDamlarepure in the sense that theyhavenoside-effects: theyneither readnormodify

any external state. If you know the value of all variables in scope and write an expression, you can

work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take

getTime, which is an Action. Here’s the example we used earlier:

now <- getTime

2.1. Writing Daml 71

Daml SDK Documentation, 2.1.1

You cannot work out the value of now based on any variable in scope. To put it another way, there is

no expression expr that you could put on the right hand side of now = expr. To get the ledger time,

you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you

come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write

account = fetch cid. To do so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such “impure” expressions. Action a is a type class with a single

parameter a, and Update and Script are instances of Action. A value of such a type m a where m

is an instance ofAction canbe interpreted as “a recipe for anaction of typem, which, when executed,

returns a value a”.

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in

the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have

an effect – you change the state of the kitchen – and a return value – the thing you leave the kitchen

with.

• An Update a is “a recipe to update a Daml ledger, which, when committed, has the effect of

changing the ledger, and returns a value of type a”. An update to a Daml ledger is a transaction

so equivalently, an Update a is “a recipe to construct a transaction, which, when executed in

the context of a ledger, returns a value of type a”.

• A Script a is “a recipe for a test, which, when performed against a ledger, has the effect of

changing the ledger in ways analogous to those available via the API, and returns a value of

type a”.

Expressions like getTime, allocateParty party, passTime time, submit party commands,

create contract and exercise choice should make more sense in that light. For example:

• getTime : Update Time is the recipe for an empty transaction that also happens to return

a value of type Time.

• passTime (days 10) : Script () is a recipe for a transaction that doesn’t submit any

transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also

called Unit and can be thought of as a zero-tuple.

• create iou : Update (ContractId Iou), where iou : Iou is a recipe for a transaction

consisting of a single create action, and returns the contract id of the created contract if

successful.

• submit alice (createCmd iou) : Script (ContractId Iou) is a recipe for a script in

which Alice sends the command createCmd iou to the ledger which produces a transaction

and a return value of type ContractId Iou and returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent

commands sent to the ledger. You can still use do blocks but if you have more than one command

in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.

In addition to that, the last statement in such a do blockmust be of the form return expr or pure

expr. Applicative is a more restricted version of Action that enforces that there are no depen-

dencies between commands. If you do have dependencies between commands, you can always wrap

it in a choice in a helper template and call that via createAndExerciseCmd just like we did to call

fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you canmake

multiple calls to submit.

72 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{-# LANGUAGE ApplicativeDo #-}

module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just

another action. Specifically:

• A transaction is a list of actions. So a transaction followed by another transaction is again a

transaction.

• A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So

a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,

using the results of earlier actions in later ones.

sub_script1 (alice, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

sub_script2 = do

passTime (days 1)

passTime (days (-1))

return 42

sub_script3 (bob, dora) = do

submit dora do

createCmd SimpleIou with

issuer = dora

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

main_: Script () = do

dora <- allocateParty "Dora"

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

iou1 <- sub_script1 (alice, dora)

sub_script2

iou2 <- sub_script3 (bob, dora)

submit dora do

archiveCmd iou1

archiveCmd iou2

pure ()

Above, we see do blocks in action for both Script and Update.

2.1. Writing Daml 73

Daml SDK Documentation, 2.1.1

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return x is a no-op action

which returns value x so return 42 : Update Int. Since do blocks always return the value of

their last action, sub_script2 : Script Int.

Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can

fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on

the ledger.

Each has a special action abort txt that represents failure, and that takes on type Update () or

Script () depending on context .

Transactions succeed or fail atomically as a whole. Scripts on the other hand do not fail atomically:

while each submit is atomic, if a submit succeeded and the script fails later, the effects of that

submit will still be applied to the ledger.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.

It has type Update () and is either an abort or return depending on the day of week. So during

the week, it’s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of

transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails

the entire transaction.

A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more

generally, by creating a new type that is also an action. CoinGame a is an Action a in which a Coin

is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing

the random number generator’s state. Based on the Heads and Tails results, a return value of type

a is calculated.

data Face = Heads | Tails

deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with

play : Coin -> (Coin, a)

flipCoin : CoinGame Face

getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.

More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get

your hands on a Coin in a Script context and an action flipCoin which represents the simplest

possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write

down a script or recipe for a game:

74 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

coin_test = do

-- The coin is pseudo-random on LT so change the parameter to change the game.

setTime (time (date 2019 Jun 1) 0 0 0)

passTime (seconds 2)

coin <- getCoin

let

game = do

f1r <- flipCoin

f2r <- flipCoin

f3r <- flipCoin

if all (== Heads) [f1r, f2r, f3r]

then return "Win"

else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return

Heads, the result is "Win", or else "Loss".

In a Script context you can get a Coin using the getCoin action, which uses the LT to calculate a

seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-

ing glass and understand in-depth what’s going on, you can look at the source file to see how the

CoinGame action is implemented, though be warned that the implementation uses a lot of Daml

features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general

course on functional programming, and Haskell in particular. See The Haskell Connection for some

suggestions.

Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-

tions only have an effectwhen they are performed, so the following script succeeds or fails depending

on the value of abortScript:

nonPerformedAbort = do

let abortScript = False

let failingAction : Script () = abort "Foo"

let successfulAction : Script () = return ()

if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a

function pow that takes an integer to the power of another positive integer. How do we handle that

the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int

optPow base exponent

| exponent == 0 = Some 1

(continues on next page)

2.1. Writing Daml 75

Daml SDK Documentation, 2.1.1

(continued from previous page)

| exponent > 0 =

let Some result = optPow base (exponent - 1)

in Some (base * result)

| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always

handle it as we need to extract the result from an Optional. We can see the impact on convenience

in the definition of the above function. In cases, like division by zero or the above function, it can

therefore be preferable to fail catastrophically instead:

errPow : Int -> Int -> Int

errPow base exponent

| exponent == 0 = 1

| exponent > 0 = base * errPow base (exponent - 1)

| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following script will fail,

because failingComputation is evaluated:

nonPerformedError = script do

let causeError = False

let failingComputation = errPow 1 (-1)

let successfulComputation = errPow 1 1

return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and

where explicit partiality would unduly impact usability of the function.

Next up

You can now specify a precise data and data-transformation model for Daml ledgers. In 6 Parties and

authority, you will learn how to properly involve multiple parties in contracts, how authority works in

Daml, and how to build contract models with strong guarantees in contexts with mutually distrust-

ing entities.

2.1.1.6 6 Parties and authority

Daml is designed for distributed applications involving mutually distrusting parties. In a

well-constructed contract model, all parties have strong guarantees that nobody cheats or circum-

vents the rules laid out by templates and choices.

In this section you will learn about Daml’s authorization rules and how to develop contract models

that give all parties the required guarantees. In particular, you’ll learn how to:

• Pass authority from one contract to another

• Write advanced choices

• Reason through Daml’s Authorization model

Hint: Remember that you can load all the code for this section into a folder calledintro6by running

daml new intro6 --template daml-intro-6

76 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract

has one major problem: The contract is only signed by the issuer. The signatories are the parties

with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange

for some goods, she could just archive it after receiving the goods. Bob would have a record of such

actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer

simple_iou_test = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice transfers the payment as a SimpleIou.

iou <- submit alice do

createCmd SimpleIou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

passTime (days 1)

-- Bob delivers the goods.

passTime (minutes 10)

-- Alice just deletes the payment.

submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are ac-

tually followed, they either need to be a signatory themselves, or trust one of the signatories to not

agree to transactions that archive and re-create contracts in unexpected ways. To make the Sim-

pleIou safe for Bob, you need to add him as a signatory.

template Iou

with

issuer : Party

owner : Party

cash : Cash

where

signatory issuer, owner

choice Transfer

: ContractId Iou

with

newOwner : Party

(continues on next page)

2.1. Writing Daml 77

Daml SDK Documentation, 2.1.1

(continued from previous page)

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create this with

owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Iou to Bob. To get an

Iou with Bob’s signature as owner onto the ledger, his authority is needed.

iou_test = do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

-- Alice and Bob enter into a trade.

-- Alice wants to give Bob an Iou, but she can
t without Bob
s authority.

submitMustFail alice do

createCmd Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

-- She can issue herself an Iou.

iou <- submit alice do

createCmd Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- However, she can
t transfer it to Bob.

submitMustFail alice do

exerciseCmd iou Transfer with

newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above

Iou can contain negative values so Bob should be glad that Alice cannot put his signature on any

Iou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above

Iou, before diving into the authorization model in full.

Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an Iou to

Bob, givinghim the choice to accept. You candosoby introducingaproposal contractIouProposal:

template IouProposal

with

iou : Iou

where

(continues on next page)

78 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

signatory iou.issuer

observer iou.owner

choice IouProposal_Accept

: ContractId Iou

controller iou.owner

do

create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do

createCmd IouProposal with

iou = Iou with

issuer = alice

owner = bob

cash = Cash with

amount = 100.0

currency = "USD"

submit bob do

exerciseCmd iouProposal IouProposal_Accept

The IouProposal contract carries the authority of iou.issuer by virtue of thembeing a signatory.

By exercising the IouProposal_Accept choice, Bob adds his authority to that of Alice, which is why

an Iou with both signatories can be created in the context of that choice.

The choice is called IouProposal_Accept, not Accept, because propose-accept patterns are very

common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure

uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,

by creating a TransferProposal:

template IouTransferProposal

with

iou : Iou

newOwner : Party

where

signatory (signatory iou)

observer (observer iou), newOwner

choice IouTransferProposal_Cancel

: ContractId Iou

controller iou.owner

do

create iou

choice IouTransferProposal_Reject

: ContractId Iou

controller newOwner

do

create iou

(continues on next page)

2.1. Writing Daml 79

Daml SDK Documentation, 2.1.1

(continued from previous page)

choice IouTransferProposal_Accept

: ContractId Iou

controller newOwner

do

create iou with

owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the

signatories from another contract. Instead of writing signatory (signatory iou), you could

write signatory iou.issuer, iou.owner.

The IouProposal had a single signatory so it could be cancelled easily by archiving it. Without a

Cancel choice, thenewOwner could abuse an open TransferProposal as an option. The tripleAccept,

Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a

transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a

IouTransferProposal is created instead of an Iou:

choice ProposeTransfer

: ContractId IouTransferProposal

with

newOwner : Party

controller owner

do

assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create IouTransferProposal with

iou = this

newOwner

Bob can now transfer his Iou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-- Alice issues an Iou using a transfer proposal.

tpab <- submit alice do

createCmd IouTransferProposal with

newOwner = bob

iou = Iou with

issuer = alice

owner = alice

cash = Cash with

amount = 100.0

currency = "USD"

-- Bob accepts the transfer from Alice.

iou2 <- submit bob do

exerciseCmd tpab IouTransferProposal_Accept

-- Bob offers Charlie a transfer.

tpbc <- submit bob do

exerciseCmd iou2 ProposeTransfer with

newOwner = charlie

-- Charlie accepts the transfer from Bob.

(continues on next page)

80 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

submit charlie do

exerciseCmd tpbc IouTransferProposal_Accept

Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this

succinctly in Daml through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script above. In

7 Composing choices, you will see how to compose the ProposeTransfer and IouTransferPro-

posal_Accept choices into a single new choice, but for now, here is a different way. You can give

them the joint right to transfer an IOU:

choice Mutual_Transfer

: ContractId Iou

with

newOwner : Party

controller owner, newOwner

do

create this with

owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner

variable is part of the choice arguments, not the Iou.

This is also the first time we have shown a choice with more than one controller. If multiple con-

trollers are specified, the authority of all the controllers is needed. Here, neitherowner, nornewOwner

can execute a transfer unilaterally, hence the name Mutual_Transfer.

template IouSender

with

sender : Party

receiver : Party

where

signatory receiver

observer sender

nonconsuming choice Send_Iou

: ContractId Iou

with

iouCid : ContractId Iou

controller sender

do

iou <- fetch iouCid

assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)

exercise iouCid Mutual_Transfer with

newOwner = receiver

The above IouSender contract now gives one party, the sender the right to send Iou contracts with

positive amounts to a receiver. The nonconsuming keyword on the choice Send_Iou changes the

behaviour of the choice so that the contract it’s exercised on does not get archived when the choice

is exercised. That way the sender can use the contract to send multiple Ious.

2.1. Writing Daml 81

Daml SDK Documentation, 2.1.1

Here it is in action:

-- Bob allows Alice to send him Ious.

sab <- submit bob do

createCmd IouSender with

sender = alice

receiver = bob

-- Charlie allows Bob to send him Ious.

sbc <- submit charlie do

createCmd IouSender with

sender = bob

receiver = charlie

-- Alice can now send the Iou she issued herself earlier.

iou4 <- submit alice do

exerciseCmd sab Send_Iou with

iouCid = iou

-- Bob sends it on to Charlie.

submit bob do

exerciseCmd sbc Send_Iou with

iouCid = iou4

Daml’s authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in Daml.

In this section you’ll learn about the formal authorizationmodel to allow you to reason through your

contract models. This will allow you to construct them in such a way that you don’t run into autho-

rization errors at runtime, or, worse still, allow malicious transactions.

In Choices in the LedgerModel you learned that a transaction is, equivalently, a tree of transactions, or a

forest of actions, where each transaction is a list of actions, and each action has a child-transaction

called its consequences.

Each action has a set of required authorizers – the parties that must authorize that action – and each

transaction has a set of authorizers – the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers

of the parent transaction.

The required authorizers of actions are:

• The required authorizers of an exercise action are the controllers on the corresponding choice.

Remember that Archive and archive are just an implicit choice with the signatories as con-

trollers.

• The required authorizers of a create action are the signatories of the contract.

• The required authorizers of a fetch action (which also includes fetchByKey) are somewhat

dynamic and covered later.

The authorizers of transactions are:

• The root transaction of a commit is authorized by the submitting party.

• The consequences of an exercise action are authorized by the actors of that action plus the

signatories of the contract on which the action was taken.

82 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

An authorization example

Consider the transaction from the script abovewhere Bob sends an Iou to Charlie using a Send_Iou

contract. It is authorized as follows, ignoring fetches:

• Bob submits the transaction so he’s the authorizer on the root transaction.

• The root transaction has a single action, which is to exercise Send_Iou on a IouSender con-

tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the

sender, Bob is the required authorizer.

• The consequences of the Send_Iou action are authorized by its actors, Bob, as well as signa-

tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-

quences are authorized by both Bob and Charlie.

• The consequences contain a single action, which is a Mutual_Transfer with Charlie as

newOwner on an Iou with issuer Alice and owner Bob. The required authorizers of the ac-

tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.

• The consequences ofMutual_Transfer are authorized by the actors (Bob andCharlie), aswell

as the signatories on the Iou (Alice and Bob).

• The single action on the consequences, the creation of an Iou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s

authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX #12 1970-01-01T00:00:00Z (Parties:269:3)

#12:0

│ known to (since):
Bob
 (#12),
Charlie
 (#12)

└─>
Bob
 exercises Send_Iou on #10:0 (Parties:IouSender)

with

iouCid = #11:3

children:

#12:1

│ known to (since):
Bob
 (#12),
Charlie
 (#12)

└─> fetch #11:3 (Parties:Iou)

#12:2

│ known to (since):
Bob
 (#12),
Alice
 (#12),
Charlie
 (#12)

└─>
Bob
,
Charlie
 exercises Mutual_Transfer on #11:3 (Parties:Iou)

with

newOwner =
Charlie

children:

#12:3

│ known to (since):
Charlie
 (#12),
Alice
 (#12),
Bob
 (#12)

└─> create Parties:Iou

with

issuer =
Alice
;

owner =
Charlie
;

cash =

(Parties:Cash with

currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive

with

partyA : Party

(continues on next page)

2.1. Writing Daml 83

Daml SDK Documentation, 2.1.1

(continued from previous page)

partyB : Party

where

signatory partyA

observer partyB

choice TryA

: ContractId NonTransitive

controller partyA

do

create NonTransitive with

partyA = partyB

partyB = partyA

choice TryB

: ContractId NonTransitive

with

other : ContractId NonTransitive

controller partyB

do

exercise other TryA

nt1 <- submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

nt2 <- submit alice do

createCmd NonTransitive with

partyA = alice

partyB = bob

submitMustFail bob do

exerciseCmd nt1 TryB with

other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action TryA only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

Next up

In 7 Composing choices you will put everything you have learned together to build a simple asset hold-

ing and trading model akin to that in the IOU Quickstart Tutorial. In that context you’ll learn a bit more

about the Update action and how to use it to compose transactions, as well as about privacy on

Daml ledgers.

84 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure Daml model for

asset issuance, management, transfer, and trading. This application will have capabilities similar

to the one in IOU Quickstart Tutorial. In the process you will learn about a few more concepts:

• Daml projects, packages and modules

• Composition of transactions

• Observers and stakeholders

• Daml’s execution model

• Privacy

The model in this section is not a single Daml file, but a Daml project consisting of several files that

depend on each other.

Hint: Remember that you can load all the code for this section into a folder calledintro7by running

daml new intro7 --template daml-intro-7

Daml projects

Daml is organized in projects, packages and modules. A Daml project is specified using a single

daml.yaml file, and compiles into a package in Daml’s intermediate language, or bytecode equiva-

lent, Daml-LF. Each Daml file within a project becomes a Daml module, which is a bit like a names-

pace. Each Daml project has a source root specified in the source parameter in the project’s daml.

yaml file. The package will include all modules specified in *.daml files beneath that source direc-

tory.

You can start a new project with a skeleton structure using daml new project-name in the termi-

nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the chapter 7 project:

sdk-version: __VERSION__

name: __PROJECT_NAME__

source: daml

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

- daml-script

sandbox-options:

- --wall-clock-time

You can generally set name and version freely to describe your project. dependencies does

what the name suggests: It includes dependencies. You should always include daml-prim and

daml-stdlib. The former contains internals of compiler and Daml Runtime, the latter gives ac-

cess to the Daml Standard Library. daml-script contains the types and standard library for Daml

Script.

You compile a Daml project by running daml build from the project root directory. This creates

a dar file in .daml/dist/dist/${project_name}-${project_version}.dar. A dar file is

Daml’s equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the

2.1. Writing Daml 85

Daml SDK Documentation, 2.1.1

package and its dependencies. dar files are fully self-contained in that they contain all dependen-

cies of the main package. More on all of this in 9 Working with Dependencies.

Project structure

This project contains an asset holding model for transferable, fungible assets and a separate trade

workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and

Intro.Asset.Trade.

In addition, there are tests inmodules Test.Intro.Asset, Test.Intro.Asset.Role, and Test.

Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project

source directory, and the last one to a file name. The folder structure therefore looks like this:

.

├── daml

│ ├── Intro

│ │ ├── Asset

│ │ │ ├── Role.daml

│ │ │ └── Trade.daml

│ │ └── Asset.daml

│ └── Test

│ └── Intro

│ ├── Asset

│ │ ├── Role.daml

│ │ └── Trade.daml

│ └── Asset.daml

└── daml.yaml

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModulesmodule

imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of

names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any Daml Scripts, you need to import the corresponding functionality:

import Daml.Script

86 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Project overview

The project both changes and adds to the Ioumodel presented in 6 Parties and authority:

• Assets are fungible in the sense that they have Merge and Split choices that allow the owner

to manage their holdings.

• Transfer proposals now need the authorities of both issuer and newOwner to accept. This

makes Asset safer than Iou from the issuer’s point of view.

With the Iou model, an issuer could end up owing cash to anyone as transfers were autho-

rized by just owner and newOwner. In this project, only parties having an AssetHolder con-

tract can end up owning assets. This allows the issuer to determine which parties may own

their assets.

• The Trade template adds a swap of two assets to the model.

Composed choices and scripts

This project showcases how you can put the Update and Script actions you learnt about in 6 Parties

and authority to good use. For example, the Merge and Split choices each perform several actions

in their consequences.

• Two create actions in case of Split

• One create and one archive action in case of Merge

choice Split

: SplitResult

with

splitQuantity : Decimal

controller owner

do

splitAsset <- create this with

quantity = splitQuantity

remainder <- create this with

quantity = quantity - splitQuantity

return SplitResult with

splitAsset

remainder

choice Merge

: ContractId Asset

with

otherCid : ContractId Asset

controller owner

do

other <- fetch otherCid

assertMsg

"Merge failed: issuer does not match"

(issuer == other.issuer)

assertMsg

"Merge failed: owner does not match"

(owner == other.owner)

assertMsg

"Merge failed: symbol does not match"

(symbol == other.symbol)

archive otherCid

(continues on next page)

2.1. Writing Daml 87

Daml SDK Documentation, 2.1.1

(continued from previous page)

create this with

quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return x is a

no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a

value with side-effects. The return namemakes sense when it’s used as the last statement in a do

block as its argument is indeed the “return”-value of the do block in that case.

Taking transaction composition a step further, the Trade_Settle choice on Trade composes two

exercise actions:

choice Trade_Settle

: (ContractId Asset, ContractId Asset)

with

quoteAssetCid : ContractId Asset

baseApprovalCid : ContractId TransferApproval

controller quoteAsset.owner

do

fetchedBaseAsset <- fetch baseAssetCid

assertMsg

"Base asset mismatch"

(baseAsset == fetchedBaseAsset with

observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg

"Quote asset mismatch"

(quoteAsset == fetchedQuoteAsset with

observers = quoteAsset.observers)

transferredBaseCid <- exercise

baseApprovalCid TransferApproval_Transfer with

assetCid = baseAssetCid

transferredQuoteCid <- exercise

quoteApprovalCid TransferApproval_Transfer with

assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the

test_trade script in Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)

#15:0

│ known to (since):
Alice
 (#15),
Bob
 (#15)

└─>
Bob
 exercises Trade_Settle on #13:1 (Intro.Asset.Trade:Trade)

with

quoteAssetCid = #10:1; baseApprovalCid = #14:2

children:

#15:1

│ known to (since):
Alice
 (#15),
Bob
 (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:2

(continues on next page)

88 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

│ known to (since):
Alice
 (#15),
Bob
 (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:3

│ known to (since):
USD_Bank
 (#15),
Bob
 (#15),
Alice
 (#15)

└─>
Alice
,

Bob
 exercises TransferApproval_Transfer on #14:2 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #11:1

children:

#15:4

│ known to (since):
USD_Bank
 (#15),
Bob
 (#15),
Alice
 (#15)

└─> fetch #11:1 (Intro.Asset:Asset)

#15:5

│ known to (since):
Alice
 (#15),
USD_Bank
 (#15),
Bob
 (#15)

└─>
Alice
,
USD_Bank
 exercises Archive on #11:1 (Intro.Asset:Asset)

#15:6

│ referenced by #17:0

│ known to (since):
Bob
 (#15),
USD_Bank
 (#15),
Alice
 (#15)

└─> create Intro.Asset:Asset

with

issuer =
USD_Bank
; owner =
Bob
; symbol = "USD"; quantity = 100.

↪→0; observers = []

#15:7

│ known to (since):
EUR_Bank
 (#15),
Alice
 (#15),
Bob
 (#15)

└─>
Bob
,

Alice
 exercises TransferApproval_Transfer on #12:1 (Intro.

↪→Asset:TransferApproval)

with

assetCid = #10:1

children:

#15:8

│ known to (since):
EUR_Bank
 (#15),
Alice
 (#15),
Bob
 (#15)

└─> fetch #10:1 (Intro.Asset:Asset)

#15:9

│ known to (since):
Bob
 (#15),
EUR_Bank
 (#15),
Alice
 (#15)

└─>
Bob
,
EUR_Bank
 exercises Archive on #10:1 (Intro.Asset:Asset)

#15:10

│ referenced by #16:0

│ known to (since):
Alice
 (#15),
EUR_Bank
 (#15),
Bob
 (#15)

└─> create Intro.Asset:Asset

with

issuer =
EUR_Bank
; owner =
Alice
; symbol = "EUR"; quantity = 90.

↪→0; observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test_issuance = do

setupResult@(alice, bob, bank, aha, ahb) <- setupRoles

(continues on next page)

2.1. Writing Daml 89

Daml SDK Documentation, 2.1.1

(continued from previous page)

assetCid <- submit bank do

exerciseCmd aha Issue_Asset

with

symbol = "USD"

quantity = 100.0

Some asset <- queryContractId bank assetCid

assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

return (setupResult, assetCid)

In the above, the test_issuance script in Test.Intro.Asset.Role uses the output of the se-

tupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResult <- se-

tupRoles and then accessing the components of setupResult using _1, _2, etc., you can give

them names. It’s equivalent to writing

setupResult <- setupRoles

case setupResult of

(alice, bob, bank, aha, ahb) -> ...

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but se-

tupResult is used in the return value of test_issuance so it makes sense to give it a name, too.

The notation with @ allows you to give both the whole value as well as its constituents names in one

go.

Daml’s execution model

Daml’s execution model is fairly easy to understand, but has some important consequences. You

can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,

acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update

corresponding to each Action is evaluated in the context of the ledger to calculate all conse-

quences, including transitive ones (consequences of consequences, etc.). The result of this is

a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.

This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ

from implementation to implementation. Validation also involves scheduling and collision

detection, ensuring that the transaction has a well-defined place in the (partial) ordering of

Commits, and no double spends occur.

Commitment The Commit is actually committed according to the commit or consensus protocol of

the Ledger.

90 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Confirmation The network sends confirmations of the commitment back to all involved Participant

Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant

Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-

ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade_Settle choice shown above. The choice transfers a

baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no

chance that either party is left out of pocket.

The second consequence is that the requester of a transaction knows all consequences of their sub-

mitted transaction – there are no surprises in Daml. However, it alsomeans that the requester must

have all the information to interpret the transaction. We also refer to this as Principle 2 a bit later on

this page.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that

transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about

some way for Alice to accept a transfer – remember, accepting a transfer needs the authority of

issuer in this example.

Observers

Observers are Daml’s mechanism to disclose contracts to other parties. They are declared just like

signatories, but using the observer keyword, as shown in the Asset template:

template Asset

with

issuer : Party

owner : Party

symbol : Text

quantity : Decimal

observers : [Party]

where

signatory issuer, owner

ensure quantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice

uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if

she didn’t do that by removing that transaction.

usdCid <- submit alice do

exerciseCmd usdCid SetObservers with

newObservers = [bob]

Observers have guarantees in Daml. In particular, they are guaranteed to see actions that create and

archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each

other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and

using that to authorize the transfer in Trade_Settle, Alice creates a one-time authorization in the

2.1. Writing Daml 91

Daml SDK Documentation, 2.1.1

form of a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up

leaking them to each other.

Controllers declared in the choice syntax are not automaticallymade observers, as they can only be

calculated at the point in time when the choice arguments are known. On the contrary, controllers

declared via the controller cs can syntax are automatically made observers, but this syntax is

deprecated and will be removed in a future version of Daml.

Privacy

Daml’s privacy model is based on two principles:

Principle 1. Parties see those actions that they have a stake in. Principle 2. Every party that sees an

action sees its (transitive) consequences.

Principle 2 is necessary to ensure that every party can independently verify the validity of every trans-

action they see.

A party has a stake in an action if

• they are a required authorizer of it

• they are a signatory of the contract on which the action is performed

• they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade_Settle action from test_trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade_Settled action,

so both of them see it. According to rule 2. above, that means they get to see everything in the

transaction.

The consequences contain, next to somefetch actions, twoexercise actions of the choiceTrans-

ferApproval_Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see

the action on “their” contract. So the EUR_Bank sees the TransferApproval_Transfer action

for the EUR Asset and the USD_Bank sees the TransferApproval_Transfer action for the USD

Asset.

Some Daml ledgers, like the script runner and the Sandbox, work on the principle of “dataminimiza-

tion”, meaning nothing more than the above information is distributed. That is, the “projection” of

the overall transaction that gets distributed to EUR_Bank in step 4 of Daml’s execution model would

consist only of the TransferApproval_Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-

straints.

92 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Divulgence

Note that Principle 2 of the privacymodel means that sometimes parties see contracts that they are

not signatories or observers on. If you look at the final ledger state of the test_trade script, for

example, youmay notice that both Alice and Bob now see both assets, as indicated by the Xs in their

respective columns:

This is because the create action of these contracts are in the transitive consequences of the

Trade_Settle action both of them have a stake in. This kind of disclosure is often called “divul-

gence” and needs to be considered when designing Daml models for privacy sensitive applications.

Next up

In 8 Exception Handling, we will learn about how errors in your model can be handled in Daml.

2.1.1.8 8 Exception Handling

The default behavior in Daml is to abort the transaction on any error and roll back all changes that

have happened until then. However, this is not always appropriate. In some cases, it makes sense

to recover from an error and continue the transaction instead of aborting it.

One option for doing that is to represent errors explicitly via Either or Option as shown in 3 Data

types. This approach has the advantage that it is very explicit about which operations are allowed to

fail without aborting the entire transaction. However, it also has twomajor downsides. First, it can be

invasive for operations where aborting the transaction is often the desired behavior, e.g., changing

division to return Either or an Option to handle division by zero would be a very invasive change

andmany callsitesmight not want to handle the error case explicitly. Second, andmore importantly,

this approach does not allow rolling back ledger actions that have happened before the point where

failure is detected; if a contract got created beforewe hit the error, there is noway to undo that except

for aborting the entire transaction (which is what we were trying to avoid in the first place).

By contrast, exceptions provide a way to handle certain types of errors in such a way that, on the one

hand, most of the code that is allowed to fail can be written just like normal code, and, on the other

hand, the programmer can clearly delimit which part of the current transaction should be rolled

back on failure. All of that still happens within the same transaction and is thereby atomic contrary

to handling the error outside of Daml.

Hint: Remember that you can load all the code for this section into a folder calledintro8by running

daml new intro8 --template daml-intro-8

2.1. Writing Daml 93

Daml SDK Documentation, 2.1.1

Our example for the use of exceptions will be a simple shop template. Users can order items by

calling a choice and transfer money (in the form of an Iou issued by their bank) from their account

to the owner in return.

First, we need to setup a template to represent the account of a user.

template Account with

issuer : Party

owner : Party

amount : Decimal

where

signatory issuer, owner

ensure amount > 0.0

key (issuer, owner) : (Party, Party)

maintainer key._2

choice Transfer : () with

newOwner : Party

transferredAmount : Decimal

controller owner, newOwner

do create this with amount = amount - transferredAmount

create Iou with issuer = issuer, owner = newOwner, amount =␣

↪→transferredAmount

pure ()

Note that the template has an ensure clause that ensures that the amount is always positive so

Transfer cannot transfer more money than is available.

The shop is represented as a template signed by the owner. It has a field to represent the bank

accepted by the owner as well as a list of observers that can order items.

template Shop

with

owner : Party

bank : Party

observers : [Party]

where

signatory owner

observer observers

let price: Decimal = 100.0

The ordering process is then represented by a non-consuming choice on this template which calls

Transfer and creates an Order contract in return.

nonconsuming choice OrderItem : ContractId Order

with

shopper : Party

controller shopper

do exerciseByKey @Account (bank, shopper) (Transfer owner price)

create Order

with

shopOwner = owner

shopper = shopper

However, the shop owner has realized that often orders fail because the account of their users is not

topped up. They have a small trusted userbase they know well so they decide that if the account

is not topped up, the shoppers can instead issue an Iou to the owner and pay later. While it would

94 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

be possible to check the conditions under which Transfer will fail in OrderItem this can be quite

fragile: In this example, the condition is relatively simple but in larger projects replicating the con-

ditions outside the choice and keeping the two in sync can be challenging.

Exceptions allow us to handle this differently. Rather than replicating the checks in Transfer, we

can instead catch the exception thrown on failure. To do so we need to use a try-catch block. The

try block defines the scope within which we want to catch exceptions while the catch clauses

define which exceptions we want to catch and how we want to handle them. In this case, we want to

catch the exception thrown by a failed ensure clause. This exception is defined in daml-stdlib as

PreconditionFailed. Putting it together our order process for trusted users looks as follows:

nonconsuming choice OrderItemTrusted : ContractId Order

with

shopper : Party

controller shopper

do cid <- create Order

with

shopOwner = owner

shopper = shopper

try do

exerciseByKey @Account (bank, shopper) (Transfer owner price)

catch

PreconditionFailed _ -> do

create Iou with

issuer = shopper

owner = owner

amount = price

pure ()

pure cid

Let’s walk through this code. First, asmentioned, the shop owner is the trusting kind, so he wants to

start by creating the Ordermatter what. Next, we try to charge the customer for the order. We could,

at this point, check their balance against the cost of the order, but that would amount to duplicating

the logic already present in Account. This logic is pretty simple in this case, but duplicating invari-

ants is a bad habit to get into. So, instead, we just try to charge the account. If that succeeds, we

justmerrily ignore the entire catch clause; if that fails, however, we do not want to destroy the Order

contract we had already created. Instead, we want to catch the error thrown by the ensure clause of

Account (in this case, it is of type PreconditionFailed) and try something else: create an Iou

contract to register the debt and move on.

Note that if the Iou creation still failed (unlikely with our definition of Iou here, but could happen

in more complex scenarios), because that one is not wrapped in a try block, we would revert to the

default Daml behaviour and the Order creation would be rolled back.

In addition to catching built-in exceptions like PreconditionFailed, you can also define your own

exception types which can be caught and thrown. As an example, let’s consider a variant of the

Transfer choice that only allows for transfers up to a given limit. If the amount is higher than the

limit, we throw an exception called TransferLimitExceeded.

We first have to define the exception and define a way to represent it as a string. In this case, our

exception should store the amount that someone tried to transfer as well as the limit.

exception TransferLimitExceeded

with

limit : Decimal

(continues on next page)

2.1. Writing Daml 95

Daml SDK Documentation, 2.1.1

(continued from previous page)

attempted : Decimal

where

message "Transfer of " <> show attempted <> " exceeds limit of " <> show limit

To throw our own exception, you can use throw in Update and Script or throwPure in other con-

texts.

choice TransferLimited : () with

newOwner : Party

transferredAmount : Decimal

controller owner, newOwner

do let limit = 50.0

when (transferredAmount > limit) $

throw TransferLimitExceeded with

limit = limit

attempted = transferredAmount

create this with amount = amount - transferredAmount

create Iou with issuer = issuer, owner = newOwner, amount =␣

↪→transferredAmount

pure ()

Finally, we can adapt our choice to catch this exception as well:

nonconsuming choice OrderItemTrustedLimited : ContractId Order

with

shopper : Party

controller shopper

do try do

exerciseByKey @Account (bank, shopper) (Transfer owner price)

pure ()

catch

PreconditionFailed _ -> do

create Iou with

issuer = shopper

owner = owner

amount = price

pure ()

TransferLimitExceeded _ _ -> do

create Iou with

issuer = shopper

owner = owner

amount = price

pure ()

create Order

with

shopOwner = owner

shopper = shopper

For more information on exceptions, take a look at the language reference.

96 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Next up

We have now seen how to develop safe models and how we can handle errors in those models in a

robust and simple way. But the journey doesn’t stop there. In 9 Working with Dependencies you will

learn how to extend an already running application to enhance it with new features. In that context

you’ll learn a bit more about the architecture of Daml, about dependencies, and about identifiers.

2.1.1.9 9 Working with Dependencies

The application from Chapter 7 is a complete and secure model for atomic swaps of assets, but

there is plenty of room for improvement. However, one can’t implement all feature before going live

with an application so it’s important to understand way to change already running code. There are

fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to

have multiple signatories.

2. Extensions, which merely add new functionality though additional templates.

Upgrades are covered in their own section outside this introduction to Daml: Upgrading and Extending

Daml applications so in this sectionwewill extend the chapter 7model with a simple secondworkflow:

a multi-leg trade. In doing so, you’ll learn about:

• The software architecture of the Daml Stack

• Dependencies and Data Dependencies

• Identifiers

Since we are extending chapter 7, the setup for this chapter is slightly more complex:

1. In a base directory, load the chapter 7 project using daml new intro7 --template

daml-intro-7. The directory intro7 here is important as it’ll be referenced by the other

project we are creating.

2. In the same directory, load the chapter 8 project using daml new intro9 --template

daml-intro-9.

8Dependencies contains a new module Intro.Asset.MultiTrade and a corresponding test

module Test.Intro.Asset.MultiTrade.

DAR, DALF, Daml-LF, and the Engine

In 7 Composing choices you already learnt a little about projects, Daml-LF, DAR files, and dependencies.

In this chapter we will actually need to have dependencies from the chapter 8 project to the chapter

7 project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of chapter 7. DAR files, like Java JAR files are just ZIP archives,

but the SDK also has a utility to inspect DARs out of the box:

1. Navigate into the intro7 directory.

2. Build using daml build -o assets.dar

3. Run daml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header “DAR archive contains the following files:” you’ll

see that the DAR contains

1. *.dalf files for the project and all its dependencies

2.1. Writing Daml 97

Daml SDK Documentation, 2.1.1

2. The original Daml source code

3. *.hi and *.hie files for each *.daml file

4. Some meta-inf and config files

The first file is something likeintro7-1.0.0-887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625.

dalf which is the actual compiled package for the project. *.dalf files contain Daml-LF, which is

Daml’s intermediate language. The file contents are a binary encoded protobuf message from the

daml-lf schema. Daml-LF is evaluated on the Ledger by the Daml Engine, which is a JVM component

that is part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If Daml-LF

is to Daml what Java Bytecode is to Java, the Daml Engine is to Daml what the JVM is to Java.

Hashes and Identifiers

Under the heading “DAR archive contains the following packages:” you get a similar looking list

of package names, paired with only the long random string repeated. That hexadecimal string,

887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625 in this case, is

the package hash and the primary and only identifier for a package that’s guaranteed to be avail-

able and preserved. Meta information like name (“intro7”) and version (“1.0.0”) helpmake it human

readable but should not be relied upon. You may not always get DAR files from your compiler, but be

loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is

preserved.

1. Note down your main package hash from running inspect-dar above

2. Start the project using daml start

3. Open a second terminal and run daml ledger fetch-dar

--host localhost --port 6865 --main-package-id

"887056cbb313b94ab9a6caf34f7fe4fbfe19cb0c861e50d1594c665567ab7625" -o

assets_ledger.dar, making sure to replace the hash with the appropriate one.

4. Run daml damlc inspect-dar assets_ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only

identifiable by hash. We could of course also create a second project intro7-1.0.0 with com-

pletely different contents so even when name and version are available, package hash is the only

safe identifier.

That’s why over the Ledger API, all types, like templates and records are identified by the triple (en-

tity name, module name, package hash). Your client application should know the package

hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable for-

mat for the information it emits: daml damlc inspect-dar --json assets_ledger.dar. The

main_package_id field in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data

dependencies.

98 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/tree/main/daml-lf/archive

Daml SDK Documentation, 2.1.1

Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the *.hi files. The information

in these files is crucial for dependencies like the Standard Library, which provide functions, types

and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this infor-

mation may not even be desirable. Imagine we had built intro7 with SDK 1.100.0, and are building

intro8 with SDK 1.101.0. All the typeclasses and instances on the inbuilt types may have changed

and are now present twice – once from the current SDK and once from the dependency. This gets

messy fast, which is why the SDK does not support dependencies across SDK versions. For depen-

dencies on contractmodels thatwere fetched froma ledger, or come froman older SDK version, there

is a simpler kind of dependency called data-dependencies. The syntax for data-dependencies

is the same, but they only rely on the “binary” *.dalf files. The name tries to confer that the main

purpose of such dependencies is to handle data: Records, Choices, Templates. The stuff one needs

to use contract composability across projects.

For an extensionmodel like this one, data-dependencies are appropriate so the chapter 8 project

includes the chapter 7 that way.

- daml-script

data-dependencies:

- ../intro7/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the

Chapter 7 trade setup Scripts. data-dependencies is designed to use existing contracts and data

types. Daml Script is not imported. In practice, we also shouldn’t expect that the DAR file we down-

load from the ledger using daml ledger fetch-dar contains test scripts. For larger projects it’s

good practice to keep them separate and only deploy templates to the ledger.

Structuring Projects

As you’ve seenhere, identifiers depend on the package as awhole andpackages always bring all their

dependencies with them. Thus changing anything in a complex dependency graph can have signif-

icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate

concerns which are likely to change at different rates into separate packages.

For example, in all our projects in this intro, including this chapter, our scripts are in the sameproject

as our templates. In practice, that means changing a test changes all identifiers, which is not de-

sirable. It’s better for maintainability to separate tests frommain templates. If we had done that in

chapter 7, that would also have saved us from copying the chapter 7

Similarly, we included Trade in the same project as Asset in chapter 7, even though Trade is a pure

extension to the core Assetmodel. If we expect Trade to need more frequent changes, it may be a

good idea to split it out into a separate project from the start.

2.1. Writing Daml 99

Daml SDK Documentation, 2.1.1

Next up

The MultiTrade model has more complex control flow and data handling than previous models.

In 10 Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds,

common typeclasses, custom functions, and the Standard Library. We’ll be using the same projects

so don’t delete your chapter 7 and 8 folders just yet.

2.1.1.10 10 Functional Programming 101

In this chapter, you will learn more about expressing complex logic in a functional language like

Daml. Specifically, you’ll learn about

• Function signatures and functions

• Advanced control flow (if...else, folds, recursion, when)

If you no longer have your chapter 7 and 8 projects set up, and want to look back at the code, please

follow the setup instructions in 9 Working with Dependencies to get hold of the code for this chapter.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

The Haskell Connection

The previous chapters of this introduction to Daml have mostly covered the structure of templates,

and their connection to the Daml Ledger Model. The logic of what happens within the do blocks of

choices has been kept relatively simple. In this chapter, we will dive deeper into Daml’s expression

language, the part that allows you to write logic inside those do blocks. But we can only scratch

the surface here. Daml borrows a lot of its language from Haskell. If you want to dive deeper, or

learn about specific aspects of the language you can refer to standard literature on Haskell. Some

recommendations:

• Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

• Haskell Programming from first principles (Christopher Allen, Julie Moronuki)

• Learn You a Haskell for Great Good! (Miran Lipovača)

• Programming in Haskell (Graham Hutton)

• Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing Daml to Haskell it’s worth noting:

• Haskell is a lazy language, which allows you to write things like head [1..], meaning “take

the first element of an infinite list”. Daml by contrast is strict. Expressions are fully evaluated,

which means it is not possible to work with infinite data structures.

• Daml has a with syntax for records, and dot syntax for record field access, neither of which

present in Haskell. But Daml supports Haskell’s curly brace record notation.

• Daml has a number of Haskell compiler extensions active by default.

• Daml doesn’t support all features of Haskell’s type system. For example, there are no existential

types or GADTs.

• Actions are called Monads in Haskell.

100 Chapter 2. Daml Guide

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

Daml SDK Documentation, 2.1.1

Functions

In 3 Data types you learnt about one half of Daml’s type system: Data types. It’s now time to learn

about the other, which are Function types. Function types in Daml can be spotted by looking for ->

which can be read as “maps to”.

For example, the function signature Int -> Intmaps an integer to another integer. There aremany

such functions, but one would be:

increment : Int -> Int

increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-

laration can be omitted in cases where the type can be inferred by the compiler, but for top-level

functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to

include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add

without a declaration:

add n m = n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name

in the IDE:

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one ->.

2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking at the right hand part a -> a -> a. The -> is right associative, meaning a ->

a -> a is equivalent to a -> (a -> a). Using the “maps to” way of reading -> we get “a maps to

a function that maps a to a”.

And this is indeedwhat happens. We can define a different version of increment by partially applying

add:

increment2 = add 1

2.1. Writing Daml 101

Daml SDK Documentation, 2.1.1

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again. It can do so

because of the literal 1 : Int.

So if we have a function f : a -> b -> c -> d and a value valA : a, we get f valA : b -> c

-> d, ie we can apply the function argument by argument. If we also had valB : b, we would have

f valA valB : c -> d. What this tells you is that function application is left associative: f valA

valB == (f valA) valB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it

starts with a symbol. Functions that start with a symbol are infix by default which means they can

be written between two arguments. That’s why we can write 1 + 2 rather than + 1 2. The rules for

converting between normal and infix functions are simple. Wrap an infix function in parentheses to

use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 CaddC 2

With that knowledge, we could have defined addmore succinctly as the alias that it is:

add2 : Additive a => a -> a -> a

add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)

decrement = (- 1)

Note: While function application is left associative by default, infix operators can be declared left

or right associative and given a precedence. Good examples are the boolean operations && and ||,

which are declared right associative with precedences 3, and 2, respectively. This allows you to write

True || True && False and get value True. See section 4.4.2 of the Haskell 98 report for more

on fixities.

Type Constraints

The Additive a => part of the signature of add is a type constraint on the type parameter a.

Additive here is a typeclass. You already met typeclasses like Eq and Show in 3 Data types. The

Additive typeclass says that you can add a thing. Ie there is a function (+) : a -> a -> a. Now

the way to read the full signature of add is “Given that a has an instance for the Additive typeclass,

a maps to a function which maps a to a”.

Typeclasses in Daml are a bit like interfaces in other languages. To be able to add two things using

the + function, those things need to expose the + interface.

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also

demonstrates the use of multiple constraints at the same time, is the signature of the exercise

function:

102 Chapter 2. Daml Guide

https://www.haskell.org/onlinereport/decls.html

Daml SDK Documentation, 2.1.1

exercise : (Template t, Choice t c r) => ContractId t -> c -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice cwith return

type r, map a ContractId for a contract of type t to a function that takes the choice arguments of

type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to

parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses

and variables.

Pattern Matching in Arguments

Youmet patternmatching in 3 Data types, using case statements which is one way of patternmatch-

ing. However, it can also be convenient to do the patternmatching at the level of function arguments.

Think about implementing the function uncurry:

uncurry : (a -> b -> c) -> (a, b) -> c

uncurry takes a function with two arguments (or more, since c could be a function), and turns it

into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,

case pattern matching, and function pattern matching:

uncurry1 f t = f t._1 t._2

uncurry2 f t = case t of

(x, y) -> f x y

uncurry f (x, y) = f x y

Using function patternmatching is clearly themost elegant here. Wenever need the tuple as awhole,

just its members. Any pattern matching you can do in case you can also do at the function level,

and the compiler helpfully warns you if you did not cover all cases, which is called “non-exhaustive”.

fromSome : Optional a -> a

fromSome (Some x) = x

The above will give you a warning:

warning:

Pattern match(es) are non-exhaustive

In an equation for ‘fromSome’: Patterns not matched: None

This means fromSome is a partial function. fromSome None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write

the function issueAsset in chapter 8:

issueAsset : Asset -> Script (ContractId Asset)

issueAsset asset@(Asset with ..) = do

assetHolders <- queryFilter @AssetHolder issuer

(\ah -> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of

(continues on next page)

2.1. Writing Daml 103

Daml SDK Documentation, 2.1.1

(continued from previous page)

(ahCid, _)::_ -> submit asset.issuer do

exerciseCmd ahCid Issue_Asset with ..

[] -> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so

we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the

matching name. So the function succinctly transfers all fields except for owner, which is set explic-

itly, from the V1 Asset to the V2 Asset.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in Daml you can also put a

function. Even inside data types:

data Predicate a = Predicate with

test : a -> Bool

More commonly, it makes sense to define functions locally, inside a let clause or similar. A good

example of this are the validate and transfer functions defined locally in the Trade_Settle

choice of the model from chapter 8:

let

validate (asset, assetCid) = do

fetchedAsset <- fetch assetCid

assertMsg

"Asset mismatch"

(asset == fetchedAsset with

observers = asset.observers)

mapA_ validate (zip baseAssets baseAssetCids)

mapA_ validate (zip quoteAssets quoteAssetCids)

let

transfer (assetCid, approvalCid) = do

exercise approvalCid TransferApproval_Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCids baseApprovalCids)

transferredQuoteCids <- mapA transfer (zip quoteAssetCids␣

↪→quoteApprovalCids)

You can see that the function signature is inferred from the context here. If you look closely (or hover

over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Eq r, HasField "observers" r a) => (r, ContractId r) ->␣

↪→Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-

guments, or as choice in- or outputs. They also don’t have instances of the Eq or Show typeclasses

which one would commonly want on data types.

104 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

You can probably guess what the mapA and mapA_s in the above choice do. They somehow loop

through the lists of assets, and approvals, and the functions validate and transfer to each, per-

forming the resulting Update action in the process. We’ll look at that more closely under Looping

below.

Lambdas

Like in most modern languages, Daml also supports inline functions called lambdas. They are de-

fined using (\x y z -> ...) syntax. For example, a lambda version of increment would be (\n

-> n + 1).

Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to

translate procedural code into functional code.

Branching

Until Chapter 7 the only real kind of control flow introduced has been case, which is a powerful tool

for branching.

If..Else

Chapter 5 also showed a seemingly self-explanatory if..else statement, but didn’t explain it fur-

ther. And they are actually the same thing. Let’s implement the function boolToInt : Bool ->

Intwhich in typical fashionmaps True to 1 and False to 0. Here is an implementation using case:

boolToInt b = case b of

True -> 1

False -> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if

Found:

case b of

True -> 1

False -> 0

Perhaps:

if b then 1 else 0

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b

then 1

else 0

In short: if..else statements are equivalent to a case statement, but are easier to read.

2.1. Writing Daml 105

Daml SDK Documentation, 2.1.1

Control Flow as Expressions

case statements and if..else really are control flow in the sense that they short circuit:

doError t = case t of

"True" -> True

"False" -> False

_ -> error ("Not a Bool: " <> t)

This function behaves as you expect. The error only gets evaluated if an invalid text is passed in.

This is different to functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e

boom = ifelse True 1 (error "Boom")

In the above, boom is an error.

But while being proper control flow, case and if..else statements are also expressions in the

sense that they result in a value when evaluated. You can actually see that in the function defini-

tions above. Since each of the functions is defined just as a case or if statement, the value of the

evaluated function is just the value of the case/if statement. Things that have a value have a type.

Theif..else expression inboolToInt2has typeInt as that’s what the function returns, thecase

expression in doError has type Bool. To be able to give such expressions an unambiguous type,

each branch needs to have the same type. The below function does not compile as one branch tries

to return an Int and the other a Text:

typeError b = if b

then 1

else "a"

If we need functions that can return two (ormore) types of thingsweneed to encode that in the return

type. For two possibilities, it’s common to use the Either type:

intOrText : Bool -> Either Int Text

intOrText b = if b

then Left 1

else Right "a"

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a

contract of one type in one case, and of another type in another case. Let’s say we have two template

types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T

with

p : Party

where

signatory p

template S

with

(continues on next page)

106 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

p : Party

where

signatory p

It would be tempting to write a simple if..else, but it won’t typecheck:

typeError b p = if b

then create T with p

else create S with p

We have two options:

1. Use the Either trick from above.

2. Get rid of the return types.

ifThenSElseT1 b p = if b

then do

cid <- create S with p

return (Left cid)

else do

cid <- create T with p

return (Right cid)

ifThenSElseT2 b p = if b

then do

create S with p

return ()

else do

create T with p

return ()

The latter is so common that there is a utility function in DA.Action to get rid of the return type:

void : Functor f => f a -> f ().

ifThenSElseT3 b p = if b

then void (create S with p)

else void (create T with p)

void also helps express control flow of the type “Create a T only if a condition is met.

conditionalS b p = if b

then void (create S with p)

else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-

sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f

() -> f ().

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does somemagic so that is short circuits

evaluation just like if..else. noop is a no-op, not an error as one might otherwise expect:

noop : Update () = when False (error "Foo")

2.1. Writing Daml 107

Daml SDK Documentation, 2.1.1

With case, if..else, void and when, you can express all branching. However, one additional fea-

ture you may want to learn is guards. They are not covered here, but can help avoid deeply nested

if..elseblocks. Here’s just one example. TheHaskell sources at the beginning of the chapter cover

this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == 1 = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "Big"

| d < 1000 = "Huge"

| otherwise = "Enormous"

Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to

iteratively modify some state. We’ll use JavaScript in this section to illustrate the procedural way of

doing things.

function sum(intArr) {

var result = 0;

intarr.forEach (i => {

result += i;

});

return result;

}

A more general loop looks like this:

function whileFunction(arr) {

var rev = initialize(input);

while (doContinue (state)) {

state = process (state);

}

return finalize(state);

}

The only real difference is that the iterator is explicit in the former, and implicit in the latter.

In both cases, state is being mutated: result in the former, state in the latter. Values in Daml are

immutable, so it needs to work differently. In Daml we will do this with folds and recursion.

108 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-

guages. Themost common iterator is a list, as is the case in the sum function above. For such cases,

Daml has the foldl function. The l stands for “left” and means the list is processed from the left.

There is also a corresponding foldr which processes from the right.

foldl : (b -> a -> b) -> b -> [a] -> b

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument

is a function which takes a state and an item and returns a new state. That’s the equivalent of the

inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which

is the iterator. The result is again a state. The sum function above can be translated to Daml almost

instantly with those correspondences in mind:

sum ints = foldl (+) 0 ints

If we wanted to be more verbose, we could replace (+) with a lambda (\result i -> result +

i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care

with performance when it comes to translating for loops:

function sumArrs(arr1, arr2) {

var l = min (arr1.length, arr2.length);

var result = new int[l];

for(var i = 0; i < l; i++) {

result[i] = arr1[i] + arr2[i];

}

return result;

}

Translating the for into a forEach is easy if you can get your hands on an array containing values

[0..(l-1)]. And that’s literally how you do it in Daml, using ranges. [0..(l-1)] is shorthand for

enumFromTo 0 (l-1), which returns the list you’d expect.

Daml also has an operator (!!) : [a] -> Int -> a which returns an element in a list. You may

now be tempted to write sumArrs like this:

sumArrs : [Int] -> [Int] -> [Int]

sumArrs arr1 arr2 =

let l = min (length arr1) (length arr2)

sumAtI i = (arr1 !! i) + (arr2 !! i)

in foldl (\state i -> (sumAtI i) :: state) [] [1..(l-1)]

But you should immediately forget again that you just learnt about (!!). Lists in Daml are linked

lists, whichmakes access using (!!) slow and idiosyncratic. The way to do this in Daml is to get rid

of the i altogether and instead merge the lists first, and then iterate over the “zipped” up lists:

sumArrs2 arr1 arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip arr1 arr2)

zip : [a] -> [b] -> [(a, b)] takes two lists, and merges them into a single list where the

first element is the 2-tuple containing the first elements to the two input lists, and so on. It drops

any left-over elements of the longer list, thus making the min logic unnecessary.

2.1. Writing Daml 109

Daml SDK Documentation, 2.1.1

Maps

You’ve probably noticed that what we’ve done in this second version of sumArr is pretty standard,

we have taken a list zip arr1 arr2 applied a function \(x, y) -> x + y to each element, and

returned the list of results. This operation is called map : (a -> b) -> [a] -> [b]. We can

now write sumArr even more nicely:

sumArrs3 arr1 arr2 = map (\(x, y) -> (x + y)) (zip arr1 arr2)

As a rule of thumb: Use map if the result has the same shape as the input and you don’t need to carry

state from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,

for example. We want to avoid (!!) so there is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of

[] -> rev

x::xs -> reverseWorker (x::rev) xs

reverse xs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but Daml only

supports recursion for top-level functions so the recursive part recurseWorker has to be its own

top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in 5 Adding constraints to a contract:

The functions used to map or process items have no side-effects. In day-to-day Daml that’s the

exception rather than the rule. If you have looked at the chapter 8 models, you’ll have noticed mapA,

mapA_, and forA all over the place. A good example are the mapA in the testMultiTrade script:

let rels =

[Relationship chfbank alice

, Relationship chfbank bob

, Relationship gbpbank alice

, Relationship gbpbank bob

]

[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

Here we have a list of relationships (type [Relationship] and a function setupRelationship

: Relationship -> Script (ContractId AssetHolder). We want the AssetHolder con-

tracts for those relationships, ie something of type [ContractId AssetHolder]. Using the map

function almost gets us there. map setupRelationship rels : [Update (ContractId

AssetHolder)]. This is a list of Update actions, each resulting in a ContractId AssetHolder.

Whatweneed is anUpdateaction resulting in a[ContractId AssetHolder]. The list andUpdate

are the wrong way around for our purposes.

Intuitively, it’s clear how to fix this: we want the compound action consisting of performing each of

the actions in the list in turn. There’s a function for that, of course. sequence : : Applicative

m => [m a] -> m [a] implements that intuition and allows us to take the Update out of the

110 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

list. So we could write sequence (map setupRelationship rels). This is so common that it’s

encapsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The A in mapA stands for “Action” of course, and you’ll find thatmany functions that have something

to dowith “looping”have anA equivalent. Themost fundamental of all of these isfoldlA : Action

m => (b -> a -> m b) -> b -> [a] -> m b, a left fold with side effects. Here the inner

function has a side-effect indicated by the m so the end result m b also has a side effect: the sum of

all the side effects of the inner function.

Have a go at implementing foldlA in terms of foldl and sequence and mapA in terms of foldA.

Here are some possible implementations:

foldlA2 fn init xs =

let

work accA x = do

acc <- accA

fn acc x

in foldl work (pure init) xs

mapA2 fn xs =

let

work ys x = do

y <- fn x

return (y :: ys)

in foldlA2 work [] xs

sequence2 actions =

let

work ys action = do

y <- action

return (y :: ys)

in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is

already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <- forA [usdCid, chfCid] (\cid -> submit alice do

exerciseCmd cid SetObservers with

newObservers = [bob]

)

Lastly, you’ll have noticed that in some cases we used mapA_, not mapA. The underscore indicates

that the result is not used. mapA_ fn xs fn = void (mapA fn xs). The Daml Linter will alert

you if you could use mapA_ instead of mapA, and similarly for forA_.

2.1. Writing Daml 111

Daml SDK Documentation, 2.1.1

Next up

You now know the basics of functions and control flow, both in pure and Action contexts. The Chapter

8 example shows just how much can be done with just the tools you have encountered here, but

there are many more tools at your disposal in the Daml Standard Library. It provides functions and

typeclasses for many common circumstances and in 11 Intro to the Daml Standard Library, you’ll get an

overview of the library and learn how to search and browse it.

2.1.1.11 11 Intro to the Daml Standard Library

In chapters 3 Data types and 10 Functional Programming 101 you learnt how to define your own data types

and functions. But of course you don’t have to implement everything from scratch. Daml comeswith

the Daml Standard Library which contains types, functions, and typeclasses that cover a large range

of use-cases. In this chapter, you’ll get an overview of the essentials, but also learn how to browse

and search this library to find functions. Being proficient with the Standard Library will make you

considerably more efficient writing Daml code. Specifically, this chapter covers:

• The Prelude

• Important types from the Standard Library, and associated functions and typeclasses

• Typeclasses

• Important typeclasses like Functor, Foldable, and Traversable

• How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-

ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,

Traversable, Action (calledMonad inHaskell), andmanymore, are the bread andbutter of Haskell

programmers.

Note: There is a project template daml-intro-11 for this chapter, but it only contains a single

source file with the code snippets embedded in this section.

The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions

like create, exercise, and (==), types like [], (,), Optional, and typeclasses like Eq, Show, and

Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every

other Daml module and contains both Daml specific machinery as well as the essentials needed to

work with the inbuilt types and typeclasses.

112 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Important Types from the Prelude

In addition to the Native types, the Prelude defines a number of common types:

Lists

You’ve already met lists. Lists have two constructors [] and x :: xs, the latter of which is

“prepend” in the sense that 1 :: [2] == [1, 2]. In fact [1,2] is just syntactical sugar

for 1 :: 2 :: [].

Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size

up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return

values from functions consisting of several pieces or passing around data in folds, as you saw in

Folds. An example of a relatively wide Tuple can be found in the test modules of the chapter 8 project.

Test.Intro.Asset.TradeSetup.tradeSetup returns the allocated parties and active contracts

in a long tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back into scope

using pattern matching.

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,␣

↪→eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid, eurCid) <-␣

↪→tradeSetup

Tuples, like lists have some syntacticmagic. Both the types as well as the constructors for tuples are

(,,,) where the number of commas determines the arity of the tuple. Type and data constructor

can be applied with values inside the brackets, or outside, and partial application is possible:

t1 : (Int, Text) = (1, "a")

t2 : (,) Int Text = (1, "a")

t3 : (Int, Text) = (1,) "a"

t4 : a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records

with named fields for complex structures or long-lived values. Overuse of tuples can harm code

readability.

2.1. Writing Daml 113

Daml SDK Documentation, 2.1.1

Optional

The Optional type represents a value thatmay bemissing. It’s the closest thing Daml has to a “nul-

lable” value. Optional has two constructors: Some, which takes a value, and None, which doesn’t

take a value. In many languages one would write code like this:

lookupResult = lookupByKey(k);

if(lookupResult == null) {

// Do something

} else {

// Do something else

}

In Daml the same thing would be expressed as

lookupResult <- lookupByKey @T k

case lookupResult of

None -> do -- Do Something

return ()

Some cid -> do -- Do Something

return ()

Either

Either is used in cases where a value should store one of two types. It has two constructors, Left

and Right, each of which take a value of one or the other of the two types. One typical use-case of

Either is as an extended Optional where Right takes the role of Some and Left the role of None,

but with the ability to store an error value. Either Text, for example behaves just like Optional,

except that values with constructor Left have a text associated to them.

Note: As with tuples, it’s easy to overuse Either and harm readability. Consider writing your own

more explicit type instead. For example if you were returning South a vs North b using your own

type over Either would make your code clearer.

Typeclasses

You’ve seen typeclasses in use all the way from 3 Data types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a q where

getQuantity : a -> q

setQuantity : q -> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To

implement this interface, you need to define instances of this typeclass:

114 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data Foo = Foo with

amount : Decimal

instance HasQuantity Foo Decimal where

getQuantity foo = foo.amount

setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eq a => Ord a means

“everything that is orderable can also be compared for equality”. And that’s almost all there’s to it.

Important Typeclasses from the Prelude

Eq

The Eq typeclass allows values of a type to be compared for (in)-equality. It makes available two

function: == and /=. Most data types from the Standard Library have an instance of Eq. As you

already learned in 3 Data types, you can let the compiler automatically derive instances of Eq for you

using the deriving keyword.

Templates always have an Eq instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,

>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List

and Optional get an instance of Ord if the type they contain has one. You can let the compiler

automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text, ie “shown” in a shell. Its key function is show,

which takes a value and converts it to Text. All inbuilt data types have an instance for Show and

types like List and Optional get an instance if the type they contain has one. It also supports the

deriving keyword.

Functor

Functors are the closest thing to “containers” that Daml has. Whenever you see a type with a single

type parameter, you are probably looking at a Functor: [a], Optional a, Either Text a, Update

a. Functors are things that can be mapped over and as such, the key function of Functor is fmap,

which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

2.1. Writing Daml 115

Daml SDK Documentation, 2.1.1

Applicative Functor

Applicative Functors are a bit like Actions, which youmet in 5 Adding constraints to a contract, except that

you can’t use the result of one action as the input to another action. The only important Applicative

Functor that isn’t an action in Daml is the Commands type submitted in a submit block in Daml

Script. That’s why in order to use do notation in Daml Script, you have to enable the ApplicativeDo

language extension.

Actions

Actions were already covered in 5 Adding constraints to a contract. One way to think of them is as

“recipes” for a value, which need to be “executed to get at that value. Actions are always Func-

tors (and Applicative Functors). The intuition for that is simply that fmap f x is the recipe in xwith

the extra instruction to apply the pure function f to the result.

The really important Actions in Daml are Update and Script, but there are many others, like [],

Optional, and Either a.

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for Text

and [], where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, so that (+), (-), (*), and some other

functions can be used uniformly between Decimal and Int.

Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

• Module DA.List for Lists

• Module DA.Optional for Optional

• Module DA.Tuple for Tuples

• Module DA.Either for Either

• Module DA.Functor for Functors

• Module DA.Action for Actions

• Module DA.Monoid and Module DA.Semigroup for Monoids and Semigroups

• Module DA.Text for working with Text

• Module DA.Time for working with Time

• Module DA.Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve

already learnt about, which are worth knowing about: Foldable and Traversable. In Looping you

learned all about folds and their Action equivalents. All the examples there were based on lists, but

there are many other possible iterators. This is expressed in two additional typeclasses: Module

116 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

DA.Traversable, andModule DA.Foldable. For more detail on these concepts, please refer to the literature

in The Haskell Connection, or https://wiki.haskell.org/Foldable_and_Traversable.

Searching the Standard Library

Being able to browse the Standard Library starting from The standard library is a start, and themodule

naming helps, but it’s not an efficient process for finding out what a function you’ve encountered

does, or even less so to find a function that does a thing you need to do.

Daml has it’s own version of the Hoogle search engine, which offers search both by name and by

signature. It’s fully integrated into the search bar on https://docs.daml.com/, but for those wanting

a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Searching for functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of

the MultiTrade.

ensure (length baseAssetCids == length baseAssets) &&

(length quoteApprovalCids == length quoteAssets) &&

not (null baseAssets) &&

not (null quoteAssets)

Youmaybeable to guesswhatnotandnulldo, but try searching thosenames in thedocumentation

search. Search results from the Standard Library will show on top. not, for example, gives

not

: Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a

function does.

Searching for functions by Signature

The other very common use-case for the search is that you have some values that you want to do

something with, but don’t know the standard library function you need. On the MultiTrade tem-

plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the

original Trade we used baseAsset.owner as the signatory. How do you get the first element of

this list to extract the owner without going through the motions of a complete pattern match using

case?

The trick is to think about the signature of the function that’s needed, and then to search for that

signature. In this case, we want a single distinguished element from a list so the signature should

be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library

results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the let of the MultiTrade tem-

plate.

2.1. Writing Daml 117

https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

Daml SDK Documentation, 2.1.1

Youmay notice that in the search results you also get some hits that don’t mention [] explicitly. For

example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one at indexn. Remember

that (!!) operator from 10 Functional Programming 101? There are now two possible signatures we

could search for: [a] -> Int -> a and Int -> [a] -> a. Try searching for both. You’ll see that

the search returns (!!) in both cases. You don’t have to worry about the order of arguments.

Next up

There’s little more to learn about writing Daml at this point that isn’t best learnt by practice and

consulting reference material for both Daml and Haskell. To finish off this course, you’ll learn a little

more about your options for testing and interacting with Daml code in 12 Testing Daml Contracts, and

about the operational semantics of some keywords and common associated failures.

2.1.1.12 12 Testing Daml Contracts

This chapter is all about testing and debugging the Daml contracts you’ve built using the tools from

chapters 1-10. You’ve already met Daml Script as a way of testing your code inside the IDE. In this

chapter you’ll learn about more ways to test with Daml Script and its other uses, as well as other

tools you can use for testing and debugging. You’ll also learn about a few error cases that are most

likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically

we will cover:

• Daml Test tooling - Script, REPL, and Navigator

• The trace and debug functions

• Contention

Note that this section only covers testing your Daml contracts. Formore holistic application testing,

please refer to Testing Your Web App.

If you no longer have your projects set up, please follow the setup instructions in 9 Working with De-

pendencies to get hold of the code for this chapter. There is no code specific to this chapter.

Daml Test Tooling

There are three primary tools available in the SDK to test and interactwithDaml contracts. It is highly

recommended to explore the respective docs. The chapter 8 model lends itself well to being tested

using these tools.

Daml Script

Daml Script should be familiar by now. It’s a way to script commands and queries from

multiple parties against a Daml Ledger. Unless you’ve browsed other sections of the doc-

umentation already, you have probably used it mostly in the IDE. However, Daml Script

can do much more than that. It has four different modes of operation:

1. Run on a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Start a Sandbox and run against that for regression testing against an actual Ledger

API.

118 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

4. Run against any other already running Ledger.

Daml Navigator

Daml Navigator is a UI that runs against a Ledger API and allows interaction with con-

tracts.

Daml REPL

If you want to do things interactively, Daml REPL is the tool to use. The best way to think

of Daml REPL is as an interactive version of Daml Script, but it doubles up as a language

REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect

the results.

Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as

you expected? Damlhas two functions that allow you to do fine-grainedprintf debugging: debugand

trace. Both allow you to print something to StdOut if the code is reached. The difference between

debug and trace is similar to the relationship between abort and error:

• debug : Text -> m () maps a text to an Action that has the side-effect of printing to

StdOut.

• trace : Text -> a -> a prints to StdOut when the expression is evaluated.

daml> let a : Script () = debug "foo"

daml> let b : Script () = trace "bar" (debug "baz")

[Daml.Script:378]: "bar"

daml> a

[DA.Internal.Prelude:532]: "foo"

daml> b

[DA.Internal.Prelude:532]: "baz"

daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the Daml file and line number that

triggered the printing, but often no more than that because full stacktraces could violate subtrans-

action privacy quite easily. If you want to enable stacktraces for some purely functional code in your

modules, you can use the machinery in Module DA.Stack to do so, but we won’t cover that any further

here.

Diagnosing Contention Errors

The above tools and functions allow you to diagnosemost problems with Daml code, but they are all

synchronous. The sequence of commands is determined by the sequence of inputs. Thatmeans one

of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. Daml guarantees that there can only be one

consuming choice exercised per contract so what if two parties simultaneously submit an exercise

commandon the samecontract? Only one can succeed. Contention canalso occur due to incomplete

or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client

hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have

2.1. Writing Daml 119

Daml SDK Documentation, 2.1.1

in common is that someone has incomplete knowledge of the state the ledger will be in at the time

a transaction will be processed and/or committed.

If we look back at Daml’s execution model we’ll see there are three places where ledger state is con-

sumed:

1. A command is submitted by someclient, probably looking at the state of the ledger to build that

command. Maybe the command includes references to ContractIds that the client believes are

active.

2. During interpretation, ledger state is used to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by

reinterpreting it.

Collisions can occur both between 1 and 2 and between 2 and 3. Only during the commit phase is the

complete relevant ledger state at the time of the transaction known, which means the ledger state

at commit time is king. As a Daml contract developer, you need to understand the different causes

of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid

collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three

reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or

ContractIds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current

state

Following the possible error messages, we’ll discuss a few possible causes and remedies.

ContractId Not Found During Interpretation

Command interpretation error in LF-Damle: dependency error: couldn
t find␣

↪→contract␣

↪→ContractId(004481eb78464f1ed3291b06504d5619db4f110df71cb5764717e1c4d3aa096b9f).

ContractId Not Found During Validation

Disputed: dependency error: couldn
t find contract ContractId␣

↪→(00c06fa370f8858b20fd100423d928b1d200d8e3c9975600b9c038307ed6e25d6f).

120 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fetchByKey Error during Interpretation

Command interpretation error in LF-Damle: dependency error: couldn
t find key com.

↪→daml.lf.transaction.GlobalKey@11f4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn
t find key com.daml.lf.transaction.

↪→GlobalKey@11f4913d

lookupByKey Dispute During Validation

Disputed: recreated and original transaction mismatch VersionedTransaction(...)␣

↪→expected, but VersionedTransaction(...) is recreated.

Avoiding Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-

quester submitting a transaction with a consuming exercise on a contract while another requester

submits another exercise or fetch on the same contract. This type of contention cannot be elimi-

nated entirely, for there will always be some latency between a client submitting a command to a

participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)], where Text is a display name and Party the associated Party. If you

store this entire list on a single contract, any two users wanting to update their display name

at the same timewill cause a collision. If you instead keep each (Text, Party) on a separate

contract, these write operations become independent from each other.

The Analogy to keep inmind when structuring your data is that a template defines a table, and

a contract is a row in that table. Keeping large pieces of data on a contract is like storing big

blobs in a database row. If these blobs can change through different actions, you get write

conflicts.

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.

Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract

IDs during the interpretation phase on the participant node. So it reduces latencies slightly by

moving resolution from the client layer to the participant layer, but it doesn’t remove the issue.

Going back to the auction example above, if Alice sent a commandexerciseByKey @Auction

auctionKey Bid with amount = 100, this would be resolved to an exercise cid Bid

with amount = 100 during interpretation, where cid is the participant’s best guess what

ContractId the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-

ing choice on the same contract. For example, imagine an Auction contract containing a field

highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries

to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced

2.1. Writing Daml 121

Daml SDK Documentation, 2.1.1

will be rejected as it has a write collision with the first. It’s better to record the bids in sepa-

rate Bid contracts, which can be written to independently. Again, think about how you would

structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing ContractIds. Imagine you had created a sharded user directory

according to 1. Each user has a User contract that store their display name and party. Now you

write a chat application where each Message contract refers to the sender by ContractId

User. If the user changes their display name, that reference goes stale. You either have to

modify all messages that user ever sent, or become unable to use the sender contract in Daml.

If you need to be able to make this link inside Daml, Contract Keys help here. If the only place

you need to link Party to User is the UI, it might be best to not store contract references in

Daml at all.

Collisions due to Ignorance

The Daml Ledger Model specifies authorization rules, and privacy rules. Ie it specifies what makes a

transaction conformant, and who gets to see which parts of a committed transaction. It does not

specify how a command is translated to a transaction. This may seem strange at first since the

commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in

the ledger model. But the subtlety comes in on the read side. What happens when the participant,

during interpretation, encounters a fetch, fetchByKey, or lookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-

nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.

Alice may not be able to order these two nodes causally in the sense of “one create came before the

other”. See Causality and Local Ledgers for an in-depth treatment of causality on Daml Ledgers.

So what should happen now if Alice’s participant encounters a fetchByKey @T k or lookupByKey

@T k during interpretation? What if it encounters a fetch node? These decisions are part of the

operational semantics, and the decision of what should happen is based on the consideration that

the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not

witnessed an archive node for that contract - ie as long as it can’t guarantee that the contract is no

longer active. The rationale behind this is that fetch and exercise use ContractIds, which need

to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three

cases, someone believes the ContractId to be active still so it’s worth trying.

If a fetchByKey or lookupByKey node is encountered, the contract is only resolved if the requester

is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason

to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using

contract keys,make sure youmake the likely requesters of transactions observers on your contracts.

If you don’t, fetchByKey will always fail, and lookupByKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized lookupByKey @T k during interpre-

tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This

transaction is invalid at the time of interpretation, but Alice doesn’t know that.

3. Bob submits an exerciseByKey @T k Archive.

4. Depending onwhich of the transactions from2 and 3 gets sequenced first, either just 3, or both

2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

122 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

As youcansee, thebehavior offetch,fetchByKeyandlookupByKeyat interpretation timedepend

on what information is available to the requester at that time. That’s something to keep in mind

whenwritingDaml contracts, and something to think aboutwhen encountering frequent “Disputed”

errors.

Next up

You’ve reached the end of the Introduction to Daml. Congratulations. If you think you understand all

this material, you could test yourself by getting Daml certified at https://academy.daml.com. Or put

your skills to good use by developing a Daml application. There are plenty of examples to inspire you

on the Examples page.

2.1.2 Language reference docs

This section contains a reference to writing templates for Daml contracts. It includes:

2.1.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a Daml file outside a template, see Reference: Daml file structure.

Template outline structure

Here’s the structure of a Daml template:

template NameOfTemplate

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParameter : Text

-- more parameters here

where

signatory exampleParty

observer exampleParty2

agreement

-- some text

""

ensure

-- boolean condition

True

key (exampleParty, exampleParameter) : (Party, Text)

maintainer (exampleFunction key)

-- a choice goes here; see next section

template name template keyword

parameters with followed by the names of parameters and their types

template body where keyword

Can include:

2.1. Writing Daml 123

https://academy.daml.com
https://daml.com/examples

Daml SDK Documentation, 2.1.1

template-local definitions let keyword

Lets you make definitions that have access to the contract arguments and are available

in the rest of the template definition.

signatories signatory keyword

Required. The parties (see the Party type)whomust consent to the creation of this contract.

You won’t be able to create this contract until all of these parties have authorized it.

observers observer keyword

Optional. Parties that aren’t signatories but who you still want to be able to see this con-

tract.

an agreement agreement keyword

Optional. Text that describes the agreement that this contract represents.

a precondition ensure keyword

Only create the contract if the conditions after ensure evaluate to true.

a contract key key keyword

Optional. Lets you specify a combination of a party and other data that uniquely identifies

a contract of this template. See Reference: Contract keys.

maintainers maintainer keyword

Required if you have specified a key. Keys are only unique to a maintainer. See Reference:

Contract keys.

choices choice NameOfChoice : ReturnType controller nameOfParty do

or

controller nameOfParty can NameOfChoice : ReturnType do

Defines choices that can be exercised. See Choice structure for what can go in a choice.

Note that controller-first syntax is deprecated and will be removed in a future version

of Daml.

Choice structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

• start with the choice keyword

• start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

-- option 2 for specifying choices (deprecated syntax): controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

a controller (or controllers) controller keyword

Who can exercise the choice.

124 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

choice observers observer keyword

Optional. Additional parties that are guaranteed to be informed of an exercise of the choice.

To specify choice observers, you must start you choice with the choice keyword.

The optional observer keyword must precede the mandatory controller keyword.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which

changes the behavior of the choice with respect to privacy and if and when the contract is

archived. See contract consumption in choices for more details.

a name Must begin with a capital letter. Must be unique - choices in different templates can’t have

the same name.

a return type after a :, the return type of the choice

choice arguments with keyword

If you start your choice with choice and include a Party as a parameter, you can make that

Party the controller of the choice. This is a feature called “flexible controllers”, and it

means you don’t have to specify the controller when you create the contract - you can spec-

ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an

observer of the contract and must be explicitly declared as such.

a choice body After do keyword

What happens when someone exercises the choice. A choice body can contain update state-

ments: see Choice body structure below.

Choice body structure

A choice body contains Update expressions, wrapped in a do block.

The update expressions are:

create Create a new contract of this template.

create NameOfContract with contractArgument1 = value1; contractArgument2

= value2; ...

exercise Exercise a choice on a particular contract.

exercise idOfContract NameOfChoiceOnContract with choiceArgument1 =

value1; choiceArgument2 = value 2; ...

fetch Fetch a contract using its ID. Often used with assert to check conditions on the contract’s

content.

fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.

fetchedContract <- fetchByKey @ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.

fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.

if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be

supplied to a contract choice.

assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.

currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.

This means you only need to use return if you want to return something else.

return ContractID ExampleTemplate

The choice body can also contain:

2.1. Writing Daml 125

Daml SDK Documentation, 2.1.1

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch

someContractId

2.1.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

Template name

template NameOfTemplate

• This is the name of the template. It’s preceded bytemplate keyword. Must beginwith a capital

letter.

• This is the highest level of nesting.

• The name is used when creating a contract of this template (usually, from within a choice).

Template parameters

with

exampleParty : Party

exampleParty2 : Party

exampleParty3 : Party

exampleParam : Text

-- more parameters here

• with keyword. The parameters are in the form of a record type.

• Passed in when creating a contract from this template. These are then in scope inside the tem-

plate body.

• A template parameter can’t have the same name as any choice arguments inside the template.

• For all parties involved in the contract (whether they’re a signatory, observer, or con-

troller) you must pass them in as parameters to the contract, whether individually or as

a list ([Party]).

Template-local Definitions

where

let

allParties = [exampleParty, exampleParty2, exampleParty3]

• let keyword. Starts a block and is followed by any number of definitions, just like any other

let block.

• Template parameters as well as this are in scope, but self is not.

• Definitions from the let block can be used anywhere else in the template’s where block.

126 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Signatory parties

signatory exampleParty

• signatory keyword. After where. Followed by at least one Party.

• Signatories are the parties (see the Party type) who must consent to the creation of this con-

tract. They are the parties who would be put into an obligable position when this contract is

created.

Daml won’t let you put someone into an obligable position without their consent. So if the

contract will cause obligations for a party, theymust be a signatory. If they haven’t authorized

it, you won’t be able to create the contract. In this situation, you may see errors like:

NameOfTemplate requires authorizers Party1,Party2,Party, but only Party1

were given.

• When a signatory consents to the contract creation, this means they also authorize the conse-

quences of choices that can be exercised on this contract.

• The contract is visible to all signatories (as well as the other stakeholders of the contract). That

is, the compiler automatically adds signatories as observers.

• Each templatemust have at least one signatory. A signatory declaration consists of the signa-

tory keyword followed by a comma-separated list of one or more expressions, each expression

denoting a Party or collection thereof.

Observers

observer exampleParty2

• observer keyword. After where. Followed by at least one Party.

• Observers are additional stakeholders, so the contract is visible to these parties (see theParty

type).

• Optional. You can have many, either as a comma-separated list or reusing the keyword. You

could pass in a list (of type [Party]).

• Use when a party needs visibility on a contract, or be informed or contract events, but is not a

signatory or controller.

• If you start your choice with choice rather than controller (see Choices below), you must

make sure to add any potential controller as an observer. Otherwise, they will not be able to

exercise the choice, because they won’t be able to see the contract.

Choices

-- option 1 for specifying choices: choice name first

choice NameOfChoice1

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

controller exampleParty

do

return () -- replace this line with the choice body

-- option 2 for specifying choices (deprecated syntax): controller first

controller exampleParty can

(continues on next page)

2.1. Writing Daml 127

Daml SDK Documentation, 2.1.1

(continued from previous page)

NameOfChoice2

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

nonconsuming NameOfChoice3

: () -- replace () with the actual return type

with

exampleParameter : Text -- parameters here

do

return () -- replace this line with the choice body

• A right that the contract gives the controlling party. Can be exercised.

• This is essentially where all the logic of the template goes.

• By default, choices are consuming: that is, exercising the choice archives the contract, so no

further choices can be exercised on it. You can make a choice non-consuming using the non-

consuming keyword.

• There are two ways of specifying a choice: start with the choice keyword or start with the

controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure

to add that party as an observer.

• See Reference: choices for full reference information.

Agreements

agreement

-- text representing the contract

""

• agreement keyword, followed by text.

• Represents what the contract means in text. They’re usually the boundary between on-ledger

and off-ledger rights and obligations.

• Usually, they look like agreement tx, where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenatewith

<> .

Preconditions

ensure

True -- a boolean condition goes here

• ensure keyword, followed by a boolean condition.

• Used on contract creation. ensure limits the values on parameters that can be passed to the

contract: the contract can only be created if the boolean condition is true.

128 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)

maintainer (exampleFunction key)

• key and maintainer keywords.

• This feature lets you specify a “key” that you can use to uniquely identify this contract as an

instance of this template.

• If you specify a key, you must also specify a maintainer. This is a Party that will ensure the

uniqueness of all the keys it is aware of.

Because of this, the keymust include the maintainer Party or parties (for example, as part

of a tuple or record), and the maintainermust be a signatory.

• For a full explanation, see Reference: Contract keys.

2.1.2.3 Reference: choices

This page gives reference information on choices. For information on the high-level structure of a

choice, see Overview: template structure.

choice first or controller first

There are two ways you can start a choice:

• start with the choice keyword

• start with the controller keyword

-- option 1 for specifying choices: choice name first

choice NameOfChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

controller party

do

return () -- replace this line with the choice body

-- option 2 for specifying choices (deprecated syntax): controller first

controller exampleParty can

NameOfAnotherChoice :

() -- replace () with the actual return type

with

party : Party -- parameters here

do

return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a

controller. If you do this, you must make sure that you add that party as an observer, otherwise

they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer

when you compile your Daml files.

A secondary difference is that starting with choice allows choice observers to be attached to the

choice using the observer keyword. The choice observers are a list of parties that, in addition to

2.1. Writing Daml 129

Daml SDK Documentation, 2.1.1

the stakeholders, will see all consequences of the action.

-- choice observers may be specified if option 1 is used

choice NameOfChoiceWithObserver :

() -- replace () with the actual return type

with

party : Party -- parameters here

observer party -- optional specification of choice observers (currently␣

↪→only available in Daml-LF 1.11)

controller exampleParty

do

return () -- replace this line with the choice body

Choice name

Listing 2: Option 1 for specifying choices: choice name first

choice ExampleChoice1

: () -- replace () with the actual return type

Listing 3: Option 2 for specifying choices (deprecated syn-

tax): controller first

ExampleChoice2

: () -- replace () with the actual return type

• The name of the choice. Must begin with a capital letter.

• If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.

• Must be unique in your project. Choices in different templates can’t have the same name.

• If you’re using controller-first, you can have multiple choices after one can, for tidiness. How-

ever, note that this syntax is deprecated and will be removed in a future version of Daml.

Controllers

Listing 4: Option 1 for specifying choices: choice name first

controller exampleParty

130 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Listing 5: Option 2 for specifying choices (deprecated syn-

tax): controller first

controller exampleParty can

• controller keyword

• The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.

The conjunction of all the parties are required to authorize when this choice is exercised.

Contract consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of

the choice body and both the controllers and all contract stakeholders see all consequences of the

action.

Preconsuming choices

Listing 6: Option 1 for specifying choices: choice name first

preconsuming choice ExampleChoice5

: () -- replace () with the actual return type

2.1. Writing Daml 131

Daml SDK Documentation, 2.1.1

Listing 7: Option 2 for specifying choices (deprecated syn-

tax): controller first

preconsuming ExampleChoice7

: () -- replace () with the actual return type

• preconsuming keyword. Optional.

• Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-

ecuted.

• The create arguments of the contract can still be used in the body of the exercise, but cannot

be fetched by its contract id.

• The archival behavior is analogous to the consuming default behavior.

• Only the controllers and signatories of the contract see all consequences of the action. Other

stakeholders merely see an archive action.

• Can be thought as a non-consuming choice that implicitly archives the contract before any-

thing else happens

Postconsuming choices

Listing8: Option 1 for specifying choices: choice name first

postconsuming choice ExampleChoice6

: () -- replace () with the actual return type

Listing 9: Option 2 for specifying choices (deprecated syn-

tax): controller first

postconsuming ExampleChoice8

: () -- replace () with the actual return type

• postconsuming keyword. Optional.

• Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-

cuted.

• The create arguments of the contract can still be used in the body of the exercise as well as the

contract id for fetching it.

• Only the controllers and signatories of the contract see all consequences of the action. Other

stakeholders merely see an archive action.

• Can be thought as a non-consuming choice that implicitly archives the contract after the

choice has been exercised

Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name

first

nonconsuming choice ExampleChoice3

: () -- replace () with the actual return type

132 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Listing 11: Option 2 for specifying choices (deprecated syn-

tax): controller first

nonconsuming ExampleChoice4

: () -- replace () with the actual return type

• nonconsuming keyword. Optional.

• Makes a choice non-consuming: that is, exercising the choice does not archive the contract.

• Only the controllers and signatories of the contract see all consequences of the action.

• Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

• Return type is written immediately after choice name.

• All choices have a return type. A contract returning nothing should be marked as returning a

“unit”, ie ().

• If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

Choice arguments

with

exampleParameter : Text

• with keyword.

• Choice arguments are similar in structure to Template parameters: a record type.

• A choice argument can’t have the same name as any parameter to the template the choice is in.

• Optional - only if you need extra information passed in to exercise the choice.

Choice body

• Introduced with do

• The logic in this section is what is executed when the choice gets exercised.

• The choice body contains Update expressions. For detail on this, see Reference: updates.

• By default, the last expression in the choice is returned. You can return multiple updates in

tuple form or in a custom data type. To return something that isn’t of type Update, use the

return keyword.

2.1. Writing Daml 133

Daml SDK Documentation, 2.1.1

2.1.2.4 Reference: updates

This page gives reference information on Updates. For the structure around them, see Overview: tem-

plate structure.

Background

• An Update is ledger update. There are many different kinds of these, and they’re listed below.

• They are what can go in a choice body.

Binding variables

boundVariable <- UpdateExpression1

• Oneof the things youcando in a choice body is bind (assign) anUpdate expression to a variable.

This works for any of the Updates below.

do

do

updateExpression1

updateExpression2

• do can be used to group Update expressions. You can only have one update expression in a

choice, so any choice beyond the very simple will use a do block.

• Anything you can put into a choice body, you can put into a do block.

• By default, do returns whatever is returned by the last expression in the block.

So if you want to return something else, you’ll need to use return explicitly - see return for an

example.

create

create NameOfTemplate with exampleParameters

• create function.

• Creates a contract on the ledger. When a contract is committed to the ledger, it is given a

unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

• Use with to specify the template parameters.

• Requires authorization from the signatories of the contract being created. This is given by

being signatories of the contract fromwhich the other contract is created, being the controller,

or explicitly creating the contract itself.

If the required authorization is not given, the transaction fails. Formore detail on authorization,

see Signatory parties.

134 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgument1 = value1

• exercise function.

• Exercises the specified choice on the specified contract.

• Use with to specify the choice parameters.

• Requires authorization from the controller(s) of the choice. If the authorization is not given,

the transaction fails.

exerciseByKey

exerciseByKey @ContractType contractKey NameOfChoiceOnContract with␣

↪→choiceArgument1 = value1

• exerciseByKey function.

• Exercises the specified choice on the specified contract.

• Use with to specify the choice parameters.

• Requires authorization from the controller(s) of the choice and from at least one of the main-

tainers of the key. If the authorization is not given, the transaction fails.

fetch

fetchedContract <- fetch IdOfContract

• fetch function.

• Fetches the contract with that ID. Usually used with a bound variable, as in the example above.

• Often used to check the details of a contract before exercising a choice on that contract. Also

used when referring to some reference data.

• fetch cid fails if cid is not the contract id of an active contract, and thus causes the entire

transaction to abort.

• The submitting party must be an observer or signatory on the contract, otherwise fetch fails,

and similarly causes the entire transaction to abort.

fetchByKey

fetchedContract <- fetchByKey @ContractType contractKey

• fetchByKey function.

• The same as fetch, but fetches the contract with that contract key, instead of the contract ID.

• Like fetch, fetchByKey needs to be authorized by at least one stakeholder of the contract.

• Fails if no contract can be found.

2.1. Writing Daml 135

Daml SDK Documentation, 2.1.1

lookupByKey

fetchedContractId <- lookupByKey @ContractType contractKey

• lookupByKey function.

• Use this to confirm that a contract with the given contract key exists.

• If the submitting party is a stakeholder of amatching contract, lookupByKey returns theCon-

tractId of the contract; otherwise, it returns None. Transactions may fail due to contention

because the key changes between the lookup and committing the transaction, or becasue the

submitter didn’t know about the existence of a matching contract.

• All of the maintainers of the key must authorize the lookup (by either being signatories or by

submitting the command to lookup).

abort

abort errorMessage

• abort function.

• Fails the transaction - nothing in it will be committed to the ledger.

• errorMessage is of type Text. Use the error message to provide more context to an external

system (e.g., it gets displayed in Daml Studio script results).

• You could use assert False as an alternative.

assert

assert (condition == True)

• assert keyword.

• Fails the transaction if the condition is false. So the choice can only be exercised if the boolean

expression evaluates to True.

• Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a

parameter is on a blacklist:

choice Transfer : ContractId RestrictedPayout

with newReceiver : Party

controller receiver

do

assert (newReceiver /= blacklisted)

create RestrictedPayout with receiver = newReceiver; giver; blacklisted;␣

↪→qty

136 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

getTime

currentTime <- getTime

• getTime keyword.

• Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be

able to access the value.)

• Used to restrict when a choice can bemade. For example, with an assert that the time is later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

choice Complete : ()

controller party

do

-- bind the ledger effective time to the tchoose variable using getTime

tchoose <- getTime

-- assert that tchoose is no earlier than the begin time

assert (begin <= tchoose && tchoose < addRelTime begin period)

return

return ()

• return keyword.

• Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a

tuple:

do

firstContract <- create SomeContractTemplate with arg1; arg2

secondContract <- create SomeContractTemplate with arg1; arg2

return (firstContract, secondContract)

let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do

-- defines a function, createdContract, taking a single argument that when

-- called _will_ create the new contract using argument for issuer and owner

let createContract x = create NameOfContract with issuer = x; owner = x

createContract party1

createContract party2

2.1. Writing Daml 137

Daml SDK Documentation, 2.1.1

this

this lets you refer to the current contract from within the choice body. This refers to the contract,

not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the

template.

2.1.2.5 Reference: data types

This page gives reference information on Daml’s data types.

Built-in types

138 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Table of built-in primitive types

Type For Example Notes

Int integers 1, 1000000,

1_000_000

Int values are signed 64-bit integers which

represent numbers between -9,223,372,

036,854,775,808 and 9,223,372,036,

854,775,807 inclusive. Arithmetic opera-

tions raise an error on overflows and divi-

sion by0. Tomake longnumbersmore read-

able you can optionally add underscores.

Decimal short for Numeric

10

1.0 Decimal values are rational numbers with

precision 38 and scale 10.

Numeric n fixed point decimal

numbers

1.0 Numeric n values are rational numbers

with 38 decimal digits. The scale param-

eter n controls the number of digits after

the decimal point, so for example, Numeric

10 values have 10 digits after the decimal

point, and Numeric 20 values have 20 dig-

its after the decimal point. The value of n

must be between 0 and 37 inclusive.

BigNu-

meric

large fixed point

decimal numbers

1.0 BigNumeric values are rational numbers

with up to 2^16 decimal digits. They can

have up to 2^15 digits before the decimal

point, and up to 2^15 digits after the deci-

mal point.

Text strings "hello" Text values are strings of characters en-

closed by double quotes.

Bool boolean values True, False

Party unicode string rep-

resenting a party

alice <-

getParty

"Alice"

Every party in a Daml system has a unique

identifier of type Party. To create a value

of type Party, use binding on the result of

calling getParty. The party text can only

contain alphanumeric characters, -, _ and

spaces.

Date models dates date 2007

Apr 5

Permissible dates range from 0001-01-01

to 9999-12-31 (using a year-month-day

format). To create a value of type Date, use

the function date (to get this function, im-

port DA.Date).

Time models absolute

time (UTC)

time (date

2007 Apr

5) 14 30

05

Time values have microsecond precision

with allowed range from 0001-01-01 to

9999-12-31 (using a year-month-day for-

mat). To create a value of type Time, use

a Date and the function time (to get this

function, import DA.Time).

RelTime models differences

between time values

seconds 1,

seconds

(-2)

RelTime values have microsec-

ond precision with allowed range

from -9,223,372,036,854,775,808ms to

9,223,372,036,854,775,807ms There are no

literals for RelTime. Instead they are cre-

ated using one of days, hours, minutes,

seconds, miliseconds and microsec-

onds (to get these functions, import

DA.Time).

2.1. Writing Daml 139

Daml SDK Documentation, 2.1.1

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

Time

Definition of time on the ledger is a property of the execution environment. Daml assumes there is

a shared understanding of what time is among the stakeholders of contracts.

Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,

3, 2] is an example of a list of type [Int].

You can also construct lists using [] (the empty list) and :: (which is an operator that appends an

element to the front of a list). For example:

twoEquivalentListConstructions =

script do

assert ([1, 2, 3] == 1 :: 2 :: 3 :: [])

Summing a list

To sum a list, use a fold (because there are no loops in Daml). See Folding for details.

Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord

with

label1 : type1

label2 : type2

...

labelN : typeN

deriving (Eq, Show)

where:

• label1, label2, …, labelN are labels, which must be unique in the record type

• type1, type2, …, typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { label1 : type1; label2 : type2; ...; labelN : typeN }

deriving (Eq, Show)

The format using with and the format using { } are exactly the same syntactically. Themain differ-

ence is that when you use with, you can use newlines and proper indentation to avoid the delimiting

semicolons.

140 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Thederiving (Eq, Show) ensures the data type can be compared (using==) and displayed (using

show). The line starting deriving is required for data types used in fields of a template.

In general, add the deriving unless the data type contains function types (e.g. Int -> Int), which

cannot be compared or shown.

For example:

-- This is a record type with two fields, called first and second,

-- both of type CIntC

data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-- An example value of this type is:

newRecord = MyRecord with first = 1; second = 2

-- You can also write:

newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for

some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that

can be used to specify values of the Floor Int type: for example, Floor 0, Floor 1.

In Daml, data constructors may take at most one argument.

An example of a data constructor with zero arguments is data Empty = Empty {}. The only value

of the Empty type is Empty.

Note: In data Confusing = Int, the Int is a data constructor with no arguments. It has nothing

to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

-- Access the value of the field CfirstC

val.first

-- Access the value of the field CsecondC

val.second

2.1. Writing Daml 141

Daml SDK Documentation, 2.1.1

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select

fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, Daml lets you use this without assigning it

to make things look nicer:

-- if you have a variable called CsecondC equal to 5

second = 5

-- you could construct the same value as before with

myRecord2 = myRecord with second = second

-- or with

myRecord3 = MyRecord with first = 1; second = second

-- but Daml has a nicer way of putting this:

myRecord4 = MyRecord with first = 1; second

-- or even

myRecord5 = r with second

Note: The with keyword binds more strongly than function application. So for a function, say re-

turn, either write return IntegerCoordinate with first = 1; second = 5 or return

(IntegerCoordinate {first = 1; second = 5}), where the latter expression is enclosed in

parentheses.

Parameterized data types

Daml supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-- Here, a and b are type parameters.

-- The Coordinate after the data keyword is a type constructor.

data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

142 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Type synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used

interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has

type ParamType1 -> ParamType2 -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type

FooType = ParamType1 -> ParamType2 -> ReturnType.

Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The

enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in Daml: data AlternativeCoordinate a b = Al-

ternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:

a; second: b}.

These kinds of types are called product types.

Away of thinking about this is that theCoordinate Int Int type has a first and second dimension

(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and

so on.

Sum types

Sum types capture the notion of being of one kind or another.

An example is the built-in data type Bool. This is defined by data Bool = True | False deriv-

ing (Eq,Show), where True and False are data constructors with zero arguments . This means

that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive

at least from (Eq, Show).

2.1. Writing Daml 143

Daml SDK Documentation, 2.1.1

A very useful sum type is data Optional a = None | Some a deriving (Eq,Show). It is part

of the Daml standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined

by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.

Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

import Daml.Script

import DA.Assert

optionalIntegerToText (x : Optional Int) : Text =

case x of

None -> "Box is empty"

Some val -> "The content of the box is " <> show val

optionalIntegerToTextTest =

script do

In the optionalIntegerToText function, the case construct first tries to match the x argument

against the None data constructor, and in case of amatch, the "Box is empty" text is returned. In

case of no match, a match is attempted for x against the next pattern in the list, i.e., with the Some

data constructor. In case of a match, the content of the value attached to the Some label is bound to

the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least

one pattern that matches. The patterns are tested from top to bottom, and the expression for the

first pattern that matches will be executed. Note that _ can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and

achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

tmp =

let

l = [1, 2, 3]

in case l of

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that Daml Studio

produces a warning for all variables that are not being used. This is useful in detecting unused

variables. You can suppress the warning by naming the variable with an initial underscore.

144 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.6 Reference: built-in functions

This page gives reference information on functions for.

Working with time

Daml has these built-in functions for working with time:

• datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.

• subTime: subtracts one time from another. Returns the RelTime difference between time1

and time2.

• addRelTime: add times. Takes a Time and RelTime and adds the RelTime to the Time.

• days, hours, minutes, seconds: constructs a RelTime of the specified length.

• pass: (in Daml Script tests only) use pass : RelTime -> Script Time to advance the

ledger time by the argument amount. Returns the new time.

Working with numbers

Daml has these built-in functions for working with numbers:

• round: rounds a Decimal number to Int.

round d is the nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:

round 2.5 == 3 round (-2.5) == -3

round 3.4 == 3 round (-3.7) == -4

• truncate: converts aDecimalnumber toInt, truncating the value towards zero, for example:

truncate 2.2 == 2 truncate (-2.2) == -2

truncate 4.9 == 4 v (-4.9) == -4

• intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require

more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is a rational

number, but not a Decimal.

Working with text

Daml has these built-in functions for working with text:

• <> operator: concatenates two Text values.

• show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to

a Text.

To escape text in Daml strings, use \:

2.1. Writing Daml 145

Daml SDK Documentation, 2.1.1

Character How to escape it

\ \\

" \"

 \

Newline \n

Tab \t

Carriage return \r

Unicode (using ! as an example)
• Decimal code: \33

• Octal code: \o41

• Hexadecimal code: \x21

Working with lists

Daml has these built-in functions for working with lists:

• foldl and foldr: see Folding below.

Folding

A fold takes:

• a binary operator

• a first accumulator value

• a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a

foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs

to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.

This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the

list. This produces a third accumulator value.

3. This continues until there are nomore elements in the list. Then, the last accumulator value is

returned.

As an example, to sum up a list of integers in Daml:

sumList =

script do

assert (foldl (+) 0 [1, 2, 3] == 6)

146 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.7 Reference: expressions

This page gives reference information for Daml expressions that are not updates.

Definitions

Use assignment to bind values or functions at the top level of a Daml file or in a contract template

body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention

it after a colon following the variable name:

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

Here you see:

• the name of the function

• the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

• the definition = 2.0 * pi * r * h (which uses the previously defined pi)

Arithmetic operators

Operator Works for

+ Int, Decimal, RelTime

- Int, Decimal, RelTime

* Int, Decimal

/ (integer division) Int

% (integer remainder opera-

tion)

Int

^ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

2.1. Writing Daml 147

Daml SDK Documentation, 2.1.1

• 7 / 3 and (-7) / (-3) evaluate to 2

• (-7) / 3 and 7 / (-3) evaluate to -2

• 7 % 3 and 7 % (-3) evaluate to 1

• (-7) % 3 and (-7) % (-3) evaluate to -1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2

is another way of writing 1 + 2.

Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-

tracts stemming from the same contract template

Logical operators

The logical operators in Daml are:

• not for negation, e.g., not True == False

• && for conjunction, where a && b == and a b

• || for disjunction, where a || b == or a b

for Bool variables a and b.

If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =

-- let binds values or functions to be in scope beneath the expression

let

double (x : Int) = 2 * x

up = 5

in double up

You can use let inside do blocks:

blah = script

do

let

x = 1

(continues on next page)

148 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

y = 2

-- x and y are in scope for all subsequent expressions of the do block,

-- so can be used in expression1 and expression2.

expression1

expression2

Lastly, a templatemay contain a single let block.

template Iou

with

issuer : Party

owner : Party

where

signatory issuer

let updateOwner o = create this with owner = o

updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced

-- from any and all of the signatory, consuming, ensure and

-- agreement expressions and from within any choice do blocks.

choice Transfer : ContractId Iou

with newOwner : Party

controller owner

do

updateOwner newOwner

2.1.2.8 Reference: functions

This page gives reference information on functions in Daml.

Daml is a functional language. It lets you apply functions partially and also have functions that take

other functions as arguments. This page discusses these higher-order functions.

Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal

tubeSurfaceArea r h =

2.0 * pi * r * h

You can define this function equivalently using lambdas, involving \, a sequence of parameters, and

an arrow -> as:

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.1. Writing Daml 149

Daml SDK Documentation, 2.1.1

Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->

Decimal. An equivalent, but more instructive, way to read its type is: Decimal -> (Decimal

-> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns

another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type Dec-

imal -> Decimal. In other words, this function returns another function. Only the last application of

an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a

function that takes just a single argument and returns another function. In Daml, all functions are

curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to

all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a

function with partially defined arguments. For example:

import DA.Text

multiplyThreeNumbers : Int -> Int -> Int -> Int

multiplyThreeNumbers xx yy zz =

xx * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21 = multiplyTwoNumbersWith7 3

You could also define equivalent lambda functions:

multiplyWith18 = multiplyThreeNumbers 3 6

multiplyWith18_v2 : Int -> Int

Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with

the lambda notation):

-- Type synonym for Decimal -> Decimal -> Decimal

type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =

\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as

when binding values, e.g., pi : Decimal = 3.14159265359.

Functions have types, just like values. Which means they can be used just like normal variables. In

fact, in Daml, functions are values.

150 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

This means a function can take another function as an argument. For example, define a function

applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first

argument, a higher-order function, to the second and the third arguments to yield the result.

-- Higher order function

applyFilter (filter : Int -> Int -> Bool)

(x : Int)

(y : Int) = filter x y

compute = script do

applyFilter (<) 3 2 === False

applyFilter (/=) 3 2 === True

round (2.5 : Decimal) === 3

round (3.5 : Decimal) === 4

explode "me" === ["m", "e"]

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-

tion as an argument.

Note: Daml does not allow functions as parameters of contract templates and contract choices.

However, a follow up of a choice can use built-in functions, defined at the top level or in the contract

template body.

Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type

parameters. For example, you can define function composition as follows:

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose

not ((&&) True) False evaluate to True. Note that ((+) 4) has type Int -> Int, whereas

not has type Bool -> Bool.

You can find many other generic functions including this one in the Daml standard library.

Note: Daml currently does not support generic functions for a specific set of types, such as Int and

Decimal numbers. For example, sum (x: a) (y: a) = x + y is undefined when a equals the

type Party. Bounded polymorphism might be added to Daml in a later version.

2.1. Writing Daml 151

Daml SDK Documentation, 2.1.1

2.1.2.9 Reference: Daml file structure

This page gives reference information on the structure of Daml files outside of templates.

File structure

• This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the Daml

file name, without the file extension.

For a file with path ./Scenarios/Demo.daml, use module Scenarios.Demo where.

Imports

• You can import other modules (import OtherModuleName), including qualified imports

(import qualified AndYetOtherModuleName, import qualified AndYetOtherMod-

uleName as Signifier). Can’t have circular import references.

• To import the Preludemodule of ./Prelude.daml, use import Prelude.

• To import a module of ./Scenarios/Demo.daml, use import Scenarios.Demo.

• If you leave out qualified, and a module alias is specified, top-level declarations of the im-

portedmodule are imported into themodule’s namespace as well as the namespace specified

by the given alias.

Libraries

A Daml library is a collection of related Daml modules.

Define a Daml library using a LibraryModules.daml file: a normal Daml file that imports the root

modules of the library. The library consists of the LibraryModules.daml file and all its dependen-

cies, found by recursively following the imports of each module.

Errors are reported in Daml Studio on a per-library basis. This means that breaking changes on

shared Daml modules are displayed even when the files are not explicitly open.

Comments

Use -- for a single line comment. Use {- and -} for a comment extending over multiple lines.

Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique

identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract

identifier from the Sandbox may look different to ones on other Daml Ledgers.

You can use == and /= on contract identifiers of the same type.

152 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.10 Reference: Daml packages

This page gives reference information on Daml package dependencies.

Building Daml archives

When a Daml project is compiled, the compiler produces a Daml archive. These are

platform-independent packages of compiled Daml code that can be uploaded to a Daml ledger or

imported in other Daml projects.

Daml archives have a .dar file ending. By default, when you run daml build, it will generate the

.dar file in the .daml/dist folder in the project root folder. For example, running daml build in

project foowith project version 0.0.1will result in a Daml archive .daml/dist/foo-0.0.1.dar.

You can specify a different path for the Daml archive by using the -o flag:

daml build -o foo.dar

For details on how to upload a Daml archive to the ledger, see the deploy documentation. The rest of

this page will focus on how to import a Daml package in other Daml projects.

Inspecting DARs

To inspect a DAR and get information about the packages inside it, you can use the daml damlc

inspect-dar command. This is often useful to find the package id of the project you just built.

You can run daml damlc inspect-dar /path/to/your.dar to get a human-readable listing of

the files inside it and a list of packages and their package ids. Here is a (shortened) example output:

$ daml damlc inspect-dar .daml/dist/create-daml-app-0.1.0.dar

DAR archive contains the following files:

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-daml-

↪→app-0.1.0-29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-prim-

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-0.

↪→0.0-a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-DA-

↪→Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/create-

↪→daml-app-0.1.0.conf

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.daml

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie

(continues on next page)

2.1. Writing Daml 153

Daml SDK Documentation, 2.1.1

(continued from previous page)

META-INF/MANIFEST.MF

DAR archive contains the following packages:

create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d"

daml-stdlib-DA-Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662

↪→"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662"

daml-prim-75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15

↪→"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15"

daml-stdlib-0.0.0-

↪→a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a

↪→"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a"

In addition to the human-readable output, you can also get the output as JSON. This is easier to

consume programmatically and it is more robust to changes across SDK versions:

$ daml damlc inspect-dar --json .daml/dist/create-daml-app-0.1.0.dar

{

"packages": {

"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-daml-

↪→app-0.1.0-29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

↪→",

"name": "create-daml-app",

"version": "0.1.0"

},

"d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-DA-

↪→Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"name": null,

"version": null

},

"75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-prim-

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf",

"name": "daml-prim",

"version": "0.0.0"

},

"a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a": {

"path": "create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-0.

↪→0.0-a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"name": "daml-stdlib",

"version": "0.0.0"

}

},

"main_package_id":

↪→"29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d",

(continues on next page)

154 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"files": [

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-daml-

↪→app-0.1.0-29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d.dalf

↪→",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-prim-

↪→75b070729b1fbd37a618493652121b0d6f5983b787e35179e52d048db70e9f15.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-0.

↪→0.0-a535cbc3657b8df953a50aaef5a4cd224574549c83ca4377e8219aadea14f21a.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-DA-

↪→Internal-Template-

↪→d14e08374fc7197d6a0de468c968ae8ba3aadbf9315476fd39071831f5923662.dalf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/data/create-

↪→daml-app-0.1.0.conf",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.daml",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hi",

"create-daml-app-0.1.0-

↪→29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie",

"META-INF/MANIFEST.MF"

]

}

Note that name and version will be null for packages in Daml-LF < 1.8.

Importing Daml packages

There are two ways to import a Daml package in a project: via dependencies, and via

data-dependencies. They each have certain advantages and disadvantages. To summarize:

• dependencies allow you to import a Daml archive as a library. The definitions in the depen-

dency will all be made available to the importing project. However, the dependency must be

compiled with the same SDK version, so this method is only suitable for breaking up large

projects into smaller projects that depend on each other, or to reuse existing libraries.

• data-dependencies allow you to import a Daml archive (.dar) or a Daml-LF package (.dalf),

including packages that have already been deployed to a ledger. These packages can be com-

piled with any previous SDK version. On the other hand, not all definitions can be carried over

perfectly, since the Daml interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

2.1. Writing Daml 155

Daml SDK Documentation, 2.1.1

Importing a Daml package via dependencies

A Daml project can declare a Daml archive as a dependency in the dependencies field of daml.

yaml. This lets you import modules and reuse definitions from another Daml project. The main

limitation of this method is that the dependency must be built for the same SDK version as the

importing project.

Let’s go through an example. Suppose you have an existing Daml project foo, located at /home/

user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the Daml archive of foo. Go into /home/user/foo and run daml

build -o foo.dar. This will create the Daml archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated Daml archive as a dependency.

Go into /home/user/bar and change the dependencies field in daml.yaml to point to the created

Daml archive:

dependencies:

- daml-prim

- daml-stdlib

- ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

- /home/user/foo/foo.dar

When you run daml build in the bar project, the compiler will make the definitions in foo.dar

available for importing. For example, if foo exports the module Foo, you can import it in the usual

way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit

which modules of foo get exported, you may add an exposed-modules field in the daml.yaml file

for foo:

exposed-modules:

- Foo

Importing a Daml archive via data-dependencies

You can import a Daml archive (.dar) or Daml-LF package (.dalf) using data-dependencies. Unlike

dependencies, this can be used when the SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- ../foo/foo.dar

When importing packages this way, the Daml compiler will try to reconstruct the original Daml in-

terface from the compiled binaries. However, to allow data-dependencies to work across SDK

156 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

versions, the compiler has to abstract over some details which are not compatible across SDK

versions. This means that there are some Daml features that cannot be recovered when using

data-dependencies. In particular:

1. Export lists cannot be recovered, so imports via data-dependencies can access definitions

that were originally hidden. This means it is up to the importing module to respect the data

abstraction of the original module. Note that this is the same for all code that runs on the

ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via

exposed-modules, you can get an error if you also have a data-dependency that references

something from the hidden modules (even if it is only reexported). Since exposed-modules

are not available on the ledger in general, we recommend to not make use of them and instead

rely on naming conventions (e.g., suffix module names with .Internal) to make it clear

which modules are part of the public API.

3. Prior to Daml-LF version 1.8, typeclasses could not be reconstructed. This means if you have a

package that is compiledwith anolder version ofDaml-LF, typeclasses and typeclass instances

will not be carried over via data-dependencies, and you won’t be able to call functions that rely

on typeclass instances. This includes the template functions, such as create, signatory,

and exercise, as these rely on typeclass instances.

4. Starting from Daml-LF version 1.8, when possible, typeclass instances will be reconstructed

by re-using the typeclass definitions from dependencies, such as the typeclasses exported

in daml-stdlib. However, if the typeclass signature has changed, you will get an instance

for a reconstructed typeclass instead, which will not interoperate with code from dependen-

cies. Furthermore, if the typeclass definition uses the FunctionalDependencies language

extension, this may cause additional problems, since the functional dependencies cannot be

recovered. So this is something to keep in mind when redefining typeclasses and when using

FunctionalDependencies.

5. Certain advanced type system features cannot be reconstructed. In particular, DA.Generics

and DeriveGeneric cannot be reconstructed. This may result in certain definitions being

unavailable when importing a module that uses these advanced features.

Because of their flexibility, data-dependencies are a tool that is recommended for performing Daml

model upgrades. See the upgrade documentation for more details.

Referencing Daml packages already on the ledger

Daml packages that have been uploaded to a ledger can be imported as data dependencies, given

you have the necessary permissions to download these packages. To import such a package, add

the package name and version separated by a colon to the data-dependencies stanza as follows:

ledger:

host: localhost

port: 6865

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- foo:1.0.0

If your ledger runs at the default host and port (localhost:6865), the ledger stanza can be omitted.

This will fetch and install the package foo-1.0.0. A daml.lock file is created at the root of your

project directory, pinning the resolved packages to their exact package ID:

2.1. Writing Daml 157

Daml SDK Documentation, 2.1.1

dependencies:

- pkgId: 51255efad65a1751bcee749d962a135a65d12b87eb81ac961142196d8bbca535

name: foo

version: 1.0.0

The daml.lock file needs to be checked into version control of your project. This assures that pack-

age name/version tuples specified in your data dependencies are always resolved to the same pack-

age ID. To recreate or update your daml.lock file, delete it and run daml build again.

Handling module name collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple

import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,

there are a few tools you can use to approach this problem.

The first is to use package qualified imports. Supposing you have packages with different names,

foo and bar, which both expose a module X, you can select which one you want with a package

qualified import.

To get X from foo:

import "foo" X

To get X from bar:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX

import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with

the same name. For example, if you’re loading different versions of the same package. To handle this

case, you need the --package build option.

Suppose you are importing packages foo-1.0.0 and foo-2.0.0. Notice they have the same name

foobutdifferent versions. To getmodules that are exposed inbothpackages, youwill need toprovide

module aliases. You can do this by passing the --package build option. Open daml.yaml and add

the following build-options:

build-options:

-
--package

-
foo-1.0.0 with (X as Foo1.X)

-
--package

-
foo-2.0.0 with (X as Foo2.X)

This will alias the X in foo-1.0.0 as Foo1.X, and alias the X in foo-2.0.0 as Foo2.X. Now you will

be able to import both X by using the new names:

import qualified Foo1.X

import qualified Foo2.X

158 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

It is also possible to add a prefix to all modules in a package using the module-prefixes field in

your daml.yaml. This is particularly useful for upgrades where you can map all modules of version

v of your package under V$v. For the example above you can use the following:

module-prefixes:

foo-1.0.0: Foo1

foo-2.0.0: Foo2

That will allow you to import module X from package foo-1.0.0 as Foo1.X and X from package

foo-2.0.0 as Foo2.

You can also use more complex module prefixes, e.g., foo-1.0.0: Foo1.Bar which will make

module X available under Foo1.Bar.X.

2.1.2.11 Reference: Contract keys

Contract keys are an optional addition to templates. They let you specify away of uniquely identifying

contracts, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with

bank : Party

number : Text

owner : Party

balance : Decimal

observers : [Party]

where

signatory [bank, owner]

observer observers

key (bank, number) : AccountKey

maintainer key._1

2.1. Writing Daml 159

Daml SDK Documentation, 2.1.1

What can be a contract key

The key can be an arbitrary serializable expression that does not contain contract IDs. However, it

must include every party that you want to use as a maintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

Specifying maintainers

If you specify a contract key for a template, you must also specify a maintainer or maintainers, in

a similar way to specifying signatories or observers. Themaintainers “own” the key in the sameway

the signatories “own” a contract. Just like signatories of contracts prevent double spends or use of

false contract data,maintainers of keys prevent double allocation or incorrect lookups. Since the key

is part of the contract, the maintainers must be signatories of the contract. However, maintainers

are computed from the key instead of the template arguments. In the example above, the bank is

ultimately the maintainer of the key.

Uniqueness of keys is guaranteed per template. Since multiple templates may use the same key

type, some key-related functions must be annotated using the @ContractType as shown in the

examples below.

When you are writing Daml models, the maintainers matter since they affect authorization – much

like signatories and observers. You don’t need to do anything to “maintain” the keys. In the above

example, it is guaranteed that there can only be one Account with a given number at a given bank.

Checking of the keys is done automatically at execution time, by the Daml execution engine: if some-

one tries to create a new contract that duplicates an existing contract key, the execution engine will

cause that creation to fail.

Contract Lookups

The primary purpose of contract keys is to provide a stable, and possibly meaningful, identifier that

can be used in Daml to fetch contracts. There are two functions to perform such lookups: fetchByKey

and lookupByKey. Both types of lookup are performed at interpretation time on the submitting Par-

ticipant Node, on a best-effort basis. Currently, that best-effort means lookups only return contracts

if the submitting Party is a stakeholder of that contract.

In particular, the above means that if multiple commands are submitted simultaneously, all us-

ing contract lookups to find and consume a given contract, there will be contention between these

commands, and at most one will succeed.

Limiting key usage to stakeholders also means that keys cannot be used to access a divulged con-

tract, i.e. there can be cases where fetch succeeds and fetchByKey does not. See the example at the

end of this section for details.

160 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative

to fetch and behaves the same in most ways.

It returns a tuple of the ID and the contract object (containing all its data).

Like fetch, fetchByKey needs to be authorized by at least one stakeholder.

fetchByKey fails and aborts the transaction if:

• The submitting Party is not a stakeholder on a contract with the given key, or

• A contract was found, but the fetchByKey violates the authorization rule, meaning no stake-

holder authorized the fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that

the submitting Party doesn’t know about it, or there are issues with authorization.

visibleByKey

boolean <- visibleByKey @ContractType contractKey

UsevisibleByKey to checkwhether youcanseeanactive contract for thegivenkeywith the current

authorizations. If the contract exists and you have permission to see it, returns True, otherwise

returns False.

To clarify, ignoring contention:

1. visibleByKeywill return True if all of these are true: there exists a contract for the given key,

the submitter is a stakeholder on that contract, and at the point of call we have the authoriza-

tion of all of the maintainers of the key.

2. visibleByKey will return False if all of those are true: there is no contract for the given key,

and at the point of call we have authorization from all the maintainers of the key.

3. visibleByKey will abort the transaction at interpretation time if, at the point of call, we are

missing the authorization from any one maintainer of the key.

4. visibleByKey will fail at validation time (after returning False at interpretation time) if all

of these are true: at the point of call, we have the authorization of all the maintainers, and a

valid contract exists for the given key, but the submitter is not a stakeholder on that contract.

While it may at first seem too restrictive to require allmaintainers to authorize the call, this is actu-

ally required in order to validatenegative lookups. In thepositive case, when youcansee the contract,

it’s easy for the transaction tomention which contract it found, and therefore for validators to check

that this contract does indeed exist, and is active as of the time of executing the transaction.

For the negative case, however, the transaction submitted for execution cannot say which contract it

has not found (as, by definition, it has not found it, and it may not even exist). Still, validators have

to be able to reproduce the result of not finding the contract, and therefore they need to be able to

look for it, which means having the authorization to ask the maintainers about it.

2.1. Writing Daml 161

Daml SDK Documentation, 2.1.1

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

UselookupByKey to checkwhether a contract with the specified key exists. If it does exist, lookup-

ByKey returns the Some contractId, where contractId is the ID of the contract; otherwise, it

returns None.

lookupByKey is conceptually equivalent to

lookupByKey : forall c k. (HasFetchByKey c k) => k -> Update (Optional␣

↪→(ContractId c))

lookupByKey k = do

visible <- visibleByKey @c k

if visible then do

(contractId, _ignoredContract) <- fetchByKey @c k

return $ Some contractId

else

return None

Therefore, lookupByKey needs all the same authorizations as visibleByKey, for the same reasons,

and fails in the same cases.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

exerciseByKey

exerciseByKey @ContractType contractKey

UseexerciseByKey to exercise a choice on a contract identified by itskey (compared toexercise,

which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need

authorization from the controllers of the choice and at least one stakeholder. This is equivalent to

the authorization needed to do a fetchByKey followed by an exercise.

Example

A complete example of possible success and failure scenarios of fetchByKey and lookupByKey is shown

below.

-- Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

-- SPDX-License-Identifier: Apache-2.0

module Keys where

import Daml.Script

import DA.Assert

import DA.Optional

template Keyed

with

sig : Party

obs : Party

(continues on next page)

162 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where

signatory sig

observer obs

key sig : Party

maintainer key

template Divulger

with

divulgee : Party

sig : Party

where

signatory divulgee

observer sig

nonconsuming choice DivulgeKeyed

: Keyed

with

keyedCid : ContractId Keyed

controller sig

do

fetch keyedCid

template Delegation

with

sig : Party

delegees : [Party]

where

signatory sig

observer delegees

nonconsuming choice CreateKeyed

: ContractId Keyed

with

delegee : Party

obs : Party

controller delegee

do

create Keyed with sig; obs

nonconsuming choice ArchiveKeyed

: ()

with

delegee : Party

keyedCid : ContractId Keyed

controller delegee

do

archive keyedCid

nonconsuming choice UnkeyedFetch

: Keyed

with

cid : ContractId Keyed

delegee : Party

controller delegee

do

(continues on next page)

2.1. Writing Daml 163

Daml SDK Documentation, 2.1.1

(continued from previous page)

fetch cid

nonconsuming choice VisibleKeyed

: Bool

with

key : Party

delegee : Party

controller delegee

do

visibleByKey @Keyed key

nonconsuming choice LookupKeyed

: Optional (ContractId Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

lookupByKey @Keyed lookupKey

nonconsuming choice FetchKeyed

: (ContractId Keyed, Keyed)

with

lookupKey : Party

delegee : Party

controller delegee

do

fetchByKey @Keyed lookupKey

template Helper

with

p : Party

where

signatory p

choice FetchByKey : (ContractId Keyed, Keyed)

with

keyedKey : Party

controller p

do fetchByKey @Keyed keyedKey

choice VisibleByKey : Bool

with

keyedKey : Party

controller p

do visibleByKey @Keyed keyedKey

choice LookupByKey : (Optional (ContractId Keyed))

with

keyedKey : Party

controller p

do lookupByKey @Keyed keyedKey

choice AssertNotVisibleKeyed : ()

with

delegationCid : ContractId Delegation

(continues on next page)

164 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

delegee : Party

key : Party

controller p

do

b <- exercise delegationCid VisibleKeyed with

delegee

key

assert $ not b

choice AssertLookupKeyedIsNone : ()

with

delegationCid : ContractId Delegation

delegee : Party

lookupKey : Party

controller p

do

b <- exercise delegationCid LookupKeyed with

delegee

lookupKey

assert $ isNone b

choice AssertFetchKeyedEqExpected : ()

with

delegationCid : ContractId Delegation

delegee : Party

lookupKey : Party

expectedCid : ContractId Keyed

controller p

do

(cid, keyed) <- exercise delegationCid FetchKeyed with

delegee

lookupKey

cid === expectedCid

lookupTest = script do

-- Put four parties in the four possible relationships with a CKeyedC

sig <- allocateParty "s" -- Signatory

obs <- allocateParty "o" -- Observer

divulgee <- allocateParty "d" -- Divulgee

blind <- allocateParty "b" -- Blind

keyedCid <- submit sig do createCmd Keyed with ..

divulgercid <- submit divulgee do createCmd Divulger with ..

submit sig do exerciseCmd divulgercid DivulgeKeyed with ..

-- Now the signatory and observer delegate their choices

sigDelegationCid <- submit sig do

createCmd Delegation with

sig

delegees = [obs, divulgee, blind]

obsDelegationCid <- submit obs do

createCmd Delegation with

sig = obs

delegees = [divulgee, blind]

(continues on next page)

2.1. Writing Daml 165

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- TESTING LOOKUPS AND FETCHES

-- Maintainer can fetch

(cid, keyed) <- submit sig do

Helper sig CcreateAndExerciseCmdC FetchByKey sig

cid === keyedCid

-- Maintainer can see

b <- submit sig do

Helper sig CcreateAndExerciseCmdC VisibleByKey sig

assert b

-- Maintainer can lookup

mcid <- submit sig do

Helper sig CcreateAndExerciseCmdC LookupByKey sig

mcid === Some keyedCid

-- Stakeholder can fetch

(cid, l) <- submit obs do

Helper obs CcreateAndExerciseCmdC FetchByKey sig

keyedCid === cid

-- Stakeholder can
t see without authorization

submitMustFail obs do

Helper obs CcreateAndExerciseCmdC VisibleByKey sig

-- Stakeholder can see with authorization

b <- submit obs do

exerciseCmd sigDelegationCid VisibleKeyed with

delegee = obs

key = sig

assert b

-- Stakeholder can
t lookup without authorization

submitMustFail obs do

Helper obs CcreateAndExerciseCmdC LookupByKey sig

-- Stakeholder can lookup with authorization

mcid <- submit obs do

exerciseCmd sigDelegationCid LookupKeyed with

delegee = obs

lookupKey = sig

mcid === Some keyedCid

-- Divulgee _can_ fetch the contract directly

submit divulgee do

exerciseCmd obsDelegationCid UnkeyedFetch with

delegee = divulgee

cid = keyedCid

-- Divulgee can
t fetch through the key

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC FetchByKey sig

-- Divulgee can
t see

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC VisibleByKey sig

-- Divulgee can
t see with stakeholder authority

submitMustFail divulgee do

exerciseCmd obsDelegationCid VisibleKeyed with

delegee = divulgee

(continues on next page)

166 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

key = sig

-- Divulgee can
t lookup

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC LookupByKey sig

-- Divulgee can
t lookup with stakeholder authority

submitMustFail divulgee do

exerciseCmd obsDelegationCid LookupKeyed with

delegee = divulgee

lookupKey = sig

-- Divulgee can
t do positive lookup with maintainer authority.

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC AssertNotVisibleKeyed with

delegationCid = sigDelegationCid

delegee = divulgee

key = sig

-- Divulgee can
t do positive lookup with maintainer authority.

-- Note that the lookup returns CNoneC so the assertion passes.

-- If the assertion is changed to CisSomeC, the assertion fails,

-- which means the error message changes. The reason is that the

-- assertion is checked at interpretation time, before the lookup

-- is checked at validation time.

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC AssertLookupKeyedIsNone with

delegationCid = sigDelegationCid

delegee = divulgee

lookupKey = sig

-- Divulgee can
t fetch with stakeholder authority

submitMustFail divulgee do

Helper divulgee CcreateAndExerciseCmdC AssertFetchKeyedEqExpected with

delegationCid = obsDelegationCid

delegee = divulgee

lookupKey = sig

expectedCid = keyedCid

-- Blind party can
t fetch

submitMustFail blind do

Helper blind CcreateAndExerciseCmdC FetchByKey sig

-- Blind party can
t see

submitMustFail blind do

Helper blind CcreateAndExerciseCmdC VisibleByKey sig

-- Blind party can
t see with stakeholder authority

submitMustFail blind do

exerciseCmd obsDelegationCid VisibleKeyed with

delegee = blind

key = sig

-- Blind party can
t see with maintainer authority

submitMustFail blind do

Helper blind CcreateAndExerciseCmdC AssertNotVisibleKeyed with

delegationCid = sigDelegationCid

delegee = blind

key = sig

-- Blind party can
t lookup

submitMustFail blind do

Helper blind CcreateAndExerciseCmdC LookupByKey sig

-- Blind party can
t lookup with stakeholder authority

submitMustFail blind do

(continues on next page)

2.1. Writing Daml 167

Daml SDK Documentation, 2.1.1

(continued from previous page)

exerciseCmd obsDelegationCid LookupKeyed with

delegee = blind

lookupKey = sig

-- Blind party can
t lookup with maintainer authority.

-- The lookup initially returns CNoneC, but is rejected at

-- validation time

submitMustFail blind do

Helper blind CcreateAndExerciseCmdC AssertLookupKeyedIsNone with

delegationCid = sigDelegationCid

delegee = blind

lookupKey = sig

-- Blind party can
t fetch with stakeholder authority as lookup is negative

submitMustFail blind do

exerciseCmd obsDelegationCid FetchKeyed with

delegee = blind

lookupKey = sig

-- Blind party can see nonexistence of a contract

submit blind do

Helper blind CcreateAndExerciseCmdC AssertNotVisibleKeyed with

delegationCid = obsDelegationCid

delegee = blind

key = obs

-- Blind can do a negative lookup on a truly nonexistant contract

submit blind do

Helper blind CcreateAndExerciseCmdC AssertLookupKeyedIsNone with

delegationCid = obsDelegationCid

delegee = blind

lookupKey = obs

-- TESTING CREATES AND ARCHIVES

-- Divulgee can archive

submit divulgee do

exerciseCmd sigDelegationCid ArchiveKeyed with

delegee = divulgee

keyedCid

-- Divulgee can create

keyedCid2 <- submit divulgee do

exerciseCmd sigDelegationCid CreateKeyed with

delegee = divulgee

obs

-- Stakeholder can archive

submit obs do

exerciseCmd sigDelegationCid ArchiveKeyed with

delegee = obs

keyedCid = keyedCid2

-- Stakeholder can create

keyedCid3 <- submit obs do

exerciseCmd sigDelegationCid CreateKeyed with

delegee = obs

obs

return ()

168 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.12 Reference: Exceptions

Exceptions are a Daml feature which provides a way to handle certain errors that arise during in-

terpretation instead of aborting the transaction, and to roll back the state changes that lead to the

error.

There are two types of errors:

Builtin Errors

Exception type Thrown on

GeneralError Calls to error and abort

ArithmeticError Arithmetic errors like overflows and division by zero

PreconditionFailed ensure statements that return False

AssertionFailed Failed assert calls (or other functions from DA.Assert)

Note that other errors cannot be handled via exceptions, e.g., an exercise on an inactive contract will

still result in a transaction abort.

User-Defined Exceptions

Users can define their own exception types which can be thrown and caught. The definition looks

similar to templates, and just like with templates, the definition produces a record type of the given

name as well as instances to make that type throwable and catchable.

In addition to the record fields, exceptions also need to define a message function.

exception MyException

with

field1 : Int

field2 : Text

where

message "MyException(" <> show field1 <> ", " <> show field2 <> ")"

Throwing Exceptions

There are two ways to throw exceptions:

1. Inside of an Action like Update or Script you can use throw from DA.Exception. This

works for any Action that is an instance of ActionThrow.

2. Outside of ActionThrow you can throw exceptions using throwPure.

If both are an option, it is generally preferable to use throw since it is easier to reason about when

exactly the exception will get thrown.

2.1. Writing Daml 169

Daml SDK Documentation, 2.1.1

Catching Exceptions

Exceptions are caught in try-catch blocks similar to those found in languages like Java. The try

block defines the scope within which errors should be handled while the catch clauses defines

which types of errors are handled and how the programshould continue. If an exception gets caught,

the subtransaction between the try and the the point where the exception is thrown is rolled back.

The actions under rollback nodes are still validated, so, e.g., you can never fetch a contract that is

inactive at that point or have two contracts with the same key active at the same time. However, all

ledger state changes (creates, consuming exercises) are rolled back to the state before the rollback

node.

Each try-catch block can have multiple catch clauses with the first one that applies taking prece-

dence.

In the example below the create of T will be rolled back and the first catch clause applies which

will create an Error contract.

try do

_ <- create (T p)

throw MyException with

field1 = 0

field2 = "42"

catch

(MyException field1 field2) ->

create Error with

p = p

msg = "MyException"

(ArithmeticError _) ->

create Error with

p = p

msg = "ArithmeticError"

2.1.2.13 Reference: Interfaces

Warning: This feature is under active development and not officially supported in production

environments.

In Daml, an interface defines an abstract type which specifies the behavior that a template must

implement. This allows decoupling such behavior from its implementation, so other developers can

write applications in terms of the interface instead of the concrete template.

170 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Interface declaration

An interface declaration is somewhat similar to a template declaration.

Interface name

interface MyInterface where

• This is the name of the interface.

• It’s preceded by the keyword interface and followed by the keyword where.

• It must begin with a capital letter, like any other type name.

Interface methods

method1 : Party

method2 : Int

method3 : Bool -> Int -> Int -> Int

• An interface may define any number of methods.

• Methodsare in scopeas functionsat the top level, in the ensure clause, and in interface choices.

These functions always take an unstated first argument corresponding to a contract that im-

plements the interface:

func1 : Implements t MyInterface => t -> Party

func1 = method1

func2 : Implements t MyInterface => t -> Int

func2 = method2

func3 : Implements t MyInterface => t -> Bool -> Int -> Int -> Int

func3 = method3

• Methods are also in scope in interface choices (see Interface choices below).

Interface precondition

ensure myGuard (method1 this)

• A precondition is introduced with the keyword ensure and must be a boolean expression.

• It is possible to define interfaces without an ensure clause, but writing more than one is a

compilation error.

• this is in scope in the method with the type of the interface. self, however, is not.

• The interface methods can be used as part of the expression (e.g. method1).

• It is evaluated and checked right after the implementing template’s precondition upon con-

tract creation

2.1. Writing Daml 171

Daml SDK Documentation, 2.1.1

Interface choices

choice MyChoice : (ContractId MyInterface, Int)

with

argument1 : Bool

argument2 : Int

controller method1 this

do

let n0 = method2 this

let n1 = method3 this argument1 argument2 n0

pure (self, n1)

nonconsuming choice MyNonConsumingChoice : Int

controller method1 this

do

pure $ method2 this

• Interface choiceswork in a very similar way to template choices. Any contract of an implement-

ing interface will grant the choice to the controlling party.

• Interfacemethods can be used to define the controller of a choice (e.g. method1) as well as the

actions that run when the choice is exercised (e.g. method2 and method3).

• As for template choices, the choice keyword can be optionally prefixed with the nonconsum-

ing keyword to specify that the contract will not be consumed when the choice is exercised. If

not specified, the choice will be consuming. Note that the preconsuming and postconsum-

ing qualifiers are not supported on interface choices.

• See Reference: choices for full reference information, but note that controller-first syntax is not

supported for interface choices.

Empty interfaces

interface YourInterface

• It is possible (though not necessarily useful) to define an interface without methods, precon-

dition or choices. In such a case, the where keyword can be dropped.

Required interfaces

interface OurInterface requires MyInterface, YourInterface where

• An interface can depend on other interfaces. These are specified with the requires keyword

after the interface name but before the where keyword, separated by commas.

• For a template’s implementation of an interface to be valid, all its required interfacesmust also

be implemented by the template.

• If the interface doesn’t have any methods, precondition or choices, the where keyword after

the last required interface can be dropped:

interface TheirInterface requires MyInterface, YourInterface

172 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Interface implementation

For context, a simple template definition:

template MyTemplate

with

field1 : Party

field2 : Int

where

signatory field1

Implements clause

implements MyInterface where

method1 = field1

method2 = field2

method3 False _ _ = 0

method3 True x y

| x > 0 = x + y

| otherwise = y

• Tomake a template implement an interface, an implements clause is added to the body of the

template.

• The clause must start with the keyword implements, followed by the name of the interface,

followed by the keywordwhere, which introduces a blockwhere all themethods of the interface

must be implemented.

• Methods can be defined using the same syntax as for top level functions, including pattern

matches and guards (e.g. method3).

Empty implements clause

implements YourInterface

• If the interface being implemented has no methods, the where keyword can be dropped.

2.1. Writing Daml 173

Daml SDK Documentation, 2.1.1

Interface functions

Function Type Instanti-

ated type

Notes

inter-

faceType-

Rep

HasInterface-

TypeRep i =>

i -> Template-

TypeRep

MyInter-

face ->

Template-

TypeRep

The value of the resulting TemplateType-

Rep indicates what template was used to

construct the interface value.

toInter-

face

forall i t.

HasToInterface

t i => t -> i

MyTemplate

-> MyIn-

terface

Converts a template value into an interface

value. Can also be used to convert an inter-

face value to one of its required interfaces.

fromInter-

face

HasFromInter-

face t i => i

-> Optional t

MyInter-

face ->

Optional

MyTemplate

Attempts to convert an interface value back

into a template value. The result is None if

the expected template type doesn’t match

the underlying template type used to con-

struct the contract. Can also be used to con-

vert a value of an interface type to one of its

requiring interfaces.

toInter-

faceCon-

tractId

forall i t.

HasToInterface

t i => Con-

tractId t ->

ContractId i

ContractId

MyTemplate

-> Con-

tractId

MyInter-

face

Convert a template contract id into an inter-

face contract id. Can also be used to convert

an interface contract id into a contract id of

one of its required interfaces.

fromInter-

faceCon-

tractId

forall t i.

(HasFromInter-

face t i,

HasFetch i)

=> ContractId

i -> Update

(Optional (Con-

tractId t))

ContractId

MyInter-

face ->

Update

(Optional

(Contrac-

tId MyTem-

plate))

Attempts to convert an interface contract id

into a template contract id. In order to ver-

ify that the underlying contract has the ex-

pected template type, this needs to perform

a fetch. Can also be used to convert a con-

tract id of an interface type to a contract id

of one of its requiring interfaces.

2.1.3 The standard library

The Daml standard library is a collection of Daml modules that are bundled with the SDK, and can

be used to implement Daml applications.

The Prelude module is imported automatically in every Daml module. Other modules must be im-

ported manually, just like your own project’s modules. For example:

import DA.Optional

import DA.Time

Here is a complete list of modules in the standard library:

174 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.1 Module Prelude

The pieces that make up the Daml language.

Typeclasses

class Action m => CanAssert m where

Constraint that determines whether an assertion can be made in this context.

assertFail : Text -> m t

Abort since an assertion has failed. In an Update, Scenario, Script, or Trigger context

this will throw an AssertionFailed exception. In an Either Text context, this will

return the message as an error.

instance CanAssert Scenario

instance CanAssert Update

instance CanAssert (Either Text)

class HasInterfaceTypeRep i where

(1.dev only) Exposes the interfaceTypeRep function. Available only for interfaces.

class HasToInterface t i where

(1.dev only) Exposes the toInterface and toInterfaceContractId functions.

class HasFromInterface t i where

(1.dev only) Exposes fromInterface and fromInterfaceContractId functions.

fromInterface : i -> Optional t

(1.dev only) Attempt to convert an interface value back into a template value. A None

indicates that the expected template type doesn’t match the underyling template

type for the interface value.

For example, fromInterface @MyTemplate valuewill try to convert the interface

value value into the template type MyTemplate.

class HasTime m where

The HasTime class is for where the time is available: Scenario and Update.

getTime : HasCallStack => m Time

Get the current time.

instance HasTime Scenario

instance HasTime Update

class Action m => CanAbort m where

The CanAbort class is for Action s that can be aborted.

abort : Text -> m a

Abort the current action with a message.

instance CanAbort Scenario

instance CanAbort Update

2.1. Writing Daml 175

Daml SDK Documentation, 2.1.1

instance CanAbort (Either Text)

class HasSubmit m cmds where

submit : HasCallStack => Party -> cmds a -> m a

submit p cmds submits the commands cmds as a single transaction from party p

and returns the value returned by cmds.

If the transaction fails, submit also fails.

submitMustFail : HasCallStack => Party -> cmds a -> m ()

submitMustFail p cmds submits the commands cmds as a single transaction

from party p.

It only succeeds if the submitting the transaction fails.

instance HasSubmit Scenario Update

class Functor f => Applicative f where

pure : a -> f a

Lift a value.

(<*>) : f (a -> b) -> f a -> f b

Sequentially apply the function.

A few functors support an implementation of <*> that is more efficient than the

default one.

liftA2 : (a -> b -> c) -> f a -> f b -> f c

Lift a binary function to actions.

Some functors support an implementation of liftA2 that ismore efficient than the

default one. In particular, if fmap is an expensive operation, it is likely better to use

liftA2 than to fmap over the structure and then use <*>.

(*>) : f a -> f b -> f b

Sequence actions, discarding the value of the first argument.

(<*) : f a -> f b -> f a

Sequence actions, discarding the value of the second argument.

instance Applicative ((->) r)

instance Applicative (State s)

instance Applicative Down

instance Applicative Scenario

instance Applicative Update

instance Applicative Optional

instance Applicative Formula

instance Applicative NonEmpty

instance Applicative (Validation err)

instance Applicative (Either e)

instance Applicative ([])

class Applicative m => Action m where

176 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(>>=) : m a -> (a -> m b) -> m b

Sequentially compose two actions, passing any value produced by the first as an

argument to the second.

instance Action ((->) r)

instance Action (State s)

instance Action Down

instance Action Scenario

instance Action Update

instance Action Optional

instance Action Formula

instance Action NonEmpty

instance Action (Either e)

instance Action ([])

class Action m => ActionFail m where

This class exists to desugar pattern matches in do-notation. Polymorphic usage, or call-

ing fail directly, is not recommended. Instead consider using CanAbort.

fail : Text -> m a

Fail with an error message.

instance ActionFail Scenario

instance ActionFail Update

instance ActionFail Optional

instance ActionFail (Either Text)

instance ActionFail ([])

class Semigroup a where

The class of semigroups (types with an associative binary operation).

(<>) : a -> a -> a

An associative operation.

instance Ord k => Semigroup (Map k v)

instance Semigroup (TextMap b)

instance Semigroup All

instance Semigroup Any

instance Semigroup (Endo a)

instance Multiplicative a => Semigroup (Product a)

instance Additive a => Semigroup (Sum a)

instance Semigroup (NonEmpty a)

instance Ord a => Semigroup (Max a)

2.1. Writing Daml 177

Daml SDK Documentation, 2.1.1

instance Ord a => Semigroup (Min a)

instance Ord k => Semigroup (Set k)

instance Semigroup Ordering

instance Semigroup Text

instance Semigroup [a]

class Semigroup a => Monoid a where

The class of monoids (types with an associative binary operation that has an identity).

mempty : a

Identity of (<>)

mconcat : [a] -> a

Fold a list using the monoid. For example using mconcat on a list of strings would

concatenate all strings to one lone string.

instance Ord k => Monoid (Map k v)

instance Monoid (TextMap b)

instance Monoid All

instance Monoid Any

instance Monoid (Endo a)

instance Multiplicative a => Monoid (Product a)

instance Additive a => Monoid (Sum a)

instance Ord k => Monoid (Set k)

instance Monoid Ordering

instance Monoid Text

instance Monoid [a]

class HasSignatory t where

Exposes signatory function. Part of the Template constraint.

signatory : t -> [Party]

The signatories of a contract.

class HasObserver t where

Exposes observer function. Part of the Template constraint.

observer : t -> [Party]

The observers of a contract.

class HasEnsure t where

Exposes ensure function. Part of the Template constraint.

ensure : t -> Bool

A predicate that must be true, otherwise contract creation will fail.

class HasAgreement t where

178 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Exposes agreement function. Part of the Template constraint.

agreement : t -> Text

The agreement text of a contract.

class HasCreate t where

Exposes create function. Part of the Template constraint.

create : t -> Update (ContractId t)

Create a contract based on a template t.

class HasFetch t where

Exposes fetch function. Part of the Template constraint.

fetch : ContractId t -> Update t

Fetch the contract data associated with the given contract ID. If the ContractId t

supplied is not the contract ID of an active contract, this fails and aborts the entire

transaction.

class HasArchive t where

Exposes archive function. Part of the Template constraint.

archive : ContractId t -> Update ()

Archive the contract with the given contract ID.

class HasTemplateTypeRep t where

Exposes templateTypeRep function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasToAnyTemplate t where

Exposes toAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasFromAnyTemplate t where

Exposes fromAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-

straint.

class HasExercise t c r where

Exposes exercise function. Part of the Choice constraint.

exercise : ContractId t -> c -> Update r

Exercise a choice on the contract with the given contract ID.

class HasExerciseGuarded t c r where

(1.dev only) Exposes exerciseGuarded function. Only available for interface choices.

exerciseGuarded : (t -> Bool) -> ContractId t -> c -> Update r

(1.dev only) Exercise a choice on the contract with the given contract ID, only if the

predicate returns True.

class HasToAnyChoice t c r where

Exposes toAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.

class HasFromAnyChoice t c r where

2.1. Writing Daml 179

Daml SDK Documentation, 2.1.1

Exposes fromAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.

class HasKey t k where

Exposes key function. Part of the TemplateKey constraint.

key : t -> k

The key of a contract.

class HasLookupByKey t k where

Exposes lookupByKey function. Part of the TemplateKey constraint.

lookupByKey : k -> Update (Optional (ContractId t))

Look up the contract ID t associated with a given contract key k.

You must pass the t using an explicit type application. For instance, if you want to

look up a contract of template Account by its key k, you must call lookupByKey

@Account k.

class HasFetchByKey t k where

Exposes fetchByKey function. Part of the TemplateKey constraint.

fetchByKey : k -> Update (ContractId t, t)

Fetch the contract ID and contract data associated with a given contract key.

You must pass the t using an explicit type application. For instance, if you want

to fetch a contract of template Account by its key k, you must call fetchByKey

@Account k.

class HasMaintainer t k where

Exposes maintainer function. Part of the TemplateKey constraint.

class HasToAnyContractKey t k where

Exposes toAnyContractKey function in Daml-LF 1.7 or later. Part of the TemplateKey

constraint.

class HasFromAnyContractKey t k where

Exposes fromAnyContractKey function in Daml-LF 1.7 or later. Part of the TemplateKey

constraint.

class HasExerciseByKey t k c r where

Exposes exerciseByKey function.

class IsParties a where

Accepted ways to specify a list of parties: either a single party, or a list of parties.

toParties : a -> [Party]

Convert to list of parties.

instance IsParties Party

instance IsParties (Optional Party)

instance IsParties (NonEmpty Party)

instance IsParties (Set Party)

instance IsParties [Party]

180 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

class Functor f where

A Functor is a typeclass for things that can be mapped over (using its fmap function.

Examples include Optional, [] and Update).

fmap : (a -> b) -> f a -> f b

fmap takes a function of type a -> b, and turns it into a function of type f a -> f

b, where f is the type which is an instance of Functor.

For example, map is an fmap that only works on lists. It takes a function a -> b and

a [a], and returns a [b].

(<$) : a -> f b -> f a

Replace all locations in the input f b with the same value a. The default definition

is fmap . const, but you can override this with a more efficient version.

class Eq a where

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported

by the "Prelude" are instances of Eq, and Eqmay be derived for any datatype whose con-

stituents are also instances of Eq.

Usually, == is expected to implement an equivalence relationship where two values com-

paring equal are indistinguishable by "public" functions, with a "public" function being

one not allowing to see implementation details. For example, for a type representing

non-normalised natural numbers modulo 100, a "public" function doesn’t make the dif-

ference between 1 and 201. It is expected to have the following properties:

Reflexivity: x == x = True

Symmetry: x == y = y == x

Transitivity: if x == y && y == z = True, then x == z = True

Substitutivity: if x == y = True and f is a "public" function whose return type is an

instance of Eq, then f x == f y = True

Negation: x /= y = not (x == y)

Minimal complete definition: either == or /=.

(==) : a -> a -> Bool

(/=) : a -> a -> Bool

instance (Eq a, Eq b) => Eq (Either a b)

instance Eq BigNumeric

instance Eq Bool

instance Eq Int

instance Eq (Numeric n)

instance Eq Ordering

instance Eq RoundingMode

instance Eq Text

instance Eq a => Eq [a]

instance Eq ()

2.1. Writing Daml 181

Daml SDK Documentation, 2.1.1

instance (Eq a, Eq b) => Eq (a, b)

instance (Eq a, Eq b, Eq c) => Eq (a, b, c)

instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)

instance (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i,

j, k)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g,

h, i, j, k, l)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d,

e, f, g, h, i, j, k, l, m)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a,

b, c, d, e, f, g, h, i, j, k, l, m, n)

instance (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eqm, Eq n, Eq o) => Eq

(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Eq a => Ord a where

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types

are in Ord. The declared order of the constructors in the data declaration determines the

ordering in derived Ord instances. The Ordering datatype allows a single comparison

to determine the precise ordering of two objects.

The Haskell Report defines no laws for Ord. However, <= is customarily expected to im-

plement a non-strict partial order and have the following properties:

Transitivity: if x <= y && y <= z = True, then x <= z = True

Reflexivity: x <= x = True

Antisymmetry: if x <= y && y <= x = True, then x == y = True

Note that the following operator interactions are expected to hold:

1. x >= y = y <= x

2. x < y = x <= y && x /= y

3. x > y = y < x

4. x < y = compare x y == LT

5. x > y = compare x y == GT

6. x == y = compare x y == EQ

7. min x y == if x <= y then x else y = ‘True’

8. max x y == if x >= y then x else y = ‘True’

182 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Minimal complete definition: either compare or <=. Using compare can bemore efficient

for complex types.

compare : a -> a -> Ordering

(<) : a -> a -> Bool

(<=) : a -> a -> Bool

(>) : a -> a -> Bool

(>=) : a -> a -> Bool

max : a -> a -> a

min : a -> a -> a

instance (Ord a, Ord b) => Ord (Either a b)

instance Ord BigNumeric

instance Ord Bool

instance Ord Int

instance Ord (Numeric n)

instance Ord Ordering

instance Ord RoundingMode

instance Ord Text

instance Ord a => Ord [a]

instance Ord ()

instance (Ord a, Ord b) => Ord (a, b)

instance (Ord a, Ord b, Ord c) => Ord (a, b, c)

instance (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d)

instance (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f,

g, h, i, j)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c,

d, e, f, g, h, i, j, k)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a,

b, c, d, e, f, g, h, i, j, k, l)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) =>

Ord (a, b, c, d, e, f, g, h, i, j, k, l, m)

2.1. Writing Daml 183

Daml SDK Documentation, 2.1.1

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ordm, Ord

n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

instance (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ordm, Ord

n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class NumericScale n where

Is this a valid scale for the Numeric type?

This typeclass is used to prevent the creation of Numeric values with too large a scale.

The scale controls the number of digits available after the decimal point, and it must be

between 0 and 37 inclusive.

Thus the only available instances of this typeclass areNumericScale 0 throughNumer-

icScale 37. This cannot be extended without additional compiler and runtime support.

You cannot implement a custom instance of this typeclass.

If you have an error message in your code of the form "No instance for (NumericScale

n)", this is probably caused by having a numeric literal whose scale cannot be inferred

by the compiler. You can usually fix this by adding a type signature to the definition, or

annotating the numeric literal directly (for example, instead of writing 3.14159 you can

write (3.14159 : Numeric 5)).

numericScale : proxy n -> Int

Get the scale of a Numeric as an integer. For example, numericScale (3.14159

: Numeric 5) equals 5.

instance NumericScale 0

instance NumericScale 1

instance NumericScale 10

instance NumericScale 11

instance NumericScale 12

instance NumericScale 13

instance NumericScale 14

instance NumericScale 15

instance NumericScale 16

instance NumericScale 17

instance NumericScale 18

instance NumericScale 19

instance NumericScale 2

instance NumericScale 20

instance NumericScale 21

instance NumericScale 22

instance NumericScale 23

instance NumericScale 24

184 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance NumericScale 25

instance NumericScale 26

instance NumericScale 27

instance NumericScale 28

instance NumericScale 29

instance NumericScale 3

instance NumericScale 30

instance NumericScale 31

instance NumericScale 32

instance NumericScale 33

instance NumericScale 34

instance NumericScale 35

instance NumericScale 36

instance NumericScale 37

instance NumericScale 4

instance NumericScale 5

instance NumericScale 6

instance NumericScale 7

instance NumericScale 8

instance NumericScale 9

class IsNumeric t where

Types that can be represented by decimal literals in Daml.

fromNumeric : NumericScale m => Numeric m -> t

Convert from Numeric. Raises an error if the number can’t be represented exactly in

the target type.

fromBigNumeric : BigNumeric -> t

Convert from BigNumeric. Raises an error if the number can’t be represented ex-

actly in the target type.

instance IsNumeric BigNumeric

instance NumericScale n => IsNumeric (Numeric n)

class Bounded a where

Use the Bounded class to name the upper and lower limits of a type.

You can derive an instance of the Bounded class for any enumeration type. minBound is

the first constructor listed in the data declaration and maxBound is the last.

You can also derive an instance of Bounded for single-constructor data types whose con-

stituent types are in Bounded.

2.1. Writing Daml 185

Daml SDK Documentation, 2.1.1

Ord is not a superclass of Bounded because types that are not totally ordered can still

have upper and lower bounds.

minBound : a

maxBound : a

instance Bounded Bool

instance Bounded Int

class Enum a where

Use the Enum class to define operations on sequentially ordered types: that is, types that

can be enumerated. Enum members have defined successors and predecessors, which

you can get with the succ and pred functions.

Types that are an instance of class Bounded as well as Enum should respect the following

laws:

• Both succ maxBound and pred minBound should result in a runtime error.

• fromEnum and toEnum should give a runtime error if the result value is not repre-

sentable in the result type. For example, toEnum 7 : Bool is an error.

• enumFrom and enumFromThen should be defined with an implicit bound, like this:

enumFrom x = enumFromTo x maxBound

enumFromThen x y = enumFromThenTo x y bound

where

bound | fromEnum y >= fromEnum x = maxBound

| otherwise = minBound

succ : a -> a

Returns the successor of the given value. For example, for numeric types, succ adds

1.

If the type is also an instance ofBounded, succ maxBound results in a runtime error.

pred : a -> a

Returns the predecessor of the given value. For example, for numeric types, pred

subtracts 1.

If the type is also an instance ofBounded, pred minBound results in a runtime error.

toEnum : Int -> a

Convert a value from an Int to an Enum value: ie, toEnum i returns the item at the

i th position of (the instance of) Enum

fromEnum : a -> Int

Convert a value from an Enum value to an Int: ie, returns the Int position of the

element within the Enum.

If fromEnum is applied to a value that’s too large to fit in an Int, what is returned is

up to your implementation.

enumFrom : a -> [a]

Return a list of the Enum values starting at the Int position. For example:

• enumFrom 6 : [Int] = [6,7,8,9,...,maxBound : Int]

enumFromThen : a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, the

second value at the second Int position, and further values with the same distance

between them.

186 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

For example:

• enumFromThen 4 6 : [Int] = [4,6,8,10...]

• enumFromThen 6 2 : [Int] = [6,2,-2,-6,...,minBound :: Int]

enumFromTo : a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, and the

last value at the last Int position.

This is what’s behind the language feature that lets you write [n,m..].

For example:

• enumFromTo 6 10 : [Int] = [6,7,8,9,10]

enumFromThenTo : a -> a -> a -> [a]

Returns a list of the Enum values with the first value at the first Int position, the

second value at the second Int position, and further values with the same distance

between them, with the final value at the final Int position.

This is what’s behind the language feature that lets you write [n,n
..m].

For example:

• enumFromThenTo 4 2 -6 : [Int] = [4,2,0,-2,-4,-6]

• enumFromThenTo 6 8 2 : [Int] = []

instance Enum Bool

instance Enum Int

class Additive a where

Use the Additive class for types that can be added. Instances have to respect the fol-

lowing laws:

• (+)must be associative, ie: (x + y) + z = x + (y + z)

• (+)must be commutative, ie: x + y = y + x

• x + aunit = x

• negate gives the additive inverse, ie: x + negate x = aunit

(+) : a -> a -> a

Add the two arguments together.

aunit : a

The additive identity for the type. For example, for numbers, this is 0.

(-) : a -> a -> a

Subtract the second argument from the first argument, ie. x - y = x + negate y

negate : a -> a

Negate the argument: x + negate x = aunit

instance Additive BigNumeric

instance Additive Int

instance Additive (Numeric n)

class Multiplicative a where

Use the Multiplicative class for types that can be multiplied. Instances have to re-

spect the following laws:

• (*) is associative, ie:(x * y) * z = x * (y * z)

• (*) is commutative, ie: x * y = y * x

• x * munit = x

2.1. Writing Daml 187

Daml SDK Documentation, 2.1.1

(*) : a -> a -> a

Multipy the arguments together

munit : a

The multiplicative identity for the type. For example, for numbers, this is 1.

(^) : a -> Int -> a

x ^ n raises x to the power of n.

instance Multiplicative BigNumeric

instance Multiplicative Int

instance Multiplicative (Numeric n)

class (Additive a, Multiplicative a) => Number a where

Number is a class for numerical types. As well as the rules for Additive and Multi-

plicative, instances also have to respect the following law:

• (*) is distributive with respect to (+). That is: a * (b + c) = (a * b) + (a *

c) and (b + c) * a = (b * a) + (c * a)

instance Number BigNumeric

instance Number Int

instance Number (Numeric n)

class Signed a where

The Signed is for the sign of a number.

signum : a -> a

Sign of a number. For real numbers, the ‘signum’ is either -1 (negative), 0 (zero) or

1 (positive).

abs : a -> a

The absolute value: that is, the value without the sign.

instance Signed BigNumeric

instance Signed Int

instance Signed (Numeric n)

class Multiplicative a => Divisible a where

Use the Divisible class for types that can be divided. Instances should respect that

division is the inverse of multiplication, i.e. x * y / y is equal to x whenever it is

defined.

(/) : a -> a -> a

x / y divides x by y

instance Divisible Int

instance Divisible (Numeric n)

class Divisible a => Fractional a where

Use the Fractional class for types that can be divided and where the reciprocal is well

defined. Instances have to respect the following laws:

188 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

• When recip x is defined, it must be the inverse of x with respect to multiplication:

x * recip x = munit

• When recip y is defined, then x / y = x * recip y

recip : a -> a

Calculates the reciprocal: recip x is 1/x.

instance Fractional (Numeric n)

class Show a where

Use the Show class for values that can be converted to a readable Text value.

Derived instances of Show have the following properties:

• The result of show is a syntactically correct expression that only contains constants

(given the fixity declarations in force at the point where the type is declared). It only

contains the constructor names defined in the data type, parentheses, and spaces.

When labelled constructor fields are used, braces, commas, field names, and equal

signs are also used.

• If the constructor is defined to be an infix operator, then showsPrec produces infix

applications of the constructor.

• If the precedence of the top-level constructor in x is less than d (associativity is ig-

nored), the representationwill be enclosed in parentheses. For example, if d is 0 then

the result is never surrounded in parentheses; if d is 11 it is always surrounded in

parentheses, unless it is an atomic expression.

• If the constructor is defined using record syntax, then show will produce the

record-syntax form, with the fields given in the same order as the original decla-

ration.

showsPrec : Int -> a -> ShowS

Convert a value to a readable Text value. Unlike show, showsPrec should satisfy

the rule showsPrec d x r ++ s == showsPrec d x (r ++ s)

show : a -> Text

Convert a value to a readable Text value.

showList : [a] -> ShowS

Allows you to show lists of values.

instance (Show a, Show b) => Show (Either a b)

instance Show BigNumeric

instance Show Bool

instance Show Int

instance Show (Numeric n)

instance Show Ordering

instance Show RoundingMode

instance Show Text

instance Show a => Show [a]

instance Show ()

instance (Show a, Show b) => Show (a, b)

2.1. Writing Daml 189

Daml SDK Documentation, 2.1.1

instance (Show a, Show b, Show c) => Show (a, b, c)

instance (Show a, Show b, Show c, Show d) => Show (a, b, c, d)

instance (Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Data Types

data AnyChoice

Existential choice type that can wrap an arbitrary choice.

AnyChoice

Field Type Description

getAnyChoice Any

getAnyChoiceTem-

plateTypeRep

Template-

TypeRep

instance Eq AnyChoice

instance Ord AnyChoice

data AnyContractKey

Existential contract key type that can wrap an arbitrary contract key.

AnyContractKey

Field Type Description

getAnyContrac-

tKey

Any

getAnyContrac-

tKeyTemplateType-

Rep

Template-

TypeRep

instance Eq AnyContractKey

instance Ord AnyContractKey

data AnyTemplate

Existential template type that can wrap an arbitrary template.

AnyTemplate

Field Type Description

getAnyTemplate Any

instance Eq AnyTemplate

instance Ord AnyTemplate

190 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data TemplateTypeRep

Unique textual representation of a template Id.

TemplateTypeRep

Field Type Description

getTemplateType-

Rep

TypeRep

instance Eq TemplateTypeRep

instance Ord TemplateTypeRep

data Down a

The Down type can be used for reversing sorting order. For example, sortOn (\x ->

Down x.field) would sort by descending field.

Down a

instance Action Down

instance Applicative Down

instance Functor Down

instance Eq a => Eq (Down a)

instance Ord a => Ord (Down a)

instance Show a => Show (Down a)

type Implements t i = (HasInterfaceTypeRep i, HasToInterface t i, HasFromInterface t i)

(1.dev only) Constraint that indicates that a template implements an interface.

data AnyException

A wrapper for all exception types.

instance HasFromAnyException AnyException

instance HasMessage AnyException

instance HasToAnyException AnyException

data ContractId a

The ContractId a type represents an ID for a contract created from a template a. You

can use the ID to fetch the contract, among other things.

instance Eq (ContractId a)

instance Ord (ContractId a)

instance Show (ContractId a)

data Date

The Date type represents a date, for example date 2007 Apr 5.

instance Eq Date

2.1. Writing Daml 191

Daml SDK Documentation, 2.1.1

instance Ord Date

instance Bounded Date

instance Enum Date

instance Show Date

data Map a b

The Map a b type represents an associative array from keys of type a to values of type b.

It uses the built-in equality for keys. Import DA.Map to use it.

instance Ord k => Foldable (Map k)

instance Ord k => Monoid (Map k v)

instance Ord k => Semigroup (Map k v)

instance Ord k => Traversable (Map k)

instance Ord k => Functor (Map k)

instance (Ord k, Eq v) => Eq (Map k v)

instance (Ord k, Ord v) => Ord (Map k v)

instance (Show k, Show v) => Show (Map k v)

data Party

The Party type represents a party to a contract.

instance IsParties Party

instance IsParties (Optional Party)

instance IsParties (NonEmpty Party)

instance IsParties (Set Party)

instance IsParties [Party]

instance Eq Party

instance Ord Party

instance Show Party

data Scenario a

The Scenario type is for simulating ledger interactions. The type Scenario a describes

a set of actions taken by various parties during the simulated scenario, before returning

a value of type a.

instance CanAssert Scenario

instance ActionThrow Scenario

instance CanAbort Scenario

instance HasSubmit Scenario Update

instance HasTime Scenario

instance Action Scenario

192 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance ActionFail Scenario

instance Applicative Scenario

instance Functor Scenario

data TextMap a

The TextMap a type represents an associative array from keys of type Text to values of

type a.

instance Foldable TextMap

instance Monoid (TextMap b)

instance Semigroup (TextMap b)

instance Traversable TextMap

instance Functor TextMap

instance Eq a => Eq (TextMap a)

instance Ord a => Ord (TextMap a)

instance Show a => Show (TextMap a)

data Time

The Time type represents a specific datetime in UTC, for example time (date 2007 Apr

5) 14 30 05.

instance Eq Time

instance Ord Time

instance Show Time

data Update a

The Update a type represents an Action to update or query the ledger, before returning

a value of type a. Examples include create and fetch.

instance CanAssert Update

instance ActionCatch Update

instance ActionThrow Update

instance CanAbort Update

instance HasSubmit Scenario Update

instance HasTime Update

instance Action Update

instance ActionFail Update

instance Applicative Update

instance Functor Update

data Optional a

2.1. Writing Daml 193

Daml SDK Documentation, 2.1.1

The Optional type encapsulates an optional value. A value of type Optional a either

contains a value of type a (represented as Some a), or it is empty (represented as None).

Using Optional is a good way to deal with errors or exceptional cases without resorting

to drastic measures such as error.

The Optional type is also an Action. It is a simple kind of error Action, where all errors

are represented by None. A richer error Action could be built using the Data.Either.

Either type.

None

Some a

instance Foldable Optional

instance Action Optional

instance ActionFail Optional

instance Applicative Optional

instance IsParties (Optional Party)

instance Traversable Optional

instance Functor Optional

instance Eq a => Eq (Optional a)

instance Ord a => Ord (Optional a)

instance Show a => Show (Optional a)

data Archive

The data type corresponding to the implicit Archive choice in every template.

Archive

instance Eq Archive

instance Show Archive

type Choice t c r = (TemplateOrInterface t, HasExercise t c r, HasToAnyChoice t c r, HasFromAnyChoice t c r)

Constraint satisfied by choices.

type Template t = (HasSignatory t, HasObserver t, HasEnsure t, HasAgreement t, HasCreate t, HasFetch t,

HasArchive t, HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)

Constraint satisfied by templates.

type TemplateKey t k = (Template t, HasKey t k, HasLookupByKey t k, HasFetchByKey t k, HasMaintainer t k,

HasToAnyContractKey t k, HasFromAnyContractKey t k)

Constraint satisfied by template keys.

type TemplateOrInterface t = (HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)

data Either a b

The Either type represents values with two possibilities: a value of type Either a b is

either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an

error; by convention, the Left constructor is used to hold an error value and the Right

constructor is used to hold a correct value (mnemonic: "right" also means "correct").

194 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Left a

Right b

instance (Eq a, Eq b) => Eq (Either a b)

instance (Ord a, Ord b) => Ord (Either a b)

instance (Show a, Show b) => Show (Either a b)

type ShowS = Text -> Text

showS should represent some text, and applying it to some argument should prepend the ar-

gument to the represented text.

data BigNumeric

A big numeric type, capable of holding large decimal values with many digits.

BigNumeric represents any positive or negative decimal number with up to 2^15 digits

before the decimal point, and up to 2^15 digits after the decimal point.

BigNumeric is not serializable, it is only intended for intermediate computation. You

must round and convert BigNumeric to a fixed-width numeric (Numeric n) in order

to store it in a template. The rounding operations are round and div from the DA.

BigNumeric module. The casting operations are fromNumeric and fromBigNumeric

from the IsNumeric typeclass.

instance Eq BigNumeric

instance IsNumeric BigNumeric

instance Ord BigNumeric

instance Additive BigNumeric

instance Multiplicative BigNumeric

instance Number BigNumeric

instance Signed BigNumeric

instance Show BigNumeric

data Bool

A type for Boolean values, ie True and False.

False

True

instance Eq Bool

instance Ord Bool

instance Bounded Bool

instance Enum Bool

instance Show Bool

type Decimal = Numeric 10

data Int

2.1. Writing Daml 195

Daml SDK Documentation, 2.1.1

A type representing a 64-bit integer.

instance Eq Int

instance Ord Int

instance Bounded Int

instance Enum Int

instance Additive Int

instance Divisible Int

instance Multiplicative Int

instance Number Int

instance Signed Int

instance Show Int

data Nat

(Kind) This is the kind of type-level naturals.

data Numeric n

A type for fixed-point decimal numbers, with the scale being passed as part of the type.

Numeric n represents a fixed-point decimal number with a fixed precision of 38 (i.e. 38

digits not including a leading zero) and a scale of n, i.e., n digits after the decimal point.

nmust be between 0 and 37 (bounds inclusive).

Examples:

0.01 : Numeric 2

0.0001 : Numeric 4

instance Eq (Numeric n)

instance NumericScale n => IsNumeric (Numeric n)

instance Ord (Numeric n)

instance Additive (Numeric n)

instance Divisible (Numeric n)

instance Fractional (Numeric n)

instance Multiplicative (Numeric n)

instance Number (Numeric n)

instance Signed (Numeric n)

instance Show (Numeric n)

data Ordering

A type for giving information about ordering: being less than (LT), equal to (EQ), or greater

than (GT) something.

LT

196 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

EQ

GT

instance Eq Ordering

instance Ord Ordering

instance Show Ordering

data RoundingMode

Roundingmodes for BigNumeric operations like div and round from DA.BigNumeric.

RoundingUp

Round away from zero.

RoundingDown

Round towards zero.

RoundingCeiling

Round towards positive infinity.

RoundingFloor

Round towards negative infinity.

RoundingHalfUp

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round away from zero.

RoundingHalfDown

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round towards zero.

RoundingHalfEven

Round towards the nearest neighbor unless both neighbors are equidistant, in

which case round towards the even neighbor.

RoundingUnnecessary

Do not round. Raises an error if the result cannot be represented without round-

ing at the targeted scale.

instance Eq RoundingMode

instance Ord RoundingMode

instance Show RoundingMode

data Text

A type for text strings, that can represent any unicode code point. For example "Hello,

world".

instance Eq Text

instance Ord Text

instance Show Text

2.1. Writing Daml 197

Daml SDK Documentation, 2.1.1

data [] a

A type for lists, for example [1,2,3].

([])

(:) _ _

Functions

assert : CanAssert m => Bool -> m ()

Check whether a condition is true. If it’s not, abort the transaction.

assertMsg : CanAssert m => Text -> Bool -> m ()

Check whether a condition is true. If it’s not, abort the transaction with a message.

assertAfter : (CanAssert m, HasTime m) => Time -> m ()

Check whether the given time is in the future. If it’s not, abort the transaction.

assertBefore : (CanAssert m, HasTime m) => Time -> m ()

Check whether the given time is in the past. If it’s not, abort the transaction.

daysSinceEpochToDate : Int -> Date

Convert from number of days since epoch (i.e. the number of days since January 1, 1970) to a

date.

dateToDaysSinceEpoch : Date -> Int

Convert from a date to number of days from epoch (i.e. the number of days since January 1,

1970).

interfaceTypeRep : HasInterfaceTypeRep i => i -> TemplateTypeRep

(1.dev only) Obtain the TemplateTypeRep for the template given in the interface value.

toInterface : HasToInterface t i => t -> i

(1.dev only) Convert a template value into an interface value. For example toInterface @My-

Interface value converts a template value into a MyInterface type.

toInterfaceContractId : HasToInterface t i => ContractId t -> ContractId i

(1.dev only) Convert a template contract id into an interface contract id. For example, toInt-

erfaceContractId @MyInterface cid.

fromInterfaceContractId : HasFromInterface t i => ContractId i -> ContractId t

(1.dev only) Convert an interface contract id into a template contract id. For example,

fromInterfaceContractId @MyTemplate cid.

This function does not verify that the interface contract id actually points to a template of the

given type. This means that a subsequent fetch, exercise, or archive may fail, if, for ex-

ample, the contract id points to a contract that implements the interface but is of a different

template type than expected.

Therefore, you should only use fromInterfaceContractId in situations where you already

know that the contract id points to a contract of the right template type. You can also use it in

situations where you will fetch, exercise, or archive the contract right away, when a transaction

failure is the appropriate response to the contract having the wrong template type.

In all other cases, consider using fetchFromInterface instead.

fetchFromInterface : (HasFromInterface t i, HasFetch i) => ContractId i -> Update (Optional (ContractId t, t))

198 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(1.dev only) Fetch an interface and convert it to a specific template type. If conversion is suc-

cesful, this function returns the converted contract and its converted contract id. Otherwise,

this function returns None.

Example:

do

fetchResult <- fetchFromInterface @MyTemplate ifaceCid

case fetchResult of

None -> abort "Failed to convert interface to appropriate template type"

Some (tplCid, tpl) -> do

... do something with tpl and tplCid ...

partyToText : Party -> Text

Convert the Party to Text, giving back what you passed to getParty. In most cases, you

should use show instead. show wraps the party in
ticks
 making it clear it was a Party

originally.

partyFromText : Text -> Optional Party

Converts a Text to Party. It returns None if the provided text contains any forbidden charac-

ters. See Daml-LF spec for a specification on which characters are allowed in parties. Note that

this function accepts text without single quotes.

This function does not check on whether the provided text corresponds to a party that "exists"

on a given ledger: it merely converts the given Text to a Party. The only way to guarantee that

a given Party exists on a given ledger is to involve it in a contract.

This function, together with partyToText, forms an isomorphism between valid party strings

and parties. In other words, the following equations hold:

∀ p. partyFromText (partyToText p) = Some p

∀ txt p. partyFromText txt = Some p ==> partyToText p = txt

This function will crash at runtime if you compile Daml to Daml-LF < 1.2.

getParty : Text -> Scenario Party

Get the party with the given name. Party namesmust be non-empty and only contain alphanu-

meric charaters, space, - (dash) or _ (underscore).

scenario : Scenario a -> Scenario a

Declare you are building a scenario.

curry : ((a, b) -> c) -> a -> b -> c

Turn a function that takes a pair into a function that takes two arguments.

uncurry : (a -> b -> c) -> (a, b) -> c

Turn a function that takes two arguments into a function that takes a pair.

(>>) : Action m => m a -> m b -> m b

Sequentially compose two actions, discarding any value produced by the first. This is like se-

quencing operators (such as the semicolon) in imperative languages.

ap : Applicative f => f (a -> b) -> f a -> f b

Synonym for <*>.

return : Applicative m => a -> m a

Inject a value into the monadic type. For example, for Update and a value of type a, return

would give you an Update a.

join : Action m => m (m a) -> m a

Collapses nested actions into a single action.

2.1. Writing Daml 199

Daml SDK Documentation, 2.1.1

identity : a -> a

The identity function.

guard : ActionFail m => Bool -> m ()

foldl : (b -> a -> b) -> b -> [a] -> b

This function is a left fold, which you can use to inspect/analyse/consume lists. foldl f i

xs performs a left fold over the list xs using the function f, using the starting value i.

Examples:

>>> foldl (+) 0 [1,2,3]

6

>>> foldl (^) 10 [2,3]

1000000

Note that foldl works from left-to-right over the list arguments.

find : (a -> Bool) -> [a] -> Optional a

find p xs finds the first element of the list xs where the predicate p is true. There might not

be such an element, which is why this function returns an Optional a.

length : [a] -> Int

Gives the length of the list.

any : (a -> Bool) -> [a] -> Bool

Are there any elements in the list where the predicate is true? any p xs is True if p holds for

at least one element of xs.

all : (a -> Bool) -> [a] -> Bool

Is the predicate true for all of the elements in the list? all p xs is True if p holds for every

element of xs.

or : [Bool] -> Bool

Is at least one of elements in a list of Bool true? or bs is True if at least one element of bs is

True.

and : [Bool] -> Bool

Is every element in a list of Bool true? and bs is True if every element of bs is True.

elem : Eq a => a -> [a] -> Bool

Does this value exist in this list? elem x xs is True if x is an element of the list xs.

notElem : Eq a => a -> [a] -> Bool

Negation of elem: elem x xs is True if x is not an element of the list xs.

(<$>) : Functor f => (a -> b) -> f a -> f b

Synonym for fmap.

optional : b -> (a -> b) -> Optional a -> b

The optional function takes a default value, a function, and a Optional value. If the Op-

tional value is None, the function returns the default value. Otherwise, it applies the function

to the value inside the Some and returns the result.

Basic usage examples:

>>> optional False (> 2) (Some 3)

True

200 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

>>> optional False (> 2) None

False

>>> optional 0 (*2) (Some 5)

10

>>> optional 0 (*2) None

0

This example applies show to a Optional Int. If you have Some n, this shows the underlying

Int, n. But if you have None, this returns the empty string instead of (for example) None:

>>> optional "" show (Some 5)

"5"

>>> optional "" show (None : Optional Int)

""

either : (a -> c) -> (b -> c) -> Either a b -> c

The either function provides case analysis for the Either type. If the value is Left a, it

applies the first function to a; if it is Right b, it applies the second function to b.

Examples:

This example has two values of type Either [Int] Int, one using the Left constructor and

another using the Right constructor. Then it applies either the length function (if it has a

[Int]) or the "times-two" function (if it has an Int):

>>> let s = Left [1,2,3] : Either [Int] Int in either length (*2) s

3

>>> let n = Right 3 : Either [Int] Int in either length (*2) n

6

concat : [[a]] -> [a]

Take a list of lists and concatenate those lists into one list.

(++) : [a] -> [a] -> [a]

Concatenate two lists.

flip : (a -> b -> c) -> b -> a -> c

Flip the order of the arguments of a two argument function.

reverse : [a] -> [a]

Reverse a list.

mapA : Applicative m => (a -> m b) -> [a] -> m [b]

Apply an applicative function to each element of a list.

forA : Applicative m => [a] -> (a -> m b) -> m [b]

forA is mapA with its arguments flipped.

sequence : Applicative m => [m a] -> m [a]

Perform a list of actions in sequence and collect the results.

(=<<) : Action m => (a -> m b) -> m a -> m b

=<< is >>= with its arguments flipped.

concatMap : (a -> [b]) -> [a] -> [b]

Map a function over each element of a list, and concatenate all the results.

replicate : Int -> a -> [a]

replicate i x gives the list [x, x, x, ..., x] with i copies of x.

2.1. Writing Daml 201

Daml SDK Documentation, 2.1.1

take : Int -> [a] -> [a]

Take the first n elements of a list.

drop : Int -> [a] -> [a]

Drop the first n elements of a list.

splitAt : Int -> [a] -> ([a], [a])

Split a list at a given index.

takeWhile : (a -> Bool) -> [a] -> [a]

Take elements from a list while the predicate holds.

dropWhile : (a -> Bool) -> [a] -> [a]

Drop elements from a list while the predicate holds.

span : (a -> Bool) -> [a] -> ([a], [a])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs).

partition : (a -> Bool) -> [a] -> ([a], [a])

The partition function takes a predicate, a list and returns the pair of lists of elementswhich

do and do not satisfy the predicate, respectively; i.e.,

> partition p xs == (filter p xs, filter (not . p) xs)

>>> partition (<0) [1, -2, -3, 4, -5, 6]

([-2, -3, -5], [1, 4, 6])

break : (a -> Bool) -> [a] -> ([a], [a])

Break a list into two, just before the first element where the predicate holds. break p xs is

equivalent to span (not . p) xs.

lookup : Eq a => a -> [(a, b)] -> Optional b

Look up the first element with a matching key.

enumerate : (Enum a, Bounded a) => [a]

Generate a list containing all values of a given enumeration.

zip : [a] -> [b] -> [(a, b)]

zip takes two lists and returns a list of corresponding pairs. If one list is shorter, the excess

elements of the longer list are discarded.

zip3 : [a] -> [b] -> [c] -> [(a, b, c)]

zip3 takes three lists and returns a list of triples, analogous to zip.

zipWith : (a -> b -> c) -> [a] -> [b] -> [c]

zipWith takes a function and two lists. It generalises zip by combining elements using the

function, instead of forming pairs. If one list is shorter, the excess elements of the longer list

are discarded.

zipWith3 : (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]

zipWith3 generalises zip3 by combining elements using the function, instead of forming

triples.

unzip : [(a, b)] -> ([a], [b])

Turn a list of pairs into a pair of lists.

unzip3 : [(a, b, c)] -> ([a], [b], [c])

Turn a list of triples into a triple of lists.

traceRaw : Text -> a -> a

202 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

traceRaw msg a prints msg and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use --log-level=debug to include them.

trace : Show b => b -> a -> a

trace b a prints b and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use --log-level=debug to include them.

traceId : Show b => b -> b

traceId a prints a and returns a, for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use --log-level=debug to include them.

debug : (Show b, Action m) => b -> m ()

debug x prints x for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use --log-level=debug to include them.

debugRaw : Action m => Text -> m ()

debugRaw msg prints msg for debugging purposes.

Note that on some ledgers, thosemessages are not displayed at the default log level. For Sand-

box, you can use --log-level=debug to include them.

fst : (a, b) -> a

Return the first element of a tuple.

snd : (a, b) -> b

Return the second element of a tuple.

truncate : Numeric n -> Int

truncate x rounds x toward zero.

intToNumeric : Int -> Numeric n

Convert an Int to a Numeric.

intToDecimal : Int -> Decimal

Convert an Int to a Decimal.

roundBankers : Int -> Numeric n -> Numeric n

Bankers’ Rounding: roundBankers dp x roundsx todpdecimal places, where a.5 is rounded

to the nearest even digit.

roundCommercial : NumericScale n => Int -> Numeric n -> Numeric n

Commercial Rounding: roundCommercial dp x rounds x to dp decimal places, where a .5

is rounded away from zero.

round : Numeric n -> Int

Round a Decimal to the nearest integer, where a .5 is rounded away from zero.

floor : Numeric n -> Int

Round a Decimal down to the nearest integer.

ceiling : Numeric n -> Int

Round a Decimal up to the nearest integer.

null : [a] -> Bool

Is the list empty? null xs is true if xs is the empty list.

2.1. Writing Daml 203

Daml SDK Documentation, 2.1.1

filter : (a -> Bool) -> [a] -> [a]

Filters the list using the function: keep only the elements where the predicate holds.

sum : Additive a => [a] -> a

Add together all the elements in the list.

product : Multiplicative a => [a] -> a

Multiply all the elements in the list together.

undefined : a

A convenience function that can be used to mark something not implemented. Always throws

an error with "Not implemented."

stakeholder : (HasSignatory t, HasObserver t) => t -> [Party]

The stakeholders of a contract: its signatories and observers.

maintainer : HasMaintainer t k => k -> [Party]

The list of maintainers of a contract key.

exerciseByKey : HasExerciseByKey t k c r => k -> c -> Update r

Exercise a choice on the contract associated with the given key.

You must pass the t using an explicit type application. For instance, if you want to exercise a

choice Withdraw on a contract of template Account given by its key k, you must call exer-

ciseByKey @Account k Withdraw.

createAndExercise : (HasCreate t, HasExercise t c r) => t -> c -> Update r

Create a contract and exercise the choice on the newly created contract.

templateTypeRep : HasTemplateTypeRep t => TemplateTypeRep

Generate a unique textual representation of the template id.

toAnyTemplate : HasToAnyTemplate t => t -> AnyTemplate

Wrap the template in AnyTemplate.

Only available for Daml-LF 1.7 or later.

fromAnyTemplate : HasFromAnyTemplate t => AnyTemplate -> Optional t

Extract the underlying template from AnyTemplate if the type matches or return None.

Only available for Daml-LF 1.7 or later.

toAnyChoice : (HasTemplateTypeRep t, HasToAnyChoice t c r) => c -> AnyChoice

Wrap a choice in AnyChoice.

You must pass the template type t using an explicit type application. For example toAny-

Choice @Account Withdraw.

Only available for Daml-LF 1.7 or later.

fromAnyChoice : (HasTemplateTypeRep t, HasFromAnyChoice t c r) => AnyChoice -> Optional c

Extract the underlying choice from AnyChoice if the template and choice types match, or re-

turn None.

You must pass the template type t using an explicit type application. For example fromAny-

Choice @Account choice.

Only available for Daml-LF 1.7 or later.

toAnyContractKey : (HasTemplateTypeRep t, HasToAnyContractKey t k) => k -> AnyContractKey

Wrap a contract key in AnyContractKey.

Youmust pass the template type t using an explicit type application. For example toAnyCon-

tractKey @Proposal k.

Only available for Daml-LF 1.7 or later.

204 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fromAnyContractKey : (HasTemplateTypeRep t, HasFromAnyContractKey t k) => AnyContractKey -> Optional k

Extract the underlying key from AnyContractKey if the template and choice types match, or

return None.

You must pass the template type t using an explicit type application. For example fromAny-

ContractKey @Proposal k.

Only available for Daml-LF 1.7 or later.

visibleByKey : HasLookupByKey t k => k -> Update Bool

True if contract exists, submitter is a stakeholder, and all maintainers authorize. False if con-

tract does not exist and all maintainers authorize. Fails otherwise.

otherwise : Bool

Used as an alternative in conditions.

map : (a -> b) -> [a] -> [b]

map f xs applies the function f to all elements of the list xs and returns the list of results (in

the same order as xs).

foldr : (a -> b -> b) -> b -> [a] -> b

This function is a right fold, which you can use to manipulate lists. foldr f i xs performs

a right fold over the list xs using the function f, using the starting value i.

Note that foldr works from right-to-left over the list elements.

(.) : (b -> c) -> (a -> b) -> a -> c

Composes two functions, i.e., (f . g) x = f (g x).

const : a -> b -> a

const x is a unary function which evaluates to x for all inputs.

>>> const 42 "hello"

42

>>> map (const 42) [0..3]

[42,42,42,42]

($) : (a -> b) -> a -> b

Take a function from a to b and a value of type a, and apply the function to the value of type a,

returning a value of type b. This function has a very low precedence, which is why you might

want to use it instead of regular function application.

(&&) : Bool -> Bool -> Bool

Boolean "and". This function has short-circuiting semantics, i.e., when both arguments are

present and the first arguments evaluates to ‘False’, the second argument is not evaluated

at all.

(||) : Bool -> Bool -> Bool

Boolean "or". This function has short-circuiting semantics, i.e., when both arguments are

present and the first arguments evaluates to ‘True’, the second argument is not evaluated at

all.

not : Bool -> Bool

Boolean "not"

error : Text -> a

error stops execution and displays the given error message.

If called within a transaction, it will abort the current transaction. Outside of a transaction

(scenarios, Daml Script or Daml Triggers) it will stop the whole scenario/script/trigger.

2.1. Writing Daml 205

Daml SDK Documentation, 2.1.1

Throws a GeneralError exception.

subtract : Additive a => a -> a -> a

subtract x y is equivalent to y - x.

This is useful for partial application, e.g., in subtract 1 since (- 1) is interpreted as the

number -1 and not a function that subtracts 1 from its argument.

(%) : Int -> Int -> Int

x % y calculates the remainder of x by y

showParen : Bool -> ShowS -> ShowS

Utility function that surrounds the inner show function with parentheses when the ‘Bool’ pa-

rameter is ‘True’.

showString : Text -> ShowS

Utility function converting a ‘String’ to a show function that simply prepends the string un-

changed.

showSpace : ShowS

Prepends a single space to the front of the string.

showCommaSpace : ShowS

Prepends a comma and a single space to the front of the string.

2.1.3.2 Module DA.Action

Action

Functions

when : Applicative f => Bool -> f () -> f ()

Conditional execution of Action expressions. For example,

when final (archive contractId)

will archive the contract contractId if the Boolean value final is True, and otherwise do

nothing.

This function has short-circuiting semantics, i.e., when both arguments are present and the

first arguments evaluates to False, the second argument is not evaluated at all.

unless : Applicative f => Bool -> f () -> f ()

The reverse of when.

This function has short-circuiting semantics, i.e., when both arguments are present and the

first arguments evaluates to True, the second argument is not evaluated at all.

foldrA : Action m => (a -> b -> m b) -> b -> [a] -> m b

The foldrA is analogous to foldr, except that its result is encapsulated in an action. Note

that foldrA works from right-to-left over the list arguments.

foldr1A : Action m => (a -> a -> m a) -> [a] -> m a

foldr1A is like foldrA but raises an error when presented with an empty list argument.

foldlA : Action m => (b -> a -> m b) -> b -> [a] -> m b

foldlA is analogous to foldl, except that its result is encapsulated in an action. Note that

foldlA works from left-to-right over the list arguments.

206 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

foldl1A : Action m => (a -> a -> m a) -> [a] -> m a

The foldl1A is like foldlA but raises an errors when presented with an empty list argument.

filterA : Applicative m => (a -> m Bool) -> [a] -> m [a]

Filters the list using the applicative function: keeps only the elements where the predicate

holds. Example: given a collection of Iou contract IDs one can find only the GBPs.

filterA (fmap (\iou -> iou.currency == "GBP") . fetch) iouCids

replicateA : Applicative m => Int -> m a -> m [a]

replicateA n act performs the action n times, gathering the results.

replicateA_ : Applicative m => Int -> m a -> m ()

Like replicateA, but discards the result.

(>=>) : Action m => (a -> m b) -> (b -> m c) -> a -> m c

Left-to-right composition of Kleisli arrows.

(<=<) : Action m => (b -> m c) -> (a -> m b) -> a -> m c

Right-to-left composition of Kleisli arrows. @(’>=>’)@, with the arguments flipped.

2.1.3.3 Module DA.Action.State

DA.Action.State

Data Types

data State s a

A value of type State s a represents a computation that has access to a state variable

of type s and produces a value of type a.

> > > runState (modify (+1)) 0 > > > ((), 1)

> > > evalState (modify (+1)) 0 > > > ()

> > > execState (modify (+1)) 0 > > > 1

> > > runState (do x <- get; modify (+1); pure x) 0 > > > (0, 1)

> > > runState (put 1) 0 > > > ((), 1)

> > > runState (modify (+1)) 0 > > > ((), 1)

Note that values of type State s a are not serializable.

State

Field Type Description

runState s -> (a, s)

instance ActionState s (State s)

instance Action (State s)

instance Applicative (State s)

2.1. Writing Daml 207

Daml SDK Documentation, 2.1.1

instance Functor (State s)

Functions

evalState : State s a -> s -> a

Special case of runState that does not return the final state.

execState : State s a -> s -> s

Special case of runState that does only retun the final state.

2.1.3.4 Module DA.Action.State.Class

DA.Action.State.Class

Typeclasses

class ActionState s m where

Action m has a state variable of type s.

Rules:

• get *> ma = ma

• ma <* get = ma

• put a >>= get = put a $> a

• put a *> put b = put b

• (,) <$> get <*> get = get <&> \a -> (a, a)

Informally, these rules mean it behaves like an ordinary assignable variable: it doesn’t

magically change value by looking at it, if you put a value there that’s always the value

you’ll get if you read it, assigning a value but never reading that value has no effect, and

so on.

get : m s

Fetch the current value of the state variable.

put : s -> m ()

Set the value of the state variable.

modify : (s -> s) -> m ()

Modify the state variable with the given function.

defaultmodify

: Action m => (s -> s) -> m ()

instance ActionState s (State s)

208 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.5 Module DA.Assert

Functions

assertEq : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Check two values for equality. If they’re not equal, fail with a message.

(===) : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Infix version of assertEq.

assertNotEq : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Check two values for inequality. If they’re equal, fail with a message.

(=/=) : (CanAssert m, Show a, Eq a) => a -> a -> m ()

Infix version of assertNotEq.

assertAfterMsg : (CanAssert m, HasTime m) => Text -> Time -> m ()

Check whether the given time is in the future. If it’s not, abort with a message.

assertBeforeMsg : (CanAssert m, HasTime m) => Text -> Time -> m ()

Check whether the given time is in the past. If it’s not, abort with a message.

2.1.3.6 Module DA.Bifunctor

Typeclasses

class Bifunctor p where

A bifunctor is a type constructor that takes two type arguments and is a functor in both

arguments. That is, unlike with Functor, a type constructor such as Either does not

need to be partially applied for a Bifunctor instance, and the methods in this class

permit mapping functions over the Left value or the Right value, or both at the same

time.

It is a bifunctor where both the first and second arguments are covariant.

You candefine aBifunctorby either defining bimapor by defining both first and second.

If you supply bimap, you should ensure that:

Cbimap identity identityC ≡ CidentityC

If you supply first and second, ensure:

first identity ≡ identity

second identity ≡ identity

If you supply both, you should also ensure:

bimap f g ≡ first f . second g

By parametricity, these will ensure that:

bimap (f . g) (h . i) ≡ bimap f h . bimap g i

first (f . g) ≡ first f . first g

second (f . g) ≡ second f . second g

2.1. Writing Daml 209

Daml SDK Documentation, 2.1.1

bimap : (a -> b) -> (c -> d) -> p a c -> p b d

Map over both arguments at the same time.

bimap f g ≡ first f . second g

Examples:

>>> bimap not (+1) (True, 3)

(False,4)

>>> bimap not (+1) (Left True)

Left False

>>> bimap not (+1) (Right 3)

Right 4

first : (a -> b) -> p a c -> p b c

Map covariantly over the first argument.

first f ≡ bimap f identity

Examples:

>>> first not (True, 3)

(False,3)

>>> first not (Left True : Either Bool Int)

Left False

second : (b -> c) -> p a b -> p a c

Map covariantly over the second argument.

second ≡ bimap identity

Examples:

>>> second (+1) (True, 3)

(True,4)

>>> second (+1) (Right 3 : Either Bool Int)

Right 4

instance Bifunctor Either

instance Bifunctor ()

instance Bifunctor x1

instance Bifunctor (x1, x2)

instance Bifunctor (x1, x2, x3)

instance Bifunctor (x1, x2, x3, x4)

instance Bifunctor (x1, x2, x3, x4, x5)

210 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.7 Module DA.BigNumeric

This module exposes operations for working with the BigNumeric type.

Functions

scale : BigNumeric -> Int

Calculate the scale of a BigNumeric number. The BigNumeric number is represented as n *

10^-s where n is an integer with no trailing zeros, and s is the scale.

Thus, the scale represents the number of nonzero digits after the decimal point. Note that the

scale can be negative if the BigNumeric represents an integer with trailing zeros. In that case,

it represents the number of trailing zeros (negated).

The scale ranges between 2^15 and -2^15 + 1. The scale of 0 is 0 by convention.

>>> scale 1.1

1

>>> scale (shiftLeft (2^14) 1.0)

-2^14

precision : BigNumeric -> Int

Calculate the precision of a BigNumeric number. The BigNumeric number is represented as

n * 10^-s where n is an integer with no trailing zeros, and s is the scale. The precision is the

number of digits in n.

Thus, the precision represents the number of significant digits in the BigNumeric.

The precision ranges between 0 and 2^16 - 1.

>>> precision 1.10

2

div : Int -> RoundingMode -> BigNumeric -> BigNumeric -> BigNumeric

Calculate a division of BigNumeric numbers. The value of div n r a b is the division of a

by b, rounded to n decimal places (i.e. scale), according to the rounding mode r.

This will fail when dividing by 0, and when using the RoundingUnnecessarymode for a num-

ber that cannot be represented exactly with at most n decimal places.

round : Int -> RoundingMode -> BigNumeric -> BigNumeric

Round a BigNumeric number. The value of round n r a is the value of a rounded to n decimal

places (i.e. scale), according to the rounding mode r.

This will fail when using the RoundingUnnecessarymode for a number that cannot be rep-

resented exactly with at most n decimal places.

shiftRight : Int -> BigNumeric -> BigNumeric

Shift a BigNumeric number to the right by a power of 10. The value shiftRight n a is the

value of a times 10^(-n).

This will fail if the resulting BigNumeric is out of bounds.

>>> shiftRight 2 32.0

0.32

shiftLeft : Int -> BigNumeric -> BigNumeric

Shift a BigNumeric number to the left by a power of 10. The value shiftLeft n a is the value

of a times 10^n.

2.1. Writing Daml 211

Daml SDK Documentation, 2.1.1

This will fail if the resulting BigNumeric is out of bounds.

>>> shiftLeft 2 32.0

3200.0

roundToNumeric : NumericScale n => RoundingMode -> BigNumeric -> Numeric n

Round a BigNumeric and cast it to a Numeric. This function uses the scale of the resulting

numeric to determine the scale of the rounding.

This will fail when using the RoundingUnnecessarymode if the BigNumeric cannot be rep-

resented exactly in the requested Numeric n.

>>> (roundToNumeric RoundingHalfUp 1.23456789 : Numeric 5)

1.23457

2.1.3.8 Module DA.Date

Data Types

data DayOfWeek

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

instance Eq DayOfWeek

instance Ord DayOfWeek

instance Bounded DayOfWeek

instance Enum DayOfWeek

instance Show DayOfWeek

data Month

The Month type represents a month in the Gregorian calendar.

Note that, while Month has an Enum instance, the toEnum and fromEnum functions start

counting at 0, i.e. toEnum 1 :: Month is Feb.

Jan

Feb

Mar

Apr

May

212 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Jun

Jul

Aug

Sep

Oct

Nov

Dec

instance Eq Month

instance Ord Month

instance Bounded Month

instance Enum Month

instance Show Month

Functions

addDays : Date -> Int -> Date

Add the given number of days to a date.

subtractDays : Date -> Int -> Date

Subtract the given number of days from a date.

subtractDays d r is equivalent to addDays d (- r).

subDate : Date -> Date -> Int

Returns the number of days between the two given dates.

dayOfWeek : Date -> DayOfWeek

Returns the day of week for the given date.

fromGregorian : (Int, Month, Int) -> Date

Constructs a Date from the triplet (year, month, days).

toGregorian : Date -> (Int, Month, Int)

Turn Date value into a (year, month, day) triple, according to the Gregorian calendar.

date : Int -> Month -> Int -> Date

Given the three values (year, month, day), constructs a Date value. date y m d turns the

year y, month m, and day d into a Date value. Raises an error if d is outside the range 1 ..

monthDayCount y m.

isLeapYear : Int -> Bool

Returns True if the given year is a leap year.

fromMonth : Month -> Int

Get the number corresponding to given month. For example, Jan corresponds to 1, Feb corre-

sponds to 2, and so on.

monthDayCount : Int -> Month -> Int

2.1. Writing Daml 213

Daml SDK Documentation, 2.1.1

Get number of days in the givenmonth in the given year, according to Gregorian calendar. This

does not take historical calendar changes into account (for example, the moves from Julian to

Gregorian calendar), but does count leap years.

datetime : Int -> Month -> Int -> Int -> Int -> Int -> Time

Constructs an instant using year, month, day, hours, minutes, seconds.

toDateUTC : Time -> Date

Extracts UTC date from UTC time.

This function will truncate Time to Date, but in many cases it will not return the date you really

want. The reason for this is that usually the source of Time would be getTime, and getTime

returns UTC, andmost likely the date you want is something local to a location or an exchange.

Consequently the date retrieved thiswaywould be yesterday if retrievedwhen themarket opens

in say Singapore.

passToDate : Date -> Scenario Time

Within a scenario, pass the simulated scenario to given date.

2.1.3.9 Module DA.Either

The Either type represents values with two possibilities.

It is sometimes used to represent a value which is either correct or an error. By convention, the Left

constructor is used to hold an error value and the Right constructor is used to hold a correct value

(mnemonic: "right" also means correct).

Functions

lefts : [Either a b] -> [a]

Extracts all the Left elements from a list.

rights : [Either a b] -> [b]

Extracts all the Right elements from a list.

partitionEithers : [Either a b] -> ([a], [b])

Partitions a list of Either into two lists, the Left and Right elements respectively. Order is

maintained.

isLeft : Either a b -> Bool

Return True if the given value is a Left-value, False otherwise.

isRight : Either a b -> Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft : a -> Either a b -> a

Return the contents of a Left-value, or a default value in case of a Right-value.

fromRight : b -> Either a b -> b

Return the contents of a Right-value, or a default value in case of a Left-value.

optionalToEither : a -> Optional b -> Either a b

Convert a Optional value to an Either value, using the supplied parameter as the Left value

if the Optional is None.

eitherToOptional : Either a b -> Optional b

Convert an Either value to a Optional, dropping any value in Left.

214 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

maybeToEither : a -> Optional b -> Either a b

eitherToMaybe : Either a b -> Optional b

2.1.3.10 Module DA.Exception

Exception handling in Daml.

Typeclasses

class HasThrow e where

Part of the Exception constraint.

throwPure : e -> t

Throw exception in a pure context.

instance HasThrow ArithmeticError

instance HasThrow AssertionFailed

instance HasThrow GeneralError

instance HasThrow PreconditionFailed

class HasMessage e where

Part of the Exception constraint.

message : e -> Text

Get the error message associated with an exception.

instance HasMessage AnyException

instance HasMessage ArithmeticError

instance HasMessage AssertionFailed

instance HasMessage GeneralError

instance HasMessage PreconditionFailed

class HasToAnyException e where

Part of the Exception constraint.

toAnyException : e -> AnyException

Convert an exception type to AnyException.

instance HasToAnyException AnyException

instance HasToAnyException ArithmeticError

instance HasToAnyException AssertionFailed

instance HasToAnyException GeneralError

instance HasToAnyException PreconditionFailed

class HasFromAnyException e where

Part of the Exception constraint.

2.1. Writing Daml 215

Daml SDK Documentation, 2.1.1

fromAnyException : AnyException -> Optional e

Convert an AnyException back to the underlying exception type, if possible.

instance HasFromAnyException AnyException

instance HasFromAnyException ArithmeticError

instance HasFromAnyException AssertionFailed

instance HasFromAnyException GeneralError

instance HasFromAnyException PreconditionFailed

class Action m => ActionThrow m where

Action type in which throw is supported.

throw : Exception e => e -> m t

instance ActionThrow Scenario

instance ActionThrow Update

class ActionThrow m => ActionCatch m where

Action type in which try ... catch ... is supported.

_tryCatch : (() -> m t) -> (AnyException -> Optional (m t)) -> m t

Handle an exception. Use the try ... catch ... syntax instead of calling this

method directly.

instance ActionCatch Update

Data Types

type Exception e = (HasThrow e, HasMessage e, HasToAnyException e, HasFromAnyException e)

Exception typeclass. This should not be implemented directly, instead, use the exception

syntax.

data ArithmeticError

Exception raised by an arithmetic operation, such as divide-by-zero or overflow.

ArithmeticError

Field Type Description

message Text

data AssertionFailed

Exception raised by assert functions in DA.Assert

AssertionFailed

Field Type Description

message Text

216 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data GeneralError

Exception raised by error.

GeneralError

Field Type Description

message Text

data PreconditionFailed

Exception raised when a contract is invalid, i.e. fails the ensure clause.

PreconditionFailed

Field Type Description

message Text

2.1.3.11 Module DA.Foldable

Class of data structures that can be folded to a summary value. It’s a good idea to import thismodule

qualified to avoid clashes with functions defined in Prelude. Ie.:

import DA.Foldable qualified as F

Typeclasses

class Foldable t where

Class of data structures that can be folded to a summary value.

fold : Monoid m => t m -> m

Combine the elements of a structure using a monoid.

foldMap : Monoid m => (a -> m) -> t a -> m

Combine the elements of a structure using a monoid.

foldr : (a -> b -> b) -> b -> t a -> b

Right-associative fold of a structure.

foldl : (b -> a -> b) -> b -> t a -> b

Left-associative fold of a structure.

foldr1 : (a -> a -> a) -> t a -> a

A variant of foldr that hasnobase case, and thusshould only beapplied tonon-empty

structures.

foldl1 : (a -> a -> a) -> t a -> a

A variant of foldl that hasnobase case, and thus should only be applied to non-empty

structures.

toList : t a -> [a]

List of elements of a structure, from left to right.

2.1. Writing Daml 217

Daml SDK Documentation, 2.1.1

null : t a -> Bool

Test whether the structure is empty. The default implementation is optimized for

structures that are similar to cons-lists, because there is no general way to do better.

length : t a -> Int

Returns the size/length of a finite structure as an Int. The default implementation

is optimized for structures that are similar to cons-lists, because there is no general

way to do better.

elem : Eq a => a -> t a -> Bool

Does the element occur in the structure?

sum : Additive a => t a -> a

The sum function computes the sum of the numbers of a structure.

product : Multiplicative a => t a -> a

The product function computes the product of the numbers of a structure.

minimum : Ord a => t a -> a

The least element of a non-empty structure.

maximum : Ord a => t a -> a

The largest element of a non-empty structure.

instance Ord k => Foldable (Map k)

instance Foldable TextMap

instance Foldable Optional

instance Foldable NonEmpty

instance Foldable Set

instance Foldable (Either a)

instance Foldable ([])

instance Foldable a

Functions

mapA_ : (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()

Map each element of a structure to an action, evaluate these actions from left to right, and

ignore the results. For a version that doesn’t ignore the results see ‘DA.Traversable.mapA’.

forA_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()

‘for_’ is ‘mapA_’ with its arguments flipped. For a version that doesn’t ignore the results see

‘DA.Traversable.forA’.

forM_ : (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()

sequence_ : (Foldable t, Action m) => t (m a) -> m ()

Evaluate each action in the structure from left to right, and ignore the results. For a version

that doesn’t ignore the results see ‘DA.Traversable.sequence’.

concat : Foldable t => t [a] -> [a]

The concatenation of all the elements of a container of lists.

218 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

and : Foldable t => t Bool -> Bool

and returns the conjunction of a container of Bools. For the result to be True, the container

must be finite; False, however, results from a False value finitely far from the left end.

or : Foldable t => t Bool -> Bool

or returns the disjunction of a container of Bools. For the result to be False, the container

must be finite; True, however, results from a True value finitely far from the left end.

any : Foldable t => (a -> Bool) -> t a -> Bool

Determines whether any element of the structure satisfies the predicate.

all : Foldable t => (a -> Bool) -> t a -> Bool

Determines whether all elements of the structure satisfy the predicate.

2.1.3.12 Module DA.Functor

The Functor class is used for types that can be mapped over.

Functions

($>) : Functor f => f a -> b -> f b

Replace all locations in the input (on the left) with the given value (on the right).

(<&>) : Functor f => f a -> (a -> b) -> f b

Map a function over a functor. Given a value as and a function f, as <&> f is f <$> as. That

is, <&> is like <$> but the arguments are in reverse order.

void : Functor f => f a -> f ()

Replace all the locations in the input with ().

2.1.3.13 Module DA.List

List

Functions

sort : Ord a => [a] -> [a]

The sort function implements a stable sorting algorithm. It is a special case of sortBy, which

allows the programmer to supply their own comparison function.

Elements are arranged from lowest to highest, keeping duplicates in the order they appeared

in the input (a stable sort).

sortBy : (a -> a -> Ordering) -> [a] -> [a]

The sortBy function is the non-overloaded version of sort.

minimumBy : (a -> a -> Ordering) -> [a] -> a

minimumBy f xs returns the first element x of xs for which f x y is either LT or EQ for all

other y in xs. xsmust be non-empty.

maximumBy : (a -> a -> Ordering) -> [a] -> a

maximumBy f xs returns the first element x of xs for which f x y is either GT or EQ for all

other y in xs. xsmust be non-empty.

2.1. Writing Daml 219

Daml SDK Documentation, 2.1.1

sortOn : Ord k => (a -> k) -> [a] -> [a]

Sort a list by comparing the results of a key function applied to each element. sortOn f is

equivalent to sortBy (comparing f), but has the performance advantage of only evaluating

fonce for each element in the input list. This is sometimes called thedecorate-sort-undecorate

paradigm.

Elements are arranged from from lowest to highest, keeping duplicates in the order they ap-

peared in the input.

minimumOn : Ord k => (a -> k) -> [a] -> a

minimumOn f xs returns the first element x of xs for which f x is smaller than or equal to

any other f y for y in xs. xsmust be non-empty.

maximumOn : Ord k => (a -> k) -> [a] -> a

maximumOn f xs returns the first element x of xs for which f x is greater than or equal to

any other f y for y in xs. xsmust be non-empty.

mergeBy : (a -> a -> Ordering) -> [a] -> [a] -> [a]

Merge two sorted lists using into a single, sorted whole, allowing the programmer to specify

the comparison function.

combinePairs : (a -> a -> a) -> [a] -> [a]

Combine elements pairwise by means of a programmer supplied function from two list inputs

into a single list.

foldBalanced1 : (a -> a -> a) -> [a] -> a

Fold a non-empty list in a balancedway. Balancedmeans that each element has approximately

the same depth in the operator tree. Approximately the same depth means that the difference

between maximum and minimum depth is at most 1. The accumulation operation must be

associative and commutative in order to get the same result as foldl1 or foldr1.

group : Eq a => [a] -> [[a]]

The ‘group’ function groups equal elements into sublists such that the concatenation of the

result is equal to the argument.

groupBy : (a -> a -> Bool) -> [a] -> [[a]]

The ‘groupBy’ function is the non-overloaded version of ‘group’.

groupOn : Eq k => (a -> k) -> [a] -> [[a]]

Similar to ‘group’, except that the equality is done on an extracted value.

dedup : Ord a => [a] -> [a]

dedup l removesduplicate elements froma list. In particular, it keepsonly the first occurrence

of each element. It is a special case of dedupBy, which allows the programmer to supply their

own equality test. dedup is called nub in Haskell.

dedupBy : (a -> a -> Ordering) -> [a] -> [a]

A version of dedup with a custom predicate.

dedupOn : Ord k => (a -> k) -> [a] -> [a]

A version of dedupwhere deduplication is done after applyng function. Example use: dedupOn

(.employeeNo) employees

dedupSort : Ord a => [a] -> [a]

The dedupSort function sorts and removes duplicate elements from a list. In particular, it

keeps only the first occurrence of each element.

dedupSortBy : (a -> a -> Ordering) -> [a] -> [a]

A version of dedupSort with a custom predicate.

220 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

unique : Ord a => [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list.

uniqueBy : (a -> a -> Ordering) -> [a] -> Bool

A version of unique with a custom predicate.

uniqueOn : Ord k => (a -> k) -> [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list after applyng func-

tion. Example use: assert $ uniqueOn (.employeeNo) employees

replace : Eq a => [a] -> [a] -> [a] -> [a]

Given a list and a replacement list, replaces each occurance of the search list with the replace-

ment list in the operation list.

dropPrefix : Eq a => [a] -> [a] -> [a]

Drops the given prefix from a list. It returns the original sequence if the sequence doesn’t start

with the given prefix.

dropSuffix : Eq a => [a] -> [a] -> [a]

Drops the given suffix from a list. It returns the original sequence if the sequence doesn’t end

with the given suffix.

stripPrefix : Eq a => [a] -> [a] -> Optional [a]

The stripPrefix function drops the given prefix from a list. It returns None if the list did not

start with the prefix given, or Some the list after the prefix, if it does.

stripSuffix : Eq a => [a] -> [a] -> Optional [a]

Return the prefix of the second list if its suffix matches the entire first list.

stripInfix : Eq a => [a] -> [a] -> Optional ([a], [a])

Return the string before and after the search string or None if the search string is not found.

>>> stripInfix [0,0] [1,0,0,2,0,0,3]

Some ([1], [2,0,0,3])

>>> stripInfix [0,0] [1,2,0,4,5]

None

isPrefixOf : Eq a => [a] -> [a] -> Bool

The isPrefixOf function takes two lists and returns True if and only if the first is a prefix of

the second.

isSuffixOf : Eq a => [a] -> [a] -> Bool

The isSuffixOf function takes two lists and returns True if and only if the first list is a suffix

of the second.

isInfixOf : Eq a => [a] -> [a] -> Bool

TheisInfixOf function takes two lists and returnsTrue if and only if the first list is contained

anywhere within the second.

mapAccumL : (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])

The mapAccumL function combines the behaviours of map and foldl; it applies a function to

each element of a list, passing an accumulating parameter from left to right, and returning a

final value of this accumulator together with the new list.

inits : [a] -> [[a]]

The inits function returns all initial segments of the argument, shortest first.

2.1. Writing Daml 221

Daml SDK Documentation, 2.1.1

intersperse : a -> [a] -> [a]

The intersperse function takes an element and a list and "intersperses" that element be-

tween the elements of the list.

intercalate : [a] -> [[a]] -> [a]

intercalate inserts the list xs in between the lists in xss and concatenates the result.

tails : [a] -> [[a]]

The tails function returns all final segments of the argument, longest first.

dropWhileEnd : (a -> Bool) -> [a] -> [a]

A version of dropWhile operating from the end.

takeWhileEnd : (a -> Bool) -> [a] -> [a]

A version of takeWhile operating from the end.

transpose : [[a]] -> [[a]]

The transpose function transposes the rows and columns of its argument.

breakEnd : (a -> Bool) -> [a] -> ([a], [a])

Break, but from the end.

breakOn : Eq a => [a] -> [a] -> ([a], [a])

Find the first instanceofneedle inhaystack. The first element of the returned tuple is thepre-

fix of haystack before needle ismatched. The second is the remainder of haystack, starting

with the match. If you want the remainder without the match, use stripInfix.

breakOnEnd : Eq a => [a] -> [a] -> ([a], [a])

Similar to breakOn, but searches from the end of the string.

The first element of the returned tuple is the prefix of haystack up to and including the last

match of needle. The second is the remainder of haystack, following the match.

linesBy : (a -> Bool) -> [a] -> [[a]]

A variant of lines with a custom test. In particular, if there is a trailing separator it will be

discarded.

wordsBy : (a -> Bool) -> [a] -> [[a]]

A variant of words with a custom test. In particular, adjacent separators are discarded, as are

leading or trailing separators.

head : [a] -> a

Extract the first element of a list, which must be non-empty.

tail : [a] -> [a]

Extract the elements after the head of a list, which must be non-empty.

last : [a] -> a

Extract the last element of a list, which must be finite and non-empty.

init : [a] -> [a]

Return all the elements of a list except the last one. The list must be non-empty.

foldl1 : (a -> a -> a) -> [a] -> a

Left associative fold of a list that must be non-empty.

foldr1 : (a -> a -> a) -> [a] -> a

Right associative fold of a list that must be non-empty.

repeatedly : ([a] -> (b, [a])) -> [a] -> [b]

Apply some operation repeatedly, producing an element of output and the remainder of the list.

222 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

delete : Eq a => a -> [a] -> [a]

delete x removes the first occurrence of x from its list argument. For example,

> delete "a" ["b","a","n","a","n","a"]

["b","n","a","n","a"]

It is a special case of ‘deleteBy’, which allows the programmer to supply their own equality test.

deleteBy : (a -> a -> Bool) -> a -> [a] -> [a]

The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

> deleteBy (<=) 4 [1..10]

[1,2,3,5,6,7,8,9,10]

(\\\\) : Eq a => [a] -> [a] -> [a]

The \\ function is list difference (non-associative). In the result of xs \\ ys, the first occur-

rence of each element of ys in turn (if any) has been removed from xs. Thus

(xs ++ ys) \\ xs == ys

Note this function is O(n*m) given lists of size n and m.

singleton : a -> [a]

Produce a singleton list.

>>> singleton True

[True]

(!!) : [a] -> Int -> a

List index (subscript) operator, starting from0. For example, xs !! 2 returns the third element

in xs. Raises an error if the index is not suitable for the given list. The function has complexity

O(n) where n is the index given, unlike in languages such as Java where array indexing is O(1).

elemIndex : Eq a => a -> [a] -> Optional Int

Find index of element in given list. Will return None if not found.

findIndex : (a -> Bool) -> [a] -> Optional Int

Find index, given predicate, of first matching element. Will return None if not found.

2.1.3.14 Module DA.List.BuiltinOrder

Note: This is only supported in Daml-LF 1.11 or later.

This module provides variants of other standard library functions that are based on the builtin

Daml-LF ordering rather than user-defined ordering. This is the same order also used by DA.Map.

These functions are usually much more efficient than their Ord-based counterparts.

Note that the functions in thismodule still require Ord constraints. This is purely to enforce that you

don’t pass in values that cannot be compared, e.g., functions. The implementation of those instances

is not used.

2.1. Writing Daml 223

Daml SDK Documentation, 2.1.1

Functions

dedup : Ord a => [a] -> [a]

dedup l removesduplicate elements froma list. In particular, it keepsonly the first occurrence

of each element.

dedup is stable so the elements in the output are ordered by their first occurrence in the input.

If you do not need stability, consider using dedupSort which is more efficient.

>>> dedup [3, 1, 1, 3]

[3, 1]

dedupOn : Ord k => (v -> k) -> [v] -> [v]

A version of dedupwhere deduplication is done after applying the given function. Example use:

dedupOn (.employeeNo) employees.

dedupOn is stable so the elements in the output are ordered by their first occurrence in the

input. If you do not need stability, consider using dedupOnSort which is more efficient.

>>> dedupOn fst [(3, "a"), (1, "b"), (1, "c"), (3, "d")]

[(3, "a"), (1, "b")]

dedupSort : Ord a => [a] -> [a]

dedupSort is a more efficient variant of dedup that does not preserve the order of the input

elements. Instead the output will be sorted acoording to the builtin Daml-LF ordering.

>>> dedupSort [3, 1, 1, 3]

[1, 3]

dedupOnSort : Ord k => (v -> k) -> [v] -> [v]

dedupOnSort is a more efficient variant of dedupOn that does not preserve the order of the

input elements. Instead the output will be sorted on the values returned by the function.

For duplicates, the first element in the list will be included in the output.

>>> dedupOnSort fst [(3, "a"), (1, "b"), (1, "c"), (3, "d")]

[(1, "b"), (3, "a")]

sort : Ord a => [a] -> [a]

Sort the list according to the Daml-LF ordering.

Values that are identical according to the builtin Daml-LF ordering are indistinguishable so

stability is not relevant here.

>>> sort [3,1,2]

[1,2,3]

sortOn : Ord b => (a -> b) -> [a] -> [a]

sortOn f is a version of sort that allows sorting on the result of the given function.

sortOn is stable so elements that map to the same sort key will be ordered by their position

in the input.

>>> sortOn fst [(3, "a"), (1, "b"), (3, "c"), (2, "d")]

[(1, "b"), (2, "d"), (3, "a"), (3, "c")]

unique : Ord a => [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list.

224 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

>>> unique [1, 2, 3]

True

uniqueOn : Ord k => (a -> k) -> [a] -> Bool

Returns True if and only if there are no duplicate elements in the given list after applyng func-

tion.

>>> uniqueOn fst [(1, 2), (2, 42), (1, 3)]

False

2.1.3.15 Module DA.List.Total

Functions

head : [a] -> Optional a

Return the first element of a list. Return None if list is empty.

tail : [a] -> Optional [a]

Return all but the first element of a list. Return None if list is empty.

last : [a] -> Optional a

Extract the last element of a list. Returns None if list is empty.

init : [a] -> Optional [a]

Return all the elements of a list except the last one. Returns None if list is empty.

(!!) : [a] -> Int -> Optional a

Return the nth element of a list. Return None if index is out of bounds.

foldl1 : (a -> a -> a) -> [a] -> Optional a

Fold left starting with the head of the list. For example, foldl1 f [a,b,c] = f (f a b) c.

Return None if list is empty.

foldr1 : (a -> a -> a) -> [a] -> Optional a

Fold right starting with the last element of the list. For example, foldr1 f [a,b,c] = f a

(f b c)

foldBalanced1 : (a -> a -> a) -> [a] -> Optional a

Fold a non-empty list in a balancedway. Balancedmeans that each element has approximately

the same depth in the operator tree. Approximately the same depth means that the difference

between maximum and minimum depth is at most 1. The accumulation operation must be

associative and commutative in order to get the same result as foldl1 or foldr1.

Return None if list is empty.

minimumBy : (a -> a -> Ordering) -> [a] -> Optional a

Return the least element of a list according to the given comparison function. Return None if

list is empty.

maximumBy : (a -> a -> Ordering) -> [a] -> Optional a

Return the greatest element of a list according to the given comparison function. Return None

if list is empty.

minimumOn : Ord k => (a -> k) -> [a] -> Optional a

Return the least element of a list when comparing by a key function. For example minimumOn

(\(x,y) -> x + y) [(1,2), (2,0)] == Some (2,0). Return None if list is empty.

2.1. Writing Daml 225

Daml SDK Documentation, 2.1.1

maximumOn : Ord k => (a -> k) -> [a] -> Optional a

Return the greatest element of a list when comparing by a key function. For example maxi-

mumOn (\(x,y) -> x + y) [(1,2), (2,0)] == Some (1,2). Return None if list is

empty.

2.1.3.16 Module DA.Logic

Logic - Propositional calculus.

Data Types

data Formula t

A Formula t is a formula in propositional calculus with propositions of type t.

Proposition t

Proposition p is the formula p

Negation (Formula t)

For a formula f, Negation f is ¬f

Conjunction [Formula t]

For formulas f1, ..., fn, Conjunction [f1, ..., fn] is f1 ∧ ... ∧ fn

Disjunction [Formula t]

For formulas f1, ..., fn, Disjunction [f1, ..., fn] is f1 ∨ ... ∨ fn

instance Action Formula

instance Applicative Formula

instance Functor Formula

instance Eq t => Eq (Formula t)

instance Ord t => Ord (Formula t)

instance Show t => Show (Formula t)

Functions

(&&&) : Formula t -> Formula t -> Formula t

&&& is the ∧ operation of the boolean algebra of formulas, to be read as "and"

(|||) : Formula t -> Formula t -> Formula t

||| is the ∨ operation of the boolean algebra of formulas, to be read as "or"

true : Formula t

true is the 1 element of the boolean algebra of formulas, represented as an empty conjunction.

false : Formula t

false is the 0 element of the boolean algebra of formulas, represented as an empty disjunc-

tion.

226 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

neg : Formula t -> Formula t

neg is the ¬ (negation) operation of the boolean algebra of formulas.

conj : [Formula t] -> Formula t

conj is a list version of &&&, enabled by the associativity of ∧.

disj : [Formula t] -> Formula t

disj is a list version of |||, enabled by the associativity of ∨.

fromBool : Bool -> Formula t

fromBool converts True to true and False to false.

toNNF : Formula t -> Formula t

toNNF transforms a formula to negation normal form (see https://en.wikipedia.org/wiki/Nega-

tion_normal_form).

toDNF : Formula t -> Formula t

toDNF turns a formula into disjunctive normal form. (see https://en.wikipedia.org/wiki/Dis-

junctive_normal_form).

traverse : Applicative f => (t -> f s) -> Formula t -> f (Formula s)

An implementation of traverse in the usual sense.

zipFormulas : Formula t -> Formula s -> Formula (t, s)

zipFormulas takes to formulas of same shape, meaning only propositions are different and

zips them up.

substitute : (t -> Optional Bool) -> Formula t -> Formula t

substitute takes a truth assignment and substitutes True or False into the respective

places in a formula.

reduce : Formula t -> Formula t

reduce reduces a formula as far as possible by:

1. Removing any occurrences of true and false;

2. Removing directly nested Conjunctions and Disjunctions;

3. Going to negation normal form.

isBool : Formula t -> Optional Bool

isBool attempts to convert a formula to a bool. It satisfies isBool true == Right True

and toBool false == Right False. Otherwise, it returns Left x, where x is the input.

interpret : (t -> Optional Bool) -> Formula t -> Either (Formula t) Bool

interpret is a version of toBool that first substitutes using a truth function and then re-

duces as far as possible.

substituteA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Formula t)

substituteA is a version of substitute that allows for truth values to be obtained from an

action.

interpretA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Either (Formula t) Bool)

interpretA is a version of interpret that allows for truth values to be obtained form an

action.

2.1. Writing Daml 227

Daml SDK Documentation, 2.1.1

2.1.3.17 Module DA.Map

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic map type Map k v and associated functions. This module should

be imported qualified, for example:

import DA.Map (Map)

import DA.Map qualified as M

This will give access to the Map type, and the various operations as M.lookup, M.insert, M.

fromList, etc.

Map k v internally uses the built-in order for the type k. Thismeans that keys that contain functions

are not comparable and will result in runtime errors. To prevent this, the Ord k instance is required

for most map operations. It is recommended to only use Map k v for key types that have an Ord k

instance that is derived automatically using deriving:

data K = ...

deriving (Eq, Ord)

This includes all built-in types that aren’t function types, such asInt, Text, Bool, (a, b) assuming

a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,

Map k v assuming k and v have default Ord instances, and Set k assuming k has a default Ord

instance.

Functions

fromList : Ord k => [(k, v)] -> Map k v

Create a map from a list of key/value pairs.

fromListWith : Ord k => (v -> v -> v) -> [(k, v)] -> Map k v

Create a map from a list of key/value pairs with a combining function. Examples:

>>> fromListWith (++) [("A", [1]), ("A", [2]), ("B", [2]), ("B", [1]), ("A",␣

↪→[3])]

fromList [("A", [1, 2, 3]), ("B", [2, 1])]

>>> fromListWith (++) [] == (empty : Map Text [Int])

True

keys : Map k v -> [k]

Get the list of keys in the map. Keys are sorted according to the built-in order for the type k,

which matches the Ord k instance when using deriving Ord.

>>> keys (fromList [("A", 1), ("C", 3), ("B", 2)])

["A", "B", "C"]

values : Map k v -> [v]

Get the list of values in the map. These will be in the same order as their respective keys from

M.keys.

>>> values (fromList [("A", 1), ("B", 2)])

[1, 2]

228 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

toList : Map k v -> [(k, v)]

Convert the map to a list of key/value pairs. These will be ordered by key, as in M.keys.

empty : Map k v

The empty map.

size : Map k v -> Int

Number of elements in the map.

null : Map k v -> Bool

Is the map empty?

lookup : Ord k => k -> Map k v -> Optional v

Lookup the value at a key in the map.

member : Ord k => k -> Map k v -> Bool

Is the key a member of the map?

filter : Ord k => (v -> Bool) -> Map k v -> Map k v

Filter the Map using a predicate: keep only the entries where the value satisfies the predicate.

filterWithKey : Ord k => (k -> v -> Bool) -> Map k v -> Map k v

Filter the Map using a predicate: keep only the entries which satisfy the predicate.

delete : Ord k => k -> Map k v -> Map k v

Delete a key and its value from themap. When the key is not amember of themap, the original

map is returned.

insert : Ord k => k -> v -> Map k v -> Map k v

Insert a new key/value pair in the map. If the key is already present in the map, the associated

value is replaced with the supplied value.

alter : Ord k => (Optional v -> Optional v) -> k -> Map k v -> Map k v

Update the value inm atkwithf, inserting or deleting as required. fwill be calledwith either the

value at k, or None if absent; f can return Some with a new value to be inserted in m (replacing

the old value if there was one), or None to remove any k association mmay have.

Some implications of this behavior:

alter identity k = identity alter g k . alter f k = alter (g . f) k alter (_ -> Some v) k = insert k v alter

(_ -> None) = delete

union : Ord k => Map k v -> Map k v -> Map k v

The union of two maps, preferring the first map when equal keys are encountered.

merge : Ord k => (k -> a -> Optional c) -> (k -> b -> Optional c) -> (k -> a -> b -> Optional c) -> Map k a -> Map

k b -> Map k c

Combine two maps, using separate functions based on whether a key appears only in the first

map, only in the second map, or appears in both maps.

2.1. Writing Daml 229

Daml SDK Documentation, 2.1.1

2.1.3.18 Module DA.Math

Math - Utility Math functions for Decimal The this library is designed to give good precision, typi-

cally giving 9 correct decimal places. The numerical algorithms run with many iterations to achieve

that precision and are interpreted by the Daml runtime so they are not performant. Their use is not

advised in performance critical contexts.

Functions

(**) : Decimal -> Decimal -> Decimal

Take a power of a number Example: 2.0 ** 3.0 == 8.0.

sqrt : Decimal -> Decimal

Calculate the square root of a Decimal.

>>> sqrt 1.44

1.2

exp : Decimal -> Decimal

The exponential function. Example: exp 0.0 == 1.0

log : Decimal -> Decimal

The natural logarithm. Example: log 10.0 == 2.30258509299

logBase : Decimal -> Decimal -> Decimal

The logarithm of a number to a given base. Example: log 10.0 100.0 == 2.0

sin : Decimal -> Decimal

sin is the sine function

cos : Decimal -> Decimal

cos is the cosine function

tan : Decimal -> Decimal

tan is the tangent function

2.1.3.19 Module DA.Monoid

Data Types

data All

Boolean monoid under conjunction (&&)

All

Field Type Description

getAll Bool

instance Monoid All

instance Semigroup All

230 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance Eq All

instance Ord All

instance Show All

data Any

Boolean Monoid under disjunction (||)

Any

Field Type Description

getAny Bool

instance Monoid Any

instance Semigroup Any

instance Eq Any

instance Ord Any

instance Show Any

data Endo a

The monoid of endomorphisms under composition.

Endo

Field Type Description

appEndo a -> a

instance Monoid (Endo a)

instance Semigroup (Endo a)

data Product a

Monoid under (*)

> Product 2 <> Product 3

Product 6

Product a

instance Multiplicative a => Monoid (Product a)

instance Multiplicative a => Semigroup (Product a)

instance Eq a => Eq (Product a)

instance Ord a => Ord (Product a)

instance Additive a => Additive (Product a)

instance Multiplicative a => Multiplicative (Product a)

instance Show a => Show (Product a)

2.1. Writing Daml 231

Daml SDK Documentation, 2.1.1

data Sum a

Monoid under (+)

> Sum 1 <> Sum 2

Sum 3

Sum a

instance Additive a => Monoid (Sum a)

instance Additive a => Semigroup (Sum a)

instance Eq a => Eq (Sum a)

instance Ord a => Ord (Sum a)

instance Additive a => Additive (Sum a)

instance Multiplicative a => Multiplicative (Sum a)

instance Show a => Show (Sum a)

2.1.3.20 Module DA.NonEmpty

Type and functions for non-empty lists. Thismodule re-exportsmany functions with the same name

as prelude list functions, so it is expected to import the module qualified. For example, with the

following import list you will have access to the NonEmpty type and any functions on non-empty

lists will be qualified, for example as NE.append, NE.map, NE.foldl:

import DA.NonEmpty (NonEmpty)

import qualified DA.NonEmpty as NE

Functions

cons : a -> NonEmpty a -> NonEmpty a

Prepend an element to a non-empty list.

append : NonEmpty a -> NonEmpty a -> NonEmpty a

Append or concatenate two non-empty lists.

map : (a -> b) -> NonEmpty a -> NonEmpty b

Apply a function over each element in the non-empty list.

nonEmpty : [a] -> Optional (NonEmpty a)

Turn a list into a non-empty list, if possible. Returns None if the input list is empty, and Some

otherwise.

singleton : a -> NonEmpty a

A non-empty list with a single element.

toList : NonEmpty a -> [a]

Turn a non-empty list into a list (by forgetting that it is not empty).

reverse : NonEmpty a -> NonEmpty a

Reverse a non-empty list.

232 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

find : (a -> Bool) -> NonEmpty a -> Optional a

Find an element in a non-empty list.

deleteBy : (a -> a -> Bool) -> a -> NonEmpty a -> [a]

The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

delete : Eq a => a -> NonEmpty a -> [a]

Remove the first occurence of x from the non-empty list, potentially removing all elements.

foldl1 : (a -> a -> a) -> NonEmpty a -> a

Apply a function repeatedly to pairs of elements from a non-empty list, from the left. For exam-

ple, foldl1 (+) (NonEmpty 1 [2,3,4]) = ((1 + 2) + 3) + 4.

foldr1 : (a -> a -> a) -> NonEmpty a -> a

Apply a function repeatedly to pairs of elements from a non-empty list, from the right. For

example, foldr1 (+) (NonEmpty 1 [2,3,4]) = 1 + (2 + (3 + 4)).

foldr : (a -> b -> b) -> b -> NonEmpty a -> b

Apply a function repeatedly to pairs of elements from a non-empty list, from the right, with a

given initial value. For example, foldr (+) 0 (NonEmpty 1 [2,3,4]) = 1 + (2 + (3

+ (4 + 0))).

foldrA : Action m => (a -> b -> m b) -> b -> NonEmpty a -> m b

The same as foldr but running an action each time.

foldr1A : Action m => (a -> a -> m a) -> NonEmpty a -> m a

The same as foldr1 but running an action each time.

foldl : (b -> a -> b) -> b -> NonEmpty a -> b

Apply a function repeatedly to pairs of elements from a non-empty list, from the left, with a

given initial value. For example, foldl (+) 0 (NonEmpty 1 [2,3,4]) = (((0 + 1) +

2) + 3) + 4.

foldlA : Action m => (b -> a -> m b) -> b -> NonEmpty a -> m b

The same as foldl but running an action each time.

foldl1A : Action m => (a -> a -> m a) -> NonEmpty a -> m a

The same as foldl1 but running an action each time.

2.1.3.21 Module DA.NonEmpty.Types

This module contains the type for non-empty lists so we can give it a stable package id. This is

reexported from DA.NonEmpty so you should never need to import this module.

Data Types

data NonEmpty a

NonEmpty is the type of non-empty lists. In other words, it is the type of lists that always

contain at least one element. If x is a non-empty list, you can obtain the first element with

x.hd and the rest of the list with x.tl.

NonEmpty

2.1. Writing Daml 233

Daml SDK Documentation, 2.1.1

Field Type Description

hd a

tl [a]

instance Foldable NonEmpty

instance Action NonEmpty

instance Applicative NonEmpty

instance Semigroup (NonEmpty a)

instance IsParties (NonEmpty Party)

instance Traversable NonEmpty

instance Functor NonEmpty

instance Eq a => Eq (NonEmpty a)

instance Ord a => Ord (NonEmpty a)

instance Show a => Show (NonEmpty a)

2.1.3.22 Module DA.Numeric

Functions

mul : NumericScale n3 => Numeric n1 -> Numeric n2 -> Numeric n3

Multiply two numerics. Both inputs and the outputmay have different scales, unlike (*)which

forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

div : NumericScale n3 => Numeric n1 -> Numeric n2 -> Numeric n3

Divide two numerics. Both inputs and the output may have different scales, unlike (/) which

forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

cast : NumericScale n2 => Numeric n1 -> Numeric n2

Cast a Numeric. Raises an error on overflow or loss of precision.

castAndRound : NumericScale n2 => Numeric n1 -> Numeric n2

Cast a Numeric. Raises an error on overflow, rounds to chosen scale otherwise.

shift : NumericScale n2 => Numeric n1 -> Numeric n2

Move the decimal point left or right by multiplying the numeric value by 10^(n1 - n2). Does not

overflow or underflow.

pi : NumericScale n => Numeric n

The number pi.

234 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.23 Module DA.Optional

The Optional type encapsulates an optional value. A value of type Optional a either contains a

value of type a (represented as Some a), or it is empty (represented as None). Using Optional is

a good way to deal with errors or exceptional cases without resorting to drastic measures such as

error.

The Optional type is also an action. It is a simple kind of error action, where all errors are represented

by None. A richer error action can be built using the Either type.

Functions

fromSome : Optional a -> a

The fromSome function extracts the element out of a Some and throws an error if its argument

is None.

Note that inmost cases you should prefer usingfromSomeNote to get a better error on failures.

fromSomeNote : Text -> Optional a -> a

Like fromSome but with a custom error message.

catOptionals : [Optional a] -> [a]

The catOptionals function takes a list of Optionals and returns a list of all the Some values.

listToOptional : [a] -> Optional a

The listToOptional function returns None on an empty list or Some a where a is the first

element of the list.

optionalToList : Optional a -> [a]

The optionalToList function returns an empty list when given None or a singleton list when

not given None.

fromOptional : a -> Optional a -> a

The fromOptional function takes a default value and a Optional value. If the Optional is

None, it returns the default values otherwise, it returns the value contained in the Optional.

isSome : Optional a -> Bool

The isSome function returns True iff its argument is of the form Some _.

isNone : Optional a -> Bool

The isNone function returns True iff its argument is None.

mapOptional : (a -> Optional b) -> [a] -> [b]

The mapOptional function is a version of map which can throw out elements. In particular,

the functional argument returns something of type Optional b. If this is None, no element is

added on to the result list. If it is Some b, then b is included in the result list.

whenSome : Applicative m => Optional a -> (a -> m ()) -> m ()

Perform some operation on Some, given the field inside the Some.

findOptional : (a -> Optional b) -> [a] -> Optional b

ThefindOptional returns the value of thepredicate at the first elementwhere it returnsSome.

findOptional is similar to find but it allows you to return a value from the predicate. This

is useful both as a more type safe version if the predicate corresponds to a pattern match and

for performance to avoid duplicating work performed in the predicate.

2.1. Writing Daml 235

Daml SDK Documentation, 2.1.1

2.1.3.24 Module DA.Record

Exports the record machinery necessary to allow one to annotate code that is polymorphic in the

underlying record type.

Typeclasses

class HasField x r a where

HasField gives you getter and setter functions for each record field automatically.

In the vast majority of use-cases, plain Record syntax should be preferred:

daml> let a = MyRecord 1 "hello"

daml> a.foo

1

daml> a.bar

"hello"

daml> a { bar = "bye" }

MyRecord {foo = 1, bar = "bye"}

daml> a with foo = 3

MyRecord {foo = 3, bar = "hello"}

daml>

For more on Record syntax, see https://docs.daml.com/daml/intro/3_Data.html#record.

HasField x r a is a typeclass that takes three parameters. The first parameter x is

the field name, the second parameter r is the record type, and the last parameter a is the

type of the field in this record. For example, if we define a type:

data MyRecord = MyRecord with

foo : Int

bar : Text

Then we get, for free, the following HasField instances:

HasField "foo" MyRecord Int

HasField "bar" MyRecord Text

If we want to get a value using HasField, we can use the getField function:

getFoo : MyRecord -> Int

getFoo r = getField @"foo" r

getBar : MyRecord -> Text

getBar r = getField @"bar" r

Note that this uses the “type application” syntax (f @t) to specify the field name.

Likewise, if we want to set the value in the field, we can use the setField function:

setFoo : Int -> MyRecord -> MyRecord

setFoo a r = setField @"foo" a r

setBar : Text -> MyRecord -> MyRecord

setBar a r = setField @"bar" a r

236 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

getField : r -> a

setField : a -> r -> r

2.1.3.25 Module DA.Semigroup

Data Types

data Max a

Semigroup under max

> Max 23 <> Max 42

Max 42

Max a

instance Ord a => Semigroup (Max a)

instance Eq a => Eq (Max a)

instance Ord a => Ord (Max a)

instance Show a => Show (Max a)

data Min a

Semigroup under min

> Min 23 <> Min 42

Min 23

Min a

instance Ord a => Semigroup (Min a)

instance Eq a => Eq (Min a)

instance Ord a => Ord (Min a)

instance Show a => Show (Min a)

2.1.3.26 Module DA.Set

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic set type Set k and associated functions. This module should be

imported qualified, for example:

import DA.Set (Set)

import DA.Set qualified as S

This will give access to the Set type, and the various operations as S.lookup, S.insert, S.

fromList, etc.

Set k internally uses the built-in order for the type k. This means that keys that contain functions

are not comparable and will result in runtime errors. To prevent this, the Ord k instance is required

2.1. Writing Daml 237

Daml SDK Documentation, 2.1.1

for most set operations. It is recommended to only use Set k for key types that have an Ord k

instance that is derived automatically using deriving:

data K = ...

deriving (Eq, Ord)

This includes all built-in types that aren’t function types, such asInt, Text, Bool, (a, b) assuming

a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,

Map k v assuming k and v have default Ord instances, and Set k assuming k has a default Ord

instance.

Data Types

data Set k

The type of a set. This is a wrapper over the Map type.

Set

Field Type Description

map Map k ()

instance Foldable Set

instance Ord k => Monoid (Set k)

instance Ord k => Semigroup (Set k)

instance IsParties (Set Party)

instance Ord k => Eq (Set k)

instance Ord k => Ord (Set k)

instance (Ord k, Show k) => Show (Set k)

Functions

empty : Set k

The empty set.

size : Set k -> Int

The number of elements in the set.

toList : Set k -> [k]

Convert the set to a list of elements.

fromList : Ord k => [k] -> Set k

Create a set from a list of elements.

toMap : Set k -> Map k ()

Convert a Set into a Map.

fromMap : Map k () -> Set k

Create a Set from a Map.

238 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

member : Ord k => k -> Set k -> Bool

Is the element in the set?

notMember : Ord k => k -> Set k -> Bool

Is the element not in the set? notMember k s is equivalent to not (member k s).

null : Set k -> Bool

Is this the empty set?

insert : Ord k => k -> Set k -> Set k

Insert an element in a set. If the set already contains the element, this returns the set un-

changed.

filter : Ord k => (k -> Bool) -> Set k -> Set k

Filter all elements that satisfy the predicate.

delete : Ord k => k -> Set k -> Set k

Delete an element from a set.

singleton : Ord k => k -> Set k

Create a singleton set.

union : Ord k => Set k -> Set k -> Set k

The union of two sets.

intersection : Ord k => Set k -> Set k -> Set k

The intersection of two sets.

difference : Ord k => Set k -> Set k -> Set k

difference x y returns the set consisting of all elements in x that are not in y.

> > > fromList [1, 2, 3] difference fromList [1, 4] > > > fromList [2, 3]

isSubsetOf : Ord k => Set k -> Set k -> Bool

isSubsetOf a b returns true if a is a subset of b, that is, if every element of a is in b.

isProperSubsetOf : Ord k => Set k -> Set k -> Bool

isProperSubsetOf a b returns true if a is a proper subset of b. That is, if a is a subset of b

but not equal to b.

2.1.3.27 Module DA.Stack

Data Types

data SrcLoc

Location in the source code.

Line and column are 0-based.

SrcLoc

2.1. Writing Daml 239

Daml SDK Documentation, 2.1.1

Field Type Description

srcLocPackage Text

srcLocModule Text

srcLocFile Text

srcLocStartLine Int

srcLocStartCol Int

srcLocEndLine Int

srcLocEndCol Int

data CallStack

Type of callstacks constructed automatically from HasCallStack constraints.

Use callStack to get the current callstack, and use getCallStack to deconstruct the

CallStack.

type HasCallStack = IP "callStack" CallStack

Request a CallStack. Use this as a constraint in type signatures in order to get nicer call-

stacks for error and debug messages.

For example, instead of declaring the following type signature:

myFunction : Int -> Update ()

You can declare a type signature with the HasCallStack constraint:

myFunction : HasCallStack => Int -> Update ()

The function myFunction will still be called the same way, but it will also show up as an entry

in the current callstack, which you can obtain with callStack.

Note that only functions with the HasCallStack constraint will be added to the current call-

stack, and if any function does not have the HasCallStack constraint, the callstack will be

reset within that function.

Functions

prettyCallStack : CallStack -> Text

Pretty-print a CallStack.

getCallStack : CallStack -> [(Text, SrcLoc)]

Extract the list of call sites from the CallStack.

The most recent call comes first.

callStack : HasCallStack => CallStack

Access to the current CallStack.

240 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.28 Module DA.Text

Functions for working with Text.

Functions

explode : Text -> [Text]

implode : [Text] -> Text

isEmpty : Text -> Bool

Test for emptiness.

length : Text -> Int

Compute the number of symbols in the text.

trim : Text -> Text

Remove spaces from either side of the given text.

replace : Text -> Text -> Text -> Text

Replace a subsequence everywhere it occurs. The first argument must not be empty.

lines : Text -> [Text]

Breaks a Text value up into a list of Text’s at newline symbols. The resulting texts do not

contain newline symbols.

unlines : [Text] -> Text

Joins lines, after appending a terminating newline to each.

words : Text -> [Text]

Breaks a ‘Text’ up into a list of words, delimited by symbols representing white space.

unwords : [Text] -> Text

Joins words using single space symbols.

linesBy : (Text -> Bool) -> Text -> [Text]

A variant of lines with a custom test. In particular, if there is a trailing separator it will be

discarded.

wordsBy : (Text -> Bool) -> Text -> [Text]

A variant of words with a custom test. In particular, adjacent separators are discarded, as are

leading or trailing separators.

intercalate : Text -> [Text] -> Text

intercalate inserts the text argument t in between the items in ts and concatenates the

result.

dropPrefix : Text -> Text -> Text

dropPrefix drops the given prefix from the argument. It returns the original text if the text

doesn’t start with the given prefix.

dropSuffix : Text -> Text -> Text

Drops the given suffix from the argument. It returns the original text if the text doesn’t end

with the given suffix. Examples:

2.1. Writing Daml 241

Daml SDK Documentation, 2.1.1

dropSuffix "!" "Hello World!" == "Hello World"

dropSuffix "!" "Hello World!!" == "Hello World!"

dropSuffix "!" "Hello World." == "Hello World."

stripSuffix : Text -> Text -> Optional Text

Return the prefix of the second text if its suffix matches the entire first text. Examples:

stripSuffix "bar" "foobar" == Some "foo"

stripSuffix "" "baz" == Some "baz"

stripSuffix "foo" "quux" == None

stripPrefix : Text -> Text -> Optional Text

The stripPrefix function drops the given prefix from the argument text. It returns None if

the text did not start with the prefix.

isPrefixOf : Text -> Text -> Bool

The isPrefixOf function takes two text arguments and returns True if and only if the first is

a prefix of the second.

isSuffixOf : Text -> Text -> Bool

The isSuffixOf function takes two text arguments and returns True if and only if the first is

a suffix of the second.

isInfixOf : Text -> Text -> Bool

The isInfixOf function takes two text arguments and returns True if and only if the first is

contained, wholly and intact, anywhere within the second.

takeWhile : (Text -> Bool) -> Text -> Text

The function takeWhile, applied to a predicate p and a text, returns the longest prefix (possi-

bly empty) of symbols that satisfy p.

takeWhileEnd : (Text -> Bool) -> Text -> Text

The function ‘takeWhileEnd’, applied to a predicate p and a ‘Text’, returns the longest suffix

(possibly empty) of elements that satisfy p.

dropWhile : (Text -> Bool) -> Text -> Text

dropWhile p t returns the suffix remaining after takeWhile p t.

dropWhileEnd : (Text -> Bool) -> Text -> Text

dropWhileEnd p t returns the prefix remaining after dropping symbols that satisfy the pred-

icate p from the end of t.

splitOn : Text -> Text -> [Text]

Break a text into pieces separated by the first text argument (which cannot be empty), con-

suming the delimiter.

splitAt : Int -> Text -> (Text, Text)

Split a text before a given position so that for 0 <= n <= length t, length (fst (splitAt

n t)) == n.

take : Int -> Text -> Text

take n, applied to a text t, returns the prefix of t of length n, or t itself if n is greater than the

length of t.

drop : Int -> Text -> Text

drop n, applied to a text t, returns the suffix of t after the first n characters, or the empty

Text if n is greater than the length of t.

242 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

substring : Int -> Int -> Text -> Text

Compute the sequence of symbols of length l in the argument text starting at s.

isPred : (Text -> Bool) -> Text -> Bool

isPred f t returns True if t is not empty and f is True for all symbols in t.

isSpace : Text -> Bool

isSpace t is True if t is not empty and consists only of spaces.

isNewLine : Text -> Bool

isSpace t is True if t is not empty and consists only of newlines.

isUpper : Text -> Bool

isUpper t is True if t is not empty and consists only of uppercase symbols.

isLower : Text -> Bool

isLower t is True if t is not empty and consists only of lowercase symbols.

isDigit : Text -> Bool

isDigit t is True if t is not empty and consists only of digit symbols.

isAlpha : Text -> Bool

isAlpha t is True if t is not empty and consists only of alphabet symbols.

isAlphaNum : Text -> Bool

isAlphaNum t is True if t is not empty and consists only of alphanumeric symbols.

parseInt : Text -> Optional Int

Attempt to parse an Int value from a given Text.

parseNumeric : Text -> Optional (Numeric n)

Attempt to parse a Numeric value from a given Text. To get Some value, the text must follow

the regex (-|\+)?[0-9]+(\.[0-9]+)? In particular, the shorthands ".12" and "12." do

not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however

spaces are not. Examples:

parseNumeric "3.14" == Some 3.14

parseNumeric "+12.0" == Some 12

parseDecimal : Text -> Optional Decimal

Attempt to parse a Decimal value from a given Text. To get Some value, the text must follow

the regex (-|\+)?[0-9]+(\.[0-9]+)? In particular, the shorthands ".12" and "12." do

not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however

spaces are not. Examples:

parseDecimal "3.14" == Some 3.14

parseDecimal "+12.0" == Some 12

sha256 : Text -> Text

Computes the SHA256 hash of the UTF8 bytes of the Text, and returns it in its hex-encoded

form. The hex encoding uses lowercase letters.

This function will crash at runtime if you compile Daml to Daml-LF < 1.2.

reverse : Text -> Text

Reverse some Text.

reverse "Daml" == "lmaD"

2.1. Writing Daml 243

Daml SDK Documentation, 2.1.1

toCodePoints : Text -> [Int]

Convert a Text into a sequence of unicode code points.

fromCodePoints : [Int] -> Text

Convert a sequence of unicode code points into a Text. Raises an exception if any of the code

points is invalid.

asciiToLower : Text -> Text

Convert the uppercase ASCII characters of a Text to lowercase; all other characters remain

unchanged.

asciiToUpper : Text -> Text

Convert the lowercase ASCII characters of a Text to uppercase; all other characters remain

unchanged.

2.1.3.29 Module DA.TextMap

TextMap - A map is an associative array data type composed of a collection of key/value pairs such

that, each possible key appears at most once in the collection.

Functions

fromList : [(Text, a)] -> TextMap a

Create a map from a list of key/value pairs.

fromListWith : (a -> a -> a) -> [(Text, a)] -> TextMap a

Create a map from a list of key/value pairs with a combining function. Examples:

fromListWith (++) [("A", [1]), ("A", [2]), ("B", [2]), ("B", [1]), ("A",␣

↪→[3])] == fromList [("A", [1, 2, 3]), ("B", [2, 1])]

fromListWith (++) [] == (empty : TextMap [Int])

toList : TextMap a -> [(Text, a)]

Convert the map to a list of key/value pairs where the keys are in ascending order.

empty : TextMap a

The empty map.

size : TextMap a -> Int

Number of elements in the map.

null : TextMap v -> Bool

Is the map empty?

lookup : Text -> TextMap a -> Optional a

Lookup the value at a key in the map.

member : Text -> TextMap v -> Bool

Is the key a member of the map?

filter : (v -> Bool) -> TextMap v -> TextMap v

Filter the TextMap using a predicate: keep only the entries where the value satisfies the pred-

icate.

filterWithKey : (Text -> v -> Bool) -> TextMap v -> TextMap v

Filter the TextMap using a predicate: keep only the entries which satisfy the predicate.

244 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

delete : Text -> TextMap a -> TextMap a

Delete a key and its value from themap. When the key is not amember of themap, the original

map is returned.

insert : Text -> a -> TextMap a -> TextMap a

Insert a new key/value pair in the map. If the key is already present in the map, the associated

value is replaced with the supplied value.

union : TextMap a -> TextMap a -> TextMap a

The union of two maps, preferring the first map when equal keys are encountered.

merge : (Text -> a -> Optional c) -> (Text -> b -> Optional c) -> (Text -> a -> b -> Optional c) -> TextMap a ->

TextMap b -> TextMap c

Merge two maps. merge f g h x y applies f to all key/value pairs whose key only appears

in x, g to all pairs whose key only appears in y and h to all pairs whose key appears in both x

and y. In the end, all pairs yielding Some are collected as the result.

2.1.3.30 Module DA.Time

Data Types

data RelTime

The RelTime type describes a time offset, i.e. relative time.

instance Eq RelTime

instance Ord RelTime

instance Additive RelTime

instance Signed RelTime

instance Show RelTime

Functions

time : Date -> Int -> Int -> Int -> Time

time d h m s turns given UTC date d and the UTC time (given in hours, minutes, seconds)

into a UTC timestamp (Time). Does not handle leap seconds.

pass : RelTime -> Scenario Time

Pass simulated scenario time by argument

addRelTime : Time -> RelTime -> Time

Adjusts Time with given time offset.

subTime : Time -> Time -> RelTime

Returns time offset between two given instants.

wholeDays : RelTime -> Int

Returns the number of whole days in a time offset. Fraction of time is rounded towards zero.

days : Int -> RelTime

A number of days in relative time.

2.1. Writing Daml 245

Daml SDK Documentation, 2.1.1

hours : Int -> RelTime

A number of hours in relative time.

minutes : Int -> RelTime

A number of minutes in relative time.

seconds : Int -> RelTime

A number of seconds in relative time.

milliseconds : Int -> RelTime

A number of milliseconds in relative time.

microseconds : Int -> RelTime

A number of microseconds in relative time.

convertRelTimeToMicroseconds : RelTime -> Int

Convert RelTime to microseconds Use higher level functions instead of the internal microsec-

onds

convertMicrosecondsToRelTime : Int -> RelTime

Convert microseconds to RelTime Use higher level functions instead of the internal microsec-

onds

2.1.3.31 Module DA.Traversable

Class of data structures that can be traversed from left to right, performing an action on each el-

ement. You typically would want to import this module qualified to avoid clashes with functions

defined in Prelude. Ie.:

import DA.Traversable qualified as F

Typeclasses

class (Functor t, Foldable t) => Traversable t where

Functors representing data structures that can be traversed from left to right.

mapA : Applicative f => (a -> f b) -> t a -> f (t b)

Map each element of a structure to an action, evaluate these actions from left to

right, and collect the results.

sequence : Applicative f => t (f a) -> f (t a)

Evaluate each action in the structure from left to right, and collect the results.

instance Ord k => Traversable (Map k)

instance Traversable TextMap

instance Traversable Optional

instance Traversable NonEmpty

instance Traversable (Either a)

instance Traversable ([])

instance Traversable a

246 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Functions

forA : (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)

forA is mapA with its arguments flipped.

2.1.3.32 Module DA.Tuple

Tuple - Ubiquitous functions of tuples.

Functions

first : (a -> a’) -> (a, b) -> (a’, b)

The pair obtained from a pair by application of a programmer supplied function to the argu-

ment pair’s first field.

second : (b -> b’) -> (a, b) -> (a, b’)

The pair obtained from a pair by application of a programmer supplied function to the argu-

ment pair’s second field.

both : (a -> b) -> (a, a) -> (b, b)

The pair obtained from a pair by application of a programmer supplied function to both the

argument pair’s first and second fields.

swap : (a, b) -> (b, a)

The pair obtained from a pair by permuting the order of the argument pair’s first and second

fields.

dupe : a -> (a, a)

Duplicate a single value into a pair.

> dupe 12 == (12, 12)

fst3 : (a, b, c) -> a

Extract the ‘fst’ of a triple.

snd3 : (a, b, c) -> b

Extract the ‘snd’ of a triple.

thd3 : (a, b, c) -> c

Extract the final element of a triple.

curry3 : ((a, b, c) -> d) -> a -> b -> c -> d

Converts an uncurried function to a curried function.

uncurry3 : (a -> b -> c -> d) -> (a, b, c) -> d

Converts a curried function to a function on a triple.

2.1. Writing Daml 247

Daml SDK Documentation, 2.1.1

2.1.3.33 Module DA.Validation

Validation type and associated functions.

Data Types

data Validation err a

A Validation represents eithor a non-empty list of errors, or a successful value. This

generalizes Either to allow more than one error to be collected.

Errors (NonEmpty err)

Success a

instance Applicative (Validation err)

instance Functor (Validation err)

instance (Eq err, Eq a) => Eq (Validation err a)

instance (Show err, Show a) => Show (Validation err a)

Functions

invalid : err -> Validation err a

Fail for the given reason.

ok : a -> Validation err a

Succeed with the given value.

validate : Either err a -> Validation err a

Turn an Either into a Validation.

run : Validation err a -> Either (NonEmpty err) a

Convert a Validation err a value into an Either, taking the non-empty list of errors as the

left value.

run1 : Validation err a -> Either err a

Convert a Validation err a value into an Either, taking just the first error as the left value.

runWithDefault : a -> Validation err a -> a

Run a Validation err a with a default value in case of errors.

(<?>) : Optional b -> Text -> Validation Text b

Convert an Optional t into a Validation Text t, or more generally into an m t for any

ActionFail type m.

248 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.4 Good design patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a

document of good design practices. This document is a catalog of Daml patterns intended to provide

the same facility in the Daml application world.

You can checkout the examples locally via daml new daml-patterns --template

daml-patterns.

Initiate and Accept The Initiate and Accept pattern demonstrates how to start a bilateral workflow.

One party initiates by creating a proposal or an invite contract. This gives another party the

chance to accept, reject or renegotiate.

Multiple party agreement The Multiple Party Agreement pattern uses a Pending contract as a wrap-

per for the Agreement contract. Any one of the signatory parties can kick off the workflow by

creating a Pending contract on the ledger, filling in themselves in all the signatory fields. The

Agreement contract is not created on the ledger until all parties have agreed to the Pending

contract, and replaced the initiator’s signature with their own.

Delegation The Delegation pattern gives one party the right to exercise a choice on behalf of another

party. The agent can control a contract on the ledgerwithout theprincipal explicitly committing

the action.

Authorization The Authorization pattern demonstrates how to make sure a controlling party is au-

thorized before they take certain actions.

Locking The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the

specified locking party can lock the asset through an active and authorized action. When a

contract is locked, some or all choices specified on that contract may not be exercised.

2.1.4.1 Initiate and Accept

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates

by creating a proposal or an invite contract. This gives another party the chance to accept, reject or

renegotiate.

Motivation

It takes two to tango, but one party has to initiate. There is no difference in business world. The

contractual relationship between two businesses often starts with an invite, a business proposal, a

bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an on-boarding

process, in which they invite participants to sign master service agreements and fulfill differ-

ent roles in themarket. Receiving participants need to evaluate the rights and responsibilities

of each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The

proposal lays out what is expected frombuyers, andwhat they can expect from the issuer. Buy-

ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before

making a decision.

The Initiate and Accept pattern demonstrates how to write a Daml program to model the initiation

of an inter-company contractual relationship. Daml modelers often have to follow this pattern to

ensure no participants are forced into an obligation.

2.1. Writing Daml 249

Daml SDK Documentation, 2.1.1

Implementation

The Initiate and Accept pattern in general involves 2 contracts:

Initiate contract The Initiate contract can be created from a role contract or any other point in the

workflow. In this example, initiate contract is the proposal contract CoinIssueProposal the issuer

created from the master contract CoinMaster.

template CoinMaster

with

issuer: Party

where

signatory issuer

nonconsuming choice Invite : ContractId CoinIssueProposal

with owner: Party

controller issuer

do create CoinIssueProposal

with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinIssueProposal contract has Issuer as the signatory, and Owner as the controller to the

Accept choice. In its complete form, the CoinIssueProposal contract should define all choices

available to the owner, i.e. Accept, Reject or Counter (e.g. re-negotiate terms).

template CoinIssueProposal

with

coinAgreement: CoinIssueAgreement

where

signatory coinAgreement.issuer

observer coinAgreement.owner

choice AcceptCoinProposal

: ContractId CoinIssueAgreement

controller coinAgreement.owner

do create coinAgreement

Result contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to

express their consent, it returns a result contract representing the agreement between the two

parties. In this example, the result contract is of type CoinIssueAgreement. Note, it has both

issuer and owner as the signatories, implying they both need to consent to the creation of this

contract. Both parties could be controller(s) on the result contract, depending on the business

case.

template CoinIssueAgreement

with

issuer: Party

owner: Party

where

signatory issuer, owner

nonconsuming choice Issue : ContractId Coin

with amount: Decimal

controller issuer

do create Coin with issuer; owner; amount; delegates = []

250 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Fig. 1: Initiate and Accept pattern diagram

Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to

progress the workflow.

2.1.4.2 Multiple party agreement

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-

tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on

the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on

the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature

with their own.

Motivation

The Initiate and Accept shows how to create bilateral agreements in Daml. However, a project or a

workflow often requires more than two parties to reach a consensus and put their signatures on

a multi-party contract. For example, in a large construction project, there are at least three major

stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on key

responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure

if there are conflicts between their two contracts and the third contract between their partners. If

the Initiate and Acceptwere used to collect three signatures on amulti-party agreement, unnecessary

restrictions would be put on the order of consensus and a number of additional contract templates

would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-

tiple signatories and have each party accept explicitly.

2.1. Writing Daml 251

Daml SDK Documentation, 2.1.1

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of

stakeholders. Its content can vary per business case, but in this pattern, it always has mul-

tiple signatories.

template Agreement

with

signatories: [Party]

where

signatory signatories

ensure

unique signatories

-- The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so

that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to

sign it. If you add these lists together, it has to be the same set of parties as the signatories

of the Agreement contract.

All of the toSign parties have the choice to Sign. This choice checks that the party is indeed a

member of toSign, then creates a new instance of the Pending contract where they have been

moved to the signed list.

template Pending

with

finalContract: Agreement

alreadySigned: [Party]

where

signatory alreadySigned

observer finalContract.signatories

ensure

-- Can
t have duplicate signatories

unique alreadySigned

-- The parties who need to sign is the finalContract.signatories with␣

↪→alreadySigned filtered out

let toSign = filter (CnotElemC alreadySigned) finalContract.signatories

choice Sign : ContractId Pending with

signer : Party

controller signer

do

-- Check the controller is in the toSign list, and if they are,␣

↪→sign the Pending contract

assert (signer CelemC toSign)

create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using

the Finalize choice. This checks that all of the signatories for the Agreement have signed the

Pending contract.

choice Finalize : ContractId Agreement with

signer : Party

controller signer

(continues on next page)

252 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

do

-- Check that all the required signatories have signed Pending

assert (sort alreadySigned == sort finalContract.signatories)

create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it

cannot be created in that state by any one stakeholder.

However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[person1, person2, person3, person4] <- makePartiesFrom ["Alice",

↪→"Bob", "Clare", "Dave"]

let finalContract = Agreement with signatories = parties

-- Parties cannot create a contract already signed by someone else

initialFailTest <- person1 CsubmitMustFailC do

createCmd Pending with finalContract; alreadySigned = [person1, person2]

-- Any party can create a Pending contract provided they list themselves as␣

↪→the only signatory

pending <- person1 CsubmitC do

createCmd Pending with finalContract; alreadySigned = [person1]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example

code only has choices to express consensus (but you might want to add choices to Accept,

Reject, or Negotiate).

-- Each signatory of the finalContract can Sign the Pending contract

pending <- person2 CsubmitC do

exerciseCmd pending Sign with signer = person2

pending <- person3 CsubmitC do

exerciseCmd pending Sign with signer = person3

pending <- person4 CsubmitC do

exerciseCmd pending Sign with signer = person4

-- A party can
t sign the Pending contract twice

pendingFailTest <- person3 CsubmitMustFailC do

exerciseCmd pending Sign with signer = person3

-- A party can
t sign on behalf of someone else

pendingFailTest <- person3 CsubmitMustFailC do

exerciseCmd pending Sign with signer = person4

Once all of the parties have signed the Pending contract, any of them can then exercise the

Finalize choice. This creates the Agreement contract on the ledger.

person1 CsubmitC do

exerciseCmd pending Finalize with signer = person1

2.1. Writing Daml 253

Daml SDK Documentation, 2.1.1

Fig. 2: Multiple Party Agreement Diagram

2.1.4.3 Delegation

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The

agent can control a contract on the ledger without the principal explicitly committing the action.

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on

delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to

hold their securities and settle transactions on their behalf. The securities are not legally possessed

by the custodian banks, but the banks should have full rights to performactions in the client’s name,

such as making payments or changing investments.

The Delegation pattern enables Daml modelers to model the real-world business contractual agree-

ments between custodian banks and their customers. Ownership and administration rights can be

segregated easily and clearly.

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-

egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to

delegate the Transfer choice.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

(continues on next page)

254 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where

signatory issuer, owner

observer delegates

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

Delegation Contract

• Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-

natory is required to authorize the Transfer choice on coin.

template CoinPoA

with

attorney: Party

principal: Party

where

signatory principal

observer attorney

choice WithdrawPoA

: ()

controller principal

do return ()

• Whether or not the Attorneyparty should be a signatory of CoinPoA is subject to the business

agreements between Principal and Attorney. For simplicity, in this example, Attorney is not

a signatory.

• Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-

cipal exercises the choice Transfer on the Coin contract.

nonconsuming choice TransferCoin

: ContractId TransferProposal

with

coinId: ContractId Coin

newOwner: Party

controller attorney

do

exercise coinId Transfer with newOwner

• Coin contracts need to be disclosed to Attorney before they can be used in an exercise of

Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done

dynamically, for any specific Coin, by making the observers a List, and adding a choice to

add a party to that List:

choice Disclose : ContractId Coin

with p : Party

controller owner

do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. Daml is actively researching future language

2.1. Writing Daml 255

Daml SDK Documentation, 2.1.1

features for contract disclosure.

Fig. 3: Delegation pattern diagram

2.1.4.4 Authorization

The Authorization pattern demonstrates how to make sure a controlling party is authorized before

they take certain actions.

Motivation

Authorization is an universal concept in the business world as access tomost business resources is

a privilege, and not given freely. For example, security tradingmay seem to be a plain bilateral agree-

ment between the two trading counterparties, but this could not be further from truth. To be able to

trade, the trading parties need go through a series of authorization processes and gain permission

from a list of service providers such as exchanges, market data streaming services, clearing houses

and security registrars etc.

The Authorization pattern shows how tomodel these authorization checks prior to a business trans-

action.

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

256 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited

company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this

example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an

observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization

with

owner: Party

issuer: Party

where

signatory issuer

observer owner

choice WithdrawAuthorization

: ()

controller issuer

do return ()

Authorization contracts canhavemuchmoreadvancedbusiness logic, but in its simplest form,

CoinOwnerAuthorization serves itsmain purpose, which is to prove the owner is a warranted coin

owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that

newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-

plied and is checkedby the twoassert statements in the choice before a coin canbe transferred.

choice AcceptTransfer

: ContractId Coin

with token: ContractId CoinOwnerAuthorization

controller newOwner

do

t <- fetch token

assert (coin.issuer == t.issuer)

assert (newOwner == t.owner)

create coin with owner = newOwner

2.1.4.5 Locking

The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the specified

locking party can lock the asset through an active and authorized action. When a contract is locked,

some or all choices specified on that contract may not be exercised.

2.1. Writing Daml 257

Daml SDK Documentation, 2.1.1

Fig. 4: Authorization Diagram

Motivation

Locking is a common real-life requirement in business transactions. During the clearing and set-

tlement process, once a trade is registered and novated to a central Clearing House, the trade is

considered locked-in. This means the securities under the ownership of seller need to be locked so

they cannot be used for other purposes, and so should be the funds on the buyer’s account. The

locked state should remain throughout the settlement Payment versus Delivery process. Once the

ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation

There are three ways to achieve locking:

Locking by archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is

used as the original contract to demonstrate locking and unlocking.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

258 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

Archiving is a straightforward choice for locking because once a contract is archived, all choices

on the contract become unavailable. Archiving can be done either through consuming choice or

archiving contract.

Consuming choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

• Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

• The controller party on the Lockmay vary depending on business context. In this example, owner

is a good choice.

• The parameters to this choice are also subject to business use case. Normally, it should have

at least locking terms (eg. lock expiry time) and a party authorized to unlock.

choice Lock : ContractId LockedCoin

with maturity: Time; locker: Party

controller owner

do create LockedCoin with coin=this; maturity; locker

• Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-

teristics, all in order to be able to recreate the original Coin:

– The signatories are the same as the original contract.

– It has all data of Coin, either through having a Coin as a field, or by replicating all data of

Coin.

– It has an Unlock choice to lift the lock.

template LockedCoin

with

coin: Coin

maturity: Time

locker: Party

where

signatory coin.issuer, coin.owner

observer locker

choice Unlock

: ContractId Coin

(continues on next page)

2.1. Writing Daml 259

Daml SDK Documentation, 2.1.1

(continued from previous page)

controller locker

do create coin

Fig. 5: Locking By Consuming Choice Diagram

Archiving contract

In the event that changing the original contract is not desirable and assuming the original contract

already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin

and create LockedCoin.

• Examine the controller party and archiving logic in the Archives choice on the Coin contract. A

coin can only be archived by the issuer under the condition that the issuer is the owner of the

coin. This ensures the issuer cannot archive any coin at will.

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

• Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment

with

owner: Party

issuer: Party

amount: Decimal

where

signatory issuer

observer owner

• The controller party and parameters on the Lock choice are the same as described in locking by

consuming choice. The additional logic required is to transfer the asset to the issuer, and then

explicitly call the Archive choice on the Coin contract.

• Once a Coin is archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

nonconsuming choice LockCoin

: ContractId LockedCoin

(continues on next page)

260 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

with coinCid: ContractId Coin

maturity: Time

locker: Party

controller owner

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&␣

↪→inputCoin.amount == amount)

--the original coin firstly transferred to issuer and then archivaed

prop <- exercise coinCid Transfer with newOwner = issuer

do

id <- exercise prop AcceptTransfer

exercise id Archives

--create a lockedCoin to represent the coin in locked state

create LockedCoin with

coin=inputCoin with owner; issuer; amount

maturity; locker

Fig. 6: Locking By Archiving Contract Diagram

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

• Locking by archiving disables all choices on the original contract. Usually for consuming

choices this is exactly what is required. But if a party needs to selectively lock only some

choices, remaining active choices need to be replicated on the LockedCoin contract, which can

lead to code duplication.

• The choices on the original contract need to be altered for the lock choice to be added. If this

contract is shared across multiple participants, it will require agreement from all involved.

2.1. Writing Daml 261

Daml SDK Documentation, 2.1.1

Locking by state

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State

requires introducing fields to track state. This allows for the creation of an active contract in two

possible states: locked or unlocked. A Damlmodeler can selectivelymake certain choices actionable

only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin

through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag

or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

• Add a locker party to the template parameters.

• Define the states.

– if owner == locker, the coin is unlocked

– if owner != locker, the coin is in a locked state

• The contract state is checked on choices.

– Transfer choice is only actionable if the coin is unlocked

– Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied

– Unlock is available to the locker party only if the coin is locked

template LockableCoin

with

owner: Party

issuer: Party

amount: Decimal

locker: Party

(continues on next page)

262 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where

signatory issuer

signatory owner

observer locker

ensure amount > 0.0

--Transfer can happen only if it is not locked

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

assert (locker == owner)

create TransferProposal

with coin=this; newOwner

--Lock can be done if owner decides to bring a locker on board

choice Lock : ContractId LockableCoin

with newLocker: Party

controller owner

do

assert (newLocker /= owner)

create this with locker = newLocker

--Unlock only makes sense if the coin is in locked state

choice Unlock

: ContractId LockableCoin

controller locker

do

assert (locker /= owner)

create this with locker = owner

Locking By State Diagram

2.1. Writing Daml 263

Daml SDK Documentation, 2.1.1

Trade-offs

• It requires changes made to the original contract template. Furthermore you should need to

change all choices intended to be locked.

• If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to

the template parameters to track the state change, the template can get overloaded.

Locking by safekeeping

Safekeeping is a realistic way tomodel locking as it is a commonpractice inmany industries. For ex-

ample, during a real estate transaction, purchase funds are transferred to the sellers lawyer’s escrow

account after the contract is signed and before closing. To understand its implementation, review

the original Coin template first.

template Coin

with

owner: Party

issuer: Party

amount: Decimal

delegates : [Party]

where

signatory issuer, owner

observer delegates

choice Transfer : ContractId TransferProposal

with newOwner: Party

controller owner

do

create TransferProposal

with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that the␣

↪→issuer is the owner of the coin. This ensures the issuer cannot archive coins␣

↪→at will.

choice Archives

: ()

controller issuer

do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can

transfer the Coin ownership to a locker party.

• Introduce a separate contract template LockRequest with the following features:

– LockRequest has a locker party as the single signatory, allowing the locker party to unilat-

erally initiate the process and specify locking terms.

– Once owner exercises Accept on the lock request, the ownership of coin is transferred to

the locker.

– The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest

with

locker: Party

maturity: Time

(continues on next page)

264 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

coin: Coin

where

signatory locker

observer coin.owner

choice Accept : LockResult

with coinCid : ContractId Coin

controller coin.owner

do

inputCoin <- fetch coinCid

assert (inputCoin == coin)

tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer

lockCid <- create LockedCoinV2 with locker; maturity; coin

return LockResult {coinCid; lockCid}

• LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described

in Consuming choice. The additional logic is to transfer ownership from the locker back to the

owner when Unlock or Clawback is called.

template LockedCoinV2

with

coin: Coin

maturity: Time

locker: Party

where

signatory locker, coin.owner

choice UnlockV2

: ContractId Coin

with coinCid : ContractId Coin

controller locker

do

inputCoin <- fetch coinCid

assert (inputCoin.owner == locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

choice ClawbackV2

: ContractId Coin

with coinCid : ContractId Coin

controller coin.owner

do

currTime <- getTime

assert (currTime >= maturity)

inputCoin <- fetch coinCid

assert (inputCoin == coin with owner=locker)

tpCid <- exercise coinCid Transfer with newOwner = coin.owner

exercise tpCid AcceptTransfer

2.1. Writing Daml 265

Daml SDK Documentation, 2.1.1

Fig. 7: Locking By Safekeeping Diagram

Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer

could run away with the funds. In a similar fashion, a malicious locker party could introduce code to

transfer assets away while they are under their ownership.

2.1.4.6 Diagram legends

2.2 Building Applications

The Building Applications section covers the elements that are used to create, extend, and test your

Daml full-stack application (including APIs and JavaScript client libraries) and the architectural best

practices for bringing those elements together.

As with the Writing Daml section, you can find the Daml code for the example application and fea-

tures here or download it using the Daml assistant. For example, to load the sources for section 1

into a folder called intro1, run daml new intro1 –template daml-intro-1.

To run the examples, you will first need to install the Daml SDK.

2.2.1 Application architecture

This section describes our recommended design of a full-stack Daml application.

266 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.1.1

2.2. Building Applications 267

Daml SDK Documentation, 2.1.1

The above image shows the recommended architecture. Here there are four types of building blocks

that go into our application: user code, Daml components, generated code from Daml, and exter-

nal components. In the recommended architecture the Daml model determines the DAR files that

underpin both the front-end and back-end. The front-end includes user code such as a React Web

Frontend, Daml React libraries or other integration libraries, and generated code from the DAR files.

The back-end consists of Daml integration components (e.g. JSON API) and a participant node; the

participant node communicates with an external token issuer. The Daml network, meanwhile, in-

cludes Daml drivers paired with external synchronization technologies.

Of course there aremany ways that the architecture and technology stack can be changed to fit your

needs, which we’ll mention in the corresponding sections.

To get started quickly with the recommended application architecture, generate a new project using

the create-daml-app template:

daml new --template=create-daml-app my-project-name

create-daml-app is a small, but fully functional demo application implementing the recom-

mended architecture, providing you with an excellent starting point for your own application. It

showcases

• using Daml React libraries

• quick iteration against the Daml Sandbox.

• authorization

• deploying your application in the cloud as a Docker container

268 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.1.1 Backend

The backend for your application can be any Daml ledger implementation running your DAR (Daml

Archive) file.

We recommend using the Daml JSON API as an interface to your frontend. It is served by the HTTP JSON

API server connected to the ledger API server. It provides simple HTTP endpoints to interact with the

ledger via GET/POST requests. However, if you prefer, you can also use the gRPC Ledger API directly.

When you use the create-daml-app template application, you can start a Daml Sandbox together

with a JSON API server by running the following command in the root of the project.

daml start --start-navigator=no

Daml Sandbox exposes the sameDaml Ledger API a Participant Nodewould exposewithout requiring

a fully-fledged Daml network to back the application. Once your application matures and becomes

ready for production, thedaml deploy commandhelps you deploy your frontend andDaml artifacts

of your project to a production Daml network.

2.2.1.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-

ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,

we provide support libraries for Java and you can also interact with the gRPC Ledger API directly.

We provide two libraries to build your React frontend for a Daml application.

Name Summary

@daml/react React hooks to query/create/exercise Daml contracts

@daml/ledger Daml ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running npm install <library> in the ui directory of

your project, e.g. npm install @daml/react. Please explore the create-daml-app example

project to see the usage of these libraries.

To make your life easy when interacting with the ledger, the Daml assistant can generate JavaScript

libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your-project-name.dar> -o ui/daml.js

This command will generate a JavaScript library for each DALF in your DAR, containing metadata

about types and templates in the DALF and TypeScript typings them. In create-daml-app, ui/

package.json refers to these libraries via the "create-daml-app": "file:../daml.js/

create-daml-app-0.1.0" entry in the dependencies field.

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,

@daml/types and the generated daml.js libraries provide you with the necessary code to connect

and issue commands against your ledger.

2.2. Building Applications 269

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

Daml SDK Documentation, 2.1.1

2.2.1.3 Authorization

When you deploy your application to a production ledger, you need to authenticate the identities of

your users.

Daml ledgers support a unified interface for authorization of commands. Some Daml ledgers, like

for example https://hub.daml.com, offer integrated authentication and authorization, but you can

also use an external service provider like https://auth0.com. The Daml react libraries support inter-

facing with a Daml ledger that validates authorization of incoming requests. Simply initialize your

DamlLedger object with the token obtained by the respective token issuer. How authorizationworks

and the form of the required tokens is described in the Authorization section.

2.2.1.4 Developer workflow

The SDK enables a local development environment with fast iteration cycles:

1. The integrated VSCode IDE (daml studio) runs your Scripts on any change to your Damlmod-

els. See Daml Script.

2. daml start will build all of your Daml code, generate the JavaScript bindings, and start the

required “backend” processes (sandbox and HTTP JSON API). It will also allow you to press r

(followed by Enter on Windows) to rebuild your code, regenerate the JavaScript bindings and

upload the new code to the running ledger.

3. npm startwill watch your JavaScript source files for change and recompile them immediately

when they are saved.

Together, these features can provide you with very tight feedback loops while developing your Daml

application, all theway fromyourDaml contractsup to yourwebUI. A typical Damldeveloperworkflow

is to

1. Make a small change to your Daml data model

2. Optionally test your Daml code with Daml Script

3. Edit your React components to be aligned with changes made in Daml code

4. Extend the UI to make use of the newly introduced feature

5. Make further changes either to yourDaml and/or React codeuntil you’re happywithwhat you’ve

developed

See Your First Feature for a more detailed walkthrough of these steps.

270 Chapter 2. Daml Guide

https://hub.daml.com
https://auth0.com

Daml SDK Documentation, 2.1.1

Command deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send

commands to the ledger, and some time later they see the effect of that command on the ledger.

There are several things that can fail during this time window: the application can crash, the partici-

pant node can crash, messages can be lost on the network, or the ledgermay be just slow to respond

due to a high load.

If you want to make sure that a command is not executed twice, your application needs to robustly

handle all failure scenarios. Daml ledgers provide a mechanism for command deduplication to help

deal with this problem.

For each command the application provides a command ID and an optional parameter that specifies

the deduplication period. If the latter parameter is not specified in the command submission itself,

the ledger will use the configured maximum deduplication duration. The ledger will then guarantee

that commands with the same change ID will generate a rejection within the effective deduplication

period.

For details on how to use command deduplication, see the Command Deduplication Guide.

Dealing with failures

Crash recovery

In order to restart your application from a previously known ledger state, your applicationmust keep

track of the last ledger offset received from the transaction service or the command completion service.

By persisting this offset alongside the relevant state as part of a single, atomic operation, your ap-

plication can resume from where it left off.

Failing over between Ledger API endpoints

Some Daml Ledgers support exposing multiple eventually consistent Ledger API endpoints where

command deduplication works across these Ledger API endpoints. For example, these endpoints

might be hosted by separate Ledger API servers that replicate the same data and host the same

parties. Contact your ledger operator to find out whether this applies to your ledger.

Below we describe how you can build your application such that it can switch between such eventu-

ally consistent Ledger API endpoints to tolerate server failures. You can do this using the following

two steps.

First, your application must keep track of the ledger offset as described in the paragraph about crash

recovery. When switching to a new Ledger API endpoint, it must resume consumption of the transac-

tion (tree) and/or the command completion streams starting from this last received offset.

Second, your applicationmust retry on OUT_OF_RANGE errors (see gRPC status codes) received from

a stream subscription – using an appropriate backoff strategy to avoid overloading the server. Such

errors can be raised because of eventual consistency. The Ledger API endpoint that the application

is newly subscribing to might be behind the endpoint that it subscribed to before the switch, and

needs time to catch up. Thanks to eventual consistency this is guaranteed to happen at some point

in the future.

2.2. Building Applications 271

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.1.1

Once the application successfully subscribes to its required streams on the new endpoint, it will

resume normal operation.

Dealing with time

The Daml language contains a function getTime which returns a rough estimate of “current time”

called Ledger Time. The notion of time comes with a lot of problems in a distributed setting: differ-

ent participants might run different clocks, there may be latencies due to calculation and network,

clocks may drift against each other over time, etc.

In order to provide a useful notion of time in Daml without incurring severe performance or liveness

penalties, Daml has two notions of time: Ledger Time and Record Time:

• As part of command interpretation, each transaction is automatically assigned a Ledger Time

by the participant server.

• All calls to getTime within a transaction return the Ledger Time assigned to that transaction.

• Ledger Time is chosen (and validated) to respect Causal Monotonicity: The Create action on a

contract c always precedes all other actions on c in Ledger Time.

• As part of the commit/synchronization protocol of the underlying infrastructure, every trans-

action is assigned a Record Time, which can be thought of as the infrastructures “system time”.

It’s the best available notion of “real time”, but the only guarantees on it are the guarantees

the underlying infrastructure can give. It is also not known at interpretation time.

• Ledger Time is kept close to “real time” by bounding it against Record Time. Transactions where

Ledger and Record Time are too far apart are rejected.

Some commands might take a long time to process, and by the time the resulting transaction is

about to be committed to the ledger, it might violate the condition that Ledger Time should be rea-

sonably close to Record Time (even when considering the ledger’s tolerance interval). To avoid such

problems, applications can set the optional parametersmin_ledger_time_abs ormin_ledger_time_rel

that specify (in absolute or relative terms) the minimal Ledger Time for the transaction. The ledger

will then process the command, but wait with committing the resulting transaction until Ledger Time

fits within the ledger’s tolerance interval.

How is this used in practice?

• Be aware that getTime is only reasonably close to real time, and not completely monotonic.

Avoid Daml workflows that rely on very accurate time measurements or high frequency time

changes.

• Set min_ledger_time_abs or min_ledger_time_rel if the duration of command interpre-

tation and transmission is likely to take a long time relative to the tolerance interval set by the

ledger.

• In some corner cases, the participant nodemay be unable to determine a suitable Ledger Time

by itself. If you get an error that no Ledger Time could be found, check whether you have con-

tention on any contract referenced by your command or whether the referenced contracts are

sensitive to small changes of getTime.

For more details, see Background concepts - time.

272 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.2 JavaScript Client Libraries

The JavaScript Client Libraries are the recommended way to build a frontend for a Daml application.

The JavaScript CodeGenerator can automatically generate JavaScript containingmetadata about Daml

packages that is required to use these libraries. We provide an integration for the React framework

with the @daml/react library. However, you can choose any JavaScript/TypeScript based framework

and use the @daml/ledger library directly to connect and interact with a Daml ledger via its HTTP

JSON API.

The@daml/types library contains TypeScript data types corresponding to primitive Daml data types,

such as Party or Text. It is used by the @daml/react and @daml/ledger libraries.

2.2.2.1 JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-

junction with the JavaScript Client Libraries for interacting with a Daml ledger via the HTTP JSON

API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-

taining metadata and types for all Daml packages included in the DAR files.

The generated packages use the library @daml/types.

Usage

In outline, the command to generate JavaScript and TypeScript typings fromDaml is daml codegen

js -o OUTDIR DAR where DAR is the path to a DAR file (generated via daml build) and OUTDIR is

a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard “skeleton” template.

1 daml new my-proj --template skeleton # Create a new project based off the␣

↪→skeleton template

2 cd my-proj # Enter the newly created project directory

3 daml build # Compile the project
s Daml files into a DAR

4 daml codegen js -o daml.js .daml/dist/my-proj-0.0.1.dar # Generate JavaScript␣

↪→packages in the daml.js directory

• On execution of these commands:

– The directory my-proj/daml.js contains generated JavaScript packages with Type-

Script typings;

– The files are arranged into directories;

– One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-

responding to the Daml files in the project;

– For example, daml.js/my-proj-0.0.1/lib/index.js provides access to the defini-

tions for daml/Main.daml;

– The remaining directories correspond to modules of the Daml standard library;

– Those directories have numeric names (the names are hashes of the Daml-LF package

they are derived from).

To get a quickstart idea of how to usewhat has been generated, youmaywish to jump to the Templates

and choices section and return to the reference material that follows as needed.

2.2. Building Applications 273

https://reactjs.org
daml-react/index.html
daml-ledger/index.html
daml-types/index.html
daml-react/index.html
daml-ledger/index.html
../json-api/index.html
../json-api/index.html
https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-types

Daml SDK Documentation, 2.1.1

Primitive Daml types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind

this quick review of the TypeScript equivalents of the primitive Daml types provided by@daml/types.

Interfaces:

• Template<T extends object, K = unknown>

• Choice<T extends object, C, R, K = unknown>

Types:

Daml TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric ν Numeric string

Text Text string

Time Time string

Party Party string

[τ] List<τ> τ[]

Date Date string

ContractId

τ

Contrac-

tId<τ>

string

Optional τ Optional<τ> null | (null extends τ ? [] | [Exclude<τ, null>]

: τ)

TextMap τ TextMap<τ> { [key: string]: τ }

(τ₁, τ₂) Tuple₂<τ₁,

τ₂>

{_1: τ₁; _2: τ₂}

Note: The types given in the “TypeScript” column are defined in @daml/types.

Note: For n-tuples where n ≥ 3, representation is analogous with the pair case (the last line of the

table).

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices

relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<τ> in the above table might look complicated. It

accounts for differences in the encoding of optional valueswhennested versuswhen they are not (i.e.

“top-level”). For example, null and "foo" are two possible values of Optional<Text> whereas,

[] and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another

possible value, [null] is not).

274 Chapter 2. Daml Guide

../json-api/index.html

Daml SDK Documentation, 2.1.1

Daml to TypeScript mappings

The mappings from Daml to TypeScript are best explained by example.

Records

In Daml, we might model a person like this.

1 data Person =

2 Person with

3 name: Text

4 party: Party

5 age: Int

Given the above definition, the generated TypeScript code will be as follows.

1 type Person = {

2 name: string;

3 party: daml.Party;

4 age: daml.Int;

5 }

Variants

This is a Daml type for a language of additive expressions.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add (Expr a, Expr a)

In TypeScript, it is represented as a discriminated union.

1 type Expr<a> =

2 | { tag:
Lit
; value: a }

3 | { tag:
Var
; value: string }

4 | { tag:
Add
; value: {_1: Expr<a>, _2: Expr<a>} }

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

1 data Expr a =

2 Lit a

3 | Var Text

4 | Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields lhs and rhs.

This renders in TypeScript like so.

2.2. Building Applications 275

https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

Daml SDK Documentation, 2.1.1

1 type Expr<a> =

2 | { tag:
Lit2
; value: a }

3 | { tag:
Var2
; value: string }

4 | { tag:
Add
; value: Expr.Add<a> }

5

6 namespace Expr {

7 type Add<a> = {

8 lhs: Expr<a>;

9 rhs: Expr<a>;

10 }

11 }

The thing to note is how the definition of the Add case has given rise to a record type definition

Expr.Add.

Enums

Given a Daml enumeration like this,

1 data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-

panion object.

1 type Color =
Red
 |
Blue
 |
Yellow

2

3 const Color = {

4 Red:
Red
,

5 Blue:
Blue
,

6 Yellow:
Yellow
,

7 keys: [
Red
,
Blue
,
Yellow
],

8 } as const;

Templates and choices

Here is a Daml template of a basic ‘IOU’ contract.

1 template Iou

2 with

3 issuer: Party

4 owner: Party

5 currency: Text

6 amount: Decimal

7 where

8 signatory issuer

9 choice Transfer: ContractId Iou

10 with

11 newOwner: Party

12 controller owner

13 do

14 create this with owner = newOwner

276 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

The daml codegen js command generates types for each of the choices defined on the template

as well as the template itself.

1 type Transfer = {

2 newOwner: daml.Party;

3 }

4

5 type Iou = {

6 issuer: daml.Party;

7 owner: daml.Party;

8 currency: string;

9 amount: daml.Numeric;

10 }

Each template results in the generation of a companion object. Here, is a schematic of the one gen-

erated from the Iou template2.

1 const Iou: daml.Template<Iou, undefined> & {

2 Archive: daml.Choice<Iou, DA_Internal_Template.Archive, {}, undefined>;

3 Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;

4 } = {

5 /* ... */

6 }

The exact details of these companion objects are not important - think of them as representing

“metadata”.

What is important is the use of the companion objects when creating contracts and exercising

choices using the @daml/ledger package. The following code snippet demonstrates their usage.

1 import Ledger from
@daml/ledger
;

2 import {Iou, Transfer} from /* ... */;

3

4 const ledger = new Ledger(/* ... */);

5

6 // Contract creation; Bank issues Alice a USD $1MM IOU.

7

8 const iouDetails: Iou = {

9 issuer:
Chase
,

10 owner:
Alice
,

11 currency:
USD
,

12 amount: 1000000.0,

13 };

14 const aliceIouCreateEvent = await ledger.create(Iou, iouDetails);

15 const aliceIouContractId = aliceIouCreateEvent.contractId;

16

17 // Choice execution; Alice transfers ownership of the IOU to Bob.

18

19 const transferDetails: Transfer = {

20 newOwner:
Bob
,

21 }

22 const [bobIouContractId, _] = await ledger.exercise(Transfer, aliceIouContractId,␣

↪→transferDetails);

Observe on line 14, the first argument to create is the Iou companion object and on line 22, the first

argument to exercise is the Transfer companion object.

2 The undefined type parameter captures the fact that Iou has no contract key.

2.2. Building Applications 277

https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-ledger

Daml SDK Documentation, 2.1.1

2.2.2.2 @daml/react

@daml/react documentation

2.2.2.3 @daml/ledger

@daml/ledger documentation

2.2.2.4 @daml/types

@daml/types documentation

2.2.3 HTTP JSON API Service

The JSON API provides a significantly simpler way to interact with a ledger than the Ledger API by

providing basic active contract set functionality:

• creating contracts,

• exercising choices on contracts,

• querying the current active contract set, and

• retrieving all known parties.

The goal of this API is to get your distributed ledger application up and running quickly, so we have

deliberately excluded complicating concerns including, but not limited to:

• inspecting transactions,

• asynchronous submit/completion workflows,

• temporal queries (e.g. active contracts as of a certain time), and

For these and other features, use the Ledger API instead.

We welcome feedback about the JSON API on our issue tracker, or on our forum.

2.2.3.1 Daml-LF JSON Encoding

We describe how to decode and encode Daml-LF values as JSON. For each Daml-LF type we explain

what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

The output format is parameterized by two flags:

encodeDecimalAsString: boolean

encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in

JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-

ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse

below. For that reason, the HTTP JSON API Service uses true for both flags.

Note that throughout the document the decoding is type-directed. In other words, the same JSON

value can correspond to many Daml-LF values, and the expected Daml-LF type is needed to decide

which one.

278 Chapter 2. Daml Guide

daml-react/index.html
daml-ledger/index.html
daml-types/index.html
https://github.com/digital-asset/daml/issues/new/choose
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

ContractId

Contract ids are expressed as their string representation:

"123"

"XYZ"

"foo:bar#baz"

Decimal

Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using

the same format that JSON accepts, and treated them as the equivalent JSON number:

-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+-]?\d+)?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings

because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,

and IEEE Doubles cannot express Daml-LF Decimals correctly. Therefore, we also accept strings so

that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [–(10³⁸–1)÷10¹⁰, (10³⁸–1)÷10¹⁰]. Numbers outside

those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s

rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42

42.0 --> 42

"42" --> 42

9999999999999999999999999999.9999999999 -->

9999999999999999999999999999.9999999999

-42 --> -42

"-42" --> -42

0 --> 0

-0 --> 0

0.30000000000000004 --> 0.3

2e3 --> 2000

A few invalid examples:

" 42 "

"blah"

99999999999999999999999999990

+42

2.2. Building Applications 279

Daml SDK Documentation, 2.1.1

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -?[0-9]{1,

28}(\.[0-9]{1,10})?. If encodeDecimalAsString is not set, they are encoded as JSON numbers,

also using the format -?[0-9]{1,28}(\.[0-9]{1,10})?.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume

Decimals safely with the standard JSON.parse.

Int64

Input

Int64, much like Decimal, can be represented as JSON numbers and as strings, with the string

representation being [+-]?[0-9]+. The numbers must fall within [-9223372036854775808,

9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional

part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807

"9223372036854775807"

-9223372036854775808

"-9223372036854775808"

A few invalid examples:

42.3

+42

9223372036854775808

-9223372036854775809

"garbage"

" 42 "

Output

If encodeInt64AsString is set, Int64s are encoded as strings, using the format -?[0-9]+. If en-

codeInt64AsString is not set, they are encoded as JSON numbers, also using the format -?[0-9]+.

Note that the flag encodeInt64AsString is useful because it lets JavaScript consumers consume

Int64s safely with the standard JSON.parse.

280 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Timestamp

Input

Timestamps are represented as ISO 8601 strings, rendered using the format

yyyy-mm-ddThh:mm:ss.ssssssZ:

1990-11-09T04:30:23.123456Z

9999-12-31T23:59:59.999999Z

Parsing is a little bit more flexible and uses the format yyyy-mm-ddThh:mm:ss(\.s+)?Z, i.e. it’s

OK to omit the microsecond part partially or entirely, or have more than 6 decimals. Sub-second

data beyond microseconds will be dropped. The UTC timezone designator must be included. The

rationale behind the inclusion of the timezone designator is minimizing the risk that users pass in

local times. Valid examples:

1990-11-09T04:30:23.1234569Z

1990-11-09T04:30:23Z

1990-11-09T04:30:23.123Z

0001-01-01T00:00:00Z

9999-12-31T23:59:59.999999Z

The timestamp must be between the bounds specified by Daml-LF and ISO 8601,

[0001-01-01T00:00:00Z, 9999-12-31T23:59:59.999999Z].

JavaScript

> new Date().toISOString()

2019-06-18T08:59:34.191Z

Python

>>> datetime.datetime.utcnow().isoformat() +
Z

2019-06-18T08:59:08.392764Z

Java

import java.time.Instant;

class Main {

public static void main(String[] args) {

Instant instant = Instant.now();

// prints 2019-06-18T09:02:16.652Z

System.out.println(instant.toString());

}

}

2.2. Building Applications 281

Daml SDK Documentation, 2.1.1

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss[.

ssssss]Z.

The sub-second part will be formatted as follows:

• If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-

onds), the sub-second part will be omitted entirely;

• If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-

liseconds, padding with trailing 0s if necessary;

• Otherwise, the sub-second part will be up to microseconds, padding with trailing 0s if neces-

sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of

length 3, or a sub-second part of length 6.

Party

Represented using their string representation, without any additional quotes:

"Alice"

"Bob"

Unit

Represented as empty object {}. Note that in JavaScript {} !== {}; however, null would be am-

biguous; for the type Optional Unit, null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually

an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in

Python.

Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18

9999-12-31

0001-01-01

The dates must be between the bounds specified by Daml-LF and ISO 8601, [0001-01-01, 9999-12-31].

282 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Text

Represented as strings.

Bool

Represented as booleans.

Record

Input

Records can be represented in two ways. As objects:

{ f₁: v₁, ..., fₙ: vₙ }

And as arrays:

[v₁, ..., vₙ]

Note that Daml-LF record fields are ordered. So if we have

record Foo = {f1: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it

looks like in Daml. Note that a Daml tuple, i.e. (42, True), will be compiled to a Daml-LF record Tuple2

{ _1 = 42, _2 = True }.

Output

Records are always encoded as objects.

List

Lists are represented as

[v₁, ..., vₙ]

2.2. Building Applications 283

Daml SDK Documentation, 2.1.1

TextMap

TextMaps are represented as objects:

{ k₁: v₁, ..., kₙ: vₙ }

GenMap

GenMaps are represented as lists of pairs:

[[k₁, v₁], [kₙ, vₙ]]

Order does not matter. However, any duplicate keys will cause the map to be treated as invalid.

Optional

Input

Optionals are encoded using null if the value is None, and with the value itself if it’s Some. However,

this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are

encoded using an empty list for None, and a list with one element for Some. Note that after the

top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> Daml-LF : Expected Daml-LF type

to make clear what the target Daml-LF type is:

null --> None : Optional Int64

null --> None : Optional (Optional Int64)

42 --> Some 42 : Optional Int64

[] --> Some None : Optional (Optional Int64)

[42] --> Some (Some 42) : Optional (Optional Int64)

[[]] --> Some (Some None) : Optional (Optional (Optional Int64))

[[42]] --> Some (Some (Some 42)) : Optional (Optional (Optional Int64))

...

Finally, if Optional values appear in records, they can be omitted to represent None. Given Daml-LF

types

record Depth1 = { foo: Optional Int64 }

record Depth2 = { foo: Optional (Optional Int64) }

We have

{ } --> Depth1 { foo: None } : Depth1

{ } --> Depth2 { foo: None } : Depth2

{ foo: 42 } --> Depth1 { foo: Some 42 } : Depth1

{ foo: [42] } --> Depth2 { foo: Some (Some 42) } : Depth2

{ foo: null } --> Depth1 { foo: None } : Depth1

(continues on next page)

284 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

{ foo: null } --> Depth2 { foo: None } : Depth2

{ foo: [] } --> Depth2 { foo: Some None } : Depth2

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-

sented as objects), since Map relies on absence of key to determine what keys are present in the

Map to begin with. Nor does it apply to the [f₁, ..., fₙ] record form; Depth1 None in the array

notation must be written as [null].

Type variables may appear in the Daml-LF language, but are always resolved before deciding on a

JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it

may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> Oa { foo: Some 42 } : Oa Int

{ } --> Oa { foo: None } : Oa Int

{ foo: [] } --> Oa { foo: Some None } : Oa (Optional Int)

{ foo: [42] } --> Oa { foo: Some (Some 42) } : Oa (Optional Int)

In otherwords, the correct JSONencoding for any LF value is the one yougetwhen youhave eliminated

all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None

} will always encode as { foo: null }.

Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

variant Foo = Bar Int64 | Baz Unit | Quux (Optional Int64)

These are all valid JSON encodings for values of type Foo:

{"tag": "Bar", "value": 42}

{"tag": "Baz", "value": {}}

{"tag": "Quux", "value": null}

{"tag": "Quux", "value": 42}

Note that Daml data typeswith named fields are compiled by factoring out the record. So for example

if we have

data Foo = Bar {f1: Int64, f2: Bool} | Baz

We’ll get in Daml-LF

2.2. Building Applications 285

Daml SDK Documentation, 2.1.1

record Foo.Bar = {f1: Int64, f2: Bool}

variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"f1": 42, "f2": true}}

{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-

ment example.

Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, “Bar” and “Baz”.

2.2.3.2 Query language

The body of POST /v1/query looks like so:

{

"templateIds": [...template IDs...],

"query": {...query elements...}

}

The elements of that query are defined here.

Fallback rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-

ing to Daml-LF JSON Encoding, and compared for equality.

All types are supported by this simple equality comparison except:

• lists

• textmaps

• genmaps

Simple equality

Match records having at least all the (potentially nested) keys expressed in the query. The result

record may contain additional properties.

Example: { person: { name: "Bob" }, city: "London" }

• Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",

createdAt: "2019-04-30T12:34:12Z" }

• No match: { person: { name: "Bob" }, city: "Zurich" }

286 Chapter 2. Daml Guide

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

Daml SDK Documentation, 2.1.1

• Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its

type context is thus mutually exclusive with comparison queries.

Comparison query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a

value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

• "%lt" for less than

• "%gt" for greater than

• "%lte" for less than or equal to

• "%gte" for greater than or equal to

"%lt" and "%lte"may not be used at the same time, and likewise with "%gt" and "%gte", but all

other combinations are allowed.

Example: { "person" { "dob": { "%lt": "2000-01-01", "%gte": "1980-01-01" } }

}

• Match: { person: { dob: "1986-06-21" } }

• No match: { person: { dob: "1976-06-21" } }

• No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than

these four operators occur where they are legal, so there is no ambiguity with field equality.

Appendix: Type-aware queries

This section is non-normative.

This is not a JSON query language, it is a Daml-LF query language. So, while we could theoretically treat

queries (where not otherwise interpreted by the “may contain additional properties” rule above)

without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery {"foo": "bar"}. This query conforms to types, among an unbounded

number of others:

record A ↦ { foo : Text }

record B ↦ { foo : Optional Text }

variant C ↦ foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;

// these are perfectly legal types in Daml-LF packages

In the cases of A and B, "foo" is part of the query language, and only "bar" is treated as an LF

value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous

interpretations about what elements are interpreted, and what elements treated as literal, and how

those elements are interpreted or compared, would preclude many techniques for efficient query

compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing

them, and impossible in many cases to suppress those unintended meanings within the query lan-

guage. For example, there is no way that the above query could be written to match A but never C.

2.2. Building Applications 287

Daml SDK Documentation, 2.1.1

For these reasons, aswith LF value input via JSON, querieswritten in JSONare also always interpreted

with respect to some specified LF types (e.g. template IDs). For example:

{

"templateIds": ["Foo:A", "Foo:B", "Foo:C"],

"query": {"foo": "bar"}

}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data

types were permitted to be variants, which they are not, but for the sake of argument) as a whole

value equality query for C.

The above “Typecheck failure” happens because there is no LF type to which both "Bob" and

["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering

any contracts.

Appendix: Known issues

When using Oracle, queries fail if a token is too large

This limitation is exclusive to users of the HTTP JSON API using Daml Enterprise support for Ora-

cle. Due to a known limitation in Oracle, the full-test JSON search index on the contract payloads

rejects query tokens larger than 256 bytes. This limitations shouldn’t impact most workloads, but

if this needs to be worked around, the HTTP JSON API server can be started passing the additional

disableContractPayloadIndexing=true (after wiping an existing query store database, if nec-

essary).

Issue on GitHub

2.2.3.3 Production Setup

The vast majority of the prior documentation focuses on ease of testing and running the service in

a dev environment. From a production perspective given the wide variety of use-cases there is far

less of an established framework for deploying the HTTP JSON API server. In this document we would

try to list some recommendations for production deployments.

The HTTP JSON API server is a JVM application that by default uses an in-memory backend. This

in-memory backend setup is inefficient for larger datasets as for every query it ends up fetching

the entire active contract set for the templates referenced in that query. For this reason for produc-

tion setups at aminimumwe recommend to use a database as a query store, this will allow formore

efficient caching of the data to improve query performance. Details for enabling a query store are

highlighted below.

288 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/issues/10780

Daml SDK Documentation, 2.1.1

Query store

Note: Daml Open Source only supports PostgreSQL backends for the HTTP JSON API server, but Daml

Enterprise also supports Oracle backends.

The query store is a cached search index and is useful for use cases where the application needs to

query large active contract sets (ACS). TheHTTP JSONAPI server can be configuredwith PostgreSQL/Or-

acle (Daml Enterprise only) as the query store backend.

The query store is built by saving the state of the ACS up to the current ledger offset. This allows the

HTTP JSON API to only request the delta on subsequent queries, making it much faster than having to

request the entire ACS every time.

For example to enable the PostgreSQL backend you can add the query-store config block in your

application config file

query-store {

base-config {

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default

table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.

min-idle = 4

//specifies the idle timeout for the database connection pool.

idle-timeout = 12s

//specifies the connection timeout for database connection pool.

connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and␣

↪→create-and-start

start-mode = "start-only"

}

You can also use the --query-store-jdbc-config CLI flag (deprecated), as shown below.

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575 \

--query-store-jdbc-config "driver=org.postgresql.Driver,url=jdbc:postgresql://

↪→localhost:5432/test?&ssl=true,user=postgres,password=password,start-mode=start-

↪→only"

Consult your database vendor’s JDBCdriver documentation to learnhow to specify a JDBCconnection

string that suits your needs.

The start-mode is a custom parameter defined by the query store configuration itself which allows

to deal with the initialization and usage of the database which backs the query store.

Depending on how you prefer to operate it, you can either choose to:

2.2. Building Applications 289

Daml SDK Documentation, 2.1.1

• run the HTTP JSON API server with start-mode=create-only and a user that has exclusive

rights to creating the tables needed for the query store to operate and then start it again

with start-mode=start-only with a user that can use those tables but not apply schema

changes, or

• run the HTTP JSON API server with a user that can both create and use the query store tables by

passing start-mode=create-and-start

When restarting theHTTP JSONAPI server after the schemahasbeenalready created, it’s safe to always

use start-mode=start-only.

Note: The full list of query store configuration flags supported can be seen by running daml

json-api --help.

Data continuity

The query store is a cache, which means that it’s perfectly fine to drop it as the data it contains it’s

a subset of what can be safely recovered from the ledger.

As such, the query store does not provide data continuity guarantees across versions and further-

more doesn’t guarantee that a query store initialized with a previous version of the HTTP JSON API will

be able to work with a newer version.

However, the HTTP JSON API is able to tolerate working with query stores initialized by a previous ver-

sion of the software as long as the underlying schema did not change.

The query store keeps track of the schema version under which it was initialized and refuses to start

if a new schema is detected when running with a newer version.

To evolve, the operator of the HTTP JSON API query store needs to drop the database used to hold

the HTTP JSON API query store and create a new one (consult your database vendor’s documenta-

tion as to how this ought to be done) and then proceed to create and start the server using either

start-mode=create-onlyandstart-mode=start-onlyorstart-mode=create-and-start

as described above, depending on your preferred production setup.

Security and privacy

For an HTTP JSON API server, all data is maintained by the operator of the deployment. Thus, it is

their responsibility to ensure that the data abides by the necessary regulations and confidentiality

expectations.

It is recommended to use the tools documented by PostgreSQL to protect data at rest and using a

secure communication channel between the HTTP JSON API server and the PostgreSQL server.

To protect data in transit and over untrusted networks, the HTTP JSON API server provides TLS support,

to enable TLS youneed to specify the private key for your server and the certificate chain via the below

config block specifying thecert-chain-file, private-key-file, you can also set a custom root

CA certificate used to validate client certificates via trust-collection-file parameter.

ledger-api {

address = "127.0.0.1"

port = 6400

(continues on next page)

290 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

tls {

enabled = "true"

// the certificate to be used by the server

cert-chain-file = "cert-chain.crt"

// private key of the server

private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust-collection-file = "root-ca.crt"

}

}

Using the cli options (deprecated), you can specify tls options using``daml json-api –pemserver.pem

–crt server.crt``. Custom root CA certificate can be set via --cacrt ca.crt

For more details on secure Daml infrastructure setup please refer to this reference implementation

Architecture

Components

A production setup of the HTTP JSON API will involve the following components:

• the HTTP JSON API server

• the query store backend database server

• the ledger

HTTP JSON API server exposes an API to interact with the Ledger and it uses JDBC to interact with its

underlying query store for caching and serving data efficiently.

The HTTP JSON API server releases are regularly tested with OpenJDK 11 on a x86_64 architecture, with

Ubuntu 20.04, macOS 11.5.2 and Windows Server 2016.

In production, we recommend running on a x86_64 architecture in a Linux environment. This envi-

ronment should have a Java SE Runtime Environment such as OpenJDK JRE andmust be compatible

with OpenJDK version 11.0.11 or later. We recommend using PostgreSQL server as query-store, most of

our tests have been done with servers running version > 10.

Scaling and Redundancy

Note: This section of the document only talks about scaling and redundancy setup for the HTTP

JSON API server. In all of the recommendations suggested below we assume that the JSON API always

interacts with a single participant on the ledger.

We advise that the HTTP JSON API server and query store components to have dedicated computation

andmemory resources available to them. This can be achieved via containerization or setting them

up on independent physical servers. Ensure that the two components are physically co-located to

2.2. Building Applications 291

https://github.com/digital-asset/ex-secure-daml-infra

Daml SDK Documentation, 2.1.1

reduce network latency for communication. The scaling and availability aspects heavily rely on the

interactions between the core components listed above.

With respect to scaling we recommend to follow the general advice in trying to understand the bot-

tlenecks and see if adding additional processing power/memory is beneficial.

The HTTP JSON API can be scaled independently of its query store. You can have any number of HTTP

JSON API instances talking to the same query store (if, for example, your monitoring indicates that

the HTTP JSON API processing time is the bottleneck), or have each HTTP JSON API instance talk to its

own independent query store (if the database response times are the bottleneck).

In the latter case, the Daml privacy model ensures that the HTTP JSON API requests are made using

the user-provided token, thus the data stored in a given query store will be specific to the set of

parties that have made queries through that specific query store instance (for a given template).

Therefore, if you do run with separate query stores, it may be useful to route queries (using a reverse

proxy server) based on requesting party (and possibly queried template), which wouldminimize the

amount of data in each query store as well as the overall redundancy of said data.

Users may consider running PostgreSQL backend in a high availability configuration. The benefits

of this are use-case dependent as this may be more expensive for smaller active contract datasets,

where re-initializing the cache is cheap and fast.

Finally we recommend using orchestration systems or load balancers which monitor the health of

the service and perform subsequent operations to ensure availability. These systems can use the

healthcheck endpoints provided by the HTTP JSON API server. This can also be tied into supporting ar-

bitrary autoscaling implementation to ensureminimumnumber of HTTP JSON API servers on failures.

Set up the HTTP JSON API Service to work with Highly Available Participants

In case the participant node itself is configured to be highly available, depending on the setup you

might want to choose different approaches to connect to the participant nodes. In most setups,

including those based on Canton, you’ll likely have an active participant node whose role can be

taken over by a passive node in case the currently active one drops. Just as for the HTTP JSON API itself,

you can use orchestration systems or load balancers to monitor the status of the participant nodes

and have those point your (possibly highly available) HTTP JSON API nodes to the active participant

node.

To learn how Canton can be run with high availability and how to monitor it refer to the Canton docu-

mentation.

Logging

HTTP JSON API server uses the industry-standard Logback for logging. You can read more about that

in the Logback documentation.

The logging infrastructure leverages structured logging as implemented by the Logstash Logback

Encoder.

Logged events should carry information about the request being served by the HTTP JSON API server.

This includes the details of the commands being submitted, the endpoints being hit and response

received highlighting details of failures if any. When using a traditional logging target (e.g. standard

output or rotating files) this information will be part of the log description. Using a logging target

292 Chapter 2. Daml Guide

https://www.postgresql.org/docs/current/high-availability.html
https://docs.daml.com/json-api/index.html#healthcheck-endpoints
http://logback.qos.ch/
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md

Daml SDK Documentation, 2.1.1

compatible with the Logstash Logback Encoder allows to have rich logs with structured information

about the event being logged.

The default log encoder used is the plaintext one for traditional logging targets.

Metrics

Enable and configure reporting

To enable metrics and configure reporting, you can use the below config block in application config

metrics {

//Start a metrics reporter. Must be one of "console", "csv:///PATH", "graphite:/

↪→/HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"

//Set metric reporting interval , examples : 1s, 30s, 1m, 1h

reporting-interval = 30s

}

or the two following CLI options (deprecated):

• --metrics-reporter: passing a legal value will enable reporting; the accepted values are as

follows:

– console: prints captured metrics on the standard output

– csv://</path/to/metrics.csv>: saves the captured metrics in CSV format at the

specified location

– graphite://<server_host>[:<server_port>]: sends captured metrics to a

Graphite server. If the port is omitted, the default value 2003 will be used.

– prometheus://<server_host>[:<server_port>]: renders captured metrics on a

http endpoint in accordance with the prometheus protocol. If the port is omitted, the de-

fault value 55001 will be used. The metrics will be available under the address http://

<server_host>:<server_port>/metrics.

• --metrics-reporting-interval: metrics are pre-aggregated on the HTTP JSON API and sent

to the reporter, this option allows the user to set the interval. The formats accepted are based

on the ISO 8601 duration format PnDTnHnMn.nS with days considered to be exactly 24 hours.

The default interval is 10 seconds.

2.2. Building Applications 293

Daml SDK Documentation, 2.1.1

Types of metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when

reading the list of metrics.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred (throughput). The following data points

are kept and reported by any meter.

• <metric.qualified.name>.count: number of registered data points overall

• <metric.qualified.name>.m1_rate: number of registered data points per minute

• <metric.qualified.name>.m5_rate: number of registered data points every 5 minutes

• <metric.qualified.name>.m15_rate: number of registered data points every 15 minutes

• <metric.qualified.name>.mean_rate: mean number of registered data points

Timers

A timer records all metrics registered by a meter and by a histogram, where the histogram records

the time necessary to execute a given operation (in fractional milliseconds).

List of metrics

The following is a list of selected metrics that can be particularly important to track.

daml.http_json_api.command_submission_timing

A timer. Measures latency (in milliseconds) for processing of a command submission request.

daml.http_json_api.query_all_timing

A timer. Measures latency (in milliseconds) for processing of a query GET request.

294 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

daml.http_json_api.query_matching_timing

A timer. Measures latency (in milliseconds) for processing of a query POST request.

daml.http_json_api.fetch_timing

A timer. Measures latency (in milliseconds) for processing of a fetch request.

daml.http_json_api.get_party_timing

A timer. Measures latency (in milliseconds) for processing of a get party/parties request.

daml.http_json_api.allocate_party_timing

A timer. Measures latency (in milliseconds) for processing of a party management request.

daml.http_json_api.download_package_timing

A timer. Measures latency (in milliseconds) for processing of a package download request.

daml.http_json_api.upload_package_timing

A timer. Measures latency (in milliseconds) for processing of a package upload request.

daml.http_json_api.incoming_json_parsing_and_validation_timing

A timer. Measures latency (in milliseconds) for parsing and decoding of an incoming json payload

daml.http_json_api.response_creation_timing

A timer. Measures latency (in milliseconds) for construction of the response json payload.

daml.http_json_api.db_find_by_contract_key_timing

A timer. Measures latency (in milliseconds) of the find by contract key database operation.

2.2. Building Applications 295

Daml SDK Documentation, 2.1.1

daml.http_json_api.db_find_by_contract_id_timing

A timer. Measures latency (in milliseconds) of the find by contract id database operation.

daml.http_json_api.command_submission_ledger_timing

A timer. Measures latency (in milliseconds) for processing the command submission requests on

the ledger.

daml.http_json_api.http_request_throughput

A meter. Number of http requests

daml.http_json_api.websocket_request_count

A Counter. Count of active websocket connections

daml.http_json_api.command_submission_throughput

A meter. Number of command submissions

daml.http_json_api.upload_packages_throughput

A meter. Number of package uploads

daml.http_json_api.allocation_party_throughput

A meter. Number of party allocations

2.2.3.4 Running the JSON API

Start a Daml Ledger

You can run the JSON API alongside any ledger exposing the gRPC Ledger API you want. If you don’t

have an existing ledger, you can start an in-memory sandbox:

daml new my-project --template quickstart-java

cd my-project

daml build

daml sandbox --wall-clock-time --ledgerid MyLedger --dar ./.daml/dist/quickstart-

↪→0.0.1.dar

296 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Start the HTTP JSON API Service

Basic

The most basic way to start the JSON API is with the command:

daml json-api --config json-api-app.conf

where a corresponding minimal config file is

{

server {

address = "localhost"

port = 7575

}

ledger-api {

address = "localhost"

port = 6865

}

}

This will start the JSON API on port 7575 and connect it to a ledger running on localhost:6865.

Note: Your JSON API service should never be exposed to the internet. When running in production

the JSON API should be behind a reverse proxy, such as via NGINX.

The full set of configurable options that can be specified via config file is listed below

{

server {

//IP address that HTTP JSON API service listens on. Defaults to 127.0.0.1.

address = "127.0.0.1"

//HTTP JSON API service port number. A port number of 0 will let the system␣

↪→pick an ephemeral port.

port = 7575

}

ledger-api {

address = "127.0.0.1"

port = 6865

tls {

enabled = "true"

// the certificate to be used by the server

cert-chain-file = "cert-chain.crt"

// private key of the server

private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust-collection-file = "root-ca.crt"

}

}

query-store {

(continues on next page)

2.2. Building Applications 297

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Daml SDK Documentation, 2.1.1

(continued from previous page)

base-config {

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default

table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.

min-idle = 4

//specifies the idle timeout for the database connection pool.

idle-timeout = 12s

//specifies the connection timeout for database connection pool.

connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and␣

↪→create-and-start

start-mode = "start-only"

}

// Optional interval to poll for package updates. Examples: 500ms, 5s, 10min,␣

↪→1h, 1d. Defaults to 5 seconds

package-reload-interval = 5s

//Optional max inbound message size in bytes. Defaults to 4194304.

max-inbound-message-size = 4194304

//Optional max inbound message size in bytes used for uploading and downloading␣

↪→package updates. Defaults to the Cmax-inbound-message-sizeC setting.

package-max-inbound-message-size = 4194304

//Optional max cache size in entries for storing surrogate template id mappings.

↪→ Defaults to None

max-template-id-cache-entries = 1000

//health check timeout in seconds

health-timeout-seconds = 5

//Optional websocket configuration parameters

websocket-config {

//Maximum websocket session duration

max-duration = 120m

//Server-side heartbeat interval duration

heartbeat-period = 5s

//akka stream throttle-mode one of either CshapingC or CenforcingC

mode = "shaping"

}

metrics {

//Start a metrics reporter. Must be one of "console", "csv:///PATH",

↪→"graphite://HOST[:PORT][/METRIC_PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"

//Set metric reporting interval , examples : 1s, 30s, 1m, 1h

reporting-interval = 30s

(continues on next page)

298 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

// DEV MODE ONLY (not recommended for production)

// Allow connections without a reverse proxy providing HTTPS.

allow-insecure-tokens = false

// Optional static content configuration string. Contains comma-separated key-

↪→value pairs, where:

// prefix -- URL prefix,

// directory -- local directory that will be mapped to the URL prefix.

// Example: "prefix=static,directory=./static-content"

static-content {

prefix = "static"

directory = "static-content-dir"

}

}

Note: You can also start JSON API using CLI args (example below) however this is now deprecated

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575

Standalone JAR

The daml json-api command is great during development since it is included with the SDK and

integrates with daml start and other commands. Once you are ready to deploy your application,

you can download the standalone JAR from Github releases. It is much smaller than the whole SDK

and easier to deploy since it only requires a JVM but no other dependencies and no installation pro-

cess. The JAR accepts exactly the same command line parameters as daml json-api, so to start

the standalone JAR, you can use the following command:

java -jar http-json-2.0.0.jar --config json-api-app.conf

Replace the version number 2.0.0 by the version of the SDK you are using.

With Query Store

In production setups, you should configure the JSON API to use a PostgreSQL backend as a cache.

The in-memory backend will call the ledger to fetch the entire active contract set for the templates

in your query every time so it is generally not recommended to rely on this in production. Note that

the PostgreSQL backend acts purely as a cache. It is safe to reinitialize the database at any time.

To enable the PostgreSQL backend you can add the query-store config block in your application

config file

query-store {

base-config {

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

(continues on next page)

2.2. Building Applications 299

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.1.1

(continued from previous page)

// prefix for table names to avoid collisions, empty by default

table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.

min-idle = 4

//specifies the idle timeout for the database connection pool.

idle-timeout = 12s

//specifies the connection timeout for database connection pool.

connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and␣

↪→create-and-start

start-mode = "create-if-needed-and-start"

}

Note: Whenyouuse theQueryStore you’ll want tousestart-mode=create-if-needed-and-start

so that all the necessary tables are created if they don’t exist.

you can also use the --query-store-jdbc-config CLI flag (deprecated), an example of which is

below.

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575 \

--query-store-jdbc-config "driver=org.postgresql.Driver,url=jdbc:postgresql://

↪→localhost:5432/test?&ssl=true,user=postgres,password=password,start-mode=create-

↪→if-needed-and-start"

Note: The JSON API provides many other useful configuration flags, run daml json-api --help

to see all of them.

Access Tokens

Each request to the HTTP JSON API Service must come with an access token, regardless of whether

the underlying ledger requires it or not. This also includes development setups using an unsecured

sandbox. The HTTP JSON API Service does not hold on to the access token, which will be only used to

fulfill the request it came along with. The same token will be used to issue the request to the Ledger

API.

The HTTP JSON API Service does not validate the token but may need to decode it to extract informa-

tion that can be used to fill in request fields for party-specific request. How this happens depends

partially on the token format you are using.

300 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Party-specific Requests

Party-specific requests, i.e., command submissions and queries, are subject to additional restric-

tions. For command submissions the token must provide a proof that the bearer can act on behalf

of at least one party (and possibly read on behalf of any number of parties). For queries the token

must provide a proof that the bearer can either act and/or read of at least one party. This happens

regardless of the used access token format. The following paragraphs provide guidance as to how

different token formats are used by the HTTP JSON API in this regard.

Using User Tokens

If the underlying ledger supports user management (this includes Canton and the sandbox), you are

recommended to use user tokens. For command submissions, the user of the bearer should have

actAs rights for at least one party and readAs rights for any number of parties. Queries require the

bearer’s user to have at least one actAs or readAs user right. The application id of the Ledger API

request will be the user id.

Using Claim Tokens

These tokens can be used if the underlying ledger does not support user management. For command

submissions, actAsmust contain at least one party and readAs can contain any number of parties.

Queries require at least one party in either actAs or readAs. The application id is mandatory.

Note: While the JSON API receives the token it doesn’t validate it itself. Upon receiving a token it

will pass it, and all data contained within the request, on to the Ledger API’s AuthService which will

then determine if the token is valid and authorized. However, the JSON API does decode the token

to extract the ledger id, application id and party so it requires that you use a valid Daml ledger access

token format.

For a ledger without authorization, e.g., the default configuration of Daml Sandbox, you can use

https://jwt.io (or the JWT library of your choice) to generate your token. You can use an arbitrary

secret here. The default “header” is fine. Under “Payload”, fill in:

{

"https://daml.com/ledger-api": {

"ledgerId": "MyLedger",

"applicationId": "foobar",

"actAs": ["Alice"]

}

}

The value of the ledgerId field has tomatch the ledgerId of your underlying Daml Ledger. For the

Sandbox this corresponds to the --ledgerid MyLedger flag.

Note: The value of applicationId will be used for commands submitted using that token.

The value for actAs is specified as a list and you provide it with the party that you want to use, such

as in the example above which uses Alice for a party. actAsmay include more than just one party

2.2. Building Applications 301

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJmb29iYXIiLCJhY3RBcyI6WyJBbGljZSJdfX0.atGiYNc9HfBFbm8s9j5vvMv2sJUlVprFiRmLeoUpJeY

Daml SDK Documentation, 2.1.1

as the JSON API supports multi-party submissions.

The party should reference an already allocated party.

Note: As mentioned above the JSON API does not validate tokens so if your ledger runs without

authorization you can use an arbitrary secret.

Then the “Encoded” box should have your token, ready for passing to the service as described in the

following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":

"HTTP-JSON-API-Gateway", "actAs": ["Alice"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":

"HTTP-JSON-API-Gateway", "actAs": ["Bob"]}}:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJCb2IiXX19.

↪→0uPPZtM1AmKvnGixt_Qo53cMDcpnziCjKKiWLvMX2VM

Auth via HTTP

Set HTTP header Authorization: Bearer paste-jwt-here

Example:

Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

Auth via WebSockets

WebSocket clients support a “subprotocols” argument (sometimes simply called “protocols”); this

is usually in a list form but occasionally in comma-separated form. Check documentation for your

WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

• daml.ws.auth

• jwt.token.paste-jwt-here

Example:

jwt.token.eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

302 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.5 HTTP Status Codes

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes into 3

groups indicating:

1. success (200)

2. failure due to a client-side problem (400, 401, 403, 404, 409, 429)

3. failure due to a server-side problem (500, 503)

The JSON API can return one of the following HTTP status codes:

• 200 - OK

• 400 - Bad Request (Client Error)

• 401 - Unauthorized, authentication required

• 403 - Forbidden, insufficient permissions

• 404 - Not Found

• 409 - Conflict, contract ID or key missing or duplicated

• 500 - Internal Server Error

• 503 - Service Unavailable, ledger server is not running yet or has been shut down

• 504 - Gateway Timeout, transaction failed to receive its completion within the predefined time-

out

When the Ledger API returns an error code, the JSON API maps it to one of the above codes according

to the official gRPC to HTTP code mapping.

If a client’s HTTP GET or POST request reaches an API endpoint, the corresponding response will al-

ways contain a JSON object with a status field, either an errors or result field and an optional

warnings:

{

"status": <400 | 401 | 403 | 404 | 409 | 500 | 503 | 504>,

"errors": <JSON array of strings>, | "result": <JSON object or array>,

["warnings": <JSON object>]

}

Where:

• status – a JSON number which matches the HTTP response status code returned in the HTTP

header,

• errors – a JSON array of strings, each string represents one error,

• result – a JSON object or JSON array, representing one or many results,

• warnings – an optional field with a JSON object, representing one or many warnings.

See the following blog post formore details about error handling best practices: REST API Error Codes

101.

2.2. Building Applications 303

https://cloud.google.com/apis/design/errors#generating_errors
https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

Daml SDK Documentation, 2.1.1

Successful response, HTTP status: 200 OK

• Content-Type: application/json

• Content:

{

"status": 200,

"result": <JSON object>

}

Successful response with a warning, HTTP status: 200 OK

• Content-Type: application/json

• Content:

{

"status": 200,

"result": <JSON object>,

"warnings": <JSON object>

}

Failure, HTTP status: 400 | 401 | 404 | 500

• Content-Type: application/json

• Content:

{

"status": <400 | 401 | 404 | 500>,

"errors": <JSON array of strings>

}

Examples

Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [

↪→"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character
f
 at input␣

↪→index 27 (line 1, position 28)"]}

Bad Request Error with Warnings:

304 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{"status":400, "errors":["Cannot resolve any template ID from request"], "warnings

↪→":{"unknownTemplateIds":["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod(POST), uri: http://localhost:7575/v1/query1

↪→"]}

Internal Server Error:

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

2.2.3.6 Create a new Contract

To create an Iou contract from the Quickstart guide:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

HTTP Request

• URL: /v1/create

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId": "Iou:Iou",

"payload": {

"issuer": "Alice",

"owner": "Alice",

"currency": "USD",

"amount": "999.99",

"observers": []

}

}

Where:

• templateId is the contract template identifier, which can be formatted as either:

– "<package ID>:<module>:<entity>" or

– "<module>:<entity>" if contract template canbeuniquely identified by itsmodule and

entity name.

2.2. Building Applications 305

Daml SDK Documentation, 2.1.1

• payload field contains contract fields as defined in the Daml template and formatted accord-

ing to Daml-LF JSON Encoding.

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"

}

}

Where:

• status field matches the HTTP response status code returned in the HTTP header,

• result field contains created contract details. Keep in mind that templateId in the JSON

API response is always fully qualified (always contains package ID).

2.2.3.7 Creating a Contract with a Command ID

When creating a new contract you may specify an optional meta field. This allows you to control

the commandId, actAs, and readAs used when submitting a command to the ledger. Each of these

meta fields is optional.

Note: You cannot currently use commandIds anywhere else in the JSON API, but you can use it for

observing the results of its commands outside the JSON API in logs or via the Ledger API’s Command

Services

{

"templateId": "Iou:Iou",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

(continues on next page)

306 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"currency": "USD",

"owner": "Alice"

},

"meta": {

"commandId": "a unique ID",

"actAs": ["Alice"],

"readAs": ["PublicParty"]

}

}

Where:

• commandId – optional field, a unique string identifying the command.

2.2.3.8 Exercise by Contract ID

The JSON command below, demonstrates how to exercise an Iou_Transfer choice on an Iou con-

tract:

choice Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

HTTP Request

• URL: /v1/exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId": "Iou:Iou",

"contractId": "#124:0",

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Alice"

}

}

Where:

• templateId – contract template or interface identifier, same as in create request,

• contractId – contract identifier, the value from the create response,

• choice – Daml contract choice, that is being exercised,

• argument – contract choice argument(s).

2.2. Building Applications 307

Daml SDK Documentation, 2.1.1

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"exerciseResult": "#201:1",

"events": [

{

"archived": {

"contractId": "#124:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"

}

},

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

]

}

}

Where:

• status field matches the HTTP response status code returned in the HTTP header,

• result field contains contract choice execution details:

– exerciseResult field contains the return value of the exercised contract choice,

– events contains an array of contracts thatwere archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or

many {"created": {...}} elements. The order of the contracts is the same as on the

ledger.

308 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.9 Exercise by Contract Key

The JSON command below, demonstrates how to exercise the Archive choice on the Account con-

tract with a (Party, Text) contract key defined like this:

template Account with

owner : Party

number : Text

status : AccountStatus

where

signatory owner

key (owner, number) : (Party, Text)

maintainer key._1

HTTP Request

• URL: /v1/exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId": "Account:Account",

"key": {

"_1": "Alice",

"_2": "abc123"

},

"choice": "Archive",

"argument": {}

}

Where:

• templateId – contract template identifier, same as in create request,

• key – contract key, formatted according to the Daml-LF JSON Encoding,

• choice – Daml contract choice, that is being exercised,

• argument – contract choice argument(s), empty, because Archive does not take any.

2.2. Building Applications 309

Daml SDK Documentation, 2.1.1

HTTP Response

Formatted similar to Exercise by Contract ID response.

2.2.3.10 Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in

the same transaction.

HTTP Request

• URL: /v1/create-and-exercise

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId": "Iou:Iou",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"choice": "Iou_Transfer",

"argument": {

"newOwner": "Bob"

}

}

Where:

• templateId – the initial contract template identifier, in the same format as in the create re-

quest,

• payload – the initial contract fields as defined in the Daml template and formatted according

to Daml-LF JSON Encoding,

• choice – Daml contract choice, that is being exercised,

• argument – contract choice argument(s).

HTTP Response

Please note that the response below is for a consuming choice, so it contains:

• created and archived events for the initial contract ("contractId": "#1:0"), which was

created and archived right away when a consuming choice was exercised on it,

• a created event for the contract that is the result of exercising the choice ("contractId":

"#1:2").

• Content-Type: application/json

• Content:

310 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{

"result": {

"exerciseResult": "#1:2",

"events": [

{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou"

}

},

{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:Iou"

}

},

{

"created": {

"observers": [

"Bob"

],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"newOwner": "Bob"

},

"signatories": [

"Alice"

],

"contractId": "#1:2",

"templateId":

↪→"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdb1b729607e344336:Iou:IouTransfer

↪→"

}

}

]

(continues on next page)

2.2. Building Applications 311

Daml SDK Documentation, 2.1.1

(continued from previous page)

},

"status": 200

}

2.2.3.11 Fetch Contract by Contract ID

HTTP Request

• URL: /v1/fetch

• Method: POST

• Content-Type: application/json

• Content:

application/json body:

{

"contractId": "#201:1"

}

readersmay be passed as with Query.

Contract Not Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": null

}

Contract Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

(continues on next page)

312 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"newOwner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#201:1",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

↪→"

}

}

2.2.3.12 Fetch Contract by Key

Show the currently active contract that matches a given key.

The websocket endpoint /v1/stream/fetch can be used to searchmultiple keys in the same request, or

in place of iteratively invoking this endpoint to respond to changes on the ledger.

HTTP Request

• URL: /v1/fetch

• Method: POST

• Content-Type: application/json

• Content:

{

"templateId": "Account:Account",

"key": {

"_1": "Alice",

"_2": "abc123"

}

}

readersmay be passed as with Query.

Contract Not Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": null

}

2.2. Building Applications 313

Daml SDK Documentation, 2.1.1

Contract Found HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"owner": "Alice",

"number": "abc123",

"status": {

"tag": "Enabled",

"value": "2020-01-01T00:00:01Z"

}

},

"signatories": [

"Alice"

],

"key": {

"_1": "Alice",

"_2": "abc123"

},

"contractId": "#697:0",

"templateId":

↪→"11c8f3ace75868d28136adc5cfc1de265a9ee5ad73fe8f2db97510e3631096a2:Account:Account

↪→"

}

}

2.2.3.13 Get all Active Contracts

List all currently active contracts for all known templates.

Note: Retrieved contracts do not get persisted into a query store database. Query store is a search

index and can be used to optimize search latency. See Start HTTP service for information on how to

start JSON API service with a query store enabled.

Note: You can only query active contracts with the /v1/query endpoint. Archived contracts (those

that were archived or consumed during an exercise operation) will not be shown in the results.

314 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Request

• URL: /v1/query

• Method: GET

• Content: <EMPTY>

HTTP Response

The response is the same as for the POST method below.

2.2.3.14 Get all Active Contracts Matching a Given Query

List currently active contracts that match a given query.

The websocket endpoint /v1/stream/query can be used in place of iteratively invoking this endpoint

to respond to changes on the ledger.

HTTP Request

• URL: /v1/query

• Method: POST

• Content-Type: application/json

• Content:

{

"templateIds": ["Iou:Iou"],

"query": {"amount": 999.99},

"readers": ["Alice"]

}

Where:

• templateIds – an array of contract template identifiers to search through,

• query – search criteria to apply to the specified templateIds, formatted according to the

Query language.

• readers – optional non-empty list of parties to query as; must be a subset of the actAs/readAs

parties in the JWT

Empty HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": []

}

2.2. Building Applications 315

Daml SDK Documentation, 2.1.1

Nonempty HTTP Response

• Content-Type: application/json

• Content:

{

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou"

}

],

"status": 200

}

Where

• result contains an array of contracts, each contract formatted according to Daml-LF JSON En-

coding,

• statusmatches the HTTP status code returned in the HTTP header.

Nonempty HTTP Response with Unknown Template IDs Warning

• Content-Type: application/json

• Content:

{

"warnings": {

"unknownTemplateIds": ["UnknownModule:UnknownEntity"]

},

"result": [

{

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": [

(continues on next page)

316 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"Alice"

],

"contractId": "#52:0",

"templateId":

↪→"b10d22d6c2f2fae41b353315cf893ed66996ecb0abe4424ea6a81576918f658a:Iou:Iou"

}

],

"status": 200

}

2.2.3.15 Fetch Parties by Identifiers

• URL: /v1/parties

• Method: POST

• Content-Type: application/json

• Content:

["Alice", "Bob", "Dave"]

If an empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{

"status": 400,

"errors": [

"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.

↪→DeserializationException: must be a list with at least 1 element"

]

}

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

},

{

"identifier": "Bob",

"displayName": "Bob & Co. LLC",

"isLocal": true

},

{

"identifier": "Dave",

"isLocal": true

}

(continues on next page)

2.2. Building Applications 317

Daml SDK Documentation, 2.1.1

(continued from previous page)

]

}

Please note that the order of the party objects in the response is not guaranteed to match the order

of the passed party identifiers.

Where

• identifier – a stable unique identifier of a Daml party,

• displayName – optional human readablenameassociatedwith theparty. Mightnot beunique,

• isLocal – true if party is hosted by the backing participant.

Response with Unknown Parties Warning

• Content-Type: application/json

• Content:

{

"result": [

{

"identifier": "Alice",

"displayName": "Alice & Co. LLC",

"isLocal": true

}

],

"warnings": {

"unknownParties": ["Erin"]

},

"status": 200

}

The resultmight be an empty JSON array if none of the requested parties is known.

2.2.3.16 Fetch All Known Parties

• URL: /v1/parties

• Method: GET

• Content: <EMPTY>

HTTP Response

The response is the same as for the POST method above.

318 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.17 Allocate a New Party

This endpoint is a JSONAPI proxy for the Ledger API’s AllocatePartyRequest. Formore information about

party management, please refer to Provisioning Identifiers part of the Ledger API documentation.

HTTP Request

• URL: /v1/parties/allocate

• Method: POST

• Content-Type: application/json

• Content:

{

"identifierHint": "Carol",

"displayName": "Carol & Co. LLC"

}

Please refer to AllocateParty documentation for information about the meaning of the fields.

All fields in the request are optional, this means that an empty JSON object is a valid request to

allocate a new party:

{}

HTTP Response

{

"result": {

"identifier": "Carol",

"displayName": "Carol & Co. LLC",

"isLocal": true

},

"status": 200

}

2.2.3.18 Creating a New User

This endpoint exposes the Ledger API’s CreateUser RPC.

HTTP Request

• URL: /v1/user/create

• Method: POST

• Content-Type: application/json

• Content:

2.2. Building Applications 319

Daml SDK Documentation, 2.1.1

{

"userId": "Carol",

"primaryParty": "Carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

]

}

Please refer to CreateUser RPC documentation for information about the meaning of the fields.

Only the userId fields in the request is required, this means that an JSON object containing only it is

a valid request to create a new user.

HTTP Response

{

"result": {},

"status": 200

}

2.2.3.19 Get Authenticated User Information

This endpoint exposes the Ledger API’s GetUser RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

• URL: /v1/user

• Method: GET

320 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Response

{

"result": {

"userId": "Carol",

"primaryParty": "Carol",

},

"status": 200

}

2.2.3.20 Get Specific User Information

This endpoint exposes the Ledger API’s GetUser RPC.

HTTP Request

• URL: /v1/user

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "Carol"

}

Please refer to GetUser RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": {

"userId": "Carol",

"primaryParty": "Carol",

},

"status": 200

}

2.2.3.21 Delete Specific User

This endpoint exposes the Ledger API’s DeleteUser RPC.

2.2. Building Applications 321

Daml SDK Documentation, 2.1.1

HTTP Request

• URL: /v1/user/delete

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "Carol"

}

Please refer to DeleteUser RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": {},

"status": 200

}

2.2.3.22 List Users

This endpoint exposes the Ledger API’s ListUsers RPC.

HTTP Request

• URL: /v1/users

• Method: GET

HTTP Response

{

"result": [

{

"userId": "Carol",

"primaryParty": "Carol",

},

{

"userId": "Bob",

"primaryParty": "Bob",

}

],

"status": 200

}

322 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.23 Grant User Rights

This endpoint exposes the Ledger API’s GrantUserRights RPC.

HTTP Request

• URL: /v1/user/rights/grant

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "Carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

]

}

Please refer to GrantUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

(continues on next page)

2.2. Building Applications 323

Daml SDK Documentation, 2.1.1

(continued from previous page)

],

"status": 200

}

Returns the rights that were newly granted.

2.2.3.24 Revoke User Rights

This endpoint exposes the Ledger API’s RevokeUserRights RPC.

HTTP Request

• URL: /v1/user/rights/revoke

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "Carol",

"rights": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

]

}

Please refer to RevokeUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

(continues on next page)

324 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

Returns the rights that were actually granted.

2.2.3.25 List Authenticated User Rights

This endpoint exposes the Ledger API’s ListUserRights RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

• URL: /v1/user/rights

• Method: GET

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

2.2. Building Applications 325

Daml SDK Documentation, 2.1.1

2.2.3.26 List Specific User Rights

This endpoint exposes the Ledger API’s ListUserRights RPC.

HTTP Request

• URL: /v1/user/rights

• Method: POST

• Content-Type: application/json

• Content:

{

"userId": "Carol"

}

Please refer to ListUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

{

"result": [

{

"type": "CanActAs",

"party": "Carol"

},

{

"type": "CanReadAs",

"party": "Alice",

},

{

"type": "CanReadAs",

"party": "Bob",

},

{

"type": "ParticipantAdmin"

}

],

"status": 200

}

2.2.3.27 List All DALF Packages

HTTP Request

• URL: /v1/packages

• Method: GET

• Content: <EMPTY>

326 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Response

{

"result": [

"c1f1f00558799eec139fb4f4c76f95fb52fa1837a5dd29600baa1c8ed1bdccfd",

"733e38d36a2759688a4b2c4cec69d48e7b55ecc8dedc8067b815926c917a182a",

"bfcd37bd6b84768e86e432f5f6c33e25d9e7724a9d42e33875ff74f6348e733f",

"40f452260bef3f29dede136108fc08a88d5a5250310281067087da6f0baddff7",

"8a7806365bbd98d88b4c13832ebfa305f6abaeaf32cfa2b7dd25c4fa489b79fb"

],

"status": 200

}

Where result is the JSON array containing the package IDs of all loaded DALFs.

2.2.3.28 Download a DALF Package

HTTP Request

• URL: /v1/packages/<package ID>

• Method: GET

• Content: <EMPTY>

Note that the desired package ID is specified in the URL.

HTTP Response, status: 200 OK

• Transfer-Encoding: chunked

• Content-Type: application/octet-stream

• Content: <DALF bytes>

The content (body) of the HTTP response contains raw DALF package bytes, without any encoding.

Note that the package ID specified in the URL is actually the SHA-256 hash of the downloaded DALF

package and can be used to validate the integrity of the downloaded content.

HTTP Response with Error, any status different from 200 OK

Any status different from 200 OK will be in the format specified below.

• Content-Type: application/json

• Content:

{

"errors": [

"io.grpc.StatusRuntimeException: NOT_FOUND"

],

"status": 500

}

2.2. Building Applications 327

Daml SDK Documentation, 2.1.1

2.2.3.29 Upload a DAR File

HTTP Request

• URL: /v1/packages

• Method: POST

• Content-Type: application/octet-stream

• Content: <DAR bytes>

The content (body) of the HTTP request contains raw DAR file bytes, without any encoding.

HTTP Response, status: 200 OK

• Content-Type: application/json

• Content:

{

"result": 1,

"status": 200

}

HTTP Response with Error

• Content-Type: application/json

• Content:

{

"errors": [

"io.grpc.StatusRuntimeException: INVALID_ARGUMENT: Invalid argument:␣

↪→Invalid DAR: package-upload, content: [}]"

],

"status": 500

}

2.2.3.30 Metering Report

For a description of participant metering, the parameters, and the report format see the Participant

Metering.

• URL: /v1/metering-report

• Method: POST

• Content-Type: application/json

• Content:

{

"from": "2022-01-01",

"to": "2022-02-01",

"application": "some-application"

}

328 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Response

• Content-Type: application/json

• Content:

{

"status": 200,

"result": {

"participant": "some-participant",

"request": {

"from": "2022-01-01T00:00:00Z",

"to": "2022-02-01T00:00:00Z"

},

"final": true,

"applications": [

{

"application": "some-application",

"events": 42

}

]

}

}

2.2.3.31 Streaming API

Two subprotocols must be passed with every request, as described in Auth via WebSockets.

JavaScript/Node.js example demonstrating how to establish Streaming API connection:

const wsProtocol = "daml.ws.auth";

const tokenPrefix = "jwt.token.";

const jwt =

"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.

↪→eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJIVFRQLUpTT04tQVBJLUdhdGV3YXkiLCJhY3RBcyI6WyJBbGljZSJdfX0.

↪→34zzF_fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdp";

const subprotocols = [C${tokenPrefix}${jwt}C, wsProtocol];

const ws = new WebSocket("ws://localhost:7575/v1/stream/query", subprotocols);

ws.addEventListener("open", function open() {

ws.send(JSON.stringify({templateIds: ["Iou:Iou"]}));

});

ws.addEventListener("message", function incoming(data) {

console.log(data);

});

Please note that Streaming API does not allow multiple requests over the same WebSocket connec-

tion. The server returns an error and disconnects if second request received over the same Web-

Socket connection.

2.2. Building Applications 329

Daml SDK Documentation, 2.1.1

Error and Warning Reporting

Errors and warnings reported as part of the regular on-message flow: ws.

addEventListener("message", ...).

Streaming API error messages formatted the same way as synchronous API errors.

Streaming API reports only one type of warnings – unknown template IDs, which is formatted as:

{"warnings":{"unknownTemplateIds":<JSON Array of template ID strings>>}}

Error and Warning Examples

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

{

"errors":["JsonReaderError. Cannot read JSON: <{\"templateIds\":[]}>. Cause:␣

↪→spray.json.DeserializationException: search requires at least one item in

↪→
templateIds
"],

"status":400

}

{

"errors":["Multiple requests over the same WebSocket connection are not allowed.

↪→"],

"status":400

}

{

"errors":["Could not resolve any template ID from request."],

"status":400

}

Contracts Query Stream

• URL: /v1/stream/query

• Scheme: ws

• Protocol: WebSocket

List currently active contracts that match a given query, with continuous updates.

Simpler use-cases that do not require continuous updates should use the simpler /v1/query endpoint

instead.

application/json body must be sent first, formatted according to the Query language:

{"templateIds": ["Iou:Iou"]}

Multiple queries may be specified in an array, for overlapping or different sets of template IDs:

[

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%lte": 50}}},

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%gt": 50}}},

(continues on next page)

330 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

{"templateIds": ["Iou:Iou"]}

]

Queries have two ways to specify an offset.

An offset, a string supplied by an earlier query outputmessage, may optionally be specified along-

side each query itself:

[

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%lte": 50}}},

{"templateIds": ["Iou:Iou"], "query": {"amount": {"%gt": 50}}},

{"templateIds": ["Iou:Iou"], "offset": "5609"}

]

If specified, the stream will include only contract creations and archivals after the response body

that included that offset. Queries with no offset will begin with all active contracts for that query, as

usual.

If an offset is specified before the queries, as a separate body, it will be used as a default offset for all

queries that do not include an offset themselves:

{"offset": "4307"}

For example, if thismessage preceded the above 3-query example, it would be as if "4307" had been

specified for the first two queries, while "5609" would be used for the third query.

The output is a series of JSON documents, each payload formatted according to Daml-LF JSON En-

coding:

{

"events": [{

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "999.99",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

},

"matchedQueries": [1, 2]

}]

}

where matchedQueries indicates the 0-based indices into the request list of queries thatmatched

this contract.

Every events block following the end of contracts that existed when the request started includes

an offset. The stream is guaranteed to send an offset immediately at the beginning of this “live”

data, which may or may not contain any events; if it does not contain events and no events were

2.2. Building Applications 331

Daml SDK Documentation, 2.1.1

emitted before, it may be null if there was no transaction on the ledger or a string representing the

current ledger end; otherwise, it will be a string. For example, you might use it to turn off an initial

“loading” indicator:

{

"events": [],

"offset": "2"

}

Note: Events in the following “live” datamay include events that precede this offset if an earlier

per-query offset was specified.

This has been done with the intent of allowing to use per-query offset s to efficiently use a single

connection to multiplex various requests. To give an example of how this would work, let’s say that

there are two contract templates, A and B . Your application first queries for A s without specifying

an offset. Then some client-side interaction requires the application to do the same for B s. The

application can save the latest observed offset for the previous query, which let’s say is 42, and

issue a new request that queries for all B s without specifying an offset and all A s from 42. While

this happens on the client, a few more A s and B s are created and the new request is issued once

the latest offset is 47. The response to this will contain amessage with all active B s, followed by the

message reporting the offset 47, followed by a stream of live updates that contains new A s starting

from 42 and new B s starting from 47 .

To keep the stream alive, you’ll occasionally see messages like this, which can be safely ignored if

you do not need to capture the last seen ledger offset:

{"events":[],"offset":"5609"}

where offset is the last seen ledger offset.

After submitting an Iou_Split exercise, which creates two contracts and archives the one above,

the same stream will eventually produce:

{

"events": [{

"archived": {

"contractId": "#1:0",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

}

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "42.42",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:1",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"(continues on next page)

332 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

},

"matchedQueries": [0, 2]

}, {

"created": {

"observers": [],

"agreementText": "",

"payload": {

"observers": [],

"issuer": "Alice",

"amount": "957.57",

"currency": "USD",

"owner": "Alice"

},

"signatories": ["Alice"],

"contractId": "#2:2",

"templateId":

↪→"eb3b150383a979d6765b8570a17dd24ae8d8b63418ee5fd20df20ad2a1c13976:Iou:Iou"

},

"matchedQueries": [1, 2]

}],

"offset": "3"

}

If any template IDs are found not to resolve, the first element of the stream will report them:

{"warnings": {"unknownTemplateIds": ["UnknownModule:UnknownEntity"]}}

and the stream will continue, provided that at least one template ID resolved properly.

Aside from "created" and "archived" elements, "error" elements may appear, which contain

a string describing the error. The stream will continue in these cases, rather than terminating.

Some notes on behavior:

1. Each result array means “this is what would have changed if you just polled /v1/query itera-

tively.” In particular, just as polling search can “miss” contracts (as a create and archive can

be paired between polls), such contracts may or may not appear in any result object.

2. No archived ever contains a contract ID occurring within a created in the same array. So,

for example, supposing you are keeping an internal map of active contracts keyed by contract

ID, you can apply the created first or the archived first, forwards, backwards, or in random

order, and be guaranteed to get the same results.

3. Within a given array, if an archived and created refer to contracts with the same template

ID and contract key, the archived is guaranteed to occur before the created.

4. Except in cases of #3, within a single response array, the order of created and archived is

undefined and does not imply that any element occurred “before” or “after” any other one.

5. You will almost certainly receive contract IDs in archived that you never received a created

for. These are contracts that query filtered out, but for which the server no longer is aware

of that. You can safely ignore these. However, such “phantom archives” are guaranteed to

represent an actual archival on the ledger, so if you are keeping a more global dataset outside

the context of this specific search, you can use that archival information as you wish.

2.2. Building Applications 333

Daml SDK Documentation, 2.1.1

Fetch by Key Contracts Stream

• URL: /v1/stream/fetch

• Scheme: ws

• Protocol: WebSocket

List currently active contracts that match one of the given {templateId, key} pairs, with contin-

uous updates.

Simpler use-cases that search for only a single key and do not require continuous updates should

use the simpler /v1/fetch endpoint instead.

application/json body must be sent first, formatted according to the following rule:

[

{"templateId": "<template ID 1>", "key": <key 1>},

{"templateId": "<template ID 2>", "key": <key 2>},

...

{"templateId": "<template ID N>", "key": <key N>}

]

Where:

• templateId – contract template identifier, same as in create request,

• key – contract key, formatted according to the Daml-LF JSON Encoding,

Example:

[

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "abc123"}},

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345"}}

]

The output stream has the same format as the output from the Contracts Query Stream. We further

guarantee that for every archived event appearing on the stream there has been a matching cre-

ated event earlier in the stream, except in the case of missing contractIdAtOffset fields in the

case described below.

You may supply optional offset s for the stream, exactly as with query streams. However, you

should supply with each {templateId, key} pair a contractIdAtOffset, which is the contract

ID currently associated with that pair at the point of the given offset, or null if no contract ID was

associated with the pair at that offset. For example, with the above keys, if you had one "abc123"

contract but no "def345" contract, you might specify:

[

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "abc123"},

"contractIdAtOffset": "#1:0"},

{"templateId": "Account:Account", "key": {"_1": "Alice", "_2": "def345"},

"contractIdAtOffset": null}

]

If every contractIdAtOffset is specified, as is so in the example above, you will not receive any

archived events for contracts created before the offset unless those contracts are identified in a

contractIdAtOffset. By contrast, if any contractIdAtOffset is missing, archived event fil-

tering will be disabled, and you will receive “phantom archives” as with query streams.

334 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.32 Healthcheck Endpoints

The HTTP JSON API provides two healthcheck endpoints for integration with schedulers like Kuber-

netes.

Liveness check

• URL: /livez

• Method: GET

A status code of 200 indicates a successful liveness check.

This is an unauthenticated endpoint intended to be used as a liveness probe.

Readiness check

• URL: /readyz

• Method: GET

A status code of 200 indicates a successful readiness check.

This is an unauthenticated endpoint intended to be used as a liveness probe. It validates both the

ledger connection as well as the database connection.

2.2.4 Daml Script

2.2.4.1 Daml Script Library

The Daml Script library defines the API used to implement Daml scripts. See Daml Script:: for more

information on Daml script.

Module Daml.Script

Data Types

data Commands a

This is used to build up the commands send as part of submit. If you enable the Ap-

plicativeDo extension by adding {-# LANGUAGE ApplicativeDo #-} at the top

of your file, you can use do-notation but the individual commands must not depend on

each other and the last statement in a do block must be of the form return expr or

pure expr.

instance Functor Commands

instance HasSubmit Script Commands

instance Applicative Commands

instance HasField "commands" (SubmitCmd a) (Commands a)

instance HasField "commands" (SubmitMustFailCmd a) (Commands a)

2.2. Building Applications 335

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Daml SDK Documentation, 2.1.1

instance HasField "commands" (SubmitTreePayload a) (Commands ())

data InvalidUserId

Thrown if text for a user identifier does not conform to the format restriction.

InvalidUserId

Field Type Description

m Text

instance Eq InvalidUserId

instance Show InvalidUserId

instance HasFromAnyException InvalidUserId

instance HasMessage InvalidUserId

instance HasThrow InvalidUserId

instance HasToAnyException InvalidUserId

instance HasField "m" InvalidUserId Text

data ParticipantName

ParticipantName

Field Type Description

participantName Text

instance HasField "participantName" ParticipantName Text

data PartyDetails

The party details returned by the party management service.

PartyDetails

Field Type Description

party Party Party id

displayName Optional

Text

Optional display name

isLocal Bool True if party is hosted by the backingpar-

ticipant.

instance Eq PartyDetails

instance Ord PartyDetails

instance Show PartyDetails

instance HasField "continue" (ListKnownPartiesPayload a) ([PartyDetails] -> a)

instance HasField "displayName" PartyDetails (Optional Text)

336 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance HasField "isLocal" PartyDetails Bool

instance HasField "party" PartyDetails Party

data PartyIdHint

A hint to the backing participant what party id to allocate. Must be a valid PartyIdString

(as described in @value.proto@).

PartyIdHint

Field Type Description

partyIdHint Text

instance HasField "partyIdHint" PartyIdHint Text

data Script a

This is the type of A Daml script. Script is an instance of Action, so you can use do

notation.

instance Functor Script

instance CanAssert Script

instance ActionCatch Script

instance ActionThrow Script

instance CanAbort Script

instance HasSubmit Script Commands

instance HasTime Script

instance Action Script

instance ActionFail Script

instance Applicative Script

instance HasField "dummy" (Script a) ()

instance HasField "runScript" (Script a) (() -> Free ScriptF (a, ()))

data User

User-info record for a user in the user management service.

User

Field Type Description

userId UserId

primaryParty Optional

Party

instance Eq User

instance Ord User

2.2. Building Applications 337

Daml SDK Documentation, 2.1.1

instance Show User

instance HasField "continue" (GetUserPayload a) (Optional User -> a)

instance HasField "continue" (ListAllUsersPayload a) ([User] -> a)

instance HasField "primaryParty" User (Optional Party)

instance HasField "user" (CreateUserPayload a) User

instance HasField "userId" User UserId

data UserAlreadyExists

Thrown if a user to be created already exists.

UserAlreadyExists

Field Type Description

userId UserId

instance Eq UserAlreadyExists

instance Show UserAlreadyExists

instance HasFromAnyException UserAlreadyExists

instance HasMessage UserAlreadyExists

instance HasThrow UserAlreadyExists

instance HasToAnyException UserAlreadyExists

instance HasField "userId" UserAlreadyExists UserId

data UserId

Identifier for a user in the user management service.

instance Eq UserId

instance Ord UserId

instance Show UserId

instance HasField "userId" (DeleteUserPayload a) UserId

instance HasField "userId" (GetUserPayload a) UserId

instance HasField "userId" (GrantUserRightsPayload a) UserId

instance HasField "userId" (ListUserRightsPayload a) UserId

instance HasField "userId" (RevokeUserRightsPayload a) UserId

instance HasField "userId" User UserId

instance HasField "userId" UserAlreadyExists UserId

instance HasField "userId" UserNotFound UserId

data UserNotFound

338 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Thrown if a user cannot be located for a given user identifier.

UserNotFound

Field Type Description

userId UserId

instance Eq UserNotFound

instance Show UserNotFound

instance HasFromAnyException UserNotFound

instance HasMessage UserNotFound

instance HasThrow UserNotFound

instance HasToAnyException UserNotFound

instance HasField "userId" UserNotFound UserId

data UserRight

The rights of a user.

ParticipantAdmin

CanActAs Party

CanReadAs Party

instance Eq UserRight

instance Show UserRight

instance HasField "continue" (GrantUserRightsPayload a) (Optional [UserRight] -> a)

instance HasField "continue" (ListUserRightsPayload a) (Optional [UserRight] -> a)

instance HasField "continue" (RevokeUserRightsPayload a) (Optional [UserRight] -> a)

instance HasField "rights" (CreateUserPayload a) [UserRight]

instance HasField "rights" (GrantUserRightsPayload a) [UserRight]

instance HasField "rights" (RevokeUserRightsPayload a) [UserRight]

Functions

query : (Template t, IsParties p) => p -> Script [(ContractId t, t)]

Query the set of active contracts of the template that are visible to the given party.

queryFilter : (Template c, IsParties p) => p -> (c -> Bool) -> Script [(ContractId c, c)]

Query the set of active contracts of the template that are visible to the given party and match

the given predicate.

queryContractId : (Template t, IsParties p, HasCallStack) => p -> ContractId t -> Script (Optional t)

Query for the contract with the given contract id.

Returns None if there is no active contract the party is a stakeholder on. This is semantically

equivalent to calling query and filtering on the client side.

2.2. Building Applications 339

Daml SDK Documentation, 2.1.1

queryContractKey : (HasCallStack, TemplateKey t k, IsParties p) => p -> k -> Script (Optional (ContractId

t, t))

setTime : HasCallStack => Time -> Script ()

Set the time via the time service.

This is only supported in static timemode when running over the gRPC API and in Daml Studio.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in Daml Studio.

passTime : RelTime -> Script ()

Advance ledger time by the given interval.

Only supported in static time mode when running over the gRPC API and in Daml Studio. Note

that this is not an atomic operation over the gRPC API so no other clients should try to change

time while this is running.

Note that the ledger time service does not support going backwards in time. However, you can

go back in time in Daml Studio.

allocateParty : HasCallStack => Text -> Script Party

Allocate a party with the given display name using the party management service.

allocatePartyWithHint : HasCallStack => Text -> PartyIdHint -> Script Party

Allocate a party with the given display name and id hint using the party management service.

allocatePartyOn : Text -> ParticipantName -> Script Party

Allocate a party with the given display name on the specified participant using the party man-

agement service.

allocatePartyWithHintOn : Text -> PartyIdHint -> ParticipantName -> Script Party

Allocate a party with the given display name and id hint on the specified participant using the

party management service.

listKnownParties : HasCallStack => Script [PartyDetails]

List the parties known to the default participant.

listKnownPartiesOn : HasCallStack => ParticipantName -> Script [PartyDetails]

List the parties known to the given participant.

sleep : HasCallStack => RelTime -> Script ()

Sleep for the given duration.

This is primarily useful in tests where you repeatedly call query until a certain state is reached.

Note that this will sleep for the same duration in both wallcock and static time mode.

submitMulti : HasCallStack => [Party] -> [Party] -> Commands a -> Script a

submitMulti actAs readAs cmds submits cmds as a single transaction authorized by

actAs. Fetched contractsmust be visible to at least one party in the union of actAs and readAs.

submitMultiMustFail : HasCallStack => [Party] -> [Party] -> Commands a -> Script ()

submitMultiMustFail actAs readAs cmds behaves like submitMulti actAs readAs

cmds but fails when submitMulti succeeds and the other way around.

createCmd : Template t => t -> Commands (ContractId t)

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Commands r

Exercise a choice on the given contract.

exerciseByKeyCmd : (TemplateKey t k, Choice t c r) => k -> c -> Commands r

Exercise a choice on the contract with the given key.

340 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

createAndExerciseCmd : (Template t, Choice t c r) => t -> c -> Commands r

Create a contract and exercise a choice on it in the same transaction.

archiveCmd : Choice t Archive () => ContractId t -> Commands ()

Archive the given contract.

archiveCmd cid is equivalent to exerciseCmd cid Archive.

script : Script a -> Script a

Convenience helper to declare you are writing a Script.

This is only useful for readability and to improve type inference. Any expression of type Script

a is a valid script regardless of whether it is implemented using script or not.

userIdToText : UserId -> Text

Extract the name-text from a user identitifer.

validateUserId : HasCallStack => Text -> Script UserId

Construct a user identifer from text. May throw InvalidUserId.

createUser : HasCallStack => User -> [UserRight] -> Script ()

Create a user with the given rights. May throw UserAlreadyExists.

createUserOn : HasCallStack => User -> [UserRight] -> ParticipantName -> Script ()

Create a user with the given rights on the given participant. May throw UserAlreadyExists.

getUser : HasCallStack => UserId -> Script User

Fetch a user record by user id. May throw UserNotFound.

getUserOn : HasCallStack => UserId -> ParticipantName -> Script User

Fetch a user record by user id from the given participant. May throw UserNotFound.

listAllUsers : Script [User]

List all users. This function may make multiple calls to underlying paginated ledger API.

listAllUsersOn : ParticipantName -> Script [User]

List all users on the given participant. This function may make multiple calls to underlying

paginated ledger API.

grantUserRights : HasCallStack => UserId -> [UserRight] -> Script [UserRight]

Grant rights to a user. Returns the rights that have been newly granted. May throw UserNot-

Found.

grantUserRightsOn : HasCallStack => UserId -> [UserRight] -> ParticipantName -> Script [UserRight]

Grant rights to a user on the given participant. Returns the rights that have been newly granted.

May throw UserNotFound.

revokeUserRights : HasCallStack => UserId -> [UserRight] -> Script [UserRight]

Revoke rights for a user. Returns the revoked rights. May throw UserNotFound.

revokeUserRightsOn : HasCallStack => UserId -> [UserRight] -> ParticipantName -> Script [UserRight]

Revoke rights for a user on the given participant. Returns the revoked rights. May throw User-

NotFound.

deleteUser : HasCallStack => UserId -> Script ()

Delete a user. May throw UserNotFound.

deleteUserOn : HasCallStack => UserId -> ParticipantName -> Script ()

Delete a user on the given participant. May throw UserNotFound.

listUserRights : HasCallStack => UserId -> Script [UserRight]

List the rights of a user. May throw UserNotFound.

2.2. Building Applications 341

Daml SDK Documentation, 2.1.1

listUserRightsOn : HasCallStack => UserId -> ParticipantName -> Script [UserRight]

List the rights of a user on the given participant. May throw UserNotFound.

submitUser : HasCallStack => UserId -> Commands a -> Script a

Submit the commands with the actAs and readAs claims granted to a user. May throw User-

NotFound.

submitUserOn : HasCallStack => UserId -> ParticipantName -> Commands a -> Script a

Submit the commands with the actAs and readAs claims granted to the user on the given par-

ticipant. May throw UserNotFound.

Daml Script provides a simple way of testing Daml models and getting quick feedback in Daml stu-

dio. In addition to running it in a virtual ledger in Daml Studio, you can also point it against an actual

ledger. This means that you can use it for application scripting, to test automation logic and also

for ledger initialization.

You can also use Daml Script interactively using Daml REPL.

Hint: Remember that you can load all the example code by running daml new script-example

--template script-example

2.2.4.2 Usage

Our example for this tutorial consists of 2 templates.

First, we have a template called Coin:

template Coin

with

issuer : Party

owner : Party

where

signatory issuer, owner

This template represents a coin issued to owner by issuer. Coin has both the owner and the

issuer as signatories.

Second, we have a template called CoinProposal:

template CoinProposal

with

coin : Coin

where

signatory coin.issuer

observer coin.owner

choice Accept : ContractId Coin

controller coin.owner

do create coin

CoinProposal is only signed by the issuer and it provides a single Accept choice which, when

exercised by the controller will create the corresponding Coin.

Having defined the templates, we can nowmove on to write Daml scripts that operate on these tem-

plates. To get access to the API used to implement Daml scripts, you need to add the daml-script

342 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

library to the dependencies field in daml.yaml.

dependencies:

- daml-prim

- daml-stdlib

- daml-script

We also enable the ApplicativeDo extension. We will see below why this is useful.

{-# LANGUAGE ApplicativeDo #-}

module ScriptExample where

import Daml.Script

Since on an actual ledger parties cannot be arbitrary strings, we define a record containing all the

parties that we will use in our script so that we can easily swap them out.

data LedgerParties = LedgerParties with

bank : Party

alice : Party

bob : Party

Let us now write a function to initialize the ledger with 3 CoinProposal contracts and accept 2

of them. This function takes the LedgerParties as an argument and return something of type

Script () which is Daml script’s equivalent of Scenario ().

initialize : LedgerParties -> Script ()

initialize parties = do

First we create the proposals. To do so, we use the submit function to submit a transaction. The first

argument is the party submitting the transaction. In our case, we want all proposals to be created

by the bank so we use parties.bank. The second argument must be of type Commands a so in our

case Commands (ContractId CoinProposal, ContractId CoinProposal, ContractId

CoinProposal) corresponding to the 3 proposals that we create. However, Commands requires that

the individual commands do not depend on each other. This matches the restriction on the Ledger

API where a transaction consists of a list of commands. Using ApplicativeDo we can still use

do-notation as long as we respect this and the last statement in the do-block is of the form return

expr or pure expr. In Commandswe use createCmd instead of create and exerciseCmd instead

of exercise.

(coinProposalAlice, coinProposalBob, coinProposalBank) <- submit parties.bank $␣

↪→do

coinProposalAlice <- createCmd (CoinProposal (Coin parties.bank parties.

↪→alice))

coinProposalBob <- createCmd (CoinProposal (Coin parties.bank parties.bob))

coinProposalBank <- createCmd (CoinProposal (Coin parties.bank parties.bank))

pure (coinProposalAlice, coinProposalBob, coinProposalBank)

Now that we have created the CoinProposals, we want Alice and Bob to accept the proposal while

the Bank will ignore the proposal that it has created for itself. To do so we use separate submit

statements for Alice and Bob and call exerciseCmd.

coinAlice <- submit parties.alice $ exerciseCmd coinProposalAlice Accept

coinBob <- submit parties.bob $ exerciseCmd coinProposalBob Accept

2.2. Building Applications 343

Daml SDK Documentation, 2.1.1

Finally, we call pure () on the last line of our script to match the type Script ().

pure ()

Party management

Wehavenowdefinedaway to initialize the ledger sowecanwrite a test that checks that the contracts

that we expect exist afterwards.

First, we define the signature of our test. We will create the parties used here in the test, so it does

not take any arguments.

test : Script ()

test = do

Now, we create the parties using the allocateParty function. This uses the party management

service to create new parties with the given display name. Note that the display name does not

identify a party uniquely. If you call allocateParty twice with the same display name, it will create

2 different parties. This is very convenient for testing since a new party cannot see any old contracts

on the ledger so using new parties for each test removes the need to reset the ledger. We factor out

party allocation into a functions so we can reuse it in later sections.

allocateParties : Script LedgerParties

allocateParties = do

alice <- allocateParty "alice"

bob <- allocateParty "bob"

bank <- allocateParty "Bank"

pure (LedgerParties bank alice bob)

We now call the initialize function that we defined before on the parties that we have just allo-

cated.

initialize parties

Queries

To verify the contracts on the ledger, we use the query function. We pass it the type of the template

and a party. It will then give us all active contracts of the given type visible to the party. In our

example, we expect to see one active CoinProposal for bank and one Coin contract for each of

Alice and Bob. We get back list of (ContractId t, t) pairs from query. In our tests, we do not

need the contract ids, so we throw them away using map snd.

proposals <- query @CoinProposal bank

assertEq [CoinProposal (Coin bank bank)] (map snd proposals)

aliceCoins <- query @Coin alice

assertEq [Coin bank alice] (map snd aliceCoins)

bobCoins <- query @Coin bob

assertEq [Coin bank bob] (map snd bobCoins)

344 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Running a Script

To run our script, we first build it with daml build and then run it by pointing to the DAR, the name

of our script, and the host and port our ledger is running on.

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name Scrip-

tExample:test --ledger-host localhost --ledger-port 6865

Up to now, we have workedwith a script (test) that is entirely self-contained. This is fine for running

unit-test type script in the IDE, but for more complex use-cases youmay want to vary the inputs of a

script and inspect its outputs, ideally without having to recompile it. To that end, the daml script

command supports the flags --input-file and --output-file. Both flags take a filename, and

said file will be read/written as JSON, following the Daml-LF JSON Encoding.

The --output-file option instructs daml script to write the result of the given --script-name

to the given filename (creating the file if it does not exist; overwriting it otherwise). This is most

useful if the given program has a type Script b, where b is a meaningful value. In our example, we

can use this to write out the party ids that have been allocated by allocateParties:

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name Scrip-

tExample:allocateParties --ledger-host localhost --ledger-port 6865

--output-file ledger-parties.json

The resulting file will look similar to the following but the actual party ids will be different each time

you run it:

{

"bank": "party-93affbfe-8717-4996-990c-

↪→9f4c5a889663::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→",

"alice": "party-99595f45-75e3-4373-997c-

↪→fbdf899439f7::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→",

"bob": "party-6e38e1ed-c070-4ded-ba20-

↪→073e0dbdb13c::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

↪→"

}

Next, we want to call the initialize function with those parties using the --input-file flag.

If the --input-file flag is specified, the --script-name flag must point to a function of one

argument returning a Script, and the function will be called with the result of parsing the input file

as its argument. For example, we can initialize our ledger using the initialize function defined

above. It takes a LedgerParties argument, so a valid file for --input-file would look like:

Using the previosuly created -ledger-parties.json file, we can initialize our ledger as follows:

daml script --dar .daml/dist/script-example-0.0.1.dar --script-name Scrip-

tExample:initialize --ledger-host localhost --ledger-port 6865 --input-file

ledger-parties.json

2.2. Building Applications 345

Daml SDK Documentation, 2.1.1

2.2.4.3 Using Daml Script for Ledger Initialization

You canuseDaml script to initialize a ledger on startup. To do so, specify aninit-script: Scrip-

tExample:initializeUser field in yourdaml.yaml. This will automatically be picked up bydaml

start and used to initialize sandbox. During development not being able to control party ids can

often be inconvenient. Here, we rely on users which do put us in control of their id. User ids can be

used in Navigator, triggers & other tools instead of party ids.

initializeUser : Script ()

initializeUser = do

parties <- allocateParties

bank <- validateUserId "bank"

alice <- validateUserId "alice"

bob <- validateUserId "bob"

_ <- createUser (User bank (Some parties.bank)) [CanActAs parties.bank]

_ <- createUser (User alice (Some parties.alice)) [CanActAs parties.alice]

_ <- createUser (User bob (Some parties.bob)) [CanActAs parties.bob]

initialize parties

Migrating from Scenarios

Existing scenarios that you used for ledger initialization can be translated to Daml script but there

are a few things to keep in mind:

1. You need to add daml-script to the list of dependencies in your daml.yaml.

2. You need to import the Daml.Scriptmodule.

3. Calls to create, exercise, exerciseByKey and createAndExercise need to be suffixed

with Cmd, e.g., createCmd.

4. Instead of specifying a scenario field in your daml.yaml, you need to specify an

init-script field. The initialization script is specified via Module:identifier for both

fields.

5. In Daml script, submit and submitMustFail are limited to the functionality provided by the

ledger API: A list of independent commands consisting of createCmd, exerciseCmd, cre-

ateAndExerciseCmd and exerciseByKeyCmd. There are two issues youmight run into when

migrating an existing scenario:

1. Your commands depend on each other, e.g., you use the result of a createwithin a follow-

ing command in the samesubmit. In this case, you have two options: If it is not important

that they are part of a single transaction, split them into multiple calls to submit. If you

do need them to be within the same transaction, you can move the logic to a choice and

call that using createAndExerciseCmd.

2. You use something that is not part of the 4 ledger API command types, e.g., fetch. For

fetch and fetchByKey, you can instead use queryContractId and queryContrac-

tKey with the caveat that they do not run within the same transaction. Other types of

Update statements can bemoved to a choice that you call via createAndExerciseCmd.

6. Instead of Scenario’s getParty, Daml Script provides you with allocateParty and allo-

catePartyWithHint. There are a few important differences:

1. Allocating a party always gives you back a new party (or fails). If you havemultiple calls to

getPartywith the same string and expect to get back the sameparty, you should instead

allocate the party once at the beginning and pass it along to the rest of the code.

2. If you want to allocate a party with a specific party id, you can use allocatePartyWith-

Hint x (PartyIdHint x) as a replacement for getParty x. Note that while this is sup-

ported in Daml Studio, some ledgers can behave differently and ignore the party id hint or

346 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

interpret it another way. Try to not rely on any specific party id.

7. Instead of pass and passToDate, Daml Script provides passTime and setTime.

2.2.4.4 Using Daml Script in Distributed Topologies

So far, we have run Daml script against a single participant node. It is also more possible to run

it in a setting where different parties are hosted on different participant nodes. To do so, pass the

--participant-config participants.json file to daml script instead of --ledger-host

and ledger-port. The file should be of the format

{

"default_participant": {"host": "localhost", "port": 6866, "access_token":

↪→"default_jwt", "application_id": "myapp"},

"participants": {

"one": {"host": "localhost", "port": 6865, "access_token": "jwt_for_alice

↪→", "application_id": "myapp"},

"two": {"host": "localhost", "port": 6865, "access_token": "jwt_for_bob",

↪→"application_id": "myapp"}

},

"party_participants": {"alice": "one", "bob": "two"}

}

This will define a participant called one, a default participant and it defines that the party alice is

on participant one. Whenever you submit something as party, we will use the participant for that

party or if none is specified default_participant. If default_participant is not specified,

using a party with an unspecified participant is an error.

allocateParty will also use the default_participant. If you want to allocate a party on a spe-

cific participant, you can use allocatePartyOn which accepts the participant name as an extra

argument.

2.2.4.5 Running Daml Script against Ledgers with Authorization

To run Daml Script against a ledger that verifies authorization, you need to specify an access token.

There are two ways of doing that:

1. Specify a single access token via --access-token-file path/to/jwt. This token will then

be used for all requests so it must provide claims for all parties that you use in your script.

2. If you need multiple tokens, e.g., because you only have single-party tokens you can use the

access_token field in the participant config specified via--participant-config. The sec-

tion on using Daml Script in distributed topologies contains an example. Note that you can specify

the same participant twice if you want different auth tokens.

If you specify both --access-token-file and --participant-config, the participant config

takes precedence and the token from the file will be used for any participant that does not have a

token specified in the config.

2.2. Building Applications 347

Daml SDK Documentation, 2.1.1

2.2.4.6 Running Daml Script against the HTTP JSON API

In some cases, you only have access to the HTTP JSON API but not to the gRPC of a ledger, e.g., on Daml

Hub. For this usecase, Daml script can be run against the JSON API. Note that if you do have access

to the gRPC Ledger API, running Daml script against the JSON API does not have any advantages.

To run Daml script against the JSON API you have to pass the --json-api parameter to daml

script. There are a few differences and limitations compared to running Daml Script against the

gRPC Ledger API:

1. When running against the JSON API, the --host argument has to contain an http:// or

https:// prefix, e.g., daml script --host http://localhost --port 7575

--json-api.

2. The JSON API only supports single-command submissions. Thismeans that within a single call

to submit you can only execute one ledger API command, e.g., one createCmd or one exer-

ciseCmd.

3. The JSON API requires authorization tokens even when it is run against a ledger that doesn’t

verify authorization. The section on authorization describes how to specify the tokens.

4. The parties used for command submissions and queries must match the parties specified in

the token exactly. For command submissions that means actAs and readAs must match

exactly what you specified whereas for queries the union of actAs and readAs must match

the parties specified in the query.

5. If you use multiple parties within your Daml Script, you need to specify one token per party or

every submission and query must specify all parties of the multi-party token.

6. getTime will always return the Unix epoch in static time mode since the time service is not

exposed via the JSON API.

7. setTime is not supported and will throw a runtime error.

2.2.5 Daml REPL

The Daml REPL allows you to use the Daml Script API interactively. This is useful for debugging and

for interactively inspecting and manipulating a ledger.

2.2.5.1 Usage

First create a new project based on the script-example template. Take a look at the documenta-

tion for Daml Script for details on this template.

daml new script-example --template script-example # create a project called␣

↪→script-example based on the template

cd script-example # switch to the new project

Now, build the project and start Daml Sandbox, the in-memory ledger included in the SDK. Note that

we are starting Sandbox in wallclock mode. Static time is not supported in daml repl.

daml build

daml sandbox --wall-clock-time --port=6865 --dar .daml/dist/script-example-0.0.1.

↪→dar

Now that the ledger has been started, you can launch the REPL in a separate terminal using the

following command.

348 Chapter 2. Daml Guide

https://hub.daml.com
https://hub.daml.com

Daml SDK Documentation, 2.1.1

daml repl --ledger-host=localhost --ledger-port=6865 .daml/dist/script-example-0.

↪→0.1.dar --import script-example

The --ledger-host and --ledger-port parameters point to the host and port your ledger is run-

ning on. In addition to that, you also need to pass in the name of a DAR containing the templates

and other definitions that will be accessible in the REPL. We also specify that we want to import all

modules from the script-example package. If your modules provide colliding definitions you can

also import modules individually fromwithin the REPL. Note that you can also specify multiple DARs

and they will all be available.

You should now see a prompt looking like

daml>

You can think of this prompt like a line in a do-block of the Script action. Each line of input has to

have one of the following two forms:

1. An expression expr of type Script a for some type a. This will execute the script and print

the result if a is an instance of Show and not ().

2. A pure expression expr of type a for some type a where a is an instance of Show. This will

evaluate expr and print the result. If you are only interest in pure expressions you can also use

Daml REPL without connecting to a ledger.

3. A binding of the form pat <- expr where pat is pattern, e.g., a variable name x to bind the

result to and expr is an expression of type Script a. This will execute the script and match

the result against the pattern pat bindings the matches to the variables in the pattern. You

can then use those variables on subsequent lines.

4. A let binding of the form let pat = y, where pat is a pattern and y is a pure expression or

let f x = y to define a function. The bound variables can be used on subsequent lines.

5. Next to Daml code the REPL also understands REPL commands which are prefixed by :. Enter

:help to see a list of supported REPL commands.

First create two parties: A party with the display name "Alice" and the party id "alice" and a

party with the display name "Bob" and the party id "bob".

daml> alice <- allocatePartyWithHint "Alice" (PartyIdHint "alice")

daml> bob <- allocatePartyWithHint "Bob" (PartyIdHint "bob")

Next, create a CoinProposal from Alice to Bob

daml> submit alice (createCmd (CoinProposal (Coin alice bob)))

As Bob, you can now get the list of active CoinProposal contracts using the query function. The

debug : Show a => a -> Script () function can be used to print values.

daml> proposals <- query @CoinProposal bob

daml> debug proposals

[Daml.Script:39]: [(<contract-id>,CoinProposal {coin = Coin {issuer =
alice
,␣

↪→owner =
bob
}})]

Finally, accept all proposals using the forA function to iterate over them.

daml> forA proposals $ \(contractId, _) -> submit bob (exerciseCmd contractId␣

↪→Accept)

Using the query function we can now verify that there is one Coin and no CoinProposal:

2.2. Building Applications 349

Daml SDK Documentation, 2.1.1

daml> coins <- query @Coin bob

daml> debug coins

[Daml.Script:39]: [(<contract-id>,Coin {issuer =
alice
, owner =
bob
})]

daml> proposals <- query @CoinProposal bob

[Daml.Script:39]: []

To exit daml repl press Control-D.

2.2.5.2 What is in scope at the prompt?

In the prompt, all modules from DALFs specified in --import are imported automatically. In ad-

dition to that, the Daml.Script module is also imported and gives you access to the Daml Script

API.

You can use the commands :module + ModA ModB … to import additional modules and :module

- ModA ModB … to remove previously added imports. Modules can also be imported using regular

import declarations instead of module +. The command :show imports lists the currently active

imports.

daml> import DA.Time

daml> debug (days 1)

2.2.5.3 Using Daml REPL without a Ledger

If you are only interested in pure expressions, e.g., because you want to test how some function be-

haves you can omit the --ledger-host and -ledger-port parameters. Daml REPL will work as

usual but any attempts to call Daml Script APIs that interact with the ledger, e.g., submit will result

in the following error:

daml> java.lang.RuntimeException: No default participant

2.2.5.4 Connecting via TLS

You can connect to a ledger that requires TLS by passing --tls. A custom root certificate used for

validating the server certificate can be set via --cacrt. Finally, you can also enable client authenti-

cation by passing --pem client.key --crt client.crt. If --cacrt or --pem and --crt are

passed TLS is automatically enabled so --tls is redundant.

2.2.5.5 Connection to a Ledger with Authorization

If your ledger requires an authorization token you can pass it via --access-token-file.

350 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.5.6 Using Daml REPL to convert to JSON

Using the :json command you can encode serializable Daml expressions as JSON. For example us-

ing the definitions and imports from above:

daml> :json days 1

{"microseconds":86400000000}

daml> :json map snd coins

[{"issuer":"alice","owner":"bob"}]

2.2.6 Upgrading and Extending Daml applications

2.2.6.1 Extending Daml applications

Note: Cross-SDKextensions requireDaml-LF 1.8 or newer. This is thedefault starting fromSDK 1.0. For

older releases add build-options: ["--target=1.8"] to your daml.yaml to select Daml-LF

1.8.

Consider the following simple Daml model for carbon certificates:

module CarbonV1 where

template CarbonCert

with

issuer : Party

owner : Party

carbon_metric_tons : Int

where

signatory issuer, owner

It contains two templates. The above template representing a carbon compensation certificate. And

a second template to create the CarbonCert via a Propose-Accept workflow.

Now we want to extend this model to add trust labels for certificates by third parties. We don’t want

tomake any changes to the already deployedmodel. Changes to a Damlmodel will result in changed

package ID’s for the contained templates. This means that if a Daml model is already deployed, the

modified Daml code will not be able to reference contracts instantiated with the old package. To

avoid this problem, it’s best to put extensions in a new package.

In our example we call the new package carbon-label and implement the label template like

module CarbonLabel where

import CarbonV1

template CarbonLabel

with

cert : ContractId CarbonCert

labelOwner : Party

where

signatory labelOwner

The CarbonLabel template references the CarbonCert contract of the carbon-1.0.0 packages by contract

ID. Hence, we need to import the CarbonV1 module and add the carbon-1.0.0 to the dependencies in

2.2. Building Applications 351

Daml SDK Documentation, 2.1.1

the daml.yaml file. Because we want to be independent of the Daml SDK used for both packages, we

import the carbon-1.0.0 package as data dependency

name: carbon-label

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- path/to/carbon-1.0.0.dar

Deploying an extension is simple: just upload the new package to the ledger with the daml ledger

upload-dar command. In our example the ledger runs on the localhost:

daml ledger upload-dar --ledger-port 6865 --ledger-host localhost ./daml/dist/

↪→carbon-label-1.0.0.dar

If instead of just extending a Daml model you want to modify an already deployed template of your

Daml model, you need to perform an upgrade of your Daml application. This is the content of the

next section.

2.2.6.2 Upgrading Daml applications

Note: Cross-SDK upgrades require Daml-LF 1.8 or newer. This is the default starting from SDK 1.0. For

older releases add build-options: ["--target=1.8"] to your daml.yaml to select Daml-LF

1.8.

In applications backed by a centralized database controlled by a single operator, it is possible to

upgrade an application in a single step that migrates all existing data to a new data model.

As a running example, let’s imagine a centralized database containing carbon offset certificates. Its

operator created the database schema with

CREATE TABLE carbon_certs (

carbon_metric_tons VARINT,

owner VARCHAR NOT NULL

issuer VARCHAR NOT NULL

)

The certificate has a field for the quantity of offset carbon in metric tons, an owner and an issuer.

In the next iteration of the application, the operator decides to also store and display the carbon

offsetmethod. In the centralized case, the operator canupgrade thedatabaseby executing the single

SQL command

ALTER TABLE carbon_certs ADD carbon_offset_method VARCHAR DEFAULT "unknown"

This adds a new column to the carbon_certs table and inserts the value unknown for all existing

entries.

While upgrading this centralized database is simple and convenient, its data entries lack any kind

of signature and hence proof of authenticity. The data consumers need to trust the operator.

In contrast, Daml templates always have at least one signatory. The consequence is that the upgrade

process for a Daml application needs to be different.

352 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Daml upgrade overview

In a Daml application running on a distributed ledger, the signatories of a contract have agreed

to one specific version of a template. Changing the definition of a template, e.g., by extending it

with a new data field or choice without agreement from its signatories would completely break the

authorization guarantees provided by Daml.

Therefore, Daml takes a different approach to upgrades and extensions. Rather than having a sep-

arate concept of data migration that sidesteps the fundamental guarantees provided by Daml, up-

grades are expressed as Daml contracts. This means that the same guarantees and rules that apply to

other Daml contracts also apply to upgrades.

In a Daml application, it thus makes sense to think of upgrades as an extension of an existing appli-

cation instead of an operation that replaces existing contracts with a newer version. The existing

templates stay on the ledger and can still be used. Contracts of existing templates are not automat-

ically replaced by newer versions. However, the application is extended with new templates. Then

if all signatories of a contract agree, a choice can archive the old version of a contract and create a

new contract instead.

Structuring upgrade contracts

Upgrade contracts are specific to the templates that are being upgraded. But most of them share

common patterns. Here is the implementation of the above carbon_certs schema in Daml. We

have some prescience that there will be future versions of CarbonCert, and so place the definition of

CarbonCert in a module named CarbonV1

module CarbonV1 where

template CarbonCert

with

issuer : Party

owner : Party

carbon_metric_tons : Int

where

signatory issuer, owner

A CarbonCert has an issuer and an owner. Both are signatories. Our goal is to extend this CarbonCert

template with a field that adds themethod used to offset the carbon. We use a different name for the

new template here for clarity. This is not required as templates are identified by the triple (PackageId,

ModuleName, TemplateName).

module CarbonV2 where

template CarbonCertWithMethod

with

issuer : Party

owner : Party

carbon_metric_tons : Int

carbon_offset_method : Text

where

signatory issuer, owner

Next, we need to provide a way for the signatories to agree to a contract being upgraded. It would

be possible to structure this such that issuer and owner have to agree to an upgrade for each indi-

2.2. Building Applications 353

Daml SDK Documentation, 2.1.1

vidual CarbonCert contract separately. Since the template definition for all of them is the same, this

is usually not necessary for most applications. Instead, we collect agreement from the signatories

only once and use that to upgrade all carbon certificates.

Since there are multiple signatories involved here, we use a Propose-Accept workflow. First, we define

an UpgradeCarbonCertProposal template that will be created by the issuer. This template has an Accept

choice that the owner can exercise. Upon execution it will then create an UpgradeCarbonCertAgreement.

template UpgradeCarbonCertProposal

with

issuer : Party

owner : Party

where

signatory issuer

observer owner

key (issuer, owner) : (Party, Party)

maintainer key._1

choice Accept : ContractId UpgradeCarbonCertAgreement

controller owner

do create UpgradeCarbonCertAgreement with ..

Now we can define the UpgradeCarbonCertAgreement template. This template has one nonconsuming

choice that takes the contract ID of a CarbonCert contract, archives this CarbonCert contract and cre-

ates a CarbonCertWithMethod contract with the same issuer and owner and the carbon_offset_method

set to unknown.

template UpgradeCarbonCertAgreement

with

issuer : Party

owner : Party

where

signatory issuer, owner

key (issuer, owner) : (Party, Party)

maintainer key._1

nonconsuming choice Upgrade : ContractId CarbonCertWithMethod

with

certId : ContractId CarbonCert

controller issuer

do cert <- fetch certId

assert (cert.issuer == issuer)

assert (cert.owner == owner)

archive certId

create CarbonCertWithMethod with

issuer = cert.issuer

owner = cert.owner

carbon_metric_tons = cert.carbon_metric_tons

carbon_offset_method = "unknown"

354 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Building and deploying carbon-1.0.0

Let’s see everything in action by first building and deploying carbon-1.0.0. After this we’ll see how

to deploy and upgrade to carbon-2.0.0 containing the CarbonCertWithMethod template.

First we’ll need a sandbox ledger to which we can deploy.

$ daml sandbox --port 6865

Now we’ll setup the project for the original version of our certificate. The project contains the Daml

for just the CarbonCert template, along with a CarbonCertProposal template which will allow

us to issue some coins in the example below.

Here is the project config.

name: carbon

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

- daml-script

source: .

Now we can build and deploy carbon-1.0.0.

$ cd example/carbon-1.0.0

$ daml build

$ daml ledger upload-dar --port 6865

Create some carbon-1.0.0 certificates

Let’s create some certificates!

First, we run a setup script to create 3 users alice, bob and charlie and corresponding parties.

We write out the actual party ids to a JSON file so we can later use them in Navigator.

$ cd example/carbon-1.0.0

$ daml script --dar .dar/dist/carbon-1.0.0.dar --script-name Setup:setup --ledger-

↪→host localhost --ledger-port 6865 --output-file parties.json

The resulting parties.json file will look similar to the following but the actual party ids will vary.

{

"alice": "party-19a21501-ba87-47be-90a6-

↪→692dfaefe64a::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→",

"bob": "party-7ecb1d67-1d20-4612-be67-

↪→b5741c86204d::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→"

"charlie": "party-fae6a574-9860-422a-9fd4-

↪→7ca2f7295e41::12203977cedf2d394073b4c58036e047fcc590f7f2d61d82503df431473c4277fe70

↪→"

}

2.2. Building Applications 355

Daml SDK Documentation, 2.1.1

We’ll use thenavigator to connect to the ledger, and create two certificates issuedbyAlice, andowned

by Bob.

$ cd example/carbon-1.0.0

$ daml navigator server localhost 6865

We point a browser to http://localhost:4000, and follow the steps:

1. Login as alice:

1. Select Templates tab.

2. Create a CarbonCertProposal with Alice as issuer and Bob as owner and an arbitrary

value for the carbon_metric_tons field. Note that in place of Alice and Bob, you

need to use the party ids from the previously created parties.json.

3. Create a 2nd proposal in the same way.

2. Login as bob:

1. Exercise the CarbonCertProposal_Accept choice on both proposal contracts.

Building and deploying carbon-2.0.0

Now we setup the project for the improved certificates containing the carbon_offset_method field.

This project contains only the CarbonCertWithMethod template. The upgrade templates are in a

third carbon-upgrade package. While it would be possible to include the upgrade templates in the

samepackage, thismeans that the package containing the new CarbonCertWithMethod template

depends on the previous version. With the approach taken here of keeping the upgrade templates

in a separate package, the carbon-1.0.0 package is no longer needed once we have upgraded all

certificates.

It’s worth stressing here that extensions always need to go into separate packages. We cannot just

add the new definitions to the original project, rebuild and re-deploy. This is because the crypto-

graphically computed package identifier would change. Consequently, it would not match the pack-

age identifier of the originalCarbonCert contracts fromcarbon-1.0.0whichare live on the ledger.

Here is the new project config:

name: carbon

version: 2.0.0

dependencies:

- daml-prim

- daml-stdlib

Now we can build and deploy carbon-2.0.0.

$ cd example/carbon-2.0.0

$ daml build

$ daml ledger upload-dar --port 6865

356 Chapter 2. Daml Guide

http://localhost:4000

Daml SDK Documentation, 2.1.1

Building and deploying carbon-upgrade

Havingbuilt anddeployedcarbon-1.0.0andcarbon-2.0.0wearenow ready tobuild theupgrade

package carbon-upgrade. The project config references both carbon-1.0.0 and carbon-2.0.0

via the data-dependencies field. This allows us to import modules from the respective packages.

With these imported modules we can reference templates from packages that we already uploaded

to the ledger.

When following this example, path/to/carbon-1.0.0.dar and path/to/carbon-2.0.0.dar

should be replaced by the relative or absolute path to the DAR file created by building the respective

projects. Commonly the carbon-1.0.0 and carbon-2.0.0 projects would be sibling directories

in the file systems, so this path would be: ../carbon-1.0.0/.daml/dist/carbon-1.0.0.dar.

name: carbon-upgrade

version: 1.0.0

dependencies:

- daml-prim

- daml-stdlib

data-dependencies:

- path/to/carbon-1.0.0.dar

- path/to/carbon-2.0.0.dar

The Daml for the upgrade contracts imports the modules for both the new and old certificate ver-

sions.

module UpgradeFromCarbonCertV1 where

import CarbonV1

import CarbonV2

Now we can build and deploy carbon-upgrade. Note that uploading a DAR also uploads its depen-

dencies so if carbon-1.0.0 and carbon-2.0.0 had not already been deployed before, they would

be deployed as part of deploying carbon-upgrade.

$ cd example/carbon-upgrade

$ daml build

$ daml ledger upload-dar --port 6865

Upgrade existing certificates from carbon-1.0.0 to carbon-2.0.0

We start the navigator again.

$ cd example/carbon-upgrade

$ daml navigator server localhost 6865

Finally, we point a browser to http://localhost:4000 and can start the carbon certificates upgrades:

1. Login as alice

1. Select Templates tab.

2. Create an UpgradeCarbonCertProposal with Alice as issuer and Bob as owner. As

before, in place of Alice and Bob use the party ids from parties.json.

2. Login as bob

1. Exercise the Accept choice of the upgrade proposal, creating an UpgradeCarbon-

CertAgreement.

2.2. Building Applications 357

http://localhost:4000

Daml SDK Documentation, 2.1.1

3. Login again as alice

1. Use the UpgradeCarbonCertAgreement repeatedly to upgrade any certificate for

which Alice is issuer and Bob is owner.

Further Steps

For theupgrade of our carbon certificatemodel above, weperformedall stepsmanually viaNavigator.

However, if Alice had issued millions of carbon certificates, performing all upgrading steps manu-

ally becomes infeasible. It thus becomes necessary to automate these steps. We will go through a

potential implementation of an automated upgrade in the next section.

2.2.6.3 Automating the Upgrade Process

In this section, we are going to automate the upgrade of our carbon certificate process using Daml

Script and Daml Triggers. Note that automation for upgrades is specific to an individual application,

just like the upgrade models. Nevertheless, we have found that the pattern shown here occurs fre-

quently.

Structuring the Upgrade

There are three kinds of actions performed during the upgrade:

1. Alice creates UpgradeCarbonCertProposal contracts. We assume here, that Alice wants to

upgrade all CarbonCert contracts she has issued. Since the UpgradeCarbonCertProposal

proposal is specific to each owner, Alice has to create one UpgradeCarbonCertProposal

per owner. There can be potentially many owners but this step only has to be performed once

assuming Alice will not issue more CarbonCert contracts after this point.

2. Bob and other owners accept the UpgradeCarbonCertProposal. To keep this example sim-

ple, we assume that there are only carbon certificates issued by Alice. Therefore, each owner

has to accept at most one proposal.

3. As owners accept upgrade proposals, Alice has to upgrade each certificate. This means that

she has to execute the upgrade choice once for each certificate. Owners will not all accept

the upgrade at the same time and some might never accept it. Therefore, this should be a

long-running process that upgrades all carbon certificates of a given owner as soon as they

accept the upgrade.

Given those constraints, we are going to use the following tools for the upgrade:

1. A Daml script that will be executed once by Alice and creates an UpgradeCarbonCertPro-

posal contract for each owner.

2. Navigator to accept the UpgradeCarbonCertProposal as Bob. While we could also use a

Daml script to accept the proposal, this step will often be exposed as part of a web UI so doing

it interactively in Navigator resembles that workflow more closely.

3. A long-running Daml trigger that upgrades all CarbonCert contracts for which there is a cor-

responding UpgradeCarbonCertAgreement.

358 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Implementation of the Daml Script

In our Daml Script, we are first going to query the ACS (Active Contract Set) to find all CarbonCert

contracts issued by us. Next, we are going to extract the owner of each of those contracts and remove

any duplicates coming from multiple certificates issued to the same owner. Finally, we iterate over

the owners and create an UpgradeCarbonCertAgreement contract for each owner.

initiateUpgrade : Setup.Parties -> Script ()

initiateUpgrade Setup.Parties{alice} = do

certs <- query @CarbonCert alice

let myCerts = filter (\(_cid, c) -> c.issuer == alice) certs

let owners = dedup $ map (\(_cid, c) -> c.owner) myCerts

forA_ owners $ \owner -> do

debugRaw ("Creating upgrade proposal for: " <> show owner)

submit alice $ createCmd (UpgradeCarbonCertProposal alice owner)

Implementation of the Daml Trigger

Our trigger does not need any custom user state and no heartbeat so the only interesting field in its

definition is the rule.

upgradeTrigger : Trigger ()

upgradeTrigger = Trigger with

initialize = pure ()

updateState = _msg -> pure ()

registeredTemplates = AllInDar

heartbeat = None

rule = triggerRule

In our rule, we first filter out all agreements and certificates issued by us. Next, we iterate over all

agreements. For each agreement we filter the certificates by the owner of the agreement and finally

upgrade the certificate by exercising the Upgrade choice. Wemark the certificate as pending which

temporarily removes it from the ACS and therefore stops the trigger from trying to upgrade the same

certificate multiple times if the rule is triggered in quick succession.

triggerRule : Party -> TriggerA () ()

triggerRule issuer = do

agreements <-

filter (\(_cid, agreement) -> agreement.issuer == issuer) <$>

query @UpgradeCarbonCertAgreement

allCerts <-

filter (\(_cid, cert) -> cert.issuer == issuer) <$>

query @CarbonCert

forA_ agreements $ \(agreementCid, agreement) -> do

let certsForOwner = filter (\(_cid, cert) -> cert.owner == agreement.owner)␣

↪→allCerts

forA_ certsForOwner $ \(certCid, _) ->

emitCommands

[exerciseCmd agreementCid (Upgrade certCid)]

[toAnyContractId certCid]

The trigger is a long-running process and the rule will be executed whenever the state of the ledger

changes. So whenever an owner accepts an upgrade proposal, the trigger will run the rule and up-

grade all certificates of that owner.

2.2. Building Applications 359

Daml SDK Documentation, 2.1.1

Deploying and Executing the Upgrade

Now that we defined our Daml script and our trigger, it is time to use them! If you still have Sandbox

running from the previous section, stop it to clear out all data before continuing.

First, we start sandbox passing in the carbon-upgrade DAR. Since a DAR includes all transitive

dependencies, this includes carbon-1.0.0 and carbon-2.0.0.

$ cd example/carbon-upgrade

$ daml sandbox --dar .daml/dist/carbon-upgrade-1.0.0.dar

To simplify the setup here, we use a Daml script to create 3 parties Alice, Bob and Charlie and two

CarbonCert contracts issues by Alice, one owned by Bob and one owned by Charlie. This Daml script

reuses the Setup.setup Daml script from the previous section to create the parties & users.

setup : Script Setup.Parties

setup = do

parties@Setup.Parties{..} <- Setup.setup

bobProposal <- submit alice $ createCmd (CarbonCertProposal alice bob 10)

submit bob $ exerciseCmd bobProposal CarbonCertProposal_Accept

charlieProposal <- submit alice $ createCmd (CarbonCertProposal alice charlie 5)

submit charlie $ exerciseCmd charlieProposal CarbonCertProposal_Accept

pure parties

Run the script as follows:

$ cd example/carbon-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/carbon-initiate-upgrade-1.0.0.dar --script-

↪→name=InitiateUpgrade:setup --ledger-host=localhost --ledger-port=6865 --output-

↪→file parties.json

As before, parties.json contains the actual party ids we can use later.

If you now start Navigator from the carbon-initiate-upgrade directory and log in as alice, you

can see the two CarbonCert contracts.

Next, we run the trigger for Alice. The trigger will keep running throughout the rest of this example.

$ cd example/carbon-upgrade-trigger

$ daml build

$ daml trigger --dar=.daml/dist/carbon-upgrade-trigger-1.0.0.dar --trigger-

↪→name=UpgradeTrigger:upgradeTrigger --ledger-host=localhost --ledger-port=6865 --

↪→ledger-user=alice

With the trigger running, we can now run the script to create the UpgradeCarbonCertProposal

contracts (we could also have done that before starting the trigger). The script takes an argument of

type Parties corresponding to the result of the previous setup script. We can pass this in via the

--input-file argument.

$ cd example/carbon-initiate-upgrade

$ daml build

$ daml script --dar=.daml/dist/carbon-initiate-upgrade-1.0.0.dar --script-

↪→name=InitiateUpgrade:initiateUpgrade --ledger-host=localhost --ledger-port=6865␣

↪→--input-file=parties.json

360 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

At this point, our trigger is running and the UpgradeCarbonCertProposal contracts for Bob and

Charlie have been created. What is left to do is to accept the proposals. Our trigger will then auto-

matically pick them up and upgrade the CarbonCert contracts.

First, start Navigator and log in as bob. Click on the UpgradeCarbonCertProposal and accept

it. If you now go back to the contracts tab, you can see that the CarbonCert contract has been

archived and instead there is a new CarbonCertWithMethod upgrade. Our trigger has successfully

upgraded the CarbonCert!

Next, log in as charlie and accept the UpgradeCarbonCertProposal. Just like for Bob, you can

see that the CarbonCert contract has been archived and instead there is a new CarbonCertWith-

Method contract.

SinceweupgradedallCarbonCert contracts issuedbyAlice, we cannowstop the trigger anddeclare

the update successful.

Database schemas tend to evolve over time. A new feature in your application might need an ad-

ditional choice in one of your templates. Or a change in your data model will make you application

perform better. We distinguish two kinds of changes to a Daml model:

• A Daml model extension

• A Daml model upgrade

An extension adds new templates and data structures to yourmodel, while leaving all previously writ-

ten definitions unchanged.

An upgrade changes previously defined data structures and templates.

Whether extension or upgrade, your new code needs to be compatible with data that is already live

in a production system. The next two sections show how to extend and upgrade Daml models. The

last section shows how to automate the data migration process.

2.2.7 Authorization

When developing Daml applications using SDK tools, your local setup will most likely not perform

any Ledger API request authorization – by default, any valid Ledger API request will be accepted by

the sandbox.

This is not the case for participant nodes of deployed ledgers. They check for every Ledger API re-

quest whether the request contains an access token that is valid and sufficient to authorize the

request. You thus need to add support for authorization using access token to your application to

run it against a deployed ledger.

For the

Note: In case of mutual (two-way) TLS authentication, the Ledger API client must present its cer-

tificate (in addition to an access token) to the Ledger API server as part of the authentication pro-

cess. The provided certificate must be signed by a certificate authority (CA) trusted by the Ledger

API server. Note that the identity of the application will not be proven by using this method, i.e. the

application_id field in the request is not necessarily correlated with the CN (Common Name) in the

certificate.

2.2. Building Applications 361

Daml SDK Documentation, 2.1.1

2.2.7.1 Introduction

Your Daml application sends requests to the Ledger API exposed by a participant node to submit

changes to the ledger (e.g., “exercise choice X on contract Y as party Alice”), or to read data from the

ledger (e.g., “read all active contracts visible to party Alice”). Your applicationmight send these requests

via a middleware like the JSON API.

Whether a participant node can serve such a request depends onwhether the participant node hosts

the respective parties, and whether the request is valid according to the Daml Ledger Model. Whether

a participant node will serve such a request to a Daml application depends on whether the request

includes an access token that is valid and sufficient to authorize the request for this participant

node.

2.2.7.2 Acquiring and using access tokens

How an application should acquire access tokens depends on the participant node it talks to and is

ultimately setup by the participant node operator. Many setups use a flow in the style of OAuth 2.0:

First, the Daml application contacts a token issuer to get an access token. The token issuer verifies

the identity of the requesting application, looks up the privileges of the application, and generates

a signed access token describing those privileges.

Then, the Daml application sends the access token along with every Ledger API request. The Daml

ledger verifies the signature of the token tomake sure it has not been tampered with andwas issued

by one of its trusted token issuers, and then checks that the token has not yet expired and that the

privileges described in the token authorize the given Ledger API request.

As shown above, using access tokens requires your application to attach them to every request.

How to do that depends on the tool or library you use to interact with the Ledger API. See the tool’s or

362 Chapter 2. Daml Guide

https://oauth.net/2/

Daml SDK Documentation, 2.1.1

library’s documentation for more information. Here is for example the relevant documentation for

the Java bindings and the JSON API.

2.2.7.3 Access tokens and rights

Access tokens contain information about the rights granted to the bearer of the token. These rights

are specific to the API being accessed.

The Daml Ledger API uses the following rights to govern request authorization:

• public: the right to retrieve publicly available information, such as the ledger identity

• participant_admin: the right to adminstrate the participant node

• canReadAs(p): the right to read information off the ledger (like the active contracts) visible

to the party p

• canActsAs(p): sameascanReadAs(p), with the added right of issuing commands onbehalf

of the party p

The following table summarizes the rights required to access each Ledger API endpoint:

Ledger API service Endpoint Required right

LedgerIdentityService GetLedgerIdentity public

ActiveContractsService GetActiveContracts for each requested party p: canReadAs(p)

CommandCompletion-

Service

CompletionEnd public

CompletionStream for each requested party p: canReadAs(p)

CommandSubmission-

Service

Submit for submitting party p: canActAs(p)

CommandService All for submitting party p: canActAs(p)

Health All no access token required for health checking

LedgerConfigurationSer-

vice

GetLedgerConfigura-

tion

public

MeteringReportService All participant_admin

PackageService All public

PackageManagementSer-

vice

All participant_admin

PartyManagementService All participant_admin

ParticipantPruningSer-

vice

All participant_admin

ServerReflection All no access token required for gRPC service re-

flection

TimeService GetTime public

SetTime participant_admin

TransactionService LedgerEnd public

All (except

LedgerEnd)

for each requested party p: canReadAs(p)

UserManagementService All participant_admin

GetUser authenticated users can get their own user

ListUserRights authenticated users can list their own rights

VersionService All public

2.2. Building Applications 363

Daml SDK Documentation, 2.1.1

2.2.7.4 Access token formats

Applications should treat access tokens as opaque blobs. However as an application developer it

can be helpful to understand the format of access tokens to debug problems.

All Daml ledgers represent access tokens as JSON Web Tokens (JWTs), and there are two formats of

the JSON payload in use by Daml ledgers.

Note: To generate access tokens for testing purposes, you can use the jwt.io web site.

User access tokens

Daml ledgers that support participant user management also accept user access tokens. They are

useful for scenarioswhere anapplication’s rights changedynamically over the application’s lifetime.

User access tokens do not encode rights directly like the custom Daml claims tokens explained in

the following sections. Instead, user access tokens encode the participant user on whose behalf the

request is issued.

When handling such requests, participant nodes look up the participant user’s current rights before

checking request authorization per the table above. Thus the rights granted to an application can be

changed dynamically using the participant user management service without issuing new access

tokens, as would be required for the custom Daml claims tokens explained below.

User access tokens are JWTs that follow the OAuth 2.0 standard with a JSON payload of the following

format.

{

"aud": "someParticipantId",

"sub": "someUserId",

"exp": 1300819380

"scope": "daml_ledger_api"

}

The above notations are explained below:

• aud is an optional field, which restricts the token to participant nodes with the given id

• sub is a required field, which specifies the participant user’s id

• exp is an optional field, which specifies the JWT expiration date (in seconds since EPOCH)

• scope is a space-separated list of OAuth 2.0 scopes that must contain the

"daml_ledger_api" scope

Custom Daml claims access tokens

This format represents the rights granted by the access token as customclaims in the JWT’s payload,

like so:

{

"https://daml.com/ledger-api": {

"ledgerId": null,

"participantId": "123e4567-e89b-12d3-a456-426614174000",

(continues on next page)

364 Chapter 2. Daml Guide

https://datatracker.ietf.org/doc/html/rfc7519
https://jwt.io/
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#section-3.3

Daml SDK Documentation, 2.1.1

(continued from previous page)

"applicationId": null,

"admin": true,

"actAs": ["Alice"],

"readAs": ["Bob"]

},

"exp": 1300819380

}

where all of the fields are optional, and if present,

• ledgerId and participantId restrict the validity of the token to the given ledger or partici-

pant node

• applicationId requires requests with this token to use that application id or not set an ap-

plication id at all, which should be used to distinguish requests from different applications

• exp is the standard JWT expiration date (in seconds since EPOCH)

• actAs, readAs and (participant) admin encode the rights granted by this access token

The public right is implicitly granted to any request bearing a non-expired JWT issued by a trusted

issuer with matching ledgerId, participantId and applicationId values.

Note: All Daml ledgers also support a deprecated legacy format of custom Daml claims access

tokens whose format is equal to the above except for the custom claims to be present at the same

level asexp in the token above, instead of being nested below"https://daml.com/ledger-api".

2.2.8 The Ledger API

2.2.8.1 The Ledger API services

The Ledger API is structured as a set of services. The core services are implemented using gRPC and

Protobuf, but most applications access this API through the mediation of the language bindings.

This page gives more detail about each of the services in the API, and will be relevant whichever way

you’re accessing it.

If you want to read low-level detail about each service, see the protobuf documentation of the API.

Overview

The API is structured as two separate data streams:

• A stream of commands TO the ledger that allow an application to submit transactions and

change state.

• A stream of transactions and corresponding events FROM the ledger that indicate all state

changes that have taken place on the ledger.

Commands are the only way an application can cause the state of the ledger to change, and events

are the only mechanism to read those changes.

For an application, themost important consequence of these architectural decisions and implemen-

tation is that the Ledger API is asynchronous. This means:

2.2. Building Applications 365

https://grpc.io/
https://developers.google.com/protocol-buffers/

Daml SDK Documentation, 2.1.1

• The outcome of commands is only known some time after they are submitted.

• The application must deal with successful and erroneous command completions separately

from command submission.

• Ledger state changes are indicated by events received asynchronously from the command sub-

missions that cause them.

The need to handle these issues is a major determinant of application architecture. Understanding

the consequences of the API characteristics is important for a successful application design.

For more help understanding these issues so you can build correct, performant and maintainable

applications, read the application architecture guide.

Glossary

• The ledger is a list of transactions. The transaction service returns these.

• A transaction is a tree of actions, also called events, which are of type create, exercise

or archive. The transaction service can return the whole tree, or a flattened list.

• A submission is a proposed transaction, consisting of a list of commands, which correspond

to the top-level actions in that transaction.

• A completion indicates the success or failure of a submission.

Submitting commands to the ledger

Command submission service

Use the command submission service to submit commands to the ledger. Commands either create

a new contract, or exercise a choice on an existing contract.

A call to the command submission service will return as soon as the ledger server has parsed the

command, and has either accepted or rejected it. This does not mean the command has been exe-

cuted, only that the server has looked at the command and decided that its format is acceptable, or

has rejected it for syntactic or content reasons.

The on-ledger effect of the command execution will be reported via the transaction service, described

below. The completion status of the command is reported via the command completion service. Your

application should receive completions, correlate them with command submission, and handle er-

rors and failed commands. Alternatively, you can use the command service, which conveniently wraps

the command submission and completion services.

Change ID

Each intended ledger change is identified by its change ID, consisting of the following three compo-

nents:

• The submitting parties, i.e., the union of party and act_as

• the application ID

• The command ID

366 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Application-specific IDs

The following application-specific IDs, all of which are included in completion events, can be set in

commands:

• A submission ID, returned to the submitting application only. Itmay be used to correlate specific

submissions to specific completions.

• A command ID, returned to the submitting application only; it can be used to correlate com-

mands to completions.

• A workflow ID, returned as part of the resulting transaction to all applications receiving it. It can

be used to track workflows between parties, consisting of several transactions.

For full details, see the proto documentation for the service.

Command deduplication

The command submission service deduplicates submitted commands based on their change ID.

• Applications can provide a deduplication period for each command. If this parameter is not

set, the default maximum deduplication duration is used.

• A command submission is considered a duplicate submission if the Ledger API server is aware

of another command within the deduplication period and with the same change ID.

• A command resubmission will generate a rejection until the original submission was rejected

(i.e. the command failed and resulted in a rejected transaction) or until the effective dedu-

plication period has elapsed since the completion of the original command, whichever comes

first.

• Command deduplication is only guaranteed to work if all commands are submitted to the same

participant. Ledgers are free to perform additional command deduplication across partici-

pants. Consult the respective ledger’s manual for more details.

For details on how to use command deduplication, see the Command Deduplication Guide.

Command completion service

Use the command completion service to find out the completion status of commands you have

submitted.

Completions contain the command ID of the completed command, and the completion status of the

command. This status indicates failure or success, and your application should use it to update

what it knows about commands in flight, and implement any application-specific error recovery.

For full details, see the proto documentation for the service.

2.2. Building Applications 367

Daml SDK Documentation, 2.1.1

Command service

Use the command service when you want to submit a command and wait for it to be executed. This

service is similar to the command submission service, but also receives completions andwaits until

it knows whether or not the submitted command has completed. It returns the completion status

of the command execution.

You can use either the command or command submission services to submit commands to effect

a ledger change. The command service is useful for simple applications, as it handles a basic form

of coordination between command submission and completion, correlating submissions with com-

pletions, and returning a success or failure status. This allow simple applications to be completely

stateless, and alleviates the need for them to track command submissions.

For full details, see the proto documentation for the service.

Reading from the ledger

Transaction service

Use the transaction service to listen to changes in the ledger state, reported via a stream of trans-

actions.

Transactions detail the changes on the ledger, and contains all the events (create, exercise, archive

of contracts) that had an effect in that transaction.

Transactions contain a transaction ID (assigned by the server), the workflow ID, the command ID, and

the events in the transaction.

Subscribe to the transaction service to read events from an arbitrary point on the ledger. This arbi-

trary point is specified by the ledger offset. This is important when starting or restarting and appli-

cation, and to work in conjunction with the active contracts service.

For full details, see the proto documentation for the service.

Transaction and transaction trees

TransactionService offers several different subscriptions. The most commonly used is Get-

Transactions. If you need more details, you can use GetTransactionTrees instead, which re-

turns transactions as flattened trees, represented as a map of event IDs to events and a list of root

event IDs.

Verbosity

The service works in a non-verbosemode by default, whichmeans that some identifiers are omitted:

• Record IDs

• Record field labels

• Variant IDs

You can get these included in requests related to Transactions by setting the verbose field in mes-

sage GetTransactionsRequest or GetActiveContractsRequest to true.

368 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Active contracts service

Use the active contracts service to obtain a party-specific view of all contracts that are active on

the ledger at the time of the request.

The active contracts service returns its response as a stream of batches of the created events that

would re-create the state being reported (the size of these batches is left to the ledger implementa-

tion). As part of the last message, the offset at which the reported active contract set was valid is

included. This offset can be used to subscribe to the “flat transactions” stream to keep a consistent

view of the active contract set without querying the active contract service further.

This is most important at application start, if the application needs to synchronize its initial state

with a known view of the ledger. Without this service, the only way to do this would be to read the

Transaction Stream from the beginning of the ledger, which can be prohibitively expensive with a

large ledger.

For full details, see the proto documentation for the service.

Verbosity

See Verbosity above.

Note: The RPCs exposed as part of the transaction and active contracts servicesmake use of offsets.

An offset is an opaque string of bytes assigned by the participant to each transaction as they are

received from the ledger. Two offsets returned by the same participant are guaranteed to be lexico-

graphically ordered: while interacting with a single participant, the offset of two transactions can be

compared to tell which was committed earlier. The state of a ledger (i.e. the set of active contracts)

as exposed by the Ledger API is valid at a specific offset, which is why the lastmessage your applica-

tion receives when calling the ActiveContractsService is precisely that offset. In this way, the

client can keep track of the relevant state without needing to invoke the ActiveContractsSer-

vice again, by starting to read transactions from the given offset.

Offsets are also useful to perform crash recovery and failover as documented more in depth in the

application architecture page.

You can read more about offsets in the protobuf documentation of the API.

Utility services

Party management service

Use the party management service to allocate parties on the ledger and retrieve information about

allocated parties.

Parties govern on-ledger access control as per Daml’s privacy model and authorization rules. Applica-

tionsand their operators are expected to allocate anduseparties tomanageon-ledger access control

as per their business requirements.

For more information, refer to the pages on Identity Management and the API reference documentation.

2.2. Building Applications 369

../app-dev/grpc/proto-docs.html#ledgeroffset

Daml SDK Documentation, 2.1.1

User management service

Use the user management service to manage the set of users on a participant node and their ac-

cess rights to that node’s Ledger API services and as the integration point for your organization’s IAM

(Identity and Access Management) framework.

In contrast to parties, users are local to a participant node. The relation between a participant node’s

users and Daml parties is best understood by analogy to classical databases: a participant node’s

users are analogous to database users while Daml parties are analogous to database roles; and

further, the rights granted to a user are analogous to the user’s assigned database roles.

For more information, consult the the API reference documentation for how to list, create, and delete

users and their rights. See the UserManagementFeature descriptor to learn about limits of the user

management service, e.g., the maximum number of rights per user. The feature descriptor can be

retrieved using the Version service.

With user management enabled you can use both new user-based and old custom Daml authoriza-

tion tokens. Read the Authorization documentation to understand how Ledger API requests are autho-

rized, and how to use user management to dynamically change an application’s rights.

User management is available in Canton-enabled drivers and not yet available in the Daml for

VMware Blockchain driver.

Package service

Use the package service to obtain information about Daml packages available on the ledger.

This is useful for obtaining type and metadata information that allow you to interpret event data in

a more useful way.

For full details, see the proto documentation for the service.

Ledger identity service (DEPRECATED)

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to.

Including identity string is optional for all Ledger API requests. If you include it, commands with an

incorrect identity string will be rejected.

For full details, see the proto documentation for the service.

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration.

This configuration includes the maximum command deduplication period (see Command Deduplica-

tion for details).

For full details, see the proto documentation for the service.

370 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Version service

Use the version service to retrieve information about the Ledger API version and what optional fea-

tures are supported by the ledger server.

For full details, see the proto documentation for the service.

Pruning service

Use the pruning service to prune archived contracts and transactions before or at a given offset.

For full details, see the proto documentation for the service.

Metering Report service

Use themetering report service to retrieve a participant metering report.

For full details, see the proto documentation for the service.

Testing services

These are only for use for testing with the Sandbox, not for on production ledgers.

Time service

Use the time service to obtain the time as known by the ledger server.

For full details, see the proto documentation for the service.

2.2.8.2 gRPC

If you want to write an application for the ledger API in other languages, you’ll need to use gRPC

directly.

If you’re not familiar with gRPC and protobuf, we strongly recommend following the gRPC quickstart

and gRPC tutorials. This documentation is written assuming you already have an understanding of

gRPC.

Getting started

You can get the protobufs from a GitHub release, or from the daml repository here.

2.2. Building Applications 371

https://grpc.io
https://grpc.io/docs/quickstart/
https://grpc.io/docs/tutorials/
https://github.com/digital-asset/daml/releases/download/v2.1.1/protobufs-2.1.1.zip
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions

Daml SDK Documentation, 2.1.1

Protobuf reference documentation

For full details of all of the Ledger API services and their RPC methods, see Ledger API Reference.

Example project

We have an example project demonstrating the use of the Ledger API with gRPC. To get the example

project, PingPongGrpc:

1. Configure your machine to use the example by following the instructions at Set up a Maven

project.

2. Clone the repository from GitHub.

3. Follow the setup instructions in the README. Use examples.pingpong.grpc.

PingPongGrpcMain as the main class.

About the example project

The example shows very simply how two parties can interact via a ledger, using two Daml contract

templates, Ping and Pong.

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is

reached.

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongGrpcMain.java. Look at it to see how connect to and interact with a ledger using gRPC.

The application prints output like this:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count 9

The first line shows:

• Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow

Ping-Alice-1.

• Count 0means that this is the first choice after the initial Ping contract.

• Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

This example subscribes to transactions for a single party, as different parties typically live on dif-

ferent participant nodes. However, if you have multiple parties registered on the same node, or are

running an application against the Sandbox, you can subscribe to transactions for multiple parties

in a single subscription by puttingmultiple entries into the filters_by_party field of the Trans-

actionFiltermessage. Subscribing to transactions for an unknown party will result in an error.

372 Chapter 2. Daml Guide

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.1.1

Daml types and protobuf

For information on how Daml types and contracts are represented by the Ledger API as protobuf

messages, see How Daml types are translated to protobuf.

Error handling

The Ledger API generally uses thegRPCstandard status codes for signaling response failures to client

applications.

For more details on the gRPC standard status codes, see the gRPC documentation .

Generically, on submitted commands the Ledger API responds with the following gRPC status codes:

ABORTED The platform failed to record the result of the command due to a transient server-side

error (e.g. backpressure due to high load) or a time constraint violation. You can retry the

submission. In case of a time constraint violation, please refer to the section Dealing with time

on how to handle commands with long processing times.

DEADLINE_EXCEEDED (when returned by the Command Service) The request might not have

been processed, as its deadline expired before its completion was signalled.

ALREADY_EXISTS The command was rejected because the resource (e.g. contract key) already ex-

ists or because it was sent within the deduplication period of a previous command with the

same change ID.

NOT_FOUND The command was rejected due to a missing resources (e.g. contract key not found).

INVALID_ARGUMENT The submission failed because of a client error. The platform will definitely

reject resubmissions of the same command.

FAILED_PRECONDITION The command was rejected due to an interpretation error or due to a con-

sistency error due to races.

OK (when returned by the Command Submission Service) Assume that the command was ac-

cepted and wait for the resulting completion or a timeout from the Command Completion Ser-

vice.

OK (when returned by the Command Service) You can be sure that the command was successful.

INTERNAL, UNKNOWN (when returned by the Command Service) An internal system fault oc-

curred. Contact the participant operator for the resolution.

Aside from the standard gRPC status codes, the failures returned by the Ledger API are enriched with

details meant to help the application or the application developer to handle the error autonomously

(e.g. by retrying on a retryable error). For more details on the rich error details see the Error Codes

2.2.8.3 Error Codes

Overview

The majority of the errors are a result of some request processing. They are logged and returned

to the user as a failed gRPC response containing the status code, an optional status message and

optional metadata.

This approach remains unchanged in principle while we aim at enhancing it by providing:

• improved consistency of the returned errors across API endpoints,

• richer error payload format with clearly distinguished machine readable parts to facilitate au-

tomated error handling strategies,

2.2. Building Applications 373

https://github.com/grpc/grpc/blob/600272c826b48420084c2ff76dfb0d34324ec296/doc/statuscodes.md

Daml SDK Documentation, 2.1.1

• complete inventory of all error codes with an explanation, suggested resolution and other use-

ful information.

The goal is to enable users, developers andoperators to act on the encountered errors in a self-service

manner, either in an automated-way or manually.

Glossary

Error Represents an occurrence of a failure. Consists of:

• an error code id,

• a gRPC status code (determined by its error category),

• an error category,

• a correlation id,

• a human readable message,

• and optional additional metadata.

You can think of it as an instantiation of an error code.

Error code Represents a class of failures. Identified by its error code id (we may use error code and

error code id interchangeably in this document). Belongs to a single error category.

Error category A broad categorization of error codes that you can base your error handling strate-

gies on. Map to exactly one gRPC status code. We recommended to deal with errors based on

their error category. However, if error category itself is too generic you can act on particular

error codes.

Correlation id A value whose purpose is to allow the user to clearly identify the request, such that

the operator can lookup any log information associated with this error. We use request’s sub-

mission id for correlation id.

Anatomy of an Error

Errors returned to users contain a gRPC status code, a description and additional machine readable

information represented in the rich gRPC error model.

Error Description

We use the standard gRPC description that additionally adheres to our custommessage format:

<ERROR_CODE_ID>(<CATEGORY_ID>,<CORRELATION_ID_PREFIX>):<HUMAN_READABLE_MESSAGE>

The constituent parts are:

• <ERROR_CODE_ID> - a unique non empty string containing at most 63 characters:

upper-cased letters, underscores or digits. Identifies corresponding error code id.

• <CATEGORY_ID> - a small integer identifying the corresponding error category.

• <CORRELATION_ID_PREFIX> - a string aimed at identifying originating request. Absence of

one is indicated by value 0. If present it is an 8 character long prefix of the corresponding

request’s submission id. Full correlation id can be found in error’s additionalmachine readable

information (see Additional Machine Readable Information).

• : - a colon character that serves as a separator for the machine and human readable parts.

• <HUMAN_READABLE_MESSAGE> - a message targeted at a human reader. Should never be

parsed by applications, as the description might change in future releases to improve clarity.

374 Chapter 2. Daml Guide

https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://grpc.github.io/grpc/core/md_doc_statuscodes.html
https://cloud.google.com/apis/design/errors#error_details
https://grpc.github.io/grpc-java/javadoc/io/grpc/Status.html#getDescription--

Daml SDK Documentation, 2.1.1

In a concrete example an error description might look like this:

TRANSACTION_NOT_FOUND(11,12345): Transaction not found, or not visible.

Additional Machine Readable Information

We use following error details:

• A mandatory com.google.rpc.ErrorInfo containing error code id.

• A mandatory com.google.rpc.RequestInfo containing (not-truncated) correlation id (or 0

if correlation id is not available).

• An optional com.google.rpc.RetryInfo containing retry interval withmilliseconds resolu-

tion.

• An optional com.google.rpc.ResourceInfo containing information about the resource the

failure is based on. Any request that fails due to some well-defined resource issues (such as

contract, contract-key, package, party, template, domain, etc..) will contain these. Particular

resources are implementation specific and vary across ledger implementations.

Many errors will include more information, but there is no guarantee given that additional informa-

tion will be preserved across versions.

Preventing Security Leaks in Error Codes

For any error that could leak information to an attacker, the system will return an error message via

the API that will not leak any valuable information. The log file will contain the full error message.

Working with Error Codes

This example shows how a user can extract the relevant error information.

object SampleClientSide {

import com.google.rpc.ResourceInfo

import com.google.rpc.{ErrorInfo, RequestInfo, RetryInfo}

import io.grpc.StatusRuntimeException

import scala.jdk.CollectionConverters._

def example(): Unit = {

try {

DummmyServer.serviceEndpointDummy()

} catch {

case e: StatusRuntimeException =>

// Converting to a status object.

val status = io.grpc.protobuf.StatusProto.fromThrowable(e)

// Extracting gRPC status code.

assert(status.getCode == io.grpc.Status.Code.ABORTED.value())

assert(status.getCode == 10)

// Extracting error message, both

// machine oriented part: "MY_ERROR_CODE_ID(2,full-cor):",

(continues on next page)

2.2. Building Applications 375

Daml SDK Documentation, 2.1.1

(continued from previous page)

// and human oriented part: "A user oriented message".

assert(status.getMessage == "MY_ERROR_CODE_ID(2,full-cor): A user␣

↪→oriented message")

// Getting all the details

val rawDetails: Seq[com.google.protobuf.Any] = status.getDetailsList.

↪→asScala.toSeq

// Extracting error code id, error category id and optionally additional␣

↪→metadata.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[ErrorInfo]) =>

val v = any.unpack(classOf[ErrorInfo])

assert(v.getReason == "MY_ERROR_CODE_ID")

assert(v.getMetadataMap.asScala.toMap == Map("category" -> "2", "foo

↪→" -> "bar"))

}.isDefined

}

// Extracting full correlation id, if present.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[RequestInfo]) =>

val v = any.unpack(classOf[RequestInfo])

assert(v.getRequestId == "full-correlation-id-123456790")

}.isDefined

}

// Extracting retry information if the error is retryable.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[RetryInfo]) =>

val v = any.unpack(classOf[RetryInfo])

assert(v.getRetryDelay.getSeconds == 123, v.getRetryDelay.

↪→getSeconds)

assert(v.getRetryDelay.getNanos == 456 * 1000 * 1000, v.

↪→getRetryDelay.getNanos)

}.isDefined

}

// Extracting resource if the error pertains to some well defined␣

↪→resource.

assert {

rawDetails.collectFirst {

case any if any.is(classOf[ResourceInfo]) =>

val v = any.unpack(classOf[ResourceInfo])

assert(v.getResourceType == "CONTRACT_ID")

assert(v.getResourceName == "someContractId")

}.isDefined

}

}

}

}

376 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Error Categories Inventory

The error categories allow to group errors such that application logic can be built in a sensible way

to automatically deal with errors and decide whether to retry a request or escalate to the operator.

TransientServerFailure

Category id: 1

gRPC status code: UNAVAILABLE

Default log level: INFO

Description: One of the services required to process the request was not available.

Resolution: Expectation: transient failure that should be handled by retrying the request

with appropriate backoff.

Retry strategy: Retry quickly in load balancer.

ContentionOnSharedResources

Category id: 2

gRPC status code: ABORTED

Default log level: INFO

Description: The request could not be processed due to shared processing resources (e.g.

locks or rate limits that replenish quickly) being occupied. If the resource is known (i.e.

locked contract), it will be included as a resource info. (Not known resource contentions

are e.g. overloaded networks where we just observe timeouts, but can’t pin-point the

cause).

Resolution: Expectation: this is processing-flow level contention that should be handled

by retrying the request with appropriate backoff.

Retry strategy: Retry quickly (indefinitely or limited), but do not retry in load balancer.

DeadlineExceededRequestStateUnknown

Category id: 3

gRPC status code: DEADLINE_EXCEEDED

Default log level: INFO

Description: The request might not have been processed, as its deadline expired before

its completion was signalled. Note that for requests that change the state of the sys-

tem, this error may be returned even if the request has completed successfully. Note

that knownandwell-defined timeouts are signalled as [[ContentionOnSharedResources]],

while this category indicates that the state of the request is unknown.

Resolution: Expectation: the deadline might have been exceeded due to transient re-

source congestion or due to a timeout in the request processing pipeline being too low.

2.2. Building Applications 377

Daml SDK Documentation, 2.1.1

The transient errors might be solved by the application retrying. The non-transient errors

will require operator intervention to change the timeouts.

Retry strategy: Retry for a limited number of times with deduplication.

SystemInternalAssumptionViolated

Category id: 4

gRPC status code: INTERNAL

Default log level: ERROR

Description: Request processing failed due to a violation of system internal invariants.

This error is exposed on the API with grpc-status INTERNALwithout any details for security

reasons

Resolution: Expectation: this is due to a bug in the implementation or data corruption

in the systems databases. Resolution will require operator intervention, and potentially

vendor support.

Retry strategy: Retry after operator intervention.

MaliciousOrFaultyBehaviour

Category id: 5

gRPC status code: UNKNOWN

Default log level: WARN

Description: Request processing failed due to unrecoverable data loss or corruption (e.g.

detected via checksums). This error is exposed on the API with grpc-status INTERNAL

without any details for security reasons

Resolution: Expectation: this can be a severe issue that requires operator attention or

intervention, and potentially vendor support.

Retry strategy: Retry after operator intervention.

AuthInterceptorInvalidAuthenticationCredentials

Category id: 6

gRPC status code: UNAUTHENTICATED

Default log level: WARN

Description: The request doesnot have valid authentication credentials for the operation.

This error is exposed on the API with grpc-status INTERNALwithout any details for security

reasons

Resolution: Expectation: this is an application bug, application misconfiguration or

ledger-level misconfiguration. Resolution requires application and/or ledger operator in-

tervention.

378 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Retry strategy: Retry after application operator intervention.

InsufficientPermission

Category id: 7

gRPC status code: PERMISSION_DENIED

Default log level: WARN

Description: The caller does not have permission to execute the specified operation. This

error is exposed on the API with grpc-status INTERNAL without any details for security

reasons

Resolution: Expectation: this is an application bug or applicationmisconfiguration. Res-

olution requires application operator intervention.

Retry strategy: Retry after application operator intervention.

InvalidIndependentOfSystemState

Category id: 8

gRPC status code: INVALID_ARGUMENT

Default log level: INFO

Description: The request is invalid independent of the state of the system.

Resolution: Expectation: this is an application bug or ledger-level misconfiguration (e.g.

request size limits). Resolution requires application and/or ledger operator intervention.

Retry strategy: Retry after application operator intervention.

InvalidGivenCurrentSystemStateOther

Category id: 9

gRPC status code: FAILED_PRECONDITION

Default log level: INFO

Description: Themutable state of the systemdoes not satisfy the preconditions required

to execute the request. We consider the whole Daml ledger including ledger config, par-

ties, packages, users and command deduplication to be mutable system state. Thus all

Daml interpretation errors are reported as this error or one of its specializations.

Resolution: ALREADY_EXISTS and NOT_FOUND are special cases for the existence and

non-existence of well-defined entities within the system state; e.g., a .dalf package, con-

tracts ids, contract keys, or a transaction at an offset. OUT_OF_RANGE is a special case

for reading past a range. Violations of the Daml ledgermodel always result in these kinds

of errors. Expectation: this is due to application-level bugs, misconfiguration or con-

tention on application-visible resources; and might be resolved by retrying later, or after

changing the state of the system. Handling these errors requires an application-specific

strategy and/or operator intervention.

2.2. Building Applications 379

Daml SDK Documentation, 2.1.1

Retry strategy: Retry after application operator intervention.

InvalidGivenCurrentSystemStateResourceExists

Category id: 10

gRPC status code: ALREADY_EXISTS

Default log level: INFO

Description: Special type of InvalidGivenCurrentSystemState referring to a well-defined

resource.

Resolution: Same as [[InvalidGivenCurrentSystemStateOther]].

Retry strategy: Inspect resource failure and retry after resource failure has been resolved

(depends on type of resource and application).

InvalidGivenCurrentSystemStateResourceMissing

Category id: 11

gRPC status code: NOT_FOUND

Default log level: INFO

Description: Special type of InvalidGivenCurrentSystemState referring to a well-defined

resource.

Resolution: Same as [[InvalidGivenCurrentSystemStateOther]].

Retry strategy: Inspect resource failure and retry after resource failure has been resolved

(depends on type of resource and application).

InvalidGivenCurrentSystemStateSeekAfterEnd

Category id: 12

gRPC status code: OUT_OF_RANGE

Default log level: INFO

Description: This error is only used by the Ledger API server in connection with invalid

offsets.

Resolution: Expectation: this error is only used by the Ledger API server in connection

with invalid offsets.

Retry strategy: Retry after application operator intervention.

380 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

BackgroundProcessDegradationWarning

Category id: 13

gRPC status code: N/A

Default log level: WARN

Description: This error category is used internally to signal to the system operator an

internal degradation.

Resolution: Inspect details of the specific error for more information.

Retry strategy: Not an API error, therefore not retryable.

InternalUnsupportedOperation

Category id: 14

gRPC status code: UNIMPLEMENTED

Default log level: ERROR

Description: This error category is used to signal that an unimplemented code-path has

been triggered by a client or participant operator request. This error is exposed on the API

with grpc-status INTERNAL without any details for security reasons

Resolution: This error is caused by a ledger-level misconfiguration or by an implementa-

tion bug. Resolution requires participant operator intervention.

Retry strategy: Errors in this category are non-retryable.

Error Codes Inventory

1. KVErrors

Errors that are specific to ledgers based on the KV architecture: Daml Sandbox and VMBC.

1.1. KVErrors / Consistency

Errors that highlight transaction consistency issues in the committer context.

VALIDATION_FAILURE

Explanation: Validation of a transaction submission failed using on-ledger data.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

2.2. Building Applications 381

Daml SDK Documentation, 2.1.1

Resolution: Either some input contracts have been pruned or the participant is misbe-

having.

1.2. KVErrors / Internal

Errors that arise from an internal systemmisbehavior.

INVALID_PARTICIPANT_STATE

Explanation: An invalid participant state has been detected.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

MISSING_INPUT_STATE

Explanation: The participant didn’t provide a necessary transaction submission input.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

REJECTION_REASON_NOT_SET

Explanation: A rejection reason has not been set.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

SUBMISSION_FAILED

Explanation: An unexpected error occurred while submitting a command to the ledger.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

382 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

1.3. KVErrors / Resources

Errors that relate to system resources.

RESOURCE_EXHAUSTED

Explanation: A system resource has been exhausted.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ABORTED including a detailed error message

Resolution: Retry the transaction submission or provide the details to the participant

operator.

1.4. KVErrors / Time

Errors that relate to the Daml concepts of time.

CAUSAL_MONOTONICITY_VIOLATED

Explanation: At least one input contract’s ledger time is later than that of the submitted

transaction.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry the transaction submission.

INVALID_RECORD_TIME

Explanation: The record time is not within bounds for reasons other than deduplication,

such as excessive latency. Excessive clock skew between the participant and the com-

mitter or a time model that is too restrictive may also produce this rejection.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry the submission or contact the participant operator.

2.2. Building Applications 383

Daml SDK Documentation, 2.1.1

RECORD_TIME_OUT_OF_RANGE

Explanation: The record time is not within bounds for reasons other than deduplication,

such as excessive latency. Excessive clock skew between the participant and the com-

mitter or a time model that is too restrictive may also produce this rejection.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry the transaction submission or contact the participant operator.

2. ParticipantErrorGroup

2.1. ParticipantErrorGroup / IndexErrors

Errors raised by the Participant Index persistence layer.

2.1.1. ParticipantErrorGroup / IndexErrors / DatabaseErrors

INDEX_DB_INVALID_RESULT_SET

Explanation: This error occurs if the result set returned by a query against the Index

database is invalid.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

INDEX_DB_SQL_NON_TRANSIENT_ERROR

Explanation: This error occurs if a non-transient error arises when executing a query

against the index database.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact the participant operator.

384 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

INDEX_DB_SQL_TRANSIENT_ERROR

Explanation: This error occurs if a transient error arises when executing a query against

the index database.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status UNAVAILABLE including a detailed error message

Resolution: Re-submit the request.

2.2. ParticipantErrorGroup / LedgerApiErrors

Errors raised by or forwarded by the Ledger API.

LEDGER_API_INTERNAL_ERROR

Explanation: This error occurs if there was an unexpected error in the Ledger API.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

PARTICIPANT_BACKPRESSURE

Explanation: This error occurs when a participant rejects a command due to excessive

load. Load can be caused by the following factors: 1. when commands are submitted to

the participant through its Ledger API, 2. when the participant receives requests from

other participants through a connected domain.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level WARN on the server side. This error is

exposed on the API with grpc-status ABORTED including a detailed error message

Resolution: Wait a bit and retry, preferablywith somebackoff factor. If possible, ask other

participants to send fewer requests; the domain operator can enforce this by imposing a

rate limit.

2.2. Building Applications 385

Daml SDK Documentation, 2.1.1

REQUEST_TIME_OUT

Explanation: This rejection is given when a request processing status is not known and

a time-out is reached.

Category: DeadlineExceededRequestStateUnknown

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status DEADLINE_EXCEEDED including a detailed error mes-

sage

Resolution: Retry for transient problems. If non-transient contact the operator as the

time-out limit might be too short.

SERVER_IS_SHUTTING_DOWN

Explanation: This rejection is given when the participant server is shutting down.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status UNAVAILABLE including a detailed error message

Resolution: Contact the participant operator.

SERVICE_NOT_RUNNING

Explanation: This rejection is given when the requested service has already been closed.

Category: TransientServerFailure

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status UNAVAILABLE including a detailed error message

Resolution: Retry re-submitting the request. If the error persists, contact the participant

operator.

UNSUPPORTED_OPERATION

Explanation: This error category is used to signal that an unimplemented code-path has

been triggered by a client or participant operator request.

Category: InternalUnsupportedOperation

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status UNIMPLEMENTED without any details due to security

reasons

Resolution: This error is caused by a participant node misconfiguration or by an imple-

mentation bug. Resolution requires participant operator intervention.

386 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices

Errors raised by Ledger API admin services.

CONFIGURATION_ENTRY_REJECTED

Explanation: This rejection is given when a new configuration is rejected.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Fetch newest configuration and/or retry.

PACKAGE_UPLOAD_REJECTED

Explanation: This rejection is given when a package upload is rejected.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Refer to the detailed message of the received error.

2.2.1.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices / UserManagementSer-

viceErrors

TOO_MANY_USER_RIGHTS

Explanation: A user can have only a limited number of user rights. There was an attempt

to create a user with too many rights or grant too many rights to a user.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry with a smaller number of rights or delete some of the already existing

rights of this user. Contact the participant operator if the limit is too low.

2.2. Building Applications 387

Daml SDK Documentation, 2.1.1

USER_ALREADY_EXISTS

Explanation: There already exists a user with the same user-id.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ALREADY_EXISTS including a detailed error message

Resolution: Check that you are connecting to the right participant node and the user-id

is spelled correctly, or use the user that already exists.

USER_NOT_FOUND

Explanation: The user referred to by the request was not found.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Check that you are connecting to the right participant node and the user-id

is spelled correctly, if yes, create the user.

2.2.2. ParticipantErrorGroup / LedgerApiErrors / AuthorizationChecks

Authentication and authorization errors.

INTERNAL_AUTHORIZATION_ERROR

Explanation: An internal system authorization error occurred.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact the participant operator.

PERMISSION_DENIED

Explanation: This rejection is given if the supplied authorization token is not sufficient

for the intended command. The exact reason is logged on the participant, but not given

to the user for security reasons.

Category: InsufficientPermission

Conveyance: This error is logged with log-level WARN on the server side. This error is

exposed on the API with grpc-status PERMISSION_DENIED without any details due to se-

curity reasons

Resolution: Inspect your command and your token or ask your participant operator for

an explanation why this command failed.

388 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

STALE_STREAM_AUTHORIZATION

Explanation: The stream was aborted because the authenticated user’s rights changed,

and the user might thus no longer be authorized to this stream.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ABORTED including a detailed error message

Resolution: The application should automatically retry fetching the stream. It will either

succeed, or fail with an explicit denial of authentication or permission.

UNAUTHENTICATED

Explanation: This rejection is given if the submitted command does not contain a JWT

token on a participant enforcing JWT authentication.

Category: AuthInterceptorInvalidAuthenticationCredentials

Conveyance: This error is logged with log-level WARN on the server side. This error is ex-

posed on the API with grpc-status UNAUTHENTICATED without any details due to security

reasons

Resolution: Ask your participant operator to provide you with an appropriate JWT token.

2.2.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution

Errors raised during the command execution phase of the command submission evaluation.

FAILED_TO_DETERMINE_LEDGER_TIME

Explanation: This error occurs if the participant fails to determine themax ledger time of

theused contracts. Most likely, thismeans that one of the contracts is not active anymore

which can happen under contention. It can also happen with contract keys.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ABORTED including a detailed error message

Resolution: Retry the transaction submission.

2.2. Building Applications 389

Daml SDK Documentation, 2.1.1

2.2.3.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter

Errors raised during the command interpretation phase of the command submission evaluation.

CONTRACT_NOT_ACTIVE

Explanation: This error occurs if an exercise or fetch happens on a transaction-locally

consumed contract.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: This error indicates an application error.

DAML_AUTHORIZATION_ERROR

Explanation: This error occurs if a Daml transaction fails due to an authorization error.

An authorization means that the Daml transaction computed a different set of required

submitters than you have provided during the submission as actAs parties.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: This error type occurs if there is an application error.

DAML_INTERPRETATION_ERROR

Explanation: This error occurs if a Daml transaction fails during interpretation.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: This error type occurs if there is an application error.

DAML_INTERPRETER_INVALID_ARGUMENT

Explanation: This error occurs if a Daml transaction fails during interpretation due to an

invalid argument.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: This error type occurs if there is an application error.

390 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.1.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter /

LookupErrors

Errors raised in lookups during the command interpretation phase.

CONTRACT_KEY_NOT_FOUND

Explanation: This error occurs if the Daml engine interpreter cannot resolve a contract

key to an active contract. This can be caused by either the contract key not being known to

the participant, or not being known to the submitting parties or the contract representing

an already archived key.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: This error type occurs if there is contention on a contract.

2.2.3.2. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Package

Command execution errors raised due to invalid packages.

ALLOWED_LANGUAGE_VERSIONS

Explanation: This error indicates that the uploaded DAR is based on an unsupported lan-

guage version.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Use a DAR compiled with a language version that this participant supports.

PACKAGE_VALIDATION_FAILED

Explanation: This error occurs if a package referred to by a command fails validation.

This should not happen as packages are validated when being uploaded.

Category: MaliciousOrFaultyBehaviour

Conveyance: This error is logged with log-level WARN on the server side. This error is ex-

posed on the API with grpc-status UNKNOWN without any details due to security reasons

Resolution: Contact support.

2.2. Building Applications 391

Daml SDK Documentation, 2.1.1

2.2.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Preprocessing

Errors raised during command conversion to the internal data representation.

COMMAND_PREPROCESSING_FAILED

Explanation: This error occurs if a command fails during interpreter pre-processing.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect error details and correct your application.

2.2.4. ParticipantErrorGroup / LedgerApiErrors / ConsistencyErrors

Potential consistency errors raised due to race conditions during command submission or returned

as submission rejections by the backing ledger.

CONTRACT_NOT_FOUND

Explanation: This error occurs if the Daml engine can not find a referenced contract. This

can be caused by either the contract not being known to the participant, or not being

known to the submitting parties or already being archived.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: This error type occurs if there is contention on a contract.

DUPLICATE_COMMAND

Explanation: A command with the given command id has already been successfully pro-

cessed.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ALREADY_EXISTS including a detailed error message

Resolution: The correct resolution depends on the use case. If the error received pertains

to a submission retried due to a timeout, do nothing, as the previous command has al-

ready beenaccepted. If the intent is to submit anewcommand, re-submit using adistinct

command id.

392 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

DUPLICATE_CONTRACT_KEY

Explanation: This error signals that within the transaction we got to a point where two

contracts with the same key were active.

Category: InvalidGivenCurrentSystemStateResourceExists

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ALREADY_EXISTS including a detailed error message

Resolution: This error indicates an application error.

INCONSISTENT

Explanation: At least one input has been altered by a concurrent transaction submission.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: The correct resolution depends on the business flow, for example it may be

possible to proceed without an archived contract as an input, or the transaction submis-

sion may be retried to load the up-to-date value of a contract key.

INCONSISTENT_CONTRACTS

Explanation: An input contract has been archived by a concurrent transaction submis-

sion.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: The correct resolution depends on the business flow, for example it may be

possible to proceed without the archived contract as an input, or a different contract

could be used.

INCONSISTENT_CONTRACT_KEY

Explanation: An input contract key was re-assigned to a different contract by a concur-

rent transaction submission.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry the transaction submission.

2.2. Building Applications 393

Daml SDK Documentation, 2.1.1

INVALID_LEDGER_TIME

Explanation: The ledger time of the submission violated some constraint on the ledger

time.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Retry the transaction submission.

SUBMISSION_ALREADY_IN_FLIGHT

Explanation: Another command submission with the same change ID (application ID,

command ID, actAs) is already being processed.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ABORTED including a detailed error message

Resolution: Listen to the command completion streamuntil a completion for the in-flight

command submission is published. Alternatively, resubmit the command. If the in-flight

submission has finished successfully by then, this will return more detailed information

about the earlier one. If the in-flight submission has failed by then, the resubmission will

attempt to record the new transaction on the ledger.

2.2.5. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError

Errors raised by the Package Management Service on package uploads.

DAR_NOT_SELF_CONSISTENT

Explanation: This error indicates that the uploaded Dar is broken because it is missing

internal dependencies.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Contact the supplier of the Dar.

394 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

DAR_VALIDATION_ERROR

Explanation: This error indicates that the validation of the uploaded dar failed.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the error message and contact support.

PACKAGE_SERVICE_INTERNAL_ERROR

Explanation: This error indicates an internal issue within the package service.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Inspect the error message and contact support.

2.2.5.1. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError / Reading

Package parsing errors raised during package upload.

DAR_PARSE_ERROR

Explanation: This error indicates that the content of the Dar file could not be parsed suc-

cessfully.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the error message and contact support.

INVALID_DAR

Explanation: This error indicates that the supplied dar file was invalid.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the error message for details and contact support.

2.2. Building Applications 395

Daml SDK Documentation, 2.1.1

INVALID_DAR_FILE_NAME

Explanation: This error indicates that the supplied dar file name did not meet the re-

quirements to be stored in the persistence store.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect error message for details and change the file name accordingly

INVALID_LEGACY_DAR

Explanation: This error indicates that the supplied zipped dar is an unsupported legacy

Dar.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Please use a more recent dar version.

INVALID_ZIP_ENTRY

Explanation: This error indicates that the supplied zipped dar file was invalid.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the error message for details and contact support.

ZIP_BOMB

Explanation: This error indicates that the supplied zipped dar is regarded as zip-bomb.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the dar and contact support.

396 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.6. ParticipantErrorGroup / LedgerApiErrors / RequestValidation

Validation errors raised when evaluating requests in the Ledger API.

INVALID_ARGUMENT

Explanation: This error is emitted when a submitted ledger API command contains an

invalid argument.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the reason given and correct your application.

INVALID_DEDUPLICATION_PERIOD

Explanation: This error is emitted when a submitted ledger API command specifies an

invalid deduplication period.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Inspect the error message, adjust the value of the deduplication period or

ask the participant operator to increase the maximum deduplication period.

INVALID_FIELD

Explanation: This error is emittedwhen a submitted ledger API command contains a field

value that cannot be understood.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the reason given and correct your application.

LEDGER_ID_MISMATCH

Explanation: Every ledger API command contains a ledger-id which is verified against

the running ledger. This error indicates that the provided ledger-id does not match the

expected one.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

2.2. Building Applications 397

Daml SDK Documentation, 2.1.1

Resolution: Ensure that your application is correctly configured to use the correct ledger.

MISSING_FIELD

Explanation: This error is emittedwhen amandatory field is not set in a submitted ledger

API command.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Inspect the reason given and correct your application.

NON_HEXADECIMAL_OFFSET

Explanation: The supplied offset could not be converted to a binary offset.

Category: InvalidIndependentOfSystemState

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the APIwith grpc-status INVALID_ARGUMENT including adetailed errormessage

Resolution: Ensure the offset is specified as a hexadecimal string.

OFFSET_AFTER_LEDGER_END

Explanation: This rejection is given when a read request uses an offset beyond the cur-

rent ledger end.

Category: InvalidGivenCurrentSystemStateSeekAfterEnd

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status OUT_OF_RANGE including a detailed error message

Resolution: Use an offset that is before the ledger end.

OFFSET_OUT_OF_RANGE

Explanation: This rejection is given when a read request uses an offset invalid in the

requests’ context.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Inspect the error message and use a valid offset.

398 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

PARTICIPANT_PRUNED_DATA_ACCESSED

Explanation: This rejection is given when a read request tries to access pruned data.

Category: InvalidGivenCurrentSystemStateOther

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status FAILED_PRECONDITION including a detailed error mes-

sage

Resolution: Use an offset that is after the pruning offset.

2.2.6.1. ParticipantErrorGroup / LedgerApiErrors / RequestValidation / NotFound

LEDGER_CONFIGURATION_NOT_FOUND

Explanation: The ledger configuration could not be retrieved. This could happen due to

incomplete initialization of the participant or due to an internal system error.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Contact the participant operator.

PACKAGE_NOT_FOUND

Explanation: This rejection is given when a read request tries to access a package which

does not exist on the ledger.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Use a package id pertaining to a package existing on the ledger.

TRANSACTION_NOT_FOUND

Explanation: The transaction does not exist or the requesting set of parties are not au-

thorized to fetch it.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Check the transaction id and verify that the requested transaction is visible

to the requesting parties.

2.2. Building Applications 399

Daml SDK Documentation, 2.1.1

2.2.7. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections

Generic submission rejection errors returned by the backing ledger’s write service.

DISPUTED

Deprecation: Corresponds to transaction submission rejections that are not produced

anymore.

Explanation: An invalid transaction submission was not detected by the participant.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

OUT_OF_QUOTA

Deprecation: Corresponds to transaction submission rejections that are not produced

anymore.

Explanation: The Participant node did not have sufficient resource quota to submit the

transaction.

Category: ContentionOnSharedResources

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status ABORTED including a detailed error message

Resolution: Inspect the error message and retry after after correcting the underlying is-

sue.

PARTY_NOT_KNOWN_ON_LEDGER

Explanation: One or more informee parties have not been allocated.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Check that all the informee party identifiers are correct, allocate all the in-

formee parties, request their allocation or wait for them to be allocated before retrying

the transaction submission.

400 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT

Explanation: A submitting party is not authorized to act through the participant.

Category: InsufficientPermission

Conveyance: This error is logged with log-level WARN on the server side. This error is

exposed on the API with grpc-status PERMISSION_DENIED without any details due to se-

curity reasons

Resolution: Contact the participant operator or re-submit with an authorized party.

SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

Explanation: The submitting party has not been allocated.

Category: InvalidGivenCurrentSystemStateResourceMissing

Conveyance: This error is logged with log-level INFO on the server side. This error is ex-

posed on the API with grpc-status NOT_FOUND including a detailed error message

Resolution: Check that the party identifier is correct, allocate the submitting party, re-

quest its allocation or wait for it to be allocated before retrying the transaction submis-

sion.

2.2.7.1. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections / Internal

Errors that arise from an internal systemmisbehavior.

INTERNALLY_DUPLICATE_KEYS

Explanation: The participant didn’t detect an attempt by the transaction submission to

use the same key for two active contracts.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

INTERNALLY_INCONSISTENT_KEYS

Explanation: The participant didn’t detect an inconsistent key usage in the transaction.

Within the transaction, an exercise, fetch or lookupByKey failed because the mapping of

key -> contract ID was inconsistent with earlier actions.

Category: SystemInternalAssumptionViolated

Conveyance: This error is logged with log-level ERROR on the server side. This error is

exposed on the API with grpc-status INTERNALwithout any details due to security reasons

Resolution: Contact support.

2.2. Building Applications 401

Daml SDK Documentation, 2.1.1

2.2.8.4 Ledger API Reference

com/daml/ledger/api/v1/active_contracts_service.proto

GetActiveContractsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Iden-

tification Service. Must be a valid LedgerString (as described

in value.proto). Optional

filter
Transaction-

Filter

Templates to include in the served snapshot, per party. Re-

quired

verbose
bool If enabled, values served over the API will contain more infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

GetActiveContractsResponse

Field Type Label Description

offset
string Included in the last message. The client should start

consuming the transactions endpoint with this offset.

The format of this field is described in ledger_offset.

proto. Required

work-

flow_id

string The workflow that created the contracts. Must be a valid

LedgerString (as described in value.proto). Optional

ac-

tive_con-

tracts

CreatedE-

vent

repeated The list of contracts that were introduced by theworkflow

with workflow_id at the offset. Must be a valid Ledger-

String (as described in value.proto). Optional

402 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ActiveContractsService

Allows clients to initialize themselves according to a fairly recent state of the ledger without reading

through all transactions that were committed since the ledger’s creation.

Method

name

Request

type

Response

type

Description

GetActive-

Contracts

GetActive-

ContractsRe-

quest

GetActive-

ContractsRe-

sponse

Returns a stream of the latest snapshot of active con-

tracts. If there are no active contracts, the stream re-

turns a single GetActiveContractsResponse message

with the offset at which the snapshot has been taken.

Clients SHOULD use the offset in the last GetActive-

ContractsResponse message to continue streaming

transactions with the transaction service. Clients

SHOULD NOT assume that the set of active contracts

they receive reflects the state at the ledger end. Er-

rors: - UNAUTHENTICATED: if the request does not in-

clude a valid access token - PERMISSION_DENIED: if

the claims in the token are insufficient to perform a

given operation - NOT_FOUND: if the request does not

include a valid ledger id - INVALID_ARGUMENT: if the

payload is malformed or is missing required fields

(filters by party cannot be empty)

com/daml/ledger/api/v1/admin/config_management_service.proto

GetTimeModelRequest

GetTimeModelResponse

Field Type Label Description

configura-

tion_gener-

ation

int64 The current configuration generation. The generation is a

monotonically increasing integer that is incremented on each

change. Used when setting the time model.

time_model
TimeModel The current ledger time model.

2.2. Building Applications 403

Daml SDK Documentation, 2.1.1

SetTimeModelRequest

Field Type Label Description

submis-

sion_id

string Submission identifier used for tracking the request and to

reject duplicate submissions. Required.

maxi-

mum_record_time

google.pro-

to-

buf.Times-

tamp

Deadline for the configuration change after which the

change is rejected.

configura-

tion_gener-

ation

int64 The current configuration generation which we’re sub-

mitting the change against. This is used to perform

a compare-and-swap of the configuration to safeguard

against concurrent modifications. Required.

new_time_model
TimeModel The new timemodel that replaces the current one. Required.

SetTimeModelResponse

Field Type Label Description

configuration_genera-

tion

int64 The configuration generation of the committed time

model.

TimeModel

Field Type Label Description

avg_trans-

action_la-

tency

google.pro-

tobuf.Dura-

tion

The expected average latency of a transaction, i.e., the aver-

age time from submitting the transaction to a [[WriteSer-

vice]] and the transaction being assigned a record time. Re-

quired.

min_skew
google.pro-

tobuf.Dura-

tion

Theminimimumskewbetween ledger time and record time:

lt_TX >= rt_TX - minSkew Required.

max_skew
google.pro-

tobuf.Dura-

tion

The maximum skew between ledger time and record time:

lt_TX <= rt_TX + maxSkew Required.

404 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.1.1

ConfigManagementService

Status: experimental interface, will change before it is deemed production ready

The ledger configuration management service provides methods for the ledger administrator to

change the current ledger configuration. The services providesmethods tomodify different aspects

of the configuration.

Method

name

Request

type

Response

type

Description

GetTimeM-

odel

GetTimeMo-

delRequest

GetTimeMo-

delResponse

Return the currently active time model and the cur-

rent configuration generation. Errors: -UNAUTHENTI-

CATED: if the request does not include a valid access

token - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation

SetTimeM-

odel

SetTimeMod-

elRequest

SetTimeMod-

elResponse

Set the ledger time model. Errors: - UNAUTHENTI-

CATED: if the request does not include a valid access

token - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation -

INVALID_ARGUMENT: if arguments are invalid, or the

provided configuration generation does not match

the current active configuration generation. The caller

is expected to retry by again fetching current time

model using ‘GetTimeModel’, applying changes and

resubmitting. - DEADLINE_EXCEEDED: if the request

times out. Note that a timed out request may have

still been committed to the ledger. Application should

re-query the current time model before retrying. -

FAILED_PRECONDITION: if the request is rejected. -

UNIMPLEMENTED: if this method is not supported by

the backing ledger.

com/daml/ledger/api/v1/admin/metering_report_service.proto

ApplicationMeteringReport

Field Type Label Description

applica-

tion_id

string The application Id

event_count
int64 The event count for the application; i.e., the number of fetch,

lookup-by-key, create, and exercise events in transactions issued

by this application.

2.2. Building Applications 405

Daml SDK Documentation, 2.1.1

GetMeteringReportRequest

Authorized if and only if the authenticated user is a participant admin.

Field Type Label Description

from
google.proto-

buf.Timestamp

The from timestamp (inclusive). Required.

to
google.proto-

buf.Timestamp

The to timestamp (exclusive). If not provided, the server

will default to its current time.

applica-

tion_id

string If set to a non-empty value, then the report will only be

generated for that application. Optional.

GetMeteringReportResponse

Field Type Label Description

request
GetMeteringReportRe-

quest

The actual request that was executed.

participant_report
ParticipantMeteringRe-

port

The computed report.

report_genera-

tion_time

google.protobuf.Times-

tamp

The time at which the report was com-

puted.

ParticipantMeteringReport

Field Type Label Description

partici-

pant_id

string The reporting participant

is_final
bool If the report is final it has been generated based on ag-

gregated data so will never change in the future.

applica-

tion_re-

ports

Application-

MeteringRe-

port

repeated Per application reports.

MeteringReportService

Experimental API to retrieve metering reports.

Metering reports aim to provide the information necessary for billing participant and application

operators.

Method name Request type Response type Description

GetMeteringRe-

port

GetMeteringReportRe-

quest

GetMeteringReportRe-

sponse

Retrieve a metering re-

port.

406 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/admin/package_management_service.proto

ListKnownPackagesRequest

ListKnownPackagesResponse

Field Type Label Description

pack-

age_details

PackageDe-

tails

repeated The details of all Daml-LF packages known to backing

participant. Required

PackageDetails

Field Type Label Description

pack-

age_id

string The identity of the Daml-LF package. Must be a valid Pack-

ageIdString (as describe in value.proto). Required

pack-

age_size

uint64 Size of the package in bytes. The size of the package is given

by the size of the daml_lf ArchivePayload. See further de-

tails in daml_lf.proto. Required

known_since
google.pro-

to-

buf.Times-

tamp

Indicates since when the package is known to the backing

participant. Required

source_de-

scription

string Description provided by the backing participant describing

where it got the package from. Optional

UploadDarFileRequest

Field Type Label Description

dar_file
bytes Contains a Daml archive DAR file, which in turn is a jar like zipped

container for daml_lf archives. See further details in daml_lf.

proto. Required

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier.

2.2. Building Applications 407

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

UploadDarFileResponse

An empty message that is received when the upload operation succeeded.

PackageManagementService

Status: experimental interface, will change before it is deemed production ready

Query the Daml-LF packages supported by the ledger participant and upload DAR files. We use ‘back-

ing participant’ to refer to this specific participant in the methods of this API.

Method

name

Request

type

Response

type

Description

ListKnown-

Packages

ListKnown-

PackagesRe-

quest

ListKnown-

PackagesRe-

sponse

Returns the details of all Daml-LF packages known to

the backing participant. Errors: - UNAUTHENTICATED:

if the request does not include a valid access token -

PERMISSION_DENIED: if the claims in the token are

insufficient to perform a given operation

Upload-

DarFile

Upload-

DarFil-

eRequest

Upload-

DarFileRe-

sponse

Upload a DAR file to the backing participant. De-

pendingon the ledger implementation thismight also

make the package available on the whole ledger. This

call might not be supported by some ledger imple-

mentations. Canton could be an example, where up-

loading a DAR is not sufficient to render it usable, it

must be activated first. This call may: - Succeed, if

the packagewas successfully uploaded, or if the same

package was already uploaded before. - Respond with

a gRPC error Errors: - UNAUTHENTICATED: if the re-

quest does not include a valid access token - PER-

MISSION_DENIED: if the claims in the token are in-

sufficient to perform a given operation - UNIMPLE-

MENTED: if DAR package uploading is not supported

by the backing participant - INVALID_ARGUMENT: if

the DAR file is too big or malformed. The maximum

supported size is implementation specific.

408 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/admin/participant_pruning_service.proto

PruneRequest

Field Type Label Description

prune_up_to
string Inclusive offset up to which the ledger is to be pruned. By default

the following data is pruned: 1. All normal and divulged contracts

that have been archived before prune_up_to. 2. All transaction

events and completions before prune_up_to

submis-

sion_id

string Unique submission identifier. Optional, defaults to a random iden-

tifier, used for logging.

prune_all_di-

vulged_con-

tracts

bool Prune all immediately and retroactively divulged contracts created

before prune_up_to independent of whether they were archived be-

fore prune_up_to. Useful to avoid leaking storage on participant

nodes that can see a divulged contract but not its archival.

Application developers SHOULD write their Daml applications such that they do not rely on divulged

contracts; i.e., no warnings from using divulged contracts as inputs to transactions are emitted.

Participant node operators SHOULD set the prune_all_divulged_contracts flag to avoid leaking storage

due to accumulating unarchived divulged contracts PROVIDED that: 1. no application using this

participant node relies on divulgence OR 2. divulged contracts on which applications rely have been

re-divulged after the prune_up_to offset.

PruneResponse

Empty for now, but may contain fields in the future

ParticipantPruningService

Prunes/truncates the “oldest” transactions from the participant (the participant Ledger Api Server

plus any other participant-local state) by removing a portion of the ledger in such a way that the set

of future, allowed commands are not affected.

This enables: 1. keeping the “inactive” portion of the ledger to a manageable size and 2. removing

inactive state to honor the right to be forgotten.

2.2. Building Applications 409

Daml SDK Documentation, 2.1.1

Method

name

Request

type

Response

type

Description

Prune PruneRequest PruneRe-

sponse

Prune the ledger specifying the offset before and at

which ledger transactions should be removed. Only

returns when the potentially long-running prune re-

quest ends successfully or with one of the following

errors: - INVALID_ARGUMENT: if the payload, partic-

ularly the offset is malformed or missing - UNIM-

PLEMENTED: if the participant is based on a ledger

that has not implemented pruning - INTERNAL: if the

participant has encountered a failure and has poten-

tially applied pruning partially. Such cases warrant

verifying the participant health before retrying the

prune with the same (or a larger, valid) offset. Suc-

cessful retries after such errors ensure that differ-

ent components reach a consistent pruning state. -

FAILED_PRECONDITION: if the participant is not yet

able to prune at the specified offset.

com/daml/ledger/api/v1/admin/party_management_service.proto

AllocatePartyRequest

Field Type Label Description

party_id_hint
string A hint to the backing participant which party ID to allocate. It can

be ignored. Must be a valid PartyIdString (as described in value.

proto). Optional

dis-

play_name

string Human-readable name of the party to be added to the participant.

It doesn’t have to be unique. Optional

AllocatePartyResponse

Field Type Label Description

party_details
PartyDetails

410 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

GetParticipantIdRequest

GetParticipantIdResponse

Field Type Label Description

partici-

pant_id

string Identifier of the participant, which SHOULD be globally unique.

Must be a valid LedgerString (as describe in value.proto).

GetPartiesRequest

Field Type Label Description

parties
string repeated The stable, unique identifier of the Daml parties. Must be valid Par-

tyIdStrings (as described in value.proto). Required

GetPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of the requested Daml parties by the partici-

pant, if known. The party details may not be in the same

order as requested. Required

ListKnownPartiesRequest

ListKnownPartiesResponse

Field Type Label Description

party_de-

tails

PartyDetails repeated The details of all Daml parties known by the participant.

Required

PartyDetails

Field Type Label Description

party
string The stable unique identifier of a Daml party. Must be a valid Par-

tyIdString (as described in value.proto). Required

dis-

play_name

string Human readable nameassociatedwith the party. Caution, itmight

not be unique. Optional

is_local
bool true if party is hosted by the backing participant. Required

2.2. Building Applications 411

Daml SDK Documentation, 2.1.1

PartyManagementService

Status: experimental interface, will change before it is deemed production ready

Inspect the partymanagement state of a ledger participant andmodify the parts that aremodifiable.

We use ‘backing participant’ to refer to this specific participant in the methods of this API.

412 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Method

name

Request

type

Response

type

Description

GetPartici-

pantId

GetPar-

ticipan-

tIdRequest

GetPar-

ticipan-

tIdResponse

Return the identifier of the backing participant. All

horizontally scaled replicas should return the same

id. daml-on-kv-ledger: returns an identifier supplied

oncommand line at launch timecanton: returnsglob-

ally unique identifier of the backing participant Er-

rors: - UNAUTHENTICATED: if the request does not in-

clude a valid access token - PERMISSION_DENIED: if

the claims in the token are insufficient to perform a

given operation

GetParties GetParties-

Request

GetParties-

Response

Get the party details of the given parties. Only known

parties will be returned in the list. Errors: - UNAU-

THENTICATED: if the request does not include a valid

access token - PERMISSION_DENIED: if the claims in

the token are insufficient to performagiven operation

ListKnown-

Parties

ListKnown-

PartiesRe-

quest

ListKnown-

PartiesRe-

sponse

List the parties known by the backing participant. The

list returned contains parties whose ledger access is

facilitated by backing participant and the onesmain-

tained elsewhere. Errors: - UNAUTHENTICATED: if the

request does not include a valid access token - PER-

MISSION_DENIED: if the claims in the token are in-

sufficient to perform a given operation

Allo-

cateParty

AllocatePar-

tyRequest

AllocatePar-

tyResponse

Adds a new party to the set managed by the backing

participant. Caller specifies a party identifier sugges-

tion, the actual identifier allocated might be different

and is implementation specific. This call may: - Suc-

ceed, in which case the actual allocated identifier is

visible in the response. - Respond with a gRPC error

Errors: - UNAUTHENTICATED: if the request does not

include a valid access token - PERMISSION_DENIED:

if the claims in the token are insufficient to perform

a given operation - UNIMPLEMENTED: if synchronous

party allocation is not supported by the backing par-

ticipant - DEADLINE_EXCEEDED: if the request times

out - INVALID_ARGUMENT: if the provided hint and/or

display name is invalid on the given ledger (see be-

low). daml-on-kv-ledger: suggestion’s uniqueness

is checked by the validators in the consensus layer

and call rejected if the identifier is already present.

canton: completely different globally unique identi-

fier is allocated. Behind the scenes calls to an in-

ternal protocol are made. As that protocol is richer

than the surface protocol, the arguments take im-

plicit values The party identifier suggestion must be

a valid party name. Party names are required to be

non-empty US-ASCII strings built from letters, digits,

space, colon, minus and underscore limited to 255

chars

2.2. Building Applications 413

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/admin/user_management_service.proto

CreateUserRequest

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

user
User The user to create. Required

rights
Right repeated The rights to be assigned to the user upon creation, which SHOULD

include appropriate rights for the user.primary_party. Required

CreateUserResponse

Field Type Label Description

user
User Created user.

DeleteUserRequest

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

user_id
string The user to delete. Required

DeleteUserResponse

Does not (yet) contain any data.

GetUserRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticate-

dUser(user_id)

Field Type Label Description

user_id
string The user whose data to retrieve. If set to empty string (the default),

then the data for the authenticated user will be retrieved. Required

414 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

GetUserResponse

Field Type Label Description

user
User Retrieved user.

GrantUserRightsRequest

Add the rights to the set of rights granted to the user.

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

user_id
string The user to whom to grant rights. Required

rights
Right repeated The rights to grant. Required

GrantUserRightsResponse

Field Type Label Description

newly_granted_rights
Right repeated The rights that were newly granted by the request.

ListUserRightsRequest

Required authorization: HasRight(ParticipantAdmin) OR IsAuthenticate-

dUser(user_id)

Field Type Label Description

user_id
string The user for which to list the rights. If set to empty string (the default),

then the rights for the authenticated user will be listed. Required

ListUserRightsResponse

Field Type Label Description

rights
Right repeated All rights of the user.

2.2. Building Applications 415

Daml SDK Documentation, 2.1.1

ListUsersRequest

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

page_to-

ken

string Pagination token to determine the specific page to fetch. Leave

empty to fetch the first page. Optional

page_size
int32 Maximum number of results to be returned by the server. The

server will return no more than that many results, but it might re-

turn fewer. If 0, the server will decide the number of results to be

returned. Optional

ListUsersResponse

Field Type Label Description

users
User repeated A subset of users of the participant node that fit into this

page.

next_page_to-

ken

string Pagination token to retrieve the next page. Empty, if there are

no further results.

RevokeUserRightsRequest

Remove the rights from the set of rights granted to the user.

Required authorization: HasRight(ParticipantAdmin)

Field Type Label Description

user_id
string The user from whom to revoke rights. Required

rights
Right repeated The rights to revoke. Required

RevokeUserRightsResponse

Field Type Label Description

newly_revoked_rights
Right repeated The rights that were actually revoked by the request.

416 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Right

A right granted to a user.

Field Type Label Description

oneof kind.partici-

pant_admin

Right.Participan-

tAdmin

The user can administrate the participant

node.

oneof kind.can_act_as
Right.CanActAs The user can act as a specific party.

oneof

kind.can_read_as

Right.CanReadAs The user can read ledger data visible to a

specific party.

Right.CanActAs

Field Type Label Description

party
string The right to authorize commands for this party.

Right.CanReadAs

Field Type Label Description

party
string The right to read ledger data visible to this party.

Right.ParticipantAdmin

The right to administrate the participant node.

User

Users are used to dynamically manage the rights given to Daml applications. They are stored and

managed per participant node.

Read the Authorization documentation to learn more.

2.2. Building Applications 417

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

Field Type Label Description

id
string The user identifier, which must be a non-empty string of at most

128 characters that are either lowercase alphanumeric ASCII char-

acters or one of the symbols “@^$.!`-#+’~_|:”. Required

pri-

mary_party

string The primary party as which this user reads and acts by default

on the ledger provided it has the corresponding CanReadAs(pri-

mary_party) or CanActAs(primary_party) rights. Ledger API

clients SHOULD set this field to a non-empty value for all users to

enable the users to act on the ledger using their own Daml party.

Users for participant administrators MAY have an associated pri-

mary party. Optional

UserManagementService

Service to manage users and their rights for interacting with the Ledger API served by a participant

node.

The authorization rules for its RPCs are specified on the <RpcName>Requestmessages as boolean

expressions over these two facts: (1) HasRight(r) denoting whether the authenticated user has

right r and (2) IsAuthenticatedUser(uid) denoting whether uid is the empty string or equal to

the id of the authenticated user.

418 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Method

name

Request

type

Response

type

Description

CreateUser CreateUser-

Request

CreateUser-

Response

Create a new user. Errors: - ALREADY_EXISTS: if the

user already exists - UNAUTHENTICATED: if the re-

quest doesnot include a valid access token -PERMIS-

SION_DENIED: if the claims in the token are insuffi-

cient to perform a given operation - INVALID_ARGU-

MENT: if the payload is malformed or is missing re-

quired fields

GetUser GetUserRe-

quest

GetUserRe-

sponse

Get the user data of a specific user or the authenti-

cated user. Errors: - NOT_FOUND: if the user doesn’t

exist - UNAUTHENTICATED: if the request does not in-

clude a valid access token - PERMISSION_DENIED: if

the claims in the token are insufficient to perform a

given operation - INVALID_ARGUMENT: if the payload

is malformed or is missing required fields

DeleteUser DeleteUser-

Request

DeleteUser-

Response

Delete an existing user and all its rights. Errors: -

NOT_FOUND: if the user doesn’t exist - UNAUTHENTI-

CATED: if the request does not include a valid access

token - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to performa given operation - IN-

VALID_ARGUMENT: if the payload is malformed or is

missing required fields

ListUsers ListUsersRe-

quest

ListUsersRe-

sponse

List all existing users. Errors: - UNAUTHENTICATED:

if the request does not include a valid access token

- PERMISSION_DENIED: if the claims in the token

are insufficient to perform a given operation - IN-

VALID_ARGUMENT: if the payload is malformed or is

missing required fields

GrantUser-

Rights

GrantUser-

RightsRe-

quest

GrantUser-

RightsRe-

sponse

Grant rights to a user. Errors: - NOT_FOUND: if the user

doesn’t exist - UNAUTHENTICATED: if the request does

not include a valid access token - PERMISSION_DE-

NIED: if the claims in the token are insufficient to per-

form a given operation - INVALID_ARGUMENT: if the

payload is malformed or is missing required fields

Re-

vokeUser-

Rights

RevokeUser-

RightsRe-

quest

RevokeUser-

RightsRe-

sponse

Revoke rights from a user. Errors: - NOT_FOUND: if

the user doesn’t exist - UNAUTHENTICATED: if the re-

quest doesnot include a valid access token -PERMIS-

SION_DENIED: if the claims in the token are insuffi-

cient to perform a given operation - INVALID_ARGU-

MENT: if the payload is malformed or is missing re-

quired fields

ListUser-

Rights

ListUser-

RightsRe-

quest

ListUser-

RightsRe-

sponse

List the set of all rights granted to a user. Errors: -

NOT_FOUND: if the user doesn’t exist - UNAUTHENTI-

CATED: if the request does not include a valid access

token - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to performa given operation - IN-

VALID_ARGUMENT: if the payload is malformed or is

missing required fields

2.2. Building Applications 419

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/command_completion_service.proto

Checkpoint

Checkpoints may be used to:

• detect time out of commands.

• provide an offset which can be used to restart consumption.

Field Type Label Description

record_time
google.pro-

to-

buf.Times-

tamp

All commands with a maximum record time below this

value MUST be considered lost if their completion has not

arrived before this checkpoint. Required

offset
LedgerOffset May be used in a subsequent CompletionStreamRequest to

resume the consumption of this stream at a later time. Re-

quired

CompletionEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

CompletionEndResponse

Field Type Label Description

offset
LedgerOffset This offset can be used in a CompletionStreamRequest message.

Required

420 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

CompletionStreamRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger id reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Optional

applica-

tion_id

string Only completions of commands submitted with the same

application_id will be visible in the stream. Must be a

valid ApplicationIdString (as described invalue.proto).

Required unless authentication is used with a user token

or a custom token specifying an application-id. In that

case, the token’s user-id, respectively application-id, will

be used for the request’s application_id.

parties
string repeated Non-empty list of parties whose data should be included.

Only completions of commands for which at least one of

the act_as parties is in the given set of parties will be

visible in the stream. Must be a valid PartyIdString (as

described in value.proto). Required

offset
LedgerOffset This field indicates the minimum offset for completions.

This can be used to resume an earlier completion stream.

This offset is exclusive: the response will only contain

commands whose offset is strictly greater than this. Op-

tional, if not set the ledger uses the current ledger end off-

set instead.

CompletionStreamResponse

Field Type Label Description

checkpoint
Checkpoint This checkpoint may be used to restart consumption. The

checkpoint is after any completions in this response. Op-

tional

comple-

tions

Completion repeated If set, one or more completions.

CommandCompletionService

Allows clients to observe the status of their submissions. Commandsmaybe submitted via theCom-

mand Submission Service. The on-ledger effects of their submissions are disclosed by the Transac-

tion Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

2.2. Building Applications 421

Daml SDK Documentation, 2.1.1

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method

name

Request

type

Response

type

Description

Comple-

tionStream

Completion-

StreamRe-

quest

Completion-

StreamRe-

sponse

Subscribe to command completion events. Errors: -

UNAUTHENTICATED: if the request does not include

a valid access token - PERMISSION_DENIED: if the

claims in the token are insufficient to perform a

given operation - NOT_FOUND: if the request does

not include a valid ledger id - FAILED_PRECONDI-

TION: if the ledger has been pruned after the sub-

scription start offset - INVALID_ARGUMENT: if the

payload is malformed or is missing required fields -

OUT_OF_RANGE: if the absolute offset is after the end

of the ledger

Completio-

nEnd

Comple-

tionEn-

dRequest

Comple-

tionEn-

dResponse

Returns the offset after the latest completion. Errors:

- UNAUTHENTICATED: if the request does not include

a valid access token - PERMISSION_DENIED: if the

claims in the token are insufficient to perform a given

operation - NOT_FOUND: if the request does not in-

clude a valid ledger id

com/daml/ledger/api/v1/command_service.proto

SubmitAndWaitForTransactionIdResponse

Field Type Label Description

transac-

tion_id

string The id of the transaction that resulted from the submitted com-

mand. Must be a valid LedgerString (as described in value.

proto). Required

comple-

tion_offset

string The format of this field is described in ledger_offset.proto.

Optional

SubmitAndWaitForTransactionResponse

Field Type Label Description

transaction
Transaction The flat transaction that resulted from the submitted

command. Required

comple-

tion_offset

string The format of this field is described in ledger_offset.

proto. Optional

422 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

SubmitAndWaitForTransactionTreeResponse

Field Type Label Description

transaction
Transaction-

Tree

The transaction tree that resulted from the submitted

command. Required

comple-

tion_offset

string The format of this field is described in ledger_offset.

proto. Optional

SubmitAndWaitRequest

These commands are atomic, and will become transactions.

Field Type Label Description

commands
Commands The commands to be submitted. Required

CommandService

CommandService is able to correlate submitted commandswith completiondata, identify timeouts,

and return contextual information with each tracking result. This supports the implementation of

stateless clients.

Note that submitted commands generally produce completion events as well, even in case a com-

mand gets rejected. For example, the participant MAY choose to produce a completion event for a

rejection of a duplicate command.

2.2. Building Applications 423

Daml SDK Documentation, 2.1.1

Method

name

Request

type

Response

type

Description

Submi-

tAndWait

SubmitAnd-

WaitRequest

.google.pro-

to-

buf.Empty

Submits a single composite command and waits for

its result. Propagates the gRPC error of failed sub-

missions including Daml interpretation errors. Er-

rors: - UNAUTHENTICATED: if the request does not in-

clude a valid access token - PERMISSION_DENIED:

if the claims in the token are insufficient to per-

form a given operation - NOT_FOUND: if the request

does not include a valid ledger id or if a resource is

missing (e.g. contract key) due to for example con-

tention on resources - ALREADY_EXISTS if a resource

is duplicated (e.g. contract key) - INVALID_ARGU-

MENT: if the payload is malformed or is missing re-

quired fields - ABORTED: if the number of in-flight

commands reached themaximum(if a limit is config-

ured) - FAILED_PRECONDITION: on consistency er-

rors (e.g. the contract key has changed since the sub-

mission) or if an interpretation error occurred - UN-

AVAILABLE: if the participant is not yet ready to sub-

mit commands or if the service has been shut down. -

DEADLINE_EXCEEDED: if the request failed to receive

its completion within the predefined timeout.

Submi-

tAndWait-

ForTransac-

tionId

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

IdResponse

Submits a single composite command, waits for its

result, and returns the transaction id. Propagates

the gRPC error of failed submissions including Daml

interpretation errors. Errors: - UNAUTHENTICATED:

if the request does not include a valid access to-

ken - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation -

NOT_FOUND: if the request does not include a valid

ledger id or if a resource is missing (e.g. contract

key) due to for example contention on resources - AL-

READY_EXISTS if a resource is duplicated (e.g. con-

tract key) -INVALID_ARGUMENT: if the payload ismal-

formed or is missing required fields - ABORTED: if

the number of in-flight commands reached the max-

imum (if a limit is configured) - FAILED_PRECONDI-

TION: on consistency errors (e.g. the contract key has

changed since the submission) or if an interpretation

error occurred - UNAVAILABLE: if the participant is

not yet ready to submit commands or if the service

has been shut down. - DEADLINE_EXCEEDED: if the

request failed to receive its completionwithin the pre-

defined timeout.

Submi-

tAndWait-

ForTransac-

tion

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transaction-

Response

Submits a single composite command, waits for its

result, and returns the transaction. Propagates the

gRPC error of failed submissions including Daml in-

terpretation errors. Errors: - UNAUTHENTICATED:

if the request does not include a valid access to-

ken - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation -

NOT_FOUND: if the request does not include a valid

ledger id or if a resource is missing (e.g. contract

key) due to for example contention on resources - AL-

READY_EXISTS if a resource is duplicated (e.g. con-

tract key) -INVALID_ARGUMENT: if the payload ismal-

formed or is missing required fields - ABORTED: if

the number of in-flight commands reached the max-

imum (if a limit is configured) - FAILED_PRECONDI-

TION: on consistency errors (e.g. the contract key has

changed since the submission) or if an interpretation

error occurred - UNAVAILABLE: if the participant is

not yet ready to submit commands or if the service

has been shut down. - DEADLINE_EXCEEDED: if the

request failed to receive its completionwithin the pre-

defined timeout.

Submi-

tAndWait-

ForTransac-

tionTree

SubmitAnd-

WaitRequest

SubmitAnd-

WaitFor-

Transac-

tionTreeRe-

sponse

Submits a single composite command, waits for its

result, and returns the transaction tree. Propagates

the gRPC error of failed submissions including Daml

interpretation errors. Errors: - UNAUTHENTICATED:

if the request does not include a valid access to-

ken - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation -

NOT_FOUND: if the request does not include a valid

ledger id or if a resource is missing (e.g. contract

key) due to for example contention on resources - AL-

READY_EXISTS if a resource is duplicated (e.g. con-

tract key) -INVALID_ARGUMENT: if the payload ismal-

formed or is missing required fields - ABORTED: if

the number of in-flight commands reached the max-

imum (if a limit is configured) - FAILED_PRECONDI-

TION: on consistency errors (e.g. the contract key has

changed since the submission) or if an interpretation

error occurred - UNAVAILABLE: if the participant is

not yet ready to submit commands or if the service

has been shut down. - DEADLINE_EXCEEDED: if the

request failed to receive its completionwithin the pre-

defined timeout.

424 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/command_submission_service.proto

SubmitRequest

The submitted commandswill be processed atomically in a single transaction. Moreover, each Com-

mand in commands will be executed in the order specified by the request.

Field Type Label Description

commands
Commands The commands to be submitted in a single transaction. Re-

quired

CommandSubmissionService

Allows clients to attempt advancing the ledger’s state by submitting commands. The final states of

their submissions are disclosed by the Command Completion Service. The on-ledger effects of their

submissions are disclosed by the Transaction Service.

Commands may fail in 2 distinct manners:

1. Failure communicated synchronously in the gRPC error of the submission.

2. Failure communicated asynchronously in a Completion, see completion.proto.

Note that not only successfully submitted commandsMAYproduce a completion event. For example,

the participant MAY choose to produce a completion event for a rejection of a duplicate command.

Clients that do not receive a successful completion about their submission MUST NOT assume that

it was successful. Clients SHOULD subscribe to the CompletionStream before starting to submit

commands to prevent race conditions.

Method

name

Request

type

Response

type

Description

Submit SubmitRe-

quest

.google.pro-

to-

buf.Empty

Submit a single composite command. Errors: - UNAU-

THENTICATED: if the request does not include a valid

access token - PERMISSION_DENIED: if the claims in

the token are insufficient to perform a given opera-

tion - NOT_FOUND: if the request does not include a

valid ledger id or if a resource is missing (e.g. con-

tract key) due to for example contention on resources

- ALREADY_EXISTS if a resource is duplicated (e.g.

contract key) - INVALID_ARGUMENT: if the payload is

malformed or is missing required fields - ABORTED: if

the number of in-flight commands reached the max-

imum (if a limit is configured) - FAILED_PRECONDI-

TION: on consistency errors (e.g. the contract key has

changed since the submission) or if an interpretation

error occurred - UNAVAILABLE: if the participant is

not yet ready to submit commands or if the service

has been shut down.

2.2. Building Applications 425

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/commands.proto

Command

A command can either create a new contract or exercise a choice on an existing contract.

Field Type Label Description

oneof command.create
CreateCommand

oneof command.exercise
ExerciseCommand

oneof command.exerciseByKey
ExerciseByKeyCommand

oneof command.createAndExercise
CreateAndExerciseCommand

Commands

A composite command that groups multiple commands together.

426 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as

described in value.proto). Optional

work-

flow_id

string Identifier of the on-ledger workflow that this command

is a part of. Must be a valid LedgerString (as described in

value.proto). Optional

applica-

tion_id

string Uniquely identifies the application or participant user

that issued the command. Must be a valid ApplicationId-

String (as described in value.proto). Required unless

authentication is used with a user token or a custom to-

ken specifying an application-id. In that case, the token’s

user-id, respectively application-id, will be used for the

request’s application_id.

com-

mand_id

string Uniquely identifies the command. The triple (applica-

tion_id, party + act_as, command_id) constitutes the

change ID for the intended ledger change, where party +

act_as is interpreted as a set of party names. The change

ID can be used formatching the intended ledger changes

with all their completions. Must be a valid LedgerString

(as described in value.proto). Required

party
string Party on whose behalf the command should be executed.

If ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to act on behalf of the given party. Must be a valid Par-

tyIdString (as described in value.proto). Deprecated

in favor of the act_as field. If both are set, then the effec-

tive list of parties on whose behalf the command should

be executed is the union of all parties listed in party and

act_as. Optional

commands
Command repeated Individual elements of this atomic command. Must be

non-empty. Required

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_time

google.pro-

tobuf.Dura-

tion

Specifies the length of the deduplication period. Same

semantics apply as for deduplication_duration. Must be

non-negative. Must not exceed the maximum dedupli-

cation time (see ledger_configuration_service.

proto).

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_dura-

tion

google.pro-

tobuf.Dura-

tion

Specifies the length of the deduplication period. It is in-

terpreted relative to the local clock at some point dur-

ing the submission’s processing. Must be non-negative.

Must not exceed the maximum deduplication time (see

ledger_configuration_service.proto).

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive). Must be a valid Ledger-

String (as described in ledger_offset.proto).

min_ledger_time_abs
google.pro-

to-

buf.Times-

tamp

Lower bound for the ledger time assigned to the resulting

transaction. Note: The ledger time of a transaction is as-

signed as part of command interpretation. Use this prop-

erty if you expect that command interpretation will take

a considerate amount of time, such that by the time the

resulting transaction is sequenced, its assigned ledger

time is not valid anymore. Must not be set at the same

time as min_ledger_time_rel. Optional

min_ledger_time_rel
google.pro-

tobuf.Dura-

tion

Same as min_ledger_time_abs, but specified as a du-

ration, starting from the time the command is received

by the server. Must not be set at the same time as

min_ledger_time_abs. Optional

act_as
string repeated Set of parties on whose behalf the command should be

executed. If ledger API authorization is enabled, then the

authorizationmetadatamust authorize the sender of the

request to act on behalf of each of the given parties. This

field supersedes the party field. The effective set of par-

ties on whose behalf the command should be executed

is the union of all parties listed in party and act_as,

whichmust be non-empty. Each elementmust be a valid

PartyIdString (as described in value.proto). Optional

read_as
string repeated Set of parties on whose behalf (in addition to all parties

listed in act_as) contracts can be retrieved. This affects

Daml operations such as fetch, fetchByKey, lookup-

ByKey, exercise, and exerciseByKey. Note: A partic-

ipant node of a Daml network can host multiple parties.

Each contract present on the participant node is only vis-

ible to a subset of these parties. A command can only use

contracts that are visible to at least one of the parties in

act_as or read_as. This visibility check is independent

from the Daml authorization rules for fetch operations. If

ledger API authorization is enabled, then the authoriza-

tion metadata must authorize the sender of the request

to read contract data on behalf of each of the given par-

ties. Optional

submis-

sion_id

string A unique identifier to distinguish completions for differ-

ent submissions with the same change ID. Typically a

random UUID. Applications are expected to use a differ-

ent UUID for each retry of a submission with the same

change ID. Must be a valid LedgerString (as described in

value.proto).

2.2. Building Applications 427

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.1.1

If omitted, the participant or the committer may set a value of their choice. Optional

CreateAndExerciseCommand

Create a contract and exercise a choice on it in the same transaction.

Field Type Label Description

tem-

plate_id

Identifier The template of the contract the clientwants to create. Required

create_ar-

guments

Record The arguments required for creating a contract from this tem-

plate. Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto). Required

choice_ar-

gument

Value The argument for this choice. Required

CreateCommand

Create a new contract instance based on a template.

Field Type Label Description

template_id
Identifier The template of contract the client wants to create. Required

create_argu-

ments

Record The arguments required for creating a contract from this

template. Required

ExerciseByKeyCommand

Exercise a choice on an existing contract specified by its key.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_key

Value The key of the contract the client wants to exercise upon. Re-

quired

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

428 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ExerciseCommand

Exercise a choice on an existing contract.

Field Type Label Description

tem-

plate_id

Identifier The template of contract the client wants to exercise. Required

con-

tract_id

string The ID of the contract the client wants to exercise upon. Must be

a valid LedgerString (as described in value.proto). Required

choice
string The name of the choice the client wants to exercise. Must be a

valid NameString (as described in value.proto) Required

choice_ar-

gument

Value The argument for this choice. Required

com/daml/ledger/api/v1/completion.proto

Completion

A completion represents the status of a submitted command on the ledger: it can be successful or

failed.

2.2. Building Applications 429

Daml SDK Documentation, 2.1.1

Field Type Label Description

com-

mand_id

string The ID of the succeeded or failed command. Must be a

valid LedgerString (as described in value.proto). Re-

quired

status
google.rpc.Sta-

tus

Identifies the exact type of the error. For example, mal-

formed or double spend transactions will result in a IN-

VALID_ARGUMENT status. Transactionswith invalid time

time windows (whichmay be valid at a later date) will re-

sult in an ABORTED error. Optional

transac-

tion_id

string The transaction_id of the transaction that resulted from

the command with command_id. Only set for success-

fully executed commands. Must be a valid LedgerString

(as described in value.proto). Optional

applica-

tion_id

string The application-id or user-id that was used for the

submission, as described in commands.proto. Must

be a valid ApplicationIdString (as described in value.

proto). Optional for historic completions where this

data is not available.

act_as
string repeated The set of parties on whose behalf the commands were

executed. Contains the union of party and act_as from

commands.proto. The order of the parties need not be

the same as in the submission. Each element must be a

valid PartyIdString (as described in value.proto). Op-

tional for historic completions where this data is not

available.

submis-

sion_id

string The submission ID this completion refers to, as described

in commands.proto. Must be a valid LedgerString (as

described in value.proto). Optional

oneof

deduplica-

tion_pe-

riod.dedu-

plica-

tion_offset

string Specifies the start of the deduplication period by a com-

pletion stream offset (exclusive).

Must be a valid LedgerString (as described in value.proto).

• – oneof deduplication_period.deduplication_duration

– google.protobuf.Duration

–

– Specifies the length of the deduplication period. It ismeasured in record time of com-

pletions.

Must be non-negative.

430 Chapter 2. Daml Guide

https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://cloud.google.com/tasks/docs/reference/rpc/google.rpc#google.rpc.Status
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/event.proto

ArchivedEvent

Records that a contract has been archived, and choices may no longer be exercised on it.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the archived contract. Must be a valid LedgerString

(as described in value.proto). Required

tem-

plate_id

Identifier The template of the archived contract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. For

ArchivedEventCCs, these are the intersec-

tion of the stakeholders of the contract in

question and the parties specified in the

CCTransactionFilter. The stakeholders are the union of

the signatories and the observers of the contract. Each one

of its elements must be a valid PartyIdString (as described

in value.proto). Required

CreatedEvent

Records that a contract has been created, and choices may now be exercised on it.

2.2. Building Applications 431

Daml SDK Documentation, 2.1.1

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid Ledger-

String (as described in value.proto). Required

con-

tract_id

string The ID of the created contract. Must be a valid Ledger-

String (as described in value.proto). Required

tem-

plate_id

Identifier The template of the created contract. Required

con-

tract_key

Value The key of the created contract, if defined. Optional

create_ar-

guments

Record The arguments that have been used to create the con-

tract. Required

wit-

ness_par-

ties

string repeated The parties that are notified of this event. When a Cre-

atedEvent is returned as part of a transaction tree, this

will include all the parties specified in the Transac-

tionFilter that are informees of the event. If served

as part of a flat transaction those will be limited to all

parties specified in the TransactionFilter that are

stakeholders of the contract (i.e. either signatories or ob-

servers). Required

signatories
string repeated The signatories for this contract as specified by the tem-

plate. Required

observers
string repeated The observers for this contract as specified explicitly by

the template or implicitly as choice controllers. This field

never contains parties that are signatories. Required

agree-

ment_text

google.pro-

to-

buf.String-

Value

The agreement text of the contract. We use StringValue

to properly reflect optionality on the wire for backwards

compatibility. This is necessary since the empty string

is an acceptable (and in fact the default) agreement text,

but also the default string in protobuf. This means a

newer client works with an older sandbox seamlessly.

Optional

Event

An event in the flat transaction stream can either be the creation or the archiving of a contract.

In the transaction service the events are restricted to the events visible for the parties specified in

the transaction filter. Each event message type below contains a witness_parties field which in-

dicates the subset of the requested parties that can see the event in question. In the flat transaction

stream you’ll only receive events that have witnesses.

Field Type Label Description

oneof event.created
CreatedEvent

oneof event.archived
ArchivedEvent

432 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.StringValue
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

ExercisedEvent

Records that a choice has been exercised on a target contract.

Field Type Label Description

event_id
string The ID of this particular event. Must be a valid LedgerString

(as described in value.proto). Required

con-

tract_id

string The ID of the target contract. Must be a valid LedgerString (as

described in value.proto). Required

tem-

plate_id

Identifier The template of the target contract. Required

choice
string The choice that’s been exercised on the target contract. Must

be a valid NameString (as described in value.proto). Re-

quired

choice_ar-

gument

Value The argument the choice was made with. Required

act-

ing_parties

string repeated The parties that made the choice. Each element must be

a valid PartyIdString (as described in value.proto). Re-

quired

consuming
bool If true, the target contract may no longer be exercised. Re-

quired

wit-

ness_par-

ties

string repeated Theparties that are notified of this event. Thewitnesses of an

exercise node will depend on whether the exercise was con-

suming or not. If consuming, the witnesses are the union of

the stakeholders and the actors. If not consuming, the wit-

nesses are the union of the signatories and the actors. Note

that the actors might not necessarily be observers and thus

signatories. This is the case when the controllers of a choice

are specified using “flexible controllers”, using the choice

... controller syntax, and said controllers are not ex-

plicitly marked as observers. Each element must be a valid

PartyIdString (as described in value.proto). Required

child_event_ids
string repeated References to further events in the same transaction that ap-

peared as a result of this ExercisedEvent. It contains only

the immediate children of this event, not all members of the

subtree rooted at this node. Each element must be a valid

LedgerString (as described in value.proto). Optional

exer-

cise_result

Value The result of exercising the choice Required

2.2. Building Applications 433

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/experimental_features.proto

CommandDeduplicationFeatures

Feature descriptors for command deduplication intended to be used for adapting Ledger API tests.

Field Type Label Description

deduplica-

tion_pe-

riod_sup-

port

Com-

mandDedu-

plicationPe-

riodSupport

deduplica-

tion_type

Com-

mandDedu-

plicationType

max_dedu-

plica-

tion_du-

ration_en-

forced

bool The ledger will reject any requests which specify a dedupli-

cation period which exceeds the specified max deduplica-

tion duration. This is also enforced for ledgers that convert

deduplication periods specified as offsets to durations.

CommandDeduplicationPeriodSupport

Feature descriptor specifying how deduplication periods can be specified and how they are handled

by the participant node.

Field Type Label Description

offset_support
CommandDeduplicationPeriodSupport.OffsetSupport

duration_support
CommandDeduplicationPeriodSupport.DurationSupport

ExperimentalCommitterEventLog

How the committer stores events.

Field Type Label Description

event_log_type
ExperimentalCommitterEventLog.CommitterEventLogType

434 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ExperimentalContractIds

See daml-lf/spec/contract-id.rst for more information on contract ID formats.

Field Type Label Description

v1
ExperimentalContractIds.ContractIdV1Support

ExperimentalFeatures

See the feature message definitions for descriptions.

Field Type Label Description

self_service_error_codes
ExperimentalSelfServiceErrorCodes

static_time
ExperimentalStaticTime

command_deduplication
CommandDeduplicationFeatures

optional_ledger_id
ExperimentalOptionalLedgerId

contract_ids
ExperimentalContractIds

committer_event_log
ExperimentalCommitterEventLog

ExperimentalOptionalLedgerId

Ledger API does not require ledgerId to be set in the requests.

ExperimentalSelfServiceErrorCodes

GRPC self-service error codes are returned by the Ledger API.

ExperimentalStaticTime

Ledger is in the static time mode and exposes a time service.

Field Type Label Description

supported
bool

2.2. Building Applications 435

Daml SDK Documentation, 2.1.1

CommandDeduplicationPeriodSupport.DurationSupport

How the participant node supports deduplication periods specified as durations.

Name Number Description

DURATION_NATIVE_SUPPORT
0

DURATION_CONVERT_TO_OFFSET
1

CommandDeduplicationPeriodSupport.OffsetSupport

How the participant node supports deduplication periods specified using offsets.

Name Number Description

OFFSET_NOT_SUPPORTED
0

OFFSET_NATIVE_SUPPORT
1

OFFSET_CONVERT_TO_DURATION
2

CommandDeduplicationType

How the participant node reports duplicate command submissions.

Name Number Description

ASYNC_ONLY
0 Duplicate commands are exclusively reported asynchronously via com-

pletions.

ASYNC_AND_CON-

CUR-

RENT_SYNC

1 Commands that are duplicates of concurrently submitted commands

are reported synchronously via a gRPC error on the command submis-

sion, while all other duplicate commands are reported asynchronously

via completions.

ExperimentalCommitterEventLog.CommitterEventLogType

Name Number Description

CENTRAL-

IZED

0 Default. There is a single log.

DIS-

TRIBUTED

1 There is more than one event log. Usually, when the committer itself

is distributed. Or there are per-participant event logs. It may result in

transaction IDs being different for the same transaction across partic-

ipants, for example.

436 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ExperimentalContractIds.ContractIdV1Support

Name Number Description

SUFFIXED
0 Contract IDs must be suffixed. Distributed ledger implementations

must reject non-suffixed contract IDs.

NON_SUF-

FIXED

1 Contract IDs do not need to be suffixed. This can be useful for shorter

contract IDs in centralized committer implementations. Suffixed con-

tract IDs must also be supported.

com/daml/ledger/api/v1/ledger_configuration_service.proto

GetLedgerConfigurationRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

GetLedgerConfigurationResponse

Field Type Label Description

ledger_configuration
LedgerConfiguration The latest ledger configuration.

LedgerConfiguration

LedgerConfiguration contains parameters of the ledger instance that may be useful to clients.

Field Type Label Description

max_dedu-

plica-

tion_dura-

tion

google.pro-

tobuf.Dura-

tion

If a command submission specifies a deduplication period

of length up to max_deduplication_duration, the sub-

mission SHOULD not be rejected with FAILED_PRECONDI-

TION because the deduplication period starts too early. The

deduplication period is measured on a local clock of the

participant or Daml ledger, and therefore subject to clock

skews and clock drifts. Command submissions with longer

periods MAY get accepted though.

2.2. Building Applications 437

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Duration

Daml SDK Documentation, 2.1.1

LedgerConfigurationService

LedgerConfigurationService allows clients to subscribe to changes of the ledger configuration.

Method

name

Request

type

Response

type

Description

GetLedger-

Configura-

tion

GetLedger-

Configura-

tionRequest

GetLedger-

Configu-

rationRe-

sponse

Returns the latest configuration as the first response,

and publishes configuration updates in the same

stream. Errors: - UNAUTHENTICATED: if the request

does not include a valid access token - PERMIS-

SION_DENIED: if the claims in the token are insuffi-

cient to perform a given operation - NOT_FOUND: if the

request does not include a valid ledger id

com/daml/ledger/api/v1/ledger_identity_service.proto

GetLedgerIdentityRequest

GetLedgerIdentityResponse

Field Type Label Description

ledger_id
string The ID of the ledger exposed by the server. Must be a valid Ledger-

String (as described in value.proto). Optional

LedgerIdentityService

DEPRECATED: This service is now deprecated and ledger identity string is optional for all Ledger API

requests.

Allows clients to verify that the server they are communicating with exposes the ledger they wish to

operate on.

Method

name

Request

type

Response

type

Description

GetLedgerI-

dentity

GetLedgerI-

dentityRe-

quest

GetLedgerI-

dentityRe-

sponse

Clientsmay call this RPC to return the identifier of the

ledger they are connected to. Errors: - UNAUTHENTI-

CATED: if the request does not include a valid access

token - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation

438 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/ledger_offset.proto

LedgerOffset

Describes a specific point on the ledger.

The Ledger API endpoints that take offsets allow to specify portions of the ledger that are relevant for

the client to read.

Offsets returned by the Ledger API can be used as-is (e.g. to keep track of processed transactions

and provide a restart point to use in case of need).

The format of absolute offsets is opaque to the client: no client-side transformation of an offset is

guaranteed to return a meaningful offset.

The server implementation ensures internally that offsets are lexicographically comparable.

Field Type Label Description

oneof value.ab-

solute

string The format of this string is specific to the ledger

and opaque to the client.

oneof

value.bound-

ary

LedgerOff-

set.LedgerBoundary

LedgerOffset.LedgerBoundary

Name Number Description

LEDGER_BEGIN
0 Refers to the first transaction.

LEDGER_END
1 Refers to the currently last transaction, which is a moving target.

com/daml/ledger/api/v1/package_service.proto

GetPackageRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

2.2. Building Applications 439

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

GetPackageResponse

Field Type Label Description

hash_func-

tion

HashFunc-

tion

The hash function we use to calculate the hash. Required

archive_pay-

load

bytes Contains a daml_lf ArchivePayload. See further details in

daml_lf.proto. Required

hash
string The hash of the archive payload, can also used as a pack-

age_id. Must be a valid PackageIdString (as described in

value.proto). Required

GetPackageStatusRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

pack-

age_id

string The ID of the requested package. Must be a valid PackageIdString

(as described in value.proto). Required

GetPackageStatusResponse

Field Type Label Description

package_status
PackageStatus The status of the package.

ListPackagesRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

440 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ListPackagesResponse

Field Type Label Description

pack-

age_ids

string repeated The IDs of all Daml-LF packages supported by the server. Each

element must be a valid PackageIdString (as described in

value.proto). Required

HashFunction

Name Number Description

SHA256
0

PackageStatus

Name Number Description

UNKNOWN
0 The server is not aware of such a package.

REGISTERED
1 The server is able to execute Daml commands operating on this pack-

age.

PackageService

Allows clients to query the Daml-LF packages that are supported by the server.

Method

name

Request

type

Response

type

Description

ListPack-

ages

ListPack-

agesRequest

ListPack-

agesRe-

sponse

Returns the identifiers of all supported packages. Er-

rors: - UNAUTHENTICATED: if the request does not in-

clude a valid access token - PERMISSION_DENIED: if

the claims in the token are insufficient to perform a

given operation - NOT_FOUND: if the request does not

include a valid ledger id

GetPackage GetPack-

ageRequest

GetPack-

ageResponse

Returns the contents of a single package. Errors: -

UNAUTHENTICATED: if the request does not include

a valid access token - PERMISSION_DENIED: if the

claims in the token are insufficient to perform a given

operation - NOT_FOUND: if the requested package is

unknown

GetPack-

ageStatus

GetPack-

ageStatus-

Request

GetPack-

ageStatus-

Response

Returns the status of a single package. Errors: -

UNAUTHENTICATED: if the request does not include

a valid access token - PERMISSION_DENIED: if the

claims in the token are insufficient to perform a given

operation - NOT_FOUND: if the requested package is

unknown

2.2. Building Applications 441

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/testing/time_service.proto

GetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Optional

GetTimeResponse

Field Type Label Description

cur-

rent_time

google.protobuf.Times-

tamp

The current time according to the ledger

server.

SetTimeRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger

Identification Service. Must be a valid LedgerString (as de-

scribe in value.proto). Optional

cur-

rent_time

google.pro-

to-

buf.Times-

tamp

MUST precisely match the current time as it’s known to the

ledger server.

new_time
google.pro-

to-

buf.Times-

tamp

The time the client wants to set on the ledger. MUST be a

point int time after current_time.

442 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

TimeService

Optional service, exposed for testing static time scenarios.

Method

name

Request

type

Response

type

Description

GetTime Get-

TimeRequest

GetTimeRe-

sponse

Returns a stream of time updates. Always returns at

least one response, where the first one is the current

time. Subsequent responses are emitted whenever

the ledger server’s time is updated.

SetTime Set-

TimeRequest

.google.pro-

to-

buf.Empty

Allows clients to change the ledger’s clock in an

atomic get-and-set operation. Errors: - INVALID_AR-

GUMENT: if current_time is invalid (it MUST pre-

cisely match the current time as it’s known to the

ledger server)

com/daml/ledger/api/v1/transaction.proto

Transaction

Filtered view of an on-ledger transaction.

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Must be a valid LedgerString (as

described in value.proto). Required

events
Event repeated The collection of events. Only contains CreatedEvent or

ArchivedEvent. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

2.2. Building Applications 443

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

TransactionTree

Complete view of an on-ledger transaction.

Field Type Label Description

transac-

tion_id

string Assigned by the server. Useful for correlating logs. Must

be a valid LedgerString (as described in value.proto).

Required

com-

mand_id

string The ID of the command which resulted in this transac-

tion. Missing for everyone except the submitting party.

Must be a valid LedgerString (as described in value.

proto). Optional

work-

flow_id

string The workflow ID used in command submission. Only set

if the workflow_id for the command was set. Must be

a valid LedgerString (as described in value.proto). Op-

tional

effec-

tive_at

google.pro-

to-

buf.Times-

tamp

Ledger effective time. Required

offset
string The absolute offset. The format of this field is described

in ledger_offset.proto. Required

events_by_id
Transaction-

Tree.Events-

ByIdEntry

repeated Changes to the ledger that were caused by this transac-

tion. Nodes of the transaction tree. Each key be a valid

LedgerString (as describe in value.proto). Required

root_event_ids
string repeated Roots of the transaction tree. Each element must be a

valid LedgerString (as describe in value.proto). The

elements are in the same order as the commands in

the corresponding Commands object that triggered this

transaction. Required

TransactionTree.EventsByIdEntry

Field Type Label Description

key
string

value
TreeEvent

TreeEvent

Each tree event message type below contains a witness_parties field which indicates the subset

of the requested parties that can see the event in question.

Note that transaction trees might contain events with _no_ witness parties, which were included

simply because they were children of events which have witnesses.

444 Chapter 2. Daml Guide

https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Timestamp

Daml SDK Documentation, 2.1.1

Field Type Label Description

oneof kind.created
CreatedEvent

oneof kind.exercised
ExercisedEvent

com/daml/ledger/api/v1/transaction_filter.proto

Filters

Field Type Label Description

inclusive
InclusiveFilters If not set, no filters will be applied. Optional

InclusiveFilters

If no internal fields are set, no filters will be applied.

Field Type Label Description

tem-

plate_ids

Identifier repeated A collection of templates. SHOULD NOT contain duplicates.

Required

TransactionFilter

Used for filtering Transaction and Active Contract Set streams. Determines which on-ledger events

will be served to the client.

Field Type Label Description

fil-

ters_by_party

Transaction-

Filter.Filters-

ByPartyEntry

repeated Keys of the map determine which parties’ on-ledger

transactions are being queried. Values of the map deter-

mine which events are disclosed in the stream per party.

At the minimum, a party needs to set an empty Filters

message to receive any events. Each key must be a valid

PartyIdString (as described in value.proto). Required

TransactionFilter.FiltersByPartyEntry

Field Type Label Description

key
string

value
Filters

2.2. Building Applications 445

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/transaction_service.proto

GetFlatTransactionResponse

Field Type Label Description

transaction
Transaction

GetLedgerEndRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as describe in value.

proto). Optional

GetLedgerEndResponse

Field Type Label Description

offset
LedgerOffset The absolute offset of the current ledger end.

GetTransactionByEventIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identi-

fication Service. Must be a valid LedgerString (as described in

value.proto). Optional

event_id
string The ID of a particular event. Must be a valid LedgerString (as

described in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element must be a valid PartyId-

String (as described in value.proto). Required

446 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

GetTransactionByIdRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Iden-

tification Service. Must be a valid LedgerString (as describe in

value.proto). Optional

transac-

tion_id

string The ID of a particular transaction. Must be a valid LedgerString

(as describe in value.proto). Required

request-

ing_parties

string repeated The parties whose events the client expects to see. Events

that are not visible for the parties in this collection will not be

present in the response. Each element be a valid PartyIdString

(as describe in value.proto). Required

GetTransactionResponse

Field Type Label Description

transaction
TransactionTree

GetTransactionTreesResponse

Field Type Label Description

transac-

tions

Transaction-

Tree

repeated The list of transaction trees that matches the filter in

GetTransactionsRequest for the GetTransaction-

Treesmethod.

2.2. Building Applications 447

Daml SDK Documentation, 2.1.1

GetTransactionsRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Iden-

tification Service. Must be a valid LedgerString (as described

in value.proto). Optional

begin
LedgerOffset Beginning of the requested ledger section. This offset is ex-

clusive: the response will only contain transactions whose

offset is strictly greater than this. Required

end
LedgerOffset End of the requested ledger section. This offset is inclusive:

the response will only contain transactions whose offset is

less than or equal to this. Optional, if not set, the stream will

not terminate.

filter
Transaction-

Filter

Requesting parties with template filters. Template filters

must be empty for GetTransactionTrees requests. Required

verbose
bool If enabled, values served over the API will contain more infor-

mation than strictly necessary to interpret the data. In par-

ticular, setting the verbose flag to true triggers the ledger to

include labels for record fields. Optional

GetTransactionsResponse

Field Type Label Description

transac-

tions

Transaction repeated The list of transactions thatmatches the filter in GetTrans-

actionsRequest for the GetTransactions method.

TransactionService

Allows clients to read transactions from the ledger.

448 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Method

name

Request

type

Response

type

Description

GetTransac-

tions

GetTransac-

tionsRequest

GetTrans-

actionsRe-

sponse

Read the ledger’s filtered transaction stream for a set

of parties. Lists only creates and archives, but not

other events. Omits all events on transient contracts,

i.e., contracts that were both created and archived in

the same transaction. Errors: - UNAUTHENTICATED:

if the request does not include a valid access to-

ken - PERMISSION_DENIED: if the claims in the to-

ken are insufficient to perform a given operation -

NOT_FOUND: if the request does not include a valid

ledger id - INVALID_ARGUMENT: if the payload is mal-

formed or is missing required fields (e.g. if before

is not before end) - FAILED_PRECONDITION: if the

ledger has been pruned after the subscription start

offset - OUT_OF_RANGE: if the begin parameter value

is not before the end of the ledger

GetTransac-

tionTrees

GetTransac-

tionsRequest

GetTransac-

tionTreesRe-

sponse

Read the ledger’s complete transaction tree stream

for a set of parties. The stream can be filtered only

by parties, but not templates (template filter must

be empty). Errors: - UNAUTHENTICATED: if the re-

quest does not include a valid access token - PER-

MISSION_DENIED: if the claims in the token are in-

sufficient to perform a given operation - NOT_FOUND:

if the request does not include a valid ledger id -

INVALID_ARGUMENT: if the payload is malformed or

is missing required fields (e.g. if before is not

before end) - FAILED_PRECONDITION: if the ledger

has been pruned after the subscription start offset -

OUT_OF_RANGE: if the begin parameter value is not

before the end of the ledger

GetTransac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction tree by the ID of an event that

appears within it. For looking up a transaction in-

stead of a transaction tree, please seeGetFlatTransac-

tionByEventId Errors: - UNAUTHENTICATED: if the re-

quest doesnot include a valid access token -PERMIS-

SION_DENIED: if the claims in the token are insuffi-

cient to perform a given operation - NOT_FOUND: if the

request does not include a valid ledger id or no such

transaction exists - INVALID_ARGUMENT: if the pay-

load is malformed or is missing required fields (e.g. if

requesting parties are invalid or empty)

GetTransac-

tionById

GetTrans-

action-

ByIdRequest

GetTrans-

actionRe-

sponse

Lookup a transaction tree by its ID. For looking up

a transaction instead of a transaction tree, please

see GetFlatTransactionById Errors: - UNAUTHENTI-

CATED: if the request does not include a valid ac-

cess token - PERMISSION_DENIED: if the claims in

the token are insufficient to perform a given opera-

tion - NOT_FOUND: if the request does not include a

valid ledger id or no such transaction exists - IN-

VALID_ARGUMENT: if the payload is malformed or is

missing required fields (e.g. if requesting parties are

invalid or empty)

GetFlat-

Transac-

tionByEven-

tId

GetTransac-

tionByEven-

tIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by the ID of an event that ap-

pears within it. Errors: - UNAUTHENTICATED: if the re-

quest doesnot include a valid access token -PERMIS-

SION_DENIED: if the claims in the token are insuffi-

cient to perform a given operation - NOT_FOUND: if the

request does not include a valid ledger id or no such

transaction exists - INVALID_ARGUMENT: if the pay-

load is malformed or is missing required fields (e.g. if

requesting parties are invalid or empty)

GetFlat-

Transac-

tionById

GetTrans-

action-

ByIdRequest

GetFlat-

Transaction-

Response

Lookup a transaction by its ID. Errors: - UNAUTHEN-

TICATED: if the request does not include a valid ac-

cess token - PERMISSION_DENIED: if the claims in

the token are insufficient to perform a given opera-

tion - NOT_FOUND: if the request does not include a

valid ledger id or no such transaction exists - IN-

VALID_ARGUMENT: if the payload is malformed or is

missing required fields (e.g. if requesting parties are

invalid or empty)

Ge-

tLedgerEnd

GetLedgerEn-

dRequest

GetLedgerEn-

dResponse

Get the current ledger end. Subscriptions started

with the returned offset will serve transactions cre-

ated after this RPC was called. Errors: - UNAUTHEN-

TICATED: if the request does not include a valid ac-

cess token - PERMISSION_DENIED: if the claims in

the token are insufficient to perform a given opera-

tion - NOT_FOUND: if the request does not include a

valid ledger id

2.2. Building Applications 449

Daml SDK Documentation, 2.1.1

com/daml/ledger/api/v1/value.proto

Enum

A value with finite set of alternative representations.

Field Type Label Description

enum_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

GenMap

Field Type Label Description

entries
GenMap.Entry repeated

GenMap.Entry

Field Type Label Description

key
Value

value
Value

Identifier

Unique identifier of an entity.

Field Type Label Description

pack-

age_id

string The identifier of the Daml package that contains the entity. Must

be a valid PackageIdString. Required

mod-

ule_name

string The dot-separated module name of the identifier. Required

en-

tity_name

string The dot-separated name of the entity (e.g. record, template, …)

within the module. Required

450 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

List

A homogenous collection of values.

Field Type Label Description

elements
Value repeated The elements must all be of the same concrete value type. Op-

tional

Map

Field Type Label Description

entries
Map.Entry repeated

Map.Entry

Field Type Label Description

key
string

value
Value

Optional

Corresponds to Java’s Optional type, Scala’s Option, and Haskell’s Maybe. The reason why we need to

wrap this in an additional message is that we need to be able to encode the None case in the Value

oneof.

Field Type Label Description

value
Value optional

Record

Contains nested values.

Field Type Label Description

record_id
Identifier Omitted from the transaction streamwhen verbose stream-

ing is not enabled. Optional when submitting commands.

fields
RecordField repeated The nested values of the record. Required

2.2. Building Applications 451

Daml SDK Documentation, 2.1.1

RecordField

A named nested value within a record.

Field Type Label Description

label
string When reading a transaction stream, it’s omitted if verbose streaming

is not enabled. When submitting a commmand, it’s optional: - if all

keys within a single record are present, the order in which fields appear

does not matter. however, each key must appear exactly once. - if any

of the keys within a single record are omitted, the order of fields MUST

match the order of declaration in the Daml template. Must be a valid

NameString

value
Value A nested value of a record. Required

Value

Encodes values that the ledger accepts as command arguments and emits as contract arguments.

The values encoding use different four classes of non-empty strings as identifiers. Those classes

are defined as follows: - NameStrings are strings with length <= 1000 that match the regexp

[A-Za-z\$_][A-Za-z0-9\$_]*. - PackageIdStrings are strings with length <= 64 that match the

regexp [A-Za-z0-9\-_]+. - PartyIdStrings are strings with length <= 256 that match the reg-

exp [A-Za-z0-9:\-_]+. - LedgerStrings are strings with length <= 256 that match the regexp

[A-Za-z0-9#:\-_/]+. - ApplicationIdStrings are strings with length <= 256 that match the reg-

exp [A-Za-z0-9#:\-_/ @\|]+.

452 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Field Type Label Description

oneof

Sum.record

Record

oneof

Sum.vari-

ant

Variant

oneof

Sum.con-

tract_id

string Identifier of an on-ledger contract. Commands which ref-

erence an unknown or already archived contract ID will fail.

Must be a valid LedgerString.

oneof

Sum.list

List Represents a homogeneous list of values.

oneof

Sum.int64

sint64

oneof

Sum.nu-

meric

string A Numeric, that is a decimal value with precision 38 (at

most 38 significant digits) and a scale between 0 and 37

(significant digits on the right of the decimal point). The

field has to match the regex [+-]?d{1,38}(.d{0,37})? and

should be representable by a Numeric without loss of pre-

cision.

oneof

Sum.text

string A string.

oneof

Sum.times-

tamp

sfixed64 Microseconds since the UNIX epoch. Can go backwards.

Fixed since the vast majority of values will be greater than

2^28, since currently the number ofmicroseconds since the

epoch is greater than that. Range: 0001-01-01T00:00:00Z

to 9999-12-31T23:59:59.999999Z, so that we can convert

to/from https://www.ietf.org/rfc/rfc3339.txt

oneof

Sum.party

string An agent operating on the ledger. Must be a valid PartyId-

String.

oneof

Sum.bool

bool True or false.

oneof

Sum.unit

google.pro-

to-

buf.Empty

This value is used for example for choices that don’t take

any arguments.

oneof

Sum.date

int32 Days since the unix epoch. Can go backwards. Limited from

0001-01-01 to 9999-12-31, also to be compatible with https:

//www.ietf.org/rfc/rfc3339.txt

oneof

Sum.op-

tional

Optional The Optional type, None or Some

oneof

Sum.map

Map The Map type

oneof

Sum.enum

Enum The Enum type

oneof

Sum.gen_map

GenMap The GenMap type

2.2. Building Applications 453

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf#google.protobuf.Empty
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3#oneof

Daml SDK Documentation, 2.1.1

Variant

A value with alternative representations.

Field Type Label Description

variant_id
Identifier Omitted from the transaction stream when verbose streaming

is not enabled. Optional when submitting commands.

constructor
string Determines which of the Variant’s alternatives is encoded in

this message. Must be a valid NameString. Required

value
Value The value encoded within the Variant. Required

com/daml/ledger/api/v1/version_service.proto

FeaturesDescriptor

Field Type Label Description

user_man-

agement

UserManage-

mentFeature

If set, then the Ledger API server supports user manage-

ment. It is recommended that clients query this field to

gracefully adjust their behavior for ledgers that do not sup-

port user management.

experimen-

tal

Experimen-

talFeatures

Features under development or features that are used for

ledger implementation testing purposes only.

Daml applications SHOULD not depend on these in production.

GetLedgerApiVersionRequest

Field Type Label Description

ledger_id
string Must correspond to the ledger ID reported by the Ledger Identifica-

tion Service. Must be a valid LedgerString (as described in value.

proto). Optional

GetLedgerApiVersionResponse

Field Type Label Description

version
string The version of the ledger API.

features
FeaturesDescriptor The features supported by this Ledger API endpoint.

Daml applications CAN use the feature descriptor on top of version constraints on the Ledger API

version to determine whether a given Ledger API endpoint supports the features required to run the

application.

454 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

See the feature descriptions themselves for the relation between Ledger API versions and feature

presence.

UserManagementFeature

Field Type Label Description

supported
bool Whether the Ledger API server provides the user management ser-

vice.

max_rights_per_user
int32 The maximum number of rights that can be assigned to a single

user. Servers MUST support at least 100 rights per user. A value of

0 means that the server enforces no rights per user limit.

max_users_page_size
int32 The maximum number of users the server can return in a single

response (page). Servers MUST support at least a 100 users per

page. A value of 0means that the server enforcesnopage size limit.

VersionService

Allows clients to retrieve information about the ledger API version

Method name Request type Response type Description

GetLedgerApiVer-

sion

GetLedgerApiVersionRe-

quest

GetLedgerApiVersionRe-

sponse

Read the Ledger API ver-

sion

2.2. Building Applications 455

Daml SDK Documentation, 2.1.1

Scalar Value Types

.proto type Notes C++ type Java type Python

type

double
double double float

float
float float float

int32
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint32 instead.

int32 int int

int64
Uses variable-length encoding. Inefficient

for encoding negative numbers – if your

field is likely to have negative values, use

sint64 instead.

int64 long int/long

uint32
Uses variable-length encoding. uint32 int int/long

uint64
Uses variable-length encoding. uint64 long int/long

sint32
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int32s.

int32 int int

sint64
Uses variable-length encoding. Signed int

value. These more efficiently encode nega-

tive numbers than regular int64s.

int64 long int/long

fixed32
Always four bytes. More efficient than

uint32 if values are often greater than

2^28.

uint32 int int

fixed64
Always eight bytes. More efficient than

uint64 if values are often greater than2^56.

uint64 long int/long

sfixed32
Always four bytes. int32 int int

sfixed64
Always eight bytes. int64 long int/long

bool
bool boolean boolean

string
A string must always contain UTF-8 en-

coded or 7-bit ASCII text.

string String str/unicode

bytes
May contain any arbitrary sequence of

bytes.

string ByteString str

2.2.8.5 How Daml types are translated to protobuf

This page gives an overview and reference on how Daml types and contracts are represented by the

Ledger API as protobuf messages, most notably:

• in the stream of transactions from the TransactionService

• as payload for CreateCommand and ExerciseCommand sent to CommandSubmissionService and

CommandService.

The Daml code in the examples below is written in Daml 1.1.

456 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Notation

Thenotationusedon thispage for theprotobufmessages is the sameas youget if you invokeprotoc

--decode=Foo < some_payload.bin. To illustrate the notation, here is a simple definition of the

messages Foo and Bar:

message Foo {

string field_with_primitive_type = 1;

Bar field_with_message_type = 2;

}

message Bar {

repeated int64 repeated_field_inside_bar = 1;

}

A particular value of Foo is then represented by the Ledger API in this way:

{ // Foo

field_with_primitive_type: "some string"

field_with_message_type { // Bar

repeated_field_inside_bar: 17

repeated_field_inside_bar: 42

repeated_field_inside_bar: 3

}

}

The name of messages is added as a comment after the opening curly brace.

Records and primitive types

Records or product types are translated to Record. Here’s an example Daml record type that contains

a field for each primitive type:

data MyProductType = MyProductType {

intField: Int;

textField: Text;

decimalField: Decimal;

boolField: Bool;

partyField: Party;

timeField: Time;

listField: [Int];

contractIdField: ContractId SomeTemplate

And here’s an example of creating a value of type MyProductType:

myTest = script do

bob <- allocateParty "Bob"

let myProduct = MyProductType with

intField = 17

textField = "some text"

decimalField = 17.42

boolField = False

partyField = bob

(continues on next page)

2.2. Building Applications 457

Daml SDK Documentation, 2.1.1

(continued from previous page)

timeField = datetime 2018 May 16 0 0 0

listField = [1,2,3]

For this data, the respective data on the Ledger API is shown below. Note that this value would be

enclosed by a particular contract containing a field of type MyProductType. See Contract templates for

the translation of Daml contracts to the representation by the Ledger API.

{ // Record

record_id { // Identifier

package_id: "some-hash"

name: "Types.MyProductType"

}

fields { // RecordField

label: "intField"

value { // Value

int64: 17

}

}

fields { // RecordField

label: "textField"

value { // Value

text: "some text"

}

}

fields { // RecordField

label: "decimalField"

value { // Value

decimal: "17.42"

}

}

fields { // RecordField

label: "boolField"

value { // Value

bool: false

}

}

fields { // RecordField

label: "partyField"

value { // Value

party: "Bob"

}

}

fields { // RecordField

label: "timeField"

value { // Value

timestamp: 1526428800000000

}

}

fields { // RecordField

label: "listField"

value { // Value

list { // List

elements { // Value

int64: 1

}

(continues on next page)

458 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

elements { // Value

int64: 2

}

elements { // Value

int64: 3

}

}

}

}

fields { // RecordField

label: "contractIdField"

value { // Value

contract_id: "some-contract-id"

}

}

}

Variants

Variants or sum types are types with multiple constructors. This example defines a simple variant

type with two constructors:

data MySumType = MySumConstructor1 Int |

The constructor MyConstructor1 takes a single parameter of type Integer, whereas the construc-

tor MyConstructor2 takes a record with two fields as parameter. The snippet below shows how you

can create values with either of the constructors.

let mySum1 = MySumConstructor1 17

Similar to records, variants are also enclosed by a contract, a record, or another variant.

The snippets below shows the value of mySum1 and mySum2 respectively as they would be transmit-

ted on the Ledger API within a contract.

Listing 12: mySum1

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor1"

value { // Value

int64: 17

}

}

}

2.2. Building Applications 459

Daml SDK Documentation, 2.1.1

Listing 13: mySum2

{ // Value

variant { // Variant

variant_id { // Identifier

package_id: "some-hash"

name: "Types.MySumType"

}

constructor: "MyConstructor2"

value { // Value

record { // Record

fields { // RecordField

label: "sumTextField"

value { // Value

text: "it
s a sum"

}

}

fields { // RecordField

label: "sumBoolField"

value { // Value

bool: true

}

}

}

}

}

}

Contract templates

Contract templates are represented as records with the same identifier as the template.

This first example template below contains only the signatory party and a simple choice to exercise:

data MySimpleTemplateKey =

MySimpleTemplateKey

with

party: Party

template MySimpleTemplate

with

owner: Party

where

signatory owner

key MySimpleTemplateKey owner: MySimpleTemplateKey

maintainer key.party

460 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Creating a contract

Creating contracts is done by sending a CreateCommand to the CommandSubmissionService or the Com-

mandService. The message to create a MySimpleTemplate contract with Alice being the owner is shown

below:

{ // CreateCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

}

Receiving a contract

Contracts are received from the TransactionService in the form of a CreatedEvent. The data contained

in the event corresponds to the data that was used to create the contract.

{ // CreatedEvent

event_id: "some-event-id"

contract_id: "some-contract-id"

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

create_arguments { // Record

fields { // RecordField

label: "owner"

value { // Value

party: "Alice"

}

}

}

witness_parties: "Alice"

}

2.2. Building Applications 461

Daml SDK Documentation, 2.1.1

Exercising a choice

A choice is exercised by sending an ExerciseCommand. Taking the same contract template again,

exercising the choice MyChoice would result in a command similar to the following:

{ // ExerciseCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_id: "some-contract-id"

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

If the template specifies a key, the ExerciseByKeyCommand can be used. It works in a similar way as

ExerciseCommand, but instead of specifying the contract identifier you have to provide its key. The

example above could be rewritten as follows:

{ // ExerciseByKeyCommand

template_id { // Identifier

package_id: "some-hash"

name: "Templates.MySimpleTemplate"

}

contract_key { // Value

record { // Record

fields { // RecordField

label: "party"

value { // Value

party: "Alice"

}

}

}

}

choice: "MyChoice"

choice_argument { // Value

record { // Record

fields { // RecordField

label: "parameter"

value { // Value

int64: 42

}

}

}

}

}

462 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.8.6 How Daml types are translated to Daml-LF

This page shows how types in Daml are translated into Daml-LF. It should help you understand and

predict the generated client interfaces, which is useful when you’re building a Daml-based applica-

tion that uses the Ledger API or client bindings in other languages.

For an introduction to Daml-LF, see Daml-LF.

Primitive types

Built-in data types in Daml have straightforward mappings to Daml-LF.

This section only covers the serializable types, as these are what client applications can interact

with via the generated Daml-LF. (Serializable types are ones whose values can be written in a text

or binary format. So not function types, Update and Scenario types, as well as any types built up

from those.)

Most built-in types have the same name in Daml-LF as in Daml. These are the exact mappings:

Daml primitive type Daml-LF primitive type

Int Int64

Time Timestamp

() Unit

[] List

Decimal Decimal

Text Text

Date Date

Party Party

Optional Optional

ContractId ContractId

Be aware that only the Daml primitive types exported by the Prelude module map to the Daml-LF

primitive types above. Thatmeans that, if you define your own type namedParty, it will not translate

to the Daml-LF primitive Party.

Tuple types

Daml tuple type constructors take types T1, T2, …, TN to the type (T1, T2, …, TN). These are

exposed in the Daml surface language through the Prelude module.

The equivalent Daml-LF type constructors are daml-prim:DA.Types:TupleN, for each particular

N (where 2 <= N <= 20). This qualified name refers to the package name (ghc-prim) and the module

name (GHC.Tuple).

For example: the Daml pair type (Int, Text) is translated to daml-prim:DA.Types:Tuple2

Int64 Text.

2.2. Building Applications 463

Daml SDK Documentation, 2.1.1

Data types

Daml-LF has three kinds of data declarations:

• Record types, which define a collection of data

• Variant or sum types, which define a number of alternatives

• Enum, which defines simplified sum types without type parameters nor argument.

Data type declarations in Daml (starting with the data keyword) are translated to record, variant or

enum types. It’s sometimes not obvious what they will be translated to, so this section lists many

examples of data types in Daml and their translations in Daml-LF.

Record declarations

This section uses the syntax for Daml records with curly braces.

Daml declaration Daml-LF translation

data Foo = Foo { foo1: Int;

foo2: Text }

record Foo ↦ { foo1: Int64; foo2: Text }

data Foo = Bar { bar1: Int;

bar2: Text }

record Foo ↦ { bar1: Int64; bar2: Text }

data Foo = Foo { foo: Int } record Foo ↦ { foo: Int64 }

data Foo = Bar { foo: Int } record Foo ↦ { foo: Int64 }

data Foo = Foo {} record Foo ↦ {}

data Foo = Bar {} record Foo ↦ {}

Variant declarations

Daml declaration Daml-LF translation

data Foo = Bar Int | Baz Text variant Foo ↦ Bar Int64 | Baz Text

data Foo a = Bar a | Baz Text variant Foo a ↦ Bar a | Baz Text

data Foo = Bar Unit | Baz Text variant Foo ↦ Bar Unit | Baz Text

data Foo = Bar Unit | Baz variant Foo ↦ Bar Unit | Baz Unit

data Foo a = Bar | Baz variant Foo a ↦ Bar Unit | Baz Unit

data Foo = Foo Int variant Foo ↦ Foo Int64

data Foo = Bar Int variant Foo ↦ Bar Int64

data Foo = Foo () variant Foo ↦ Foo Unit

data Foo = Bar () variant Foo ↦ Bar Unit

data Foo = Bar { bar: Int }

| Baz Text

variant Foo ↦ Bar Foo.Bar | Baz Text, record

Foo.Bar ↦ { bar: Int64 }

data Foo = Foo { foo: Int }

| Baz Text

variant Foo ↦ Foo Foo.Foo | Baz Text, record

Foo.Foo ↦ { foo: Int64 }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz Text

variant Foo ↦ Bar Foo.Bar | Baz Text, record

Foo.Bar ↦ { bar1: Int64; bar2: Decimal }

data Foo = Bar { bar1: Int;

bar2: Decimal } | Baz { baz1:

Text; baz2: Date }

data Foo ↦ Bar Foo.Bar | Baz Foo.Baz, record

Foo.Bar ↦ { bar1: Int64; bar2: Decimal },

record Foo.Baz ↦ { baz1: Text; baz2: Date }

464 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Enum declarations

Daml declaration Daml-LF declaration

data Foo = Bar | Baz enum Foo ↦ Bar | Baz

data Color = Red | Green |

Blue

enum Color ↦ Red | Green | Blue

Banned declarations

There are two gotchas to be aware of: things youmight expect to be able to do in Daml that you can’t

because of Daml-LF.

The first: a single constructor data type must be made unambiguous as to whether it is a record or

a variant type. Concretely, the data type declaration data Foo = Foo causes a compile-time error,

because it is unclear whether it is declaring a record or a variant type.

To fix this, you must make the distinction explicitly. Write data Foo = Foo {} to declare a record

type with no fields, or data Foo = Foo () for a variant with a single constructor taking unit

argument.

The second gotcha is that a constructor in a data type declaration can have at most one unlabelled

argument type. This restriction is so that we can provide a straight-forward encoding of Daml-LF

types in a variety of client languages.

Banned declaration Workaround

data Foo = Foo data Foo = Foo {} to produce record Foo ↦ {} OR

data Foo = Foo () to produce variant Foo ↦ Foo

Unit

data Foo = Bar data Foo = Bar {} to produce record Foo ↦ {}

OR data Foo = Bar () to produce variant Foo

↦ Bar Unit

data Foo = Foo Int Text Name constructor arguments using a record declaration,

for example data Foo = Foo { x: Int; y: Text }

data Foo = Bar Int Text Name constructor arguments using a record declaration,

for example data Foo = Bar { x: Int; y: Text }

data Foo = Bar | Baz Int Text Name arguments to the Baz constructor, for example

data Foo = Bar | Baz { x: Int; y: Text

}

Type synonyms

Type synonyms (starting with the type keyword) are eliminated during conversion to Daml-LF. The

body of the type synonym is inlined for all occurrences of the type synonym name.

For example, consider the following Daml type declarations.

type Username = Text

data User = User { name: Username }

The Username type is eliminated in the Daml-LF translation, as follows:

2.2. Building Applications 465

Daml SDK Documentation, 2.1.1

record User ↦ { name: Text }

Template types

A template declaration in Daml results in one ormore data type declarations behind the scenes. These

data types, detailed in this section, are not written explicitly in the Daml program but are created by

the compiler.

They are translated to Daml-LF using the same rules as for record declarations above.

These declarations are all at the top level of the module in which the template is defined.

Template data types

Every contract template defines a record type for the parameters of the contract. For example, the

template declaration:

template Iou

with

issuer: Party

owner: Party

currency: Text

amount: Decimal

where

results in this record declaration:

data Iou = Iou { issuer: Party; owner: Party; currency: Text; amount: Decimal }

This translates to the Daml-LF record declaration:

record Iou ↦ { issuer: Party; owner: Party; currency: Text; amount: Decimal }

Choice data types

Every choice within a contract template results in a record type for the parameters of that choice.

For example, let’s suppose the earlier Iou template has the following choices:

nonconsuming choice DoNothing: ()

controller owner

do

return ()

choice Transfer: ContractId Iou

with newOwner: Party

controller owner

do

updateOwner newOwner

This results in these two record types:

466 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data DoNothing = DoNothing {}

data Transfer = Transfer { newOwner: Party }

Whether the choice is consuming or nonconsuming is irrelevant to the data type declaration. The

data type is a record even if there are no fields.

These translate to the Daml-LF record declarations:

record DoNothing ↦ {}

record Transfer ↦ { newOwner: Party }

Names with special characters

All names inDaml—of types, templates, choices, fields, and variant data constructors—are translated

to the more restrictive rules of Daml-LF. ASCII letters, digits, and _ underscore are unchanged in

Daml-LF; all other characters must be mangled in some way, as follows:

• $ changes to $$,

• Unicode codepoints less than 65536 translate to $uABCD, where ABCD are exactly four

(zero-padded) hexadecimal digits of the codepoint in question, using only lowercase a-f, and

• Unicode codepoints greater translate to $UABCD1234, where ABCD1234 are exactly eight

(zero-padded) hexadecimal digits of the codepoint in question, with the same a-f rule.

Daml name Daml-LF identifier

Foo_bar Foo_bar

baz
 baz$u0027

:+: $u003a$u002b$u003a

naïveté na$u00efvet$u00e9

:🙂: $u003a$U0001f642$u003a

2.2.8.7 Java bindings

Generate Java code from Daml

Introduction

When writing applications for the ledger in Java, you want to work with a representation of Daml

templates and data types in Java that closely resemble the original Daml code while still being as

true to the native types in Java as possible. To achieve this, you can use Daml to Java code generator

(“Java codegen”) to generate Java types based on a Daml model. You can then use these types in

your Java code when reading information from and sending data to the ledger.

The Daml assistant documentation describes how to run and configure the code generator for all sup-

ported bindings, including Java.

The rest of this page describes Java-specific topics.

2.2. Building Applications 467

Daml SDK Documentation, 2.1.1

Understand the generated Java model

The Java codegen generates source files in a directory tree under the output directory specified on

the command line.

Map Daml primitives to Java types

Daml built-in types are translated to the following equivalent types in Java:

Daml type Java type Java Bind-

ings Value

Type

Int java.lang.Long Int64

Numeric java.math.BigDecimal Numeric

Text java.lang.String Text

Bool java.util.Boolean Bool

Party java.lang.String Party

Date java.time.LocalDate Date

Time java.time.Instant Timestamp

List or [] java.util.List DamlList

TextMap java.util.Map Restricted to using String keys. Daml-

TextMap

Optional java.util.Optional DamlOp-

tional

() (Unit) None since the Java language doesn’t have a direct equivalent of

Daml’s Unit type (), the generated code uses the Java Bindings

value type.

Unit

Contrac-

tId

Fields of type ContractId X refer to the generated ContractId

class of the respective template X.

ContractId

Understand escaping rules

To avoid clashes with Java keywords, the Java codegen applies escaping rules to the following Daml

identifiers:

• Type names (except the already mapped built-in types)

• Constructor names

• Type parameters

• Module names

• Field names

If any of these identifiers match one of the Java reserved keywords, the Java codegen appends a

dollar sign $ to the name. For example, a field with the name import will be generated as a Java

field with the name import$.

468 Chapter 2. Daml Guide

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Int64.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Numeric.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Text.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Bool.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Party.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Date.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Timestamp.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlList.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlTextMap.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Unit.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/ContractId.html
https://docs.oracle.com/javase/specs/jls/se12/html/jls-3.html#jls-3.9

Daml SDK Documentation, 2.1.1

Understand the generated classes

Every user-defined data type in Daml (template, record, and variant) is represented by one or more

Java classes as described in this section.

The Java package for the generated classes is the equivalent of the lowercase Daml module name.

Listing 14: Daml

module Foo.Bar.Baz where

Listing 15: Java

package foo.bar.baz;

Records (a.k.a product types)

A Daml record is represented by a Java class with fields that have the same name as the Daml record

fields. A Daml field having the type of another record is represented as a field having the type of the

generated class for that record.

Listing 16: Com/Acme/ProductTypes.daml

module Com.Acme.ProductTypes where

data Person = Person with name : Name; age : Decimal

data Name = Name with firstName : Text; lastName : Text

A Java file is generated that defines the class for the type Person:

Listing 17: com/acme/producttypes/Person.java

package com.acme.producttypes;

public class Person {

public final Name name;

public final BigDecimal age;

public static Person fromValue(Value value$) { /* ... */ }

public Person(Name name, BigDecimal age) { /* ... */ }

public DamlRecord toValue() { /* ... */ }

}

A Java file is generated that defines the class for the type Name:

Listing 18: com/acme/producttypes.Name.java

package com.acme.producttypes;

public class Name {

public final String firstName;

public final String lastName;

(continues on next page)

2.2. Building Applications 469

Daml SDK Documentation, 2.1.1

(continued from previous page)

public static Person fromValue(Value value$) { /* ... */ }

public Name(String firstName, String lastName) { /* ... */ }

public DamlRecord toValue() { /* ... */ }

}

Templates

The Java codegen generates three classes for a Daml template:

TemplateName Represents the contract data or the template fields.

TemplateName.ContractId Used whenever a contract ID of the corresponding template

is used in another template or record, for example: data Foo = Foo (ContractId

Bar). This class also provides methods to generate an ExerciseCommand for each

choice that can be sent to the ledger with the Java Bindings.

TemplateName.Contract Represents an actual contract on the ledger. It contains a

field for the contract ID (of type TemplateName.ContractId) and a field for the

template data (of type TemplateName). With the static method TemplateName.

Contract.fromCreatedEvent, you can deserialize a CreatedEvent to an instance

of TemplateName.Contract.

Listing 19: Com/Acme/Templates.daml

module Com.Acme.Templates where

data BarKey =

BarKey

with

p : Party

t : Text

template Bar

with

owner: Party

name: Text

where

signatory owner

key BarKey owner name : BarKey

maintainer key.p

choice Bar_SomeChoice: Bool

with

aName: Text

controller owner

do return True

A file is generated that defines three Java classes:

1. Bar

2. Bar.ContractId

3. Bar.Contract

470 Chapter 2. Daml Guide

https://docs.daml.com/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/CreatedEvent.html

Daml SDK Documentation, 2.1.1

Listing 20: com/acme/templates/Bar.java

package com.acme.templates;

public class Bar extends Template {

public static final Identifier TEMPLATE_ID = new Identifier("some-package-id",

↪→"Com.Acme.Templates", "Bar");

public final String owner;

public final String name;

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey key, Bar_

↪→SomeChoice arg) { /* ... */ }

public static ExerciseByKeyCommand exerciseByKeyBar_SomeChoice(BarKey key,␣

↪→String aName) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(Bar_SomeChoice␣

↪→arg) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseBar_SomeChoice(String aName) {␣

↪→/* ... */ }

public static class ContractId {

public final String contractId;

public ExerciseCommand exerciseArchive(Unit arg) { /* ... */ }

public ExerciseCommand exerciseBar_SomeChoice(Bar_SomeChoice arg) { /* ... */␣

↪→}

public ExerciseCommand exerciseBar_SomeChoice(String aName) { /* ... */ }

}

public static class Contract {

public final ContractId id;

public final Bar data;

public static Contract fromCreatedEvent(CreatedEvent event) { /* ... */ }

}

}

Note that the static methods returning an ExerciseByKeyCommand will only be generated for tem-

plates that define a key.

2.2. Building Applications 471

Daml SDK Documentation, 2.1.1

Variants (a.k.a sum types)

A variant or sum type is a type with multiple constructors, where each constructor wraps a value of

another type. The generated code is comprised of an abstract class for the variant type itself and

a subclass thereof for each constructor. Classes for variant constructors are similar to classes for

records.

Listing 21: Com/Acme/Variants.daml

module Com.Acme.Variants where

data BookAttribute = Pages Int

| Authors [Text]

| Title Text

| Published with year: Int; publisher: Text

The Java code generated for this variant is:

Listing 22: com/acme/variants/BookAttribute.java

package com.acme.variants;

public class BookAttribute {

public static BookAttribute fromValue(Value value) { /* ... */ }

public static BookAttribute fromValue(Value value) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 23: com/acme/variants/bookattribute/Pages.java

package com.acme.variants.bookattribute;

public class Pages extends BookAttribute {

public final Long longValue;

public static Pages fromValue(Value value) { /* ... */ }

public Pages(Long longValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 24: com/acme/variants/bookattribute/Au-

thors.java

package com.acme.variants.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

472 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Listing 25: com/acme/variants/bookattribute/Title.java

package com.acme.variants.bookattribute;

public class Title extends BookAttribute {

public final String stringValue;

public static Title fromValue(Value value) { /* ... */ }

public Title(String stringValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Listing 26: com/acme/variants/bookattribute/Pub-

lished.java

package com.acme.variants.bookattribute;

public class Published extends BookAttribute {

public final Long year;

public final String publisher;

public static Published fromValue(Value value) { /* ... */ }

public Published(Long year, String publisher) { /* ... */ }

public DamlRecord toValue() { /* ... */ }

}

Parameterized types

Note: This section is only included for completeness: we don’t expect users to make use of the

fromValue and toValuemethods, because they would typically come from a template that doesn’t

have any unbound type parameters.

The Java codegen uses Java Generic types to represent Daml parameterized types.

This Daml fragment defines the parameterized type Attribute, used by the BookAttribute type

for modeling the characteristics of the book:

Listing 27: Com/Acme/ParametrizedTypes.daml

module Com.Acme.ParameterizedTypes where

data Attribute a = Attribute

with v : a

data BookAttributes = BookAttributes with

pages : (Attribute Int)

authors : (Attribute [Text])

title : (Attribute Text)

The Java codegen generates a Java file with a generic class for the Attribute a data type:

2.2. Building Applications 473

Daml SDK Documentation, 2.1.1

Listing 28: com/acme/parametrizedtypes/Attribute.java

package com.acme.parametrizedtypes;

public class Attribute<a> {

public final a value;

public Attribute(a value) { /* ... */ }

public DamlRecord toValue(Function<a, Value> toValuea) { /* ... */ }

public static <a> Attribute<a> fromValue(Value value$, Function<Value, a>␣

↪→fromValuea) { /* ... */ }

}

Enums

An enum type is a simplified sum typewithmultiple constructors but without argument nor type pa-

rameters. The generated code is standard java Enumwhose constantsmap enum type constructors.

Listing 29: Com/Acme/Enum.daml

module Com.Acme.Enum where

data Color = Red | Blue | Green

The Java code generated for this variant is:

Listing 30: com/acme/enum/Color.java

package com.acme.enum;

public enum Color {

RED,

GREEN,

BLUE;

/* ... */

public static final Color fromValue(Value value$) { /* ... */ }

public final DamlEnum toValue() { /* ... */ }

}

Listing 31: com/acme/enum/bookattribute/Authors.java

package com.acme.enum.bookattribute;

public class Authors extends BookAttribute {

public final List<String> listValue;

(continues on next page)

474 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

public static Authors fromValue(Value value) { /* ... */ }

public Author(List<String> listValue) { /* ... */ }

public Value toValue() { /* ... */ }

}

Convert a value of a generated type to a Java Bindings value

To convert an instance of the generic type Attribute<a> to a Java Bindings Value, call the toValue

method and pass a function as the toValuea argument for converting the field of type a to the

respective Java Bindings Value. The name of the parameter consists of toValue and the name of

the type parameter, in this case a, to form the name toValuea.

Below is a Java fragment that converts an attribute with a java.lang.Long value to the Java Bind-

ings representation using the method reference Int64::new.

Attribute<Long> pagesAttribute = new Attributes<>(42L);

Value serializedPages = pagesAttribute.toValue(Int64::new);

See Daml To Java Type Mapping for an overview of the Java Bindings Value types.

Note: If the Daml type is a record or variant with more than one type parameter, you need to pass a

conversion function to the toValuemethod for each type parameter.

Create a value of a generated type from a Java Bindings value

Analogous to the toValuemethod, to create a value of a generated type, call themethod fromValue

and pass conversion functions from a Java Bindings Value type to the expected Java type.

Attribute<Long> pagesAttribute = Attribute.<Long>fromValue(serializedPages,

f -> f.asInt64().getOrElseThrow(() -> throw new IllegalArgumentException(

↪→"Expected Int field").getValue());

See Java Bindings Value class for themethods to transform the Java Bindings types into correspond-

ing Java types.

Non-exposed parameterized types

If the parameterized type is contained in a type where the actual type is specified (as in the BookAt-

tributes type above), then the conversion methods of the enclosing type provides the required

conversion function parameters automatically.

2.2. Building Applications 475

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/Value.html

Daml SDK Documentation, 2.1.1

Convert Optional values

The conversion of the Java Optional requires two steps. The Optionalmust be mapped in order

to convert its contains before to be passed to DamlOptional::of function.

Attribute<Optional<Long>> idAttribute = new Attribute<List<Long>>(Optional.

↪→of(42));

val serializedId = DamlOptional.of(idAttribute.map(Int64::new));

To convert back DamlOptional to Java Optional, onemust use the containersmethod toOptional.

This method expects a function to convert back the value possibly contains in the container.

Attribute<Optional<Long>> idAttribute2 =

serializedId.toOptional(v -> v.asInt64().orElseThrow(() -> new␣

↪→IllegalArgumentException("Expected Int64 element")));

Convert Collection values

DamlCollectors provides collectors to converted Java collection containers such as List and Map to

DamlValues in one pass. The builders for those collectors require functions to convert the element

of the container.

Attribute<List<String>> authorsAttribute =

new Attribute<List<String>>(Arrays.asList("Homer", "Ovid", "Vergil"));

Value serializedAuthors =

authorsAttribute.toValue(f -> f.stream().collect(DamlCollector.

↪→toList(Text::new));

To convert back Daml containers to Java ones, one must use the containers methods toList or

toMap. Those methods expect functions to convert back the container’s entries.

Attribute<List<String>> authorsAttribute2 =

Attribute.<List<String>>fromValue(

serializedAuthors,

f0 -> f0.asList().orElseThrow(() -> new IllegalArgumentException(

↪→"Expected DamlList field"))

.toList(

f1 -> f1.asText().orElseThrow(() -> new IllegalArgumentException(

↪→"Expected Text element"))

.getValue()

)

);

476 Chapter 2. Daml Guide

/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlOptional.html
/app-dev/bindings-java/javadocs/com/daml/ledger/javaapi/data/DamlCollectors.html

Daml SDK Documentation, 2.1.1

Daml Interfaces

From this daml definition:

Listing 32: Interfaces.daml

module Interfaces where

interface TIf where

getOwner: Party

dup: Update (ContractId TIf)

choice Ham: ContractId TIf with

controller getOwner this

do dup this

choice Useless: ContractId TIf with

interfacely: ContractId TIf

controller getOwner this

do

dup this

template Child

with

party: Party

where

signatory party

choice Bar: () with

controller party

do

return ()

implements TIf where

getOwner = party

dup = toInterfaceContractId <$> create this

The generated file for the interface definition can be seen below. Effectively it is a class that contains

only the inner type ContractId because one will always only be able to deal with Interfaces via their

ContractId.

Listing 33: interfaces/TIf.java

package interfaces

/* imports */

public final class TIf {

public static final Identifier TEMPLATE_ID = new Identifier(

↪→"94fb4fa48cef1ec7d474ff3d6883a00b2f337666c302ec5e2b87e986da5c27a3", "Interfaces

↪→", "TIf");

public static final class ContractId extends com.daml.ledger.javaapi.data.

↪→codegen.ContractId<TIf> {

public ContractId(String contractId) { /* ... */ }

public ExerciseCommand exerciseUseless(Useless arg) { /* ... */ }

public ExerciseCommand exerciseHam(Ham arg) { /* ... */ }

(continues on next page)

2.2. Building Applications 477

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

}

For templates the code generationwill be slightly different if a template implements interfaces. Main

difference here is that the choices from inherited interfaces are included in the class declaration.

Moreover to allow converting the ContractId of a template to an interface ContractId, an additional

conversion method called toInterfaceName is generated.

Listing 34: interfaces/Child.java

package interfaces

/* ... */

public final class Child extends Template {

/* ... */

public CreateAndExerciseCommand createAndExerciseHam(Ham arg) { /* ... */ }

public CreateAndExerciseCommand createAndExerciseHam() { /* ... */ }

public CreateAndExerciseCommand createAndExerciseUseless(Useless arg) { /* ...␣

↪→*/ }

public CreateAndExerciseCommand createAndExerciseUseless(TIf.ContractId␣

↪→interfacely) { /* ... */ }

/* ... */

public static final class ContractId extends com.daml.ledger.javaapi.data.

↪→codegen.ContractId<Child> {

/* ... */

public ExerciseCommand exerciseHam(Ham arg) { /* ... */ }

public ExerciseCommand exerciseUseless(Useless arg) { /* ... */ }

public ExerciseCommand exerciseHam() { /* ... */ }

public ExerciseCommand exerciseUseless(TIf.ContractId interfacely) { /* ... */

↪→ }

public TIf.ContractId toTIf() { /* ... */ }

}

/* ... */

}

478 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Example project

To try out the Java bindings library, use the examples on GitHub: PingPongReactive.

The example implements the PingPong application, which consists of:

• a Daml model with two contract templates, Ping and Pong

• two parties, Alice and Bob

The logic of the application goes like this:

1. The application injects a contract of type Ping for Alice.

2. Alice sees this contract and exercises the consuming choice RespondPong to create a con-

tract of type Pong for Bob.

3. Bob sees this contract and exercises the consuming choice RespondPing to create a contract

of type Ping for Alice.

4. Points 2 and 3 are repeated until the maximum number of contracts defined in the Daml is

reached.

Setting up the example projects

To set up the example projects, clone the public GitHub repository at

github.com/digital-asset/ex-java-bindings and follow the setup instruction in the README file.

This project contains two examples of the PingPong application, built directly with gRPC and using

the RxJava2-based Java bindings.

Example project

PingPongMain.java

The entry point for the Java code is the main class src/main/java/examples/pingpong/grpc/

PingPongMain.java. Look at this class to see:

• how to connect to and interact with a Daml Ledger via the Java bindings

• how to use the Reactive layer to build an automation for both parties.

At high level, the code does the following steps:

• creates an instance of DamlLedgerClient connecting to an existing Ledger

• connect this instance to the Ledger with DamlLedgerClient.connect()

• create two instances of PingPongProcessor, which contain the logic of the automation

(This is where the application reacts to the new Ping or Pong contracts.)

• run the PingPongProcessor forever by connecting them to the incoming transactions

• inject some contracts for each party of both templates

• wait until the application is done

2.2. Building Applications 479

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/ex-java-bindings/blob/master/README.rst#setting-up-the-example-projects

Daml SDK Documentation, 2.1.1

PingPongProcessor.runIndefinitely()

The core of the application is the PingPongProcessor.runIndefinitely().

The PingPongProcessor queries the transactions first via the TransactionsClient of the

DamlLedgerClient. Then, for each transaction, it produces Commands that will be sent to the

Ledger via the CommandSubmissionClient of the DamlLedgerClient.

Output

The application prints statements similar to these:

Bob is exercising RespondPong on #1:0 in workflow Ping-Alice-1 at count 0

Alice is exercising RespondPing on #344:1 in workflow Ping-Alice-7 at count 9

The first line shows that:

• Bob is exercising the RespondPong choice on the contract with ID #1:0 for the workflow

Ping-Alice-1.

• Count 0means that this is the first choice after the initial Ping contract.

• Theworkflow IDPing-Alice-1 conveys that this is theworkflow triggered by the second initial

Ping contract that was created by Alice.

The second line is analogous to the first one.

IOU Quickstart Tutorial

In this guide, you will learn about developer tools and Daml applications by:

• developing a simple ledger application for issuing, managing, transferring and trading IOUs (“I

Owe You!”)

• developing an integration layer that exposes some of the functionality via custom REST ser-

vices

Prerequisites:

• You understand what an IOU is. If you are not sure, read the IOU tutorial overview.

• You have installed the SDK. See installation.

Download the quickstart application

You can get the quickstart application using the Daml assistant (daml):

1. Run daml new quickstart --template quickstart-java

This creates the quickstart-java application into a new folder called quickstart.

2. Run cd quickstart to change into the new directory.

480 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Folder structure

The project contains the following files:

.

├── daml

│ ├── Iou.daml

│ ├── IouTrade.daml

│ ├── Main.daml

│ ├── Setup.daml

│ └── Tests

│ ├── Iou.daml

│ └── Trade.daml

├── daml.yaml

├── frontend-config.js

├── pom.xml

└── src

└── main

├── java

│ └── com

│ └── digitalasset

│ └── quickstart

│ └── iou

│ └── IouMain.java

└── resources

└── logback.xml

• daml.yaml is a Daml project config file used by the SDK to find out how to build the Daml

project and how to run it.

• daml contains the Daml code specifying the contract model for the ledger.

• daml/Tests contains test scripts for the Daml model.

• frontend-config.js and ui-backend.conf are configuration files for the Navigator fron-

tend.

• pom.xml and src/main/java constitute a Java application that provides REST services to in-

teract with the ledger.

You will explore these in more detail through the rest of this guide.

Overview of what an IOU is

To run through this guide, you will need to understand what an IOU is. This section describes the

properties of an IOU like a bank bill that make it useful as a representation and transfer of value.

A bank bill represents a contract between the owner of the bill and its issuer, the central bank. His-

torically, it is a bearer instrument - it gives anyone who holds it the right to demand a fixed amount

of material value, often gold, from the issuer in exchange for the note.

To do this, the note must have certain properties. In particular, the British pound note shown below

illustrates the key elements that are needed to describe money in Daml:

1) The Legal Agreement

For a long time, money was backed by physical gold or silver stored in a central bank. The British

pound note, for example, represented a promise by the central bank to provide a certain amount of

2.2. Building Applications 481

Daml SDK Documentation, 2.1.1

gold or silver in exchange for the note. This historical artifact is still represented by the following

statement:

I promise to pay the bearer on demand the sum of five pounds.

The true value of the note comes from the fact that it physically represents a bearer right that is

matched by an obligation on the issuer.

2) The Signature of the Counterparty

The value of a right described in a legal agreement is based on a matching obligation for a counter-

party. The British pound note would be worthless if the central bank, as the issuer, did not recognize

its obligation to provide a certain amount of gold or silver in exchange for the note. The chief cashier

confirms this obligation by signing the note as a delegate for the Bank of England. In general, deter-

mining the parties that are involved in a contract is key to understanding its true value.

3) The Security Token

Another feature of the poundnote is the security token embeddedwithin the physical paper. It allows

the note to be authenticatedwith limited effort by holding it against a light source. Even a third party

can verify the note without requiring explicit confirmation from the issuer that it still acknowledges

the associated obligations.

4) The Unique Identifier

Every note has a unique registration number that allows the issuer to track their obligations and

detect duplicate bills. Once the issuer has fulfilled the obligations associated with a particular note,

duplicates with the same identifier automatically become invalid.

5) The Distribution Mechanism

The note itself is printed on paper, and its legal owner is the person holding it. The physical form of

the note allows the rights associated with it to be transferred to other parties that are not explicitly

mentioned in the contract.

482 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Run the application using prototyping tools

In this section, you will run the quickstart application and get introduced to the main tools for pro-

totyping Daml:

1. To compile the Daml model, run daml build

This creates a DAR file (DAR is just the format that Daml compiles to) called .daml/dist/

quickstart-0.0.1.dar. The output should look like this:

Created .daml/dist/quickstart-0.0.1.dar.

2. To run the sandbox (a lightweight local version of the ledger), run daml sandbox --dar .

daml/dist/quickstart-0.0.1.dar

The output should look like this:

Starting Canton sandbox.

Listening at port 6865

Uploading .daml/dist/quickstart-0.0.1.dar to localhost:6865

DAR upload succeeded.

Canton sandbox is ready.

The sandbox is now running, and you can access its ledger API on port 6865.

3. Open a new terminal window and navigate to your project directory, quickstart.

4. To initialize the ledger with some parties and contracts we use Daml Script by running daml

script --dar .daml/dist/quickstart-0.0.1.dar --script-name Main:initial-

ize --ledger-host localhost --ledger-port 6865 --static-time

5. Start the Navigator, a browser-based ledger front-end, by running daml navigator server

The Navigator automatically connects the sandbox. You can access it on port 4000.

Try out the application

Now everything is running, you can try out the quickstart application:

1. Go to http://localhost:4000/. This is the Navigator, which you launched earlier.

2. On the login screen, select Alice from the dropdown. This logs you in as Alice.

(The list of available parties is specified in the ui-backend.conf file.)

This takes you to the contracts view:

This is showing you what contracts are currently active on the sandbox ledger and visible to

Alice. You can see that there is a single such contract, in our case with Id #9:1, created from a

template called Iou:Iou@ffb....

Your contract ID may vary. There’s a lot going on in a Daml ledger, so things could have hap-

pened in a different order, or other internal ledger eventsmight have occurred. The actual value

doesn’t matter. We’ll refer to this contract as #9:1 in the rest of this document, and you’ll need

to substitute your own value mentally.

3. On the left-hand side, you can see what the pages the Navigator contains:

• Contracts

• Templates

• Issued Ious

• Owned Ious

• Iou Transfers

• Trades

Contracts and Templates are standard views, available in any application. The others are cre-

ated just for this application, specified in the frontend-config.js file.

2.2. Building Applications 483

http://localhost:4000/

Daml SDK Documentation, 2.1.1

For information on creating custom Navigator views, see Customizable table views.

4. Click Templates to open the Templates page.

This displays all available contract templates. Instances of contracts (or just contracts) are

created from these templates. The names of the templates are of the format module.tem-

plate@hash. Including the hash disambiguates templates, even when identical module and

template names are used between packages.

On the far right, you see the number of contracts that you can see for each template.

5. Try creating a contract from a template. Issue an Iou to yourself by clicking on the Iou:Iou

row, filling it out as shown below and clicking Submit.

6. On the left-hand side, click Issued Ious to go to that page. You can see the Iou you just issued

yourself.

7. Now, try transferring this Iou to someone else. Click on your Iou, select Iou_Transfer, enter Bob

as the new owner and hit Submit.

8. Go to the Owned Ious page.

The screen shows the same contract #9:1 that you already saw on the Contracts page. It is an

Iou for €100, issued by EUR_Bank.

9. Go to the Iou Transfers page. It shows the transfer of your recently issued Iou to Bob, but Bob

has not accepted the transfer, so it is not settled.

This is an important part of Daml: nobody can be forced into owning an Iou, or indeed agreeing

to any other contract. They must explicitly consent.

You could cancel the transfer by using the IouTransfer_Cancel choice within it, but for this

walk-through, leave it alone for the time being.

10. Try asking Bob to exchange your €100 for $110. To do so, you first have to show your Iou to Bob so

that he can verify the settlement transaction, should he accept the proposal.

Go back to Owned Ious, open the Iou for €100 and click on the button Iou_AddObserver. Submit

Bob as the newObserver.

Contracts in Daml are immutable, meaning they cannot be changed, only created and archived.

If you head back to the Owned Ious screen, you can see that the Iou now has a new Contract ID.

In our case, it’s #13:1.

11. To propose the trade, go to the Templates screen. Click on the IouTrade:IouTrade template, fill in

484 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

the form as shown below and submit the transaction.

12. Go to the Trades page. It shows the just-proposed trade.

13. You are now going to switch user to Bob, so you can accept the trades you have just proposed.

Start by clicking on the logout button next to the username, at the top of the screen. On the

login page, select Bob from the dropdown.

14. First, accept the transfer of the AliceCoin. Go to the Iou Transfers page, click on the row of the

transfer, and click IouTransfer_Accept, then Submit.

15. Go to the Owned Ious page. It now shows the AliceCoin.

It also shows an Iou for $110 issued by USD_Bank. This matches the trade proposal you made

earlier as Alice.

Note its Contract Id.

16. Settle the trade. Go to the Trades page, and click on the row of the proposal. Accept the trade by

clicking IouTrade_Accept. In the popup, enter the Contract ID you just noted as the quoteIouCid,

then click Submit.

The two legs of the transfer are now settled atomically in a single transaction. The trade either

fails or succeeds as a whole.

17. Privacy is an important feature of Daml. You can check that Alice and Bob’s privacy relative to

the Banks was preserved.

To do this, log out, then log in as USD_Bank.

On the Contracts page, select Include archived. The page now shows all the contracts that

USD_Bank has ever known about.

There are just five contracts:

• Three contracts created on startup:

1. A self-issued Iou for $110.

2. The IouTransfer to transfer that Iou to Bob

3. The resulting Iou owned by Bob.

• The transfer of Bob’s Iou to Alice that happened as part of the trade. Note that this is a

transient contract that got archived in the same transaction it got created in.

• The new $110 Iou owned by Alice. This is the only active contract.

USD_Bank does not know anything about the trade or the EUR-leg. For more information on

privacy, refer to the Daml Ledger Model.

2.2. Building Applications 485

Daml SDK Documentation, 2.1.1

486 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Note: USD_Bank does know about an intermediate IouTransfer contract that was created and

consumed as part of the atomic settlement in the previous step. Since that contract was never

active on the ledger, it is not shown in Navigator. You will see how to view a complete transac-

tion graph, including who knows what, in Test using Daml Script below.

Get started with Daml

The contractmodel specifies the possible contracts, as well as the allowed transactions on the ledger,

and is written in Daml.

The core concept in Daml is a contract template - you used them earlier to create contracts. Contract

templates specify:

• a type of contract that may exist on the ledger, including a corresponding data type

• the signatories, who need to agree to the creation of a contract of that type

• the rights or choices given to parties by a contract of that type

• constraints or conditions on the data on a contract

• additional parties, called observers, who can see the contract

For more information about Daml Ledgers, consult Daml Ledger Model for an in-depth technical de-

scription.

Develop with Daml Studio

Take a look at the Daml that specifies the contract model in the quickstart application. The core

template is Iou.

1. Open Daml Studio, a Daml IDE based on VS Code, by running daml studio from the root of your

project.

2. Using the explorer on the left, open daml/Iou.daml.

The first line specifies the module name:

module Iou where

Next, a template called Iou is declared together with its datatype. This template has five fields:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

Conditions for the creation of a contract are specified using the ensure and signatory keywords:

ensure amount > 0.0

signatory issuer, owner

In this case, there are two conditions:

2.2. Building Applications 487

Daml SDK Documentation, 2.1.1

• An Iou can only be created if it is authorized by both issuer and owner.

• The amount needs to be positive.

Earlier, as Alice, you authorized the creation of an Iou. The amount was 100.0, and Alice as both

issuerandowner, so both conditionswere satisfied, and youcould successfully create the contract.

To see this in action, go back to the Navigator and try to create the same Iou again, but with Bob as

owner. It will not work.

Observers are specified using the observer keyword:

observer observers

Next, the rights or choices are defined, in this case with owner as the controller:

choice Iou_Split : (IouCid, IouCid)

with

splitAmount: Decimal

controller owner

do

let restAmount = amount - splitAmount

splitCid <- create this with amount = splitAmount

restCid <- create this with amount = restAmount

return (splitCid, restCid)

choice Iou_Merge : IouCid

with

otherCid: IouCid

controller owner

do

otherIou <- fetch otherCid

-- Check the two IOU
s are compatible

assert (

currency == otherIou.currency &&

owner == otherIou.owner &&

issuer == otherIou.issuer

)

-- Retire the old Iou

archive otherCid

-- Return the merged Iou

create this with amount = amount + otherIou.amount

choice Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

choice Iou_AddObserver : IouCid

with

newObserver : Party

controller owner

do create this with observers = newObserver :: observers

choice Iou_RemoveObserver : IouCid

with

(continues on next page)

488 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

oldObserver : Party

controller owner

do create this with observers = filter (/= oldObserver) observers

Thus, owner has the right to:

• split the Iou

• merge it with another one differing only on amount

• initiate a transfer

• add and remove observers

The Iou_Transfer choice above takes a parameter called newOwner and creates a new IouTrans-

fer contract and returns its ContractId. It is important to know that, by default, choices consume

the contract on which they are exercised. Consuming, or archiving, makes the contract no longer

active. So the IouTransfer replaces the Iou.

A more interesting choice is IouTrade_Accept. To look at it, open IouTrade.daml.

choice IouTrade_Accept : (IouCid, IouCid)

with

quoteIouCid : IouCid

controller seller

do

baseIou <- fetch baseIouCid

baseIssuer === baseIou.issuer

baseCurrency === baseIou.currency

baseAmount === baseIou.amount

buyer === baseIou.owner

quoteIou <- fetch quoteIouCid

quoteIssuer === quoteIou.issuer

quoteCurrency === quoteIou.currency

quoteAmount === quoteIou.amount

seller === quoteIou.owner

quoteIouTransferCid <- exercise quoteIouCid Iou_Transfer with

newOwner = buyer

transferredQuoteIouCid <- exercise quoteIouTransferCid IouTransfer_Accept

baseIouTransferCid <- exercise baseIouCid Iou_Transfer with

newOwner = seller

transferredBaseIouCid <- exercise baseIouTransferCid IouTransfer_Accept

return (transferredQuoteIouCid, transferredBaseIouCid)

This choice uses the === operator from the Daml Standard Library to check pre-conditions. The stan-

dard library is imported using import DA.Assert at the top of the module.

Then, it composes the Iou_Transfer and IouTransfer_Accept choices to build one big transac-

tion. In this transaction, buyer and seller exchange their Ious atomically, without disclosing the

entire transaction to all parties involved.

The Issuers of the two Ious, which are involved in the transaction because they are signatories on the

Iou and IouTransfer contracts, only get to see the sub-transactions that concern them, as we saw

earlier.

For a deeper introduction to Daml, consult the Daml Reference.

2.2. Building Applications 489

Daml SDK Documentation, 2.1.1

Test using Daml Script

You can check the correct authorization and privacy of a contract model using scripts: tests that are

written in Daml.

Scripts are a linear sequence of transactions that is evaluated using the same consistency, confor-

mance and authorization rules as it would be on the full ledger server or the sandbox ledger. They

are integrated into Daml Studio, which can show you the resulting transaction graph, making them

a powerful tool to test and troubleshoot the contract model.

To take a look at the scripts in the quickstart application, open daml/Tests/Trade.daml in Daml

Studio.

A script test is defined with trade_test = script do. The submit function takes a submitting

party and a transaction, which is specified the same way as in contract choices.

The following block, for example, issues an Iou and transfers it to Alice:

-- Banks issue IOU transfers.

iouTransferAliceCid <- submit eurBank do

createAndExerciseCmd

Iou with

issuer = eurBank

owner = eurBank

currency = "EUR"

amount = 100.0

observers = []

Iou_Transfer with

newOwner = alice

Compare the script with the initialize script in daml/Main.daml. You will see that the script

you used to initialize the sandbox is an initial segment of the trade_test script. The latter adds

transactions to perform the trade you performed through Navigator, and a couple of transactions in

which expectations are verified.

After a short time, the text Script results should appear above the test. Click on it to open the visual-

ization of the resulting ledger state.

Each row shows a contract on the ledger. The first four columns show which parties know of which

contracts. The remaining columns show the data on the contracts. You can see past contracts by

490 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

checking the Show archived box at the top. Click the adjacent Show transaction view button to

switch to a view of the entire transaction tree.

In the transaction view, transaction6 is of particular interest, as it showshow the Ious are exchanged

atomically in one transaction. The lines starting known to (since) show that the Banks do indeed

not know anything they should not:

TX 6 1970-01-01T00:00:00Z (Tests.Trade:70:14)

#6:0

│ known to (since):
Alice
 (6),
Bob
 (6)

└─>
Bob
 exercises IouTrade_Accept on #5:0 (IouTrade:IouTrade)

with

quoteIouCid = #3:1

children:

#6:1

│ known to (since):
Alice
 (6),
Bob
 (6),
EUR_Bank
 (6)

└─> fetch #4:1 (Iou:Iou)

#6:2

│ known to (since):
Alice
 (6),
Bob
 (6),
USD_Bank
 (6)

└─> fetch #3:1 (Iou:Iou)

#6:3

│ known to (since):
Alice
 (6),
Bob
 (6),
USD_Bank
 (6)

└─>
Bob
 exercises Iou_Transfer on #3:1 (Iou:Iou)

with

newOwner =
Alice

children:

#6:4

│ consumed by: #6:5

│ referenced by #6:5

│ known to (since):
Alice
 (6),
Bob
 (6),
USD_Bank
 (6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer =
USD_Bank
;

owner =
Bob
;

currency = "USD";

amount = 110.0000000000;

observers = []);

newOwner =
Alice

#6:5

│ known to (since):
Alice
 (6),
Bob
 (6),
USD_Bank
 (6)

└─>
Alice
 exercises IouTransfer_Accept on #6:4 (Iou:IouTransfer)

with

children:

#6:6

│ known to (since):
Alice
 (6),
Bob
 (6),
USD_Bank
 (6)

└─> create Iou:Iou

with

issuer =
USD_Bank
;

owner =
Alice
;

currency = "USD";

amount = 110.0000000000;

observers = []

(continues on next page)

2.2. Building Applications 491

Daml SDK Documentation, 2.1.1

(continued from previous page)

#6:7

│ known to (since):
Alice
 (6),
Bob
 (6),
EUR_Bank
 (6)

└─>
Alice
 exercises Iou_Transfer on #4:1 (Iou:Iou)

with

newOwner =
Bob

children:

#6:8

│ consumed by: #6:9

│ referenced by #6:9

│ known to (since):
Alice
 (6),
Bob
 (6),
EUR_Bank
 (6)

└─> create Iou:IouTransfer

with

iou =

(Iou:Iou with

issuer =
EUR_Bank
;

owner =
Alice
;

currency = "EUR";

amount = 100.0000000000;

observers = [
Bob
]);

newOwner =
Bob

#6:9

│ known to (since):
Alice
 (6),
Bob
 (6),
EUR_Bank
 (6)

└─>
Bob
 exercises IouTransfer_Accept on #6:8 (Iou:IouTransfer)

with

children:

#6:10

│ known to (since):
Alice
 (6),
Bob
 (6),
EUR_Bank
 (6)

└─> create Iou:Iou

with

issuer =
EUR_Bank
;

owner =
Bob
;

currency = "EUR";

amount = 100.0000000000;

observers = []

The submit function used in this script tries to perform a transaction and fails if any of the ledger

integrity rules are violated. There is also a submitMustFail function, which checks that certain

transactions are not possible. This is used in daml/Tests/Iou.daml, for example, to confirm that

the ledger model prevents double spends.

Integrate with the ledger

A distributed ledger only forms the core of a full Daml application.

To build automations and integrations around the ledger, Daml has language bindings for the Ledger

API in several programming languages.

To compile the Java integration for the quickstart application, we first need to run the Java codegen

on the DAR we built before:

daml codegen java

Once the code has been generated, we can now compile it using mvn compile.

492 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Nowstart the Java integrationwithmvn exec:java@run-quickstart. Note that this step requires

that the sandbox started earlier is running.

The application provides REST services on port8080 to performbasic operations on behalf onAlice.

Note: To start the same application on another port, use the command-line parameter

-Drestport=PORT. To start it for another party, use -Dparty=PARTY.

For example, to start the application for Bob on 8081, run mvn exec:java@run-quickstart

-Drestport=8081 -Dparty=Bob

The following REST services are included:

• GET on http://localhost:8080/iou lists all active Ious, and their Ids.

Note that the Ids exposed by the REST API are not the ledger contract Ids, but integers. You can

open the address in your browser or run curl -X GET http://localhost:8080/iou.

• GET on http://localhost:8080/iou/ID returns the Iou with Id ID.

For example, to get the content of the Iou with Id 0, run:

curl -X GET http://localhost:8080/iou/0

• PUT on http://localhost:8080/iou creates a new Iou on the ledger.

To create another AliceCoin, run:

curl -X PUT -d
{"issuer":"Alice","owner":"Alice",

"currency":"AliceCoin","amount":1.0,"observers":[]}
 http://

localhost:8080/iou

• POST on http://localhost:8080/iou/ID/transfer transfers the Iou with Id ID.

Check the Id of your new AliceCoin by listing all active Ious. If you have followed this guide, it

will be 0 so you can run:

curl -X POST -d
{ "newOwner":"Bob" }
 http://localhost:8080/iou/0/

transfer

to transfer it to Bob. If it’s not 0, just replace the 0 in iou/0 in the above command.

The automation is based on the Java bindings and the output of the Java code generator, which are

included as a Maven dependency and Maven plugin respectively:

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>__VERSION__</version>

<exclusions>

<exclusion>

<groupId>com.google.protobuf</groupId>

<artifactId>protobuf-lite</artifactId>

</exclusion>

</exclusions>

</dependency>

It consists of the application in file IouMain.java. It uses the class Iou from Iou.java, which is

generated from the Daml model with the Java code generator. The Iou class provides better serial-

ization and de-serialization to JSON via gson.

1. A connection to the ledger is established using a LedgerClient object.

// Create a client object to access services on the ledger.

DamlLedgerClient client = DamlLedgerClient.newBuilder(ledgerhost, ledgerport).

↪→build(); (continues on next page)

2.2. Building Applications 493

https://github.com/google/gson

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Connects to the ledger and runs initial validation.

client.connect();

2. An in-memory contract store is initialized. This is intended to provide a live view of all active

contracts, with mappings between ledger and external Ids.

ConcurrentHashMap<Long, Iou> contracts = new ConcurrentHashMap<>();

BiMap<Long, Iou.ContractId> idMap = Maps.synchronizedBiMap(HashBiMap.

↪→create());

AtomicReference<LedgerOffset> acsOffset =

3. The Active Contracts Service (ACS) is used to quickly build up the contract store to a recent

state.

.getActiveContractSetClient()

.getActiveContracts(iouFilter, true)

.blockingForEach(

response -> {

response

.getOffset()

.ifPresent(offset -> acsOffset.set(new LedgerOffset.

↪→Absolute(offset)));

response.getCreatedEvents().stream()

.map(Iou.Contract::fromCreatedEvent)

.forEach(

contract -> {

long id = idCounter.getAndIncrement();

contracts.put(id, contract.data);

idMap.put(id, contract.id);

});

});

blockingForEach is used to ensure that the contract store is consistent with the ledger state

at the latest offset observed by the client.

4. The Transaction Service is wired up to update the contract store on occurrences of

ArchiveEvent and CreateEvent for Ious. Since getTransactions is called without end

offset, it will stream transactions indefinitely, until the application is terminated.

client

.getTransactionsClient()

.getTransactions(acsOffset.get(), iouFilter, true)

.forEach(

t -> {

for (Event event : t.getEvents()) {

if (event instanceof CreatedEvent) {

CreatedEvent createdEvent = (CreatedEvent) event;

long id = idCounter.getAndIncrement();

Iou.Contract contract = Iou.Contract.

↪→fromCreatedEvent(createdEvent);

contracts.put(id, contract.data);

idMap.put(id, contract.id);

} else if (event instanceof ArchivedEvent) {

ArchivedEvent archivedEvent = (ArchivedEvent) event;

long id =

idMap.inverse().get(new Iou.ContractId(archivedEvent.

↪→getContractId()));
(continues on next page)

494 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

contracts.remove(id);

idMap.remove(id);

}

}

});

5. Commands are submitted via the Command Submission Service.

return client

.getCommandSubmissionClient()

.submit(

UUID.randomUUID().toString(),

"IouApp",

UUID.randomUUID().toString(),

party,

Optional.empty(),

Optional.empty(),

Optional.empty(),

Collections.singletonList(c))

.blockingGet();

}

You can find examples of ExerciseCommand and CreateCommand instantiation in the bodies

of the transfer and iou endpoints, respectively.

Listing 35: ExerciseCommand

ExerciseCommand exerciseCommand =

contractId.exerciseIou_Transfer(m.get("newOwner").toString());

submit(client, party, exerciseCommand);

Listing 36: CreateCommand

submit(client, party, iouCreate);

return "Iou creation submitted.";

The rest of the application sets up the REST services using Spark Java, and does dynamic package

Id detection using the Package Service. The latter is useful during development when package Ids

change frequently.

For a discussion of ledger application design and architecture, take a look at Application Architecture

Guide.

Next steps

Great - you’ve completed the quickstart guide!

Some steps you could take next include:

• Explore examples for guidance and inspiration.

• Learn Daml.

• Language reference.

• Learn more about application development.

• Learn about the conceptual models behind Daml.

2.2. Building Applications 495

http://sparkjava.com/
https://daml.com/examples

Daml SDK Documentation, 2.1.1

The Java bindings is a client implementation of the Ledger API based on RxJava, a library for compos-

ing asynchronous and event-based programs using observable sequences for the Java VM. It pro-

vides an idiomatic way to write Daml Ledger applications.

See also:

This documentation for the Java bindings API includes the JavaDoc reference documentation.

Overview

The Java bindings library is composed of:

• The Data Layer A Java-idiomatic layer based on the Ledger API generated classes. This layer

simplifies the code required to work with the Ledger API.

Can be found in the java package com.daml.ledger.javaapi.data.

• The Reactive Layer A thin layer built on top of the Ledger API services generated classes.

For each Ledger API service, there is a reactive counterpart with a matching name. For

instance, the reactive counterpart of ActiveContractsServiceGrpc is ActiveCon-

tractsClient.

The Reactive Layer also exposes the main interface representing a client connecting via

the Ledger API. This interface is calledLedgerClient and themain implementationwork-

ing against a Daml Ledger is the DamlLedgerClient.

Can be found in the java package com.daml.ledger.rxjava.

• The Reactive Components Aset of optional components you canuse to assembleDaml Ledger

applications. These components are deprecated as of 2020-10-14.

The most important components are:

– the LedgerView, which provides a local view of the Ledger

– the Bot, which provides utility methods to assemble automation logic for the Ledger

Can be found in the java package com.daml.ledger.rxjava.components.

Code generation

When writing applications for the ledger in Java, you want to work with a representation of Daml

templates and data types in Java that closely resemble the original Daml code while still being as

true to the native types in Java as possible.

To achieve this, you can use Daml to Java code generator (“Java codegen”) to generate Java types

based on a Daml model. You can then use these types in your Java code when reading information

from and sending data to the ledger.

For more information on Java code generation, see Generate Java code from Daml.

496 Chapter 2. Daml Guide

https://github.com/ReactiveX/RxJava
javadocs/index.html

Daml SDK Documentation, 2.1.1

Connecting to the ledger: LedgerClient

Connections to the ledger are made by creating instance of classes that implement the interface

LedgerClient. The class DamlLedgerClient implements this interface, and is used to connect

to a Daml ledger.

This class provides access to the ledgerId, and all clients that give access to the various ledger ser-

vices, such as the active contract set, the transaction service, the time service, etc. This is described

below. Consult the JavaDoc for DamlLedgerClient for full details.

Reference documentation

Click here for the JavaDoc reference documentation.

Getting started

The Java bindings library can be added to a Maven project.

Set up a Maven project

To use the Java bindings library, add the following dependencies to your project’s pom.xml:

<dependencies>

<dependency>

<groupId>com.daml.ledger</groupId>

<artifactId>bindings-rxjava</artifactId>

<version>x.y.z</version>

</dependency>

</dependencies>

Replace x.y.z for both dependencies with the version that you want to use. You can find the avail-

able versions by checking the Maven Central Repository.

You can also take a look at the pom.xml file from the quickstart project.

Connecting to the ledger

Before any ledger services can be accessed, a connection to the ledger must be estab-

lished. This is done by creating a instance of a DamlLedgerClient using one of the

factory methods DamlLedgerClient.forLedgerIdAndHost and DamlLedgerClient.

forHostWithLedgerIdDiscovery. This instance can then be used to access service clients

directly, or passed to a call to Bot.wire to connect a Bot instance to the ledger.

2.2. Building Applications 497

javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html
javadocs/index.html
https://maven.apache.org/
https://search.maven.org/artifact/com.daml/bindings-java

Daml SDK Documentation, 2.1.1

Authorizing

Some ledgers will require you to send an access token along with each request.

To learn more about authorization, read the Authorization overview.

To use the same token for all Ledger API requests, the DamlLedgerClient builders expose a with-

AccessTokenmethod. This will allow you to not pass a token explicitly for every call.

If your application is long-lived and your tokens are bound to expire, you can reload the necessary

token when needed and pass it explicitly for every call. Every client method has an overload that

allows a token to be passed, as in the following example:

transactionClient.getLedgerEnd(); // Uses the token specified when constructing␣

↪→the client

transactionClient.getLedgerEnd(accessToken); // Override the token for this call␣

↪→exclusively

If you’re communicating with a ledger that verifies authorization it’s very important to secure the

communication channel to prevent your tokens to be exposed to man-in-the-middle attacks. The

next chapter describes how to enable TLS.

Connecting securely

The Java bindings library lets you connect to a Daml Ledger via a secure connection. The builders

created by DamlLedgerClient.newBuilder default to a plaintext connection, but you can invoke

withSslContext to pass an SslContext. Using the default plaintext connection is useful only

when connecting to a locally running Sandbox for development purposes.

Secure connections to a Daml Ledger must be configured to use client authentication certificates,

which can be provided by a Ledger Operator.

For information on how to set up an SslContextwith the provided certificates for client authentica-

tion, please consult the gRPC documentation on TLS with OpenSSL as well as the HelloWorldClientTls

example of the grpc-java project.

Advanced connection settings

Sometimes the default settings for gRPC connections/channels are not suitable for a given situation.

These use cases are supported by creating a custom NettyChannelBuilder object and passing the it

to the newBuilder static method defined over DamlLedgerClient.

Reactive Components

The Reactive Components are deprecated as of 2020-10-14.

498 Chapter 2. Daml Guide

https://github.com/grpc/grpc-java/blob/master/SECURITY.md#tls-with-openssl
https://github.com/grpc/grpc-java/blob/70b1b1696a258ffe042c7124217e3a7894821444/examples/src/main/java/io/grpc/examples/helloworldtls/HelloWorldClientTls.java#L46-L57
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyChannelBuilder.html
javadocs/com/daml/ledger/rxjava/DamlLedgerClient.html

Daml SDK Documentation, 2.1.1

Accessing data on the ledger: LedgerView

The LedgerView of an application is the “copy” of the ledger that the application has locally. You

can query it to obtain the contracts that are active on the Ledger and not pending.

Note:

• A contract is active if it exists in the Ledger and has not yet been archived.

• A contract is pending if the application has sent a consuming command to the Ledger and has

yet to receive an completion for the command (that is, if the command has succeeded or not).

The LedgerView is updated every time:

• a new event is received from the Ledger

• new commands are sent to the Ledger

• a command has failed to be processed

For instance, if an incoming transaction is received with a create event for a contract that is relevant

for the application, the application LedgerView is updated to contain that contract too.

Writing automations: Bot

The Bot is an abstraction used to write automation for a Daml Ledger. It is conceptually defined by

two aspects:

• the LedgerView

• the logic that produces commands, given a LedgerView

When the LedgerView is updated, to see if the bot has new commands to submit based on the

updated view, the logic of the bot is run.

The logic of the bot is a Java function from the bot’s LedgerView to a Flow-

able<CommandsAndPendingSet>. Each CommandsAndPendingSet contains:

• the commands to send to the Ledger

• the set of contractIds that should be considered pending while the command is in-flight (that

is, sent by the client but not yet processed by the Ledger)

You can wire a Bot to a LedgerClient implementation using Bot.wire:

Bot.wire(String applicationId,

LedgerClient ledgerClient,

TransactionFilter transactionFilter,

Function<LedgerViewFlowable.LedgerView<R>, Flowable

↪→<CommandsAndPendingSet>> bot,

Function<CreatedContract, R> transform)

In the above:

• applicationId The id used by the Ledger to identify all the queries from the same applica-

tion.

• ledgerClient The connection to the Ledger.

• transactionFilter The server-side filter to the incoming transactions. Used to reduce the

traffic between Ledger and application and make an application more efficient.

2.2. Building Applications 499

Daml SDK Documentation, 2.1.1

• bot The logic of the application,

• transform The function that, given a new contract, returns which information for that con-

tracts are useful for the application. Can be used to reduce space used by discarding

all the info not required by the application. The input to the function contains the tem-

plateId, the arguments of the contract created and the context of the created contract.

The context contains the workflowId.

Example project

Example projects using the Java bindings are available on GitHub. Read more about them here.

2.2.8.8 Creating your own bindings

This page gets you started with creating custom bindings for a Daml Ledger.

Bindings for a language consist of two main components:

• Ledger API Client “stubs” for the programming language, – the remote API that allows sending

ledger commandsand receiving ledger transactions. Youhave to generate Ledger API from

the gRPC protobuf definitions in the daml repository on GitHub. Ledger API is documented

on this page: gRPC. The gRPC tutorial explains how to generate client “stubs”.

• Codegen A code generator is a program that generates classes representing Daml contract

templates in the language. These classes incorporate all boilerplate code for constructing:

CreateCommand and ExerciseCommand corresponding for each Daml contract template.

Technically codegen is optional. Youcanconstruct the commandsmanually fromtheauto-generated

Ledger API classes. However, it is very tedious and error-prone. If you are creating ad hoc bindings

for a project with a few contract templates, writing a proper codegen may be overkill. On the other

hand, if you have hundreds of contract templates in your project or are planning to build language

bindings that you will share across multiple projects, we recommend including a codegen in your

bindings. It will save you and your users time in the long run.

Note that for different reasons we chose codegen, but that is not the only option. There is really a

broad category of metaprogramming features that can solve this problem just as well or even better

than codegen; they are language-specific, but often much easier to maintain (i.e. no need to add a

build step). Some examples are:

• F# Type Providers

• Template Haskell

Building Ledger Commands

No matter what approach you take, either manually building commands or writing a codegen to do

this, you need to understand how ledger commands are structured. This section demonstrates how

to build create and exercise commands manually and how it can be done using contract classes.

500 Chapter 2. Daml Guide

https://github.com/digital-asset/ex-java-bindings
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://grpc.io/docs/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/type-providers/creating-a-type-provider#a-type-provider-that-is-backed-by-local-data
https://wiki.haskell.org/Template_Haskell

Daml SDK Documentation, 2.1.1

Create Command

Let’s recall an IOU example from the Quickstart guide, where Iou template is defined like this:

template Iou

with

issuer : Party

owner : Party

currency : Text

amount : Decimal

observers : [Party]

If you do not specify any of the above fields or type their names or values incorrectly, or do not or-

der them exactly as they are in the Daml template, the above code will compile but fail at run-time

because you did not structure your create command correctly.

Exercise Command

To build ExerciseCommand for Iou_Transfer:

choice Iou_Transfer : ContractId IouTransfer

with

newOwner : Party

controller owner

do create IouTransfer with iou = this; newOwner

Summary

When creating custom bindings for Daml Ledgers, you will need to:

• generate Ledger API from the gRPC definitions

• decide whether to write a codegen to generate ledger commands ormanually build them for all

contracts defined in your Daml model.

The above examples should help you get started. If you are creating custom binding or have any

questions, see the Getting Help page for how to get in touch with us.

Links

• gRPC documentation: https://grpc.io/docs/

• Documentation for Protobuf “well known types”: https://developers.google.com/

protocol-buffers/docs/reference/google.protobuf

• Daml Ledger API gRPC Protobuf definitions

– current main: https://github.com/digital-asset/daml/tree/main/ledger-api/

grpc-definitions

– for specific versions: https://github.com/digital-asset/daml/releases

• Required gRPC Protobuf definitions:

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.

proto

– https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/

health.proto

2.2. Building Applications 501

https://grpc.io/docs/
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://developers.google.com/protocol-buffers/docs/reference/google.protobuf
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/tree/main/ledger-api/grpc-definitions
https://github.com/digital-asset/daml/releases
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/status/status.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto
https://raw.githubusercontent.com/grpc/grpc/v1.18.0/src/proto/grpc/health/v1/health.proto

Daml SDK Documentation, 2.1.1

To write an application around a Daml ledger, you will need to interact with the Ledger API.

Every ledger that Daml can run on exposes this same API.

2.2.8.9 What’s in the Ledger API

The Ledger API exposes the following services:

• Submitting commands to the ledger

– Use the command submission service to submit commands (create a contract or exercise a

choice) to the ledger.

– Use the command completion service to track the status of submitted commands.

– Use the command service for a convenient service that combines the command submission

and completion services.

• Reading from the ledger

– Use the transaction service to stream committed transactions and the resulting events

(choices exercised, and contracts created or archived), and to look up transactions.

– Use the active contracts service to quickly bootstrap an application with the currently active

contracts. It saves you the work to process the ledger from the beginning to obtain its

current state.

• Utility services

– Use the party management service to allocate and find information about parties on the

Daml ledger.

– Use the package service to query the Daml packages deployed to the ledger.

– Use the ledger identity service to retrieve the Ledger ID of the ledger the application is con-

nected to.

– Use the ledger configuration service to retrieve some dynamic properties of the ledger, like

maximum deduplication duration for commands.

– Use the version service to retrieve information about the Ledger API version.

– Use the user management service to manage users and their rights.

– Use the metering report service to retrieve a participant metering report.

• Testing services (on Sandbox only, not for production ledgers)

– Use the time service to obtain the time as known by the ledger.

For full information on the services see The Ledger API services.

You may also want to read the protobuf documentation, which explains how each service is defined as

protobuf messages.

2.2.8.10 How to Access the Ledger API

You can access the Ledger API via the Java Bindings.

If you don’t use a language that targets the JVM, you can use gRPC to generate the code to access

the Ledger API in several supported programming languages. Further documentation provides a few

pointers on how you may want to approach this.

You can also use the HTTP JSON API Service to tap into the Ledger API.

At its core, this service provides a simplified view of the active contract set and additional primi-

tives to query it and exposing it using a well-defined JSON-based encoding over a conventional HTTP

connection.

A subset of the services mentioned above is also available as part of the HTTP JSON API.

502 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.8.11 Daml-LF

When you compile Daml source into a .dar file, the underlying format is Daml-LF. Daml-LF is similar to

Daml, but is stripped down to a core set of features. The relationship between the surface Daml

syntax and Daml-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with Daml-LF directly. But internally, it’s used for:

• Executing Daml code on the Sandbox or on another platform

• Sending and receiving values via the Ledger API (using a protocol such as gRPC)

• Generating code in other languages for interacting with Damlmodels (often called “codegen”)

When you need to know about Daml-LF

Daml-LF is only really relevant when you’re dealing with the objects you send to or receive from the

ledger. If you use any of the provided language bindings for the Ledger API, you don’t need to know

about Daml-LF at all, because this generates idiomatic representations of Daml for you.

Otherwise, it can be helpful to know what the types in your Daml code look like at the Daml-LF level,

so you know what to expect from the Ledger API.

For example, if you are writing an application that creates some Daml contracts, you need to con-

struct values to pass as parameters to the contract. These values are determined by the Daml-LF

types in that contract template. This means you need an idea of how the Daml-LF types correspond

to the types in the original Daml model.

For the most part the translation of types from Daml to Daml-LF should not be surprising. This page

goes through all the cases in detail.

For the bindings to your specific programming language, you should refer to the language-specific

documentation.

2.2.9 Command deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send

commands to the ledger, and some time later they see the effect of that command on the ledger.

Many things can fail during this time window:

• The application can crash.

• The participant node can crash.

• Messages can be lost on the network.

• The ledger may be slow to respond due to a high load.

If you want to make sure that an intended ledger change is not executed twice, your application

needs to robustly handle all failure scenarios. This guide covers the following topics:

• How command deduplication works.

• How applications can effectively use the command deduplication.

2.2. Building Applications 503

Daml SDK Documentation, 2.1.1

2.2.9.1 How command deduplication works

The following fields in a command submissions are relevant for command deduplication. The first

three form the change ID that identifies the intended ledger change.

• The union of party and act_as define the submitting parties.

• The application ID identifies the application that submits the command.

• The command ID is chosen by the application to identify the intended ledger change.

• The deduplication period specifies the period for which no earlier submissions with the same

change ID should have been accepted, as witnessed by a completion event on the command

completion service. If such a change has been accepted in that period, the current submission

shall be rejected. The period is specified either as a deduplication duration or as a deduplication

offset (inclusive).

• The submission ID is chosen by the application to identify a specific submission. It is included in

the corresponding completion event so that the application can correlate specific submissions

to specific completions. An application should never reuse a submission ID.

The ledgermay arbitrarily extend the deduplication period specified in the submission, even beyond

the maximum deduplication duration specified in the ledger configuration.

Note: The maximum deduplication duration is the length of the deduplication period guaranteed

to be supported by the participant.

The deduplication period chosen by the ledger is the effective deduplication period. The ledger may

also convert a requested deduplication duration into an effective deduplication offset or vice versa.

The effective deduplication period is reported in the command completion event in the deduplication

duration or deduplication offset fields.

A command submission is considered a duplicate submission if at least one of the following holds:

• The submitting participant’s completion service contains a successful completion event for

the same change ID within the effective deduplication period.

• The participant or Daml ledger are aware of another command submission in-flight with the

same change ID when they perform command deduplication.

The outcome of command deduplication is communicated as follows:

• Commandsubmissions via the commandservice indicate the commanddeduplication outcome

as a synchronous gRPC response unless the gRPC deadline was exceeded.

Note: The outcome MAY additionally appear as a completion event on the command comple-

tion service, but applications using the command service typically need not process completion

events.

• Command submissions via the command submission service can indicate the outcome as a syn-

chronous gRPC response, or asynchronously through the command completion service. In partic-

ular, the submission may be a duplicate even if the command submission service acknowl-

edges the submission with the gRPC status code OK.

Independently of how the outcome is communicated, command deduplication generates the follow-

ing outcomes of a command submission:

• If there is no conflicting submission with the same change ID on the Daml ledger or in-flight,

the completion event and possibly the response convey the result of the submission (success

504 Chapter 2. Daml Guide

https://grpc.io/blog/deadlines/

Daml SDK Documentation, 2.1.1

or a gRPC error; Error Codes explains how errors are communicated).

• The gRPC status code ALREADY_EXISTS with error code ID DUPLICATE_COMMAND indicates that

there is an earlier command completion for the same change ID within the effective deduplica-

tion period.

• The gRPC status code ABORTED with error code id SUBMISSION_ALREADY_IN_FLIGHT indicates

that another submission for the same change ID was in flight when this submission was pro-

cessed.

• The gRPC status code FAILED_PRECONDITION with error code id INVALID_DEDUPLICATION_PE-

RIOD indicates that the specified deduplication period is not supported. The fields

longest_duration or earliest_offset in the metadata specify the longest duration or

earliest offset that is currently supported on the Ledger API endpoint. At least one of the two

fields is present.

Neither deduplication durations up to the maximum deduplication duration nor deduplication

offsets published within that duration SHOULD result in this error. Participants may accept

longer periods at their discretion.

• The gRPC status code FAILED_PRECONDITION with error code id PARTICI-

PANT_PRUNED_DATA_ACCESSED, when specifying a deduplication period represented by an

offset, indicates that the specified deduplication offset has been pruned. The field earli-

est_offset in the metadata specifies the last pruned offset.

For deduplication to work as intended, all submissions for the same ledger change must be sub-

mitted via the same participant. Whether a submission is considered a duplicate is determined

by completion events, and by default a participant outputs only the completion events for submis-

sions that were requested via the very same participant. At this time, only Daml driver for VMware

Blockchain supports command deduplication across participants.

2.2.9.2 How to use command deduplication

To effectuate a ledger change exactly once, the application must resubmit a command if an ear-

lier submission was lost. However, the application typically cannot distinguish a lost submission

from slow submission processing by the ledger. Command deduplication allows the application to

resubmit the command until it is executed and reject all duplicate submissions thereafter.

Some ledger changes can be executed at most once, so no command deduplication is needed for

them. For example, if the submitted command exercises a consuming choice on a given contract ID,

this command can be accepted at most once because every contract can be archived at most once.

All duplicate submissions of such a change will be rejected with CONTRACT_NOT_ACTIVE.

In contrast, a Create command would create a fresh contract instance of the given template for each

submission that reaches the ledger (unless other constraints such as the template preconditions or

contract key uniqueness are violated). Similarly, an Exercise command on a non-consuming choice

or an Exercise-By-Key command may be executed multiple times if submitted multiple times. With

command deduplication, applications can ensure such intended ledger changes are executed only

once within the deduplication period, even if the application resubmits, say because it considers the

earlier submissions to be lost or forgot during a crash that it had already submitted the command.

2.2. Building Applications 505

https://www.digitalasset.com/daml-for-vmware-blockchain/
https://www.digitalasset.com/daml-for-vmware-blockchain/

Daml SDK Documentation, 2.1.1

Known processing time bounds

For this strategy, youmust estimate a bound B on the processing time and forward clock drifts in the

Daml ledger with respect to the application’s clock. If processing measured across all retries takes

longer than your estimate B, the ledger change may take effect several times. Under this caveat, the

following strategy works for applications that use the Command Service or the Command Submission

and Command Completion Service.

Note: The bound B should be at most the configuredmaximum deduplication duration. Otherwise you

rely on the ledger accepting longer deduplication durations. Such reliance makes your application

harder to port to other Daml ledgers and fragile, as the ledger may stop accepting such extended

durations at its own discretion.

1. Choose a command ID for the ledger change, in a way that makes sure the same ledger change

is always assigned the same command ID. Either determine the command ID deterministically

(e.g., if your contract payload contains a globally unique identifier, you can use that as your

command ID), or choose the command ID randomly and persist it with the ledger change so

that the application can use the same command ID in resubmissions after a crash and restart.

Note: Make sure that you assign the same command ID to all command (re-)submissions

of the same ledger change. This is useful for the recovery procedure after an application

crash/restart. After a crash, the application in general cannot know whether it has submit-

ted a set of commands before the crash. If in doubt, resubmit the commands using the same

command ID. If the commands had been submitted before the crash, command deduplication

on the ledger will reject the resubmissions.

2. When you use the Command Completion Service, obtain a recent offset on the completion stream

OFF1, say the current ledger end.

3. Submit the command with the following parameters:

• Set the command ID to the chosen command ID from Step 1.

• Set the deduplication duration to the bound B.

Note: It is prudent to explicitly set the deduplication duration to the desired bound B,

to guard against the case where a ledger configuration update shortens the maximum

deduplication duration. With the bound B, you will be notified of such a problem via an IN-

VALID_DEDUPLICATION_PERIOD error if the ledger does not support deduplication durations

of length B any more.

If you omitted the deduplication period, the currently validmaximumdeduplication dura-

tion would be used. In this case, a ledger configuration update could silently shorten the

deduplication period and thus invalidate your deduplication analysis.

• Set the submission ID to a fresh value, e.g., a random UUID.

• Set the timeout (gRPC deadline) to the expected submission processing time (Command

Service) or submission hand-off time (Command Submission Service).

The submission processing time is the time between when the application sends off a

submission to the Command Service and when it receives (synchronously, unless it times

out) the acceptance or rejection. The submission hand-off time is the time betweenwhen

the application sends off a submission to the Command Submission Service and when it

obtains a synchronous response for this gRPC call. After the RPC timeout, the application

considers the submission as lost and enters a retry loop. This timeout is typically much

506 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

shorter than the deduplication duration.

4. Wait until the RPC call returns a response.

• Status codes other than OK should be handled according to error handling.

• When you use the Command Service and the response carries the status code OK, the ledger

change took place. You can report success.

• When you use the Command Submission Service, subscribe with the Command Completion

Service for completions for actAs from OFF1 (exclusive) until you see a completion event

for the change ID and the submission ID chosen in Step 3. If the completion’s status is OK,

the ledger change took place and you can report success. Other status codes should be

handled according to error handling.

This step needs no timeout as the Command Submission Service acknowledges a submis-

sion only if there will eventually be a completion event, unless relevant parts of the system

become permanently unavailable.

Error handling

Error handling is needed when the status code of the command submission RPC call or in the com-

pletion event is not OK. The following table lists appropriate reactions by status code (written as STA-

TUS_CODE) and error code (written in capital letters with a link to the error code documentation).

Fields in the error metadata are written as field in lowercase letters.

2.2. Building Applications 507

Daml SDK Documentation, 2.1.1

Table 1: Command deduplication error handling with

known processing time bound

Error condi-

tion

Reaction

DEAD-

LINE_EX-

CEEDED

Consider the submission lost.

Retry from Step 2, obtaining the completion offset OFF1, and possibly increase

the timeout.

Application

crashed

Retry from Step 2, obtaining the completion offset OFF1.

AL-

READY_EX-

ISTS / DU-

PLICATE_COM-

MAND

The change ID has already been accepted by the ledger within the reported dedu-

plication period. The optional field completion_offset contains the precise

offset. The optional field existing_submission_id contains the submission

ID of the successful submission. Report success for the ledger change.

FAILED_PRE-

CONDITION /

INVALID_DEDU-

PLICATION_PE-

RIOD

The specified deduplication period is longer than what the Daml ledger supports

or the ledger cannot handle the specified deduplication offset. earliest_off-

set contains the earliest deduplication offset or longest_duration contains

the longest deduplication duration that can be used (at least one of the twomust

be provided).

Options:

• Negotiate support for longer deduplication periodswith the ledger operator.

• Set the deduplication offset to earliest_offset or the deduplication du-

ration to longest_duration and retry from Step 2, obtaining the comple-

tion offset OFF1. This may lead to accepting the change twice within the

originally intended deduplication period.

FAILED_PRE-

CONDITION

/ PARTICI-

PANT_PRUNED_DATA_AC-

CESSED

The specified deduplication offset has been pruned by the participant. earli-

est_offset contains the last pruned offset.

Use the Command Completion Service by asking for the completions,

starting from the last pruned offset by setting offset to the value of

earliest_offset, and use the first received offset as a deduplica-

tion offset.

ABORTED

/ SUBMIS-

SION_AL-

READY_IN_FLIGHT

This error

occurs only

as an RPC

response,

not inside a

completion

event.

There is already another submission in flight, with the submission ID in exist-

ing_submission_id.

• When you use the Command Service, wait a bit and retry from Step 3, submit-

ting the command.

Since the in-flight submissionmight still be rejected, (repeated) resubmis-

sion ensures that you (eventually) learn the outcome: If an earlier submis-

sion was accepted, you will eventually receive a DUPLICATE_COMMAND rejec-

tion. Otherwise, you have a second chance to get the ledger change ac-

cepted on the ledger and learn the outcome.

• When you use the Command Completion Service, look for a completion for ex-

isting_submission_id instead of the chosen submission ID in Step 4.

ABORTED /

other error

codes

Wait a bit and retry from Step 2, obtaining the completion offset OFF1.

other error

conditions

Use background knowledge about the business workflow and the current ledger

state to decide whether earlier submissions might still get accepted.

• If you conclude that it cannot be accepted anymore, stop retrying and report

that the ledger change failed.

• Otherwise, retry from Step 2, obtaining a completion offset OFF1, or give up

without knowing for sure that the ledger change will not happen.

For example, if the ledger change only creates a contract instance of a template,

you can never be sure, as any outstanding submission might still be accepted

on the ledger. In particular, you must not draw any conclusions from not having

received a SUBMISSION_ALREADY_IN_FLIGHT error, because the outstanding sub-

mission may be queued somewhere and will reach the relevant processing point

only later.

508 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Failure scenarios

The above strategy can fail in the following scenarios:

1. The bound B is too low: The command can be executed multiple times.

Possible causes:

• Youhave retried for longer than the deduplication duration, but never got ameaningful an-

swer, e.g., because the timeout (gRPC deadline) is too short. For example, this can happen

due to long-running Daml interpretation when using the Command Service.

• The application clock drifts significantly from the participant’s or ledger’s clock.

• There are unexpected network delays.

• Submissions are retried internally in the participant or Daml ledger and those retries do

not stop before B is over. Refer to the specific ledger’s documentation for more informa-

tion.

2. Unacceptable changes cause infinite retries

You need business workflow knowledge to decide that retrying does not make sense any more.

Of course, you can always stop retrying and accept that you do not know the outcome for sure.

Unknown processing time bounds

Finding a good bound B on the processing time is hard, and there may still be unforeseen circum-

stances that delay processing beyond the chosen bound B. You can avoid these problems by using

deduplication offsets instead of durations. An offset defines a point in the history of the ledger and is

thus not affected by clock skews and network delays. Offsets are arguably less intuitive and require

more effort by the application developer. We recommend the following strategy for using deduplica-

tion offsets:

1. Choose a fresh command ID for the ledger change and the actAs parties, which (together with

the application ID) determine the change ID. Remember the command ID across application

crashes. (Analogous to Step 1 above)

2. Obtain a recent offsetOFF0 on the completion event streamand remember across crashes that

you use OFF0 with the chosen command ID. There are several ways to do so:

• Use the Command Completion Service by asking for the current ledger end.

Note: Some ledger implementations reject deduplication offsets that do not iden-

tify a command completion visible to the submitting parties with the error code id IN-

VALID_DEDUPLICATION_PERIOD. In general, the ledger end need not identify a command com-

pletion that is visible to the submitting parties. When running on such a ledger, use the

Command Service approach described next.

• Use the Command Service to obtain a recent offset by repeatedly submitting a dummy

command, e.g., a Create-And-Exercise command of some single-signatory template with the

Archive choice, until you get a successful response. The response contains the completion

offset.

3. When you use the Command Completion Service:

• If you execute this step the first time, set OFF1 = OFF0.

• If you execute this step as part of error handling retrying from Step 3, obtaining the com-

pletion offset OFF1, obtain a recent offset on the completion stream OFF1, say its current

end. (Analogous to step 2 above)

4. Submit the command with the following parameters (analogous to Step 3 above except for the

deduplication period):

2.2. Building Applications 509

Daml SDK Documentation, 2.1.1

• Set the command ID to the chosen command ID from Step 1.

• Set the deduplication offset to OFF0.

• Set the submission ID to a fresh value, e.g., a random UUID.

• Set the timeout (gRPC deadline) to the expected submission processing time (Command

Service) or submission hand-off time (Command Submission Service).

5. Wait until the RPC call returns a response.

• Status codes other than OK should be handled according to error handling.

• When you use the Command Service and the response carries the status code OK, the ledger

change took place. You can report success. The response contains a completion offset that

you can use in Step 2 of later submissions.

• When you use the Command Submission Service, subscribe with the Command Completion

Service for completions for actAs from OFF1 (exclusive) until you see a completion event

for the change ID and the submission ID chosen in step 3. If the completion’s status is OK,

the ledger change took place and you can report success. Other status codes should be

handled according to error handling.

Error handling

The same as for known bounds, except that the former retry from Step 2 becomes retry from Step 3.

Failure scenarios

The above strategy can fail in the following scenarios:

1. No success within the supported deduplication period

When the application receives a INVALID_DEDUPLICATION_PERIOD error, it cannot achieve exactly

once execution any more within the originally intended deduplication period.

2. Unacceptable changes cause infinite retries

You need business workflow knowledge to decide that retrying does not make sense any more.

Of course, you can always stop retrying and accept that you do not know the outcome for sure.

2.2.10 Daml Triggers - Off-Ledger Automation in Daml

2.2.10.1 Daml Trigger Library

The Daml Trigger library defines the API used to declare a Daml trigger. See Daml Triggers - Off-Ledger

Automation in Daml:: for more information on Daml triggers.

Module Daml.Trigger

Typeclasses

class ActionTriggerAny m where

Features possible in initialize, updateState, and rule.

queryContractId : Template a => ContractId a -> m (Optional a)

Find the contract with the given id in the ACS, if present.

510 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

getReadAs : m [Party]

getActAs : m Party

instance ActionTriggerAny (TriggerA s)

instance ActionTriggerAny TriggerInitializeA

instance ActionTriggerAny (TriggerUpdateA s)

class ActionTriggerAny m => ActionTriggerUpdate m where

Features possible in updateState and rule.

getCommandsInFlight : m (Map CommandId [Command])

Retrieve command submissionsmade by this trigger that have not yet completed. If

the trigger has restarted, it will not contain commands frombefore the restart; there-

fore, this should be treated as an optimization rather than an absolute authority on

ledger state.

instance ActionTriggerUpdate (TriggerA s)

instance ActionTriggerUpdate (TriggerUpdateA s)

Data Types

data Trigger s

This is the type of your trigger. s is the user-defined state type which you can often leave

at ().

Trigger

2.2. Building Applications 511

Daml SDK Documentation, 2.1.1

Field Type Description

initialize TriggerIni-

tializeA s

Initialize the user-defined state based on

the ACS.

updateState Message ->

TriggerUp-

dateA s ()

Update the user-defined state based on

a transaction or completion message.

It can manipulate the state with get,

put, and modify, or query the ACS with

query.

rule Party -> Trig-

gerA s ()

The rule defines the main logic of your

trigger. It can send commands to the

ledger using emitCommands to change

the ACS. The rule depends on the follow-

ing arguments: * The party your trigger

is running as. * The user-defined state.

and can retrieve other data with func-

tions in TriggerA: * The current state of

the ACS. * The current time (UTC in wall-

clockmode, Unix epoch in static mode) *

The commands in flight.

registeredTem-

plates

Regis-

teredTem-

plates

The templates the trigger will receive

events for.

heartbeat Optional

RelTime

Send a heartbeat message at the given

interval.

instance HasField "heartbeat" (Trigger s) (Optional RelTime)

instance HasField "initialize" (Trigger s) (TriggerInitializeA s)

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "rule" (Trigger s) (Party -> TriggerA s ())

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

data TriggerA s a

TriggerA is the type used in the rule of a Daml trigger. Its main feature is that you can

call emitCommands to send commands to the ledger.

instance ActionTriggerAny (TriggerA s)

instance ActionTriggerUpdate (TriggerA s)

instance Functor (TriggerA s)

instance ActionState s (TriggerA s)

instance HasTime (TriggerA s)

instance Action (TriggerA s)

instance Applicative (TriggerA s)

instance HasField "rule" (Trigger s) (Party -> TriggerA s ())

instance HasField "runTriggerA" (TriggerA s a) (ACS -> TriggerRule (TriggerAState s) a)

512 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data TriggerInitializeA a

TriggerInitializeA is the type used in the initialize of a Daml trigger. It can query, but

not emit commands or update the state.

instance ActionTriggerAny TriggerInitializeA

instance Functor TriggerInitializeA

instance Action TriggerInitializeA

instance Applicative TriggerInitializeA

instance HasField "initialize" (Trigger s) (TriggerInitializeA s)

instance HasField "runTriggerInitializeA" (TriggerInitializeA a) (TriggerInitState -> a)

data TriggerUpdateA s a

TriggerUpdateA is the type used in the updateState of a Daml trigger. It has similar

actions in common with TriggerA, but cannot use emitCommands or getTime.

instance ActionTriggerAny (TriggerUpdateA s)

instance ActionTriggerUpdate (TriggerUpdateA s)

instance Functor (TriggerUpdateA s)

instance ActionState s (TriggerUpdateA s)

instance Action (TriggerUpdateA s)

instance Applicative (TriggerUpdateA s)

instance HasField "runTriggerUpdateA" (TriggerUpdateA s a) (TriggerUpdateState -> State s

a)

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

Functions

query : (Template a, ActionTriggerAny m) => m [(ContractId a, a)]

Extract the contracts of a given template from the ACS.

queryContractKey : (Template a, HasKey a k, Eq k, ActionTriggerAny m, Functor m) => k -> m (Optional

(ContractId a, a))

Find the contract with the given key in the ACS, if present.

emitCommands : [Command] -> [AnyContractId] -> TriggerA s CommandId

Send a transaction consisting of the given commands to the ledger. The second argument can

be used tomark a list of contract ids as pending. These contracts will automatically be filtered

from getContracts until we either get the corresponding transaction event for this command

or a failing completion.

dedupCreate : (Eq t, Template t) => t -> TriggerA s ()

Create the template if it’s not already in the list of commands in flight (it will still be created if

it is in the ACS).

Note that this will send the create as a single-command transaction. If you need to send mul-

tiple commands in one transaction, use emitCommands with createCmd and handle filtering

yourself.

2.2. Building Applications 513

Daml SDK Documentation, 2.1.1

dedupCreateAndExercise : (Eq t, Eq c, Template t, Choice t c r) => t -> c -> TriggerA s ()

Create the template and exercise a choice on it if it’s not already in the list of commands in

flight (it will still be created if it is in the ACS).

Note that this will send the create and exercise as a single-command transaction. If you need

to send multiple commands in one transaction, use emitCommands with createAndExer-

ciseCmd and handle filtering yourself.

dedupExercise : (Eq c, Choice t c r) => ContractId t -> c -> TriggerA s ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

If you are calling a consuming choice, you might be better off by using emitCommands and

adding the contract id to the pending set.

dedupExerciseByKey : (Eq c, Eq k, Choice t c r, TemplateKey t k) => k -> c -> TriggerA s ()

Exercise the choice on the given contract if it is not already in flight.

Note that this will send the exercise as a single-command transaction. If you need to send

multiple commands in one transaction, use emitCommands with exerciseCmd and handle

filtering yourself.

runTrigger : Trigger s -> Trigger (TriggerState s)

Transform the high-level trigger type into the one from Daml.Trigger.LowLevel.

Module Daml.Trigger.Assert

Data Types

data ACSBuilder

Used to construct an ‘ACS’ for ‘testRule’.

instanceMonoid ACSBuilder

instance Semigroup ACSBuilder

Functions

toACS : Template t => ContractId t -> ACSBuilder

Include the given contract in the ‘ACS’. Note that the ContractIdmust point to an active con-

tract.

testRule : Trigger s -> Party -> [Party] -> ACSBuilder -> Map CommandId [Command] -> s -> Script (s, [Com-

mands])

Execute a trigger’s rule once in a scenario.

flattenCommands : [Commands] -> [Command]

Drop ‘CommandId’s and extract all ‘Command’s.

assertCreateCmd : (Template t, CanAbort m) => [Command] -> (t -> Either Text ()) -> m ()

Check that at least one command is a create command whose payload fulfills the given asser-

tions.

514 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

assertExerciseCmd : (Template t, Choice t c r, CanAbort m) => [Command] -> ((ContractId t, c) -> Either

Text ()) -> m ()

Check that at least one command is an exercise command whose contract id and choice argu-

ment fulfill the given assertions.

assertExerciseByKeyCmd : (TemplateKey t k, Choice t c r, CanAbort m) => [Command] -> ((k, c) -> Either

Text ()) -> m ()

Check that at least one command is an exercise by key command whose key and choice argu-

ment fulfill the given assertions.

Module Daml.Trigger.LowLevel

Typeclasses

class HasTime m => ActionTrigger m where

Low-level trigger actions.

liftTF : TriggerF a -> m a

instance ActionTrigger (TriggerRule s)

instance ActionTrigger TriggerSetup

Data Types

data ActiveContracts

ActiveContracts

Field Type Description

activeContracts [Created]

instance HasField "activeContracts" ActiveContracts [Created]

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

data AnyContractId

This type represents the contract id of an unknown template. You can use fromAnyCon-

tractId to check which template it corresponds to.

instance Eq AnyContractId

instance Ord AnyContractId

instance Show AnyContractId

instance HasField "activeContracts" ACS (Map TemplateTypeRep (Map AnyContractId

AnyTemplate))

instance HasField "contractId" AnyContractId (ContractId ())

instance HasField "contractId" Archived AnyContractId

2.2. Building Applications 515

Daml SDK Documentation, 2.1.1

instance HasField "contractId" Command AnyContractId

instance HasField "contractId" Created AnyContractId

instance HasField "pendingContracts" ACS (Map CommandId [AnyContractId])

instance HasField "pendingContracts" (TriggerAState s) (Map CommandId [AnyContractId])

instance HasField "templateId" AnyContractId TemplateTypeRep

data Archived

The data in an Archived event.

Archived

Field Type Description

eventId EventId

contractId AnyContrac-

tId

instance Eq Archived

instance Show Archived

instance HasField "contractId" Archived AnyContractId

instance HasField "eventId" Archived EventId

data Command

A ledger API command. To construct a command use createCmd and exerciseCmd.

CreateCommand

Field Type Description

templateArg AnyTem-

plate

ExerciseCommand

Field Type Description

contractId AnyContrac-

tId

choiceArg AnyChoice

CreateAndExerciseCommand

Field Type Description

templateArg AnyTem-

plate

choiceArg AnyChoice

516 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

ExerciseByKeyCommand

Field Type Description

tplTypeRep Template-

TypeRep

contractKey AnyCon-

tractKey

choiceArg AnyChoice

instance HasField "choiceArg" Command AnyChoice

instance HasField "commands" Commands [Command]

instance HasField "commandsInFlight" (TriggerAState s) (Map CommandId [Command])

instance HasField "commandsInFlight" (TriggerState s) (Map CommandId [Command])

instance HasField "commandsInFlight" TriggerUpdateState (Map CommandId [Command])

instance HasField "contractId" Command AnyContractId

instance HasField "contractKey" Command AnyContractKey

instance HasField "templateArg" Command AnyTemplate

instance HasField "tplTypeRep" Command TemplateTypeRep

data CommandId

CommandId Text

instance Eq CommandId

instance Ord CommandId

instance Show CommandId

instance HasField "commandId" Commands CommandId

instance HasField "commandId" Completion CommandId

instance HasField "commandId" Transaction (Optional CommandId)

instance HasField "commandsInFlight" (TriggerAState s) (Map CommandId [Command])

instance HasField "commandsInFlight" (TriggerState s) (Map CommandId [Command])

instance HasField "commandsInFlight" TriggerUpdateState (Map CommandId [Command])

instance HasField "pendingContracts" ACS (Map CommandId [AnyContractId])

instance HasField "pendingContracts" (TriggerAState s) (Map CommandId [AnyContractId])

data Commands

A set of commands that are submitted as a single transaction.

Commands

2.2. Building Applications 517

Daml SDK Documentation, 2.1.1

Field Type Description

commandId CommandId

commands [Command]

instance HasField "commandId" Commands CommandId

instance HasField "commands" Commands [Command]

data Completion

A completion message. Note that you will only get completions for commands emitted

from the trigger. Contrary to the ledger API completion stream, this also includes syn-

chronous failures.

Completion

Field Type Description

commandId CommandId

status Completion-

Status

instance Show Completion

instance HasField "commandId" Completion CommandId

instance HasField "status" Completion CompletionStatus

data CompletionStatus

Failed

Field Type Description

status Int

message Text

Succeeded

Field Type Description

transactionId Transac-

tionId

instance Show CompletionStatus

instance HasField "message" CompletionStatus Text

instance HasField "status" Completion CompletionStatus

instance HasField "status" CompletionStatus Int

instance HasField "transactionId" CompletionStatus TransactionId

518 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data Created

The data in a Created event.

Created

Field Type Description

eventId EventId

contractId AnyContrac-

tId

argument AnyTem-

plate

instance HasField "activeContracts" ActiveContracts [Created]

instance HasField "argument" Created AnyTemplate

instance HasField "contractId" Created AnyContractId

instance HasField "eventId" Created EventId

data Event

An event in a transaction. This definition should be kept consistent with the

object EventVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

CreatedEvent Created

ArchivedEvent Archived

instance HasField "events" Transaction [Event]

data EventId

EventId Text

instance Eq EventId

instance Show EventId

instance HasField "eventId" Archived EventId

instance HasField "eventId" Created EventId

data Message

Either a transaction or a completion. This definition should be kept consistent with

the object MessageVariant defined in triggers/runner/src/main/scala/com/digitalas-

set/daml/lf/engine/trigger/Converter.scala

MTransaction Transaction

MCompletion Completion

MHeartbeat

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

instance HasField "updateState" (Trigger s) (Message -> TriggerUpdateA s ())

data RegisteredTemplates

2.2. Building Applications 519

Daml SDK Documentation, 2.1.1

AllInDar

Listen to events for all templates in the given DAR.

RegisteredTemplates [RegisteredTemplate]

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

data Transaction

Transaction

Field Type Description

transactionId Transac-

tionId

commandId Optional

CommandId

events [Event]

instance HasField "commandId" Transaction (Optional CommandId)

instance HasField "events" Transaction [Event]

instance HasField "transactionId" Transaction TransactionId

data TransactionId

TransactionId Text

instance Eq TransactionId

instance Show TransactionId

instance HasField "transactionId" CompletionStatus TransactionId

instance HasField "transactionId" Transaction TransactionId

data Trigger s

Trigger is (approximately) a left-fold over Message with an accumulator of type s.

Trigger

520 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Field Type Description

initialState Party ->

[Party] ->

ActiveCon-

tracts ->

TriggerSetup

s

update Message ->

TriggerRule s

()

registeredTem-

plates

Regis-

teredTem-

plates

heartbeat Optional

RelTime

instance HasField "heartbeat" (Trigger s) (Optional RelTime)

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

instance HasField "registeredTemplates" (Trigger s) RegisteredTemplates

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

data TriggerRule s a

TriggerRule

Field Type Description

runTriggerRule StateT s

(Free Trig-

gerF) a

instance ActionTrigger (TriggerRule s)

instance Functor (TriggerRule s)

instance ActionState s (TriggerRule s)

instance HasTime (TriggerRule s)

instance Action (TriggerRule s)

instance Applicative (TriggerRule s)

instance HasField "runTriggerA" (TriggerA s a) (ACS -> TriggerRule (TriggerAState s) a)

instance HasField "runTriggerRule" (TriggerRule s a) (StateT s (Free TriggerF) a)

instance HasField "update" (Trigger s) (Message -> TriggerRule s ())

data TriggerSetup a

TriggerSetup

2.2. Building Applications 521

Daml SDK Documentation, 2.1.1

Field Type Description

runTriggerSetup Free Trig-

gerF a

instance ActionTrigger TriggerSetup

instance Functor TriggerSetup

instance HasTime TriggerSetup

instance Action TriggerSetup

instance Applicative TriggerSetup

instance HasField "initialState" (Trigger s) (Party -> [Party] -> ActiveContracts -> TriggerSetup

s)

instance HasField "runTriggerSetup" (TriggerSetup a) (Free TriggerF a)

Functions

toAnyContractId : TemplateOrInterface t => ContractId t -> AnyContractId

Wrap a ContractId t in AnyContractId.

fromAnyContractId : TemplateOrInterface t => AnyContractId -> Optional (ContractId t)

Check if a AnyContractId corresponds to the given template or return None otherwise.

fromCreated : Template t => Created -> Optional (EventId, ContractId t, t)

Check if a Created event corresponds to the given template.

fromArchived : Template t => Archived -> Optional (EventId, ContractId t)

Check if an Archived event corresponds to the given template.

registeredTemplate : Template t => RegisteredTemplate

createCmd : Template t => t -> Command

Create a contract of the given template.

exerciseCmd : Choice t c r => ContractId t -> c -> Command

Exercise the given choice.

createAndExerciseCmd : (Template t, Choice t c r) => t -> c -> Command

Create a contract of the given template and immediately exercise the given choice on it.

exerciseByKeyCmd : (Choice t c r, TemplateKey t k) => k -> c -> Command

fromCreate : Template t => Command -> Optional t

Check if the command corresponds to a create command for the given template.

fromCreateAndExercise : (Template t, Choice t c r) => Command -> Optional (t, c)

Check if the command corresponds to a create and exercise command for the given template.

fromExercise : Choice t c r => Command -> Optional (ContractId t, c)

Check if the command corresponds to an exercise command for the given template.

fromExerciseByKey : (Choice t c r, TemplateKey t k) => Command -> Optional (k, c)

Check if the command corresponds to an exercise by key command for the given template.

522 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

execStateT : Functor m => StateT s m a -> s -> m s

zoom : Functor m => (t -> s) -> (t -> s -> t) -> StateT s m a -> StateT t m a

simulateRule : TriggerRule s a -> Time -> s -> (s, [Commands], a)

Run a rule without running it. May lose information from the rule; meant for testing purposes

only.

submitCommands : ActionTrigger m => [Command] -> m CommandId

In addition to the actual Daml logic which is uploaded to the Ledger and the UI, Daml applications

often need to automate certain interactions with the ledger. This is commonly done in the form of

a ledger client that listens to the transaction stream of the ledger and when certain conditions are

met, e.g., when a template of a given type has been created, the client sends commands to the ledger

to create a template of another type.

It is possible to write these clients in a language of your choice, such as JavaScript, using the HTTP

JSON API. However, that introduces an additional layer of friction: you now need to translate between

the template and choice types in Daml and a representation of those Daml types in the language you

are using for your client. Daml triggers address this problem by allowing you to write certain kinds

of automation directly in Daml, reusing all the Daml types and logic that you have already defined.

Note that, while the logic for Daml triggers is written in Daml, they act like any other ledger client:

they are executed separately from the ledger, they do not need to be uploaded to the ledger and they

do not allow you to do anything that any other ledger client could not do.

If you don’t want to follow along, but still want to get the final code for this section to play with, you

can get it by running:

daml new --template=gsg-trigger gsg-trigger

2.2.10.2 How To Think About Triggers

It is tempting to think of Daml Triggers as snippets of code that “react to ledger events”. However,

this is not the best way to think about them; while it will work in some cases, in many corner cases

that line of thought will lead to subtle errors.

Instead, you should think of, and write, your triggers from the perspective of “correcting the current

ACS” to match some predefined expectations. Trigger rules should be a combination of checking

those expectations on the current ACS and applyin corrective actions to bring back the ACS in line

with its expected state.

The “trigger” part is best thought of as an optimization: rather than check the ACS constantly, we

only apply our rules when something happens that we believe _may_ lead to the state of the ledger

diverging from our expectations.

2.2. Building Applications 523

Daml SDK Documentation, 2.1.1

2.2.10.3 Sample Trigger

Our example for this tutorial builds upon the Getting StartedGuide, specifically picking up right after

the Your First Feature section.

We assume that our requirements are to build a chatbot that reponds to every message with:

“Please, tell me more about that.”

That should fool anyone and pass the Turing test, easily.

As explainedabove, while the laymandescriptionmaybe“responds to everymessage”, our technical

description is better phrased as “ensure that, at all times, the lastmessagewe can see has been sent

by us; if that is not the case, the corrective action is to send a response to the last message we can

see”.

2.2.10.4 Daml Trigger Basics

A Daml trigger is a regular Daml project that you can build using daml build. To get access to the

API used to build a trigger, you need to add the daml-trigger library to the dependencies field in

daml.yaml:

dependencies:

- daml-prim

- daml-stdlib

- daml-script

- daml-trigger

Note: In the specific case of the Getting Started Guide, this is already included as part of the

create-daml-app template.

In addition to that you also need to import the Daml.Triggermodule in your own code.

Daml triggers automatically track the active contract set (ACS), i.e., the set of contracts that have

been created and have not been archived, and the commands in flight for you. In addition to that,

they allow you to have user-defined state that is updated based on new transactions and command

completions. For our chatbot trigger, the ACS is sufficient, so we will simply use () as the type of the

user defined state.

To create a trigger you need to define a value of type Trigger s where s is the type of your

user-defined state:

data Trigger s = Trigger

{ initialize : TriggerInitializeA s

, updateState : Message -> TriggerUpdateA s ()

, rule : Party -> TriggerA s ()

, registeredTemplates : RegisteredTemplates

, heartbeat : Optional RelTime

}

To clarify, this is the definition in the Daml.Trigger library, reproduced here for illustration pur-

poses. This is not something you need to add to your own code.

The initialize function is called on startup and allows you to initialize your user-defined state

based on querying the active contract set.

524 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

The updateState function is called on new transactions and command completions and can be

used to update your user-defined state based on the ACS and the transaction or completion. Since

our Daml trigger does not have any interesting user-defined state, we will not go into details here.

The rule function is the core of a Daml trigger. It defines which commands need to be sent to the

ledger based on the party the trigger is executed at, the current state of the ACS, and the user defined

state. The type TriggerA allows you to emit commands that are then sent to the ledger, query

the ACS with query, update the user-defined state, as well as retrieve the commands in flight with

getCommandsInFlight. Like Scenario or Update, you can use do notation and getTime with

TriggerA.

We can specify the templates that our trigger will operate on. In our case, we will simply specify

AllInDarwhichmeans that the trigger will receive events for all template types defined in the DAR.

It is also possible to specify an explicit list of templates. For example, to specify just the Message

template, one would write:

...

registeredTemplates = RegisteredTemplates [registeredTemplate @Message],

...

This is mainly useful for performance reasons if your DAR contains many templates that are not

relevant for your trigger. Note that providing an explicit list of templates also filters the result of

querying the ACS using the Trigger API: contracts of the excluded templates cannot be queried.

Finally, you can specify an optional heartbeat interval at which the trigger will be sent a MHeartbeat

message. This is useful if you want to ensure that the trigger is executed at a certain rate to issue

timed commands. We will not be using heartbeats in this example.

2.2.10.5 Running a No-Op Trigger

To implement a no-op trigger, one could write the following in a separate daml/ChatBot.daml file:

module NoOp where

import qualified Daml.Trigger as T

noOp : T.Trigger ()

noOp = T.Trigger with

initialize = pure ()

updateState = _ -> pure ()

rule = _ -> do

debug "triggered"

pure ()

registeredTemplates = T.AllInDar

heartbeat = None

In the context of the Getting Started app, if you write the above file, then run daml start and npm

start as usual, and then set up the trigger with:

daml trigger --dar .daml/dist/gsg-trigger-0.1.0.dar \

--trigger-name NoOp:noOp \

--ledger-host localhost \

--ledger-port 6865 \

--ledger-user "bob"

2.2. Building Applications 525

Daml SDK Documentation, 2.1.1

and then play with the app as alice and bob just like you did for Your First Feature, you should see the

trigger command printing a line for each interaction, containing themessage triggered as well as

other debug information.

2.2.10.6 Diversion: Updating Message

Before we can make our Trigger more useful, we need to think a bit more about what it is supposed

to do. For example, we don’t want to respond to bob’s own messages. We also do not want to send

messages when we have not received any.

In order to start with something reasonably simple, we’re going to set the rule as

if the last message we can see was not sent by bob, then we’ll send "Please, tell me

more about that." to whoever sent the last message we can see.

This raises the question of how we can determine which message is the last one, given the current

structure of a message. In order to solve that, we need to add a Time field to Message, which can be

done by editing the Message template in daml/User.daml to look like:

template Message with

sender: Party

receiver: Party

content: Text

receivedAt: Time

where

signatory sender, receiver

This should result in Daml Studio reporting an error in the SendMessage choice, as it now needs to

set the receivedAt field. Here is the updated code for SendMessage:

-- New definition for SendMessage

nonconsuming choice SendMessage: ContractId Message with

sender: Party

content: Text

controller sender

do

assertMsg "Designated user must follow you back to send a message" (elem␣

↪→sender following)

now <- getTime

create Message with sender, receiver = username, content, receivedAt = now

The getTime action (doc) returns the time at which the command was received by the sandbox.

In more sensitive applications, this may not be sufficiently reliable, as transactions may be pro-

cessed in parallel (so “received at” timestamp order may not match actual transaction order), and

in distributed cases dishonest participantsmay fudge this value. It’s good enough for this example,

though.

Now that we have a field to sort on, and thus a way to identify the latest message, we can turn our

attention back to our trigger code.

526 Chapter 2. Daml Guide

/daml/stdlib/Prelude.html#function-da-internal-lf-gettime-99334

Daml SDK Documentation, 2.1.1

2.2.10.7 AutoReply

Open up the trigger code again (daml/ChatBot.daml), and change it to:

module ChatBot where

import qualified Daml.Trigger as T

import qualified User

import qualified DA.List.Total as List

import DA.Action (when)

import DA.Optional (whenSome)

autoReply : T.Trigger ()

autoReply = T.Trigger

{ initialize = pure ()

, updateState = _ -> pure ()

, rule = \p -> do

message_contracts <- T.query @User.Message

let messages = map snd message_contracts

debug $ "Messages so far: " <> show (length messages)

let lastMessage = List.maximumOn (.receivedAt) messages

debug $ "Last message: " <> show lastMessage

whenSome lastMessage $ \m ->

when (m.receiver == p) $ do

users <- T.query @User.User

debug users

let isSender = (\user -> user.username == m.sender)

let replyTo = List.head $ filter (\(_, user) -> isSender user) users

whenSome replyTo $ \(sender, _) ->

T.dedupExercise sender (User.SendMessage p "Please, tell me more␣

↪→about that.")

, registeredTemplates = T.AllInDar

, heartbeat = None

}

Refresh daml start by pressing r (followed by Enter on Windows) in its terminal, then start the

trigger with:

daml trigger --dar .daml/dist/gsg-trigger-0.1.0.dar \

--trigger-name ChatBot:autoReply \

--ledger-host localhost \

--ledger-port 6865 \

--ledger-user "bob"

Play a bit with alice and bob in your browser, to get a feel for how the trigger works. Watch both the

messages in-browser and the debug statements printed by the trigger runner.

Let’s walk through the rule code line-by-line:

• We use the query function to get all of the Message templates visible to the current party (p;

in our case this will be bob). Per the documentation, this returns a list of tuples (contract id,

payload), which we store as message_contracts.

• We then map the snd function on the result to get only the payloads, i.e. the actual data of the

messages we can see.

• We print, as a debugmessage, the number of messages we can see.

• On the next line, get the message with the highest receivedAt field (maximumOn).

• We then print another debug message, this time printing the message our code has identified

2.2. Building Applications 527

/triggers/api/Daml-Trigger.html#function-daml-trigger-query-2759
/daml/stdlib/Prelude.html#function-ghc-base-map-40302
/daml/stdlib/Prelude.html#function-da-internal-prelude-snd-86578
/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732

Daml SDK Documentation, 2.1.1

as “the last message visible to the current party”. If you run this, you’ll see that lastMessage

is actually a Optional Message. This is because the maximumOn function will return the

element from a list for which the given functions produces the highest value if the list has at

least one element, but it needs to still do something sensible if the list is empty; in this case,

it would return None.

• When lastMessage is Some m (whenSome), we execute the given function. Otherwise,

lastMessage is None and we implicitly do nothing.

• Next, we need to checkwhether themessage has been sent to or by the party running the trigger

(with the current Daml model, it has to be one or the other, as messages are only visible to the

sender and receiver). when the expression m.receiver == p is True, we then our expecta-

tions of the ledger state are wrong and we need to correct it. Otherwise, the state matches our

rule and we don’t need to do anything.

• At this point we know the state is “wrong”, per our expectations, and start engaging in correct-

ing actions. For this trigger, this means sendinga message to the sender of the last message.

In order to do that, we need to find the User contract for the sender. We start by getting the

list of all User contracts we know about, which will be all users who follow the party running

the trigger (and that party’s own User contract). As for Message contracts earlier, the result

of query @User is going to be a list of tuples with (contract id, payload). The big difference

is that this time we actually want to keep the contract ids, as that is what we’ll use to send a

message back.

• We print the list of users we just fetched, as a debug message.

• We create a function to identify the user we are looking for.

• We get the user contract by applying our isSender function as a filter on the list of users, and

then taking the head of that list, i.e. its first element.

• Just like maximumOn, headwill return an Optional a, so the next step is to check whether we

have actually found the relevant User contract. In most cases we should find it, but remember

that users can send us a message if we follow them, whereas we can only answer if they follow

us.

• If we did find some User contract to reply to, we extract the corresponding contract id (first

element of the tuple, sender) and discard the payload (second element, _), and we exercise

the SendMessage choice, passing in the current party p as the sender. See below for additional

information on what that dedup in the name of the command means.

2.2.10.8 Command Deduplication

Daml Triggers react tomany things, and it’s usually important tomake sure that the same command

is not sent mutiple times.

For example, in our autoReply chatbot above, the rule will be triggered not only when we receive a

message, but also when we send one, as well as when we follow a user or get followed by a user, and

when we stop following a user or a user stops following us.

It’s easy to imagine a sequence of events that would make a naive trigger implementation send too

many messages. For example:

• alice sends "hi", so the trigger runs and sends an exercise command.

• _Before_ the exercise command is fully processed, carol follows bob, which triggers the

rule again. The state of all the Message contracts bob can see has not changed, so the rule

might send the response to alice again.

We obviously don’t want that to happen, as it would likely prevent us from passing that Turing test

we were after.

528 Chapter 2. Daml Guide

/daml/stdlib/DA-List-Total.html#function-da-list-total-maximumon-67732
/daml/stdlib/DA-Optional.html#function-da-optional-whensome-23804
/daml/stdlib/DA-Action.html#function-da-action-when-53144
/daml/stdlib/Prelude.html#function-da-internal-prelude-filter-27394
daml/stdlib/DA-List-Total.html#function-da-list-total-head-74336
triggers/api/Daml-Trigger.html#function-daml-trigger-dedupexercise-37617

Daml SDK Documentation, 2.1.1

Triggers offer a few features to help users manage that. Possibly the simplest one is the dedup*

family of ledger operations. When using those, the trigger runner will keep track of the commands

currently sent and prevent sending the exact same command again. In the above example, the trig-

ger would see that, when carol follows bob and the rule runs dedupExercise, there is already an

Exercise command in flight with the exact same value, in this case samemessage, same sender and

same receiver.

Note that, if instead the in-between event isalice followingcarol, this simple deduplicationmech-

anism might not work as expected: because the User contract ID for alice would have changed,

the new command is not the same as the in-flight one and thus a second SendMessage exercise

would be sent to the ledger.

Similarly, if alice sends a second message quickly after the first one, this deduplication would

prevent it, because the “response” does not have any reference to which message it’s responding

to. This may or may not be what we want.

If this simple deduplication is not suited to your use-case, you have two other tools at your disposal.

The first one is the second argument to the emitCommands action (doc), which is a list of contract

IDs. These IDs will be filtered out of any ACS query made by this trigger until the commands sub-

mitted as part of the same emitCommands call have completed. If your trigger is based on seeing

certain contracts, this can be a simple, effective way to prevent triggering it multiple times.

The last tool you have at your disposal is the getCommandsInflight action (doc), which returns all

of the commands this instance of the trigger runner has sent and that have not yet been resolved

(i.e. either committed or failed). You can then build your own logic based on this list, the ACS, and

possibly your own trigger state.

Finally, do keep in mind that all of these mechanisms rely on internal state from the trigger runner,

which keeps track of which commands it has sent and for which it’s not seen a completion. They will

all fail to deduplicate if that internal state is lost, e.g. if the trigger runner is shut down and a new one

is started. As such, these deduplicationmechanisms should be seen as an optimization rather than

a requirement for correctness. The Damlmodel should be designed such that duplicated commands

are either rejected (e.g. using keys or relying on changing contract IDs) or benign.

2.2.10.9 Authorization

When using Daml triggers against a Ledger with request authorization, you can pass

--access-token-file token.jwt to daml trigger which will read the token from the

file token.jwt.

If you plan to run more than one trigger at a time, or triggers for more than one party at a time, you

may be interested in the Trigger Service.

2.2.10.10 When not to use Daml triggers

Daml triggers deliberately only allow you to express automation that listens for ledger events and

reacts to them by sending commands to the ledger.

Daml Triggers are not suited for automation that needs to interact with services or data outside of

the ledger. For those cases, you canwrite a ledger client using the JavaScript bindings running against

the HTTP JSON API or the Java bindings running against the gRPC Ledger API.

2.2. Building Applications 529

https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-emitcommands-10563
https://docs.daml.com/triggers/api/Daml-Trigger.html#function-daml-trigger-getcommandsinflight-32524

Daml SDK Documentation, 2.1.1

2.2.11 Trigger Service

2.2.11.1 Authorization

The trigger service issues commands to the ledger thatmay require authorization through an access

token. See Ledger Authorization for a description of authentication and authorization on Daml ledgers.

How to obtain an access token is defined by the ledger operator. The trigger service interfaces with

an Auth Middleware to obtain an access token in order to decouple it from the specific authentica-

tion and authorization mechanism used for a given ledger. The documentation includes an Example

Configuration using Auth0.

Enable Authorization

You can use the following command-line flags to configure the trigger service to interface with a

given auth middleware.

--auth The URI to the auth middleware. The auth middleware should be reachable under this URI

from the client as well as the trigger service itself.

--auth-callback The login workflow may require redirection to the callback endpoint of the trig-

ger service. This flag configures theURI to the trigger service’s/cb endpoint, it should be reach-

able from the client.

For example, use the following flags if the trigger service and the auth middleware are both running

behind a reverse proxy.:

--auth https://example.com/auth

--auth-callback https://example.com/trigger/cb

Assuming that the auth middleware is available under https://example.com/auth and the trig-

ger service is available under https://example.com/trigger.

Note that the trigger service must be able to share cookies with the auth middleware as described

in the Deployment notes.

Obtain Authorization

The trigger service will respond with 401 Unauthorized if a request requires authentication and au-

thorization of the user. The trigger service can be configured to redirect to the /login endpoint via

HTTP redirect (302 Found) using the command-line flag -auth-redirect. This can be useful for

testing if the IAM does not require user input.

The 401 Unauthorized response will include a WWW-Authenticate header of the form:

WWW-Authenticate

DamlAuthMiddleware realm=":claims",login=":login",auth=":auth"

where

• claims are the required Daml Ledger Claims.

• login is the URL to initiate the login flow on the auth middleware.

• auth is the URL to check whether authorization has been granted.

The response will also include an entity with

530 Chapter 2. Daml Guide

https://tools.ietf.org/html/rfc7235#section-4.1

Daml SDK Documentation, 2.1.1

• Content-Type: application/json

• Content:

{

"realm": ":claims",

"login": ":auth",

"auth": ":login",

}

An application can direct the user to the login URL, wait until authorization has been granted, and re-

peat the original request once authorization has been granted. The auth URL can be used to poll until

authorization has been granted. Alternatively, it can append a custom redirect_url parameter to

the login URL and redirect to the resulting URL. Note that login with the IAM may require entering

credentials into a web-form, i.e. the login URL should be opened in a web browser.

Example Usage

This section describes how a web frontend can interact with the trigger service when authorization

is required. Note, to avoid cross-origin requests and to enable sharing of cookies theweb application

and authmiddleware should be exposed under the same domain, e.g. behind a shared reverse proxy.

Let’s start with a request to the list running triggers endpoint.

const resp = await fetch("/trigger/v1/triggers?party=Alice");

if (resp.status >= 200 && resp.status < 300) {

const result = await resp.json();

// process result ...

} else if (resp.status === 401) {

// handle Unauthorized ...

} else {

// handle other error ...

}

If the request succeeds it decodes the JSON response body and continues processing the result,

otherwise it checks if the request failed with 401 Unauthorized or another error. We will ignore the

general error case and focus only on handling the Unauthorized response.

Login via Redirect

A simple solution is to redirect the browser to the login URL after adding a redirect_url parameter

that points back to the current page.

const challenge = await resp.json();

var loginUrl = new URL(challenge.login);

loginUrl.searchParams.append("redirect_uri", window.location.href);

window.location.replace(loginUrl.href);

This code first decodes the JSON encoded authentication challenge included in the response body,

then it extends the login URL with a redirect_uri parameter that points back to the current page,

and redirects the browser to the login flow. The browser will be redirected to the original page after

the login flow completed at which point authorization should have been granted and the original

request should succeed.

2.2. Building Applications 531

Daml SDK Documentation, 2.1.1

Login via Popup

Another solution is to direct the user to the login page in a separate window, wait until authorization

has been granted, and then retry the original request.

const challenge = await resp.json();

await popupLogin(challenge.login, challenge.auth);

// retry original request ...

The function popupLogin opens the login URL in a popup window and polls on the auth URL until

authorization has been granted. It raises an error if the login window closes before authorization has

been granted.

function popupLogin(login, auth) {

return new Promise(function (resolve, reject) {

var popup = window.open(login);

var timer = setInterval(async function() {

const closed = popup.closed;

const resp = await fetch(auth);

if (resp.status >= 200 && resp.status < 300) {

// The user logged in

clearInterval(timer);

popup.close();

resolve();

} else if (closed) {

// The popup is closed but we are not logged in.

reject(new Error("Login failed"))

}

}, 1000);

});

}

2.2.11.2 Auth0 Example Configuration

This section describes a minimal example configuration of the trigger service with authorization

enabled using Auth0 as the OAuth 2.0 provider together with the OAuth 2.0 middleware included in

Daml. It uses the sandbox as the Daml ledger.

532 Chapter 2. Daml Guide

https://auth0.com

Daml SDK Documentation, 2.1.1

Configure Auth0

Sign up for an account on Auth0 to follow this guide.

Create an API

First, create a new API on the Auth0 API dashboard. This will represent the Daml ledger API and con-

trols properties of access tokens issued for the ledger API.

• Enter the name of the API, e.g. ex-daml-api.

• Enter the API identifier: https://daml.com/ledger-api.

• Select the signing algorithm RS256.

• Press the “create” button.

Enter the settings of the newly created API.

• Allow offline access in the access settings section to enable issuance of refresh tokens.

Create an Application

Create a new native application. This will represent the OAuth 2.0 middleware.

• Enter the name of the application, e.g. ex-daml-auth-middleware.

• Choose the application type “native”.

• Press the “create” button.

Enter the settings of the newly created application.

• Configure the allowed callback URLs: http://localhost:5000/auth/cb.

This is theURL to the callback endpoint of the authmiddleware, in this case through the reverse

proxy.

• Take note of the “Client ID” and “Client Secret” displayed in the “Basic Information” section.

• Take note of the following URLs in the “Endpoints” tab of the advanced settings:

– OAuth Authorization URL,

– OAuth Token URL, and

– JSON Web Key Set.

Create a Rule

Create a new rule. This will define user privileges, the mapping from scopes to ledger claims, and

construct the access token.

Note, for simplicity this rule will grant access to any claims to any user. In a real setup the rule will

need to validate whether the user is authorized to access the requested claims. Rules can be used

to implement custom authorization policies.

This rule will define a one-to-one mapping between scopes and Daml ledger claims, this is compat-

ible with the default request templates that are built into the OAuth 2.0 middleware.

• Enter the name of the rule, e.g. ex-daml-token.

• Enter the following script:

2.2. Building Applications 533

https://auth0.com/docs/get-started/set-up-apis
https://auth0.com/docs/get-started/dashboard/api-settings
https://auth0.com/docs/applications/set-up-an-application/register-native-applications
https://auth0.com/docs/get-started/dashboard/application-settings
https://auth0.com/docs/rules/create-rules
https://auth0.com/docs/authorization/sample-use-cases-rules-with-authorization

Daml SDK Documentation, 2.1.1

function (user, context, callback) {

// NOTE change the ledger ID to match your deployment.

const ledgerId =
daml-auth0-example-ledger
;

const apiId =
https://daml.com/ledger-api
;

const query = context.request.query;

// Only handle ledger-api audience.

const audience = query && query.audience || "";

if (audience !== apiId) {

return callback(null, user, context);

}

// Determine requested claims.

var admin = false;

var readAs = [];

var actAs = [];

var applicationId = null;

const scope = (query && query.scope || "").split(" ");

scope.forEach(s => {

if (s === "admin") {

admin = true;

} else if (s.startsWith("readAs:")) {

readAs.push(s.slice(7));

} else if (s.startsWith("actAs:")) {

actAs.push(s.slice(6));

} else if (s.startsWith("applicationId:")) {

applicationId = s.slice(14);

}

});

// Construct access token.

context.accessToken[apiId] = {

"ledgerId": ledgerId,

"actAs": actAs,

"readAs": readAs,

"admin": admin

};

if (applicationId) {

context.accessToken[apiId].applicationId = applicationId;

}

return callback(null, user, context);

}

You can use the Real-timeWebtask Logs extension to view any console.log output generated

by your rule during the processing of authorization requests.

534 Chapter 2. Daml Guide

https://auth0.com/docs/extensions/real-time-webtask-logs

Daml SDK Documentation, 2.1.1

Create a User

Create a new user.

• Enter an email address, e.g. alice@example.com.

• Enter a secure password.

• Remember the credentials.

• Choose the “Username-Password-Authentication” connection.

• Press the “create” button.

Enter the details page of the newly created user.

• Edit the email address.

• Press “Set email as verified”.

• Press “save”.

Start Daml

Next, configure the relevant Daml components to use Auth0 as the IAM.

Sandbox

Start the sandbox using the following command. ReplaceJSON_Web_Key_Setby the corresponding

URL found in the application settings andmake sure that the ledger IDmatches the one in the Auth0

rule.

daml sandbox \

--address localhost \

--port 6865 \

--ledgerid daml-auth0-example-ledger \

--wall-clock-time \

--auth-jwt-rs256-jwks "JSON_Web_Key_Set"

OAuth 2.0 Middleware

Start the authmiddleware using the following command. Replace the client identifier andURL place-

holders by the corresponding values found in the application settings and make sure that the call-

backURLmatches the allowedcallbackURL in the application settings. The--callback flagdefines

the middleware’s callback URL as exposed through the reverse proxy.

DAML_CLIENT_ID="Client_ID" \

DAML_CLIENT_SECRET="Client_Secret" \

daml oauth2-middleware \

--address localhost \

--http-port 3000 \

--oauth-auth "OAuth_Authorization_URL" \

--oauth-token "OAuth_Token_URL" \

--auth-jwt-rs256-jwks "JSON_Web_Key_Set" \

--callback http://localhost:5000/auth/cb

2.2. Building Applications 535

https://auth0.com/docs/users/create-users
https://auth0.com/docs/users/view-user-details

Daml SDK Documentation, 2.1.1

Trigger Service

Start the trigger service using the following command. The --auth flag defines the middleware’s

URL prefix as exposed through the reverse proxy, similarly the --auth-callback flag defines the

trigger service’s callback URL as exposed through the reverse proxy.

daml trigger-service \

--address localhost \

--http-port 4000 \

--ledger-host localhost \

--ledger-port 6865 \

--auth http://localhost:5000/auth \

--auth-callback http://localhost:5000/trigger/cb

Configure Web Server

This guide uses Nginx as a reverse proxy and web server.

• Configure nginx using the following snippet:

http {

server {

listen 5000;

server_name localhost;

root html;

location /auth/ {

proxy_pass http://localhost:3000/;

}

location /trigger/ {

proxy_pass http://localhost:4000/;

}

}

}

This exposes the auth middleware under the URL http://localhost:3000/ and the trigger

service under the URL http://localhost:4000/.

• Add the following index.html to your web root:

<!DOCTYPE html>

<html>

<body>

<button onclick="listTriggers()">list triggers</button>

</body>

<script>

async function listTriggers() {

// The rule defined above accepts all claims for all users.

// So, we can always access claims to the party Alice.

const resp = await fetch("http://localhost:5000/trigger/v1/triggers?

↪→party=Alice");

if (resp.status === 401) {

const challenge = await resp.json();

console.log(CUnauthorized ${JSON.stringify(challenge)}C);

var loginUrl = new URL(challenge.login);

(continues on next page)

536 Chapter 2. Daml Guide

https://www.nginx.com

Daml SDK Documentation, 2.1.1

(continued from previous page)

loginUrl.searchParams.append("redirect_uri", window.location.href);

window.location.replace(loginUrl.href);

} else {

const body = await resp.text();

console.log(C(${resp.status}) ${body}C);

}

}

</script>

</html>

This defines a very simple web site with a single button that will request the list of Alice’s

running triggers from the trigger service. If the user is authorized it will print the list to the

JavaScript console, otherwise it will redirect to auth middleware’s login endpoint to obtain au-

thorization.

Test the Setup

Use the following commands to determine if the OAuth 2.0 middleware and trigger service are run-

ning and available through the reverse proxy.

$ curl http://localhost:5000/auth/livez

{"status":"pass"}

$ curl http://localhost:5000/trigger/livez

{"status":"pass"}

Direct your web browser to the URL http://localhost:5000. It should display the test page with

the single “list triggers” button defined above.

• Open the JavaScript console.

• Press the “list triggers” button.

• An “Unauthorized” message should appear in the console and you should be redirected to the

auth0 login page.

• Login with the credentials of the auth0 user that you created before.

• The browser should be redirected to the test page.

• Click the button again. This time a message like the following should appear in the console.

(200) {"result":{"triggerIds":[]},"status":200}

The Running a No-Op Trigger section shows a simple method using the daml trigger command to

arrange for the execution of a single trigger. Using this method, a dedicated process is launched to

host the trigger.

Complex workflows can require runningmany triggers formany parties and at a certain point, use of

daml trigger with its process-per-trigger model becomes unwieldy. The Trigger Service provides

themeans to hostmultiple triggers formultiple parties running against a common ledger in a single

process and provides a convenient interface for starting, stopping and monitoring them.

The Trigger Service is a ledger client that acts as an end-user agent. The Trigger Service intermediates

between the ledger and end-users by running triggers on their behalf. The Trigger Service is an HTTP

service. All requests and responses use JSON to encode data.

2.2. Building Applications 537

Daml SDK Documentation, 2.1.1

2.2.11.3 Starting the Trigger Service

In this example, it is assumed there is a Ledger API server running on port 6865 on localhost.

daml trigger-service --config trigger-service.conf

The following snippet provides an example of what a possible trigger-service.conf configuration file

could look like, alongside a few annotations with regards to the meaning of the configuration keys

and possibly their default values.

{

// Mandatory. Paths to the DAR files containing the code executed by the␣

↪→trigger.

dar-paths = [

"./my-app.dar"

]

// Mandatory. Host address that the Trigger Service listens on. Defaults to 127.

↪→0.0.1.

address = "127.0.0.1"

// Mandatory. Trigger Service port number. Defaults to 8088.

// A port number of 0 will let the system pick an ephemeral port.

port = 8088

// Optional. If using 0 as the port number, consider specifying the path to a␣

↪→Cport-fileC where the chosen port will be saved in textual format.

//port-file = "/path/to/port-file"

// Mandatory. Ledger API server address and port.

ledger-api {

address = "localhost"

port = 6865

}

// Maximum inbound message size in bytes. Defaults to 4194304 (4 MB).

max-inbound-message-size = 4194304

// Minimum and maximum time interval before restarting a failed trigger.␣

↪→Defaults to 5 and 60 seconds respectively.

min-restart-interval = 5s

max-restart-interval = 60s

// Maximum HTTP entity upload size in bytes. Defaults to 4194304 (4 MB).

max-http-entity-upload-size = 4194304

// HTTP entity upload timeout. Defaults to 60 seconds.

http-entity-upload-timeout = 60s

// Use static or wall-clock time. Defaults to Cwall-clockC.

time-provider-type = "wall-clock"

// Compiler configuration type to use between CdefaultC or CdevC. Defaults to␣

↪→CdefaultC.

compiler-config = "default"

// Time-to-live used for commands emitted by the trigger. Defaults to 30␣

↪→seconds.
(continues on next page)

538 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

ttl = 30s

// If true, initialize the database and terminate immediately. Defaults to␣

↪→false.

init-db = "false"

// Do not abort if there are existing tables in the database schema. EXPERT␣

↪→ONLY. Defaults to false.

allow-existing-schema = "false"

// Configuration for the persistent store that will be used to keep track of␣

↪→running triggers across restarts.

// Mandatory if Cinit-dbC is true. Otherwise optional. If not provided, the␣

↪→trigger state will not be persisted

// and restored across restarts.

trigger-store {

// Mandatory. Database coordinates.

user = "postgres"

password = "password"

driver = "org.postgresql.Driver"

url = "jdbc:postgresql://localhost:5432/test?&ssl=true"

// Prefix for table names to avoid collisions. EXPERT ONLY. By default, this␣

↪→is empty and not used.

//table-prefix = "foo"

// Maximum size for the database connection pool. Defaults to 8.

pool-size = 8

// Minimum idle connections for the database connection pool. Defaults to 8.

min-idle = 8

// Idle timeout for the database connection pool. Defaults to 10 seconds.

idle-timeout = 10s

// Timeout for database connection pool. Defaults to 5 seconds.

connection-timeout = 5s

}

authorization {

// Auth client to redirect to login. Defaults to CnoC.

auth-redirect = "no"

// The following options configure the auth URIs.

// Either just Cauth-common-uriC or both Cauth-internal-uriC and Cauth-

↪→external-uriC must be specified.

// If all are specified, Cauth-internal-uriC and Cauth-external-uriC take␣

↪→precedence.

// Sets both the internal and external auth URIs.

//auth-common-uri = "https://oauth2/common-uri"

// Internal auth URI used by the Trigger Service to connect directly to the␣

↪→Auth Middleware.

(continues on next page)

2.2. Building Applications 539

Daml SDK Documentation, 2.1.1

(continued from previous page)

auth-internal-uri = "https://oauth2/internal-uri"

// External auth URI (the one returned to the browser).

// This value takes precedence over the one specified for Cauth-commonC.

auth-external-uri = "https://oauth2/external-uri"

// Optional. URI to the auth login flow callback endpoint C/cbC. By default␣

↪→it is constructed from the incoming login request.

// auth-callback-uri = "https://oauth2/callback-uri"

// Maximum number of pending authorization requests. Defaults to 250.

max-pending-authorizations = 250

// Authorization timeout. Defaults to 60 seconds.

authorization-timeout = 60s

}

}

The Trigger Service can also be started using command line arguments as shown below. The com-

mand daml trigger-service --help lists all available parameters.

Note: Using the configuration format shown above is the recommended way to configure Trigger

Service, running with command line arguments is now deprecated.

daml trigger-service --ledger-host localhost \

--ledger-port 6865 \

--wall-clock-time

Although, as we’ll see, the Trigger Service exposes an endpoint for end-users to upload DAR files to

the service it is sometimes convenient to start the service pre-configured with a specific DAR. To do

this, the --dar option is provided.

daml trigger-service --ledger-host localhost \

--ledger-port 6865 \

--wall-clock-time \

--dar .daml/dist/create-daml-app-0.1.0.dar

2.2.11.4 Endpoints

Start a trigger

Start a trigger. In this example, alice starts the trigger called

trigger in a module called TestTrigger of a package with ID

312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14. The re-

sponse contains an identifier for the running trigger that alice can use in subsequent commands

involving the trigger.

540 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Request

• URL: /v1/triggers

• Method: POST

• Content-Type: application/json

• Content:

{

"triggerName":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14:TestTrigger:trigger

↪→",

"party": "alice",

"applicationId": "my-app-id"

}

where

• triggerName contains the identifier for the trigger in the form ${packageId}:${module-

Name}:${identifierName}. You can find the package ID using daml damlc inspect

path/to/trigger.dar | head -1.

• party is the party on behalf of which the trigger is running.

• applicationId is an optional field to specify the application ID the trigger will use for com-

mand submissions. If omitted, the trigger will default to using its random UUID identifier re-

turned in the start request as the application ID.

HTTP Response

{

"result":{"triggerId":"4d539e9c-b962-4762-be71-40a5c97a47a6"},

"status":200

}

Stop a trigger

Stop a running trigger. In this example, the request asks to stop the trigger started above.

HTTP Request

• URL: /v1/triggers/:id

• Method: DELETE

• Content-Type: application/json

• Content:

2.2. Building Applications 541

Daml SDK Documentation, 2.1.1

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"triggerId":"4d539e9c-b962-4762-be71-40a5c97a47a6"},

"status":200

}

List running triggers

List the triggers running on behalf of a given party.

HTTP Request

• URL: /v1/triggers?party=:party

• Method: GET

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"triggerIds":["4d539e9c-b962-4762-be71-40a5c97a47a6"]},

"status":200

}

Status of a trigger

This endpoint returns data about a trigger, including the party on behalf of which it is running, its

identifier, and its current state (querying the active contract set, running, or stopped).

HTTP Request

• URL: /v1/triggers/:id

• Method: GET

542 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Response

• Content-Type: application/json

• Content:

{

"result":

{

"party": "Alice",

"triggerId":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14:TestTrigger:trigger

↪→",

"status": "running"

},

"status":200

}

Upload a new DAR

Upload a DAR containing one or more triggers. If successful, the DAR’s “main package ID” will be

in the response (the main package ID for a DAR can also be obtained using daml damlc inspect

path/to/dar | head -1).

HTTP Request

• URL: /v1/packages

• Method: POST

• Content-Type: multipart/form-data

• Content:

dar=$dar_content

HTTP Response

• Content-Type: application/json

• Content:

{

"result": {"mainPackageId":

↪→"312094804c1468e2166bae3c9ba8b5cc0d285e31356304a2e9b0ac549df59d14"},

"status": 200

}

2.2. Building Applications 543

Daml SDK Documentation, 2.1.1

Liveness check

This can be used as a liveness probe, e.g., in Kubernetes.

HTTP Request

• URL: /livez

• Method: GET

HTTP Response

• Content-Type: application/json

• Content:

{ "status": "pass" }

2.2.12 Auth Middleware

2.2.12.1 OAuth 2.0 Auth Middleware

Daml includes an implementation of an auth middleware that supports OAuth 2.0 Authorization

Code Grant. The implementation aims to be configurable to support different OAuth 2.0 providers

and to allow custommappings from Daml ledger claims to OAuth 2.0 scopes.

OAuth 2.0 Configuration

RFC 6749 specifies that OAuth 2.0 providers offer two endpoints: The authorization endpoint and the

token endpoint. The URIs for these endpoints can be configured independently using the following

fields:

• oauth-auth

• oauth-token

The OAuth 2.0 provider may require that the application identify itself using a client identifier and

client secret. These can be specified using the following environment variables:

• DAML_CLIENT_ID

• DAML_CLIENT_SECRET

The auth middleware assumes that the OAuth 2.0 provider issues JWT access tokens. The /auth

endpoint will validate the token, if available, and ensure that it grants the requested claims. The

authmiddleware accepts the same command-line flags as the Daml Sandbox to define the public key

for token validation.

544 Chapter 2. Daml Guide

https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/authorization-code/
https://tools.ietf.org/html/rfc6749#section-3
https://tools.ietf.org/html/rfc6749#section-3.1
https://tools.ietf.org/html/rfc6749#section-3.2

Daml SDK Documentation, 2.1.1

Request Templates

The exact format of OAuth 2.0 requestsmay vary between providers. Furthermore, themapping from

Daml ledger claims to OAuth 2.0 scopes is defined by the IAM operator. For that reason OAuth 2.0

requests made by auth middleware can be configured using user defined Jsonnet templates. Tem-

plates are parameterized configurations expressed as top-level functions.

Authorization Request

This template defines the format of the Authorization request. Use the following config field to use

a custom template:

• oauth-auth-template

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– claims (object) the requested claims

* admin (bool)

* applicationId (string or null)

* actAs (list of string)

* readAs (list of string)

– redirectUri (string)

– state (string)

Returns

The query parameters for the authorization endpoint encoded as an object with string values.

Example

local scope(claims) =

local admin = if claims.admin then "admin";

local applicationId = if claims.applicationId != null then "applicationId:" +␣

↪→claims.applicationId;

local actAs = std.map(function(p) "actAs:" + p, claims.actAs);

local readAs = std.map(function(p) "readAs:" + p, claims.readAs);

[admin, applicationId] + actAs + readAs;

function(config, request) {

"audience": "https://daml.com/ledger-api",

"client_id": config.clientId,

"redirect_uri": request.redirectUri,

(continues on next page)

2.2. Building Applications 545

https://jsonnet.org/
https://tools.ietf.org/html/rfc6749#section-4.1.1

Daml SDK Documentation, 2.1.1

(continued from previous page)

"response_type": "code",

"scope": std.join(" ", ["offline_access"] + scope(request.claims)),

"state": request.state,

}

Token Request

This template defines the format of the Token request. Use the following config field to use a custom

template:

• oauth-token-template

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– code (string)

– redirectUri (string)

Returns

The request parameters for the token endpoint encoded as an object with string values.

Example

function(config, request) {

"client_id": config.clientId,

"client_secret": config.clientSecret,

"code": request.code,

"grant_type": "authorization_code",

"redirect_uri": request.redirectUri,

}

Refresh Request

This template defines the format of the Refresh request. Use the following config field to use a cus-

tom template:

• oauth-refresh-template

546 Chapter 2. Daml Guide

https://tools.ietf.org/html/rfc6749#section-4.1.3
https://tools.ietf.org/html/rfc6749#section-6

Daml SDK Documentation, 2.1.1

Arguments

The template will be passed the following arguments:

• config (object)

– clientId (string) the OAuth 2.0 client identifier

– clientSecret (string) the OAuth 2.0 client secret

• request (object)

– refreshToken (string)

Returns

The request parameters for the authorization endpoint encoded as an object with string values.

Example

function(config, request) {

"client_id": config.clientId,

"client_secret": config.clientSecret,

"grant_type": "refresh_code",

"refresh_token": request.refreshToken,

}

Deployment Notes

The authmiddleware API relies on sharing cookies between the authmiddleware and the Daml appli-

cation. One way to enable this is to expose the authmiddleware and the Daml application under the

same domain, e.g. through a reverse proxy. Note that you will need to specify the external callback

URI in that case using the --callback command-line flag.

For example, assuming the following nginx configuration snippet:

http {

server {

server_name example.com

location /auth/ {

proxy_pass http://localhost:3000/;

}

}

}

You would invoke the OAuth 2.0 auth middleware with the following flags:

oauth2-middleware \

--config oauth-middleware.conf

The required config would look like

{

// Environment variables:

(continues on next page)

2.2. Building Applications 547

Daml SDK Documentation, 2.1.1

(continued from previous page)

// DAML_CLIENT_ID The OAuth2 client-id - must not be empty

// DAML_CLIENT_SECRET The OAuth2 client-secret - must not be empty

client-id = ${DAML_CLIENT_ID}

client-secret = ${DAML_CLIENT_SECRET}

//IP address that OAuth2 Middleware service listens on. Defaults to 127.0.0.1.

address = "127.0.0.1"

//OAuth2 Middleware service port number. Defaults to 3000. A port number of 0␣

↪→will let the system pick an ephemeral port. Consider specifying C--port-fileC␣

↪→option with port number 0.

port = 3000

//URI to the auth middleware
s callback endpoint C/cbC. By default constructed␣

↪→from the incoming login request.

callback-uri = "https://example.com/auth/cb"

//Maximum number of simultaneously pending login requests. Requests will be␣

↪→denied when exceeded until earlier requests have been completed or timed out.

max-login-requests = 250

//Login request timeout. Requests will be evicted if the callback endpoint␣

↪→receives no corresponding request in time.

login-timeout = 60s

//Enable the Secure attribute on the cookie that stores the token. Defaults to␣

↪→true. Only disable this for testing and development purposes.

cookie-secure = "true"

//URI of the OAuth2 authorization endpoint

oauth-auth="https://oauth2-provider.com/auth_uri"

//URI of the OAuth2 token endpoint

oauth-token="https://oauth2-provider.com/token_uri"

//OAuth2 authorization request Jsonnet template

oauth-auth-template="file://path/oauth/auth/template"

//OAuth2 token request Jsonnet template

oauth-token-template = "file://path/oauth/token/template"

//OAuth2 refresh request Jsonnet template

oauth-refresh-template = "file://path/oauth/refresh/template"

// Enables JWT-based authorization, where the JWT is signed by one of the below␣

↪→Jwt based token verifiers

token-verifier {

// type can be rs256-crt, es256-crt, es512-crt or rs256-jwks

type = "rs256-jwks"

// X509 certificate file (.crt)/JWKS url from where the public key is loaded

uri = "https://example.com/.well-known/jwks.json"

}

}

The oauth2-middleware can also be started using cli-args.

Note: Configuration file is the recommended way to run oauth2-middleware, running via cli-args is

548 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

now deprecated

oauth2-middleware \

--callback https://example.com/auth/cb \

--address localhost \

--http-port 3000 \

--oauth-auth https://oauth2-provider.com/auth_uri \

--oauth-token https://oauth2-provider.com/token_uri \

--auth-jwt-rs256-jwks https://example.com/.well-known/jwks.json

Some browsers reject Secure cookies on unencrypted connections even on localhost. You can pass

the command-line flag --cookie-secure no for testing and development on localhost to avoid

this.

Daml ledgers only validate authorization tokens. The issuance of those tokens however is some-

thing defined by the participant operator and can vary significantly across deployments. This poses

a challenge when developing applications that need to be able to acquire and refresh authorization

tokens but don’t want to tie themselves to any particular mechanism for token issuance. The Auth

Middleware aims to address this problembyproviding anAPI that decouplesDaml applications from

these details. The participant operator can provide an Auth Middleware that is suitable for their au-

thentication and authorization mechanism. Daml includes an implementation of an Auth Middle-

ware that supports OAuth 2.0 Authorization Code Grant. If this implementation is not compatible

with your mechanism for token issuance, you can implement your own Auth Middleware provided it

conforms to the same API.

2.2.12.2 Features

The Auth Middleware is designed to fulfill the following goals:

• Be agnostic of the authentication and authorization protocol required by the identity and ac-

cess management (IAM) system used by the participant operator.

• Allow fine grained access control via Daml ledger claims.

• Support token refresh for long running clients that should not require user interaction.

2.2.12.3 Auth Middleware API

An implementation of the Auth Middleware must provide the following API.

Obtain Access Token

The application contacts this endpoint to determine if the issuer of the request is authenticated

and authorized to access the given claims. The application must forward any cookies that it itself

received in the original request. The response will contain an access token and optionally a refresh

token if the issuer of the request is authenticated and authorized. Otherwise, the response will be

401 Unauthorized.

2.2. Building Applications 549

https://oauth.net/2/grant-types/authorization-code/

Daml SDK Documentation, 2.1.1

HTTP Request

• URL: /auth?claims=:claims

• Method: GET

• Headers: Cookie

where

• claims are the requested Daml Ledger Claims.

For example:

/auth?claims=actAs:Alice+applicationId:MyApp

Note: When using user management, the participant operator may have configured their IAM to is-

sue user tokens. The Auth Middleware currently doesn’t accept an input parameter specific to user

IDs. As such, it is up to the IAM to map claims request to the required user token. Our recommenda-

tion to participant operators is tomap theapplicationId claim to the required user ID. Application

developers should contact their ledger operator to understand how they are supposed to request for

a token.

HTTP Response

{

"access_token": "...",

"refresh_token": "..."

}

where

• access_token is the access token to use for Daml ledger commands.

• refresh_token (optional) can be used to refresh an expired access token on the /refresh

endpoint.

Request Authorization

The application directs the user to this endpoint if the /auth endpoint returned 401 Unauthorized.

This will request authentication and authorization of the user from the IAM for the given claims. E.g.

in the OAuth 2.0 based implementation included in Daml, this will start an Authorization Code Grant

flow.

If authorization is granted this will store the access and optional refresh token in a cookie. The

request can define a callback URI, if specified this endpoint will redirect to the callback URI at the

end of the flow. Otherwise, it will respond with a status code that indicates whether authorization

was successful or not.

550 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Request

• URL: /login?claims=:claims&redirect_uri=:redirect_uri&state=:state

• Method: GET

where

• claims are the requested Daml Ledger Claims.

• redirect_uri (optional) redirect to this URI at the end of the flow. Passes error and option-

ally error_description parameters if authorization failed.

• state (optional) forward this parameter to the redirect_uri if specified.

For example:

/login?claims=actAs:Alice+applicationId:MyApp&redirect_uri=http://example.com/cb&

↪→state=2b56cc2e-01ad-4e51-a9b3-124d4bbe0a91

Refresh Access Token

The application contacts this endpoint to refresh an expired access token without requiring user

input. Token refresh is available if the /auth endpoint return a refresh token along side the access

token. This endpoint will return a new access token and optionally a new refresh token to replace the

old.

HTTP Request

• URL: /refresh

• Method: POST

• Content-Type: application/json

• Content:

{

"refresh_token": "..."

}

where

• refresh_token is the refresh token returned by /auth or a previous /refresh request.

HTTP Response

{

"access_token": "...",

"refresh_token": "..."

}

where

• access_token is the access token to use for Daml ledger commands.

• refresh_token (optional) can be used to refresh an expired access token on the /refresh

endpoint.

2.2. Building Applications 551

Daml SDK Documentation, 2.1.1

Daml Ledger Claims

A list of claims specifies the set of capabilities that are requested. These are passed as a

URL-encoded, space-separated list of individual claims of the following form:

• admin Access to admin-level services.

• readAs:<Party Name> Read access for the given party.

• actAs:<Party Name> Issue commands on behalf of the given party.

• applicationId:<Application Id> Restrict access to commands issued with the given application

ID.

See Access Tokens and Claims for further information on Daml ledger capabilities.

2.3 Overview of Daml ledgers

The following table lists commercially supported Daml ledgers and environments that are available

today.

Product Synchronization Tech-

nology

Status Canton Do-

main

Open

Source

Daml driver for VMware

Blockchain

VMware Blockchain GA No No

Daml driver for PostgreSQL PostgreSQL GA Yes Yes

Daml driver for Oracle DB Oracle DB GA Yes No

Daml driver for Hyperledger

Fabric

Hyperledger Fabric Beta Yes No

Daml driver for Hyperledger

Besu

Hyperledger Besu Beta Yes No

2.3.1 Deploying to a generic Daml ledger

Daml ledgers expose a unified administration API. This means that deploying to a Daml ledger is no

different from deploying to your local sandbox.

To deploy to a Daml ledger, run the following command from within your Daml project:

$ daml deploy --host=<HOST> --port=<PORT> --access-token-file=<TOKEN-FILE>

where <HOST> and <PORT> is the hostname and port your ledger is listening on, which defaults to

port6564. The<TOKEN-FILE> is needed if your sandbox runswith authorizationandneeds to contain

a JWT token with an admin claim. If your sandbox is not setup to use any authentication it can be

omitted.

Instead of passing --host, --port and --access-token-file flags to the command above, you

can add the following section to the project’s daml.yaml file:

ledger:

host: <HOSTNAME>

port: <PORT>

access-token-file: <PATH TO ACCESS TOKEN FILE>

552 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

The daml deploy command will

1. upload the project’s compiled DAR file to the ledger. This will make the Daml templates defined

in the current project available to the API users of the sandbox.

2. allocate the parties specified in the project’s daml.yaml on the ledger if they are missing.

For additional interactions with the ledger, use the daml ledger command. Try running daml

ledger --help to get a list of available ledger commands:

$ daml ledger --help

Usage: daml ledger COMMAND

Interact with a remote Daml ledger. You can specify the ledger in daml.yaml

with the ledger.host and ledger.port options, or you can pass the --host and

--port flags to each command below. If the ledger is authenticated, you should

pass the name of the file containing the token using the --access-token-file

flag or the Cdaml.access-token-fileC field in daml.yaml.

Available options:

-h,--help Show this help text

Available commands:

list-parties List parties known to ledger

allocate-parties Allocate parties on ledger

upload-dar Upload DAR file to ledger

fetch-dar Fetch DAR from ledger into file

metering-report Report on Ledger Use

2.3.1.1 Connecting via TLS

To connect to the ledger via TLS, pass --tls to the various commands. If your ledger supports or

requires mutual authentication you can pass your client key and certificate chain files via --pem

client_key.pem --crt client.crt. Finally, you can use a custom certificate authority for

validating the server certificate by passing --cacrt server.crt. If --pem, --crt or --cacrt are

specified TLS is enabled automatically so --tls is redundant.

2.3.1.2 Configuring Request Timeouts

You can configure the timeout used on API requests by passing --timeout=N to the various daml

ledger commands and daml deploy which will set the timeout to N seconds. Note that this is a

per-request timeout not a timeout for the whole command. That matters for commands like daml

deploy that consist of multiple requests.

2.4 Operating Daml

The Operating Daml section covers various processes that may be necessary to support Daml appli-

cations in a business environment, such as participant pruning and metering, as well as the basic

system requirements for Daml applications. Additional operating information for supporting Daml

applications using the Canton distributed ledger protocol can be found in the Platform Operations

User Manual.

2.4. Operating Daml 553

https://docs.daml.com/canton/usermanual/usermanual.html
https://docs.daml.com/canton/usermanual/usermanual.html

Daml SDK Documentation, 2.1.1

2.4.1 Participant Pruning

The Daml Ledger API exposes an append-only ledger model; on the other hand, Daml Participants

must be able to operate continuously for an indefinite amount of time on a limited amount of hot

storage.

In addition, privacy demands1 may require removing Personally Identifiable Information (PII) upon

request.

To satisfy these requirements, the Pruning Service Ledger API endpoint2 allows Daml Participants to

support pruning of Daml contracts and transactions that were respectively archived and submitted

before or at a given ledger offset.

Please refer to the specific Daml driver information for details about its pruning support.

2.4.1.1 Impacts on Daml applications

When supported, pruning can be invoked by an operator with administrative privileges at any time

on a healthy Daml participant; furthermore, it doesn’t require stopping nor suspending normal op-

eration.

Still, Daml applications may be affected in the following ways:

• Pruning is potentially a long-running operation and demanding one in terms of system re-

sources; as such, it may significantly reduce Daml Ledger API throughput and increase la-

tencywhile it is being performed. It is thus strongly recommended to plan pruning invocations,

preferably, when the system is offline or at least when very low system utilization is expected.

• Pruning may degrade the behavior of or abort in-progress requests if the pruning offset is too

recent. In particular, the systemmight misbehave if command completions are pruned before

the command trackers are able to process the completions.

• Command deduplication and command tracker retention should always configured in such a

way, that theassociatedwindowsdon’t overlapwith thepruningwindow, so that their operation

is unaffected by pruning.

• Pruning may affect the behavior of Ledger API calls that allow to read data from the ledger: see

the next sub-section for more information about API impacts.

• Pruning of all divulged contracts (see Prune Request) does not preserve application visibility

over contracts divulged up to the pruning offset, hence applications making use of pruned

divulged contracts might start experiencing failed command submissions: see the section

below for determining a suitable pruning offset.

Warning: Participants may know of contracts for which they don’t know the current activeness

status. This happens through divulgence where a party learns of the existence of a contract with-

out being guaranteed to ever see its archival. Such contracts are pruned by the feature described

on this page as not doing so could easily lead to an ever growing participant state.

During command submission, parties can fetch divulged contracts. This is incompatible with the

pruning behaviour described above which allows participant operators to reclaim storage space by

pruning divulged contracts. Daml code running on pruned participants should therefore never rely

1 For example, as enabled by provisions about the “right to be forgotten” of legislation such as EU’s GDPR.
2 Invoking the Pruning Service requires administrative privileges.

554 Chapter 2. Daml Guide

https://gdpr-info.eu/

Daml SDK Documentation, 2.1.1

on existence of divulged contracts prior to or at the pruning offset. Instead, such applications MUST

ensure re-divulgence of the used contracts.

2.4.1.2 How the Daml Ledger API is affected

• Active data streams from the Daml Participant may abort and need to be re-established by the

Daml application from a later offset than pruned, even if they are already streaming past it.

• Requesting information at offsets that predate pruning, including from the ledger’s start, will

result in a FAILED_PRECONDITION gRPC error. - As a consequence, after pruning, a Daml ap-

plication must bootstrap from the Active Contract Service and a recent offset3.

Submission validation and Daml Ledger API endpoints that write to the ledger are generally not af-

fected by pruning; an exception is that in-progress calls could abort while awaiting completion.

Please refer to the protobuf documentation of the API for details about the prune operation itself and

the behavior of other Daml Ledger API endpoints when pruning is being or has been performed.

2.4.1.3 Other limitations

• Pruning may be rejected even if the node is running correctly (for example, to preserve

non-repudiation properties); in this case, the application might not be able to archive con-

tracts containing PII or pruning of these contracts may not be possible; thus, actually deleting

this PII may also be technically unfeasible.

• Pruning may leave parties, packages, and configuration data on the participant node, even if

they are no longer needed for transaction processing, and even if they contain PII3.

• Pruning does not move pruned information to cold storage but simply deletes pruned data; for

this reason, it is advisable to back up the Participant Index DB before invoking pruning. See the

next sub-section for more Participant Index DB-related advice before and after invoking prune.

• Pruning is not selective but rather effectively truncates the ledger, removing events on behalf

of archived contracts and command completions at the pruning offset and all previous offsets.

2.4.1.4 How Pruning affects Index DB administration

Pruning deletes data from the participant’s database and therefore frees up space within it, which

can and will be reused during the continued operation of the Index DB. Whether this freed up space

is handed back to the OS depends on the database in use. For example, in PostgreSQL the deleted

data frees up space in the table storage itself, but does not shrink the size of the files backing the

tables of the IndexDB. Please refer to the PostgreSQL documentation on VACUUM and VACUUM FULL for

more information.

Activities to be carried out before invoking a pruning operation should thus include backing up the

Participant Index DB, as pruning will not move information to cold storage but rather it will delete

events on behalf of archived contracts and command completions before or at the pruning offset.

In addition, activities to be carried out after invoking a pruning operation might include:

• On a PostgreSQL Index DB, especially if auto-vacuum tuning has not been performed, issuing

VACUUM commands at appropriate times may improve performance and storage usage by let-

ting the database reuse freed space. Note that VACUUM FULL commands are still needed for the

OS to reclaim disk space previously used by the database.

3 This might be improved in future versions.

2.4. Operating Daml 555

Daml SDK Documentation, 2.1.1

Backing up and vacuuming, in addition to pruning itself, are also long-running and resource-hungry

operations thatmight negatively affect the performance of regular workloads and even the availabil-

ity of the system: this is true in particular for VACUUM FULL in PostgreSQL and equivalent commands

in other DBMSs. These operations should thus be planned and taken carefully into account when siz-

ing system resources. They should also be scheduled sensibly in relation to the desired sustained

performance levels of regular workloads and to the hot storage usage goals.

Professional advice on database administration is strongly recommended that would take into ac-

count the DB specifics as well as all of the above aspects.

2.4.1.5 Determining a suitable pruning offset

The Transaction Service and the Active Contract Service provide offsets of the ledger end of the Trans-

actions, and of Active Contracts snapshots respectively. Such offsets can be passed unchanged to

prune calls, as long as they are lexicographically lower than the current ledger end.

When pruning all divulged contracts, the participant operator can choose the pruning offset as fol-

lows:

• Just before the ledger end, if no application hosted on the participantmakes use of divulgence

OR

• An offset old enough (e.g. older than an arbitrary multi-day grace period) that it ensures that

pruning does not affect any recently-divulged contract needed by the applications hosted on

the participant.

Scheduled jobs, applications and/or operator tools can be built on top of the Daml Ledger API to

implement pruning automatically, for example at regular intervals, or on-demand, for example ac-

cording to a user-initiated process.

For instance, pruning at regular intervals could be performed by a cron job that:

1. If a pruning interval has been saved to a well-known location:

a. Backs up the Daml Participant Index DB.

b. Performs pruning.

c. (If using PostgreSQL) Performs a VACUUM FULL command on the Daml Participant Index DB.

2. Queries the current ledger end and saves its offset.

The interval between 2 (i.e. saving a recent ledger end offset) and the next cron job run determines

the data retention window, that should be long enough not to affect deduplication and commands

completion. For example, pruning at a recent ledger end offset could be problematic and should be

avoided.

Pruning could also be initiated on-demand at the offset of a specific transaction4, for example as

provided by a user application based on search.

4 Note that all the events on behalf of archived contracts and command completions found at earlier offsets will also

be pruned.

556 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.4.2 Participant Metering

Participant metering is a way to report how many events have been submitted in a given period of

time.

Daml command execution results in a Daml transaction that contains events associated with the

processing of the command.

The events included in the report include:

• Contract creation

• Exercise of a contract (including non-consuming exercises and exercise by key)

• Fetch of a contract (including fetch by key)

• Lookup by contract key

Only events that originated from the local participant are included in the metering. Events received

by the local participant from remote participants are not included.

Only events contained in committed transactions are included, a failed transaction has no effect on

ledger metering.

2.4.2.1 Generating a Metering Report

A metering report is generated using the Daml assistant utility.

To run a metering report daml ledger metering-report is used with the following metering

specific arguments:

--from A start date that is used to initiate the reporting period. Events on or after this

date will be included.

--to An end date that may be used to terminate the reporting period. Events prior to

this date will be included. If an end date is not provided then the report will contain

counts of all events that occurred on or after the --from date.

--application Optionally, provide anapplication to limit the report to that application.

The from and to dates above should be formatted yyyy-mm-dd. The exact timestamp used for the

report will be the start of the UTC day provided.

Ledger metering is not affected by participant pruning.

Other non-metering specific Daml assistant flags may also be used alongside those shown above.

2.4.2.2 Example

To report on all applications for January 2022 the following from/to flags would be set:

daml ledger metering-report --from 2022-01-01 --to 2022-02-01

2.4. Operating Daml 557

Daml SDK Documentation, 2.1.1

2.4.2.3 Output

{

"participant": "some-participant",

"request": {

"from": "2022-01-01T00:00:00Z",

"to": "2022-02-01T00:00:00Z"

},

"final": true,

"applications": [

{

"application": "some-application",

"events": 42

}

]

}

The output consists of the following sections:

participant The name of the local participant the report applies to

request This sectiongivesdetails of theparameters thatwereused togenerate the report

final This field will be set to true if a --to date was provided and the --to date is in

the past. Once a report is marked as final the event counts will never change and so

may be used for billing purposes.

applications This section will give an event count for each application used in the re-

porting period.

2.4.3 System Requirements

Unless otherwise stated, all Daml runtime components require the following dependencies:

1. An x86-compatible system running a modern Unix, Windows, or MacOS operating system.

2. Java 11 or greater.

3. An RDBMS system,

1. Either PostgreSQL 10.0 or greater.

2. Or Oracle Database 19.11 or greater.

Daml is tested using the following specific dependencies in default installations.

1. Operating Systems:

1. Ubuntu 20.04

2. Windows Server 2016

3. MacOS 10.15 Catalina

2. Eclipse Adoptium version 11 for Java.

3. PostgreSQL 10.0

4. Oracle Database 19.11

558 Chapter 2. Daml Guide

https://adoptium.net

Daml SDK Documentation, 2.1.1

2.4.3.1 Feature/Component System Requirements

1. The JavaScript Client Libraries are tested on Node 14.18.3. with typescript compiler 4.5.4. Versions

greater or equal to these are recommended.

2.5 Developer Tools

2.5.1 Daml Assistant (daml)

daml is a command-line tool that does a lot of useful things related to the SDK. Using daml, you can:

• Create new Daml projects: daml new <path to create project in>

• Create a new project based on the create-daml-app template: daml new

--template=create-daml-app <path to create project in>

• Initialize a Daml project: daml init

• Compile a Daml project: daml build

This builds the Daml project according to the project config file daml.yaml (see Configuration

files below).

In particular, it will download and install the specified version of the Daml SDK (the

sdk-version field in daml.yaml) if missing, and use that SDK version to resolve dependen-

cies and compile the Daml project.

• Launch the tools in the SDK:

– Launch Daml Studio: daml studio

– Launch Sandbox, Navigator and the HTTP JSON API Service: daml start You can disable the

HTTP JSON API by passing --json-api-port none to daml start. To specify additional

options for sandbox/navigator/the HTTP JSON API you can use --sandbox-option=opt,

--navigator-option=opt and --json-api-option=opt.

– Launch Sandbox: daml sandbox

– Launch Navigator: daml navigator

– Launch the HTTP JSON API Service: daml json-api

– Run Daml codegen: daml codegen

• Install new SDK versions manually: daml install <version>

Note that you need to update your project config file <#configuration-files> to use the new

version.

2.5.1.1 Full help for commands

To see information about any command, run it with --help.

2.5.1.2 Configuration files

The Daml assistant and the SDK are configured using two files:

• The global config file, one per installation, which controls some options regarding SDK instal-

lation and updates

• The project config file, one per Daml project, which controls how the SDK builds and interacts

with the project

2.5. Developer Tools 559

Daml SDK Documentation, 2.1.1

Global config file (daml-config.yaml)

The global config file daml-config.yaml is in the daml home directory (~/.daml on Linux and

Mac, C:/Users/<user>/AppData/Roaming/daml onWindows). It controls options related to SDK

version installation and upgrades.

By default it’s blank, and you usually won’t need to edit it. It recognizes the following options:

• auto-install: whetherdamlautomatically installs amissingSDKversionwhen it is required

(defaults to true)

• update-check: how often daml will check for new versions of the SDK, in seconds (default to

86400, i.e. once a day)

This setting is only used to inform you when an update is available.

Set update-check: <number> to check for new versions every N seconds. Set

update-check: never to never check for new versions.

• artifactory-api-key: If you have a license for Daml EE, you can use this to specify the

Artifactory API key displayed in your user profile. The assistant will use this to download the EE

edition.

Here is an example daml-config.yaml:

auto-install: true

update-check: 86400

Project config file (daml.yaml)

The project config file daml.yamlmust be in the root of your Daml project directory. It controls how

the Daml project is built and how tools like Sandbox and Navigator interact with it.

The existence of a daml.yaml file is what tells daml that this directory contains a Daml project, and

lets you use project-aware commands like daml build and daml start.

daml init creates a daml.yaml in an existing folder, so daml knows it’s a project folder.

daml new creates a skeleton application in a new project folder, which includes a config file. For

example, daml new my_project creates a new folder my_projectwith a project config file daml.

yaml like this:

sdk-version: __VERSION__

name: __PROJECT_NAME__

source: daml

init-script: Main:setup

parties:

- Alice

- Bob

version: 1.0.0

exposed-modules:

- Main

dependencies:

- daml-prim

- daml-stdlib

script-service:

grpc-max-message-size: 134217728

grpc-timeout: 60

(continues on next page)

560 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

jvm-options: []

build-options: ["--ghc-option", "-Werror",

"--ghc-option", "-v"]

Here is what each field means:

• sdk-version: the SDK version that this project uses.

The assistant automatically downloads and installs this version if needed (see the

auto-install setting in the global config). We recommend keeping this up to date

with the latest stable release of the SDK. It is possible to override the version without

modifying the daml.yaml file by setting the DAML_SDK_VERSION environment vari-

able. This is mainly useful when you are working with an external project that you

want to build with a specific version.

The assistant will warn you when it is time to update this setting (see the

update-check setting in the global config to control how often it checks, or to dis-

able this check entirely).

• name: the name of the project. This determines the filename of the .dar file compiled by daml

build.

• source: the root folder of your Daml source code files relative to the project root.

• init-script: the name of the Daml script to run when using daml start.

• parties: the parties to display in the Navigator when using daml start.

• version: the project version.

• exposed-modules: the Damlmodules that are exposed by this project, which can be imported

in other projects. If this field is not specified all modules in the project are exposed.

• dependencies: library-dependencies of this project. See Reference: Daml packages.

• data-dependencies: Cross-SDK dependencies of this project See Reference: Daml packages.

• module-prefixes: Prefixes for all modules in package See Reference: Daml packages.

• script-service: settings for the script service

– grpc-max-message-size: This option controls themaximum size of gRPCmessages. If

unspecified this defaults to 128MB (134217728 bytes). Unless you get errors, there should

be no reason to modify this.

– grpc-timeout: This option controls the timeout used for communicating with the script

service. If unspecified this defaults to 60s. Unless youget errors, there shouldbeno reason

to modify this.

– jvm-options: A list of options passed to the JVM when starting the script service. This

can be used to limit maximum heap size via the -Xmx flag.

• build-options: a list of tokens thatwill be appended to some invocationsofdamlc (currently

build and ide). Note that there is no further shell parsing applied.

• sandbox-options: a list of options that will be passed to Sandbox in daml start.

• navigator-options: a list of options that will be passed to Navigator in daml start.

• json-api-options: a list of options that will be passed to the HTTP JSON API in daml start.

• script-options: a list of options that will be passed to the Daml script runner when running

the init-script as part of daml start.

• start-navigator: Controls whether navigator is started as part of daml start. Defaults to

true. If this is specified as a CLI argument, say daml start --start-navigator=true,

the CLI argument takes precedence over the value in daml.yaml.

2.5. Developer Tools 561

Daml SDK Documentation, 2.1.1

Recommended build-options

The default set of warnings enabled by the Daml compiler is fairly conservative. When you are just

starting out, seeing a huge set of warnings can easily be overwhelming and distract from what you

are actually working on. However, as you get more experienced and more people work on a Daml

project, enabling additional warnings (and enforcing their absence in CI) can be useful.

Here are build-options you might declare in a project’s daml.yaml for a stricter set of warnings.

build-options:

- --ghc-option=-Wunused-top-binds

- --ghc-option=-Wunused-matches

- --ghc-option=-Wunused-do-bind

- --ghc-option=-Wincomplete-uni-patterns

- --ghc-option=-Wredundant-constraints

- --ghc-option=-Wmissing-signatures

- --ghc-option=-Werror

Each option enables a particular warning, except for the last one, -Werror, which turns every warn-

ing into an error; this is especially useful for CI build arrangements. Simply remove or comment out

any line to disable that category of warning. See the Daml forum for a discussion of the meaning of

these warnings and pointers to other available warnings.

2.5.1.3 Building Daml projects

To compile your Daml source code into a Daml archive (a .dar file), run:

daml build

You can control the build by changing your project’s daml.yaml:

sdk-version The SDK version to use for building the project.

name The name of the project.

source The path to the source code.

The generated .dar file is created in .daml/dist/${name}.dar by default. To override the default

location, pass the -o argument to daml build:

daml build -o path/to/darfile.dar

2.5.1.4 Managing releases

You can manage SDK versions manually by using daml install.

To download and install SDK of the latest stable Daml version:

daml install latest

To download and install the latest snapshot release:

daml install latest --snapshots=yes

Please note that snapshot releases are not intended for production usage.

562 Chapter 2. Daml Guide

https://discuss.daml.com/t/making-the-most-out-of-daml-compiler-warnings/739

Daml SDK Documentation, 2.1.1

To install the SDK version specified in the project config, run:

daml install project

To install a specific SDK version, for example version 2.0.0, run:

daml install 2.0.0

Rarely, you might need to install an SDK release from a downloaded SDK release tarball. This is

an advanced feature: you should only ever perform this on an SDK release tarball that is released

through the official digital-asset/daml github repository. Otherwise your daml installationmay

become inconsistent with everyone else’s. To do this, run:

daml install path-to-tarball.tar.gz

By default, daml install will update the assistant if the version being installed is newer. You can

force the assistant to be updatedwith --install-assistant=yes and prevent the assistant from

being updated with --install-assistant=no.

See daml install --help for a full list of options.

2.5.1.5 Terminal Command Completion

The daml assistant comes with support for bash and zsh completions. These will be installed auto-

matically on Linux and Mac when you install or upgrade the Daml assistant.

If you use the bash shell, and your bash supports completions, you can use the TAB key to complete

many daml commands, such as daml install and daml version.

For Zsh you first need to add ~/.daml/zsh to your $fpath, e.g., by adding the following to the be-

ginning of your ~/.zshrc before you call compinit: fpath=(~/.daml/zsh $fpath)

You can override whether bash completions are installed for daml by passing

--bash-completions=yes or --bash-completions=no to daml install.

2.5.1.6 Running Commands outside of the Project Directory

In some cases, it can be convenient to run a command in a project without having to change di-

rectories. For that usecase, you can set the DAML_PROJECT environment variable to the path to the

project:

DAML_PROJECT=/path/to/my/project daml build

Note that while some commands, most notably, daml build, accept a --project-root option, it

can end up choosing the wrong SDK version so you should prefer the environment variable instead.

2.5. Developer Tools 563

Daml SDK Documentation, 2.1.1

2.5.2 Daml Studio

Daml Studio is an integrated development environment (IDE) for Daml. It is an extension on top

of Visual Studio Code (VS Code), a cross-platform, open-source editor providing a rich code editing

experience.

2.5.2.1 Installing

Daml Studio is included in the Daml SDK.

2.5.2.2 Creating your first Daml file

1. Start Daml Studio by running daml studio in the current project.

This command starts Visual Studio Code and (if needs be) installs the Daml Studio extension,

or upgrades it to the latest version.

2. Make sure the Daml Studio extension is installed:

1. Click on the Extensions icon at the bottom of the VS Code sidebar.

2. Click on the Daml Studio extension that should be listed on the pane.

3. Open a new file (⌘N) and save it (⌘S) as Test.daml.

4. Copy the following code into your file:

module Test where

double : Int -> Int

double x = 2 * x

Your screen should now look like the image below.

564 Chapter 2. Daml Guide

https://code.visualstudio.com
https://code.visualstudio.com/docs/editor/editingevolved
https://code.visualstudio.com/docs/editor/editingevolved

Daml SDK Documentation, 2.1.1

5. Introduce a parse error by deleting the = sign and then clicking the Ⓧ symbol on the lower-left

corner. Your screen should now look like the image below.

6. Remove the parse error by restoring the = sign.

We recommend reviewing the Visual Studio Code documentation to learn more about how to use it.

To learn more about Daml, see Language reference docs.

2.5. Developer Tools 565

https://code.visualstudio.com/docs/editor/codebasics

Daml SDK Documentation, 2.1.1

2.5.2.3 Supported features

Visual Studio Code providesmany helpful features for editing Daml files and we recommend review-

ing Visual Studio Code Basics and Visual Studio Code Keyboard Shortcuts for OS X. The Daml Studio

extension for Visual Studio Code provides the following Daml-specific features:

Symbols and problem reporting

Use the commands listed below to navigate between symbols, rename them, and inspect any prob-

lems detected in your Daml files. Symbols are identifiers such as template names, lambda argu-

ments, variables, and so on.

Command Shortcut (OS X)

Go to Definition F12

Peek Definition ⌥F12

Rename Symbol F2

Go to Symbol in File ⇧⌘O

Go to Symbol in Workspace ⌘T

Find all References ⇧F12

Problems Panel ⇧⌘M

Note: You can also start a command by typing its name into the command palette (press ⇧⌘P or

F1). The command palette is also handy for looking up keyboard shortcuts.

Note:

• Rename Symbol, Go to Symbol in File, Go to Symbol inWorkspace, and Find all References work

on: choices, record fields, top-level definitions, let-bound variables, lambda arguments, and

modules

• Go to Definition and Peek Definition work on: top-level definitions, let-bound variables, lambda

arguments, and modules

566 Chapter 2. Daml Guide

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-macos.pdf
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_errors-warnings
https://code.visualstudio.com/docs/editor/editingevolved#_rename-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-symbol
https://code.visualstudio.com/docs/editor/editingevolved#_open-symbol-by-name
https://code.visualstudio.com/docs/editor/editingevolved#_peek
https://code.visualstudio.com/docs/editor/editingevolved#_go-to-definition
https://code.visualstudio.com/docs/editor/editingevolved#_peek

Daml SDK Documentation, 2.1.1

Hover tooltips

You can hover over most symbols in the code to display additional information such as its type.

Daml Script results

Top-level declarations of type Script are decorated with a Script results code lens. You can

click on the code lens to inspect the execution transaction graph and the active contracts.

For the script from theIoumodule, you get the following table displaying all contracts that are active

at the end of the script. The first column displays the contract id. The columns afterwards represent

the fields of the contract and finally you get one column per party with an X if the party can see the

contract or a - if not.

If you want more details, you can click on the Show archived checkbox, which extends the table to

include archived contracts, and on the Show detailed disclosure checkbox, which displays why the

contract is visible to each party, based on four categories:

1. S, the party sees the contract because they are a signatory on the contract.

2. O, the party sees the contract because they are an observer on the contract.

3. W, the party sees the contract because theywitnessed the creation of this contract, e.g., because

they are an actor on the exercise that created it.

4. D, the party sees the contract because they have been divulged the contract, e.g., because they

witnessed an exercise that resulted in a fetch of this contract.

For details on the meaning of those four categories, refer to the Daml Ledger Model. For the example

above, the resulting table looks as follows. You can see the archived Bank contract and the active

Bank contract whose creation Alice has witnessed by virtue of being an actor on the exercise

that created it.

If you want to see the detailed transaction graph you can click on the Show transaction view

button. The transaction graph consists of transactions, each of which contain one or more updates

to the ledger, that is creates and exercises. The transaction graph also records fetches of contracts.

2.5. Developer Tools 567

https://code.visualstudio.com/docs/editor/editingevolved#_hover

Daml SDK Documentation, 2.1.1

For example a script for the Ioumodule looks as follows:

Fig. 8: Script results

Each transaction is the result of executing a step in the script. In the image below, the transaction

#0 is the result of executing the first line of the script (line 20), where the Iou is created by the bank.

The following information can be gathered from the transaction:

• The result of the first script transaction #0 was the creation of the Iou contract with the argu-

ments bank, 10, and "USD".

• The created contract is referenced in transaction #1, step 0.

• The created contract was consumed in transaction #1, step 0.

• A new contract was created in transaction #1, step 1, and has been divulged to parties ‘Alice’,

‘Bob’, and ‘Bank’.

• At the end of the script only the contract created in #1:1 remains.

568 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

• The return value from running the script is the contract identifier #1:1.

• And finally, the contract identifiers assigned in script execution correspond to the script step

that created them (e.g. #1).

You can navigate to the corresponding source code by clicking on the location shown in parenthesis

(e.g. Iou:25:12, whichmeans theIoumodule, line 25 and column 1). You can also navigate between

transactions by clicking on the transaction and contract ids (e.g. #1:0).

Daml snippets

You can automatically complete a number of “snippets” when editing a Daml source file. By default,

hitting ^-Space after typing a Daml keyword displays available snippets that you can insert.

To define your own workflow around Daml snippets, adjust your user settings in Visual Studio Code

to include the following options:

{

"editor.tabCompletion": true,

"editor.quickSuggestions": false

}

With those changes in place, you can simply hit Tab after a keyword to insert the code pattern.

You can develop your own snippets by following the instructions in Creating your own Snippets to

create an appropriate daml.json snippet file.

2.5. Developer Tools 569

https://code.visualstudio.com/docs/editor/userdefinedsnippets

Daml SDK Documentation, 2.1.1

2.5.2.4 Common script errors

During Daml execution, errors can occur due to exceptions (e.g. use of “abort”, or division by zero),

or due to authorization failures. You can expect to run into the following errors when writing Daml.

When a runtime error occurs in a script execution, the script result view shows the error together

with the following additional information, if available:

Location of the failed commit If the failing part of the script was a submitCmd, the source location

of the call to submitCmd will be displayed.

Stack trace A list of source locations that were encountered before the error occurred. The last en-

countered location is the first entry in the list.

Ledger time The ledger time at which the error occurred.

Partial transaction The transaction that is being constructed, but not yet committed to the ledger.

Committed transaction Transactions that were successfully committed to the ledger prior to the

error.

Trace Any messages produced by calls to trace and debug.

Abort, assert, and debug

The abort, assert and debug inbuilt functions can be used in updates and scripts. All three can

be used to output messages, but abort and assert can additionally halt the execution:

abortTest = script do

debug "hello, world!"

abort "stop"

Script execution failed:

Unhandled exception: DA.Exception.GeneralError:GeneralError with

message = "stop"

Ledger time: 1970-01-01T00:00:00Z

Trace:

"hello, world!"

Missing authorization on create

If a contract is being created without approval from all authorizing parties the commit will fail. For

example:

template Example

with

party1 : Party; party2 : Party

where

signatory party1

signatory party2

example = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

alice CsubmitC createCmd Example with

(continues on next page)

570 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

party1 = alice

party2 = bob

Execution of the example script fails due to ‘Bob’ being a signatory in the contract, but not authoriz-

ing the create:

Script execution failed:

#0: create of CreateAuthFailure:Example at unknown source

failed due to a missing authorization from
Bob

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Sub-transactions:

#0

└─> create CreateAuthFailure:Example

with

party1 =
Alice
; party2 =
Bob

To create the “Example” contract one would need to bring both parties to authorize the creation via

a choice, for example ‘Alice’ could create a contract giving ‘Bob’ the choice to create the ‘Example’

contract.

Missing authorization on exercise

Similarly to creates, exercises can also fail due to missing authorizations when a party that is not a

controller of a choice exercises it.

template Example

with

owner : Party

friend : Party

where

signatory owner

observer friend

choice Consume : ()

controller owner

do return ()

choice Hello : ()

controller friend

do return ()

example = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

cid <- alice CsubmitC createCmd Example with

owner = alice

friend = bob

bob CsubmitC exerciseCmd cid Consume

The execution of the example script fails when ‘Bob’ tries to exercise the choice ‘Consume’ of which

he is not a controller

2.5. Developer Tools 571

Daml SDK Documentation, 2.1.1

Script execution failed:

#1: exercise of Consume in ExerciseAuthFailure:Example at unknown source

failed due to a missing authorization from
Alice

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Failed exercise:

exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Sub-transactions:

0

└─>
Alice
 exercises Consume on #0:0 (ExerciseAuthFailure:Example)

with

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since):
Alice
 (#0),
Bob
 (#0)

└─> create ExerciseAuthFailure:Example

with

owner =
Alice
; friend =
Bob

From the error we can see that the parties authorizing the exercise (‘Bob’) is not a subset of the

required controlling parties.

Contract not visible

Contract not being visible is another common error that can occur when a contract that is being

fetched or exercised has not been disclosed to the committing party. For example:

template Example

with owner: Party

where

signatory owner

choice Consume : ()

controller owner

do return ()

example = script do

alice <- allocateParty "Alice"

bob <- allocateParty "Bob"

cid <- alice CsubmitC createCmd Example with owner = alice

bob CsubmitC exerciseCmd cid Consume

In the above script the ‘Example’ contract is created by ‘Alice’ and makes no mention of the party

‘Bob’ and hence does not cause the contract to be disclosed to ‘Bob’. When ‘Bob’ tries to exercise the

contract the following error would occur:

Script execution failed:

Attempt to fetch or exercise a contract not visible to the reading parties.

Contract: #0:0 (NotVisibleFailure:Example)

actAs:
Bob

(continues on next page)

572 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

readAs:

Disclosed to:
Alice

Ledger time: 1970-01-01T00:00:00Z

Partial transaction:

Committed transactions:

TX #0 1970-01-01T00:00:00Z (unknown source)

#0:0

│ known to (since):
Alice
 (#0)

└─> create NotVisibleFailure:Example

with

owner =
Alice

To fix this issue the party ‘Bob’ should be made a controlling party in one of the choices.

2.5.2.5 Working with multiple packages

Often a Daml project consists of multiple packages, e.g., one containing your templates and one

containing a Daml trigger so that you can keep the templates stable whilemodifying the trigger. It is

possible to work onmultiple packages in a single session of Daml studio but you have to keep some

things in mind. You can see the directory structure of a simple multi-package project consisting of

two packages pkga and pkgb below:

.

├── daml.yaml

├── pkga

│ ├── daml

│ │ └── A.daml

│ └── daml.yaml

└── pkgb

├── daml

│ └── B.daml

└── daml.yaml

pkga and pkgb are regular Daml projects with a daml.yaml and a Daml module. In addition to

the daml.yaml files for the respective packages, you also need to add a daml.yaml to the root of

your project. This file only needs to specify the SDK version. Replace X.Y.Z by the SDK version you

specified in the daml.yaml files of the individual packages.

sdk-version: X.Y.Z

You can then open Daml Studio once in the root of your project and work on files in both packages.

Note that if pkgb refers to pkga.dar in its dependencies field, changes will not be picked up auto-

matically. This is always the case even if you open Daml Studio in pkgb. However, for multi-package

projects there is an additional caveat: You have to both rebuild pkga.dar using daml build and

then build pkgb using daml build before restarting Daml Studio.

2.5. Developer Tools 573

Daml SDK Documentation, 2.1.1

2.5.3 Daml Sandbox

The Daml Sandbox, or Sandbox for short, is a simple ledger implementation that enables rapid ap-

plication prototyping by simulating a Daml Ledger.

You can start Sandbox together with Navigator using the daml start command in a Daml project.

This command will compile the Daml file and its dependencies as specified in the daml.yaml.

It will then launch Sandbox passing the just obtained DAR packages. The script specified in the

init-script field in daml.yaml will be loaded into the ledger. Finally, it launches the navigator

connecting it to the running Sandbox.

It is possible to execute the Sandbox launching step in isolation by typing daml sandbox.

Sandbox can also be run manually as in this example:

$ daml sandbox --dar Main.dar --static-time

Starting Canton sandbox.

Listening at port 6865

Uploading .daml/dist/foobar-0.0.1.dar to localhost:6865

DAR upload succeeded.

Canton sandbox is ready.

Behind the scenes, Sandbox spins up a Canton ledger with an in-memory participant sandbox and

an in-memory domain local. You can pass additional Canton configuration files via -c. This option

can be specified multiple times and the resulting configuration files will be merged.

$ daml sandbox -c path/to/canton/config

2.5.3.1 Running with authorization

By default, Sandbox accepts all valid ledger API requests without performing any request authoriza-

tion.

To start Sandbox with authorization using JWT-based access tokens as described in the Authorization

documentation, create a config file that specifies the type of authorization service and the path to the

certificate.

Listing 37: auth.conf

canton.participants.sandbox.ledger-api.auth-services = [{

// type can be

// jwt-rs-256-crt

// jwt-es-256-crt

// jwt-es-512-crt

type = jwt-rs-256-crt

certificate = my-certificate.cert

}]

• jwt-rs-256-crt. The sandbox will expect all tokens to be signed with RS256 (RSA Sig-

nature with SHA-256) with the public key loaded from the given X.509 certificate file. Both

PEM-encoded certificates (text files starting with -----BEGIN CERTIFICATE-----) and

DER-encoded certificates (binary files) are supported.

• jwt-es-256-crt. The sandbox will expect all tokens to be signed with ES256 (ECDSA us-

ing P-256 and SHA-256) with the public key loaded from the given X.509 certificate file. Both

574 Chapter 2. Daml Guide

https://jwt.io/

Daml SDK Documentation, 2.1.1

PEM-encoded certificates (text files starting with -----BEGIN CERTIFICATE-----) and

DER-encoded certificates (binary files) are supported.

• jwt-es-512-crt. The sandbox will expect all tokens to be signed with ES512 (ECDSA us-

ing P-521 and SHA-512) with the public key loaded from the given X.509 certificate file. Both

PEM-encoded certificates (text files starting with -----BEGIN CERTIFICATE-----) and

DER-encoded certificates (binary files) are supported.

Instead of specifying the path to a certificate, you can also a JWKS URL. In that case, the sandbox will

expect all tokens to be signed with RS256 (RSA Signature with SHA-256) with the public key loaded

from the given JWKS URL.

Listing 38: auth.conf

canton.participants.sandbox.ledger-api.auth-services = [{

type = jwt-rs-256-jwks

url = "https://path.to/jwks.key"

}]

Warning: For testing purposes only, you can also specify a shared secret. In that case, the sand-

box will expect all tokens to be signed with HMAC256 with the given plaintext secret. This is not

considered safe for production.

Listing 39: auth.conf

canton.participants.sandbox.ledger-api.auth-services = [{

type = unsafe-jwt-hmac-256

secret = "not-safe-for-production"

}]

Note: To prevent man-in-the-middle attacks, it is highly recommended to use TLS with server au-

thentication as described in Running with TLS for any request sent to the Ledger API in production.

Generating JSONWeb Tokens (JWT)

To generate access tokens for testing purposes, use the jwt.io web site.

Generating RSA keys

To generate RSA keys for testing purposes, use the following command

openssl req -nodes -new -x509 -keyout sandbox.key -out sandbox.crt

which generates the following files:

• sandbox.key: the private key in PEM/DER/PKCS#1 format

• sandbox.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

2.5. Developer Tools 575

https://tools.ietf.org/html/rfc7517
https://jwt.io/

Daml SDK Documentation, 2.1.1

Generating EC keys

To generate keys to be used with ES256 for testing purposes, use the following command

openssl req -x509 -nodes -days 3650 -newkey ec:<(openssl ecparam -name␣

↪→prime256v1) -keyout ecdsa256.key -out ecdsa256.crt

which generates the following files:

• ecdsa256.key: the private key in PEM/DER/PKCS#1 format

• ecdsa256.crt: a self-signed certificate containing the public key, in PEM/DER/X.509 Certifi-

cate format

Similarly, you can use the following command for ES512 keys:

openssl req -x509 -nodes -days 3650 -newkey ec:<(openssl ecparam -name secp521r1)␣

↪→-keyout ecdsa512.key -out ecdsa512.crt

2.5.3.2 Running with TLS

To enable TLS, you need to specify the private key for your server and the certificate chain. This en-

ables TLS for both the Ledger API and the Canton Admin API. When enabling client authentication, you

also need to specify client certificates which can be used by Canton’s internal processes. Note that

the identity of the application will not be proven by using this method, i.e. the application_id field in

the request is not necessarily correlated with the CN (Common Name) in the certificate. Below, you

can see an example config. For more details on TLS, refer to Canton’s documentation on TLS.

Listing 40: tls.conf

canton.participants.sandbox.ledger-api {

tls {

// the certificate to be used by the server

cert-chain-file = "./tls/participant.crt"

// private key of the server

private-key-file = "./tls/participant.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust-collection-file = "./tls/root-ca.crt"

// define whether clients need to authenticate as well (default not)

client-auth = {

// none, optional and require are supported

type = require

// If clients are required to authenticate as well, we need to provide a␣

↪→client

// certificate and the key, as Canton has internal processes that need to␣

↪→connect to these

// APIs. If the server certificate is trusted by the trust-collection, then␣

↪→you can

// just use the server certificates. Otherwise, you need to create separate␣

↪→ones.

admin-client {

cert-chain-file = "./tls/admin-client.crt"

(continues on next page)

576 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

private-key-file = "./tls/admin-client.pem"

}

}

}

}

2.5.3.3 Command-line reference

To start Sandbox, run: daml sandbox [options] [-c canton.config].

To see all the available options, run daml sandbox --help. Note that this will show you the options

of the Sandbox wrapper around Canton. To see options of the underlying Canton runner, use daml

sandbox --canton-help.

2.5.3.4 Metrics

Enable and configure reporting

You can enable metrics reporting via Prometheus using the following configuration file.

Listing 41: metrics.conf

canton.monitoring.metrics.reporters = [{

type = prometheus

address = "localhost" // default

port = 9000 // default

}]

For other options and more details refer to the Canton documentation.

Types of metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when

reading the list of metrics.

Gauge

An individual instantaneous measurement.

2.5. Developer Tools 577

Daml SDK Documentation, 2.1.1

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred. The following data points are kept and

reported by any meter.

• <metric.qualified.name>.count: number of registered data points overall

• <metric.qualified.name>.m1_rate: number of registered data points per minute

• <metric.qualified.name>.m5_rate: number of registered data points every 5 minutes

• <metric.qualified.name>.m15_rate: number of registered data points every 15 minutes

• <metric.qualified.name>.mean_rate: mean number of registered data points

Histogram

An histogram records aggregated statistics about collections of events. The exact meaning of the

number depends on themetric (e.g. timers are histograms about the time necessary to complete an

operation).

• <metric.qualified.name>.mean: arithmetic mean

• <metric.qualified.name>.stddev: standard deviation

• <metric.qualified.name>.p50: median

• <metric.qualified.name>.p75: 75th percentile

• <metric.qualified.name>.p95: 95th percentile

• <metric.qualified.name>.p98: 98th percentile

• <metric.qualified.name>.p99: 99th percentile

• <metric.qualified.name>.p999: 99.9th percentile

• <metric.qualified.name>.min: lowest registered value overall

• <metric.qualified.name>.max: highest registered value overall

Histograms only keep a small reservoir of statistically relevant data points to ensure that metrics

collection can be reasonably accurate without being too taxing resource-wise.

Unless mentioned otherwise all histograms (including timers, mentioned below) use exponentially

decaying reservoirs (i.e. the data is roughly relevant for the last five minutes of recording) to ensure

that recent and possibly operationally relevant changes are visible through the metrics reporter.

Note that min and max values are not affected by the reservoir sampling policy.

You can readmore about reservoir sampling and possible associated policies in the DropwizardMet-

rics library documentation.

578 Chapter 2. Daml Guide

https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/
https://metrics.dropwizard.io/4.1.2/manual/core.html#man-core-histograms/

Daml SDK Documentation, 2.1.1

Timers

A timer records all metrics registered by a meter and by an histogram, where the histogram

records the time necessary to execute a given operation (unless otherwise specified, the precision

is nanoseconds and the unit of measurement is milliseconds).

Database Metrics

A “database metric” is a collection of simpler metrics that keep track of relevant numbers when

interacting with a persistent relational store.

These metrics are:

• <metric.qualified.name>.wait (timer): time to acquire a connection to the database

• <metric.qualified.name>.exec (timer): time to run the query and read the result

• <metric.qualified.name>.query (timer): time to run the query

• <metric.qualified.name>.commit (timer): time to perform the commit

• <metric.qualified.name>.translation (timer): if relevant, time necessary to turn seri-

alized Daml-LF values into in-memory objects

List of metrics

The following is a non-exhaustive list of selectedmetrics that can be particularly important to track.

Note that not all the following metrics are available unless you run the sandbox with a PostgreSQL

backend.

daml.commands.deduplicated_commands

A meter. Number of deduplicated commands.

daml.commands.delayed_submissions

Ameter. Number of delayed submissions (submission who have been evaluated to transaction with

a ledger time farther in the future than the expected latency).

daml.commands.failed_command_interpretation

A meter. Number of commands that have been deemed unacceptable by the interpreter and thus

rejected (e.g. double spends)

2.5. Developer Tools 579

Daml SDK Documentation, 2.1.1

daml.commands.submissions

A timer. Time to fully process a submission (validation, deduplication and interpretation) before it’s

handed over to the ledger to be finalized (either committed or rejected).

daml.commands.valid_submissions

A meter. Number of submission that pass validation and are further sent to deduplication and in-

terpretation.

daml.commands.validation

A timer. Time to validate submitted commands before they are fed to the Daml interpreter.

daml.commands.input_buffer_capacity

A counter. The capacity of the queue accepting submissions on the CommandService.

daml.commands.input_buffer_length

A counter. The number of currently pending submissions on the CommandService.

daml.commands.input_buffer_delay

A timer. Measures the queuing delay for pending submissions on the CommandService.

daml.commands.max_in_flight_capacity

A counter. The capacity of the queue tracking completions on the CommandService.

daml.commands.max_in_flight_length

A counter. The number of currently pending completions on the CommandService.

daml.execution.get_lf_package

A timer. Time spent by the engine fetching the packages of compiled Daml code necessary for inter-

pretation.

580 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

daml.execution.lookup_active_contract_count_per_execution

A histogram. Number of active contracts fetched for each processed transaction.

daml.execution.lookup_active_contract_per_execution

A timer. Time to fetch all active contracts necessary to process each transaction.

daml.execution.lookup_active_contract

A timer. Time to fetch each individual active contract during interpretation.

daml.execution.lookup_contract_key_count_per_execution

A histogram. Number of contract keys looked up for each processed transaction.

daml.execution.lookup_contract_key_per_execution

A timer. Time to lookup all contract keys necessary to process each transaction.

daml.execution.lookup_contract_key

A timer. Time to lookup each individual contract key during interpretation.

daml.execution.retry

A meter. Overall number of interpretation retries attempted due to mismatching ledger effective

time.

daml.execution.total

A timer. Time spent interpreting a valid command into a transaction ready to be submitted to the

ledger for finalization.

daml.index.db.connection.sandbox.pool

This namespace holds a number of interesting metrics about the connection pool used to commu-

nicate with the persistent store that underlies the index.

These metrics include:

• daml.index.db.connection.sandbox.pool.Wait (timer): time spent waiting to acquire

a connection

2.5. Developer Tools 581

Daml SDK Documentation, 2.1.1

• daml.index.db.connection.sandbox.pool.Usage (histogram): time spent using each

acquired connection

• daml.index.db.connection.sandbox.pool.TotalConnections (gauge): number or to-

tal connections

• daml.index.db.connection.sandbox.pool.IdleConnections (gauge): number of idle

connections

• daml.index.db.connection.sandbox.pool.ActiveConnections (gauge): number of

active connections

• daml.index.db.connection.sandbox.pool.PendingConnections (gauge): number of

threads waiting for a connection

daml.index.db.deduplicate_command

A timer. Time spent persisting deduplication information to ensure the continued working of the

deduplication mechanism across restarts.

daml.index.db.get_active_contracts

A database metric. Time spent retrieving a page of active contracts to be served from the active

contract service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_completions

A database metric. Time spent retrieving a page of command completions to be served from the

command completion service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_flat_transactions

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

daml.index.db.get_ledger_end

Adatabasemetric. Time spent retrieving the current ledger end. The count for thismetric is expected

to be very high and always increasing as the indexed is queried for the latest updates.

daml.index.db.get_ledger_id

A database metric. Time spent retrieving the ledger identifier.

582 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

daml.index.db.get_transaction_trees

A database metric. Time spent retrieving a page of flat transactions to be streamed from the trans-

action service. The page size is configurable, please look at the CLI reference.

daml.index.db.load_all_parties

A database metric. Load the currently allocated parties so that they are served via the party man-

agement service.

daml.index.db.load_archive

A database metric. Time spent loading a package of compiled Daml code so that it’s given to the

Daml interpreter when needed.

daml.index.db.load_configuration_entries

A database metric. Time to load the current entries in the log of configuration entries. Used to verify

whether a configuration has been ultimately set.

daml.index.db.load_package_entries

A database metric. Time to load the current entries in the log of package uploads. Used to verify

whether a package has been ultimately uploaded.

daml.index.db.load_packages

A database metric. Load the currently uploaded packages so that they are served via the package

management service.

daml.index.db.load_parties

A database metric. Load the currently allocated parties so that they are served via the party service.

daml.index.db.load_party_entries

A database metric. Time to load the current entries in the log of party allocations. Used to verify

whether a party has been ultimately allocated.

2.5. Developer Tools 583

Daml SDK Documentation, 2.1.1

daml.index.db.lookup_active_contract

A database metric. Time to fetch one contract on the index to be used by the Daml interpreter to

evaluate a command into a transaction.

daml.index.db.lookup_configuration

A database metric. Time to fetch the configuration so that it’s served via the configuration manage-

ment service.

daml.index.db.lookup_contract_by_key

A database metric. Time to lookup one contract key on the index to be used by the Daml interpreter

to evaluate a command into a transaction.

daml.index.db.lookup_flat_transaction_by_id

A database metric. Time to lookup a single flat transaction by identifier to be served by the transac-

tion service.

daml.index.db.lookup_maximum_ledger_time

A databasemetric. Time spent looking up the ledger effective time of a transaction as themaximum

ledger time of all active contracts involved to ensure causal monotonicity.

daml.index.db.lookup_transaction_tree_by_id

A database metric. Time to lookup a single transaction tree by identifier to be served by the trans-

action service.

daml.index.db.remove_expired_deduplication_data

A databasemetric. Time spent removing deduplication information after the expiration of the dedu-

plication window. Deduplication information is persisted to ensure the continued working of the

deduplication mechanism across restarts.

584 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

daml.index.db.stop_deduplicating_command

A database metric. Time spent removing deduplication information after the failure of a command.

Deduplication information is persisted to ensure the continued working of the deduplication mech-

anism across restarts.

daml.index.db.store_configuration_entry

A databasemetric. Time spent persisting a change in the ledger configuration provided through the

configuration management service.

daml.index.db.store_ledger_entry

A database metric. Time spent persisting a transaction that has been successfully interpreted and

is final.

daml.index.db.store_package_entry

A databasemetric. Time spent storing a Daml package uploaded through the packagemanagement

service.

daml.index.db.store_party_entry

A database metric. Time spent storing party information as part of the party allocation endpoint

provided by the party management service.

daml.index.db.store_rejection

A database metric. Time spent persisting the information that a given command has been rejected.

daml.lapi

Everymetrics under this namespace is a timer, one for each service exposed by the Ledger API, in the

format:

daml.lapi.service_name.service_endpoint

As in the following example:

daml.lapi.command_service.submit_and_wait

Single call services return the time to serve the request, streaming services measure the time to

return the first response.

2.5. Developer Tools 585

Daml SDK Documentation, 2.1.1

jvm

Under the jvm namespace there is a collection of metrics that tracks important measurements

about the JVM that the sandbox is running on, including CPU usage, memory consumption and the

current state of threads.

2.5.4 Navigator

The Navigator is a front-end that you can use to connect to any Daml Ledger and inspect andmodify

the ledger. You can use it during Daml development to explore the flow and implications of the Daml

models.

The first sections of this guide cover use of the Navigator with the SDK. Refer to Advanced usage for

information on using Navigator outside the context of the SDK.

2.5.4.1 Navigator functionality

Connect the Navigator to any Daml Ledger and use it to:

• View templates

• View active and archived contracts

• Exercise choices on contracts

• Advance time (This option applies only when using Navigator with the Daml Sandbox ledger.)

2.5.4.2 Starting Navigator

Navigator is included in the SDK. To launch it:

1. Start Navigator via a terminal window running Daml Assistant by typing daml start

2. The Navigator web-app is automatically started in your browser. If it fails to start, open a

browser window and point it to the Navigator URL

When running daml start you will see the Navigator URL. By default it will be http://

localhost:7500/.

Note: Navigator is compatible with these browsers: Safari, Chrome, or Firefox.

2.5.4.3 Logging in

By default, Navigator shows a drop-down list with the users that have been created via the user man-

agement service. During development, it is common to create these users in a Daml script: that you

specify in the init-script section of your daml.yaml file so it is executed on daml start. Most

of the templates shipped with the Daml SDK already include such a setup script. Only users that

have a primary party set will be displayed.

After logging in, you will interact with the ledger as the primary party of that user, meaning that you

can see contracts visible to that party and submit commands (e.g. create a contract) as that party.

The party you are logged in as is not displayed directly. However, Navigator provides autocompletion

based on the party id which starts with the party id hint so a good option is to set the party id hint

586 Chapter 2. Daml Guide

http://localhost:7500/
http://localhost:7500/

Daml SDK Documentation, 2.1.1

to the user id when you allocate the party in your setup script. You can see an example of that in the

skeleton template:

alice <- allocatePartyWithHint "Alice" (PartyIdHint "Alice")

bob <- allocatePartyWithHint "Bob" (PartyIdHint "Bob")

aliceId <- validateUserId "alice"

bobId <- validateUserId "bob"

createUser (User aliceId (Some alice)) [CanActAs alice]

createUser (User bobId (Some bob)) [CanActAs bob]

The first step in using Navigator is to use the dropdown list on the Navigator home screen to select

from the available users.

The main Navigator screen will be displayed, with contracts that the primary party of this user is

entitled to view in the main pane and the option to switch from contracts to templates in the pane

at the left. Other options allow you to filter the display, include or exclude archived contracts, and

exercise choices as described below.

To change the active user:

1. Click the name of the current user in the top right corner of the screen.

2. On the home screen, select a different user.

2.5. Developer Tools 587

Daml SDK Documentation, 2.1.1

You can act as different users in different browser windows. Use Chrome’s profile feature https:

//support.google.com/chrome/answer/2364824 and sign in as a different user for each Chrome pro-

file.

Logging in as a Party

Instead of logging in by specifying a user, you can also log in by specifying a party directly. This

is useful if you do not want to or cannot (because your ledger does not support user management)

create users.

To do so, you can start Navigator with a flag to disable support for user management:

daml navigator --feature-user-management=false

To use this via daml start, you can specify it in your daml.yaml file:

navigator-options:

- --feature-user-management=false

Instead of displaying a list of users on login, Navigator will display a list of parties where each party

is identified by its display name.

Alternatively you can specify a fixed list of parties in your daml.yaml file. This will automatically

disable user management and display those parties on log in. Note that you still need to allocate

those parties before you can log in as them.

parties:

- Alice::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

- Bob::12201d00faa0968d7ab81e63ad6ad4ee0d31b08a3581b1d8596e68a1356f27519ccb

2.5.4.4 Viewing templates or contracts

Daml contract �​templates are �​models �​that contain �​the �​agreement �​statement, �​all �​the �​applica-

ble parameters, �​and �​the �​choices �​that �​can �​be �​made �​in �​acting �​on �​that �​data. They �​specify

�​acceptable input �​and �​the �​resulting �​output. �​A �​contract �​template �​contains �​placeholders

�​rather �​than �​actual names, �​amounts, �​dates, �​and �​so �​on. In �​a contract, �​the �​placeholders

�​have �​been �​replaced �​with �​actual �​data.

The Navigator allows you to list templates or contracts, view contracts based on a template, and view

template and contract details.

588 Chapter 2. Daml Guide

https://support.google.com/chrome/answer/2364824
https://support.google.com/chrome/answer/2364824

Daml SDK Documentation, 2.1.1

Listing templates

To see what contract templates are available on the ledger you are connected to, choose Templates

in the left pane of the main Navigator screen.

Use the Filter field at the top right to select template IDs that include the text you enter.

Listing contracts

To view a list of available contracts, choose Contracts in the left pane.

In the Contracts list:

2.5. Developer Tools 589

Daml SDK Documentation, 2.1.1

• Changes to the ledger are automatically reflected in the list of contracts. To avoid the auto-

matic updates, select the Frozen checkbox. Contracts will still be marked as archived, but the

contracts list will not change.

• Filter the displayed contracts by entering text in the Filter field at the top right.

• Use the Include Archived checkbox at the top to include or exclude archived contracts.

Viewing contracts based on a template

You can also view the list of contracts that are based on a particular template.

1. You will see icons to the right of template IDs in the template list with a number indicating how

many contracts are based on this template.

2. Click the number to display a list of contracts based on that template.

Number of Contracts

List of Contracts

590 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Viewing template and contract details

To view template or contract details, click on a template or contract in the list. The template or

contracts detail page is displayed.

Template Details

Contract Details

2.5. Developer Tools 591

Daml SDK Documentation, 2.1.1

2.5.4.5 Using Navigator

Creating contracts

Contracts in a ledger are created automatically when you exercise choices. In some cases, you create

a contract directly from a template. This feature can be particularly useful for testing and experi-

menting during development.

To create a contract based on a template:

1. Navigate to the template detail page as described above.

2. Complete the values in the form

3. Choose the Submit button.

592 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

When the command has been committed to the ledger, the loading indicator in the navbar at the top

will display a tick mark.

While loading…

When committed to the ledger…

Exercising choices

To exercise a choice:

1. Navigate to the contract details page (see above).

2. Click the choice you want to exercise in the choice list.

3. Complete the form.

4. Choose the Submit button.

2.5. Developer Tools 593

Daml SDK Documentation, 2.1.1

Or

1. Navigate to the choice form by clicking the wrench icon in a contract list.

2. Select a choice.

You will see the loading and confirmation indicators, as pictured above in Creating Contracts.

Advancing time

It is possible to advance time against the Daml Sandbox. (This is not true of all Daml Ledgers.) This

advance-time functionality can be useful when testing, for example, when entering a trade on one

date and settling it on a later date.

To advance time:

1. Click on the ledger time indicator in the navbar at the top of the screen.

2. Select a new date / time.

3. Choose the Set button.

594 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.5.4.6 Authorizing Navigator

If you are running Navigator against a Ledger API server that verifies authorization, youmust provide

the access token when you start the Navigator server.

The access token retrieval depends on the specific Daml setup you are working with: please refer to

the ledger operator to learn how.

Once you have retrieved your access token, you can provide it to Navigator by storing it in a file and

provide the path to it using the --access-token-file command line option.

If the access token cannot be retrieved, is missing or wrong, you’ll be unable to move past the Navi-

gator’s frontend login screen and see the following:

2.5.4.7 Advanced usage

Customizable table views

Customizable table views is an advanced rapid-prototyping feature, intended for Daml developers

who wish to customize the Navigator UI without developing a custom application.

To use customized table views:

1. Create a file frontend-config.js in your project root folder (or the folder from which you

run Navigator) with the content below:

import { DamlLfValue } from
@da/ui-core
;

export const version = {

schema:
navigator-config
,

major: 2,

(continues on next page)

2.5. Developer Tools 595

Daml SDK Documentation, 2.1.1

(continued from previous page)

minor: 0,

};

export const customViews = (userId, party, role) => ({

customview1: {

type: "table-view",

title: "Filtered contracts",

source: {

type: "contracts",

filter: [

{

field: "id",

value: "1",

}

],

search: "",

sort: [

{

field: "id",

direction: "ASCENDING"

}

]

},

columns: [

{

key: "id",

title: "Contract ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.id

}),

sortable: true,

width: 80,

weight: 0,

alignment: "left"

},

{

key: "template.id",

title: "Template ID",

createCell: ({rowData}) => ({

type: "text",

value: rowData.template.id

}),

sortable: true,

width: 200,

weight: 3,

alignment: "left"

}

]

}

})

2. Reload your Navigator browser tab. You should now see a sidebar item titled “Filtered con-

tracts” that links to a table with contracts filtered and sorted by ID.

To debug config file errors and learnmore about the config file API, open the Navigator /config page

in your browser (e.g., http://localhost:7500/config).

596 Chapter 2. Daml Guide

http://localhost:7500/config

Daml SDK Documentation, 2.1.1

Using Navigator with a Daml Ledger

By default, Navigator is configured to use an unencrypted connection to the ledger. To run Navigator

against a secured Daml Ledger, configure TLS certificates using the --pem, --crt, and --cacrt

command line parameters. Details of these parameters are explained in the command line help:

daml navigator --help

2.5.5 Daml codegen

2.5.5.1 Introduction

You can use the Daml codegen to generate Java, and JavaScript/TypeScript classes represent-

ing Daml contract templates. These classes incorporate all boilerplate code for constructing

corresponding ledger com.daml.ledger.api.v1.CreateCommand, com.daml.ledger.api.

v1.ExerciseCommand, com.daml.ledger.api.v1.ExerciseByKeyCommand, and com.daml.

ledger.api.v1.CreateAndExerciseCommand.

2.5.5.2 Running the Daml codegen

The basic command to run the Daml codegen is:

$ daml codegen [java|js] [options]

There are two modes:

• Command line configuration, specifying all settings in the command line (all codegens sup-

ported)

• Project file configuration, specifying all settings in the daml.yaml (currently Java only)

Command line configuration

Help for each specific codegen:

$ daml codegen [java|js] --help

Java codegens take the same set of configuration settings:

<DAR-file[=package-prefix]>...

DAR file to use as input of the codegen with an optional,

↪→ but recommend, package prefix for the generated sources.

-o, --output-directory <value>

Output directory for the generated sources

-d, --decoderClass <value>

Fully Qualified Class Name of the optional Decoder␣

↪→utility

-V, --verbosity <value> Verbosity between 0 (only show errors) and 4 (show all␣

↪→messages) -- defaults to 0

-r, --root <value> Regular expression for fully-qualified names of␣

↪→templates to generate -- defaults to .*

--help This help text

2.5. Developer Tools 597

Daml SDK Documentation, 2.1.1

JavaScript/TypeScript codegen takes a different set of configuration settings:

DAR-FILES DAR files to generate TypeScript bindings for

-o DIR Output directory for the generated packages

-s SCOPE The NPM scope name for the generated packages;

defaults to daml.js

-h,--help Show this help text

Project file configuration (Java)

The above settings can be configured in the codegen element of the Daml project file daml.yaml.

See this issue for status on this feature.

Here is an example:

sdk-version: 2.0.0

name: quickstart

source: daml

init-script: Main:initialize

parties:

- Alice

- Bob

- USD_Bank

- EUR_Bank

version: 0.0.1

exposed-modules:

- Main

dependencies:

- daml-prim

- daml-stdlib

codegen:

js:

output-directory: ui/daml.js

npm-scope: daml.js

java:

package-prefix: com.daml.quickstart.iou

output-directory: java-codegen/src/main/java

verbosity: 2

You can then run the above configuration to generate your Java code:

$ daml codegen java

The equivalent JavaScript command line configuration would be:

$ daml codegen js ./.daml/dist/quickstart-0.0.1.dar -o ui/daml.js -s daml.js

and the equivalent Java command line configuration:

$ daml codegen java ./.daml/dist/quickstart-0.0.1.dar=com.daml.quickstart.iou --

↪→output-directory=java-codegen/src/main/java --verbosity=2

In order to compile the resulting Java classes, you need to add the corresponding dependencies to

your build tools.

For Java, add the followingMaven dependency:

598 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/issues/6355

Daml SDK Documentation, 2.1.1

<dependency>

<groupId>com.daml</groupId>

<artifactId>bindings-java</artifactId>

<version>YOUR_SDK_VERSION</version>

</dependency>

Note: Replace YOUR_SDK_VERSION with the version of your SDK

2.5.6 Daml Profiler

The Daml Profiler is only available in Daml Enterprise.

TheDaml Profiler allows you to toprofile execution of yourDaml codewhich canhelp spot bottlenecks

and opportunities for optimization.

2.5.6.1 Usage

To test this out, we use the skeleton project included in the assistant. We first create the project and

build the DAR.

daml new profile-tutorial --template skeleton

cd profile-tutorial

daml build

Next we load the DAR into Sandbox with a special profile-dir option. Sandbox will behave as

usual but all profile results will be written to that directory. For this, we first create a configuration

file that sets the profile-dir for Sandbox:

Listing 42: profile.conf

canton.participants.sandbox.features.profile-dir = profile-results

We then pass

daml sandbox --dar .daml/dist/profile-tutorial-0.0.1.dar -c profile.conf

To actually produce some profile results, we have to create transactions. For the purposes of this

tutorial, the Daml Script included in the skeleton project does the job admirably:

daml script --dar .daml/dist/profile-tutorial-0.0.1.dar --ledger-host localhost --

↪→ledger-port 6865 --script-name Main:setup

If we now look at the contents of the profile-results directory, we can see one JSON file per

transaction produced by the script. Each file has a name of the form $timestamp-$command.json

where $timestamp is the submission time of the transaction and $command is a human-readable

description of the command that produced the transaction (for multi-command submissions, only

the first one will be in the file name).

$ ls profile-results

2021-03-17T12:32:16.846404Z-create:Asset.json

(continues on next page)

2.5. Developer Tools 599

https://www.digitalasset.com/products/daml-connect

Daml SDK Documentation, 2.1.1

(continued from previous page)

2021-03-17T12:32:17.361596Z-exercise:Asset:Give.json

2021-03-17T12:32:17.623537Z-exercise:Asset:Give.json

At this point, you can stop Sandbox.

To view the profiling results you can use speedscope. The easiest option is to use the web version

but you can also install it locally.

Let’s open the first exercise profile above 2021-03-17T12:32:17.

361596Z-exercise:Asset:Give.json:

You can see the exercise as the root of the profile. Below that there are a few expressions to calculate

signatories, observer and controllers and finally we see the create of the contract. In this simple

example, nothing obvious stands out that we could do to optimize further.

Speedscope provides a few other views that can be useful depending on your profile. Refer to the

documentation for more information on that.

2.5.6.2 Caveats

1. The profiler currently does not take time into account that is spent outside of pure interpreta-

tion, e.g., time needed to fetch a contract from the database.

2. The profiler operates on Daml-LF. This means that the identifiers used in the profiler corre-

spond to Daml-LF expressions which includes autogenerated identifiers used by the compiler.

E.g., in the example above, Main:$csignatory is the name of the function used to compute

signatories of Asset. You can view the Daml-LF code that the compiler generated using daml

damlc inspect. This can be useful to see where an identifier is being used but it does take

some experience to be able to read Daml-LF code with ease.

daml damlc inspect .daml/dist/profiler-tutorial-0.0.1.dar

600 Chapter 2. Daml Guide

https://github.com/jlfwong/speedscope
https://www.speedscope.app/
https://github.com/jlfwong/speedscope#command-line-usage
https://github.com/jlfwong/speedscope#views

Chapter 3

Canton Guide

3.1 Introduction to Canton

Canton is a Daml ledger interoperability protocol. Parties which are hosted on different participant

nodes can transact using smart-contracts written in Daml and the Canton protocol. The Canton

protocol allows to connect different Daml ledgers into a single virtual global ledger. Daml, as the

smart contract language defines who is entitled to see, and who is authorized to change any given

contract. The Canton synchronization protocol enforces these visibility and authorization rules, and

ensures that the data is shared reliably with very high levels of privacy, even in the presence of ma-

licious actors. The Canton network can be extended without friction with new parties, ledgers, and

applications building on other applications. Extensions require neither a central managing entity

nor consensus within the global network.

Canton faithfully implements the authorization and privacy requirements set out by Daml for its

transactions.

Canton iswritten in Scala and runs as a Java process against a database (currently H2 and Postgres).

Canton is easy to set up, easy to develop on and is easy to operate safe and securely.

3.2 Tutorials

Tutorials

• To understand what Canton offers and how it is different to existing solutions, run or watch the

reference demo.

• To learn the basic concepts of Canton, use our getting started tutorial and use our advanced

configuration examples which ship with the packaged release.

• To develop applications using Canton, follow the Create Daml App guide.

• Follow our installation guide to install your Canton nodes.

Background Concepts

• In order to get an overview and to clarify terminology, consult the Glossary of Concepts section.

• To understand how Canton works in detail and what requirements it fulfills, consult the archi-

tecture manual.

• To dive deeply into the theory, read the Daml Ledger model, as Canton implements this model

faithfully.

601

https://docs.daml.com/concepts/glossary.html#canton-concepts
https://docs.daml.com/concepts/ledger-model/index.html

Daml SDK Documentation, 2.1.1

Fig. 1: Parties are hosted on participant nodes. Applications connect as parties to their participant

node using the Ledger API. The participant node runs the Daml interpreter for the locally installed

Daml smart contract code and stores the smart contracts in the private contract store (PCS). The par-

ticipants connect to domains and synchronise their state with other participants by exchanging

Canton protocol messages with other participants leveraging the domain services. The use of the

Canton protocol creates a virtual global ledger.

602 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.2.1 Canton Demo

Note: The Canton demo currently works only with the enterprise version of the Canton ledger. With

the Canton community edition, the demo breaks in the GDPR part. Community users can watch the

video recording below to get an idea of this part.

The Canton demo is used to demonstrate the unique Canton capabilities:

• Application Composability - Add new workflows at any time to a running system

• Network Interoperability - Create workflows spanning across domains

• Privacy - Canton uses data minimization and only shares data on a need to know basis.

• Regulatory compliance - Canton can be used to even integrate personal sensitive information

directly in workflows without fear of failing to be GDPR compliant.

The demo is a thin application running on top of a setup with 5 participant nodes and 2 domains.

You can run it by downloading the release package from github. Then, unpack and start it, using the

following commands (or the zip equivalent)

tar zxvf canton-x.y.z.tar.gz

cd canton-x.y.z

bash start-demo.command

You need to replace x.y.z with the appropriate version number of the release you’ve downloaded.

On Windows, you can just double-click the start-demo-win.cmd script in Windows explorer.

Note: The demo requires JavaFX. Please use a Java runtime of version 11 or greater.

If you don’t want to run it yourself, you can also watch our recording.

The entire code base of the demo is included in the release package as demo.

3.2.2 Getting Started

Interested in Canton? This is the right place to start! You don’t need any prerequisite knowledge,

and you will learn:

• how to install Canton and get it up and running in a simple test configuration

• the main concepts of Canton

• the main configuration options

• some simple diagnostic commands on Canton

• the basics of Canton identity management

• how to upload and execute new smart contract code

3.2. Tutorials 603

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.1.1

3.2.2.1 Installation

Canton is a JVM application. To run it natively you need Java 11 or higher installed on your system.

Alternatively Canton is available as a docker image (see Canton docker instructions).

Otherwise Canton is platform-agnostic, but we recommend you try it under Linux andmacOS if pos-

sible as we currently only test those platforms. Under Windows, the Canton console output will be

garbled unless you are runningWindows 10 and you enable terminal colors (e.g., by running cmd.exe

and then executing reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d

1).

To start, download our community edition latest release and extract the archive, or use the enterprise

edition if you have access to it.

The extracted archive has the following structure:

.

├── bin

├── daml

├── dars

├── demo

├── deployment

├── drivers (enterprise)

├── examples

├── lib

└── ...

• bin: contains the scripts for running Canton (canton under Unix-like systems and canton.

bat under Windows)

• daml: contains the source code for some sample smart contracts

• dars: contains the compiled and packaged code of the above contracts

• demo: contains everything needed to run the interactive Canton demo

• deployment: contains a few example deployments to cloud or docker

• examples: contains sample configuration and script files for the Canton console

• lib: contains the Java executables (JARs) needed to run Canton

This tutorial assumes you are running a Unix-like shell.

3.2.2.2 Starting Canton

While Canton supports a daemonmode for production purposes, in this tutorial we will use its con-

sole, a built-in interactive read-evaluate-print loop (REPL). The REPL gives you an out-of-the-box in-

terface to all Canton features. However, as it’s built using Ammonite, you also have the full power of

Scala if you need to extend it with new scripts.

@ Seq(1,2,3).map(_ * 2)

res1: Seq[Int] = List(2, 4, 6)

Navigate your shell to the directory where you extracted Canton. Then, run

bin/canton --help

to see the command line options that Canton supports. Next, run

604 Chapter 3. Canton Guide

https://hub.docker.com/r/digitalasset/canton-open-source
https://github.com/digital-asset/daml/releases
https://ammonite.io/

Daml SDK Documentation, 2.1.1

bin/canton -c examples/01-simple-topology/simple-topology.conf

This starts the console using the configuration file examples/01-simple-topology/

simple-topology.conf. You will see the banner on your screen

_____ _

/ ____| | |

| | __ _ _ __ | |_ ___ _ __

| | / _C |
_ \| __/ _ \|
_ \

| |___| (_| | | | | || (_) | | | |

_______,_|_| |_|_____/|_| |_|

Welcome to Canton!

Type ChelpC to get started. CexitC to leave.

Type help to see the available commands in the console:

@ help

Top-level Commands

exit - Leave the console

help - Help with console commands; type help("<command>") for detailed help for

↪→<command>

Generic Node References

domainManagers - All domain manager nodes (.all, .local, .remote)

..

You can also get help for specific Canton objects and commands:

@ help("participant1")

participant1

Manage participant
participant1
; type
participant1 help
 or
participant1 help(

↪→"<methodName>")
 for more help

@ participant1.help("start")

start

Start the instance

3.2.2.3 The Example Topology

To understand the basic elements of Canton, let’s briefly look at this starting configuration. It is

written in the HOCON format as shown below. It specifies that you wish to run two participant nodes,

whose local aliases areparticipant1andparticipant2, anda single synchronizationdomain, with

the local alias mydomain. It also specifies the storage backend that each node should use (in this

tutorial we’re using in-memory storage), and the network ports for various services, which we will

describe shortly.

canton {

participants {

participant1 {

storage.type = memory

(continues on next page)

3.2. Tutorials 605

https://github.com/lightbend/config/blob/master/HOCON.md

Daml SDK Documentation, 2.1.1

(continued from previous page)

admin-api.port = 5012

ledger-api.port = 5011

}

participant2 {

storage.type = memory

admin-api.port = 5022

ledger-api.port = 5021

}

}

domains {

mydomain {

storage.type = memory

public-api.port = 5018

admin-api.port = 5019

}

}

// enable ledger_api commands for our getting started guide

features.enable-testing-commands = yes

}

To run the protocol, the participants must connect to one or more synchronization domains (do-

mains for short). To execute a transaction (a change that updates the shared contracts of several

parties), all the parties’ participant nodes must be connected to a single domain. In the remainder

of this tutorial, you will construct a network topology that will enable the three parties Alice, Bob, and

Bank to transact with each other, as shown here:

The participant nodes provide their parties with a Ledger API as a means to access the ledger. The

parties can interact with the Ledger API manually using the console, but in practice these parties

use applications to handle the interactions and display the data in a user-friendly interface.

In addition to the Ledger API, each participant node also exposes an Admin API. The Admin API allows

the administrator (that is, you) to:

• manage the participant node’s connections to domains

• add or remove parties to be hosted at the participant node

• upload new Daml archives

• configure the operational data of the participant, such as cryptographic keys

• run diagnostic commands

The domain node exposes a Public API that is used by participant nodes to communicate with the

synchronization domain. This must be accessible from where the participant nodes are hosted.

Similar to the participant node, a domain node also exposes an Admin API for administration ser-

vices. You can use these to manage keys, set domain parameters and enable or disable participant

nodeswithin a domain, for example. The console provides access to the Admin APIs of the configured

participants and domains.

Note: Canton’s Admin APIs must not be confused with the admin package of the Ledger API. The

admin package of the Ledger API provides services for managing parties and packages on any Daml

participant. Canton’s Admin APIs allows you to administrate Canton-based nodes. Both the partici-

pant and the domain nodes expose an Admin API with partially overlapping functionality.

Furthermore, participant and domain nodes communicate with each other through the Public API.

The participants do not communicate with each other directly, but are free to connect to as many

606 Chapter 3. Canton Guide

https://docs.daml.com/app-dev/ledger-api.html

Daml SDK Documentation, 2.1.1

3.2. Tutorials 607

Daml SDK Documentation, 2.1.1

domains as they desire.

As you can see, nothing in the configuration specifies that our participant1 and participant2

should connect to mydomain. Canton connections are not statically configured – they are added

dynamically. So first, let’s connect the participants to the domain.

3.2.2.4 Connecting The Nodes

Using the console we can run commands on each of the configured (participant or domain) nodes.

As such, we can check the health of a node using the health.status command:

@ health.status

res5: EnterpriseCantonStatus = Status for Domain
mydomain
:

Domain id:␣

↪→mydomain::1220a9f79c431a9b0619f12aeb4a2d65f9e82089a7f6e166e12dfbdcdce5c408dd81

Uptime: 3.897107s

Ports:

admin: 15011

public: 15010

Connected Participants: None

Sequencer: SequencerHealthStatus(isActive = true)

Status for Participant
participant1
:

Participant id:␣

↪→PAR::participant1::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff

Uptime: 3.088356s

Ports:

ledger: 15006

admin: 15007

Connected domains: None

Unhealthy domains: None

Active: true

Status for Participant
participant2
:

Participant id:␣

↪→PAR::participant2::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b

Uptime: 2.341134s

Ports:

ledger: 15008

admin: 15009

Connected domains: None

Unhealthy domains: None

Active: true

We can do this also individually on each node. As an example, to query the status of participant1:

@ participant1.health.status

res6: com.digitalasset.canton.health.admin.data.NodeStatus[com.digitalasset.

↪→canton.health.admin.data.ParticipantStatus] = Participant id:␣

↪→PAR::participant1::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff

Uptime: 3.287494s

Ports:

ledger: 15006

admin: 15007

Connected domains: None

(continues on next page)

608 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

Unhealthy domains: None

Active: true

or for the domain:

@ mydomain.health.status

res7: com.digitalasset.canton.health.admin.data.NodeStatus[com.digitalasset.

↪→canton.health.admin.data.DomainStatus] = Domain id:␣

↪→mydomain::1220a9f79c431a9b0619f12aeb4a2d65f9e82089a7f6e166e12dfbdcdce5c408dd81

Uptime: 4.349064s

Ports:

admin: 15011

public: 15010

Connected Participants: None

Sequencer: SequencerHealthStatus(isActive = true)

Recall that the aliases mydomain, participant1 and participant2 come from the configura-

tion file. By default, Canton will start and initialize the nodes automatically. This behavior can be

overridden using the --manual-start command line flag or appropriate configuration settings.

For the moment, ignore the long hexadecimal strings that follow the node aliases; these have to

do with Canton’s identities, which we will explain shortly. As you see, the domain doesn’t have any

connected participants, and the participants are also not connected to any domains.

To connect the participants to the domain:

@ participant1.domains.connect_local(mydomain)

@ participant2.domains.connect_local(mydomain)

Now, check the status again:

@ health.status

res10: EnterpriseCantonStatus = Status for Domain
mydomain
:

Domain id:␣

↪→mydomain::1220a9f79c431a9b0619f12aeb4a2d65f9e82089a7f6e166e12dfbdcdce5c408dd81

Uptime: 7.083453s

Ports:

admin: 15011

public: 15010

Connected Participants:

PAR::participant2::12201ee0969b...

PAR::participant1::12209e5c593d...

Sequencer: SequencerHealthStatus(isActive = true)

Status for Participant
participant1
:

Participant id:␣

↪→PAR::participant1::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff

Uptime: 6.236595s

Ports:

..

As you can read from the status, both participants are now connected to the domain. You can test

the connection with the following diagnostic command, inspired by the ICMP ping:

3.2. Tutorials 609

Daml SDK Documentation, 2.1.1

@ participant1.health.ping(participant2)

res11: concurrent.duration.Duration = 644 milliseconds

If everything is set up correctly, this will report the “roundtrip time” between the Ledger APIs of the

two participants. On the first attempt, this time will probably be several seconds, as the JVM is

warming up. This will decrease significantly on the next attempt, and decrease again after JVM’s

just-in-time compilation kicks in (by default this is after 10000 iterations).

You have just executed your first smart contract transaction over Canton. Every participant node has

an associated built-in party that can take part in smart contract interactions. The ping command

uses a particular smart contract that is by default pre-installed on every Canton participant. In fact,

the command uses the Admin API to access a pre-installed application, which then issues Ledger

API commands operating on this smart contract.

In theory, you coulduse your participant node’s built-in party for all your application’s smart contract

interactions, but it’s often useful to have more parties than participants. For example, you might

want to run a single participant node within a company, with each employee being a separate party.

For this, you need to be able to provision parties.

3.2.2.5 Canton Identities and Provisioning Parties

In Canton, the identity of each party, participant, or domain is represented by a unique identifier. A

unique identifier consists of two components: a human-readable string and the fingerprint of a

public key. When displayed in Canton the components are separated by a double colon. You can see

the identifiers of the participants and the domains by running the following in the console:

@ mydomain.id

res12: DomainId = mydomain::1220a9f79c43...

@ participant1.id

res13: ParticipantId = PAR::participant1::12209e5c593d...

@ participant2.id

res14: ParticipantId = PAR::participant2::12201ee0969b...

The human-readable strings in these unique identifiers are derived from the local aliases by default,

but can be set to any string of your choice. The public key, which is called a namespace, is the root

of trust for this identifier. This means that in Canton, any action taken in the name of this identity

must be either:

• signed by this namespace key, or

• signed by a key that is authorized by the namespace key to speak in the name of this identity,

either directly or indirectly (e.g., if k1 can speak in the name of k2 and k2 can speak in the name

of k3, then k1 can also speak in the name of k3).

In Canton, it’s possible to have several unique identifiers that share the same namespace - you’ll

see examples of that shortly. However, if you look at the identities resulting from your last console

commands, you will see that they belong to different namespaces. By default, each Canton node

generates a fresh asymmetric key pair (the secret and public keys) for its own namespace when

first started. The key is then stored in the storage, and reused later in case the storage is persistent

(recall that simple-topology.conf uses memory storage, which is not persistent).

610 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Youwill next create twoparties, Alice andBob. Alicewill be hosted atparticipant1, and her identity

will use the namespace of participant1. Similarly, Bob will use participant2. Canton provides

a handy macro for this:

@ val alice = participant1.parties.enable("Alice")

alice : PartyId = Alice::12209e5c593d...

@ val bob = participant2.parties.enable("Bob")

bob : PartyId = Bob::12201ee0969b...

This creates the new parties in the participants’ respective namespaces. It also notifies the domain

of the new parties and allows the participants to submit commands on behalf of those parties. The

domain allows this since, e.g., Alice’s unique identifier uses the same namespace as participant1

and participant1 holds the secret key of this namespace. You can check that the parties are now

known to mydomain by running the following:

@ mydomain.parties.list("Alice")

res17: Seq[ListPartiesResult] = Vector(

ListPartiesResult(

party = Alice::12209e5c593d...,

participants = Vector(

ParticipantDomains(

participant = PAR::participant1::12209e5c593d...,

domains = Vector(

DomainPermission(domain = mydomain::1220a9f79c43..., permission =␣

↪→Submission)

)

)

)

)

)

and the same for Bob:

@ mydomain.parties.list("Bob")

res18: Seq[ListPartiesResult] = Vector(

ListPartiesResult(

party = Bob::12201ee0969b...,

participants = Vector(

ParticipantDomains(

participant = PAR::participant2::12201ee0969b...,

domains = Vector(

DomainPermission(domain = mydomain::1220a9f79c43..., permission =␣

↪→Submission)

)

)

)

)

)

3.2. Tutorials 611

Daml SDK Documentation, 2.1.1

3.2.2.6 Provisioning Smart Contract Code

To create a contract between Alice and Bob, you must first provision the contract’s code to both of

their hosting participants. Canton supports smart contracts written in Daml. A Daml contract’s

code is specified using a Daml contract template; an actual contract is then a template instance. Daml

templates are packaged into Daml archives, or DARs for short. For this tutorial, use the pre-packaged

dars/CantonExamples.dar file. To provision it to both participant1 and participant2, you

can use the participants.all bulk operator:

@ participants.all.dars.upload("dars/CantonExamples.dar")

res19: Map[com.digitalasset.canton.console.ParticipantReference, String] = Map(

Participant
participant1
 ->

↪→"1220c13824901c286f74423de9eb73a9f47bfcca5c6befcd735c1cb08a43104023d6",

Participant
participant2
 ->

↪→"1220c13824901c286f74423de9eb73a9f47bfcca5c6befcd735c1cb08a43104023d6"

)

The bulk operator allows you to run certain commands on a series of nodes. Canton supports the

bulk operators on the generic nodes:

@ nodes.local

res20: Seq[com.digitalasset.canton.console.LocalInstanceReference] =␣

↪→ArraySeq(Participant
participant1
, Participant
participant2
, Domain

↪→
mydomain
)

or on the specific node type:

@ participants.all

res21: Seq[com.digitalasset.canton.console.ParticipantReference] =␣

↪→List(Participant
participant1
, Participant
participant2
)

Allowed suffixes are .local, .all or .remote, where the remote refers to remote nodes, which we

won’t use here.

To validate that the DAR has been uploaded, run:

@ participant1.dars.list()

res22: Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c13824901c286f74423de9eb73a9f47bfcca5c6befcd735c1cb08a43104023d6",

name = "CantonExamples"

),

DarDescription(

hash = "1220c5a4ac582223dcf2a59d323e474b3411df96f39cfa1304e2739ab7ca97f3b6b8",

name = "AdminWorkflows"

)

)

and on the second participant, run:

@ participant2.dars.list()

res23: Seq[com.digitalasset.canton.participant.admin.v0.DarDescription] = Vector(

DarDescription(

hash = "1220c13824901c286f74423de9eb73a9f47bfcca5c6befcd735c1cb08a43104023d6",

name = "CantonExamples"

),

(continues on next page)

612 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

DarDescription(

hash = "1220c5a4ac582223dcf2a59d323e474b3411df96f39cfa1304e2739ab7ca97f3b6b8",

name = "AdminWorkflows"

)

)

One important observation is that you can not list the uploaded DARs on the domain mydomain. You

will simply get an error if you run mydomain.dars.list(). This is due the fact that the domain

does not know anything about Daml or smart contracts. All the contract code is only executed by the

involved participants on a need to know basis and needs to be explicitly enabled by them.

Now you are ready to actually start running smart contracts using Canton.

3.2.2.7 Executing Smart Contracts

Let’s start by looking at some smart contract code. In our example, we’ll have three parties, Alice, Bob

and the Bank. In the scenario, Alice and Bob will agree that Bob has to paint her house. In exchange,

Bob will get a digital bank note (I-Owe-You, IOU) from Alice, issued by a bank.

First, we need to add the Bank as a party:

@ val bank = participant2.parties.enable("Bank", waitForDomain = DomainChoice.All)

bank : PartyId = Bank::12201ee0969b...

You might have noticed that we’ve added a waitForDomain argument here. This is necessary to

force some synchronisation between the nodes to ensure that the new party is known within the

distributed system before it is used.

Note: Canton alleviatesmost synchronization issues when interacting with Daml contracts. Never-

theless, Canton is a concurrent, distributed system. All operations happen asynchronously. Creating

the Bank party is an operation local to participant2, and mydomain becomes aware of the party

with a delay (see Topology Transactions for more detail). Processing and network delays also exist for

all other operations that affect multiple nodes, though everyone sees the operations on the domain

in the same order. When you execute commands interactively, the delays are usually too small to

notice. However, if you’re programming Canton scripts or applications that talk to multiple nodes,

youmight need some form of manual synchronization. Most Canton console commands have some

form of synchronisation to simplify your life and sometimes, using utils.retry_until_true(.

..) is a handy solution.

The corresponding Daml contracts that we are going to use for this example are:

module Iou where

import Daml.Script

data Amount = Amount {value: Decimal; currency: Text} deriving (Eq, Ord, Show)

amountAsText (amount : Amount) : Text = show amount.value <> amount.currency

template Iou

with

(continues on next page)

3.2. Tutorials 613

Daml SDK Documentation, 2.1.1

(continued from previous page)

payer: Party

owner: Party

amount: Amount

viewers: [Party]

where

ensure (amount.value >= 0.0)

signatory payer

observer viewers

controller owner can

Call : ContractId GetCash do

create GetCash with payer; owner; amount

Transfer : ContractId Iou

with newOwner: Party do

create this with owner = newOwner; viewers = []

Share : ContractId Iou

with viewer : Party

do

create this with viewers = (viewer :: viewers)

module Paint where

import Daml.Script

import Iou

template PaintHouse

with

painter: Party

houseOwner: Party

where

signatory painter, houseOwner

agreement

show painter <> " will paint the house of " <> show houseOwner

template OfferToPaintHouseByPainter

with

houseOwner: Party

painter: Party

bank: Party

amount: Amount

where

signatory painter

controller houseOwner can

AcceptByOwner : ContractId Iou with iouId : ContractId Iou

do

iouId2 <- exercise iouId Transfer with newOwner = painter

paint <- create $ PaintHouse with painter; houseOwner

return iouId2

Wewon’t dive into the details of Daml, as this is explained elsewhere. But one key observation is that

the contracts themselves are passive. The contract instances represent the ledger and only encode

the rules according to which the ledger state can be changed. Any change requires you to trigger

some Daml contract execution by sending the appropriate commands over the Ledger API.

614 Chapter 3. Canton Guide

https://docs.daml.com/daml/intro/0_Intro.html

Daml SDK Documentation, 2.1.1

The Canton console gives you interactive access to this API, together with some utilities that can be

useful for experimentation. The Ledger API is using GRPC.

In theory, we would need to compile the Daml code into a DAR and then upload it to the participant

nodes. We actually did this already by uploading the CantonExamples.dar, which includes the

contracts. Now we can create our first contract using the template Iou.Iou. The name of the tem-

plate is not enough to uniquely identify it. We also need the package id, which is just the sha256 hash

of the binary module containing the respective template.

Find that package by running:

@ val pkgIou = participant1.packages.find("Iou").head

pkgIou : com.digitalasset.canton.participant.admin.v0.PackageDescription =␣

↪→PackageDescription(

packageId = "f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

sourceDescription = "CantonExamples"

)

Using this package-id, we can create the paint offer:

@ val createIouCmd = ledger_api_utils.create(pkgIou.packageId,"Iou","Iou",Map(

↪→"payer" -> bank,"owner" -> alice,"amount" -> Map("value" -> 100.0, "currency" ->

↪→ "EUR"),"viewers" -> List()))

createIouCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Create(

value = CreateCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

..

and then send that command to the Ledger API:

@ participant2.ledger_api.commands.submit(Seq(bank), Seq(createIouCmd))

res27: com.daml.ledger.api.v1.transaction.TransactionTree = TransactionTree(

transactionId =

↪→"1220b85c6164179725db70c09b27908030ca5016b62240e7a3a9ae4712e87a585fc9",

commandId = "07ef6aac-bf1e-47b4-a222-2f884da99861",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

seconds = 1650443659L,

nanos = 358768000,

unknownFields = UnknownFieldSet(fields = Map())

)

),

offset = "00000000000000000f",

..

Here, we’ve submitted this command as party Bank on participant2. Interestingly, we can test here

the Daml authorization logic. As the signatory of the contract is Bank, we can’t have Alice submitting

the contract:

@ participant1.ledger_api.commands.submit(Seq(alice), Seq(createIouCmd))

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→- Request failed for participant1.

(continues on next page)

3.2. Tutorials 615

http://grpc.io

Daml SDK Documentation, 2.1.1

(continued from previous page)

GrpcClientError: INVALID_ARGUMENT/DAML_AUTHORIZATION_ERROR(8,66cbde05):␣

↪→Interpretation error: Error: node NodeId(0)␣

↪→(f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279:Iou:Iou)␣

↪→requires authorizers␣

↪→Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b, but␣

↪→only␣

↪→Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff␣

↪→were given

Request: SubmitAndWaitTransactionTree(actAs = Alice::12209e5c593d..., commandId␣

↪→=

, workflowId =

, submissionId =

, deduplicationPeriod = None(),␣

↪→ledgerId =
participant1
, commands = ...)

CorrelationId: 66cbde05-683a-4be5-8f64-7ded3963c1d4

..

And Alice can not impersonate the Bank by pretending to be it (on her participant):

@ participant1.ledger_api.commands.submit(Seq(bank), Seq(createIouCmd))

ERROR com.digitalasset.canton.integration.EnterpriseEnvironmentDefinition$$anon$3␣

↪→- Request failed for participant1.

GrpcRequestRefusedByServer: NOT_FOUND/NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_

↪→SUBMIT(11,cc232d6c): This participant can not submit as the given submitter on␣

↪→any connected domain

Request: SubmitAndWaitTransactionTree(actAs = Bank::12201ee0969b..., commandId␣

↪→=

, workflowId =

, submissionId =

, deduplicationPeriod = None(),␣

↪→ledgerId =
participant1
, commands = ...)

CorrelationId: cc232d6c9c3a0f8167401dd59f7e289d

..

Alice can, however, observe the contract on her participant by searching her Active Contract Set (ACS)

for it:

@ val aliceIou = participant1.ledger_api.acs.find_generic(alice, _.templateId ==

↪→"Iou.Iou")

aliceIou : com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#1220b85c6164179725db70c09b27908030ca5016b62240e7a3a9ae4712e87a585fc9:0",

contractId =

↪→"00d1bab27595df8798c0fe241bcabd7a748c12789fa25a1ab57bc5247b9664b3a5ca001220cc6c8d60aa401a047718a02ca91d5bd8dfb5149a64b88277a4e5e3ef6b1123a4

↪→",

..

We can check Alice’s ACS, which will show us all the contracts Alice knows about:

@ participant1.ledger_api.acs.of_party(alice)

res29: Seq[com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent] = List(

WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#1220b85c6164179725db70c09b27908030ca5016b62240e7a3a9ae4712e87a585fc9:0",

contractId =

↪→"00d1bab27595df8798c0fe241bcabd7a748c12789fa25a1ab57bc5247b9664b3a5ca001220cc6c8d60aa401a047718a02ca91d5bd8dfb5149a64b88277a4e5e3ef6b1123a4

↪→",

(continues on next page)

616 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

templateId = Some(

value = Identifier(

packageId =

↪→"f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

..

As expected, Alice does see exactly the contract that the Bank previously created. The command

returns a sequence of wrapped CreatedEvent’s. This Ledger API data type represents the event of a

contract’s creation. The output is a bit verbose, but the wrapper provides convenient functions to

manipulate the CreatedEvents in the Canton console:

@ participant1.ledger_api.acs.of_party(alice).map(x => (x.templateId, x.

↪→arguments))

res30: Seq[(String, Map[String, Any])] = List(

(

"Iou.Iou",

HashMap(

"payer" ->

↪→"Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"viewers" -> List(elements = Vector()),

"owner" ->

↪→"Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff",

"amount.currency" -> "EUR",

"amount.value" -> "100.0000000000"

)

)

)

Going back to our story, Bob now wants to offer to paint Alice’s house in exchange for money. Again,

we need to grab the package id, as the Paint contract is in a different module:

@ val pkgPaint = participant1.packages.find("Paint").head

pkgPaint : com.digitalasset.canton.participant.admin.v0.PackageDescription =␣

↪→PackageDescription(

packageId = "f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

sourceDescription = "CantonExamples"

)

Note that themodules are compositional. The Ioumodule is not aware of the Paintmodule, but the

Paintmodule is using the Ioumodule within its workflow. This is how we can extend any workflow

in Daml and build in top of it. In particular, the Bank does not need to know about the Paintmodule

at all, but can still participate in the transaction without any adverse effect. As a result, everybody

can extend the system with their own functionality. Let’s create and submit the offer now:

@ val createOfferCmd = ledger_api_utils.create(pkgPaint.packageId, "Paint",

↪→"OfferToPaintHouseByPainter", Map("bank" -> bank, "houseOwner" -> alice,

↪→"painter" -> bob, "amount" -> Map("value" -> 100.0, "currency" -> "EUR")))

createOfferCmd : com.daml.ledger.api.v1.commands.Command = Command(

command = Create(

value = CreateCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

..

3.2. Tutorials 617

https://docs.daml.com/app-dev/grpc/proto-docs.html#com-daml-ledger-api-v1-createdevent

Daml SDK Documentation, 2.1.1

@ participant2.ledger_api.commands.submit_flat(Seq(bob), Seq(createOfferCmd))

res33: com.daml.ledger.api.v1.transaction.Transaction = Transaction(

transactionId =

↪→"1220abcfd7b2aef6d2aa32cc049ea9bc76e1105d4f49d1b31f3aa1f25947d5f0cb51",

commandId = "a057af6d-ea77-4c01-9ec6-af9d5f4f42ae",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

..

Alice will observe this offer on her node:

@ val paintOffer = participant1.ledger_api.acs.find_generic(alice, _.templateId␣

↪→== "Paint.OfferToPaintHouseByPainter")

paintOffer : com.digitalasset.canton.admin.api.client.commands.

↪→LedgerApiTypeWrappers.WrappedCreatedEvent = WrappedCreatedEvent(

event = CreatedEvent(

eventId = "

↪→#1220abcfd7b2aef6d2aa32cc049ea9bc76e1105d4f49d1b31f3aa1f25947d5f0cb51:0",

contractId =

↪→"0033813ba6a41e3c8b56856c8b4c755a91e35b5f2876f1e9443377b3a2bd78c800ca001220d5f4ff88551ae317935e811bd318da58bdc44eedbb53413d199e4ee8f0f9c344

↪→",

templateId = Some(

value = Identifier(

..

3.2.2.8 Privacy

Looking at the ACS of Alice, Bob and the Bank, we note that Bob sees only the paint offer:

@ participant2.ledger_api.acs.of_party(bob).map(x => (x.templateId, x.arguments))

res35: Seq[(String, Map[String, Any])] = List(

(

"Paint.OfferToPaintHouseByPainter",

HashMap(

"painter" ->

↪→"Bob::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"houseOwner" ->

↪→"Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff",

"bank" ->

↪→"Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"amount.currency" -> "EUR",

"amount.value" -> "100.0000000000"

)

)

)

while the Bank sees the Iou contract:

@ participant2.ledger_api.acs.of_party(bank).map(x => (x.templateId, x.arguments))

res36: Seq[(String, Map[String, Any])] = List(

(

"Iou.Iou",

HashMap(

"payer" ->

↪→"Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",(continues on next page)

618 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"viewers" -> List(elements = Vector()),

"owner" ->

↪→"Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff",

"amount.currency" -> "EUR",

"amount.value" -> "100.0000000000"

)

)

)

But Alice sees both on her participant node:

@ participant1.ledger_api.acs.of_party(alice).map(x => (x.templateId, x.

↪→arguments))

res37: Seq[(String, Map[String, Any])] = List(

(

"Iou.Iou",

HashMap(

"payer" ->

↪→"Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"viewers" -> List(elements = Vector()),

"owner" ->

↪→"Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff",

"amount.currency" -> "EUR",

"amount.value" -> "100.0000000000"

)

),

(

"Paint.OfferToPaintHouseByPainter",

HashMap(

"painter" ->

↪→"Bob::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"houseOwner" ->

↪→"Alice::12209e5c593ddc555a17e710c44d6fdff392750416d545237fa9a8e34d71d8517cff",

"bank" ->

↪→"Bank::12201ee0969bec68b4ca331deb0c2e83b5ac3091c66ca09f08677e263ff9b40cee7b",

"amount.currency" -> "EUR",

"amount.value" -> "100.0000000000"

)

)

)

If there were a third participant node, it wouldn’t have even noticed that there was anything happen-

ing, let alone have received any contract data. Or if we had deployed the Bank on that third node,

that node would not have been informed about the Paint offer. This privacy feature goes so far in

Canton that not even everybody within a single atomic transaction is aware of each other. This is

a property unique to the Canton synchronization protocol, which we call sub-transaction privacy. The

protocol ensures that only eligible participants will receive any data. Furthermore, while the node

running mydomain does receive this data, the data is encrypted and mydomain cannot read it.

We can run such a step with sub-transaction privacy by accepting the offer, which will lead to the

transfer of the Bank Iou, without the Bank actually learning about the Paint agreement:

@ import com.digitalasset.canton.protocol.LfContractId

3.2. Tutorials 619

Daml SDK Documentation, 2.1.1

@ val acceptOffer = ledger_api_utils.exercise("AcceptByOwner", Map("iouId" ->␣

↪→LfContractId.assertFromString(aliceIou.event.contractId)),paintOffer.event)

acceptOffer : com.daml.ledger.api.v1.commands.Command = Command(

command = Exercise(

value = ExerciseCommand(

templateId = Some(

value = Identifier(

packageId =

↪→"f640390ec52f27903538d6f4eed8607c95a2c6c56c5aae610341c70971187279",

..

@ participant1.ledger_api.commands.submit_flat(Seq(alice), Seq(acceptOffer))

res40: com.daml.ledger.api.v1.transaction.Transaction = Transaction(

transactionId =

↪→"1220a36577c8dd119b60865d533644a77777beedc31fd8e6a7a2605b57944c877446",

commandId = "c3bd1a7c-c8d6-4551-b2b1-b4d43777823d",

workflowId = "",

effectiveAt = Some(

value = Timestamp(

..

Note that the conversion to LfContractIdwas required to pass in the Iou contract id as the correct

type.

3.2.2.9 Your Development Choices

While the ledger_api functions in the Console can be handy for educational purposes, the Daml

SDK provides you with much more convenient tools to inspect and manipulate the ledger content:

• The browser based Navigator

• The console version Navigator

• Daml script for scripting

• Daml triggers for reactive operations

• Daml REPL for interactive manipulations

• Json API for browser based UIs

• Bindings in a variety of languages to build your own applications

All these tools work against the Ledger API.

3.2.2.10 Automation using bootstrap scripts

You can configure a bootstrap script to avoid having to manually complete routine tasks such as

starting nodes or provisioning parties each time Canton is started. Bootstrap scripts are automati-

cally run after Canton has started and can contain any valid Canton Console commands. A bootstrap

script is passed via the --bootstrap CLI argument when starting Canton. By convention, we use a

.canton file ending.

For example, the bootstrap script to connect the participant nodes to the local domain and ping

participant1 from participant2 (see Starting and Connecting The Nodes) is:

// start all local instances defined in the configuration file

nodes.local start

(continues on next page)

620 Chapter 3. Canton Guide

https://docs.daml.com/tools/navigator/index.html
https://docs.daml.com/tools/navigator/console.html
https://docs.daml.com/daml-script
https://docs.daml.com/triggers
https://docs.daml.com/daml-repl
https://docs.daml.com/json-api
https://docs.daml.com/app-dev/ledger-api.html

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Connect participant1 to mydomain using the connect macro.

// The connect macro will inspect the domain configuration to find the correct␣

↪→URL and Port.

// The macro is convenient for local testing, but obviously doesn
t work in a␣

↪→distributed setup.

participant1.domains.connect_local(mydomain)

// Connect participant2 to mydomain using just the target URL and a local name we␣

↪→use to refer to this particular

// connection. This is actually everything Canton requires and this second type␣

↪→of connect call can be used

// in order to connect to a remote Canton domain.

//

// The connect call is just a wrapper that invokes the Cdomains.registerC,␣

↪→Cdomains.get_agreementC and Cdomains.accept_agreementC calls.

//

// The address can be either HTTP or HTTPS. From a security perspective, we do␣

↪→assume that we either trust TLS to

// initially introduce the domain. If we don
t trust TLS for that, we can also␣

↪→optionally include a so called

// EssentialState that establishes the trust of the participant to the domain.

// Whether a domain will let a participant connect or not is at the discretion of␣

↪→the domain and can be configured

// there. While Canton establishes the connection, we perform a handshake,␣

↪→exchanging keys, authorizing the connection

// and verifying version compatibility.

participant2.domains.connect("mydomain", "http://localhost:5018")

// above connect operation is asynchronous. it is generally at the discretion of␣

↪→the domain

// to decide if a participant can join and when. therefore, we need to␣

↪→asynchronously wait here

// until the participant observes its activation on the domain. As the domain is␣

↪→configured to be

// permissionless in this example, the approval will be granted immediately.

utils.retry_until_true {

participant2.domains.active("mydomain")

}

participant2.health.ping(participant1)

Note how we again use retry_until_true to add a manual synchronization point, making sure

that participant2 is registered, before proceeding to ping participant1.

3.2. Tutorials 621

Daml SDK Documentation, 2.1.1

3.2.2.11 What Next?

You are now ready to start using Canton for serious tasks. If you want to develop a Daml application

and run it on Canton, we recommend the following resources:

1. Install the Daml SDK to get access to the Daml IDE and other tools, such as the Navigator.

2. Run through the Daml SDK getting-started example to learn how to build your own Daml applica-

tions on Canton.

3. Follow the Daml documentation to learn how to program new contracts, or check out the Daml

Examples to find existing ones for your needs.

4. Use the Navigator for easy Web-based access and manipulation of your contracts.

If you want to understand more about Canton:

1. Read the requirements that Cantonwas built for to find outmore about the properties of Canton.

2. Read the architectural overview for more understanding of Canton concepts and internals.

If you want to deploy your own Canton nodes, consult the installation guide.

3.2.3 Daml SDK and Canton

This tutorial shows how to run an application on a distributed setup using Canton instead of running

it on theDaml sandbox. This comeswith a fewknownproblemsand this section explainshow towork

around them.

In this tutorial, you will learn how to run the Create Daml App example on Canton. This guide will

teach you:

1. The main concepts of Daml

2. How to compile your own Daml Archive (DAR)

3. How to run the Create Daml App example on Canton

4. How to write your own Daml code

5. How to integrate a conventional application with Canton

If you haven’t yet done so, please run through the “Getting Started with Canton” and the original Daml

getting started guide to familiarise yourself with the example application. Then come back here to

get the same example running on Canton.

3.2.3.1 Starting Canton

Follow the Daml SDK installation guide to get the SDK locally installed.

This guide has been tested with the SDK version 2.1.0. Set the environment variable DAML_SDK_VER-

SION to 2.1.0 so that subsequent daml commands use this version.

export DAML_SDK_VERSION=2.1.0

Starting from the location where you unpacked the Canton distribution, fetch the create-daml-app

example into a directory named create-daml-app (as the example configuration files of

examples/04-create-daml-app expect the files to be there):

daml new create-daml-app --template create-daml-app

Next, compile the Daml code into a DAR file (this will create the file .daml/dist/

create-daml-app-0.1.0.dar), and run the code generation step used by the UI:

622 Chapter 3. Canton Guide

https://docs.daml.com/getting-started/installation.html
https://docs.daml.com/
https://daml.com/examples/
https://daml.com/examples/
https://docs.daml.com/tools/navigator/index.html
https://docs.daml.com/tools/sandbox.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.1.1

cd create-daml-app

daml build

daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o ui/daml.js

You will also need to install the dependencies for the UI:

cd ui

npm install

Next, the original tutorial would ask you to start the Sandbox and the HTTP JSON API with

daml start. We will instead start Canton using the distributed setup in examples/

04-create-daml-app, and will later start the HTTP JSON API in a separate step.

Return to the directory where you unpacked the Canton distribution and start Canton with:

cd ../..

bin/canton -c examples/04-create-daml-app/canton.conf --bootstrap examples/04-

↪→create-daml-app/init.canton

Note: If you get anCompilation Failed error, youmayhave tomake theCantonbinary executable

with chmod +x bin/canton

Thiswill start twoparticipant nodes, allocate theparties Alice, BobandPublic and create correspond-

ing users alice and bob. Each participant node will expose its own ledger API:

1. Alice will be hosted by participant1, with its ledger API on port 12011

2. Bob will be hosted by participant2, with its ledger API on port 12021

Note that the examples/04-create-daml-app/init.canton script performs a few setup steps

to permission the parties and upload the DAR.

Leave Canton running and switch to a new terminal window.

3.2.3.2 Running the Create Daml App Example

Once Canton is running, start the HTTP JSON API:

• Connected to the ledger api on port 12011 (corresponding to Alice’s participant)

• And connected to the UI on the default expected port 7575

DAML_SDK_VERSION=2.1.0 daml json-api \

--ledger-host localhost \

--ledger-port 12011 \

--http-port 7575 \

--allow-insecure-tokens

Leave this running. The UI can then be started from a third terminal window with:

cd create-daml-app/ui

REACT_APP_LEDGER_ID=participant1 npm start

Note that we have to configure the ledger ID used by the UI tomatch the name of the participant that

we’re running against. This is done using the environment variable REACT_APP_LEDGER_ID.

3.2. Tutorials 623

https://docs.daml.com/json-api/index.html

Daml SDK Documentation, 2.1.1

We can now log in as alice.

Connecting to participant2

You can log in as Bob using participant2 by following essentially the same process as for partic-

ipant1, adjusting the ports to correspond to participant2.

First, start another instance of the HTTP JSON API, this time using the options --

ledger-port=12021 and --http-port 7576. 12021 corresponds to participant2’s ledger

port, and 7576 is a new port for another instance of the HTTP JSON API:

DAML_SDK_VERSION=2.1.0 daml json-api \

--ledger-host localhost \

--ledger-port 12021 \

--http-port 7576 \

--allow-insecure-tokens

Then start another instance of the UI for Bob, running on port 3001 and connected to the HTTP JSON

API on port 7576:

cd create-daml-app/ui

PORT=3001 REACT_APP_HTTP_JSON=http://localhost:7576 REACT_APP_LEDGER_

↪→ID=participant2 npm start

You can then log in with the user id bob.

Now that both parties have logged in, you can select Bob in the dropdown fromAlice’s view and follow

him and the other way around.

After both parties have followed each other, the resulting view from Alice’s side will look as follows.

Note that create-daml-app sets up human-readable aliases for party ids, which is why we can use

those names to follow other parties instead of their party id.

624 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.2.3.3 What Next?

Now that you have started to become familiar with Daml and what a full Daml-based solution looks

like, you can build your own first Daml application.

1. Use the Daml language reference docs to master Daml and build your own Daml model.

2. Test your model using Daml scripts.

3. Create a simple UI following the example of the Create Daml App template used in this tutorial.

4. See how to compose workflows across multiple Canton domains.

5. Showcase your application on the forum.

Composability is currently an Early Access Feature in Alpha status.

Note: The example in this tutorial uses unsupported Scala bindings and codegen.

3.2.4 Composability

In this tutorial, you will learn how to build workflows that span several Canton domains. Compos-

ability turns those several Canton domains into one conceptual ledger at the application level.

The tutorial assumes the following prerequisites:

• You have worked through the Getting started tutorial and know how to interact with the Canton

console.

• You know the Daml concepts that are covered in the Daml introduction.

• The running example uses the ledger API, the Scala codegen (no longer supported by Daml) for

Daml, and Canton’s identity management. If you want to understand the example code in full,

please refer to the above documentation.

The tutorial consists of two parts:

1. The first part illustrates how to design a workflow that spans multiple domains.

2. The second part shows how to compose existing workflows on different domains into a single

workflow and the benefits this brings.

The Daml models are shipped with the Canton release in the daml/CantonExamples folder in

the modules Iou and Paint. The configuration and the steps are available in the examples/

05-composability folder of the Canton release. To run the workflow, start Canton from the re-

lease’s root folder as follows:

./bin/canton -c examples/05-composability/composability.conf

You can copy-paste the console commands from the tutorial in the given order into the Canton con-

sole to run them interactively. All console commands are also summarized in the bootstrap scripts

composability1.canton, composability-auto-transfer.canton, and composability2.

canton.

Note: Note that to use composability, we do have to turn off contract key uniqueness, as uniqueness

can not be provided acrossmultiple domains. Therefore, composability is just a preview feature and

explained here to demonstrate an early version of it that is not yet suitable for production use.

3.2. Tutorials 625

https://docs.daml.com/daml/reference/index.html
https://docs.daml.com/daml-script/index.html
https://docs.daml.com/getting-started/index.html
https://discuss.daml.com/
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.1.1

3.2.4.1 Part 1: A multi-domain workflow

We consider the paint agreement scenario from the Getting started tutorial. The house owner and the

painter want to enter a paint agreement that obliges the painter to paint the house owner’s house.

To enter such an agreement, the house owner proposes a paint offer to the painter and the painter

accepts. Upon acceptance, the paint agreement shall be created atomically with changing the own-

ership of the money, which we represent by an IOU backed by the bank.

Atomicity guarantees that no party can scam the other: The painter enters the obligation of painting

thehouseonly if house owner pays, and thehouseowner pays only if thepainter enters the obligation.

This avoid bad scenarios such as the following, which would have to be resolved out of band, e.g.,

using legal processes:

• The house owner spends the IOU on something else and does not pay the painter, even though

the painter has entered the obligation to paint the house. The painter then needs to convince

the house owner to pay with another IOU or to revoke the paint agreement.

• The house owner wires the money to the painter, but the painter refuses to enter the paint

agreement. The house owner then begs the painter to return the money.

Setting up the topology

In this example, we assume a topology with two domains, iou and paint. The house owner’s and

the painter’s participants are connected to both domains, as illustrated in the following diagram.

626 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

The configuration file composability.conf configures the two domains iou and paint and three

participants.

canton {

features {

enable-preview-commands = yes

enable-testing-commands = yes

}

monitoring {

tracing.propagation = enabled

logging.api.message-payloads = true

}

domains {

iou {

public-api.port = 13018

admin-api.port = 13019

storage.type = memory

domain-parameters.unique-contract-keys = false

}

paint {

public-api.port = 13028

admin-api.port = 13029

storage.type = memory

domain-parameters.unique-contract-keys = false

}

}

participants {

participant1 {

ledger-api.port = 13011

admin-api.port = 13012

storage.type = memory

parameters.unique-contract-keys = false

}

participant2 {

ledger-api.port = 13021

admin-api.port = 13022

storage.type = memory

parameters.unique-contract-keys = false

}

participant3 {

ledger-api.port = 13031

admin-api.port = 13032

storage.type = memory

parameters.unique-contract-keys = false

}

}

}

As the first step, some domain parameters are changed (setting

transfer-exclusivity-timeout will be explained in the second part of this tutorial). Then,

all the nodes are started and the parties for the bank (hosted on participant 1), the house owner

(hosted on participant 2), and the painter (hosted on participant 3) are created. The details of the

party onboarding are not relevant for show-casing cross-domain workflows.

3.2. Tutorials 627

Daml SDK Documentation, 2.1.1

// update parameters

iou.service.update_dynamic_parameters(

_.copy(transferExclusivityTimeout = TimeoutDuration.Zero)

) // disables automatic transfer-in

paint.service.update_dynamic_parameters(

_.copy(transferExclusivityTimeout = TimeoutDuration.ofSeconds(2))

)

// connect participants to the domain

participant1.domains.connect_local(iou)

participant2.domains.connect_local(iou)

participant3.domains.connect_local(iou)

participant2.domains.connect_local(paint)

participant3.domains.connect_local(paint)

// the connect call will use the configured domain name as an alias. the␣

↪→configured

// name is the one used in the configuration file.

// in reality, all participants pick the alias names they want, which means that

// aliases are not unique, whereas a CDomainIdC is. However, the

// alias is convenient, while the DomainId is a rather long string including a␣

↪→hash.

// therefore, for commands, we prefer to use a short alias instead.

val paintAlias = paint.name

val iouAlias = iou.name

// create the parties

val Bank = participant1.parties.enable("Bank")

val HouseOwner = participant2.parties.enable("House Owner")

val Painter = participant3.parties.enable("Painter")

// Wait until the party enabling has taken effect and has been observed at the␣

↪→participants

val partyAssignment = Set(HouseOwner -> participant2, Painter -> participant3)

participant2.parties.await_topology_observed(partyAssignment)

participant3.parties.await_topology_observed(partyAssignment)

// upload the Daml model to all participants

val darPath = Option(System.getProperty("canton-examples.dar-path")).getOrElse(

↪→"dars/CantonExamples.dar")

participants.all.dars.upload(darPath)

Creating the IOU and the paint offer

To initialize the ledger, the Bank creates an IOU for the house owner and the house owner creates

a paint offer for the painter. These steps are implemented below using the Scala bindings (no

longer supported by Daml) generated from the Daml model. The generated Scala classes are dis-

tributed with the Canton release in the package com.digitalasset.canton.examples. The rel-

evant classes are imported as follows:

import com.digitalasset.canton.examples.Iou.{Amount, Iou}

import com.digitalasset.canton.examples.Paint.{OfferToPaintHouseByOwner,␣

↪→PaintHouse}

(continues on next page)

628 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

import com.digitalasset.canton.ledger.api.client.DecodeUtil.decodeAllCreated

import com.digitalasset.canton.protocol.ContractIdSyntax._

Bank creates an IOU of USD 100 for the house owner on the iou domain, by submitting the command

through the ledger API command service of participant 1. The house owner then shares the IOU con-

tract with the painter such that the painter can effect the ownership change when they accept the

offer. The share operation adds the painter as an observer on the IOU contract so that the painter

can see the IOU contract. Both of these commands run over the iou domain because the Bank’s

participant 1 is only connected to the iou domain.

// Bank creates IOU for the house owner

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf)

// The house owner adds the Painter as an observer on the IOU

val shareIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(shareIouCmd)))

Similarly, the house owner creates a paint offer on the paint domain via participant 2. In the

ledger_api.commands.submit_flat command, we set the workflow id to the paint domain so

that the participant submits the commands to this domain. If no domain was specified, the partic-

ipant automatically determines a suitable domain. In this case, both domains are eligible because

on each domain, every stakeholder (the house owner and the painter) is hosted on a connected par-

ticipant.

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

3.2. Tutorials 629

Daml SDK Documentation, 2.1.1

Transferring a contract

In Canton, contracts reside on at most one domain at a time. For example, the IOU contract resides

on the iou domain because it has been created by a command that was submitted to the iou do-

main. Similarly, the paint offer resides on the paint domain. In the current version of Canton, the

execution of a transaction can only use contracts that reside on a single domain. Therefore, before

the painter can accept the offer and thereby become the owner of the IOU contract, both contracts

must be brought to a common domain.

In this example, the house owner and the painter are hosted on participants that are connected to

both domains, whereas the Bank is only connected to the iou domain. The IOU contract cannot

be moved to the paint domain because all stakeholders of a contract must be connected to the

contract’s domain of residence. Conversely, the paint offer can be transferred to the iou domain, so

that the painter can accept the offer on the iou domain.

Stakeholders can change the residence domain of a contract using the transfer.execute com-

mand. In the example, the painter transfers the paint offer from the paint domain to the iou do-

main.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter transfers the paint offer to the IOU domain

participant3.transfer.execute(

Painter, // Initiator of the transfer

paintOffer.contractId.toLf, // Contract to be transferred

paintAlias, // Origin domain

iouAlias // Target domain

)

Atomic acceptance

The paint offer and the IOU contract both reside on the iou domain now. Accordingly, the painter

can complete the workflow by accepting the offer.

// Painter accepts the paint offer on the IOU domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

This transaction executes on the iou domain because the input contracts (the paint offer and the

IOU) reside there. It atomically creates two contracts on the iou domain: the painter’s new IOU

and the agreement to paint the house. The unhappy scenarios needing out-of-band resolution are

avoided.

630 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Completing the workflow

Finally, the paint agreement can be transferred back to the paint domain, where it actually belongs.

// Wait until the house owner sees the PaintHouse agreement

participant2.ledger_api.acs.await_active_contract(HouseOwner, paintHouse.

↪→contractId.toLf)

// The house owner moves the PaintHouse agreement back to the Paint domain

participant2.transfer.execute(

HouseOwner,

paintHouse.contractId.toLf,

iouAlias,

paintAlias

)

Note that the painter’s IOU remains on the iou domain. The painter can therefore call the IOU and

cash it out.

// Painter converts the Iou into cash

participant3.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

Performing transfers automatically

Canton also supports automatic transfers for commands performing transactions that use con-

tracts residing on several domains. When such a command is submitted, Canton can automatically

infer a common domain that the used contracts can be transferred to. Once all the used contracts

have been transferred into the common domain the transaction is performed on this single domain.

However, this simply performs the required transfers followed by the transaction processing as dis-

tinct non-atomic steps.

We can therefore run the above script without specifying any transfers at all, and relying on the auto-

matic transfers. Simply delete all the transfer commands from the example above and the example

will still run successfully. A modified version of the above example that uses automatic transfers

instead of manual transfers is given below.

The setup code and contract creation is unchanged:

// Bank creates IOU for the house owner

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf) (continues on next page)

3.2. Tutorials 631

Daml SDK Documentation, 2.1.1

(continued from previous page)

// The house owner adds the Painter as an observer on the IOU

val showIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(showIouCmd)))

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

In the following section, the painter accepts the paint offer. The transaction that accepts the paint

offer uses two contracts: the paint offer contract, and the IOU contract. These contracts were cre-

ated on two different domains in the previous step: the paint offer contract was created on the paint

domain, and the IOU contract was created on the IOU domain. The paint offer contractmust be trans-

ferred to the IOU domain for the accepting transaction to be successfully applied, as was doneman-

ually in the example above. It would not be possible to instead transfer the IOU contract to the paint

domain because the stakeholder Bank on the IOU contract is not represented on the paint domain.

When using automatic-transfer transactions, Canton infers a suitable domain for the transaction

and transfers all used contracts to this domain before applying the transaction. In this case, the

only suitable domain for the painter to accept the paint offer is the IOU domain. This is how the

painter is able to accept the paint offer below without any explicit transfers being performed.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter accepts the paint offer on the IOU domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

The painter can then cash in the IOU. This happens exactly as before, since the IOU contract never

leaves the IOU domain.

// Painter converts the Iou into cash

participant3.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

Note that towards the end of the previous example with explicit transfers, the paint offer contract

was transferred back to the paint domain. This doesn’t happen in the automatic transfer version:

632 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

the paint offer is not transferred out of the IOU domain as part of the script shown. However, the

paint offer contract will be automatically transferred back to the paint domain once it is used in a

transaction that must happen on the paint domain.

Details of the automatic-transfer transactions

In the previous section, the automatic-transfer transactions were explained using an example. The

details are presented here.

The automatic-transfer transactions enable submission of a transaction using contracts on multi-

ple domains, by transferring contracts into a chosen target domain and thenperforming the transac-

tion. However, using an automatic-transfer transaction does not provide any atomicity guarantees

beyond using several primitive transfer-in and transfer-out operations (these operations make up

the transfer.execute command, and are explained in the next section).

The domain for a transaction is chosen using the following criteria:

• Minimise the number of transfers needed.

• Break ties by choosing domains with higher priority first.

• Break ties by choosing domains with alphabetically smaller domain IDs first.

As for ordinary transactions, youmay force the choice of domain for an automatic-transfer transac-

tion by setting the workflow ID to name of the domain.

The automatic-transfer transactions are only enabled when all of the following are true:

• The local canton console enables preview commands (see the configuration section).

• The submitting participant is connected to all domains that contracts used by the transaction

live on.

• All contracts used by the transaction must have at least one stakeholder that is also a trans-

action submitter.

Take aways

• Contracts reside on domains.

• Stakeholders can move contracts from one domain to another using transfer.execute. All

stakeholders must be connected to the origin and the target domain.

• You can submit transactions using contracts that reside on several domains. Automatic trans-

fers will pick a suitable domain, and perform the transfers into it before performing the trans-

action.

3.2.4.2 Part 2: Composing existing workflows

This part shows how existing workflows can be composed even if they work on separate domains.

The running example is a variation of the paint example from the first part with amore complicated

topology. We therefore assume that you have gone through the first part of this tutorial. Technically,

this tutorial runs through the same steps as the first part, butmore details are exposed. The console

commands assume that you start with a fresh Canton console.

3.2. Tutorials 633

Daml SDK Documentation, 2.1.1

Existing workflows

Consider a situation where the two domains iou and paint have evolved separately:

• The iou domain for managing IOUs,

• The paint domain for managing paint agreements.

Accordingly, there are separate applications for managing IOUs (issuing, changing ownership, call-

ing) and paint agreements, and the house owner and the painter have connected their applications

to different participants. The situation is illustrated in the following picture.

To enter in a paint agreement in this setting, the house owner and the painter need to perform the

following steps:

1. The house owner creates a paint offer through participant 2 on the paint domain.

2. The painter accepts the paint offer through participant 3 on the paint domain. As a conse-

quence, a paint agreement is created.

634 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3. The painter sets a reminder that he needs to receive an IOU from the house owner on the iou

domain.

4. When the house owner observes a new paint agreement through participant 2 on the paint

domain, she changes the IOU ownership to the painter through participant 5 on the iou do-

main.

5. The painter observes a new IOU throughparticipant 4 on theioudomain and therefore removes

the reminder.

Overall, a non-trivial amount of out-of-band coordination is required to keep the paint ledger con-

sistent with the iou ledger. If this coordination breaks down, the unhappy scenarios from the first part

can happen.

Required changes

Wenowshowhow thehouse owner and the painter can avoid need for out-of-band coordinationwhen

entering in paint agreements. The goal is to reuse the existing infrastructure formanaging IOUs and

paint agreements as much as possible. The following changes are needed:

1. The house owner and the painter connect their participants for paint agreements to the iou

domain:

The Canton configuration is accordingly extended with the two participants 4 and 5. (The con-

nections themselves are set up in the next section.)

canton {

participants {

participant4 {

ledger-api.port = 13041

admin-api.port = 13042

storage.type = memory

parameters.unique-contract-keys = false

}

participant5 {

ledger-api.port = 13051

admin-api.port = 13052

storage.type = memory

parameters.unique-contract-keys = false

}

}

}

2. They replace their Daml model for paint offers such that the house owner must specify an IOU

in the offer and its accept choice makes the painter the new owner of the IOU.

3. They create a new application for the paint offer-accept workflow.

The Daml models for IOUs and paint agreements themselves remain unchanged, and so do the ap-

plications that deal with them.

3.2. Tutorials 635

Daml SDK Documentation, 2.1.1

636 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Preparation using the existing workflows

We extend the topology from the first part as described. The commands are explained in detail in

Canton’s identity management manual.

// update parameters

iou.service.update_dynamic_parameters(

_.copy(transferExclusivityTimeout = TimeoutDuration.Zero)

) // disables automatic transfer-in

paint.service.update_dynamic_parameters(

_.copy(transferExclusivityTimeout = TimeoutDuration.ofSeconds(2))

)

// connect participants to the domain

participant1.domains.connect_local(iou)

participant2.domains.connect_local(iou)

participant3.domains.connect_local(iou)

participant2.domains.connect_local(paint)

participant3.domains.connect_local(paint)

participant4.domains.connect_local(iou)

participant5.domains.connect_local(iou)

val iouAlias = iou.name

val paintAlias = paint.name

// create the parties

val Bank = participant1.parties.enable("Bank")

val HouseOwner = participant2.parties.enable("House Owner")

val Painter = participant3.parties.enable("Painter", waitForDomain = DomainChoice.

↪→All)

// enable the house owner on participant 5 and the painter on participant 4

// as explained in the identity management documentation at

// https://www.canton.io/docs/stable/user-manual/usermanual/identity_management.

↪→html#party-on-two-nodes

import com.digitalasset.canton.console.ParticipantReference

def authorizePartyParticipant(partyId: PartyId, createdAt: ParticipantReference,␣

↪→to: ParticipantReference): Unit = {

val createdAtP = createdAt.id

val toP = to.id

createdAt.topology.party_to_participant_mappings.authorize(TopologyChangeOp.Add,

↪→ partyId, toP, RequestSide.From)

to.topology.party_to_participant_mappings.authorize(TopologyChangeOp.Add,␣

↪→partyId, toP, RequestSide.To)

}

authorizePartyParticipant(HouseOwner, participant2, participant5)

authorizePartyParticipant(Painter, participant3, participant4)

// Wait until the party enabling has taken effect and has been observed at the␣

↪→participants

val partyAssignment = Set(HouseOwner -> participant2, HouseOwner -> participant5,␣

↪→Painter -> participant3, Painter -> participant4)

participant2.parties.await_topology_observed(partyAssignment)

participant3.parties.await_topology_observed(partyAssignment)

(continues on next page)

3.2. Tutorials 637

Daml SDK Documentation, 2.1.1

(continued from previous page)

// upload the Daml model to all participants

val darPath = Option(System.getProperty("canton-examples.dar-path")).getOrElse(

↪→"dars/CantonExamples.dar")

participants.all.dars.upload(darPath)

As before, the Bank creates an IOU and the house owner shares it with the painter on the iou domain,

using their existing applications for IOUs.

import com.digitalasset.canton.examples.Iou.{Amount, Iou}

import com.digitalasset.canton.examples.Paint.{OfferToPaintHouseByOwner,␣

↪→PaintHouse}

import com.digitalasset.canton.ledger.api.client.DecodeUtil.decodeAllCreated

import com.digitalasset.canton.protocol.ContractIdSyntax._

val createIouCmd = Iou(

payer = Bank.toPrim,

owner = HouseOwner.toPrim,

amount = Amount(value = 100.0, currency = "USD"),

viewers = List.empty

).create.command

val Seq(iouContractUnshared) = decodeAllCreated(Iou)(

participant1.ledger_api.commands.submit_flat(Seq(Bank), Seq(createIouCmd)))

// Wait until the house owner sees the IOU in the active contract store

participant2.ledger_api.acs.await_active_contract(HouseOwner, iouContractUnshared.

↪→contractId.toLf)

// The house owner adds the Painter as an observer on the IOU

val shareIouCmd = iouContractUnshared.contractId.exerciseShare(actor = HouseOwner.

↪→toPrim, viewer = Painter.toPrim).command

val Seq(iouContract) = decodeAllCreated(Iou)(participant2.ledger_api.commands.

↪→submit_flat(Seq(HouseOwner), Seq(shareIouCmd)))

The paint offer-accept workflow

The new paint offer-accept workflow happens in four steps:

1. Create the offer on the paint domain.

2. Transfer the contract to the iou domain.

3. Accept the offer.

4. Transfer the paint agreement to the paint domain.

Making the offer

The house owner creates a paint offer on the paint domain.

// The house owner creates a paint offer using participant 2 and the Paint domain

val paintOfferCmd = OfferToPaintHouseByOwner(

painter = Painter.toPrim,

houseOwner = HouseOwner.toPrim,

bank = Bank.toPrim,

iouId = iouContract.contractId

(continues on next page)

638 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

).create.command

val Seq(paintOffer) = decodeAllCreated(OfferToPaintHouseByOwner)(

participant2.ledger_api.commands.submit_flat(Seq(HouseOwner),␣

↪→Seq(paintOfferCmd), workflowId = paint.name))

Transfers are not atomic

In the first part, we have used transfer.execute to move the offer to the iou domain. Now, we

look a bit behind the scenes. A contract transfer happens in two atomic steps: transfer-out and

transfer-in. transfer.execute is merely a shorthand for the two steps. In particular, transfer.

execute is not an atomic operation like other ledger commands.

During a transfer-out, the contract is deactivated on the origin domain, in this case the paint do-

main. Any stakeholder whose participant is connected to the origin domain and the target domain

can initiate a transfer-out. The transfer.out command returns a transfer Id.

// Wait until the painter sees the paint offer in the active contract store

participant3.ledger_api.acs.await_active_contract(Painter, paintOffer.contractId.

↪→toLf)

// Painter transfers the paint offer to the IOU domain

val paintOfferTransferId = participant3.transfer.out(

Painter, // Initiator of the transfer

paintOffer.contractId.toLf, // Contract to be transferred

paintAlias, // Origin domain

iouAlias // Target domain

)

The transfer.in command consumes the transfer Id and activates the contract on the target do-

main.

participant3.transfer.in(Painter, paintOfferTransferId, iouAlias)

Between the transfer-out and the transfer-in, the contract does not reside on any domain and cannot

be used by commands. We say that the contract is in transit.

Accepting the paint offer

The painter accepts the offer, as before.

// Wait until the Painter sees the IOU contract on participant 3.

participant3.ledger_api.acs.await_active_contract(Painter, iouContract.contractId.

↪→toLf)

// Painter accepts the paint offer on the Iou domain

val acceptCmd = paintOffer.contractId.exerciseAcceptByPainter(Painter.toPrim).

↪→command

val acceptTx = participant3.ledger_api.commands.submit_flat(Seq(Painter),␣

↪→Seq(acceptCmd))

val Seq(painterIou) = decodeAllCreated(Iou)(acceptTx)

val Seq(paintHouse) = decodeAllCreated(PaintHouse)(acceptTx)

3.2. Tutorials 639

Daml SDK Documentation, 2.1.1

Automatic transfer-in

Finally, the paint agreement is transferred back to the paint domain such that the existing infras-

tructure around paint agreements can work unchanged.

// Wait until the house owner sees the PaintHouse agreement

participant2.ledger_api.acs.await_active_contract(HouseOwner, paintHouse.

↪→contractId.toLf)

val paintHouseId = paintHouse.contractId

// The house owner moves the PaintHouse agreement back to the Paint domain

participant2.transfer.out(

HouseOwner,

paintHouseId.toLf,

iouAlias,

paintAlias

)

// After the exclusivity period, which is set to 2 seconds,

// the contract is automatically transferred into the target domain

utils.retry_until_true(10.seconds) {

// in the absence of other activity, force the participants to update their␣

↪→view of the latest domain time

participant2.testing.fetch_domain_times()

participant3.testing.fetch_domain_times()

participant3.testing.acs_search(paint.name, filterId=paintHouseId.toString).

↪→nonEmpty &&

participant2.testing.acs_search(paint.name, filterId=paintHouseId.toString).

↪→nonEmpty

}

Here, there is only a transfer.out command but no transfer.in command. This is be-

cause the participants of contract stakeholders automatically try to transfer-in the contract

to the target domain so that the contract becomes usable again. The domain parameter

transfer-exclusivity-timeout on the target domain specifies how long they wait before they

attempt to do so. Before the timeout, only the initiator of the transfer is allowed to transfer-in the

contract. This reduces contention for contracts with many stakeholders, as the initiator normally

completes the transfer before all other stakeholders simultaneously attempt to transfer-in the con-

tract. On the paint domain, this timeout is set to two seconds in the configuration file. Therefore, the

utils.retry_until_true normally succeeds within the allotted ten seconds.

Setting the transfer-exclusivity-timeout to 0 as on the iou domain disables automatic

transfer-in. This is why the above transfer of the paint offer had to be completed manually. Man-

ual completion is also needed if the automatic transfer in fails, e.g., due to timeouts on the target

domain. Automatic transfer-in therefore is a safety net that reduces the risk that the contract gets

stuck in transit.

640 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Continuing the existing workflows

The painter now owns an IOU on the iou domain and the entered paint agreement resides on the

paint domain. Accordingly, the existing workflows for IOUs and paint agreements can be used un-

changed. For example, the painter can call the IOU.

// Painter converts the Iou into cash

participant4.ledger_api.commands.submit_flat(

Seq(Painter),

Seq(painterIou.contractId.exerciseCall(Painter.toPrim).command),

iou.name

)

Take aways

• Contract transfers take two atomic steps: transfer-out and transfer-in. While the contract is

being transferred, the contract does not reside on any domain.

• Transfer-in happens under normal circumstances automatically after the

transfer-exclusivity-timeout configured on the target domain. A timeout of 0

disables automatic transfer-in. If the automatic transfer-in does not complete, the contract

can be transferred in manually.

3.3 User Manual

This manual covers all aspects of installing, configuring, and operating Canton nodes to support

distributed applications. This includes both universally available features and features available

only through Daml Enterprise.

3.3.1 Obtaining Canton

3.3.1.1 Choosing Open-Source or Enterprise Edition

The Canton application is a single bundle that implements all types of nodes. Which role the appli-

cation takes depends on the configuration. The main administration interface of the Canton appli-

cation is the embedded console, which is part of the application.

Canton releases come in two variants: Open-Source or Enterprise. Both support the full Canton pro-

tocol, but differ in terms of enterprise and non-functional capabilities:

3.3. User Manual 641

Daml SDK Documentation, 2.1.1

Table 1: Differences between Enterprise and Open Source

Edition

Capability Enterprise Open-Source

Daml Synchronisation Yes Yes

Sub-Transaction Privacy Yes Yes

Transaction Processing Parallel (fast) Sequential (slow)

High Availability Yes No

High Throughput via Microservices Yes No

Resource Management Yes No

Ledger Pruning Yes No

Postgres Backend Yes Yes

Oracle Backend Yes No

Besu driver Yes No

Fabric driver Yes No

Please follow below instructions in order to obtain your copy of Canton.

3.3.1.2 Downloading the Open Source Edition

The Open Source release is available from Github. You can also use our Canton Docker images by

following our Docker instructions.

3.3.1.3 Downloading the Enterprise Edition

Enterprise releases are available on request (sales@digitalasset.com) and can be downloaded from

the respective repository, or you can use our Canton Enterprise Docker images as described in our

Docker instructions.

3.3.2 Installing Canton

This guide will guide you through the process of setting up your Canton nodes to build a distributed

Daml ledger. You will learn

1. How to setup and configure a domain

2. How to setup and configure one or more participant nodes

Note: As no topology is the same, this guide will point out different configuration options as notes

wherever possible.

This guide uses the example configurations you can find in the release bundle under example/

03-advanced-configuration and explains you how to leverage these examples for your pur-

poses. Therefore, any file named in this guide will refer to subdirectories of the advanced config-

uration example.

642 Chapter 3. Canton Guide

https://github.com/digital-asset/daml/releases/latest
mailto:sales@digitalasset.com
https://digitalasset.jfrog.io/artifactory/canton-enterprise/

Daml SDK Documentation, 2.1.1

3.3.2.1 Downloading Canton

The Canton Open Source code is available from Github. You can also use our Canton Docker images

by following our Docker instructions.

Daml Enterprise includes an enterprise version of the Canton ledger. If you have entitlement to Daml

Enterprise you can download the enterprise version of Canton by following the Installing Daml En-

terprise instructions and downloading the appropriate Canton artifact.

3.3.2.2 Your Topology

The first question we need to address is what the topology is that you are going after. The Canton

topology is made up of parties, participants and domains, as depicted in the following figure.

The Daml code will run on the participant node and expresses smart contracts between parties. Par-

ties are hosted on participant nodes. Participant nodes will synchronise their state with other par-

ticipant nodes by exchanging messages with each other through domains. Domains are nodes that

integrate with the underlying storage technology such as databases or other distributed ledgers. As

the Canton protocol is written in a way that assumes that Participant nodes don’t trust each other,

you would normally expect that every organisation runs only one participant node, except for scaling

purposes.

If you want to build up a test-network for yourself, you need at least a participant node and a domain.

3.3. User Manual 643

https://github.com/digital-asset/daml/releases
https://docs.daml.com/getting-started/installation.html#installing-the-enterprise-edition
https://docs.daml.com/getting-started/installation.html#installing-the-enterprise-edition

Daml SDK Documentation, 2.1.1

3.3.2.3 Environment Variables

For our convenience in this guide, we will use a few environment variables to refer to a set of direc-

tions. Please set the environment variable “CANTON” to point to the place where you have unpacked

the canton release bundle.

cd ./canton-X.Y.Z

export CANTON=CpwdC

And then set another variable that points to the advanced example directory

export CONF="$CANTON/examples/03-advanced-configuration"

3.3.2.4 Selecting your Storage Layer

In order to run any kind of node, you need to decide how and if you want to persist the data. You

currently have three choices: don’t persist and just use in-memory stores which will be deleted if

you restart your node or persist using Postgres or Oracle databases.

For this purpose, there are some storage mixin configurations (storage/) defined. These storage

mixins can be used with any of the node configurations. The in-memory configurations just work

out of the box without further configuration. The database based persistence will be explained in a

subsequent section, as you first need to initialise the database.

The mixins work by defining a shared variable which can be referenced by any node configuration

storage = ${_shared.storage}

storage.parameters.databaseName = "participant1"

If you ever see the following error: Could not resolve substitution to a value:

${_shared.storage}, then you forgot to add the persistence mixin configuration file.

Note: Please also consult the more detailed section on persistence configurations.

Persistence using Postgres

While in-memory is great for testing and demos, for more serious tasks, you need to use a database

as a persistence layer. Both the community version and the enterprise version support Postgres

as a persistence layer. Make sure that you have a running Postgres server and you need to create

one database per node. The recommended Postgres version to use is 11, as this is tested the most

thoroughly.

The Postgres storage mixin is provided by the file storage/postgres.conf.

If you justwant to experiment, you canuseDocker to get a Postgres database up and running quickly.

Here are a few commands that come in handy.

First, pull Postgres and start it up.

docker pull postgres:11

docker run --rm --name pg-docker -e POSTGRES_PASSWORD=docker -d -p 5432:5432␣

↪→postgres:11

644 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Then, you can run psql using:

docker exec -it pg-docker psql -U postgres -d postgres

This will invoke psql interactively. You can exit the prompt with Ctrl-D. If you want to just cat com-

mands, change -it to -i in above command.

Then, create a user for the database using the following SQL command

create user canton with encrypted password
supersafe
;

and create a new database for each node, granting the newly created user appropriate permissions

create database participant1;

grant all privileges on database participant1 to canton;

These commands create a database named participant1 and grant the user named canton ac-

cess to it using the password supersafe. Needless to say, you should use your own, secure pass-

word.

In order to use the storage mixin, you need to either write these settings into the configuration file,

or pass them using environment variables:

export POSTGRES_USER=canton

export POSTGRES_PASSWORD=supersafe

If you want to run also other nodes with Postgres, you need to create additional databases, one for

each.

You can reset the database by dropping then re-creating it:

drop database participant1;

create database participant1;

grant all privileges on database participant1 to canton;

Note: The storagemixin provides youwith an initial configuration. Please consult themore extended

documentation for further options.

If you are setting up a few nodes for a test network, you can use a little helper script to create the SQL

commands to setup users and databases:

python3 examples/03-advanced-configuration/storage/dbinit.py \

--type=postgres --user=canton --password=<choose-wisely> --participants=2 --

↪→domains=1 --drop

The command will just create the SQL commands for your convenience. You can pipe the output

directly into the psql command

python3 examples/03-advanced-configuration/storage/dbinit.py ... | psql -p 5432 -

↪→h localhost ...

Important: This feature is only available in Canton Enterprise

3.3. User Manual 645

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

Persistence using Oracle

The enterprise version of Canton comeswithdefault configurationmixinsusingOracle as adatabase

backend: oracle-participant.conf and oracle.conf, which can be found in ./examples/

03-advanced-configuration/storage. The former is used for a participant that requires two

schemas / users to store the ledger API server data and the Canton sync service data.

The files require you to provide the necessary environment variables ORACLE_USER, ORA-

CLE_USER_LAPI, ORACLE_PASSWORD, ORACLE_DB, ORACLE_HOST, ORACLE_PORT.

3.3.2.5 Setting up a Participant

Now that you have made your persistence choice (assuming Postgres here), you could start your

participant just by using one of the example files such as $CONF/nodes/participant1.conf and

start the Canton process using the Postgres persistence mixin:

$CANTON/bin/canton -c $CONF/storage/postgres.conf -c $CONF/nodes/participant1.conf

While this would work, we recommend that you rename your node by changing the configuration file

appropriately.

Note: By default, the node will initialise itself automatically using the identity commands Topology

Administration. As a result, the node will create the necessary keys and topology transactions andwill

initialise itself using the name used in the configuration file. Please consult the identity management

section for further information.

This was everything necessary to startup your participant node. However, there are a few steps that

you want to take care of in order to secure the participant and make it usable.

Secure the APIs

1. By default, all APIs in Canton are only accessible from localhost. If you want to connect to your

node from other machines, you need to bind to 0.0.0.0 instead of localhost. You can do this

by setting address = 0.0.0.0 within the respective API configuration sections or include

the api/public.conf configuration mixin.

2. The participant node ismanaged through the administration API. If you use the console, almost

all requests will go through the administration API. We recommend that you setup mutual TLS

authentication as described in the TLS documentation section.

3. Applications and users will interact with the participant node using the ledger API. We recom-

mend that you secure your API by using TLS. You should also authorize your clients using either

JWT or TLS client certificates. The TLS configuration is the same as on the administration API.

4. In the example set, there are a set of additional configuration options which allow you to de-

fine various JWT based authorizations checks, enforced by the ledger API server. The settings

map exactly to the options documented as part of the Daml SDK. There are a few configuration

mix-ins defined in api/jwt for your convenience.

646 Chapter 3. Canton Guide

https://jwt.io
https://docs.daml.com/tools/sandbox.html#running-with-authentication

Daml SDK Documentation, 2.1.1

Configure Applications, Users and Connection

Canton distinguishes static configuration from dynamic configuration. Static configuration are

items which are not supposed to change and are therefore captured in the configuration file. An

example is to which port to bind to. Dynamic configuration are items such as Daml archives (DARs),

domain connections or parties. All such changes are effected through the administration API or the

console.

Note: Please consult the section on the console commands and administration APIs.

If you don’t know how to connect to domains, onboard parties or provision Daml code, please read

the getting started guide.

3.3.2.6 Setting up a Domain

In order to setup a domain, you need to decide what kind of domain you want to run. We provide in-

tegrations for different domain infrastructures. These integrations have different levels of maturity.

Your current options are

1. In-Process Postgres based domain (simplest choice)

2. Hyperledger Fabric based domain

3. Secure enclave based domain

4. Ethereum based domain (demo)

This manual will explain you how to setup an in-process based domain using Postgres. All other

domains are a set of microservices and part of the Enterprise edition. In any case, you will need to

operate themain domain process which is the point of contact where participants connect to for the

initial handshake and parameter download. The details of how to set this up for other domains than

the in-process based Postgres domain are covered by the individual documentations.

Note: Please contact us at sales@digitalasset.com to get access to the Fabric, Ethereum or enclave

based integration.

The domain requires independent of the underlying ledger a place to store some governance data

(or also the messages in transit in the case of Postgres based domains). The configuration settings

for this storage are equivalent to the settings used for the participant node.

Once you have picked the storage type, you can start the domain using

$CANTON/bin/canton -c $CONF/storage/postgres.conf -c $CONF/nodes/domain1.conf

3.3. User Manual 647

mailto:sales@digitalasset.com

Daml SDK Documentation, 2.1.1

Secure the APIs

1. As with the participant node, all APIs bind by default to localhost. You need to bind to 0.0.0.0

if you want to access the APIs from other machines. Again, you can use the appropriate mixin

api/public.conf.

2. The administration API should be secured using client certificates as described in TLS documen-

tation section.

3. The public API needs to be properly secured using TLS. Please follow the corresponding instruc-

tions.

Next Steps

The above configuration provides youwith an initial setup. Without going into details, the next steps

would be:

1. Configure who can join the domain by setting an appropriate permissioning strategy (default

is “everyone can join”).

2. Configure domain parameters

3. Setup a service agreements which any client connecting has to sign before using the domain.

3.3.2.7 Multi-Node Setup

If desired, you can run many nodes in the same process. This is convenient for testing and demon-

stration purposes. You can either do this by listing several node configurations in the same config-

uration file or by invoking the Canton process with several separate configuration files (which get

merged together).

$CANTON/bin/canton -c $CONF/storage/postgres.conf -c $CONF/nodes/domain1.conf,

↪→$CONF/nodes/participant1.conf

3.3.3 Running in Docker

3.3.3.1 Obtaining the Docker Images

The Canton Open Source edition is published to the digitalasset/canton-open-source dockerhub

repository. You can pull the Docker image using

docker pull digitalasset/canton-open-source[:version]

Here, the version is optional and by default, the latest version is used. The version dev is the the

current main build. Please note that previous versions were called canton-community, before we

renamed the artefact to canton-open-source.

If you want to use the Enterprise edition, you can download it using

docker login digitalasset-canton-enterprise-docker.jfrog.io

docker pull digitalasset-canton-enterprise-docker.jfrog.io/digitalasset/canton-

↪→enterprise

648 Chapter 3. Canton Guide

https://hub.docker.com/r/digitalasset/canton-community
https://hub.docker.com/r/digitalasset/canton-community

Daml SDK Documentation, 2.1.1

3.3.3.2 Starting Canton

The canton executable is the default image entry point so all examples using bin/canton can sim-

ply substitute that with docker run digitalasset/canton.

For example, to run our example simple topology:

docker run --rm -it digitalasset/canton-open-source:latest --config examples/01-

↪→simple-topology/simple-topology.conf --bootstrap examples/01-simple-topology/

↪→simple-ping.canton

The --rm option ensures that the container is removed when the canton process exits. The -it

options start the container interactively and provide a TTY for running our console.

The default working directory of the container is /canton. This directory contains the same content

as the release archive (daml, dar, examples).

By default docker will pull the latest tag containing the latest Canton release. As docker will only

automatically pull latest once, ensure you have the latest version by periodically running docker

pull digitalasset/canton-open-source.

Previous releases can be run by specifying their tag digitalasset/canton-open-source:2.0.

0.

3.3.3.3 Configuring Logging

The default convention with logging of containers is to have the process to log to stdout. There-

fore, we to change the logging behaviour of Canton using appropriate command line flags, such as

--log-profile=container.

3.3.3.4 Supplying custom configuration and DARs

To expose files to the canton container you must specify a volume mapping from the host machine

to the container.

For example, if you have the local directory my-application containing your custom canton con-

figuration and DAR:

docker run --rm -it \

--volume "$PWD/my-application:/canton/my-application" \

digitalasset/canton-open-source --config /canton/my-application/my-config.conf

DARs can be loaded using the same container local path.

3.3. User Manual 649

Daml SDK Documentation, 2.1.1

3.3.3.5 Exposing the ledger-api to the host machine

Applications using Canton will typically need access to the ledger-api to read from and write to

the ledger. Each participant binds the ledger-api to the port specified at the configuration key:

ledger-api.port. For participant1 in the simple topology example this is set to port 5011.

To expose the ledger-api to port 5011 on the host machine, run docker with the following options:

docker run --rm -it \

-p 5011:5011 \

digitalasset/canton-open-source \

-Dcanton.participants.participant1.ledger-api.address=0.0.0.0 \

--config examples/01-simple-topology/simple-topology.conf \

--bootstrap examples/01-simple-topology/simple-ping.canton

The ledger-api port for each participant will need to be mapped separately.

3.3.3.6 Running Postgres in Docker

Canton requires an appropriate database to persist data. For this purpose, such a database can also

be run in a docker container using the following, helpful command:

docker run -d --rm --name canton-postgres --shm-size=256mb --publish 5432:5432 -e␣

↪→POSTGRES_USER=test-user

-e POSTGRES_PASSWORD=test-password postgres:11 postgres -c max_connections=500

Pleasenote that the--publish commandallowsus topick the target portwhichwehave todefine in

the Canton configuration file. The --rm will delete the data store once the docker container is killed.

This is useful for short-term tests. The --shm-size 256mb is necessary as Docker will allocate only

64mb of shared memory by default which is insufficient for the way Canton uses Postgres.

Note that you also need to create the databases yourself, which for Postgres you can do using psql

PGPASSWORD=test-password psql -h localhost -U test-user << EOF

CREATE DATABASE participant1;

GRANT ALL ON DATABASE participant1 TO CURRENT_USER;

EOF

The tables will be managed automatically by Canton. The psql solution works also if you run multi-

ple nodes on one Postgres database which all require separate databases. If you run just one node

against one database, you can avoid using psql by adding --POSTGRES_DB=participant1 to

above docker command.

3.3.4 Static Configuration

Canton differentiates between static and dynamic configuration. Static configuration is immutable

and therefore has to be known from the beginning of the process start. An example for a static con-

figuration are the connectivity parameters to the local persistence store or the port the admin-apis

should bind to. On the other hand, connecting to a domain or adding parties however is not a static

configuration and therefore is not set via the config file but through the administration APIs or the

console.

The configuration files themselves are written in HOCON format with some extensions:

650 Chapter 3. Canton Guide

https://github.com/lightbend/config/blob/master/HOCON.md

Daml SDK Documentation, 2.1.1

• Durations are specified scala durations using a <length><unit> format. Valid units are de-

fined by scala directly, but behave as expected using ms, s, m, h, d to refer to milliseconds,

seconds, minutes, hours and days. Durations have to be non-negative in our context.

Canton does not run one node, but any number of nodes, be it domain or participant nodes in the

same process. Therefore, the root configuration allows to define several instances of domain and

participant nodes together with a set of general process parameters.

A sample configuration file for two participant nodes and a single domain can be seen below.

canton {

participants {

participant1 {

storage.type = memory

admin-api.port = 5012

ledger-api.port = 5011

}

participant2 {

storage.type = memory

admin-api.port = 5022

ledger-api.port = 5021

}

}

domains {

mydomain {

storage.type = memory

public-api.port = 5018

admin-api.port = 5019

}

}

// enable ledger_api commands for our getting started guide

features.enable-testing-commands = yes

}

3.3.4.1 Configuration reference

The Canton configuration file for static properties is based on PureConfig. PureConfig maps Scala

case classes and their class structure into analogue configuration options (see e.g. the PureConfig

quick start for an example). Therefore, the ultimate source of truth for all available configuration

options and the configuration file syntax is given by the appropriate scaladocs of the CantonConfig

classes.

When understanding the mapping from scaladocs to configuration, please keep in mind that:

• CamelCase Scala names are mapped to lowercase-with-dashes names in configuration files,

e.g. domainParameters in the scaladocs becomes domain-parameters in a configuration

file (dash, not underscore).

• Option[<scala-class>]means that the configuration can be specified but doesn’t need to

be, e.g. you can specify a JWT token via token=token in a remote participant configuration,

3.3. User Manual 651

https://github.com/scala/scala/blob/v2.13.3/src/library/scala/concurrent/duration/Duration.scala#L82
https://pureconfig.github.io/
https://pureconfig.github.io/docs/#quick-start
https://pureconfig.github.io/docs/#quick-start
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/index.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/participant/config/RemoteParticipantConfig.html#token:Option{[}String{]}

Daml SDK Documentation, 2.1.1

but not specifying token is also valid.

3.3.4.2 Configuration Compatibility

The enterprise edition configuration files extend the community configuration. As such, any com-

munity configuration can run with an enterprise binary, whereas not every enterprise configuration

file will also work with community versions.

3.3.4.3 Advanced Configurations

Configuration files can be nested and combined together. First, using the include directive (with

relative paths), a configuration file can include other configuration files.

canton {

domains {

include "domain1.conf"

}

}

Second, by providing several configuration files, we can override configuration settings using ex-

plicit configuration option paths:

canton.participants.myparticipant.admin-api.port = 11234

If the same key is included in multiple configurations, then the last definition has highest prece-

dence.

Furthermore, HOCONsupports substituting environment variables for config values using the syntax

key = ${ENV_VAR_NAME} or optional substitution key = ${?ENV_VAR_NAME}, where the key will

only be set if the environment variable exists.

3.3.4.4 Configuration Mixin

Even more than multiple configuration files, we can leverage PureConfig to create shared configu-

ration items that refer to environment variables. A handy example is the following, which allows to

share database configuration settings in a setup involving several participant or domain nodes:

Postgres persistence configuration mixin

#

This file defines a shared configuration resources. You can mix it into your␣

↪→configuration by

refer to the shared storage resource and add the database name.

#

Example:

participant1 {

storage = ${_shared.storage}

storage.config.properties.databaseName = "participant1"

}

#

The user and password credentials are set to "canton" and "supersafe". As this␣

↪→is not "supersafe", you might

want to either change this configuration file or pass the settings in via␣

↪→environment variables.
(continues on next page)

652 Chapter 3. Canton Guide

https://github.com/pureconfig/pureconfig

Daml SDK Documentation, 2.1.1

(continued from previous page)

#

_shared {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

serverName = "localhost"

serverName = ${?POSTGRES_HOST}

portNumber = "5432"

portNumber = ${?POSTGRES_PORT}

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

}

}

// If defined, will configure the number of database connections per node.

// Please ensure that your database is setup with sufficient connections.

// If not configured explicitly, every node will create one connection per␣

↪→core on the host machine. This is

// subject to change with future improvements.

max-connections = ${?POSTGRES_NUM_CONNECTIONS}

}

}

Such a definition can subsequently be referenced in the actual node definition:

canton {

domains {

mydomain {

storage = ${_shared.storage}

storage.config.properties.databaseName = ${CANTON_DB_NAME_DOMAIN}

}

}

}

3.3.4.5 Multiple Domains

A Canton configuration allows to define multiple domains. Also, a Canton participant can connect

to multiple domains. This is however only supported as a preview feature and not yet suitable for

production use.

In particular, contract key uniqueness cannot be enforced over multiple domains. In this situation,

we need to turn contract key uniqueness off by setting

canton {

domains {

alpha {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

domain-parameters.unique-contract-keys = false

}

}

participants {

participant1 {

(continues on next page)

3.3. User Manual 653

Daml SDK Documentation, 2.1.1

(continued from previous page)

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

parameters.unique-contract-keys = false

}

}

}

Pleasenote that the setting is final andcannot be changedsubsequently. Wewill provideamigration

path once multi-domain is fully implemented.

3.3.4.6 Fail Fast Mode

Be default, Canton will fail to start if it cannot access some external dependency such as the

database. This is preferable during initial deployment and development, as it provides instanta-

neous feedback, but can cause problems in production. As an example, if Canton is started with a

database in parallel, the Canton process would fail if the database is not ready before the Canton

process attempts to access it. To avoid this problem, you can configure a node to wait indefinitely

for an external dependency such as a database to start. The config option below will disable the “fail

fast” behaviour for participant1.

canton.participants.participant1.init.startup-fail-fast = "no"

This option should be used with care as, by design, it can cause infinite, noisy waits.

3.3.4.7 Persistence

Participant and domain nodes both require storage configurations. Both use the same configuration

format and therefore support the same configuration options. There are three different configura-

tions available:

1. Memory - Using simple, hash-mapbacked in-memory storeswhicharedeletedwhenever anode

is stopped.

2. Postgres - To use with the open source relational database Postgres.

3. Oracle - To use with Oracle DB (Enterprise only)

In order to set a certain storage type, we have to edit the storage section of the particular node, such

as canton.participants.myparticipant.storage.type = memory. Memory storage does

not require any other setting.

For the actual database driver, Canton does not directly define how they are configured, but leverages

a third party library (slick) for it, exposing all configuration methods therein. If you need to, please

consult the respective detailed documentation to learn about all configuration options if you want

to leverage any exotic option. Here, we will only describe our default, recommended and supported

setup.

It is recommended to use a connection pool in production environments and consciously choose the

size of the pool.

Please note that Canton will create, manage and upgrade the database schema directly. You don’t

have to create tables yourselves.

Consult the example/03-advanced-configuration directory to get a set of configuration files

to set your nodes up.

654 Chapter 3. Canton Guide

https://www.postgresql.org/
https://scala-slick.org/doc/3.3.1
https://scala-slick.org/doc/3.3.1/database.html#using-typesafe-config
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing
https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

Daml SDK Documentation, 2.1.1

Postgres

Our reference driver based definition for Postgres configuration is:

Postgres persistence configuration mixin

#

This file defines a shared configuration resources. You can mix it into your␣

↪→configuration by

refer to the shared storage resource and add the database name.

#

Example:

participant1 {

storage = ${_shared.storage}

storage.config.properties.databaseName = "participant1"

}

#

The user and password credentials are set to "canton" and "supersafe". As this␣

↪→is not "supersafe", you might

want to either change this configuration file or pass the settings in via␣

↪→environment variables.

#

_shared {

storage {

type = postgres

config {

dataSourceClass = "org.postgresql.ds.PGSimpleDataSource"

properties = {

serverName = "localhost"

serverName = ${?POSTGRES_HOST}

portNumber = "5432"

portNumber = ${?POSTGRES_PORT}

user = ${POSTGRES_USER}

password = ${POSTGRES_PASSWORD}

}

}

// If defined, will configure the number of database connections per node.

// Please ensure that your database is setup with sufficient connections.

// If not configured explicitly, every node will create one connection per␣

↪→core on the host machine. This is

// subject to change with future improvements.

max-connections = ${?POSTGRES_NUM_CONNECTIONS}

}

}

Youmay use this configuration file with environment variables or adapt it accordingly. More detailed

setup instructions and options are available in the Slick reference guide. The above configurations

are included in the examples/03-advanced-configuration/storage folder and are sufficient

to get going.

3.3. User Manual 655

https://scala-slick.org/doc/3.3.1/api/index.html#slick.jdbc.JdbcBackend\protect \TU\textdollar DatabaseFactoryDef@forConfig(String,Config,Driver,ClassLoader):Database

Daml SDK Documentation, 2.1.1

Max Connection Settings

The storage configuration can further be tuned using the following additional setting:

canton.participants.<service-name>.storage.max-connections = X

This allows for setting the maximum number of DB connections used by a Canton node. If None or

non-positive, the value will be the number of processors. The setting has no effect, if the number of

connections is already set via slick options (i.e. storage.config.numThreads).

If you are unsure how to size your connection pools, this article may be a good starting point.

Additionally, the number of parallel indexer connections can be configured via

canton.participants.<service-name>.parameters.indexer.ingestion-parallelism = Y

A Canton participant nodewill establish up to X + Y + 2 permanent connectionswith the database,

whereasadomainnodewill useup toXpermanent connections, except for a sequencerwithHAsetup

that will allocate up to 2X connections. During startup, the node will use an additional set of at most

X temporary connections during database initialisation.

Queue Size

Canton may schedule more database queries than the database can handle. As a result, these

queries will be placed into the database queue. By default, the database queue has a size of 1000

queries. Reaching the queueing limit will lead to a DB_STORAGE_DEGRADATION warning. The im-

pact of this warning is that the queuing will overflow into the asynchronous execution context and

slowly degrade the processing, which will result in less database queries being created. However, for

high performance setups, such spikes might occur more regularly. Therefore, to avoid the degrada-

tion warning appearing too frequent, the queue size can be configured using:

canton.participants.participant1.storage.config.queueSize = 10000

656 Chapter 3. Canton Guide

https://github.com/brettwooldridge/HikariCP/wiki/About-Pool-Sizing

Daml SDK Documentation, 2.1.1

3.3.4.8 Api Configuration

A domain node exposes twomain APIs: the admin-api and the public-api, while the participant node

exposes the ledger-api and the admin-api. In this section, we will explain what the APIs do and how

they can be configured. All APIs are based on GRPC, which is an efficient RPC and streaming protocol

with client support in almost all relevant programming languages. Native bindings can be built

using the API definitions.

Default Ports

Canton assigns ports automatically for all the APIs of all the configured nodes if the port has not

been configured explicitly. The ports are allocated according to the following scheme:

/** Participant node default ports */

val ledgerApiPort = defaultPortStart(4001)

val participantAdminApiPort = defaultPortStart(4002)

/** Domain node default ports */

val domainPublicApiPort = defaultPortStart(4201)

val domainAdminApiPort = defaultPortStart(4202)

/** External sequencer node default ports (enterprise-only) */

val sequencerPublicApiPort = defaultPortStart(4401)

val sequencerAdminApiPort = defaultPortStart(4402)

/** External mediator node default port (enterprise-only) */

val mediatorAdminApiPort = defaultPortStart(4602)

/** Domain node default ports */

val domainManagerAdminApiPort = defaultPortStart(4801)

/** Increase the default port number for each new instance by portStep */

private val portStep = 10

Administration API

The nature and scope of the admin api on participant and domain nodes has some overlap. As an

example, you will find the same key management commands on the domain and the participant

node API, whereas the participant has different commands to connect to several domains.

The configuration currently is simple (see the TLS example below) and just takes an address and a

port. The address defaults to 127.0.0.1 and a default port is assigned if not explicitly configured.

You should not expose the admin-api publicly in an unsecured way as it serves administrative pur-

poses only.

3.3. User Manual 657

https://grpc.io/

Daml SDK Documentation, 2.1.1

TLS Configuration

Both, the Ledger API and the admin API provide the same TLS capabilities and can be configured

using the same configuration directives. TLS provides end-to-end channel encryption between the

server and client, and depending on the settings, server or mutual authentication.

A full configuration example is given by

ledger-api {

address = "127.0.0.1" // IP / DNS must be SAN of certificate to allow local␣

↪→connections from the canton process

port = 5041

tls {

// the certificate to be used by the server

cert-chain-file = "./tls/participant.crt"

// private key of the server

private-key-file = "./tls/participant.pem"

// trust collection, which means that all client certificates will be␣

↪→verified using the trusted

// certificates in this store. if omitted, the JVM default trust store is␣

↪→used.

trust-collection-file = "./tls/root-ca.crt"

// define whether clients need to authenticate as well (default not)

client-auth = {

// none, optional and require are supported

type = require

// If clients are required to authenticate as well, we need to provide a␣

↪→client

// certificate and the key, as Canton has internal processes that need to␣

↪→connect to these

// APIs. If the server certificate is trusted by the trust-collection, then␣

↪→you can

// just use the server certificates. Otherwise, you need to create separate␣

↪→ones.

admin-client {

cert-chain-file = "./tls/admin-client.crt"

private-key-file = "./tls/admin-client.pem"

}

}

// minimum-server-protocol-version = ...

// ciphers = ...

}

}

These TLS settings allow a connecting client to ensure that it is talking to the right server. In this

example, we have also enabled client authentication, which means that the client needs to present

a valid certificate (and have the corresponding private key). The certificate is valid if it has been

signed by a key in the trust store.

The trust-collection-file allows us to provide a file based trust store. If omitted, the system

will default to the built-in JVM trust store. The file must contain all client certificates (or parent

certificates which were used to sign the client certificate) who are trusted to use the API. The format

is just a collection of PEM certificates (in the right order or hierarchy), not a java based trust store.

In order to operate the server just with server-side authentication, you can just omit the section

on client-auth. However, if client-auth is set to require, then Canton also requires a client

certificate, as various Canton internal processes will connect to the process itself through the API.

658 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

All the private keys need to be in the pkcs8 PEM format.

By default, Canton only uses new versions of TLS and strong ciphers. You can also override the default

settings using the variables ciphers and protocols. If you set these settings to null, the default

JVM values will be used.

Note: Errormessages on TLS issues provided by the networking library netty are less than optimal.

If you are struggling with setting up TLS, please enable DEBUG logging on the io.netty logger.

Note that the configuration hierarchy for a remote participant console is slightly different from the

in-process console or participant shown above. For configuring a remote console with TLS, please

see the scaladocs for a TlsClientConfig (see also how scaladocs relates to the configuration).

If you need to create a set of testing TLS certificates, you can use the following openssl commands:

DAYS=730

function create_key {

local name=$1

openssl genrsa -out "${name}.key" 4096

netty requires the keys in pkcs8 format, therefore convert them appropriately

openssl pkcs8 -topk8 -nocrypt -in "${name}.key" -out "${name}.pem"

}

create self signed certificate

function create_certificate {

local name=$1

local subj=$2

openssl req -new -x509 -sha256 -key "${name}.key" \

-out "${name}.crt" -days ${DAYS} -subj "$subj"

}

create certificate signing request with subject and SAN

we need the SANs as our certificates also need to include localhost or the

loopback IP for the console access to the admin-api and the ledger-api

function create_csr {

local name=$1

local subj=$2

local san=$3

(

echo "authorityKeyIdentifier=keyid,issuer"

echo "basicConstraints=CA:FALSE"

echo "keyUsage = digitalSignature, nonRepudiation, keyEncipherment,␣

↪→dataEncipherment"

) > ${name}.ext

if [[-n $san]]; then

echo "subjectAltName=${san}" >> ${name}.ext

fi

create certificate (but ensure that localhost is there as SAN as otherwise,␣

↪→admin local connections won
t work)

openssl req -new -sha256 -key "${name}.key" -out "${name}.csr" -subj "$subj"

}

function sign_csr {

local name=$1

(continues on next page)

3.3. User Manual 659

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/participant/config/RemoteParticipantConfig.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/TlsClientConfig.html

Daml SDK Documentation, 2.1.1

(continued from previous page)

local sign=$2

openssl x509 -req -sha256 -in "${name}.csr" -extfile "${name}.ext" -CA "${sign}.

↪→crt" -CAkey "${sign}.key" -CAcreateserial \

-out "${name}.crt" -days ${DAYS}

rm "${name}.ext" "${name}.csr"

}

function print_certificate {

local name=$1

openssl x509 -in "${name}.crt" -text -noout

}

create root certificate

create_key "root-ca"

create_certificate "root-ca" "/O=TESTING/OU=ROOT CA/

↪→emailAddress=canton@digitalasset.com"

#print_certificate "root-ca"

create domain certificate

create_key "domain"

create_csr "domain" "/O=TESTING/OU=DOMAIN/CN=localhost/

↪→emailAddress=canton@digitalasset.com" "DNS:localhost,IP:127.0.0.1"

sign_csr "domain" "root-ca"

print_certificate "domain"

create participant certificate

create_key "participant"

create_csr "participant" "/O=TESTING/OU=PARTICIPANT/CN=localhost/

↪→emailAddress=canton@digitalasset.com" "DNS:localhost,IP:127.0.0.1"

sign_csr "participant" "root-ca"

create participant client key and certificate

create_key "admin-client"

create_csr "admin-client" "/O=TESTING/OU=ADMIN CLIENT/CN=localhost/

↪→emailAddress=canton@digitalasset.com"

sign_csr "admin-client" "root-ca"

print_certificate "admin-client"

Keep Alive

In order to prevent load-balancers or firewalls from terminating long running RPC calls in the event

of some silence on the connection, all GRPC connections enable keep-alive by default. An example

configuration for an adjusted setting is given below:

admin-api {

address = "127.0.0.1"

port = 5022

keep-alive-server {

time = 40s

timeout = 20s

permit-keep-alive-time = 20s

}

}

(continues on next page)

660 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

sequencer-client {

keep-alive-client {

time = 60s

timeout = 30s

}

}

GRPC client connections are configured with keep-alive-client, with two settings: time, and

timeout. The effect of the time and timeout settings are described in the GRPC documentation.

Servers can additionally change another setting: permit-keep-alive-time. This specifies the

most aggressive keep-alive time that a client is permitted to use. If a client uses keep-alive time

that is more aggressive than the permit-keep-alive-time, the connection will be terminated

with a GOAWAY frame with “too_many_pings” as the debug data. This setting is described in more

detail in the GRPC documentation and GRPC manual page.

Max Inbound Message Size

The APIs exposed by both the participant (ledger API and admin API) as well as by the domain (public

API and admin API) have an upper limit on incoming message size. To increase this limit to accom-

modate larger payloads, the flag max-inbound-message-size has to be set for the respective API

to the maximummessage size in bytes.

For example, to configure a participant’s ledger API limit to 20MB:

ledger-api {

address = "127.0.0.1"

port = 5021

max-inbound-message-size = 20971520

}

3.3.4.9 Participant Configuration

Ledger Api

The configuration of the ledger API is similar to the admin API configuration, except that the group

starts with ledger-api instead of admin-api.

JWT Authorization

The Ledger Api supports JWT based authorization checks. Please consult the Daml SDK manual to

understand the various configuration options and their security aspects. Canton exposes precisely

the same JWT authorization options as explained therein.

In order to enable JWT authorization checks, your safe configuration options are

_shared {

ledger-api {

auth-services = [{

(continues on next page)

3.3. User Manual 661

https://grpc.github.io/grpc-java/javadoc/io/grpc/ManagedChannelBuilder.html#keepAliveTime-long-java.util.concurrent.TimeUnit
https://grpc.github.io/grpc-java/javadoc/io/grpc/netty/NettyServerBuilder.html#permitKeepAliveTime-long-java.util.concurrent.TimeUnit
https://github.com/grpc/grpc/blob/master/doc/keepalive.md
https://jwt.io/
https://docs.daml.com/tools/sandbox.html#running-with-authentication

Daml SDK Documentation, 2.1.1

(continued from previous page)

// type can be

// jwt-rs-256-crt

// jwt-es-256-crt

// jwt-es-512-crt

type = jwt-rs-256-crt

// we need a certificate file (abcd.cert)

certificate = ${JWT_CERTIFICATE_FILE}

}]

}

}

_shared {

ledger-api {

auth-services = [{

type = jwt-rs-256-jwks

// we need a URL to a jwks key, e.g. https://path.to/jwks.key

url = ${JWT_URL}

}]

}

}

while there is also unsafe HMAC256 based support, which can be enabled using

_shared {

ledger-api {

auth-services = [{

type = unsafe-jwt-hmac-256

secret = "not-safe-for-production"

}]

}

}

Note that you can define several authorization plugins. If several are defined, the systemwill use the

claim of the first auth plugin that does not return Unauthorized.

3.3.4.10 Domain Configurations

Public Api

The domain configuration requires the same configuration of the admin-api as the participant.

Next to the admin-api, we need to configure the public-api, which is the api where all partici-

pants will connect to. There is a built in authentication of the restricted services on the public api,

leveraging the participant signing keys. You don’t need to do anything in order to set this up. It is

enforced automatically and can’t be turned off.

As with the admin-api, network traffic can (and should be) encrypted using TLS.

An example configuration section which enables TLS encryption and server-side TLS authentication

is given by

public-api {

port = 5028

address = localhost // defaults to 127.0.0.1

(continues on next page)

662 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

tls {

cert-chain-file = "./tls/domain.crt"

private-key-file = "./tls/domain.pem"

// minimum-server-protocol-version = TLSv1.3, optional argument

// ciphers = null // use null to default to JVM ciphers

}

}

If TLS is used on the server side with a self-signed certificate, we need to pass the certificate chain

during the connect call of the participant. Otherwise, the default root certificates of the Java runtime

will be used. An example would be:

participant3.domains.connect(

domainAlias = "acme",

connection = s"https://$hostname:$port",

certificatesPath = certs, // path to certificate chain file (.pem) of server

)

Domain Rules

Every domain has its own rules in terms of what parameters are used by the participants while run-

ning the protocol. The participants obtain these parameters before connecting to the domain. They

can be configured using the specific parameter section. An example would be:

domain-parameters {

// example setting

unique-contract-keys = yes

}

The full set of available parameters can be found in the scala reference documentation.

3.3.4.11 Limiting concurrent GRPC requests (preview feature)

In large-scale deployments aCantonnodemay getmoreGRPC requests than it can copewith, leading

to requests timing out. Canton has an experimental integration with concurrency-limits to limit the

number of concurrent requests and prevent nodes from becoming overloaded.

Canton’s GRPC services can be configured to use various options provided by the concurrency-limits

library:

• A fixed limit on concurrent requests

canton.participants.participant1.admin-api.concurrency-limit {

type = "fixed-limit"

limit = "10"

}

• A dynamic limit for the number of concurrent requests, inspired by TCP Vegas

canton.participants.participant1.admin-api.concurrency-limit {

Values are defaults from https://github.com/Netflix/concurrency-limits

type = "vegas-limit"

(continues on next page)

3.3. User Manual 663

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/config/DomainParametersConfig.html
https://github.com/Netflix/concurrency-limits

Daml SDK Documentation, 2.1.1

(continued from previous page)

max-concurrency = 1000

smoothing = 1.0

}

• A gradient-based algorithm to dynamically infer the concurrency limit

canton.participants.participant1.admin-api.concurrency-limit {

Values are defaults from https://github.com/Netflix/concurrency-limits

type = "gradient-2-limit"

max-concurrency = 200

smoothing = 0.2

rtt-tolerance = 1.5

}

• Any of these options, with an added smoothing window

canton.participants.participant1.admin-api.concurrency-limit {

Values are defaults from https://github.com/Netflix/concurrency-limits

type = "windowed-limit"

window-size = 10

delegate = {

type = gradient-2-limit

max-concurrency = 200

smoothing = 0.2

rtt-tolerance = 1.5

}

}

See the concurrency-limits library for more information on these different options.

3.3.5 Canton Administration APIs

Canton provides a console as a builtinmode for administrative interaction. However, under the hood,

all administrative console actions are effected using the administration gRPC API. Therefore, it is

also possible towrite your ownadministration application and connect it to the administration gRPC

endpoints of both types of nodes, participant and domain.

There are three categories of admin-apis: participant, domain and identity.

664 Chapter 3. Canton Guide

https://github.com/Netflix/concurrency-limits

Daml SDK Documentation, 2.1.1

3.3.5.1 Participant Admin APIs

The participant exposes the following admin-api services:

Package Service

The package service is used to manage the installed packages.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

import "google/protobuf/empty.proto";

service PackageService {

// List all Daml-LF archives on the participant node - return their hashes

rpc ListPackages(ListPackagesRequest) returns (ListPackagesResponse);

// Lists all the modules in package on the participant node

rpc ListPackageContents (ListPackageContentsRequest) returns␣

↪→(ListPackageContentsResponse);

// List all DARs on the participant node - return their hashes and filenames

rpc ListDars(ListDarsRequest) returns (ListDarsResponse);

// Upload a DAR file and all packages inside to the participant node

rpc UploadDar (UploadDarRequest) returns (UploadDarResponse);

// Remove a package that is not vetted

rpc RemovePackage (RemovePackageRequest) returns (RemovePackageResponse);

// Remove a DAR that is not needed

rpc RemoveDar (RemoveDarRequest) returns (RemoveDarResponse);

// Obtain a DAR file by hash -- for inspection & download

rpc GetDar(GetDarRequest) returns (GetDarResponse);

// Share a DAR with another participant

rpc Share(ShareRequest) returns (google.protobuf.Empty);

// List requests this participant has made to share DARs with another␣

↪→participant

rpc ListShareRequests(google.protobuf.Empty) returns␣

↪→(ListShareRequestsResponse);

// List offers to share a DAR that this participant has received

rpc ListShareOffers(google.protobuf.Empty) returns (ListShareOffersResponse);

// Accept a DAR sharing offer (this will install the DAR into the participant)

rpc AcceptShareOffer(AcceptShareOfferRequest) returns (google.protobuf.Empty);

(continues on next page)

3.3. User Manual 665

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Reject a DAR sharing offer

rpc RejectShareOffer(RejectShareOfferRequest) returns (google.protobuf.Empty);

// Add party to our DAR distribution whitelist

rpc WhitelistAdd(WhitelistChangeRequest) returns (google.protobuf.Empty);

// Remove party from our DAR distribution whitelist

rpc WhitelistRemove(WhitelistChangeRequest) returns (google.protobuf.Empty);

// List all parties currently on the whitelist

rpc WhitelistList(google.protobuf.Empty) returns (WhitelistListResponse);

}

message ListPackageContentsRequest {

string package_id = 1;

}

message ListPackageContentsResponse {

repeated ModuleDescription modules = 1;

}

message RemovePackageRequest {

string package_id = 1;

bool force = 2;

}

message RemovePackageResponse {

google.protobuf.Empty success = 1;

}

message RemoveDarRequest {

string dar_hash = 1;

}

message RemoveDarResponse {

google.protobuf.Empty success = 1;

}

message ModuleDescription {

string name = 1;

}

message ListPackagesRequest {

int32 limit = 1;

}

message ListPackagesResponse {

repeated PackageDescription package_descriptions = 1;

}

message ListDarsRequest {

int32 limit = 1;

}

message ListDarsResponse {

(continues on next page)

666 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

repeated DarDescription dars = 1;

}

message DarDescription {

string hash = 1;

string name = 2;

}

message UploadDarRequest {

bytes data = 1;

string filename = 2;

// if set to true, we
ll register the vetting topology transactions with the␣

↪→idm

bool vet_all_packages = 3;

// if set to true, we
ll wait until the vetting transaction has been observed␣

↪→by this participant on all connected domains

bool synchronize_vetting = 4;

}

message UploadDarResponse {

oneof value {

Success success = 1;

Failure failure = 2;

}

message Success {

string hash = 1;

}

message Failure {

string reason = 1;

}

}

message GetDarRequest {

string hash = 1;

}

message GetDarResponse {

bytes data = 1;

string name = 2;

}

message PackageDescription {

string package_id = 1;

string source_description = 3;

}

message ShareRequest {

string dar_hash = 1;

string recipient_id = 2;

}

message ListShareRequestsResponse {

repeated Item share_requests = 1;

message Item {

string id = 1;

(continues on next page)

3.3. User Manual 667

Daml SDK Documentation, 2.1.1

(continued from previous page)

string dar_hash = 2;

string recipient_id = 3;

string name = 4;

}

}

message ListShareOffersResponse {

repeated Item share_offers = 1;

message Item {

string id = 1;

string dar_hash = 2;

string owner_id = 3;

string name = 4;

}

}

message AcceptShareOfferRequest {

string id = 1;

}

message RejectShareOfferRequest {

string id = 1;

// informational message explaining why we decided to reject the DAR

// can be empty

string reason = 2;

}

message WhitelistChangeRequest {

string party_id = 1;

}

message WhitelistListResponse {

repeated string party_ids = 1;

}

Participant Status Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.health.admin.v0;

import "google/protobuf/empty.proto";

import "google/protobuf/duration.proto";

import "google/protobuf/wrappers.proto";

service StatusService {

rpc Status(google.protobuf.Empty) returns (NodeStatus);

}

(continues on next page)

668 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

message TopologyQueueStatus {

// how many topology changes are currently queued at the manager

uint32 manager = 1;

// how many topology changes are currently queued at the dispatcher

uint32 dispatcher = 2;

// how many topology changes are currently waiting to become effective␣

↪→(across all connected domains in the case of participants)

uint32 clients = 3;

}

message NodeStatus {

message Status {

string id = 1;

google.protobuf.Duration uptime = 2;

map<string, int32> ports = 3;

bytes extra = 4; // contains extra information depending on the node type

bool active = 5; // Indicate if the node is active, usually true unless it

↪→
s a replicated node that is passive

TopologyQueueStatus topology_queues = 6; // indicates the state of the␣

↪→topology queues (manager / dispatcher only where they exist)

}

message NotInitialized {

bool active = 1; // Indicate if the node is active, usually true unless it

↪→
s a replicated node that is passive

}

oneof response {

NotInitialized not_initialized = 1; // node is running but has not been␣

↪→initialized yet

Status success = 2; // successful response from a running and initialized␣

↪→node

}

}

// domain node specific extra status info

message DomainStatusInfo {

repeated string connected_participants = 1;

// optional - only set if a sequencer is being run by the domain

SequencerHealthStatus sequencer = 2;

}

// participant node specific extra status info

message ParticipantStatusInfo {

message ConnectedDomain {

string domain = 1;

bool healthy = 2;

}

repeated ConnectedDomain connected_domains = 1;

// Indicate if the participant node is active

// True if the participant node is replicated and is the active replica, or␣

↪→true if not replicated

bool active = 2;

}

(continues on next page)

3.3. User Manual 669

Daml SDK Documentation, 2.1.1

(continued from previous page)

message SequencerNodeStatus {

repeated string connected_participants = 1;

// required - status of the sequencer component it is running

SequencerHealthStatus sequencer = 2;

string domain_id = 3;

}

// status of the sequencer component

message SequencerHealthStatus {

// is the sequencer component active - can vary by implementation for what␣

↪→this means

bool active = 1;

// optionally set details on how sequencer is healthy/unhealthy

google.protobuf.StringValue details = 2;

}

message MediatorNodeStatus {

string domain_id = 1;

}

Ping Pong Service

Canton uses a default simple ping-pong workflow to smoke-test a deployment.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

service PingService {

rpc ping(PingRequest) returns (PingResponse);

}

message PingRequest {

repeated string target_parties = 1;

repeated string validators = 2;

uint64 timeout_milliseconds = 3;

uint64 levels = 4;

uint64 grace_period_milliseconds = 5;

string workflow_id = 6; // optional

string id = 7; // optional UUID to be used for ping test

}

message PingSuccess {

uint64 ping_time = 1;

string responder = 2;

}

(continues on next page)

670 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

message PingFailure {

}

message PingResponse {

oneof response {

PingSuccess success = 1;

PingFailure failure = 2;

}

}

Domain Connectivity Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

import "google/protobuf/duration.proto";

import "com/digitalasset/canton/time/admin/v0/time_tracker_config.proto";

import "com/digitalasset/canton/protocol/v0/sequencing.proto";

/**

* Domain connectivity service for adding and connecting to domains

*

* The domain connectivity service allows to register to new domains and control␣

↪→the

* participants domain connections.

*/

service DomainConnectivityService {

// reconnect to domains

rpc ReconnectDomains(ReconnectDomainsRequest) returns␣

↪→(ReconnectDomainsResponse);

// configure a new domain connection

rpc RegisterDomain(RegisterDomainRequest) returns (RegisterDomainResponse);

// reconfigure a domain connection

rpc ModifyDomain(ModifyDomainRequest) returns (ModifyDomainResponse);

// connect to a configured domain

rpc ConnectDomain(ConnectDomainRequest) returns (ConnectDomainResponse);

// disconnect from a configured domain

rpc DisconnectDomain(DisconnectDomainRequest) returns␣

↪→(DisconnectDomainResponse);

// list connected domains

rpc ListConnectedDomains(ListConnectedDomainsRequest) returns␣

↪→(ListConnectedDomainsResponse);

// list configured domains

rpc ListConfiguredDomains(ListConfiguredDomainsRequest) returns␣

↪→(ListConfiguredDomainsResponse);

// Get the service agreement for the domain

rpc GetAgreement(GetAgreementRequest) returns (GetAgreementResponse);

(continues on next page)

3.3. User Manual 671

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Accept the agreement of the domain

rpc AcceptAgreement(AcceptAgreementRequest) returns (AcceptAgreementResponse);

// Get the domain id of the given domain alias

rpc GetDomainId(GetDomainIdRequest) returns (GetDomainIdResponse);

}

message DomainConnectionConfig {

// participant local identifier of the target domain

string domain_alias = 1;

// connection information to sequencer

com.digitalasset.canton.protocol.v0.SequencerConnection sequencerConnection =␣

↪→2;

// if false, then domain needs to be manually connected to (default false)

bool manual_connect = 3;

// optional domainId (if TLS isn
t to be trusted)

string domain_id = 4;

// optional. Influences whether the participant submits to this domain, if␣

↪→several domains are eligible

int32 priority = 5;

// initial delay before an attempt to reconnect to the sequencer

google.protobuf.Duration initialRetryDelay = 6;

// maximum delay before an attempt to reconnect to the sequencer

google.protobuf.Duration maxRetryDelay = 7;

// configuration for how time is tracked and requested on this domain

com.digitalasset.canton.time.admin.v0.DomainTimeTrackerConfig timeTracker = 8;

}

message ReconnectDomainsRequest {

/* if set to true, the connection attempt will succeed even if one of the␣

↪→connection attempts failed */

bool ignore_failures = 1;

}

message ReconnectDomainsResponse {

}

/** Register and optionally auto-connect to a new domain */

message RegisterDomainRequest {

DomainConnectionConfig add = 1;

}

message RegisterDomainResponse {

}

message ModifyDomainRequest {

DomainConnectionConfig modify = 1;

}

message ModifyDomainResponse {

}

message ListConfiguredDomainsRequest {

(continues on next page)

672 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

message ListConfiguredDomainsResponse {

message Result {

DomainConnectionConfig config = 1;

bool connected = 2;

}

repeated Result results = 1;

}

message ConnectDomainRequest {

string domain_alias = 1;

/* if retry is set to true, we will keep on retrying if the domain is␣

↪→unavailable */

bool retry = 2;

}

message ConnectDomainResponse {

/* true if the domain is connected, false if the domain is offline, exception␣

↪→on any other error */

bool connected_successfully = 1;

}

message DisconnectDomainRequest {

string domain_alias = 1;

}

message DisconnectDomainResponse {

}

message ListConnectedDomainsRequest {

}

message ListConnectedDomainsResponse {

message Result {

string domain_alias = 1;

string domain_id = 2;

bool healthy = 3;

}

repeated Result connected_domains = 1;

}

message GetAgreementRequest {

string domain_alias = 1;

}

message GetAgreementResponse {

string domain_id = 1;

Agreement agreement = 2;

bool accepted = 3;

}

message Agreement {

string id = 1;

string text = 2;

}

(continues on next page)

3.3. User Manual 673

Daml SDK Documentation, 2.1.1

(continued from previous page)

message AcceptAgreementRequest {

string domain_alias = 1;

string agreement_id = 2;

}

message AcceptAgreementResponse {

}

message GetDomainIdRequest {

string domain_alias = 1;

}

message GetDomainIdResponse {

string domain_id = 2;

}

Party Name Management Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

/**

* Local participant service allowing to set the display name for a party

*

* The display name is a local property to the participant. The participant is␣

↪→encouraged to perform

* a Daml based KYC process and add some automation which will update the␣

↪→display names based

* on the desired update rules.

*

* As such, this function here just offers the bare functionality to perform␣

↪→this.

*/

service PartyNameManagementService {

rpc setPartyDisplayName(SetPartyDisplayNameRequest) returns␣

↪→(SetPartyDisplayNameResponse);

}

message SetPartyDisplayNameRequest {

string party_id = 1;

string display_name = 2;

}

message SetPartyDisplayNameResponse {

}

674 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Inspection Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

import "google/protobuf/timestamp.proto";

/**

* Inspection Service

*

* Supports inspecting the Participant for details about its ledger.

* This contains only a subset of the ParticipantInspection commands that can run␣

↪→over the admin-api instead of requiring

* direct access to the participant node instance.

*/

service InspectionService {

// Lookup the domain where a contract is currently active.

// Supports querying many contracts at once.

rpc LookupContractDomain(LookupContractDomain.Request) returns␣

↪→(LookupContractDomain.Response);

// Lookup the domain that the transaction was committed over. Can fail with␣

↪→NOT_FOUND if no domain was found.

rpc LookupTransactionDomain(LookupTransactionDomain.Request) returns␣

↪→(LookupTransactionDomain.Response);

// Look up the ledger offset corresponding to the timestamp, specifically the␣

↪→largest offset such that no later

// offset corresponds to a later timestamp than the specified one.

rpc LookupOffsetByTime(LookupOffsetByTime.Request) returns␣

↪→(LookupOffsetByTime.Response);

// Look up the ledger offset by an index, e.g. 1 returns the first offset, 2␣

↪→the second, etc.

rpc LookupOffsetByIndex(LookupOffsetByIndex.Request) returns␣

↪→(LookupOffsetByIndex.Response);

}

message LookupContractDomain {

message Request {

// set of contract ids to lookup their active domain aliases.

repeated string contract_id = 1;

}

message Response {

// map of contract id to domain alias.

// if a request contract id from the request is missing from this map it␣

↪→indicates that the contract was not

// active on any current domain.

map<string, string> results = 1;

}

}

message LookupTransactionDomain {

(continues on next page)

3.3. User Manual 675

Daml SDK Documentation, 2.1.1

(continued from previous page)

message Request {

// the transaction to look up

string transaction_id = 1;

}

message Response {

// the domain that the transaction was committed over

string domain_id = 1;

}

}

message LookupOffsetByTime {

message Request {

// the timestamp to look up the offset for

google.protobuf.Timestamp timestamp = 1;

}

message Response {

// the absolute offset as a string corresponding to the specified␣

↪→timestamp.

// empty string if no such offset exists.

string offset = 1;

}

}

message LookupOffsetByIndex {

message Request {

// the index to look up the offset for, needs to be 1 or larger

int64 index = 1;

}

message Response {

// the absolute offset as a string corresponding to the specified index.

// empty string if no such offset exists.

string offset = 1;

}

}

Transfer Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

import "google/protobuf/timestamp.proto";

import "com/digitalasset/canton/protocol/v0/synchronization.proto";

// Supports transferring contracts from one domain to another

service TransferService {

(continues on next page)

676 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

// transfer out a contract

rpc TransferOut (AdminTransferOutRequest) returns (AdminTransferOutResponse);

// transfer-in a contract

rpc TransferIn (AdminTransferInRequest) returns (AdminTransferInResponse);

// return the in-flight transfers on a given participant for a given target␣

↪→domain

rpc TransferSearch (AdminTransferSearchQuery) returns␣

↪→(AdminTransferSearchResponse);

}

message AdminTransferOutRequest {

string submitting_party = 1;

string contract_id = 2;

string origin_domain = 3;

string target_domain = 4;

}

message AdminTransferOutResponse {

com.digitalasset.canton.protocol.v0.TransferId transfer_id = 1;

}

message AdminTransferInRequest {

string submitting_party_id = 1;

string target_domain = 2;

com.digitalasset.canton.protocol.v0.TransferId transfer_id = 3;

}

message AdminTransferInResponse {

}

message AdminTransferSearchQuery {

string search_domain = 1;

string filter_origin_domain = 2; // exact match if non-empty

google.protobuf.Timestamp filter_timestamp = 3; // optional; exact match if␣

↪→set

string filter_submitting_party = 4;

int64 limit = 5;

}

message AdminTransferSearchResponse {

repeated TransferSearchResult results = 1;

message TransferSearchResult {

string contract_id = 1;

com.digitalasset.canton.protocol.v0.TransferId transfer_id = 2;

string origin_domain = 3;

string target_domain = 4;

string submitting_party = 5;

bool ready_for_transfer_in = 6;

}

}

3.3. User Manual 677

Daml SDK Documentation, 2.1.1

Pruning Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.participant.admin.v0;

// Canton-internal pruning service that prunes only canton state, but leaves the␣

↪→ledger-api

// state unpruned.

service PruningService {

// Prune the participant specifying the offset before and at which ledger␣

↪→transactions

// should be removed. Only returns when the potentially long-running prune␣

↪→request ends

// successfully or with one of the following errors:

// - CCINVALID_ARGUMENTCC: if the payload, particularly the offset is␣

↪→malformed or missing

// - CCINTERNALCC: if the participant has encountered a failure and has␣

↪→potentially

// applied pruning partially. Such cases warrant verifying the participant␣

↪→health before

// retrying the prune with the same (or a larger, valid) offset. Successful␣

↪→retries

// after such errors ensure that different components reach a consistent␣

↪→pruning state.

// - CCFAILED_PRECONDITIONCC: if the participant is not yet able to prune at␣

↪→the specified

// offset or if pruning is invoked on a participant running the Community␣

↪→Edition.

rpc Prune (PruneRequest) returns (PruneResponse);

}

message PruneRequest {

// Inclusive offset up to which the ledger is to be pruned.

string prune_up_to = 1;

}

message PruneResponse {

// Empty for now, but may contain fields in the future

}

678 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.5.2 Domain Admin APIs

The domain exposes the following admin-api services:

Domain Status Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.health.admin.v0;

import "google/protobuf/empty.proto";

import "google/protobuf/duration.proto";

import "google/protobuf/wrappers.proto";

service StatusService {

rpc Status(google.protobuf.Empty) returns (NodeStatus);

}

message TopologyQueueStatus {

// how many topology changes are currently queued at the manager

uint32 manager = 1;

// how many topology changes are currently queued at the dispatcher

uint32 dispatcher = 2;

// how many topology changes are currently waiting to become effective␣

↪→(across all connected domains in the case of participants)

uint32 clients = 3;

}

message NodeStatus {

message Status {

string id = 1;

google.protobuf.Duration uptime = 2;

map<string, int32> ports = 3;

bytes extra = 4; // contains extra information depending on the node type

bool active = 5; // Indicate if the node is active, usually true unless it

↪→
s a replicated node that is passive

TopologyQueueStatus topology_queues = 6; // indicates the state of the␣

↪→topology queues (manager / dispatcher only where they exist)

}

message NotInitialized {

bool active = 1; // Indicate if the node is active, usually true unless it

↪→
s a replicated node that is passive

}

oneof response {

NotInitialized not_initialized = 1; // node is running but has not been␣

↪→initialized yet

Status success = 2; // successful response from a running and initialized␣

↪→node

}

}

(continues on next page)

3.3. User Manual 679

Daml SDK Documentation, 2.1.1

(continued from previous page)

// domain node specific extra status info

message DomainStatusInfo {

repeated string connected_participants = 1;

// optional - only set if a sequencer is being run by the domain

SequencerHealthStatus sequencer = 2;

}

// participant node specific extra status info

message ParticipantStatusInfo {

message ConnectedDomain {

string domain = 1;

bool healthy = 2;

}

repeated ConnectedDomain connected_domains = 1;

// Indicate if the participant node is active

// True if the participant node is replicated and is the active replica, or␣

↪→true if not replicated

bool active = 2;

}

message SequencerNodeStatus {

repeated string connected_participants = 1;

// required - status of the sequencer component it is running

SequencerHealthStatus sequencer = 2;

string domain_id = 3;

}

// status of the sequencer component

message SequencerHealthStatus {

// is the sequencer component active - can vary by implementation for what␣

↪→this means

bool active = 1;

// optionally set details on how sequencer is healthy/unhealthy

google.protobuf.StringValue details = 2;

}

message MediatorNodeStatus {

string domain_id = 1;

}

680 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.5.3 Identity Admin APIs

Both, domain and participant nodes expose the following services:

Vault Management Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.crypto.admin.v0;

import "com/digitalasset/canton/crypto/v0/crypto.proto";

/**

* Vault service providing programmatic access to locally stored keys and␣

↪→certificates

*

* We have two key-stores: a private key store where we are storing our pairs of

* public and private keys and a public key store where we are storing other

* public keys that we learned.

*

* We learn public key stores in different ways: either by importing them or

* by picking them up from internal sources (such as identity management updates).

*

* The only purpose of the public key store (where we import foreign keys) is␣

↪→convenience for

* identity management such that when we add identity management transactions, we␣

↪→can refer to

* fingerprints in commands while building them rather than having to attach␣

↪→public-key files.

*

* In addition, we also provide access to the locally stored certificates which␣

↪→are used

* either by the HTTP/1.1 sequencer client or for legal identity claims.

*/

service VaultService {

/**

* List public keys according to request filter for which we have a private␣

↪→key in our key vault.

*

* The request includes a filter for fingerprints which can be used for␣

↪→lookups.

*

* @param ListMyKeysRequest: request with optional fingerprint filter

* @return: all serialized keys and their fingerprints that have the␣

↪→fingerprint filter as a substring in their fingerprint

*/

rpc ListMyKeys(ListKeysRequest) returns (ListKeysResponse);

/**

* Generates a new public / private key pair for signing.

(continues on next page)

3.3. User Manual 681

Daml SDK Documentation, 2.1.1

(continued from previous page)

*

* Stores the private key in the vault, and returns the public key

*/

rpc GenerateSigningKey(GenerateSigningKeyRequest) returns␣

↪→(GenerateSigningKeyResponse);

/**

* Generates a new public / private key pair for hybrid encryption.

*

* Stores the private key in the vault, and returns the public key

*/

rpc GenerateEncryptionKey(GenerateEncryptionKeyRequest) returns␣

↪→(GenerateEncryptionKeyResponse);

/**

* Import a public key into the registry in order to provide that Fingerprint␣

↪→-> PublicKey lookups

*

* @param: ImportPublicKeyRequest serialized public key to be imported

* @return: fingerprint and serialized public key of imported public key

*/

rpc ImportPublicKey(ImportPublicKeyRequest) returns (ImportPublicKeyResponse);

/**

* Lists all public keys matching the supplied filter which are internally␣

↪→cached

*

* Any public key returned here can be referenced in topology transaction␣

↪→building

* by fingerprint.

*/

rpc ListPublicKeys(ListKeysRequest) returns (ListKeysResponse);

/**

* Import a X509 certificate into the local vault.

*/

rpc ImportCertificate(ImportCertificateRequest) returns␣

↪→(ImportCertificateResponse);

/**

* Create a new, self-signed certificate with CN=unique_identifier

*/

rpc GenerateCertificate(GenerateCertificateRequest) returns␣

↪→(GenerateCertificateResponse);

/**

* List certificates stored in the local vault

*/

rpc ListCertificates(ListCertificateRequest) returns␣

↪→(ListCertificateResponse);

/**

* Rotate the stored HMAC secret.

*/

rpc RotateHmacSecret(RotateHmacSecretRequest) returns␣

↪→(RotateHmacSecretResponse);

(continues on next page)

682 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

message GenerateCertificateRequest {

// unique identifier to be used for CN

string unique_identifier = 1;

// the private key fingerprint to use for this certificate

string certificate_key = 2;

// optional additional X500 names

string additional_subject = 3;

// the additional subject names to be added to this certificate

repeated string subject_alternative_names = 4;

}

message GenerateCertificateResponse {

// the certificate in PEM format

string x509_cert = 1;

}

message ListCertificateRequest {

string filterUid = 1;

}

message ListCertificateResponse {

message Result {

string x509_cert = 1;

}

repeated Result results = 1;

}

message ImportCertificateRequest {

// X509 certificate as PEM

string x509_cert = 1;

}

message ImportCertificateResponse {

string certificate_id = 1;

}

message ImportPublicKeyRequest {

// import a crypto.PublicKey protobuf serialized key

bytes public_key = 1;

// an optional name that should be stored along side the key

string name = 2;

}

message ImportPublicKeyResponse {

// fingerprint of imported key

string fingerprint = 1;

}

message ListKeysRequest {

// the substring that needs to match a given fingerprint

string filter_fingerprint = 1;

// the substring to filter the name

(continues on next page)

3.3. User Manual 683

Daml SDK Documentation, 2.1.1

(continued from previous page)

string filter_name = 2;

// filter on public key purpose

repeated com.digitalasset.canton.crypto.v0.KeyPurpose filter_purpose = 3;

}

message ListKeysResponse {

repeated com.digitalasset.canton.crypto.v0.PublicKeyWithName public_keys = 1;

}

message GenerateSigningKeyRequest {

com.digitalasset.canton.crypto.v0.SigningKeyScheme key_scheme = 1;

// optional descriptive name for the key

string name = 2;

}

message GenerateSigningKeyResponse {

com.digitalasset.canton.crypto.v0.SigningPublicKey public_key = 1;

}

message GenerateEncryptionKeyRequest {

com.digitalasset.canton.crypto.v0.EncryptionKeyScheme key_scheme = 1;

// optional descriptive name for the key

string name = 2;

}

message GenerateEncryptionKeyResponse {

com.digitalasset.canton.crypto.v0.EncryptionPublicKey public_key = 1;

}

message RotateHmacSecretRequest {

// Length of the HMAC secret. Must be at least 128 bits, but less than the␣

↪→internal block size of the hash function.

int32 length = 1;

}

message RotateHmacSecretResponse {

}

Initialization Service

The one time initialization service, used to setup the identity of a node.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.topology.admin.v0;

(continues on next page)

684 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

/**

* The node initialization service

*/

service InitializationService {

/**

* Initialize the node with the unique identifier (can and must be done once)

*

* When a domain or participant instance starts for the first time, we need␣

↪→to bind it

* to a globally unique stable identifier before we can continue with the

* initialization procedure.

*

* This method is only used once during initialization.

*/

rpc InitId(InitIdRequest) returns (InitIdResponse);

/**

* Returns the id of the node (or empty if not initialized)

*/

rpc GetId(google.protobuf.Empty) returns (GetIdResponse);

/**

* Returns the current time of the node (used for testing with static time)

*/

rpc CurrentTime(google.protobuf.Empty) returns (google.protobuf.Timestamp);

}

message InitIdRequest {

string identifier = 1;

string fingerprint = 2;

// optional - instance id, if supplied value is empty then one will be␣

↪→generated

string instance = 3;

}

message InitIdResponse {

string unique_identifier = 1;

string instance = 2;

}

message GetIdResponse {

bool initialized = 1;

string unique_identifier = 2;

string instance = 3;

}

3.3. User Manual 685

Daml SDK Documentation, 2.1.1

Topology Aggregation Service

Aggregated view of the sequenced domain topology state.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.topology.admin.v0;

import "google/protobuf/timestamp.proto";

import "com/digitalasset/canton/crypto/v0/crypto.proto";

import "com/digitalasset/canton/protocol/v0/topology.proto";

/**

* Topology information aggregation service

*

* This service allows deep inspection into the aggregated topology state.

* The services runs both on the domain and on the participant and uses the same

* data. The service provides GRPC access to the information aggregated by the␣

↪→identity providing

* service client.

*/

service TopologyAggregationService {

/**

* Obtain information about a certain set of active parties matching a given␣

↪→filter criterion.

*

* The request allows to filter per (domain, party, asOf) where the domain␣

↪→and party argument are

* used in order to filter the result list using the CstartsWithC method on␣

↪→the respective resulting string.

*

* As such, if you just need to do a lookup, then define a precise filter.␣

↪→Given the uniqueness of the

* identifiers (and the fact that the identifiers contain key fingerprints),␣

↪→we should only ever get a single

* result back if we are doing a precise lookup.

*

* The response is a sequence of tuples (party, domain, participant,␣

↪→privilege, trust-level).

* The response is restricted to active parties and their active␣

↪→participants.

*/

rpc ListParties (ListPartiesRequest) returns (ListPartiesResponse);

/**

* Obtain key owner information matching a given filter criterion.

*

* Key owners in the system are different types of entities: Participant,␣

↪→Mediator, Domain Topology Manager and

* Sequencer. The present method allows to define a filter to search for a␣

↪→key owner

* using filters on (asOf, domain, ownerType, owner)

(continues on next page)

686 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

*

* The response is a sequence of (domain, ownerType, owner, keys) where keys␣

↪→is a sequence of

* (fingerprint, bytes, key purpose). As such, we can use this method to␣

↪→export currently used signing or encryption

* public keys.

*

* This method is quite general, as depending on the arguments, very␣

↪→different results can be obtained.

*

* Using OwnerType =
Participant
 allows to query for all participants.

* Using OwnerType =
Sequencer
 allows to query for all sequencers defined.

*/

rpc ListKeyOwners (ListKeyOwnersRequest) returns (ListKeyOwnersResponse);

}

message ListPartiesRequest {

google.protobuf.Timestamp as_of = 1;

int32 limit = 2;

string filter_domain = 3;

string filter_party = 4;

string filter_participant = 5;

}

message ListPartiesResponse {

message Result {

string party = 1;

message ParticipantDomains {

message DomainPermissions {

string domain = 1;

com.digitalasset.canton.protocol.v0.ParticipantPermission␣

↪→permission = 2;

}

string participant = 1;

/**

* permissions of this participant for this party on a per domain␣

↪→basis

*

* for records that only exist in the authorized store, this list␣

↪→will be empty.

*/

repeated DomainPermissions domains = 2;

}

repeated ParticipantDomains participants = 2;

}

repeated Result results = 2;

}

message ListKeyOwnersRequest {

google.protobuf.Timestamp as_of = 1;

int32 limit = 2;

string filter_domain = 3;

string filter_key_owner_type = 4;

string filter_key_owner_uid = 5;

}

(continues on next page)

3.3. User Manual 687

Daml SDK Documentation, 2.1.1

(continued from previous page)

message ListKeyOwnersResponse {

message Result {

string domain = 1;

string key_owner = 2;

repeated com.digitalasset.canton.crypto.v0.SigningPublicKey signing_keys␣

↪→= 3;

repeated com.digitalasset.canton.crypto.v0.EncryptionPublicKey encryption_

↪→keys = 4;

}

repeated Result results = 1;

}

Topology Manager Read Service

Raw access to the underlying topology transactions.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.topology.admin.v0;

import "com/digitalasset/canton/crypto/v0/crypto.proto";

import "com/digitalasset/canton/protocol/v0/topology.proto";

import "com/digitalasset/canton/protocol/v0/sequencing.proto";

import "google/protobuf/timestamp.proto";

import "google/protobuf/empty.proto";

// domain + idm + participant

service TopologyManagerReadService {

rpc ListAvailableStores(ListAvailableStoresRequest) returns␣

↪→(ListAvailableStoresResult);

rpc ListPartyToParticipant(ListPartyToParticipantRequest) returns␣

↪→(ListPartyToParticipantResult);

rpc ListOwnerToKeyMapping(ListOwnerToKeyMappingRequest) returns␣

↪→(ListOwnerToKeyMappingResult);

rpc ListNamespaceDelegation(ListNamespaceDelegationRequest) returns␣

↪→(ListNamespaceDelegationResult);

rpc ListIdentifierDelegation(ListIdentifierDelegationRequest) returns␣

↪→(ListIdentifierDelegationResult);

rpc ListSignedLegalIdentityClaim(ListSignedLegalIdentityClaimRequest) returns␣

↪→(ListSignedLegalIdentityClaimResult);

rpc ListParticipantDomainState(ListParticipantDomainStateRequest) returns␣

↪→(ListParticipantDomainStateResult);

rpc ListMediatorDomainState(ListMediatorDomainStateRequest) returns␣

↪→(ListMediatorDomainStateResult);

rpc ListVettedPackages(ListVettedPackagesRequest) returns␣

↪→(ListVettedPackagesResult);

rpc ListDomainParametersChanges(ListDomainParametersChangesRequest) returns␣

↪→(ListDomainParametersChangesResult);

rpc ListAll(ListAllRequest) returns (ListAllResponse);

(continues on next page)

688 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

message ListNamespaceDelegationRequest {

BaseQuery base_query = 1;

string filter_namespace = 2;

}

message ListNamespaceDelegationResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.NamespaceDelegation item = 2;

string target_key_fingerprint = 3;

}

repeated Result results = 1;

}

message ListIdentifierDelegationRequest {

BaseQuery base_query = 1;

string filter_uid = 2;

}

message ListIdentifierDelegationResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.IdentifierDelegation item = 2;

string target_key_fingerprint = 3;

}

repeated Result results = 1;

}

message BaseQuery {

string filter_store = 1;

bool use_state_store = 2;

com.digitalasset.canton.protocol.v0.TopologyChangeOp operation = 3;

/** if true, then we
ll filter the results according to above defined␣

↪→operation */

bool filter_operation = 4;

message TimeRange {

google.protobuf.Timestamp from = 2;

google.protobuf.Timestamp until = 3;

}

oneof time_query {

google.protobuf.Timestamp snapshot = 5;

google.protobuf.Empty head_state = 6;

TimeRange range = 7;

}

string filter_signed_key = 8;

}

message BaseResult {

string store = 1;

google.protobuf.Timestamp valid_from = 2;

google.protobuf.Timestamp valid_until = 3;

com.digitalasset.canton.protocol.v0.TopologyChangeOp operation = 4;

(continues on next page)

3.3. User Manual 689

Daml SDK Documentation, 2.1.1

(continued from previous page)

bytes serialized = 5;

string signed_by_fingerprint = 6;

}

message ListPartyToParticipantResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.PartyToParticipant item = 2;

}

repeated Result results = 2;

}

message ListPartyToParticipantRequest {

BaseQuery base_query = 1;

string filter_party = 2;

string filter_participant = 3;

message FilterRequestSide {

com.digitalasset.canton.protocol.v0.RequestSide value = 1;

}

FilterRequestSide filter_request_side = 4;

message FilterPermission {

com.digitalasset.canton.protocol.v0.ParticipantPermission value = 1;

}

FilterPermission filter_permission = 5;

}

message ListOwnerToKeyMappingRequest {

BaseQuery base_query = 1;

string filter_key_owner_type = 2;

string filter_key_owner_uid = 3;

message FilterKeyPurpose {

com.digitalasset.canton.crypto.v0.KeyPurpose value = 1;

}

FilterKeyPurpose filter_key_purpose = 4;

}

message ListOwnerToKeyMappingResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.OwnerToKeyMapping item = 2;

string key_fingerprint = 3;

}

repeated Result results = 1;

}

message ListSignedLegalIdentityClaimRequest {

BaseQuery base_query = 1;

string filter_uid = 2;

}

message ListSignedLegalIdentityClaimResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.SignedLegalIdentityClaim item = 2;

}

repeated Result results = 1;

(continues on next page)

690 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

message ListVettedPackagesRequest {

BaseQuery base_query = 1;

string filter_participant = 2;

}

message ListVettedPackagesResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.VettedPackages item = 2;

}

repeated Result results = 1;

}

message ListDomainParametersChangesRequest {

BaseQuery base_query = 1;

}

message ListDomainParametersChangesResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.DynamicDomainParameters item = 2;

}

repeated Result results = 1;

}

message ListAvailableStoresRequest {

}

message ListAvailableStoresResult {

repeated string store_ids = 1;

}

message ListParticipantDomainStateRequest {

BaseQuery base_query = 1;

string filter_domain = 2;

string filter_participant = 3;

}

message ListParticipantDomainStateResult {

message Result {

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.ParticipantState item = 2;

}

repeated Result results = 1;

}

message ListMediatorDomainStateRequest {

BaseQuery base_query = 1;

string filter_domain = 2;

string filter_mediator = 3;

}

message ListMediatorDomainStateResult {

message Result {

(continues on next page)

3.3. User Manual 691

Daml SDK Documentation, 2.1.1

(continued from previous page)

BaseResult context = 1;

com.digitalasset.canton.protocol.v0.MediatorDomainState item = 2;

}

repeated Result results = 1;

}

message ListAllRequest {

BaseQuery base_query = 1;

}

message ListAllResponse {

com.digitalasset.canton.protocol.v0.TopologyTransactions result = 1;

}

Topology Manager Write Service

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.topology.admin.v0;

import "com/digitalasset/canton/crypto/v0/crypto.proto";

import "com/digitalasset/canton/protocol/v0/topology.proto";

import "com/digitalasset/canton/protocol/v0/sequencing.proto";

/**

* Write operations on the local topology manager.

*

* Both, participant and domain run a local topology manager exposing the same␣

↪→write interface.

*/

service TopologyManagerWriteService {

/**

* Authorizes a party to participant mapping change (add/remove) on the node␣

↪→local topology manager.

*/

rpc AuthorizePartyToParticipant(PartyToParticipantAuthorization) returns␣

↪→(AuthorizationSuccess);

/**

* Authorizes an owner to key mapping change (add/remove) on the local␣

↪→topology manager

*/

rpc AuthorizeOwnerToKeyMapping(OwnerToKeyMappingAuthorization) returns␣

↪→(AuthorizationSuccess);

/**

* Authorizes a namespace delegation (root or intermediate CA) (add/remove)␣

↪→on the local topology manager
(continues on next page)

692 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

*/

rpc AuthorizeNamespaceDelegation(NamespaceDelegationAuthorization) returns␣

↪→(AuthorizationSuccess);

/**

* Authorizes a new identifier delegation (identifier certificate) (add/

↪→remove) on the local topology manager

*/

rpc AuthorizeIdentifierDelegation(IdentifierDelegationAuthorization) returns␣

↪→(AuthorizationSuccess);

/**

* Authorizes a new package vetting transaction

*/

rpc AuthorizeVettedPackages(VettedPackagesAuthorization) returns␣

↪→(AuthorizationSuccess);

/** Authorizes a change of parameters for the domain */

rpc AuthorizeDomainParametersChange(DomainParametersChangeAuthorization)␣

↪→returns (AuthorizationSuccess);

/**

* Authorizes a new signed legal identity

*/

rpc AuthorizeSignedLegalIdentityClaim(SignedLegalIdentityClaimAuthorization)␣

↪→returns (AuthorizationSuccess);

/**

* Authorizes a participant domain state

*/

rpc AuthorizeParticipantDomainState(ParticipantDomainStateAuthorization)␣

↪→returns (AuthorizationSuccess);

/**

* Authorizes a mediator domain state

*/

rpc AuthorizeMediatorDomainState(MediatorDomainStateAuthorization) returns␣

↪→(AuthorizationSuccess);

/**

* Adds a signed topology transaction to the Authorized store

*/

rpc AddSignedTopologyTransaction(SignedTopologyTransactionAddition) returns␣

↪→(AdditionSuccess);

/**

* Generates a legal identity claim

*/

rpc GenerateSignedLegalIdentityClaim(SignedLegalIdentityClaimGeneration)␣

↪→returns (com.digitalasset.canton.protocol.v0.SignedLegalIdentityClaim);

}

message AuthorizationSuccess {

bytes serialized = 1;

}

(continues on next page)

3.3. User Manual 693

Daml SDK Documentation, 2.1.1

(continued from previous page)

message AdditionSuccess {

}

message SignedTopologyTransactionAddition {

bytes serialized = 1;

}

message AuthorizationData {

/** Add / Remove / Replace */

com.digitalasset.canton.protocol.v0.TopologyChangeOp change = 1;

/**

* Fingerprint of the key signing the authorization

*

* The signing key is used to identify a particular CNamespaceDelegationC or␣

↪→CIdentifierDelegationC certificate,

* which is used to justify the given authorization.

*/

string signed_by = 2;

/** if true, the authorization will also replace the existing (makes only␣

↪→sense for adds) */

bool replace_existing = 3;

/** Force change even if dangerous */

bool force_change = 4;

}

message NamespaceDelegationAuthorization {

AuthorizationData authorization = 1;

// The namespace for which the authorization is issued.

string namespace = 2;

/**

* The fingerprint of the signing key which will be authorized to issue␣

↪→topology transactions for this namespace.

*

* The key needs to be present in the local key registry either by being␣

↪→locally

* generated or by having been previously imported.

*/

string fingerprint_of_authorized_key = 3;

/**

* Flag indicating whether authorization is a root key delegation

*/

bool is_root_delegation = 4;

}

message IdentifierDelegationAuthorization {

AuthorizationData authorization = 1;

(continues on next page)

694 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

string identifier = 2;

/**

* The fingerprint of the signing key which will be authorized to issue␣

↪→topology transaction for this particular identifier.

*

* As with CNamespaceDelegationCs, the key needs to be present locally.

*/

string fingerprint_of_authorized_key = 3;

}

message PartyToParticipantAuthorization {

AuthorizationData authorization = 1;

/**

* The request side of this transaction

*

* A party to participant mapping can map a party from one namespace on a␣

↪→participant from another namespace.

* Such a mapping needs to be authorized by both namespace keys. If the␣

↪→namespace is the same, we use

* RequestSide.Both and collapse into a single transaction. Otherwise, CFromC␣

↪→needs to be signed by a namespace key

* of the party and CToC needs to be signed by a namespace key of the␣

↪→participant.

*/

com.digitalasset.canton.protocol.v0.RequestSide side = 2;

// The unique identifier of the party

string party = 3;

// The unique identifier of the participant

string participant = 4;

// The permission of the participant that will allow him to act on behalf of␣

↪→the party.

com.digitalasset.canton.protocol.v0.ParticipantPermission permission = 5;

}

message OwnerToKeyMappingAuthorization {

AuthorizationData authorization = 1;

/**

* The key owner

*

* An entity in Canton is described by his role and his unique identifier. As␣

↪→such, the same unique identifier

* can be used for a mediator, sequencer, domain topology manager or even␣

↪→participant. Therefore, we expect

* here the protoPrimitive of a key owner which is in effect its type as a␣

↪→three letter code separated

* from the unique identifier.

*/

string key_owner = 2;

/**

* The fingerprint of the key that will be authorized

(continues on next page)

3.3. User Manual 695

Daml SDK Documentation, 2.1.1

(continued from previous page)

*

* The key needs to be present in the local key registry (can be imported via␣

↪→KeyService)

*/

string fingerprint_of_key = 3;

/**

* Purpose of the key

*/

com.digitalasset.canton.crypto.v0.KeyPurpose key_purpose = 4;

}

message SignedLegalIdentityClaimAuthorization {

AuthorizationData authorization = 1;

com.digitalasset.canton.protocol.v0.SignedLegalIdentityClaim claim = 2;

}

message SignedLegalIdentityClaimGeneration {

message X509CertificateClaim {

string unique_identifier = 1;

string certificate_id = 2;

}

oneof request {

// Serialized LegalIdentityClaim

bytes legal_identity_claim = 1;

X509CertificateClaim certificate = 2;

}

}

message ParticipantDomainStateAuthorization {

AuthorizationData authorization = 1;

/** which side (domain or participant) is attempting to issue the␣

↪→authorization */

com.digitalasset.canton.protocol.v0.RequestSide side = 2;

/** domain this authorization refers to */

string domain = 3;

/** participant that should be authorized */

string participant = 4;

/** permission that should be used (lower of From / To) */

com.digitalasset.canton.protocol.v0.ParticipantPermission permission = 5;

/** trust level that should be used (ignored for side from, defaults to␣

↪→Ordinary) */

com.digitalasset.canton.protocol.v0.TrustLevel trust_level = 6;

}

message MediatorDomainStateAuthorization {

AuthorizationData authorization = 1;

/** which side (domain or mediator) is attempting to issue the authorization␣

↪→*/

com.digitalasset.canton.protocol.v0.RequestSide side = 2;

/** domain this authorization refers to */

string domain = 3;

/** mediator that should be authorized */

string mediator = 4;

(continues on next page)

696 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

message VettedPackagesAuthorization {

AuthorizationData authorization = 1;

string participant = 2;

repeated string package_ids = 3;

}

message DomainParametersChangeAuthorization {

AuthorizationData authorization = 1;

/** domain this authorization refers to */

string domain = 2;

/** new parameters for the domain */

com.digitalasset.canton.protocol.v0.DynamicDomainParameters parameters = 3;

}

3.3.5.4 Mediator Admin APIs

Standalone Mediator nodes (enterprise version only) expose the following services:

Mediator Initialization Service

Service to initialize an external Mediator to participate in confirming transaction results. Only ex-

pected to be called by the Domain node to allow the Mediator to connect to the domain Sequencer.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.domain.admin.v0;

import "com/digitalasset/canton/crypto/v0/crypto.proto";

import "com/digitalasset/canton/protocol/v0/sequencing.proto";

import "com/digitalasset/canton/protocol/v0/topology.proto";

service MediatorInitializationService {

// Initialize a Mediator service

// If the Mediator is uninitialized it should initialize itself with the␣

↪→provided configuration

// If the Mediator is already initialized then verify the request is for the␣

↪→domain we
re running against,

// if correct then just return the current key otherwise fail.

rpc Initialize (InitializeMediatorRequest) returns (InitializeMediatorResponse);

}

message InitializeMediatorRequest {

// the domain identifier

(continues on next page)

3.3. User Manual 697

Daml SDK Documentation, 2.1.1

(continued from previous page)

string domain_id = 1;

// the mediator identifier

string mediator_id = 2;

// topology state required for startup

com.digitalasset.canton.protocol.v0.TopologyTransactions current_identity_state␣

↪→= 3;

// parameters for the domain (includes the protocol version which needs to␣

↪→match the protocol version the domain

// manager is running)

com.digitalasset.canton.protocol.v0.StaticDomainParameters domain_parameters =␣

↪→4;

// how should the member connect to the domain sequencer

com.digitalasset.canton.protocol.v0.SequencerConnection sequencer_connection =␣

↪→5;

}

message InitializeMediatorResponse {

oneof value {

Success success = 1;

Failure failure = 2;

}

message Success {

// Current signing key

com.digitalasset.canton.crypto.v0.SigningPublicKey mediator_key = 1;

}

message Failure {

// Reason that can be logged

string reason = 1;

}

}

Enterprise Mediator Administration Service

Important: This feature is only available in Canton Enterprise

Exposes details about the mediator operation such as its leadership status when many mediator

instances are running in a single domain to provide high availability.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.domain.admin.v0;

import "google/protobuf/timestamp.proto";

import "google/protobuf/empty.proto";

// administration service for mediator instances

(continues on next page)

698 Chapter 3. Canton Guide

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

(continued from previous page)

service EnterpriseMediatorAdministrationService {

// Remove unnecessary data from the Mediator

rpc Prune (MediatorPruningRequest) returns (google.protobuf.Empty);

}

message MediatorPruningRequest {

// timestamp to prune for

google.protobuf.Timestamp timestamp = 1;

}

3.3.5.5 Sequencer Admin APIs

Standalone Sequencer nodes (enterprise version only) expose the following services:

Sequencer Administration Service

Important: This feature is only available in Canton Enterprise

Exposes status information of the Sequencer.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.domain.admin.v0;

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

// administration service for sequencer instances

service SequencerAdministrationService {

// fetch the current status of the sequencer

rpc PruningStatus (google.protobuf.Empty) returns (SequencerPruningStatus);

}

message SequencerMemberStatus {

string member = 1;

google.protobuf.Timestamp registered_at = 2;

google.protobuf.Timestamp last_acknowledged = 3;

bool enabled = 4;

}

message SequencerPruningStatus {

// current time according to the sequencer

(continues on next page)

3.3. User Manual 699

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

(continued from previous page)

google.protobuf.Timestamp now = 1;

// the earliest event we are currently storing

google.protobuf.Timestamp earliest_event_timestamp = 2;

// details of each member registered on the sequencer

repeated SequencerMemberStatus members = 3;

}

Enterprise Sequencer Administration Service

Exposes enterprise features of the Sequencer, such as pruning and the ability to disable clients.

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All␣

↪→rights reserved.

// SPDX-License-Identifier: Apache-2.0

syntax = "proto3";

package com.digitalasset.canton.domain.admin.v0;

import "google/protobuf/empty.proto";

import "google/protobuf/timestamp.proto";

import "com/digitalasset/canton/domain/admin/v0/sequencer_initialization_service.

↪→proto";

// administration service for enterprise feature supporting sequencer instances

service EnterpriseSequencerAdministrationService {

// Remove data from the Sequencer

rpc Prune (Pruning.Request) returns (Pruning.Response);

// fetch a snapshot of the sequencer state based on the given timestamp

rpc Snapshot(Snapshot.Request) returns (Snapshot.Response);

// Disable members at the sequencer. Will prevent existing and new instances␣

↪→from connecting, and permit removing their data.

rpc DisableMember(DisableMemberRequest) returns (google.protobuf.Empty);

rpc AuthorizeLedgerIdentity(LedgerIdentity.AuthorizeRequest) returns␣

↪→(LedgerIdentity.AuthorizeResponse);

}

message EthereumAccount {

string address = 1;

}

message LedgerIdentity {

oneof identifier {

EthereumAccount ethereum_account = 1;

}

message AuthorizeRequest {

LedgerIdentity identify = 1;

}

message AuthorizeResponse {

(continues on next page)

700 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

oneof value {

Success success = 1;

Failure failure = 2;

}

}

message Success {}

message Failure {

string reason = 1;

}

}

message Pruning {

message Request {

google.protobuf.Timestamp timestamp = 1;

}

message Response {

// description of what was removed

string details = 1;

}

}

message Snapshot {

message Request {

google.protobuf.Timestamp timestamp = 1;

}

message Response {

oneof value {

Success success = 1;

Failure failure = 2;

}

}

message Success {

com.digitalasset.canton.domain.admin.v0.SequencerSnapshot state = 1;

}

message Failure {

string reason = 1;

}

}

message DisableMemberRequest {

string member = 1;

}

3.3. User Manual 701

Daml SDK Documentation, 2.1.1

3.3.6 Command-line Arguments

Canton supports a variety of command line arguments. Please run bin/canton --help to see all

of them. Here, we explain the most relevant ones.

3.3.6.1 Selecting a Configuration

Canton requires a configuration file to run. There is no default topology configuration built in and

therefore, the user needs to at least define what kind of node (domain or participant) and howmany

theywant to run in the givenprocess. Sample configuration files canbe found in our releasepackage,

under the examples directory.

When starting Canton, configuration files can be provided using

bin/canton --config conf_filename -c conf_filename2

which will start Canton by merging the content of conf_filename2 into conf_filename. Both

options -c and --config are equivalent. If several configuration files assign values to the same

key, the last value is taken. The section on static configuration explains how to write a configuration

file.

3.3.6.2 Run Modes

Canton can run in three different modes, depending on the desired environment and task.

Interactive Console

The default and recommended method to run Canton is in the interactive mode. This is the mode

Canton will start in by default. The process will start a command line interface (REPL) which allows to

conveniently operate, modify and inspect the Canton application.

In thismode, all errors will be reported as CommandExcecutionException to the console, but Can-

ton will remain running.

The interactive console can be started together with a script, using the --boostrap-script=...

option. The script uses the same syntax as the console.

This is the recommended way to run Canton (for now).

For server use on Linux / OSX, we recommend to run the application using the screen command:

screen -S canton -d -m ./bin/canton -c ...

will start the Canton process in a screen session named canton which does not terminate on

user-logout and therefore allows to inspect the Canton process whenever necessary.

A previously started process can be joined using

screen -r canton

and an active screen session can be detached using CTRL-A + D (in sequence). Be careful and avoid

typing CTRL-D, as it will terminate the session. The screen session will continue to run even if you

log out of the machine.

702 Chapter 3. Canton Guide

https://linux.die.net/man/1/screen

Daml SDK Documentation, 2.1.1

Remote Console Mode

Youcanalso run the console process separate fromtheparticipant or domainnodes. Someadvanced

console commands (e.g. for testing) that require in-process access to the node will not be available,

but all commands that run over the administrative GRPC APIs will work.

Running the console on the remote node requires a separate, albeit limited configuration with the

information on how to connect to the admin and ledger-api.

For a participant, you need something like

canton {

remote-participants {

remoteParticipant1 {

admin-api {

port = 10012

address = 127.0.0.1 // is the default value if omitted

}

ledger-api {

port = 10011

address = 127.0.0.1 // is the default value if omitted

}

}

}

}

whereas for a domain, a configuration would look like

canton {

remote-domains {

remoteDomain1 {

public-api {

address = 127.0.0.1

port = 10018

}

admin-api {

port = 10019

address = 127.0.0.1 // default value if omitted

}

}

}

}

Headless Script Mode

For testing and scripting purposes, Canton can also start in headless script mode:

bin/canton run <script-path> --config ...

In this case, commands are specified in a script rather than executed interactively. Any errors with

the script or during command execution should cause the Canton process to exit with a non-zero

exit code.

This mode is sometimes useful for testing, but we are not convinced yet that we’ll keep it in a stable

version.

3.3. User Manual 703

Daml SDK Documentation, 2.1.1

Daemon

If the console is undesired, Canton can be started in daemon mode

bin/canton daemon --config ...

All configured entities will be automatically started and will resume operation. Any failures encoun-

tered during start up will immediately shutdown the Canton process with a non-zero exit code. This

mode is interesting if a third party administration tool is used with Canton.

3.3.6.3 Flush Log Files Immediately

By default, Canton will immediately flush log output to the log file so that nothing is lost in case

of a crash. To get the best possible throughput, you can switch this off by running Canton with

--log-immediate-flush false.

3.3.6.4 Java Virtual Machine Arguments

The bin/canton application is a convenient wrapper to start a Java virtual machine running the

Canton process. The wrapper supports providing additional JVM options using the JAVA_OPTS en-

vironment variable. For example, you can configure the heap size as follows:

JAVA_OPTS="-Xmx2G" ./bin/canton --config ...

3.3.7 Canton Console

Canton offers a console (REPL) where entities can be dynamically started and stopped, and a variety

of administrative or debugging commands can be run.

All console commandsmust be valid Scala (the console is built on Ammonite - a Scala based script-

ing and REPL framework). Note that we also define a set of implicit type conversions to improve

the console usability: notably, whenever a console command requires a DomainAlias, Fingerprint or

Identifier, you can instead also call it with a Stringwhichwill be automatically converted to the cor-

rect type (i.e., you can, e.g., write participant1.domains.get_agreement("domain1") instead

of participant1.domains.get_agreement(DomainAlias.tryCreate("domain1"))).

The examples/ sub-directories contain some sample scripts, with the extension .canton.

Contents

• Remote Administration

• Node References

• Help

• Lifecycle Operations

• Timeouts

• Other Top-level Commands

• Participant Commands

– Database

– Health

704 Chapter 3. Canton Guide

http://ammonite.io
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/console/ConsoleEnvironment\protect \TU\textdollar \protect \TU\textdollar Implicits.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/DomainAlias.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/topology/Identifier.html

Daml SDK Documentation, 2.1.1

– Domain Connectivity

– Packages

– DAR Management

– DAR Sharing

– Party Management

– Key Administration

– Topology Administration

– Ledger API Access

* Transaction Service

* Command Service

* Command Completion Service

* Active Contract Service

* Package Service

* Party Management Service

* Ledger Configuration Service

* Ledger Api User Management Service

* Ledger Api Metering Service

– Composability

– Ledger Pruning

– Bilateral Commitments

– Participant Repair

– Resource Management

– Replication

• Multiple Participants

• Domain Administration Commands

– Health

– Database

– Participants

– Sequencer

– Mediator

– Key Administration

– Parties

– Service

– Topology Administration

• Domain Manager Administration Commands

– Setup

– Health

– Database

– Key Administration

– Parties

– Service

– Topology Administration

• Sequencer Administration Commands

– Sequencer

– Health

– Database

• Mediator Administration Commands

– Mediator

– Health

– Database

3.3. User Manual 705

Daml SDK Documentation, 2.1.1

• Code-Generation in Console

Commands are organised by thematic groups. Some commands also need to be explicitly turned on

via configuration directives to be accessible.

Someoperations are available on both types of nodes, whereas someoperations are specific to either

participant or domain nodes. For consistency, we organise the manual by node type, which means

that some commands will appear twice. However, the detailed explanations are only given within

the participant documentation.

3.3.7.1 Remote Administration

The console works in-process against local nodes. However, you can also run the console separate

from the node process, and you can use a single console to administrate many remote nodes.

As an example, you might start Canton in daemon mode using

./bin/canton daemon -c <some config>

Assuming now that you’ve started a participant, you can access this participant using a

remote-participant configuration such as:

canton {

remote-participants {

remoteParticipant1 {

admin-api {

port = 10012

address = 127.0.0.1 // is the default value if omitted

}

ledger-api {

port = 10011

address = 127.0.0.1 // is the default value if omitted

}

}

}

}

Naturally, you can then also use the remote configuration to run a script:

./bin/canton daemon -c remote-participant1.conf --bootstrap <some-script>

Please note that a remote node will support almost all commands except a few that a local node

supports.

If you want to generate a skeleton remote configuration of a normal config file, you can use

./bin/canton generate remote-config -c participant1.conf

However, you might have then to edit the config and adjust the hostname.

For production use cases, in particular if the Admin Api is not just bound to localhost, we recommend

to enable TLS with mutual authentication.

706 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.7.2 Node References

To issue the command on a particular node, you must refer to it via its reference, which is a Scala

variable. Named variables are created for all domain entities and participants using their configured

identifiers. For example the sample examples/01-simple-topology/simple-topology.conf

configuration file references the domain mydomain, and participants participant1 and partic-

ipant2. These are available in the console as mydomain, participant1 and participant2.

The console also provides additional generic references that allow you to consult a list of nodes by

type. The generic node reference supports three subsets of each node type: local, remote or all nodes

of that type. For the participants, you can use:

participants.local

participants.remote

participants.all

The generic node references can be used in a Scala syntactic way:

participants.all.foreach(_.dars.upload("my.dar"))

but the participant references also support some generic commands for actions that often have to be

performed for many nodes at once, such as:

participants.local.dars.upload("my.dar")

The available node references are:

participants

• Summary: All participant nodes (.all, .local, .remote)

domains

• Summary: All domain nodes (.all, .local, .remote)

nodes

• Summary: All nodes (.all, .local, .remote)

sequencers

• Summary: All sequencer nodes (.all, .local, .remote)

mediators

• Summary: All mediator nodes (.all, .local, .remote)

domainManagers

• Summary: All domain manager nodes (.all, .local, .remote)

3.3.7.3 Help

Canton can be very helpful if you ask for help. Try to type

help

or

participant1.help()

3.3. User Manual 707

Daml SDK Documentation, 2.1.1

to get an overview of the commands and command groups that exist. help() works on every

level (e.g. participant1.domains.help()) or can be used to search for particular functions

(help("list")) or to get detailed help explanation for each command (participant1.parties.

help("list")).

3.3.7.4 Lifecycle Operations

These are supported by individual and sequences of domains and participants. If called on a se-

quence, operations will be called sequentially in the order of the sequence. For example:

nodes.local start

can be used to start all configured local domains and participants.

If the node is running with database persistence, it will support the database migration command

(db.migrate). The migrations are performed automatically when the node is started for the first

time. However, newmigrations added as part of new versions of the software must be run manually

using the command. In some rare cases, it may also be necessary to run db.repair_migration

before running db.migration - please refer to the description of db.repair_migration for more

details. Note that data continuity (and therefore database migration) is only guaranteed to work

across minor and patch version updates.

The domain, sequencer and mediator nodes might need extra setup to be fully functional. Check

domain bootstrapping for more details.

3.3.7.5 Timeouts

Console command timeouts can be configured using the respective console command timeout sec-

tion in the configuration file:

canton.parameters.timeouts.console = {

bounded = 2.minutes

unbounded = Inf // infinity

ledger-command = 2.minutes

ping = 30.seconds

}

The bounded argument is used for all commands that should finish once processing has completed,

whereas theunbounded timeout is used for commandswherewe do not control the processing time.

This is used in particular for potentially very long running commands.

Some commands have specific timeout arguments that can be passed explicitly as type Timeout-

Duration. For convenience, the console includes by default the implicits of scala.concurrent.

duration._ and an implicit conversion from the Scala type scala.concurrent.duration.

FiniteDuration to TimeoutDuration. As a result, you can use normal Scala expressions and

write timeouts as

participant1.health.ping(participant1, timeout = 10.seconds)

while the implicit conversion will take care of converting it to the right types.

Generally, there is no need to re-configure the timeouts and we recommend to just use the safe

default values.

708 Chapter 3. Canton Guide

https://www.scala-lang.org/api/2.12.4/scala/concurrent/duration/Duration.html

Daml SDK Documentation, 2.1.1

3.3.7.6 Other Top-level Commands

The following commands are available for convenience:

help

• Summary: Help with console commands; type help(“<command>”) for detailed help for

<command>

exit

• Summary: Leave the console

health.dump

• Summary: Generate and write a dump of Canton’s state for a bug report

• Return type:

– String

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

console.set_command_timeout

• Summary: Sets the timeout for running console commands.

• Arguments:

– newTimeout: com.digitalasset.canton.config.TimeoutDuration

• Description: Sets the timeout for running console commands. When the timeout has

elapsed, the console stops waiting for the command result. The command will continue

running in the background. The new timeout must be positive.

console.command_timeout

• Summary: Yields the timeout for running console commands

• Return type:

– com.digitalasset.canton.config.TimeoutDuration

• Description: Yields the timeout for running console commands. When the timeout has

elapsed, the console stops waiting for the command result. The command will continue

running in the background.

console.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

logging.last_error_trace

• Summary: Returns log events for an error with the same trace-id

• Arguments:

– traceId: String

• Return type:

– Seq[String]

logging.last_errors

• Summary: Returns the last errors (trace-id -> error event) that have been logged locally

• Return type:

– Map[String,String]

3.3. User Manual 709

../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

logging.get_level

• Summary: Determine current logging level

• Arguments:

– loggerName: String

• Return type:

– Option[ch.qos.logback.classic.Level]

logging.set_level

• Summary: Dynamically change log level (TRACE, DEBUG, INFO, WARN, ERROR, OFF, null)

• Arguments:

– loggerName: String

– level: String

logging.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

utils.read_byte_string_from_file

• Summary: Reads a ByteString from a file.

• Arguments:

– fileName: String

• Return type:

– com.google.protobuf.ByteString

• Description: Fails with an exception, if the file can’t be read.

utils.write_to_file

• Summary: Writes a ByteString to a file.

• Arguments:

– data: com.google.protobuf.ByteString

– fileName: String

utils.read_first_message_from_file

• Summary: Reads a single Protobuf message from a file.

• Arguments:

– fileName: String

• Return type:

– A

• Description: Fails with an exception, if the file can’t be read or parsed.

utils.write_to_file

• Summary: Writes a Protobuf message to a file.

• Arguments:

– data: scalapb.GeneratedMessage

– fileName: String

utils.read_all_messages_from_file

• Summary: Reads several Protobuf messages from a file.

• Arguments:

– fileName: String

• Return type:

– Seq[A]

• Description: Fails with an exception, if the file can’t be read or parsed.

710 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

utils.write_to_file

• Summary: Writes several Protobuf messages to a file.

• Arguments:

– data: Seq[scalapb.GeneratedMessage]

– fileName: String

utils.contract_instance_to_data

• Summary: Convert a contract instance to contract data.

• Arguments:

– contract: com.digitalasset.canton.protocol.SerializableContract

• Return type:

– com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.ContractData

• Description: The utils.contract_instance_to_data converts a Canton “contract instance” to

“contract data”, a formatmore amenable to inspection andmodification as part of repair

workflows. This function consumes the output of the participant.testing commands and

can thus be employed in workflows geared at verifying the contents of contracts for diag-

nostic purposes and in environments in which the “features.enable-testing-commands”

configuration can be (at least temporarily) enabled.

utils.contract_data_to_instance

• Summary: Convert contract data to a contract instance.

• Arguments:

– contractData: com.digitalasset.canton.admin.api.client.commands.LedgerApi-

TypeWrappers.ContractData

– ledgerTime: java.time.Instant

• Return type:

– com.digitalasset.canton.protocol.SerializableContract

• Description: The utils.contract_data_to_instance bridges the gap between partici-

pant.ledger_api.acs commands that return various pieces of “contract data” and the par-

ticipant.repair.add command used to add “contract instances” as part of repair workflows.

Such workflows (for example migrating contracts from other Daml ledgers to Canton

participants) typically consist of extracting contract data using participant.ledger_api.acs

commands, modifying the contract data, and then converting the contractData using this

function before finally adding the resulting contract instances to Canton participants via

participant.repair.add. Obtain the contractData by invoking .toContractData on the Wrapped-

CreatedEvent returned by the corresponding participant.ledger_api.acs.of_party or of_all

call. The ledgerTime parameter should be chosen to be a time meaningful to the domain

on which you plan to subsequently invoke participant.repair.add on and will be retained

alongside the contract instance by the participant.repair.add invocation.

utils.auto_close (Testing)

• Summary: Register AutoCloseable object to be shutdown if Canton is shut down

• Arguments:

– closeable: AutoCloseable

utils.generate_daml_script_participants_conf

• Summary: Create a participants config for Daml script

• Arguments:

– file: Option[String]

– defaultParticipant: Option[com.digitalasset.canton.console.ParticipantRef-

erence]

• Return type:

3.3. User Manual 711

../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar ContractData.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html

Daml SDK Documentation, 2.1.1

– java.io.File

• Description: The generated config can be passed to daml script via the participant-config

parameter. More information about the file format can be found in the documentation:

utils.generate_navigator_conf

• Summary: Create a navigator ui-backend.conf for a participant

• Arguments:

– participant: com.digitalasset.canton.console.LocalParticipantReference

– file: Option[String]

• Return type:

– java.io.File

utils.retry_until_true

• Summary: Wait for a condition to become true

• Arguments:

– timeout: com.digitalasset.canton.config.TimeoutDuration

– maxWaitPeriod: com.digitalasset.canton.config.TimeoutDuration

– condition: => Boolean

– failure: => String

• Return type:

– (condition: => Boolean, failure: => String): Unit

• Description: Wait timeout duration until condition becomes true. Retry evaluating condition

with an exponentially increasing back-off up to maxWaitPeriod duration between retries.

utils.retry_until_true

• Summary: Wait for a condition to become true, using default timeouts

• Arguments:

– condition: => Boolean

• Description: Wait until condition becomes true, with a timeout taken from the parame-

ters.timeouts.console.bounded configuration parameter.

utils.type_args

• Summary: Reflective inspection of type arguments, handy to inspect case class types

• Return type:

– List[String]

• Description: Return the list of field names of the given type. Helpful function when creat-

ing new objects for requests.

utils.object_args

• Summary: Reflective inspection of object arguments, handy to inspect case class objects

• Arguments:

– obj: T

• Return type:

– List[String]

• Description: Return the list field names of the given object. Helpful function when in-

specting the return result.

utils.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api_utils.exercise (Testing)

• Summary: Build exercise command from CreatedEvent

712 Chapter 3. Canton Guide

https://docs.daml.com/daml-script/index.html#using-daml-script-in-distributed-topologies
../../canton/scaladoc/com/digitalasset/canton/console/LocalParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

• Arguments:

– choice: String

– arguments: Map[String,Any]

– event: com.daml.ledger.api.v1.event.CreatedEvent

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.exercise (Testing)

• Summary: Build exercise command

• Arguments:

– packageId: String

– module: String

– template: String

– choice: String

– arguments: Map[String,Any]

– contractId: String

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.create (Testing)

• Summary: Build create command

• Arguments:

– packageId: String

– module: String

– template: String

– arguments: Map[String,Any]

• Return type:

– com.daml.ledger.api.v1.commands.Command

ledger_api_utils.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3.7.7 Participant Commands

testing.state_inspection (Testing)

• Summary: Obtain access to the state inspection interface. Use at your own risk.

• Return type:

– com.digitalasset.canton.participant.admin.SyncStateInspection

• Description: The state inspectionmethods can fatally and permanently corrupt the state

of a participant. The API is subject to change in any way.

testing.find_clean_commitments_timestamp (Testing)

• Summary: The latest timestamp before or at the given one for which no commitment is

outstanding

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– beforeOrAt: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– Option[com.digitalasset.canton.data.CantonTimestamp]

3.3. User Manual 713

../../canton/scaladoc/com/digitalasset/canton/participant/admin/SyncStateInspection.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.1.1

• Description: The latest timestamp before or at the given one for which no commitment is

outstanding. Note that this doesn’t imply that pruning is possible at this timestamp, as

the systemmight require some additional data for crash recovery. Thus, this is useful for

testing commitments; use the commands in the pruning group for pruning. Additionally,

the result needn’t fall on a “commitment tick” as specified by the reconciliation interval.

testing.crypto_api (Testing)

• Summary: Return the sync crypto api provider, which provides access to all cryptographic

methods

• Return type:

– com.digitalasset.canton.crypto.SyncCryptoApiProvider

testing.sequencer_messages (Testing)

• Summary: Retrieve all sequencer messages

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: Option[Int]

• Return type:

– Seq[com.digitalasset.canton.sequencing.PossiblyIgnoredProtocolEvent]

• Description: Optionally allows filtering for sequencer from a certain time span (inclusive

on both ends) and limiting the number of displayed messages. The returned messages

will be ordered on most domain ledger implementations if a time span is given. Fails if

the participant has never connected to the domain.

testing.transaction_search (Testing)

• Summary: Lookup of accepted transactions

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: Option[Int]

• Return type:

– Seq[(String, com.digitalasset.canton.protocol.LfCommittedTransaction)]

• Description: Show the accepted transactions as they appear in the event logs. To select

only transactions fromaparticular domain, use the domain alias. Leave the domain blank

to search the combined event log containing the events of all domains. Note that if the

domain is left blank, the values of from and to cannot be set. This is because the combined

event log isn’t guaranteed to have increasing timestamps.

testing.event_search (Testing)

• Summary: Lookup of events

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– from: Option[java.time.Instant]

– to: Option[java.time.Instant]

– limit: Option[Int]

• Return type:

– Seq[(String, com.digitalasset.canton.participant.sync.TimestampedEvent)]

• Description: Show the event logs. To select only events from a particular domain, use

the domain alias. Leave the domain blank to search the combined event log containing

the events of all domains. Note that if the domain is left blank, the values of from and to

714 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/SyncCryptoApiProvider.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.1.1

cannot be set. This is because the combined event log isn’t guaranteed to have increasing

timestamps.

testing.acs_search (Testing)

• Summary: Lookup of active contracts

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– filterId: String

– filterPackage: String

– filterTemplate: String

– limit: Int

• Return type:

– List[com.digitalasset.canton.protocol.SerializableContract]

testing.pcs_search (Testing)

• Summary: Lookup contracts in the Private Contract Store

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– filterId: String

– filterPackage: String

– filterTemplate: String

– activeSet: Boolean

– limit: Int

• Return type:

– List[(Boolean, com.digitalasset.canton.protocol.SerializableContract)]

• Description: Get raw access to the PCS of the given domain sync controller. The filter

commands will check if the target value contains the given string. The arguments can

be started with ^ such that startsWith is used for comparison or ! to use equals. The

activeSet argument allows to restrict the search to the active contract set.

testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.TimeoutDuration

testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.TimeoutDuration

testing.fetch_domain_times (Testing)

• Summary: Fetch the current time from all connected domains

• Arguments:

– timeout: com.digitalasset.canton.config.TimeoutDuration

testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– timeout: com.digitalasset.canton.config.TimeoutDuration

3.3. User Manual 715

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContract.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

testing.maybe_bong (Testing)

• Summary: Like bong, but returns None in case of failure.

• Arguments:

– targets: Set[com.digitalasset.canton.topology.ParticipantId]

– validators: Set[com.digitalasset.canton.topology.ParticipantId]

– timeout: com.digitalasset.canton.config.TimeoutDuration

– levels: Long

– gracePeriodMillis: Long

– workflowId: String

– id: String

• Return type:

– Option[scala.concurrent.duration.Duration]

testing.bong (Testing)

• Summary: Send a bong to a set of target parties over the ledger. Levels > 0 leads to an

exploding ping with exponential number of contracts. Throw a RuntimeException in case

of failure.

• Arguments:

– targets: Set[com.digitalasset.canton.topology.ParticipantId]

– validators: Set[com.digitalasset.canton.topology.ParticipantId]

– timeout: com.digitalasset.canton.config.TimeoutDuration

– levels: Long

– gracePeriodMillis: Long

– workflowId: String

– id: String

• Return type:

– scala.concurrent.duration.Duration

• Description: Initiates a racy ping to multiple participants, measuring the roundtrip time

of the fastest responder, with an optional timeout. Grace-period is the time the bong will

wait for a duplicate spent (which would indicate an error in the system) before exiting. If

levels > 0, the ping command will lead to a binary explosion and subsequent dilation of

contracts, where level determines the number of levels we will explode. As a result, the

system will create (2^(L+2) - 3) contracts (where L stands for level). Normally, only the

initiator is a validator. Additional validators can be added using the validators argument.

The bong command comes handy to run a burst test against the system and quickly leads

to an overloading state.

testing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

716 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

config

• Summary: Return participant config

• Return type:

– com.digitalasset.canton.participant.config.LocalParticipantConfig

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

stop

• Summary: Stop the instance

start

• Summary: Start the instance

id

• Summary: Yields the globally unique id of this participant. Throws an exception, if the id

has not yet been allocated (e.g., the participant has not yet been started).

• Return type:

– com.digitalasset.canton.topology.ParticipantId

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Database

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

3.3. User Manual 717

../../canton/scaladoc/com/digitalasset/canton/participant/config/LocalParticipantConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html

Daml SDK Documentation, 2.1.1

• Arguments:

– methodName: String

Health

health.maybe_ping (Testing)

• Summary: Sends a ping to the target participant over the ledger. Yields Some(duration)

in case of success and None in case of failure.

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

– timeout: com.digitalasset.canton.config.TimeoutDuration

– workflowId: String

– id: String

• Return type:

– Option[scala.concurrent.duration.Duration]

health.ping

• Summary: Sends a ping to the target participant over the ledger. Yields the duration in

case of success and throws a RuntimeException in case of failure.

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

– timeout: com.digitalasset.canton.config.TimeoutDuration

– workflowId: String

– id: String

• Return type:

– scala.concurrent.duration.Duration

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

718 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

Domain Connectivity

domains.accept_agreement

• Summary: Accept the service agreement of the given domain alias

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– agreementId: String

domains.get_agreement

• Summary: Get the service agreement of the given domain alias and if it has been accepted

already.

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

• Return type:

– Option[(com.digitalasset.canton.participant.admin.v0.Agreement, Boolean)]

domains.modify

• Summary: Modify existing domain connection

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– modifier: com.digitalasset.canton.participant.domain.DomainConnectionCon-

fig => com.digitalasset.canton.participant.domain.DomainConnectionConfig

domains.register

• Summary: Register new domain connection

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: When connecting to a domain, we need to register the domain connection

and eventually accept the terms of service of the domain before we can connect. The reg-

istration process is therefore a subset of the operation. Therefore, register is equivalent to

connect if the domain does not require a service agreement. However, you would usually

call register only in advanced scripts.

domains.config

• Summary: Returns the current configuration of a given domain

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

• Return type:

– Option[com.digitalasset.canton.participant.domain.DomainConnectionConfig]

domains.is_registered

• Summary: Returns true if a domain is registered using the given alias

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

• Return type:

– Boolean

domains.list_registered

• Summary: List the configured domains of this participant

• Return type:

– Seq[(com.digitalasset.canton.participant.domain.DomainConnectionConfig,

Boolean)]

domains.list_connected

3.3. User Manual 719

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.1.1

• Summary: List the connected domains of this participant

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListConnectedDomainsResult]

domains.disconnect_local

• Summary: Disconnect this participant from the given local domain

• Arguments:

– domain: com.digitalasset.canton.console.DomainReference

domains.disconnect

• Summary: Disconnect this participant from the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

domains.reconnect_all

• Summary: Reconnect this participant to all domains which are not marked as manual

start

• Arguments:

– ignoreFailures: Boolean

• Description: If ignoreFailures is set to true (default), the command will ignore domains

we currenty can’t connect and proceed with all other domains.

domains.reconnect_local

• Summary: Reconnect this participant to the given local domain

• Arguments:

– ref: com.digitalasset.canton.console.DomainReference

– retry: Boolean

• Return type:

– Boolean

• Description: Idempotent attempts to re-establish a connection to the given local domain.

Same behaviour as generic reconnect.

domains.reconnect

• Summary: Reconnect this participant to the given domain

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– retry: Boolean

• Return type:

– Boolean

• Description: Idempotent attempts to re-establish a connection to a certain domain. If

retry is set to false, the command will throw an exception if unsuccessful. If retry is set to

true, the commandwill terminate after the first attempt with the result, but the server will

keep on retrying to connect to the domain.

domains.connect_ha

• Summary: Macro to connect a participant to a domain that supports connecting viamany

endpoints

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– firstConnection: com.digitalasset.canton.sequencing.SequencerConnection

– additionalConnections: com.digitalasset.canton.sequencing.SequencerCon-

nection*

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

720 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListConnectedDomainsResult.html
../../canton/scaladoc/com/digitalasset/canton/console/DomainReference.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/console/DomainReference.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html

Daml SDK Documentation, 2.1.1

• Description: Domains can provide many endpoints to connect to for availability

and performance benefits. This version of connect allows specifying multiple end-

points for a single domain connection: connect_ha(“mydomain”, sequencer1, se-

quencer2) or: connect_ha(“mydomain”, “https://host1.mydomain.net”, “https://host2.

mydomain.net”, “https://host3.mydomain.net”) To create a more advanced connec-

tion config use domains.toConfig with a single host, then use config.addConnection to

add additional connections before connecting: config = myparticipaint.domains.toCon-

fig(“mydomain”, “https://host1.mydomain.net”, …otherArguments) config = config.ad-

dConnection(”https://host2.mydomain.net”, “https://host3.mydomain.net”) mypartici-

pant.domains.connect(config)

domains.connect

• Summary: Macro to connect a participant to a domain given by connection

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

– connection: String

– manualConnect: Boolean

– domainId: Option[com.digitalasset.canton.topology.DomainId]

– certificatesPath: String

– priority: Int

– timeTrackerConfig: com.digitalasset.canton.time.DomainTimeTrackerConfig

• Return type:

– com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: The connect macro performs a series of commands in order to connect this

participant to a domain. First, register will be invoked with the given arguments, but first

registered withmanualConnect = true. If you already setmanualConnect = true, then noth-

ing else will happen and you will have to do the remaining steps yourselves. Otherwise,

if the domain requires an agreement, it is fetched and presented to the user for evalua-

tion. If the user is fine with it, the agreement is confirmed. If you want to auto-confirm,

then set the environment variable CANTON_AUTO_APPROVE_AGREEMENTS=yes. Finally,

the command will invoke reconnect to startup the connection. If the reconnect succeeded,

the registered configuration will be updated withmanualStart = true. If anything fails, the

domainwill remain registeredwithmanualConnect = true and youwill have to perform these

steps manually. The arguments are: domainAlias - The name you will be using to refer to

this domain. Can not be changed anymore. connection - The connection string to connect

to this domain. I.e. https://url:port manualConnect - Whether this connection should be

handled manually and also excluded from automatic re-connect. domainId - Optionally

the domainId you expect to see on this domain. certificatesPath - Path to TLS certificate

files to use as a trust anchor. priority - The priority of the domain. The higher the more

likely a domain will be used. timeTrackerConfig - The configuration for the domain time

tracker.

domains.connect

• Summary: Macro to connect a participant to a domain given by connection

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

• Description: This variant of connect expects a domain connection config. Otherwise the

behaviour is equivalent to the connect command with explicit arguments. If the domain

is already configured, the domain connection will be attempted. If however the domain is

offline, the command will fail. Generally, this macro should only be used to setup a new

domain. However, for convenience, we support idempotent invocations where subsequent

calls just ensure that the participant reconnects to the domain.

3.3. User Manual 721

https://host1.mydomain.net
https://host2.mydomain.net
https://host2.mydomain.net
https://host3.mydomain.net
https://host1.mydomain.net
https://host2.mydomain.net
https://host3.mydomain.net
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/time/DomainTimeTrackerConfig.html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
https://url:port
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html

Daml SDK Documentation, 2.1.1

domains.connect_local

• Summary: Macro to connect a participant to a locally configured domain given by refer-

ence

• Arguments:

– domain: com.digitalasset.canton.console.InstanceReferenceWithSequencerCon-

nection

– manualConnect: Boolean

– alias: Option[com.digitalasset.canton.DomainAlias]

– maxRetryDelayMillis: Option[Long]

– priority: Int

domains.is_connected

• Summary: Test whether a participant is connected to a domain reference

• Arguments:

– reference: com.digitalasset.canton.console.commands.DomainAdministration

• Return type:

– Boolean

domains.active

• Summary: Test whether a participant is connected to and permissioned on a domain ref-

erence

• Arguments:

– reference: com.digitalasset.canton.console.commands.DomainAdministration

• Return type:

– Boolean

domains.active

• Summary: Test whether a participant is connected to and permissioned on a domain

where we have a healthy subscription.

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

• Return type:

– Boolean

domains.id_of

• Summary: Returns the id of the given domain alias

• Arguments:

– domainAlias: com.digitalasset.canton.DomainAlias

• Return type:

– com.digitalasset.canton.topology.DomainId

domains.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

722 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainAdministration.html
../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainAdministration.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html

Daml SDK Documentation, 2.1.1

Packages

packages.synchronize_vetting

• Summary: Ensure that all vetting transactions issued by this participant have been ob-

served by all configured participants

• Arguments:

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Description: Sometimes, when scripting tests and demos, a dar or package is uploaded

and we need to ensure that commands are only submitted once the package vetting has

been observed by some other connected participant known to the console. This command

can be used in such cases.

packages.remove (Preview)

• Summary: Remove the package from Canton’s package store.

• Arguments:

– packageId: String

– force: Boolean

• Description: The standard operation of this command checks that a package is unused

and unvetted, and if so removes the package. The force flag can be used to disable the

checks, but do not use the force flag unless you’re certain you know what you’re doing.

packages.find

• Summary: Find packages that contain a module with the given name

• Arguments:

– moduleName: String

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.PackageDescription]

packages.list_contents

• Summary: List package contents

• Arguments:

– packageId: String

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ModuleDescription]

packages.list

• Summary: List packages stored on the participant

• Arguments:

– limit: Option[Int]

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.PackageDescription]

• Description: If a limit is given, only up to limit packages are returned.

packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3. User Manual 723

../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/PackageDescription.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ModuleDescription.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/PackageDescription.html

Daml SDK Documentation, 2.1.1

DAR Management

dars.download

• Summary: Downloads the DAR file with the given hash to the given directory

• Arguments:

– darHash: String

– directory: String

dars.upload

• Summary: Upload a Dar to Canton

• Arguments:

– path: String

– vetAllPackages: Boolean

– synchronizeVetting: Boolean

• Return type:

– String

• Description: Daml code is normally shipped as a Dar archive and must explicitly be up-

loaded to a participant. A Dar is a collection of LF-packages, the native binary represen-

tation of Daml smart contracts. In order to use Daml templates on a participant, the Dar

must first be uploaded and then vetted by the participant. Vetting will ensure that other

participants can check whether they can actually send a transaction referring to a par-

ticular Daml package and participant. Vetting is done by registering a VettedPackages

topology transaction with the topology manager. By default, vetting happens automat-

ically and this command waits for the vetting transaction to be successfully registered

on all connected domains. This is the safe default setting minimizing race conditions. If

vetAllPackages is true (default), the packages will all be vetted on all domains the partici-

pant is registered. If synchronizeVetting is true (default), then the commandwill block un-

til the participant has observed the vetting transactions to be registered with the domain.

Note that synchronize vetting might block on permissioned domains that do not just al-

lowparticipants to update the topology state. In such cases, synchronizeVetting should be

turned off. Synchronize vetting can be invokedmanually using $participant.package.syn-

chronize_vettings()

dars.list

• Summary: List installed DAR files

• Arguments:

– limit: Option[Int]

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.DarDescription]

dars.remove (Preview)

• Summary: Remove a DAR from the participant

• Arguments:

– darHash: String

• Description: Can be used to remove a DAR from the participant, when: - Themain package

of theDAR is unused - Other packages in theDARare either unused or found in another DAR

- The main package of the DAR can be automatically un-vetted (or is already not vetted)

dars.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

724 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/DarDescription.html

Daml SDK Documentation, 2.1.1

DAR Sharing

dars.sharing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.requests.list (Preview)

• Summary: List pending requests to share a DAR with others

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ListShareRequestsRe-

sponse.Item]

dars.sharing.requests.propose (Preview)

• Summary: Share a DAR with other participants

• Arguments:

– darHash: String

– participantId: com.digitalasset.canton.topology.ParticipantId

dars.sharing.requests.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.offers.reject (Preview)

• Summary: Reject the offer to share a DAR

• Arguments:

– shareId: String

– reason: String

dars.sharing.offers.accept (Preview)

• Summary: Accept the offer to share a DAR

• Arguments:

– shareId: String

dars.sharing.offers.list

• Summary: List received DAR sharing offers

• Return type:

– Seq[com.digitalasset.canton.participant.admin.v0.ListShareOffersRe-

sponse.Item]

dars.sharing.offers.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

dars.sharing.whitelist.remove (Preview)

• Summary: Remove party frommy DAR sharing whitelist

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

dars.sharing.whitelist.add (Preview)

3.3. User Manual 725

../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareRequestsResponse.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareRequestsResponse.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareOffersResponse.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/v0/ListShareOffersResponse.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.1.1

• Summary: Add party to my DAR sharing whitelist

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

dars.sharing.whitelist.list (Preview)

• Summary: List parties that are currently whitelisted to share DARs with me

dars.sharing.whitelist.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Party Management

The party management commands allow to conveniently enable and disable parties on the local

node. Under the hood, they use the more complicated but feature-richer identity management com-

mands.

parties.await_topology_observed (Preview)

• Summary: Waits for any topology changes to be observed

• Arguments:

– partyAssignment: Set[(com.digitalasset.canton.topology.PartyId, T)]

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Description: Will throw an exception if the given topology has not been observed within

the given timeout.

parties.set_display_name

• Summary: Set party display name

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– displayName: String

• Description: Locally set the party display name (shown on the ledger-api) to the given

value

parties.disable

• Summary: Disable party on participant

• Arguments:

– name: com.digitalasset.canton.topology.Identifier

parties.enable

• Summary: Enable/add party to participant

• Arguments:

– name: String

– displayName: Option[String]

– waitForDomain: com.digitalasset.canton.console.commands.DomainChoice

– synchronizeParticipants: Seq[com.digitalasset.canton.console.Partici-

pantReference]

• Return type:

– com.digitalasset.canton.topology.PartyId

• Description: This function registers a new party with the current participant within the

participants namespace. The function fails if the participant does not have appropriate

signing keys to issue the corresponding PartyToParticipant topology transaction. Option-

726 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html
../../canton/scaladoc/com/digitalasset/canton/console/commands/DomainChoice.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/console/ParticipantReference.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.1.1

ally, a local display namecanbe added. This display namewill be exposed on the ledger API

party management endpoint. Specifying a set of domains via the WaitForDomain param-

eter ensures that the domains have enabled/added a party by the time the call returns,

but other participants connected to the same domains may not yet be aware of the party.

Additionally, a sequence of additional participants can be added to be synchronized to en-

sure that the party is known to these participants as well before the function terminates.

parties.hosted

• Summary: List parties hosted by this participant

• Arguments:

– filterParty: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties hosted by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. The search will include all hosted parties

and is equivalent to running the list method using the participant id of the invoking par-

ticipant. filterParty: Filter by parties starting with the given string. filterDomain: Filter by

domains whose id starts with the given string. asOf: Optional timestamp to inspect the

topology state at a given point in time. limit: How many items to return. Defaults to 100.

Example: participant1.parties.hosted(filterParty=”alice”)

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

participants and their permission on the domain for that party is given. filterParty: Filter

by parties starting with the given string. filterParticipant: Filter for parties that are hosted

by a participant with an id starting with the given string filterDomain: Filter by domains

whose id starts with the given string. asOf: Optional timestamp to inspect the topology

state at a given point in time. limit: Limit on the number of parties fetched (defaults to

100). Example: participant1.parties.list(filterParty=”alice”)

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3. User Manual 727

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html

Daml SDK Documentation, 2.1.1

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainIdentityManagerId.Code’.

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKeyWithName

728 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html

Daml SDK Documentation, 2.1.1

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– key: com.digitalasset.canton.crypto.PublicKey

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

context to that key.

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.v0.CryptoKeyPair

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pair: com.digitalasset.canton.crypto.v0.CryptoKeyPair

– name: Option[String]

keys.secret.upload

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

keys.secret.rotate_hmac_secret

• Summary: Rotate the HMAC secret

• Arguments:

– length: Int

3.3. User Manual 729

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html

Daml SDK Documentation, 2.1.1

• Description: Replace the stored HMAC secret with a new generated secret of the given

length. length: Length of the HMAC secret. Must be at least 128 bits, but less than the

internal block size of the hash function.

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

certs.load (Preview)

• Summary: Import X509 certificate in PEM format

• Arguments:

– x509Pem: String

• Return type:

– String

certs.list (Preview)

• Summary: List locally stored certificates

• Arguments:

– filterUid: String

730 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html

Daml SDK Documentation, 2.1.1

• Return type:

– List[com.digitalasset.canton.admin.api.client.data.CertificateResult]

certs.generate (Preview)

• Summary: Generate a self-signed certificate

• Arguments:

– uid: com.digitalasset.canton.topology.UniqueIdentifier

– certificateKey: com.digitalasset.canton.crypto.Fingerprint

– additionalSubject: String

– subjectAlternativeNames: Seq[String]

• Return type:

– com.digitalasset.canton.admin.api.client.data.CertificateResult

Topology Administration

The topology commands canbeused tomanipulate and inspect the topology state. In all commands,

we use fingerprints to refer to public keys. Internally, these fingerprints are resolved using the key

registry (which is a map of Fingerprint -> PublicKey). Any key can be added to the key registry using

the keys.public.load commands.

topology.load_transaction

• Summary: Upload signed topology transaction

• Arguments:

– bytes: com.google.protobuf.ByteString

• Description: Topology transactions can be issued with any topology manager. In some

cases, such transactions need to be copiedmanually between nodes. This function allows

for uploading previously exported topology transaction into the authorized store (which

is the name of the topology managers transaction store.

topology.init_id

• Summary: Initialize the node with a unique identifier

• Arguments:

– identifier: com.digitalasset.canton.topology.Identifier

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

• Return type:

– com.digitalasset.canton.topology.UniqueIdentifier

• Description: Every node in Canton is identified using a unique identifier, which is com-

posed from a user-chosen string and a fingerprint of a signing key. The signing key is the

root key of said namespace. During initialisation, we have to pick such a unique identi-

fier. By default, initialisation happens automatically, but it can be turned off by setting the

auto-init option to false. Automatic node initialisation is usually turned off to preseve the

identity of a participant or domain node (duringmajor version upgrades) or if the topology

transactions are managed through a different topology manager than the one integrated

into this node.

topology.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.stores.list

• Summary: List available topology stores

3.3. User Manual 731

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html

Daml SDK Documentation, 2.1.1

• Return type:

– Seq[String]

• Description: Topology transactions are stored in these stores. There are the following

stores: “Authorized” - The authorized store is the store of a topologymanager. Updates to

the topology state are made by adding new transactions to the “Authorized” store. Both

the participant and the domain nodes topology manager have such a store. A partici-

pant node will distribute all the content in the Authorized store to the domains it is con-

nected to. The domain node will distribute the content of the Authorized store through

the sequencer to the domain members in order to create the authoritative topology state

on a domain (which is stored in the store named using the domain-id), such that every

domain member will have the same view on the topology state on a particular domain.

“<domain-id> - The domain store is the authorized topology state on a domain. A partici-

pant has one store for each domain it is connected to. The domain has exactly one store

with its domain-id. “Requested” - A domain can be configured such that when participant

tries to register a topology transaction with the domain, the transaction is placed into the

“Requested” store such that it can be analysed and processed with user defined process.

topology.stores.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.namespace_delegations.list

• Summary: List namespace delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterNamespace: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListNamespaceDelegationRe-

sult]

• Description: List the namespace delegation transaction present in the stores. Names-

pace delegations are topology transactions that permission a key to issue topology trans-

actions within a certain namespace. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorized with a key that starts with the given filter string. filterNames-

pace: Filter for namespaces starting with the given filter string. filterTargetKey: Filter for

namespaces delegations for the given target key.

topology.namespace_delegations.authorize

• Summary: Change namespace delegation

732 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html

Daml SDK Documentation, 2.1.1

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– namespace: com.digitalasset.canton.crypto.Fingerprint

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– isRootDelegation: Boolean

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority to authorize topology transactions in a certain

namespace to a certain key. The keys are referred to using their fingerprints. They need to

be either locally generated or have been previously imported. ops: Either Add or Remove

the delegation. signedBy: Optional fingerprint of the authorizing key. The authorizing key

needs to be either the authorizedKey for root certificates. Otherwise, the signedBy key

needs to refer to a previously authorized key, which means that we use the signedBy key

to refer to a locally available CA. authorizedKey: Fingerprint of the key to be authorized. If

signedBy equals authorizedKey, then this transaction corresponds to a self-signed root

certificate. If the keys differ, then we get an intermediate CA. isRootDelegation: If set to

true (default = false), the authorized key will be allowed to issue NamespaceDelegations.

synchronize: Synchronize timeout can be used to ensure that the state has been propa-

gated into the node

topology.namespace_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.identifier_delegations.list

• Summary: List identifier delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListIdentifierDelegationRe-

sult]

• Description: List the identifier delegation transaction present in the stores. Identifier

delegations are topology transactions that permission a key to issue topology transac-

tions for a certain unique identifier. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

3.3. User Manual 733

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html

Daml SDK Documentation, 2.1.1

that are authorized with a key that starts with the given filter string. filterUid: Filter for

unique identifiers starting with the given filter string.

topology.identifier_delegations.authorize

• Summary: Change identifier delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– identifier: com.digitalasset.canton.topology.UniqueIdentifier

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority of a certain identifier to a certain key. This corre-

sponds to a normal certificate which binds identifier to a key. The keys are referred to

using their fingerprints. They need to be either locally generated or have been previously

imported. ops: Either Add or Remove the delegation. signedBy: Refers to the optional fin-

gerprint of the authorizing keywhich in turn refers to a specific, locally existing certificate.

authorizedKey: Fingerprint of the key to be authorized. synchronize: Synchronize timeout

can be used to ensure that the state has been propagated into the node

topology.identifier_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.owner_to_key_mappings.rotate_key

• Summary: Rotate the key for an owner to key mapping

• Arguments:

– owner: com.digitalasset.canton.topology.KeyOwner

– currentKey: com.digitalasset.canton.crypto.PublicKey

– newKey: com.digitalasset.canton.crypto.PublicKey

• Description: Rotates the key for an existing owner to keymapping by issuing a new owner

to key mapping with the new key and removing the previous owner to key mapping with

the previous key. owner: The owner of the owner to key mapping currentKey: The current

public key that will be rotated newKey: The new public key that has been generated

topology.owner_to_key_mappings.list

• Summary: List owner to key mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterKeyOwnerUid: String

– filterKeyPurpose: Option[com.digitalasset.canton.crypto.KeyPurpose]

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListOwnerToKeyMappingRe-

734 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html

Daml SDK Documentation, 2.1.1

sult]

• Description: List the owner to key mapping transactions present in the stores. Owner to

key mappings are topology transactions defining that a certain key is used by a certain

key owner. Key owners are participants, sequencers, mediators and domains. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transaction was added to the store op-

eration: Optionally, what type of operation the transaction should have. State store only

has “Add”. filterSigningKey: Filter for transactions that are authorized with a key that

starts with the given filter string. filterKeyOwnerType: Filter for a particular type of key

owner (KeyOwnerCode). filterKeyOwnerUid: Filter for key owners unique identifier start-

ing with the given filter string. filterKeyPurpose: Filter for keys with a particular purpose

(Encryption or Signing)

topology.owner_to_key_mappings.authorize

• Summary: Change an owner to key mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– key: com.digitalasset.canton.crypto.Fingerprint

– purpose: com.digitalasset.canton.crypto.KeyPurpose

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change a owner to key mapping. A key owner is anyone in the system that

needs a key-pair known to allmembers (participants, mediator, sequencer, topologyman-

ager) of a domain. ops: Either Add or Remove the key mapping update. signedBy: Op-

tional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. ownerType: Role of the following owner (Participant, Sequencer, Mediator,

DomainIdentityManager) owner: Unique identifier of the owner. key: Fingerprint of key

purposes: The purposes of the owner to key mapping. force: removing the last key is dan-

gerous and must therefore be manually forced synchronize: Synchronize timeout can be

used to ensure that the state has been propagated into the node

topology.owner_to_key_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.party_to_participant_mappings.list

• Summary: List party to participant mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

3.3. User Manual 735

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.1.1

– filterParty: String

– filterParticipant: String

– filterRequestSide: Option[com.digitalasset.canton.topology.transaction.Re-

questSide]

– filterPermission: Option[com.digitalasset.canton.topology.transaction.Par-

ticipantPermission]

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartyToParticipantResult]

• Description: List the party to participant mapping transactions present in the stores.

Party to participant mappings are topology transactions used to allocate a party to a cer-

tain participant. The same party can be allocated on several participants with different

privileges. A party to participant mapping has a request-side that identifies whether the

mapping is authorized by the party, by the participant or by both. In order to have a party

be allocated to a given participant, we therefore need either two transactions (one with

RequestSide.From, one with RequestSide.To) or one with RequestSide.Both. filterStore: Fil-

ter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterParty: Filter for parties starting with the given filter string.

filterParticipant: Filter for participants starting with the given filter string. filterRequest-

Side: Optional filter for a particular request side (Both, From, To).

topology.party_to_participant_mappings.authorize (Preview)

• Summary: Change party to participant mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– party: com.digitalasset.canton.topology.PartyId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a party to a participant. If both identifiers are

in the same namespace, then the request-side is Both. If they differ, then we need to say

whether the request comes from the party (RequestSide.From) or from the participant (Re-

questSide.To). And, we need the matching request of the other side. Please note that this

is a preview feature due to the fact that inhomogeneous topologies can not yet be properly

represented on the Ledger API. ops: Either Add or Remove the mapping signedBy: Refers

to the optional fingerprint of the authorizing key which in turn refers to a specific, locally

existing certificate. party: The unique identifier of the party we want to map to a partici-

pant. participant: The unique identifier of the participant to which the party is supposed

to be mapped. side: The request side (RequestSide.From if we the transaction is from the

736 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartyToParticipantResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

perspective of the party, RequestSide.To from the participant.) privilege: The privilege of

the given participant which allows us to restrict an association (e.g. Confirmation or Ob-

servation). replaceExisting: If true (default), replace any existing mapping with the new

setting synchronize: Synchronize timeout can be used to ensure that the state has been

propagated into the node

topology.party_to_participant_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.participant_domain_states.active

• Summary: Returns true if the given participant is currently active on the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– participantId: com.digitalasset.canton.topology.ParticipantId

• Return type:

– Boolean

• Description: Active means that the participant has been granted at least observation

rights on the domain and that the participant has registered a domain trust certificate

topology.participant_domain_states.authorize

• Summary: Change participant domain states

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– domain: com.digitalasset.canton.topology.DomainId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a participant to a domain. In order to activate a

participant on a domain, we need both authorisation: the participant authorising its uid

to be present on a particular domain and the domain to authorise the presence of a partic-

ipant on said domain. If both identifiers are in the samenamespace, then the request-side

can be Both. If they differ, thenwe need to saywhether the request comes from the domain

(RequestSide.From) or from the participant (RequestSide.To). And, we need the matching

request of the other side. ops: Either Add or Remove the mapping signedBy: Refers to the

optional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. domain: The unique identifier of the domain we want the participant to

join. participant: The unique identifier of the participant. side: The request side (Request-

Side.From ifwe the transaction is from the perspective of the domain, RequestSide.To from

the participant.) permission: The privilege of the given participant which allows us to re-

strict an association (e.g. Confirmation or Observation). Will use the lower of if different

between To/From. trustLevel: The trust level of the participant on the given domain. Will

use the lower of if different between To/From. replaceExisting: If true (default), replace any

existing mapping with the new setting synchronize: Synchronize timeout can be used to

3.3. User Manual 737

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

ensure that the state has been propagated into the node

topology.participant_domain_states.list

• Summary: List participant domain states

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterDomain: String

– filterParticipant: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

• Description: List the participant domain transactions present in the stores. Participant

domain states are topology transactions used to permission a participant on a given do-

main. A participant domain state has a request-side that identifies whether the mapping

is authorized by the participant (From), by the domain (To) or by both (Both). In order

to use a participant on a domain, both have to authorize such a mapping. This means

that by authorizing such a topology transaction, a participant acknowledges its presence

on a domain, whereas a domain permissions the participant on that domain. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterDomain: Filter for domains starting with the given filter

string. filterParticipant: Filter for participants starting with the given filter string.

topology.participant_domain_states.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.legal_identities.authorize (Preview)

• Summary: Authorize a legal identity claim transaction

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– claim: com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

topology.legal_identities.generate_x509 (Preview)

• Summary: Generate a signed legal identity claim for a specific X509 certificate

• Arguments:

738 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

– uid: com.digitalasset.canton.topology.UniqueIdentifier

– certificateId: com.digitalasset.canton.crypto.CertificateId

• Return type:

– com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

topology.legal_identities.generate (Preview)

• Summary: Generate a signed legal identity claim

• Arguments:

– claim: com.digitalasset.canton.topology.transaction.LegalIdentityClaim

• Return type:

– com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

topology.legal_identities.list_x509 (Preview)

• Summary: List legal identities with X509 certificates

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

• Return type:

– Seq[(com.digitalasset.canton.topology.UniqueIdentifier, com.digitalasset.can-

ton.crypto.X509Certificate)]

• Description: List the X509 certificates used as legal identities associated with a unique

identifier. A legal identity allows to establish a link between an unique identifier and some

external evidence of legal identity. Currently, the only X509 certificate are supported as ev-

idence. Except for the CCF integration that requires participants to possess a valid X509

certificate, legal identities have no functional use within the system. They are purely infor-

mational. filterStore: Filter for topology stores starting with the given filter string (Autho-

rized, <domain-id>, Requested) useStateStore: If true (default), only properly authorized

transactions that are part of the state will be selected. timeQuery: The time query allows

to customize the query by time. The following options are supported: TimeQuery.Head-

State (default): The most recent known state. TimeQuery.Snapshot(ts): The state at a cer-

tain point in time. TimeQuery.Range(fromO, toO): Time-range of when the transaction was

added to the store operation: Optionally, what type of operation the transaction should

have. State store only has “Add”. filterSigningKey: Filter for transactions that are autho-

rizedwith a key that startswith the given filter string. filterUid: Filter for unique identifiers

starting with the given filter string.

topology.legal_identities.list (Preview)

• Summary: List legal identities

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListSignedLegalIdentityClaim-

3.3. User Manual 739

../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/CertificateId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/LegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html

Daml SDK Documentation, 2.1.1

Result]

• Description: List the legal identities associated with a unique identifier. A legal iden-

tity allows to establish a link between an unique identifier and some external evidence of

legal identity. Currently, the only type of evidence supported are X509 certificates. Ex-

cept for the CCF integration that requires participants to possess a valid X509 certifi-

cate, legal identities have no functional use within the system. They are purely informa-

tional. filterStore: Filter for topology stores startingwith the given filter string (Authorized,

<domain-id>, Requested) useStateStore: If true (default), only properly authorized trans-

actions that are part of the state will be selected. timeQuery: The time query allows to cus-

tomize the query by time. The following options are supported: TimeQuery.HeadState (de-

fault): The most recent known state. TimeQuery.Snapshot(ts): The state at a certain point

in time. TimeQuery.Range(fromO, toO): Time-range of when the transaction was added to

the store operation: Optionally, what type of operation the transaction should have. State

store only has “Add”. filterSigningKey: Filter for transactions that are authorized with a

key that starts with the given filter string. filterUid: Filter for unique identifiers starting

with the given filter string.

topology.vetted_packages.list

• Summary: List package vetting transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParticipant: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListVettedPackagesResult]

• Description: List the package vetting transactions present in the stores. Participants

must vet Daml packages and submittersmust ensure that the receivingparticipants have

vetted the package prior to submitting a transaction (done automatically during submis-

sion and validation). Vetting is done by authorizing such topology transactions and reg-

istering with a domain. filterStore: Filter for topology stores starting with the given filter

string (Authorized, <domain-id>, Requested) useStateStore: If true (default), only prop-

erly authorized transactions that are part of the state will be selected. timeQuery: The

time query allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorizedwith a key that startswith the given filter string. filterParticipant:

Filter for participants starting with the given filter string.

topology.vetted_packages.authorize

• Summary: Change package vettings

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– participant: com.digitalasset.canton.topology.ParticipantId

– packageIds: Seq[com.daml.lf.data.Ref.PackageId]

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

740 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListVettedPackagesResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: A participant will only process transactions that reference packages that all

involved participants have vetted previously. Vetting is done by registering a respective

topology transaction with the domain, which can then be used by other participants to

verify that a transaction is only using vetted packages. Note that all referenced and de-

pendent packages must exist in the package store. By default, only vetting transactions

addingnewpackages canbe issued. Removingpackage vettings and issuingpackage vet-

tings for other participants (if their identity is controlled through this participants topol-

ogy manager) or for packages that do not exist locally can only be run using the force =

true flag. However, these operations are dangerous and can lead to the situation of a par-

ticipant being unable to process transactions. ops: Either Add or Remove the vetting. par-

ticipant: The unique identifier of the participant that is vetting the package. packageIds:

The lf-package ids to be vetted. signedBy: Refers to the fingerprint of the authorizing key

which in turn must be authorized by a valid, locally existing certificate. If none is given,

a key is automatically determined. synchronize: Synchronize timeout can be used to en-

sure that the state has been propagated into the node force: Flag to enable dangerous

operations (default false). Great power requires great care.

topology.vetted_packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.all.renew

• Summary: Renew all topology transactions that have been authorized with a previous key

using a new key

• Arguments:

– filterAuthorizedKey: com.digitalasset.canton.crypto.Fingerprint

– authorizeWith: com.digitalasset.canton.crypto.Fingerprint

• Description: Finds all topology transactions that have been authorized by filterAuthorized-

Key and renews those topology transactions by authorizing them with the new key autho-

rizeWith. filterAuthorizedKey: Filter the topology transactions by the key that has autho-

rized the transactions. authorizeWith: The key to authorize the renewed topology trans-

actions.

topology.all.list

• Summary: List all transaction

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterAuthorizedKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.digita-

lasset.canton.topology.transaction.TopologyChangeOp]

• Description: List all topology transactions in a store, independent of the particular type.

This method is useful for exporting entire states. filterStore: Filter for topology stores

starting with the given filter string (Authorized, <domain-id>, Requested) useStateStore:

3.3. User Manual 741

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.1.1

If true (default), only properly authorized transactions that are part of the state will be

selected. timeQuery: The time query allows to customize the query by time. The follow-

ing options are supported: TimeQuery.HeadState (default): The most recent known state.

TimeQuery.Snapshot(ts): The state at a certain point in time. TimeQuery.Range(fromO,

toO): Time-range of when the transaction was added to the store operation: Optionally,

what type of operation the transaction should have. State store only has “Add”. filter-

AuthorizedKey: Filter the topology transactions by the key that has authorized the trans-

actions.

topology.all.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Ledger API Access

The following commands on a participant reference provide access to the participant’s Ledger API

services.

ledger_api.ledger_id (Testing)

• Summary: Get ledger id

• Return type:

– String

ledger_api.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Transaction Service

ledger_api.transactions.domain_of (Testing)

• Summary: Get the domain that a transaction was committed over.

• Arguments:

– transactionId: String

• Return type:

– com.digitalasset.canton.topology.DomainId

• Description: Get the domain that a transaction was committed over. Throws an error if

the transaction is not (yet) known to the participant or if the transaction has been pruned

via pruning.prune.

ledger_api.transactions.by_id (Testing)

• Summary: Get a (tree) transaction by its ID

• Arguments:

– parties: Set[com.digitalasset.canton.topology.PartyId]

– id: String

• Return type:

– Option[com.daml.ledger.api.v1.transaction.TransactionTree]

742 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html

Daml SDK Documentation, 2.1.1

• Description: Get a transaction tree from the transaction stream by its ID. Returns None if

the transaction is not (yet) known at the participant or if the transaction has been pruned

via pruning.prune.

ledger_api.transactions.start_measuring (Testing)

• Summary: Starts measuring throughput at the transaction service

• Arguments:

– parties: Set[com.digitalasset.canton.topology.PartyId]

– metricSuffix: String

– onTransaction: com.daml.ledger.api.v1.transaction.TransactionTree => Unit

• Return type:

– AutoCloseable

• Description: This functionwill subscribe onbehalf of parties to the transaction tree stream

and notify various metrics: The metric <name>.<metricSuffix> counts the number of trans-

action trees emitted. The metric <name>.<metricSuffix>-tx-node-count tracks the number of

root events emitted as part of transaction trees. The metric <name>.<metricSuffix>-tx-size

tracks the number of bytes emitted as part of transaction trees. To stop measuring, you

need to close the returned AutoCloseable. Use the onTransaction parameter to register a call-

back that is called on every transaction tree.

ledger_api.transactions.subscribe_flat (Testing)

• Summary: Subscribe to the flat transaction stream

• Arguments:

– observer: io.grpc.stub.StreamObserver[com.daml.ledger.api.v1.transac-

tion.Transaction]

– filter: com.daml.ledger.api.v1.transaction_filter.TransactionFilter

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

• Return type:

– AutoCloseable

• Description: This function connects to the flat transaction stream and passes transac-

tions to observer until the stream is completed. Only transactions for parties in filter.fil-

terByParty.keys will be returned. Use filter = TransactionFilter(Map(myParty.toLf -> Filters())) to

return all transactions for myParty: PartyId. The returned transactions can be filtered to be

between the given offsets (default: no filtering). If the participant has been pruned via

pruning.prune and if beginOffset is lower than the pruning offset, this command fails with a

NOT_FOUND error.

ledger_api.transactions.flat (Testing)

• Summary: Get flat transactions

• Arguments:

– partyIds: Set[com.digitalasset.canton.topology.PartyId]

– completeAfter: Int

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– Seq[com.daml.ledger.api.v1.transaction.Transaction]

• Description: This function connects to the flat transaction stream for the given parties

and collects transactions until either completeAfter transaction trees have been received

or timeout has elapsed. The returned transactions can be filtered to be between the given

3.3. User Manual 743

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

offsets (default: no filtering). If the participant has been pruned via pruning.prune and if

beginOffset is lower than the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.transactions.subscribe_trees (Testing)

• Summary: Subscribe to the transaction tree stream

• Arguments:

– observer: io.grpc.stub.StreamObserver[com.daml.ledger.api.v1.transac-

tion.TransactionTree]

– filter: com.daml.ledger.api.v1.transaction_filter.TransactionFilter

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

• Return type:

– AutoCloseable

• Description: This function connects to the transaction tree stream and passes transac-

tion trees to observer until the stream is completed. Only transaction trees for parties

in filter.filterByParty.keys will be returned. Use filter = TransactionFilter(Map(myParty.toLf -> Fil-

ters())) to return all trees for myParty: PartyId. The returned transactions can be filtered to

be between the given offsets (default: no filtering). If the participant has been pruned via

pruning.prune and if beginOffset is lower than the pruning offset, this command fails with a

NOT_FOUND error.

ledger_api.transactions.trees (Testing)

• Summary: Get transaction trees

• Arguments:

– partyIds: Set[com.digitalasset.canton.topology.PartyId]

– completeAfter: Int

– beginOffset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– endOffset: Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

– verbose: Boolean

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– Seq[com.daml.ledger.api.v1.transaction.TransactionTree]

• Description: This function connects to the transaction tree stream for the given parties

and collects transaction trees until either completeAfter transaction trees have been re-

ceived or timeout has elapsed. The returned transaction trees can be filtered to be between

the given offsets (default: no filtering). If the participant has been pruned via pruning.prune

and if beginOffset is lower than the pruning offset, this command fails with a NOT_FOUND

error.

ledger_api.transactions.end (Testing)

• Summary: Get ledger end

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

ledger_api.transactions.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

744 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

Command Service

ledger_api.commands.submit_async (Testing)

• Summary: Submit command asynchronously

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– deduplicationPeriod: Option[com.daml.ledger.api.DeduplicationPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

• Description: Provides access to the command submission service of the Ledger APi. See

https://docs.daml.com/app-dev/services.html for documentation of the parameters.

ledger_api.commands.submit_flat (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the flat-

tened transaction or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– optTimeout: Option[com.digitalasset.canton.config.TimeoutDuration]

– deduplicationPeriod: Option[com.daml.ledger.api.DeduplicationPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

• Return type:

– com.daml.ledger.api.v1.transaction.Transaction

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit, and returns the “flattened” transaction. If the timeout is set, it

also waits for the transaction to appear at all other configured participants who were in-

volved in the transaction. The call blocks until the transaction commits or fails; the time-

out only specifieshow long towait at the other participants. Fails if the transactiondoesn’t

commit, or if it doesn’t become visible to the involved participants in the allotted time.

Note that if the optTimeout is set and the involved parties are concurrently enabled/dis-

abled or their participants are connected/disconnected, the command may currently re-

sult in spurious timeouts or may return before the transaction appears at all the involved

participants.

ledger_api.commands.submit (Testing)

• Summary: Submit command and wait for the resulting transaction, returning the trans-

action tree or failing otherwise

• Arguments:

– actAs: Seq[com.digitalasset.canton.topology.PartyId]

– commands: Seq[com.daml.ledger.api.v1.commands.Command]

– workflowId: String

– commandId: String

– optTimeout: Option[com.digitalasset.canton.config.TimeoutDuration]

– deduplicationPeriod: Option[com.daml.ledger.api.DeduplicationPeriod]

– submissionId: String

– minLedgerTimeAbs: Option[java.time.Instant]

3.3. User Manual 745

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
https://docs.daml.com/app-dev/services.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

• Return type:

– com.daml.ledger.api.v1.transaction.TransactionTree

• Description: Submits a command on behalf of the actAs parties, waits for the resulting

transaction to commit and returns it. If the timeout is set, it also waits for the transaction

to appear at all other configured participants who were involved in the transaction. The

call blocks until the transaction commits or fails; the timeout only specifies how long

to wait at the other participants. Fails if the transaction doesn’t commit, or if it doesn’t

becomevisible to the involvedparticipants in theallotted time. Note that if the optTimeout

is set and the involved parties are concurrently enabled/disabled or their participants are

connected/disconnected, the commandmay currently result in spurious timeouts ormay

return before the transaction appears at all the involved participants.

ledger_api.commands.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Command Completion Service

ledger_api.completions.list_with_checkpoint (Testing)

• Summary: Lists command completions following the specified offset along with the

checkpoints included in the completions

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– atLeastNumCompletions: Int

– offset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– applicationId: String

– timeout: com.digitalasset.canton.config.TimeoutDuration

– filter: com.daml.ledger.api.v1.completion.Completion => Boolean

• Return type:

– Seq[(com.daml.ledger.api.v1.completion.Completion, Op-

tion[com.daml.ledger.api.v1.command_completion_service.Checkpoint])]

• Description: If the participant has been pruned via pruning.prune and if offset is lower than

the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.completions.list (Testing)

• Summary: Lists command completions following the specified offset

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– atLeastNumCompletions: Int

– offset: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

– applicationId: String

– timeout: com.digitalasset.canton.config.TimeoutDuration

– filter: com.daml.ledger.api.v1.completion.Completion => Boolean

• Return type:

– Seq[com.daml.ledger.api.v1.completion.Completion]

• Description: If the participant has been pruned via pruning.prune and if offset is lower than

the pruning offset, this command fails with a NOT_FOUND error.

ledger_api.completions.end (Testing)

• Summary: Read the current command completion offset

746 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

ledger_api.completions.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Active Contract Service

ledger_api.acs.find_generic (Testing)

• Summary: Generic search for contracts

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– filter: com.digitalasset.canton.admin.api.client.commands.LedgerApiType-

Wrappers.WrappedCreatedEvent => Boolean

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent

• Description: This search function returns an untyped ledger-api event. The find will wait

until the contract appears or throw an exception once it times out.

ledger_api.acs.filter (Testing)

• Summary: Filter the ACS for contracts of a particular Scala code-generated template

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– templateCompanion: com.daml.ledger.client.binding.TemplateCompanion[T]

– predicate: com.daml.ledger.client.binding.Contract[T] => Boolean

• Return type:

– (partyId: com.digitalasset.canton.topology.PartyId, templateCom-

panion: com.daml.ledger.client.binding.TemplateCompanion[T],

predicate: com.daml.ledger.client.binding.Contract[T] => Boolean):

Seq[com.daml.ledger.client.binding.Contract[T]]

• Description: To use this function, ensure a code-generated Scalamodel for the target tem-

plate exists. You can refine your search using the predicate function argument.

ledger_api.acs.await (Testing)

• Summary: Wait until a contract becomes available

• Arguments:

– partyId: com.digitalasset.canton.topology.PartyId

– companion: com.daml.ledger.client.binding.TemplateCompanion[T]

– predicate: com.daml.ledger.client.binding.Contract[T] => Boolean

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– (partyId: com.digitalasset.canton.topology.PartyId, companion:

com.daml.ledger.client.binding.TemplateCompanion[T], predicate:

com.daml.ledger.client.binding.Contract[T] => Boolean, timeout: com.digitalas-

set.canton.config.TimeoutDuration): com.daml.ledger.client.binding.Contract[T]

• Description: This function can be used for contracts with a code-generated Scala model.

You can refine your search using the filter function argument. The commandwill wait until

3.3. User Manual 747

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

the contract appears or throw an exception once it times out.

ledger_api.acs.await_active_contract (Testing)

• Summary: Wait until the party sees the given contract in the active contract service

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Description: Will throw an exception if the contract is not found to be active within the

given timeout

ledger_api.acs.of_all (Testing)

• Summary: List the set of active contracts for all parties hosted on this participant

• Arguments:

– limit: Option[Int]

– verbose: Boolean

– filterTemplates: Seq[com.daml.ledger.client.binding.Primitive.TemplateId[_]]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent]

• Description: If the filterTemplates argument is not empty, the acs lookup will filter by the

given templates.

ledger_api.acs.of_party (Testing)

• Summary: List the set of active contracts of a given party

• Arguments:

– party: com.digitalasset.canton.topology.PartyId

– limit: Option[Int]

– verbose: Boolean

– filterTemplates: Seq[com.daml.ledger.client.binding.Primitive.TemplateId[_]]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.commands.LedgerApiTypeWrap-

pers.WrappedCreatedEvent]

• Description: If the filterTemplates argument is not empty, the acs lookup will filter by the

given templates.

ledger_api.acs.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Package Service

ledger_api.packages.list (Testing)

• Summary: List Daml Packages

• Arguments:

– limit: Option[Int]

• Return type:

– Seq[com.daml.ledger.api.v1.admin.package_management_service.PackageDe-

tails]

ledger_api.packages.upload_dar (Testing)

748 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/commands/LedgerApiTypeWrappers\protect \TU\textdollar \protect \TU\textdollar WrappedCreatedEvent.html

Daml SDK Documentation, 2.1.1

• Summary: Upload packages from Dar file

• Arguments:

– darPath: String

• Description: Uploading theDar canbedone either through the ledger Api server or through

the Canton admin Api. The Ledger Api is the portable method across ledgers. The Canton

admin Api is more powerful as it allows for controlling Canton specific behaviour. In par-

ticular, a Dar uploaded using the ledger Api will not be available in the Dar store and can

not be downloaded again. Additionally, Dars uploaded using the ledger Api will be vetted,

but the system will not wait for the Dars to be successfully registered with all connected

domains. As such, if a Dar is uploaded and then used immediately thereafter, a command

might bounce due to missing package vettings.

ledger_api.packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Party Management Service

ledger_api.parties.list (Testing)

• Summary: List parties known by the ledger API server

• Return type:

– Seq[com.daml.ledger.api.v1.admin.party_management_service.PartyDetails]

ledger_api.parties.allocate (Testing)

• Summary: Allocate new party

• Arguments:

– party: String

– displayName: String

• Return type:

– com.daml.ledger.api.v1.admin.party_management_service.PartyDetails

ledger_api.parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Ledger Configuration Service

ledger_api.configuration.list (Testing)

• Summary: Obtain the ledger configuration

• Arguments:

– expectedConfigs: Int

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– Seq[com.daml.ledger.api.v1.ledger_configuration_service.LedgerConfiguration]

• Description: Returns the current ledger configuration and subsequent updates until the

expected number of configs was retrieved or the timeout is over.

3.3. User Manual 749

../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

ledger_api.configuration.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Ledger Api User Management Service

ledger_api.users.list (Testing)

• Summary: List users

• Arguments:

– filterUser: String

– pageToken: String

– pageSize: Int

• Return type:

– com.digitalasset.canton.admin.api.client.data.ListLedgerApiUsersResult

• Description: List users of this participant node filterUser: filter results using the given

filter string pageToken: used for pagination (the result contains a page token if there are

further pages) pageSize: default page size before the filter is applied

ledger_api.users.delete (Testing)

• Summary: Delete user

• Arguments:

– id: String

• Description: Delete a user.

ledger_api.users.create (Testing)

• Summary: Create a user with the given id

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.LfPartyId]

– primaryParty: Option[com.digitalasset.canton.LfPartyId]

– readAs: Set[com.digitalasset.canton.LfPartyId]

– participantAdmin: Boolean

• Return type:

– com.digitalasset.canton.admin.api.client.data.LedgerApiUser

• Description: Users are used to dynamically managing the rights given to Daml applica-

tions. They allow us to link a stable local identifier (of an application) with a set of parties.

id: the id used to identify the given user actAs: the set of parties this user is allowed to act

as primaryParty: the optional party that should be linked to this user by default readAs:

the set of parties this user is allowed to read as participantAdmin: flag (default false)

indicating if the user is allowed to use the admin commands of the Ledger Api

ledger_api.users.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

ledger_api.users.rights.list (Testing)

• Summary: List rights of a user

• Arguments:

750 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListLedgerApiUsersResult.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/LedgerApiUser.html

Daml SDK Documentation, 2.1.1

– id: String

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Lists the rights of a user, or the rights of the current user.

ledger_api.users.rights.revoke (Testing)

• Summary: Revoke user rights

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.LfPartyId]

– readAs: Set[com.digitalasset.canton.LfPartyId]

– participantAdmin: Boolean

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Use to revoke specific rights from a user. id: the id used to identify the given

user actAs: the set of parties this user should not be allowed to act as readAs: the set

of parties this user should not be allowed to read as participantAdmin: if set to true, the

participant admin rights will be removed

ledger_api.users.rights.grant (Testing)

• Summary: Grant new rights to a user

• Arguments:

– id: String

– actAs: Set[com.digitalasset.canton.LfPartyId]

– readAs: Set[com.digitalasset.canton.LfPartyId]

– participantAdmin: Boolean

• Return type:

– com.digitalasset.canton.admin.api.client.data.UserRights

• Description: Users are used to dynamically managing the rights given to Daml applica-

tions. This function is used to grant new rights to an existing user. id: the id used to iden-

tify the given user actAs: the set of parties this user is allowed to act as readAs: the set of

parties this user is allowed to read as participantAdmin: flag (default false) indicating if

the user is allowed to use the admin commands of the Ledger Api

ledger_api.users.rights.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Ledger Api Metering Service

ledger_api.metering.get_report (Testing)

• Summary: Get the ledger metering report

• Arguments:

– from: com.digitalasset.canton.data.CantonTimestamp

– to: Option[com.digitalasset.canton.data.CantonTimestamp]

– applicationId: Option[String]

• Return type:

– com.digitalasset.canton.admin.api.client.data.LedgerMeteringReport

• Description: Returns the current ledger metering report from: required from timestamp

(inclusive) to: optional to timestamp application_id: optional application id to which we

3.3. User Manual 751

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/UserRights.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/LedgerMeteringReport.html

Daml SDK Documentation, 2.1.1

want to restrict the report

ledger_api.metering.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Composability

transfer.lookup_contract_domain (Preview)

• Summary: Lookup the active domain for the provided contracts

• Arguments:

– contractIds: com.digitalasset.canton.protocol.LfContractId*

• Return type:

– Map[com.digitalasset.canton.protocol.LfContractId,String]

transfer.execute (Preview)

• Summary: Transfer the contract from the origin domain to the target domain

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– originDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

• Description: Macro that first calls transfer_out and then transfer_in. No error handling

is done.

transfer.search (Preview)

• Summary: Search the currently in-flight transfers

• Arguments:

– targetDomain: com.digitalasset.canton.DomainAlias

– filterOriginDomain: Option[com.digitalasset.canton.DomainAlias]

– filterTimestamp: Option[java.time.Instant]

– filterSubmittingParty: Option[com.digitalasset.canton.topology.PartyId]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.participant.admin.grpc.TransferSearchResult]

• Description: Returns all in-flight transfers with the given target domain that match the

filters, but no more than the limit specifies.

transfer.in (Preview)

• Summary: Transfer-in a contract in transit to the target domain

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– transferId: com.digitalasset.canton.protocol.TransferId

– targetDomain: com.digitalasset.canton.DomainAlias

• Description: Manually transfers a contract in transit into the target domain. The com-

mand returns when the transfer-in has completed successfully. If the transferExclusivity-

Timeout in the target domain’s parameters is set to a positive value, all participants of all

stakeholders connected to both origin and target domain will attempt to transfer-in the

contract automatically after the exclusivity timeout has elapsed.

transfer.out (Preview)

752 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/TransferSearchResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/TransferId.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.1.1

• Summary: Transfer-out a contract from the origin domainwith destination target domain

• Arguments:

– submittingParty: com.digitalasset.canton.topology.PartyId

– contractId: com.digitalasset.canton.protocol.LfContractId

– originDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

• Return type:

– com.digitalasset.canton.protocol.TransferId

• Description: Transfers the given contract out of the origin domain with destination target

domain. The command returns the ID of the transfer when the transfer-out has completed

successfully. The contract is in transit until the transfer-in has completed on the target

domain. The submitting party must be a stakeholder of the contract and the participant

must have submission rights for the submitting party on the origin domain. It must also

be connected to the target domain.

transfer.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Ledger Pruning

pruning.find_safe_offset (Preview)

• Summary: Return the highest participant ledger offset whose record time is before or at

the given one (if any) at which pruning is safely possible

• Arguments:

– beforeOrAt: java.time.Instant

• Return type:

– Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

pruning.locate_offset (Preview)

• Summary: Identify the participant ledger offset to prune up to.

• Arguments:

– n: Long

• Return type:

– com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Return the participant ledger offset that corresponds to pruning “n” number

of transactions from the beginning of the ledger. Errors if the ledger holds less than “n”

transactions. Specifying “n” of 1 returns the offset of the first transaction (if the ledger is

non-empty).

pruning.get_offset_by_time

• Summary: Identify the participant ledger offset to prune up to based on the specified

timestamp.

• Arguments:

– upToInclusive: java.time.Instant

• Return type:

– Option[com.daml.ledger.api.v1.ledger_offset.LedgerOffset]

• Description: Return the largest participant ledger offset that has been processed before

or at the specified timestamp. The time is measured on the participant’s local clock at

3.3. User Manual 753

../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/TransferId.html

Daml SDK Documentation, 2.1.1

some point while the participant has processed the the event. Returns None if no such

offset exists.

pruning.prune_internally (Preview)

• Summary: Prune only internal ledger state up to the specified offset inclusively.

• Arguments:

– pruneUpTo: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Special-purpose variant of the prune command only available in the Enter-

prise Edition that prunesonly partial, internal participant ledger state freeingupspacenot

needed for serving ledger_api.transactions and ledger_api.completions re-

quests. In conjunction with prune, prune_internally enables pruning internal ledger

state more aggressively than externally observable data via the ledger api. In most use

cases prune should be used instead. Unlike prune, prune_internally has no visi-

ble effect on the Ledger API. The command returns Unit if the ledger has been success-

fully pruned or an error if the timestamp performs additional safety checks returning a

NOT_FOUND error if pruneUpTo is higher than the offset returned by find_safe_offset

on any domain with events preceding the pruning offset.

pruning.prune

• Summary: Prune the ledger up to the specified offset inclusively.

• Arguments:

– pruneUpTo: com.daml.ledger.api.v1.ledger_offset.LedgerOffset

• Description: Prunes the participant ledger up to the specified offset inclusively return-

ing Unit if the ledger has been successfully pruned. Note that upon successful prun-

ing, subsequent attempts to read transactions via ledger_api.transactions.flat

or ledger_api.transactions.trees or command completions via ledger_api.

completions.list by specifying a begin offset lower than the returned pruning offset

will result in a NOT_FOUND error. In the Enterprise Edition, prune performs a “full prune”

freeing up significantly more space and also performs additional safety checks returning

a NOT_FOUND error if pruneUpTo is higher than the offset returned by find_safe_off-

set on any domain with events preceding the pruning offset.

pruning.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Bilateral Commitments

commitments.computed

• Summary: Lookup ACS commitments locally computed as part of the reconciliation pro-

tocol

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– start: java.time.Instant

– end: java.time.Instant

– counterParticipant: Option[com.digitalasset.canton.topology.ParticipantId]

• Return type:

– Iterable[(com.digitalasset.canton.protocol.messages.CommitmentPeriod,

com.digitalasset.canton.topology.ParticipantId, com.digitalasset.canton.pro-

tocol.messages.AcsCommitment.CommitmentType)]

754 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html

Daml SDK Documentation, 2.1.1

commitments.received

• Summary: Lookup ACS commitments received from other participants as part of the rec-

onciliation protocol

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– start: java.time.Instant

– end: java.time.Instant

– counterParticipant: Option[com.digitalasset.canton.topology.ParticipantId]

• Return type:

– Iterable[com.digitalasset.canton.protocol.messages.SignedProtocolMes-

sage[com.digitalasset.canton.protocol.messages.AcsCommitment]]

commitments.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Participant Repair

repair.unignore_events

• Summary: Remove the ignored status from sequenced events.

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– from: com.digitalasset.canton.SequencerCounter

– to: com.digitalasset.canton.SequencerCounter

– force: Boolean

• Description: This command has no effect on ordinary (i.e., not ignored) events and on

events that do not exist. The command will fail, if marking events between from and to

as unignored would result in a gap in sequencer counters, namely if there is one empty

ignored event with sequencer counter between from and to and another empty ignored

event with sequencer counter greater than to. An empty ignored event is an event that has

been marked as ignored and not yet received by the participant. The command will also

fail, if force == false and from is smaller than the sequencer counter of the last event that

has beenmarked as clean. (Unignoring such eventswould normally have no effect, as they

have already been processed.)

repair.ignore_events

• Summary: Mark sequenced events as ignored.

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– from: com.digitalasset.canton.SequencerCounter

– to: com.digitalasset.canton.SequencerCounter

– force: Boolean

• Description: This is the last resort to ignore events that the participant is unable to pro-

cess. Ignoring eventsmay lead to subsequent failures, e.g., if the event creating a contract

is ignored and that contract is subsequently used. It may also lead to ledger forks if other

participants still process the ignored events. It is possible to mark events as ignored that

the participant has not yet received. The command will fail, if marking events between

from and to as ignored would result in a gap in sequencer counters, namely if from <= to

and from is greater than maxSequencerCounter + 1, where maxSequencerCounter is the great-

3.3. User Manual 755

../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/index.html
../../canton/scaladoc/com/digitalasset/canton/index.html

Daml SDK Documentation, 2.1.1

est sequencer counter of a sequenced event stored by the underlying participant. The

command will also fail, if force == false and from is smaller than the sequencer counter of

the last event that has been marked as clean. (Ignoring such events would normally have

no effect, as they have already been processed.)

repair.change_domain

• Summary: Move contracts with specified Contract IDs from one domain to another.

• Arguments:

– contractIds: Seq[com.digitalasset.canton.protocol.LfContractId]

– sourceDomain: com.digitalasset.canton.DomainAlias

– targetDomain: com.digitalasset.canton.DomainAlias

– skipInactive: Boolean

• Description: This is a last resort command to recover from data corruption in scenar-

ios in which a domain is irreparably broken and formerly connected participants need to

move contracts to another, healthy domain. The participant needs to be disconnected

from both the “sourceDomain” and the “targetDomain”. Also as of now the target do-

main cannot have had any inflight requests. Contracts already present in the target do-

main will be skipped, and this makes it possible to invoke this command in an “idem-

potent” fashion in case an earlier attempt had resulted in an error. The “skipInactive”

flag makes it possible to only move active contracts in the “sourceDomain”. As repair

commands are powerful tools to recover from unforeseen data corruption, but dangerous

under normal operation, use of this command requires (temporarily) enabling the “fea-

tures.enable-repair-commands” configuration. In addition repair commands can run for

an unbounded time depending on the number of contract ids passed in. Be sure to not

connect the participant to either domain until the call returns.

repair.purge

• Summary: Purge contracts with specified Contract IDs from local participant.

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– contractIds: Seq[com.digitalasset.canton.protocol.LfContractId]

– ignoreAlreadyPurged: Boolean

• Description: This is a last resort command to recover from data corruption, e.g. in sce-

narios in which participant contracts have somehow gotten out of sync and need to be

manually purged, or in situations in which stakeholders are no longer available to agree

to their archival. The participant needs to be disconnected from the domain on which

the contracts with “contractIds” reside at the time of the call, and as of now the domain

cannot have had any inflight requests. The “ignoreAlreadyPurged” flag makes it possi-

ble to invoke the command multiple times with the same parameters in case an earlier

command invocation has failed. As repair commands are powerful tools to recover from

unforeseen data corruption, but dangerous under normal operation, use of this command

requires (temporarily) enabling the “features.enable-repair-commands” configuration. In

addition repair commands can run for an unbounded time depending on the number of

contract ids passed in. Be sure to not connect the participant to the domain until the call

returns.

repair.add

• Summary: Add specified contracts to specific domain on local participant.

• Arguments:

– domain: com.digitalasset.canton.DomainAlias

– contractsToAdd: Seq[com.digitalasset.canton.protocol.SerializableCon-

tractWithWitnesses]

– ignoreAlreadyAdded: Boolean

756 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/index.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContractWithWitnesses.html
../../canton/scaladoc/com/digitalasset/canton/protocol/SerializableContractWithWitnesses.html

Daml SDK Documentation, 2.1.1

• Description: This is a last resort command to recover from data corruption, e.g. in sce-

narios in which participant contracts have somehow gotten out of sync and need to be

manually created. The participant needs to be disconnected from the specified “domain”

at the time of the call, and as of now the domain cannot have had any inflight requests. For

each “contractsToAdd”, specify “witnesses”, local parties, in caseno local party is a stake-

holder. The “ignoreAlreadyAdded” flag makes it possible to invoke the command multi-

ple times with the same parameters in case an earlier command invocation has failed.

As repair commands are powerful tools to recover from unforeseen data corruption, but

dangerous under normal operation, use of this command requires (temporarily) enabling

the “features.enable-repair-commands” configuration. In addition repair commands can

run for an unbounded time depending on the number of contracts passed in. Be sure to

not connect the participant to the domain until the call returns.

repair.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Resource Management

resources.resource_limits

• Summary: Get the resource limits of the participant.

• Return type:

– com.digitalasset.canton.participant.admin.ResourceLimits

resources.set_resource_limits

• Summary: Set resource limits for the participant.

• Arguments:

– limits: com.digitalasset.canton.participant.admin.ResourceLimits

• Description: While a resource limit is attained or exceeded, the participant will reject any

additional submission with GRPC status ABORTED. Most importantly, a submission will

be rejected before it consumes a significant amount of resources. There are two kinds of

limits: max_dirty_requests and max_rate. The number of dirty requests of a participant P

covers (1) requests initiated by P aswell as (2) requests initiated byparticipants other than

P that need to be validated by P. Compared to the maximum rate, the maximum number

of dirty requests reflects the load on the participant more accurately. However, the max-

imum number of dirty requests alone does not protect the system from “bursts”: If an

application submits a huge number of commands at once, themaximumnumber of dirty

requests will likely be exceeded. The maximum rate is a hard limit on the rate of com-

mands submitted to this participant through the ledger API. As the rate of commands is

checked and updated immediately after receiving a new command submission, an appli-

cation cannot exceed the maximum rate, even when it sends a “burst” of commands. To

determine a suitable value for max_dirty_requests, you should test the system under high

load. If you choose a higher value, throughput may increase, as more commands are vali-

dated in parallel. If you observe a high latency (time between submission and observing a

command completion) or even command timeouts, you should choose a lower value. Once

a suitable value for max_dirty_requests has been found, you should include “bursts” into

the tests to also find a suitable value formax_rate. Resource limits can only be changed, if

the server runs Canton enterprise. In the community edition, the server uses fixed limits

that cannot be changed.

3.3. User Manual 757

../../canton/scaladoc/com/digitalasset/canton/participant/admin/ResourceLimits.html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/ResourceLimits.html

Daml SDK Documentation, 2.1.1

resources.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Replication

replication.set_passive

• Summary: Set the participant replica to passive

• Description: Trigger a graceful fail-over from this active replica to another passive replica.

replication.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3.7.8 Multiple Participants

This section lists the commands available for a sequence of participants. They can be used on the

participant references participants.all, .local or .remote as:

participants.all.dars.upload("my.dar")

dars.upload

• Summary: Upload DARs to participants

• Arguments:

– darPath: String

– vetAllPackages: Boolean

– synchronizeVetting: Boolean

• Return type:

– Map[com.digitalasset.canton.console.ParticipantReference,String]

• Description: If vetAllPackages is true, the participants will vet the package on all domains

they are registered. If synchronizeVetting is true, the commandwill blockuntil thepackage

vetting transaction has been registered with all connected domains.

dars.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

domains.connect_local

• Summary: Register and potentially connect to new local domain

• Arguments:

– domain: com.digitalasset.canton.console.LocalDomainReference

– manualConnect: Boolean

• Description: If manualConnect is true, then we just store the configuration.

domains.register

• Summary: Register and potentially connect to domain

758 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/console/LocalDomainReference.html

Daml SDK Documentation, 2.1.1

• Arguments:

– config: com.digitalasset.canton.participant.domain.DomainConnectionConfig

domains.reconnect_all

• Summary: Reconnect to all domains for which manualStart = false

• Arguments:

– ignoreFailures: Boolean

• Description: If ignoreFailures is set to true (default), the reconnect all will succeed even if

somedomainsare offline. Theparticipantswill continueattempting to establishadomain

connection.

domains.reconnect

• Summary: Reconnect to domain

• Arguments:

– alias: com.digitalasset.canton.DomainAlias

– retry: Boolean

• Description: If retry is set to true (default), the commandwill return after the first attempt,

but keep on trying in the background.

domains.disconnect_local

• Summary: Disconnect from a local domain

• Arguments:

– domain: com.digitalasset.canton.console.LocalDomainReference

domains.disconnect

• Summary: Disconnect from domain

• Arguments:

– alias: com.digitalasset.canton.DomainAlias

domains.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3.7.9 Domain Administration Commands

config

• Summary: Returns the domain configuration

• Return type:

– LocalDomainReference.this.consoleEnvironment.environment.config.Domain-

ConfigType

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

stop

• Summary: Stop the instance

3.3. User Manual 759

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainConnectionConfig.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html
../../canton/scaladoc/com/digitalasset/canton/console/LocalDomainReference.html
../../canton/scaladoc/com/digitalasset/canton/DomainAlias.html

Daml SDK Documentation, 2.1.1

start

• Summary: Start the instance

id

• Summary: Yields the globally unique id of this domain. Throws an exception, if the id has

not yet been allocated (e.g., the domain has not yet been started).

• Return type:

– com.digitalasset.canton.topology.DomainId

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Health

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

760 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html

Daml SDK Documentation, 2.1.1

Database

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Participants

participants.active

• Summary: Test whether a participant is permissioned on this domain

• Arguments:

– participantId: com.digitalasset.canton.topology.ParticipantId

• Return type:

– Boolean

participants.set_state

• Summary: Change state and trust level of participant

• Arguments:

– participant: com.digitalasset.canton.topology.ParticipantId

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Description: Set the state of the participant within the domain. Valid permissions are

‘Submission’, ‘Confirmation’, ‘Observation’ and ‘Disabled’. Valid trust levels are ‘Vip’ and

‘Ordinary’. Synchronize timeout can be used to ensure that the state has been propagated

into the node

participants.list

• Summary: List participant states

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

3.3. User Manual 761

../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html

Daml SDK Documentation, 2.1.1

• Description: This command will list the currently valid state as stored in the authorized

store. For a deep inspection of the identity management history, use the topology.partici-

pant_domain_states.list command.

participants.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Sequencer

sequencer.authorize_ledger_identity (Preview)

• Summary: Authorize a ledger identity (e.g. an EthereumAccount) on the underlying ledger.

• Arguments:

– ledgerIdentity: com.digitalasset.canton.domain.sequencing.se-

quencer.LedgerIdentity

• Description: Authorize a ledger identity (e.g. an EthereumAccount) on the underlying

ledger. Currently only implemented for the Ethereumsequencer andhasno effect for other

sequencer integrations. See the authorization documentation of the Ethereum sequencer

integrations for more detail. “

sequencer.disable_member

• Summary: Disable the providedmember at the Sequencer that will allow any unread data

for them to be removed

• Arguments:

– member: com.digitalasset.canton.topology.Member

• Description: This will prevent any client for the givenmember to reconnect the Sequencer

and allow any unread/unacknowledged data they have to be removed. This should only

be used if the domain operation is confident the member will never need to reconnect

as there is no way to re-enable the member. To view members using the sequencer run

sequencer.status().”

sequencer.pruning.force_prune_at

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying the exact

time at which to prune

sequencer.pruning.prune_at

• Summary: Remove data that has been read up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– String

• Description: Similar to the above prune command but allows specifying the exact time at

which to prune

762 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/LedgerIdentity.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/LedgerIdentity.html
../../canton/scaladoc/com/digitalasset/canton/topology/Member.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.1.1

sequencer.pruning.force_prune_with_retention_period

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying a custom

retention period

sequencer.pruning.prune_with_retention_period

• Summary: Remove data that has been read up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

• Return type:

– String

• Description: Similar to the above prune command but allows specifying a custom reten-

tion period

sequencer.pruning.force_prune

• Summary: Force remove data from the Sequencer including data that may have not been

read by offline clients

• Arguments:

– dryRun: Boolean

• Return type:

– String

• Description: Will force pruning up until the default retention period by potentially dis-

abling clients that have not yet read data we would like to remove. Disabling these clients

will prevent them from ever reconnecting to the Domain so should only be used if the

Domain operator is confident they can be permanently ignored. Run with dryRun = true to

review adescription of which clientswill be disabled first. Runwith dryRun = false to disable

these clients and perform a forced pruning.

sequencer.pruning.prune

• Summary: Remove unnecessary data from the Sequencer up until the default retention

point

• Return type:

– String

• Description: Removes unnecessary data from the Sequencer that is earlier than the de-

fault retention period. The default retention period is set in the configuration of the can-

ton processing running this command under parameters.retention-period-defaults.sequencer.

This pruning command requires that data is read and acknowledged by clients before con-

sidering it safe to remove. If no data is being removed it could indicate that clients are not

reading or acknowledging data in a timely fashion (typically due to nodes going offline for

long periods). You have the option of disabling the members running on these nodes to

allow removal of this data, however this will mean that they will be unable to reconnect to

the domain in the future. To do this run force_prune(dryRun = true) to return a description

of which members would be disabled in order to prune the Sequencer. If you are happy to

disable the described clients then run force_prune(dryRun = false) to permanently remove

their unread data. Once offline clients have been disabled you can continue to run prune

normally.

3.3. User Manual 763

Daml SDK Documentation, 2.1.1

sequencer.pruning.status

• Summary: Status of the sequencer and its connected clients

• Return type:

– com.digitalasset.canton.domain.sequencing.sequencer.SequencerPruningStatus

• Description: Provides a detailed breakdown of information required for pruning: - the

current time according to this sequencer instance - domainmembers that the sequencer

supports - for each member when they were registered and whether they are enabled - a

list of clients for eachmember, their last acknowledgement, andwhether they are enabled

sequencer.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Mediator

mediator.prune_at

• Summary: Prune the mediator of unnecessary data up to and including the given times-

tamp

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

mediator.prune_with_retention_period

• Summary: Prune the mediator of unnecessary data while keeping data for the provided

retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

mediator.prune

• Summary: Prune the mediator of unnecessary data while keeping data for the default

retention period

• Description: Removes unnecessary data from theMediator that is earlier than the default

retention period. The default retention period is set in the configuration of the cantonnode

running this command under parameters.retention-period-defaults.mediator.

mediator.initialize

• Summary: Initialize a mediator

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– mediatorId: com.digitalasset.canton.topology.MediatorId

– domainParameters: com.digitalasset.canton.protocol.StaticDomainParameters

– sequencerConnection: com.digitalasset.canton.sequencing.SequencerCon-

nection

– topologySnapshot: Option[com.digitalasset.canton.topology.store.Stored-

TopologyTransactions[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp.Positive]]

– cryptoType: String

• Return type:

– com.digitalasset.canton.crypto.PublicKey

mediator.help

764 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/SequencerPruningStatus.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.1.1

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

mediator.testing.await_domain_time (Testing)

• Summary: Await for the given time to be reached on the domain

• Arguments:

– time: com.digitalasset.canton.data.CantonTimestamp

– timeout: com.digitalasset.canton.config.TimeoutDuration

mediator.testing.fetch_domain_time (Testing)

• Summary: Fetch the current time from the domain

• Arguments:

– timeout: com.digitalasset.canton.config.TimeoutDuration

• Return type:

– com.digitalasset.canton.data.CantonTimestamp

mediator.testing.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

3.3. User Manual 765

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html

Daml SDK Documentation, 2.1.1

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainIdentityManagerId.Code’.

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKeyWithName

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– key: com.digitalasset.canton.crypto.PublicKey

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

context to that key.

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

766 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html

Daml SDK Documentation, 2.1.1

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.v0.CryptoKeyPair

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pair: com.digitalasset.canton.crypto.v0.CryptoKeyPair

– name: Option[String]

keys.secret.upload

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

keys.secret.rotate_hmac_secret

• Summary: Rotate the HMAC secret

• Arguments:

– length: Int

• Description: Replace the stored HMAC secret with a new generated secret of the given

length. length: Length of the HMAC secret. Must be at least 128 bits, but less than the

internal block size of the hash function.

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

3.3. User Manual 767

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html

Daml SDK Documentation, 2.1.1

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

certs.load (Preview)

• Summary: Import X509 certificate in PEM format

• Arguments:

– x509Pem: String

• Return type:

– String

certs.list (Preview)

• Summary: List locally stored certificates

• Arguments:

– filterUid: String

• Return type:

– List[com.digitalasset.canton.admin.api.client.data.CertificateResult]

certs.generate (Preview)

• Summary: Generate a self-signed certificate

• Arguments:

– uid: com.digitalasset.canton.topology.UniqueIdentifier

– certificateKey: com.digitalasset.canton.crypto.Fingerprint

– additionalSubject: String

– subjectAlternativeNames: Seq[String]

• Return type:

– com.digitalasset.canton.admin.api.client.data.CertificateResult

Parties

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

768 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html

Daml SDK Documentation, 2.1.1

participants and their permission on the domain for that party is given. filterParty: Filter

by parties starting with the given string. filterParticipant: Filter for parties that are hosted

by a participant with an id starting with the given string filterDomain: Filter by domains

whose id starts with the given string. asOf: Optional timestamp to inspect the topology

state at a given point in time. limit: Limit on the number of parties fetched (defaults to

100). Example: participant1.parties.list(filterParty=”alice”)

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Service

service.update_dynamic_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.protocol.DynamicDomainParameters =>

com.digitalasset.canton.protocol.DynamicDomainParameters

service.set_dynamic_domain_parameters

• Summary: Set the Dynamic Domain Parameters configured for the domain

• Arguments:

– dynamicDomainParameters: com.digitalasset.canton.protocol.DynamicDo-

mainParameters

service.get_dynamic_domain_parameters

• Summary: Get the Dynamic Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.protocol.DynamicDomainParameters

service.get_static_domain_parameters

• Summary: Get the Static Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.protocol.StaticDomainParameters

service.list_accepted_agreements

• Summary: List the accepted service agreements

• Return type:

– Seq[com.digitalasset.canton.domain.service.ServiceAgreementAcceptance]

service.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3. User Manual 769

../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/domain/service/ServiceAgreementAcceptance.html

Daml SDK Documentation, 2.1.1

Topology Administration

Topology commands run on the domain topology manager immediately affect the topology state of

the domain, which means that all changes are immediately pushed to the connected participants.

topology.load_transaction

• Summary: Upload signed topology transaction

• Arguments:

– bytes: com.google.protobuf.ByteString

• Description: Topology transactions can be issued with any topology manager. In some

cases, such transactions need to be copiedmanually between nodes. This function allows

for uploading previously exported topology transaction into the authorized store (which

is the name of the topology managers transaction store.

topology.init_id

• Summary: Initialize the node with a unique identifier

• Arguments:

– identifier: com.digitalasset.canton.topology.Identifier

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

• Return type:

– com.digitalasset.canton.topology.UniqueIdentifier

• Description: Every node in Canton is identified using a unique identifier, which is com-

posed from a user-chosen string and a fingerprint of a signing key. The signing key is the

root key of said namespace. During initialisation, we have to pick such a unique identi-

fier. By default, initialisation happens automatically, but it can be turned off by setting the

auto-init option to false. Automatic node initialisation is usually turned off to preseve the

identity of a participant or domain node (duringmajor version upgrades) or if the topology

transactions are managed through a different topology manager than the one integrated

into this node.

topology.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.stores.list

• Summary: List available topology stores

• Return type:

– Seq[String]

• Description: Topology transactions are stored in these stores. There are the following

stores: “Authorized” - The authorized store is the store of a topologymanager. Updates to

the topology state are made by adding new transactions to the “Authorized” store. Both

the participant and the domain nodes topology manager have such a store. A partici-

pant node will distribute all the content in the Authorized store to the domains it is con-

nected to. The domain node will distribute the content of the Authorized store through

the sequencer to the domain members in order to create the authoritative topology state

on a domain (which is stored in the store named using the domain-id), such that every

domain member will have the same view on the topology state on a particular domain.

“<domain-id> - The domain store is the authorized topology state on a domain. A partici-

pant has one store for each domain it is connected to. The domain has exactly one store

with its domain-id. “Requested” - A domain can be configured such that when participant

tries to register a topology transaction with the domain, the transaction is placed into the

770 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/Identifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html

Daml SDK Documentation, 2.1.1

“Requested” store such that it can be analysed and processed with user defined process.

topology.stores.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.namespace_delegations.list

• Summary: List namespace delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterNamespace: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListNamespaceDelegationRe-

sult]

• Description: List the namespace delegation transaction present in the stores. Names-

pace delegations are topology transactions that permission a key to issue topology trans-

actions within a certain namespace. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorized with a key that starts with the given filter string. filterNames-

pace: Filter for namespaces starting with the given filter string. filterTargetKey: Filter for

namespaces delegations for the given target key.

topology.namespace_delegations.authorize

• Summary: Change namespace delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– namespace: com.digitalasset.canton.crypto.Fingerprint

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– isRootDelegation: Boolean

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority to authorize topology transactions in a certain

namespace to a certain key. The keys are referred to using their fingerprints. They need to

be either locally generated or have been previously imported. ops: Either Add or Remove

the delegation. signedBy: Optional fingerprint of the authorizing key. The authorizing key

needs to be either the authorizedKey for root certificates. Otherwise, the signedBy key

needs to refer to a previously authorized key, which means that we use the signedBy key

3.3. User Manual 771

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListNamespaceDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

to refer to a locally available CA. authorizedKey: Fingerprint of the key to be authorized. If

signedBy equals authorizedKey, then this transaction corresponds to a self-signed root

certificate. If the keys differ, then we get an intermediate CA. isRootDelegation: If set to

true (default = false), the authorized key will be allowed to issue NamespaceDelegations.

synchronize: Synchronize timeout can be used to ensure that the state has been propa-

gated into the node

topology.namespace_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.identifier_delegations.list

• Summary: List identifier delegation transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

– filterTargetKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListIdentifierDelegationRe-

sult]

• Description: List the identifier delegation transaction present in the stores. Identifier

delegations are topology transactions that permission a key to issue topology transac-

tions for a certain unique identifier. filterStore: Filter for topology stores starting with the

given filter string (Authorized, <domain-id>, Requested) useStateStore: If true (default),

only properly authorized transactions that are part of the statewill be selected. timeQuery:

The timequery allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when the

transactionwas added to the store operation: Optionally, what type of operation the trans-

action should have. State store only has “Add”. filterSigningKey: Filter for transactions

that are authorized with a key that starts with the given filter string. filterUid: Filter for

unique identifiers starting with the given filter string.

topology.identifier_delegations.authorize

• Summary: Change identifier delegation

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– identifier: com.digitalasset.canton.topology.UniqueIdentifier

– authorizedKey: com.digitalasset.canton.crypto.Fingerprint

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

• Description: Delegates the authority of a certain identifier to a certain key. This corre-

sponds to a normal certificate which binds identifier to a key. The keys are referred to

using their fingerprints. They need to be either locally generated or have been previously

772 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListIdentifierDelegationResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

imported. ops: Either Add or Remove the delegation. signedBy: Refers to the optional fin-

gerprint of the authorizing keywhich in turn refers to a specific, locally existing certificate.

authorizedKey: Fingerprint of the key to be authorized. synchronize: Synchronize timeout

can be used to ensure that the state has been propagated into the node

topology.identifier_delegations.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.owner_to_key_mappings.rotate_key

• Summary: Rotate the key for an owner to key mapping

• Arguments:

– owner: com.digitalasset.canton.topology.KeyOwner

– currentKey: com.digitalasset.canton.crypto.PublicKey

– newKey: com.digitalasset.canton.crypto.PublicKey

• Description: Rotates the key for an existing owner to keymapping by issuing a new owner

to key mapping with the new key and removing the previous owner to key mapping with

the previous key. owner: The owner of the owner to key mapping currentKey: The current

public key that will be rotated newKey: The new public key that has been generated

topology.owner_to_key_mappings.list

• Summary: List owner to key mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterKeyOwnerUid: String

– filterKeyPurpose: Option[com.digitalasset.canton.crypto.KeyPurpose]

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListOwnerToKeyMappingRe-

sult]

• Description: List the owner to key mapping transactions present in the stores. Owner to

key mappings are topology transactions defining that a certain key is used by a certain

key owner. Key owners are participants, sequencers, mediators and domains. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transaction was added to the store op-

eration: Optionally, what type of operation the transaction should have. State store only

has “Add”. filterSigningKey: Filter for transactions that are authorized with a key that

starts with the given filter string. filterKeyOwnerType: Filter for a particular type of key

owner (KeyOwnerCode). filterKeyOwnerUid: Filter for key owners unique identifier start-

ing with the given filter string. filterKeyPurpose: Filter for keys with a particular purpose

(Encryption or Signing)

3.3. User Manual 773

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListOwnerToKeyMappingResult.html

Daml SDK Documentation, 2.1.1

topology.owner_to_key_mappings.authorize

• Summary: Change an owner to key mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– key: com.digitalasset.canton.crypto.Fingerprint

– purpose: com.digitalasset.canton.crypto.KeyPurpose

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change a owner to key mapping. A key owner is anyone in the system that

needs a key-pair known to allmembers (participants, mediator, sequencer, topologyman-

ager) of a domain. ops: Either Add or Remove the key mapping update. signedBy: Op-

tional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. ownerType: Role of the following owner (Participant, Sequencer, Mediator,

DomainIdentityManager) owner: Unique identifier of the owner. key: Fingerprint of key

purposes: The purposes of the owner to key mapping. force: removing the last key is dan-

gerous and must therefore be manually forced synchronize: Synchronize timeout can be

used to ensure that the state has been propagated into the node

topology.owner_to_key_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.party_to_participant_mappings.list

• Summary: List party to participant mapping transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParty: String

– filterParticipant: String

– filterRequestSide: Option[com.digitalasset.canton.topology.transaction.Re-

questSide]

– filterPermission: Option[com.digitalasset.canton.topology.transaction.Par-

ticipantPermission]

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartyToParticipantResult]

• Description: List the party to participant mapping transactions present in the stores.

Party to participant mappings are topology transactions used to allocate a party to a cer-

tain participant. The same party can be allocated on several participants with different

privileges. A party to participant mapping has a request-side that identifies whether the

mapping is authorized by the party, by the participant or by both. In order to have a party

be allocated to a given participant, we therefore need either two transactions (one with

RequestSide.From, one with RequestSide.To) or one with RequestSide.Both. filterStore: Fil-

774 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartyToParticipantResult.html

Daml SDK Documentation, 2.1.1

ter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterParty: Filter for parties starting with the given filter string.

filterParticipant: Filter for participants starting with the given filter string. filterRequest-

Side: Optional filter for a particular request side (Both, From, To).

topology.party_to_participant_mappings.authorize (Preview)

• Summary: Change party to participant mapping

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– party: com.digitalasset.canton.topology.PartyId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a party to a participant. If both identifiers are

in the same namespace, then the request-side is Both. If they differ, then we need to say

whether the request comes from the party (RequestSide.From) or from the participant (Re-

questSide.To). And, we need the matching request of the other side. Please note that this

is a preview feature due to the fact that inhomogeneous topologies can not yet be properly

represented on the Ledger API. ops: Either Add or Remove the mapping signedBy: Refers

to the optional fingerprint of the authorizing key which in turn refers to a specific, locally

existing certificate. party: The unique identifier of the party we want to map to a partici-

pant. participant: The unique identifier of the participant to which the party is supposed

to be mapped. side: The request side (RequestSide.From if we the transaction is from the

perspective of the party, RequestSide.To from the participant.) privilege: The privilege of

the given participant which allows us to restrict an association (e.g. Confirmation or Ob-

servation). replaceExisting: If true (default), replace any existing mapping with the new

setting synchronize: Synchronize timeout can be used to ensure that the state has been

propagated into the node

topology.party_to_participant_mappings.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.participant_domain_states.active

• Summary: Returns true if the given participant is currently active on the given domain

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– participantId: com.digitalasset.canton.topology.ParticipantId

3.3. User Manual 775

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/PartyId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html

Daml SDK Documentation, 2.1.1

• Return type:

– Boolean

• Description: Active means that the participant has been granted at least observation

rights on the domain and that the participant has registered a domain trust certificate

topology.participant_domain_states.authorize

• Summary: Change participant domain states

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– domain: com.digitalasset.canton.topology.DomainId

– participant: com.digitalasset.canton.topology.ParticipantId

– side: com.digitalasset.canton.topology.transaction.RequestSide

– permission: com.digitalasset.canton.topology.transaction.ParticipantPermis-

sion

– trustLevel: com.digitalasset.canton.topology.transaction.TrustLevel

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– replaceExisting: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: Change the association of a participant to a domain. In order to activate a

participant on a domain, we need both authorisation: the participant authorising its uid

to be present on a particular domain and the domain to authorise the presence of a partic-

ipant on said domain. If both identifiers are in the samenamespace, then the request-side

can be Both. If they differ, thenwe need to saywhether the request comes from the domain

(RequestSide.From) or from the participant (RequestSide.To). And, we need the matching

request of the other side. ops: Either Add or Remove the mapping signedBy: Refers to the

optional fingerprint of the authorizing key which in turn refers to a specific, locally exist-

ing certificate. domain: The unique identifier of the domain we want the participant to

join. participant: The unique identifier of the participant. side: The request side (Request-

Side.From ifwe the transaction is from the perspective of the domain, RequestSide.To from

the participant.) permission: The privilege of the given participant which allows us to re-

strict an association (e.g. Confirmation or Observation). Will use the lower of if different

between To/From. trustLevel: The trust level of the participant on the given domain. Will

use the lower of if different between To/From. replaceExisting: If true (default), replace any

existing mapping with the new setting synchronize: Synchronize timeout can be used to

ensure that the state has been propagated into the node

topology.participant_domain_states.list

• Summary: List participant domain states

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterDomain: String

– filterParticipant: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListParticipantDomain-

StateResult]

776 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/RequestSide.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/ParticipantPermission.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TrustLevel.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListParticipantDomainStateResult.html

Daml SDK Documentation, 2.1.1

• Description: List the participant domain transactions present in the stores. Participant

domain states are topology transactions used to permission a participant on a given do-

main. A participant domain state has a request-side that identifies whether the mapping

is authorized by the participant (From), by the domain (To) or by both (Both). In order

to use a participant on a domain, both have to authorize such a mapping. This means

that by authorizing such a topology transaction, a participant acknowledges its presence

on a domain, whereas a domain permissions the participant on that domain. filterStore:

Filter for topology stores starting with the given filter string (Authorized, <domain-id>, Re-

quested) useStateStore: If true (default), only properly authorized transactions that are

part of the state will be selected. timeQuery: The time query allows to customize the query

by time. The following options are supported: TimeQuery.HeadState (default): The most

recent known state. TimeQuery.Snapshot(ts): The state at a certain point in time. Time-

Query.Range(fromO, toO): Time-range of when the transactionwas added to the store oper-

ation: Optionally, what type of operation the transaction should have. State store only has

“Add”. filterSigningKey: Filter for transactions that are authorized with a key that starts

with the given filter string. filterDomain: Filter for domains starting with the given filter

string. filterParticipant: Filter for participants starting with the given filter string.

topology.participant_domain_states.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.legal_identities.authorize (Preview)

• Summary: Authorize a legal identity claim transaction

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– claim: com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

• Return type:

– com.google.protobuf.ByteString

topology.legal_identities.generate_x509 (Preview)

• Summary: Generate a signed legal identity claim for a specific X509 certificate

• Arguments:

– uid: com.digitalasset.canton.topology.UniqueIdentifier

– certificateId: com.digitalasset.canton.crypto.CertificateId

• Return type:

– com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

topology.legal_identities.generate (Preview)

• Summary: Generate a signed legal identity claim

• Arguments:

– claim: com.digitalasset.canton.topology.transaction.LegalIdentityClaim

• Return type:

– com.digitalasset.canton.topology.transaction.SignedLegalIdentityClaim

topology.legal_identities.list_x509 (Preview)

• Summary: List legal identities with X509 certificates

• Arguments:

– filterStore: String

– useStateStore: Boolean

3.3. User Manual 777

../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/CertificateId.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/LegalIdentityClaim.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/SignedLegalIdentityClaim.html

Daml SDK Documentation, 2.1.1

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

• Return type:

– Seq[(com.digitalasset.canton.topology.UniqueIdentifier, com.digitalasset.can-

ton.crypto.X509Certificate)]

• Description: List the X509 certificates used as legal identities associated with a unique

identifier. A legal identity allows to establish a link between an unique identifier and some

external evidence of legal identity. Currently, the only X509 certificate are supported as ev-

idence. Except for the CCF integration that requires participants to possess a valid X509

certificate, legal identities have no functional use within the system. They are purely infor-

mational. filterStore: Filter for topology stores starting with the given filter string (Autho-

rized, <domain-id>, Requested) useStateStore: If true (default), only properly authorized

transactions that are part of the state will be selected. timeQuery: The time query allows

to customize the query by time. The following options are supported: TimeQuery.Head-

State (default): The most recent known state. TimeQuery.Snapshot(ts): The state at a cer-

tain point in time. TimeQuery.Range(fromO, toO): Time-range of when the transaction was

added to the store operation: Optionally, what type of operation the transaction should

have. State store only has “Add”. filterSigningKey: Filter for transactions that are autho-

rizedwith a key that startswith the given filter string. filterUid: Filter for unique identifiers

starting with the given filter string.

topology.legal_identities.list (Preview)

• Summary: List legal identities

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterUid: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListSignedLegalIdentityClaim-

Result]

• Description: List the legal identities associated with a unique identifier. A legal iden-

tity allows to establish a link between an unique identifier and some external evidence of

legal identity. Currently, the only type of evidence supported are X509 certificates. Ex-

cept for the CCF integration that requires participants to possess a valid X509 certifi-

cate, legal identities have no functional use within the system. They are purely informa-

tional. filterStore: Filter for topology stores startingwith the given filter string (Authorized,

<domain-id>, Requested) useStateStore: If true (default), only properly authorized trans-

actions that are part of the state will be selected. timeQuery: The time query allows to cus-

tomize the query by time. The following options are supported: TimeQuery.HeadState (de-

fault): The most recent known state. TimeQuery.Snapshot(ts): The state at a certain point

in time. TimeQuery.Range(fromO, toO): Time-range of when the transaction was added to

the store operation: Optionally, what type of operation the transaction should have. State

store only has “Add”. filterSigningKey: Filter for transactions that are authorized with a

key that starts with the given filter string. filterUid: Filter for unique identifiers starting

with the given filter string.

778 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListSignedLegalIdentityClaimResult.html

Daml SDK Documentation, 2.1.1

topology.vetted_packages.list

• Summary: List package vetting transactions

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterParticipant: String

– filterSigningKey: String

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListVettedPackagesResult]

• Description: List the package vetting transactions present in the stores. Participants

must vet Daml packages and submittersmust ensure that the receivingparticipants have

vetted the package prior to submitting a transaction (done automatically during submis-

sion and validation). Vetting is done by authorizing such topology transactions and reg-

istering with a domain. filterStore: Filter for topology stores starting with the given filter

string (Authorized, <domain-id>, Requested) useStateStore: If true (default), only prop-

erly authorized transactions that are part of the state will be selected. timeQuery: The

time query allows to customize the query by time. The following options are supported:

TimeQuery.HeadState (default): The most recent known state. TimeQuery.Snapshot(ts):

The state at a certain point in time. TimeQuery.Range(fromO, toO): Time-range of when

the transaction was added to the store operation: Optionally, what type of operation the

transaction should have. State store only has “Add”. filterSigningKey: Filter for transac-

tions that are authorizedwith a key that startswith the given filter string. filterParticipant:

Filter for participants starting with the given filter string.

topology.vetted_packages.authorize

• Summary: Change package vettings

• Arguments:

– ops: com.digitalasset.canton.topology.transaction.TopologyChangeOp

– participant: com.digitalasset.canton.topology.ParticipantId

– packageIds: Seq[com.daml.lf.data.Ref.PackageId]

– signedBy: Option[com.digitalasset.canton.crypto.Fingerprint]

– synchronize: Option[com.digitalasset.canton.config.TimeoutDuration]

– force: Boolean

• Return type:

– com.google.protobuf.ByteString

• Description: A participant will only process transactions that reference packages that all

involved participants have vetted previously. Vetting is done by registering a respective

topology transaction with the domain, which can then be used by other participants to

verify that a transaction is only using vetted packages. Note that all referenced and de-

pendent packages must exist in the package store. By default, only vetting transactions

addingnewpackages canbe issued. Removingpackage vettings and issuingpackage vet-

tings for other participants (if their identity is controlled through this participants topol-

ogy manager) or for packages that do not exist locally can only be run using the force =

true flag. However, these operations are dangerous and can lead to the situation of a par-

ticipant being unable to process transactions. ops: Either Add or Remove the vetting. par-

ticipant: The unique identifier of the participant that is vetting the package. packageIds:

The lf-package ids to be vetted. signedBy: Refers to the fingerprint of the authorizing key

which in turn must be authorized by a valid, locally existing certificate. If none is given,

a key is automatically determined. synchronize: Synchronize timeout can be used to en-

3.3. User Manual 779

../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListVettedPackagesResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/ParticipantId.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/config/TimeoutDuration.html

Daml SDK Documentation, 2.1.1

sure that the state has been propagated into the node force: Flag to enable dangerous

operations (default false). Great power requires great care.

topology.vetted_packages.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

topology.all.renew

• Summary: Renew all topology transactions that have been authorized with a previous key

using a new key

• Arguments:

– filterAuthorizedKey: com.digitalasset.canton.crypto.Fingerprint

– authorizeWith: com.digitalasset.canton.crypto.Fingerprint

• Description: Finds all topology transactions that have been authorized by filterAuthorized-

Key and renews those topology transactions by authorizing them with the new key autho-

rizeWith. filterAuthorizedKey: Filter the topology transactions by the key that has autho-

rized the transactions. authorizeWith: The key to authorize the renewed topology trans-

actions.

topology.all.list

• Summary: List all transaction

• Arguments:

– filterStore: String

– useStateStore: Boolean

– timeQuery: com.digitalasset.canton.topology.store.TimeQuery

– operation: Option[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp]

– filterAuthorizedKey: Option[com.digitalasset.canton.crypto.Fingerprint]

• Return type:

– com.digitalasset.canton.topology.store.StoredTopologyTransactions[com.digita-

lasset.canton.topology.transaction.TopologyChangeOp]

• Description: List all topology transactions in a store, independent of the particular type.

This method is useful for exporting entire states. filterStore: Filter for topology stores

starting with the given filter string (Authorized, <domain-id>, Requested) useStateStore:

If true (default), only properly authorized transactions that are part of the state will be

selected. timeQuery: The time query allows to customize the query by time. The follow-

ing options are supported: TimeQuery.HeadState (default): The most recent known state.

TimeQuery.Snapshot(ts): The state at a certain point in time. TimeQuery.Range(fromO,

toO): Time-range of when the transaction was added to the store operation: Optionally,

what type of operation the transaction should have. State store only has “Add”. filter-

AuthorizedKey: Filter the topology transactions by the key that has authorized the trans-

actions.

topology.all.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

780 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/store/TimeQuery.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html
../../canton/scaladoc/com/digitalasset/canton/topology/transaction/TopologyChangeOp.html

Daml SDK Documentation, 2.1.1

3.3.7.10 Domain Manager Administration Commands

config

• Summary: Returns the domain configuration

• Return type:

– com.digitalasset.canton.domain.config.EnterpriseDomainManagerConfig

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

stop

• Summary: Stop the instance

start

• Summary: Start the instance

id

• Summary: Yields the globally unique id of this domain. Throws an exception, if the id has

not yet been allocated (e.g., the domain has not yet been started).

• Return type:

– com.digitalasset.canton.topology.DomainId

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Setup

setup.onboard_new_sequencer

• Summary: Dynamically onboard new Sequencer node.

• Arguments:

– initialSequencer: com.digitalasset.canton.console.SequencerNodeReference

– newSequencer: com.digitalasset.canton.console.SequencerNodeReference

• Return type:

– com.digitalasset.canton.crypto.PublicKey

• Description: Use this command to dynamically onboard a new sequencer node that’s not

part of the initial set of sequencer nodes. Do not use this for database sequencers.

setup.onboard_mediator

• Summary: Onboard external Mediator node.

3.3. User Manual 781

../../canton/scaladoc/com/digitalasset/canton/domain/config/EnterpriseDomainManagerConfig.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.1.1

• Arguments:

– mediator: com.digitalasset.canton.console.MediatorReference

– sequencerConnections: Seq[com.digitalasset.canton.console.InstanceRefer-

enceWithSequencerConnection]

• Description: Use this command to onboard an external mediator node. If you’re boot-

strapping a domain with external sequencer(s) and this is the initial mediator, then use

setup.bootstrap_domain instead. For adding additional externalmediators or onboard an

external mediator with a domain that runs a single embedded sequencer, use this com-

mand.Note that you only need to call this once.

setup.init

• Summary: Initialize domain

• Arguments:

– sequencerConnection: com.digitalasset.canton.sequencing.SequencerCon-

nection

• Description: This command triggers domain initialization and should be called once the

initial topology data has been authorized and sequenced. This is called as part of the

setup.bootstrap command, so you are unlikely to need to call this directly.

setup.bootstrap_domain

• Summary: Bootstrap domain

• Arguments:

– sequencers: Seq[com.digitalasset.canton.console.SequencerNodeReference]

– mediators: Seq[com.digitalasset.canton.console.MediatorReference]

• Description: Use this command to bootstrap the domain with an initial set of external

sequencer(s) and external mediator(s). Note that you only need to call this once, however

it is safe to call it again if necessary in case something went wrong and this needs to be

retried.

setup.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Health

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

782 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/console/MediatorReference.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/InstanceReferenceWithSequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/console/SequencerNodeReference.html
../../canton/scaladoc/com/digitalasset/canton/console/MediatorReference.html

Daml SDK Documentation, 2.1.1

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Database

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Key Administration

keys.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.public.list_by_owner

• Summary: List keys for given keyOwner.

• Arguments:

– keyOwner: com.digitalasset.canton.topology.KeyOwner

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

3.3. User Manual 783

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwner.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html

Daml SDK Documentation, 2.1.1

• Description: This command is a convenience wrapper for list_key_owners, taking an ex-

plicit keyOwner as search argument. The response includes the public keys.

keys.public.list_owners

• Summary: List active owners with keys for given search arguments.

• Arguments:

– filterKeyOwnerUid: String

– filterKeyOwnerType: Option[com.digitalasset.canton.topology.KeyOwner-

Code]

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListKeyOwnersResult]

• Description: This command allows deep inspection of the topology state. The response

includes the public keys. Optional filterKeyOwnerType type can be ‘ParticipantId.Code’ ,

‘MediatorId.Code’,’SequencerId.Code’, ‘DomainIdentityManagerId.Code’.

keys.public.list

• Summary: List public keys in registry

• Arguments:

– filterFingerprint: String

– filterContext: String

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys that have been added to the key registry. Optional

arguments can be used for filtering.

keys.public.download

• Summary: Download public key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.PublicKeyWithName

keys.public.upload

• Summary: Upload public key

• Arguments:

– filename: String

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

keys.public.upload

• Summary: Upload public key

• Arguments:

– key: com.digitalasset.canton.crypto.PublicKey

– name: Option[String]

• Return type:

– com.digitalasset.canton.crypto.Fingerprint

• Description: Import a public key and store it together with a name used to provide some

context to that key.

784 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/topology/KeyOwnerCode.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListKeyOwnersResult.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html

Daml SDK Documentation, 2.1.1

keys.public.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

keys.secret.delete

• Summary: Delete private key

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– force: Boolean

keys.secret.download

• Summary: Download key pair

• Arguments:

– fingerprint: com.digitalasset.canton.crypto.Fingerprint

– outputFile: Option[String]

• Return type:

– com.digitalasset.canton.crypto.v0.CryptoKeyPair

keys.secret.upload

• Summary: Upload a key pair

• Arguments:

– pair: com.digitalasset.canton.crypto.v0.CryptoKeyPair

– name: Option[String]

keys.secret.upload

• Summary: Upload (load and import) a key pair from file

• Arguments:

– filename: String

– name: Option[String]

keys.secret.rotate_hmac_secret

• Summary: Rotate the HMAC secret

• Arguments:

– length: Int

• Description: Replace the stored HMAC secret with a new generated secret of the given

length. length: Length of the HMAC secret. Must be at least 128 bits, but less than the

internal block size of the hash function.

keys.secret.generate_encryption_key

• Summary: Generate new public/private key pair for encryption and store it in the vault

• Arguments:

– name: String

– scheme: Option[com.digitalasset.canton.crypto.EncryptionKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.EncryptionPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.generate_signing_key

• Summary: Generate new public/private key pair for signing and store it in the vault

• Arguments:

– name: String

3.3. User Manual 785

../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html
../../canton/scaladoc/com/digitalasset/canton/crypto/v0/CryptoKeyPair.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/EncryptionPublicKey.html

Daml SDK Documentation, 2.1.1

– scheme: Option[com.digitalasset.canton.crypto.SigningKeyScheme]

• Return type:

– com.digitalasset.canton.crypto.SigningPublicKey

• Description: The optional nameargument allows you to store anassociated string for your

convenience. The scheme can be used to select a key scheme and the default scheme is

used if left unspecified.

keys.secret.list

• Summary: List keys in private vault

• Arguments:

– filterFingerprint: String

– filterName: String

– purpose: Set[com.digitalasset.canton.crypto.KeyPurpose]

• Return type:

– Seq[com.digitalasset.canton.crypto.PublicKeyWithName]

• Description: Returns all public keys to the corresponding private keys in the key vault.

Optional arguments can be used for filtering.

keys.secret.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

certs.load (Preview)

• Summary: Import X509 certificate in PEM format

• Arguments:

– x509Pem: String

• Return type:

– String

certs.list (Preview)

• Summary: List locally stored certificates

• Arguments:

– filterUid: String

• Return type:

– List[com.digitalasset.canton.admin.api.client.data.CertificateResult]

certs.generate (Preview)

• Summary: Generate a self-signed certificate

• Arguments:

– uid: com.digitalasset.canton.topology.UniqueIdentifier

– certificateKey: com.digitalasset.canton.crypto.Fingerprint

– additionalSubject: String

– subjectAlternativeNames: Seq[String]

• Return type:

– com.digitalasset.canton.admin.api.client.data.CertificateResult

786 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/SigningKeyScheme.html
../../canton/scaladoc/com/digitalasset/canton/crypto/SigningPublicKey.html
../../canton/scaladoc/com/digitalasset/canton/crypto/KeyPurpose.html
../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKeyWithName.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html
../../canton/scaladoc/com/digitalasset/canton/topology/UniqueIdentifier.html
../../canton/scaladoc/com/digitalasset/canton/crypto/Fingerprint.html
../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/CertificateResult.html

Daml SDK Documentation, 2.1.1

Parties

parties.list

• Summary: List active parties, their active participants, and the participants’ permissions

on domains.

• Arguments:

– filterParty: String

– filterParticipant: String

– filterDomain: String

– asOf: Option[java.time.Instant]

– limit: Int

• Return type:

– Seq[com.digitalasset.canton.admin.api.client.data.ListPartiesResult]

• Description: Inspect the parties known by this participant as used for synchronisation.

The response is built from the timestamped topology transactions of each domain, ex-

cluding the authorized store of the given node. For each known party, the list of active

participants and their permission on the domain for that party is given. filterParty: Filter

by parties starting with the given string. filterParticipant: Filter for parties that are hosted

by a participant with an id starting with the given string filterDomain: Filter by domains

whose id starts with the given string. asOf: Optional timestamp to inspect the topology

state at a given point in time. limit: Limit on the number of parties fetched (defaults to

100). Example: participant1.parties.list(filterParty=”alice”)

parties.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Service

service.update_dynamic_parameters

• Summary: Update the Dynamic Domain Parameters for the domain

• Arguments:

– modifier: com.digitalasset.canton.protocol.DynamicDomainParameters =>

com.digitalasset.canton.protocol.DynamicDomainParameters

service.set_dynamic_domain_parameters

• Summary: Set the Dynamic Domain Parameters configured for the domain

• Arguments:

– dynamicDomainParameters: com.digitalasset.canton.protocol.DynamicDo-

mainParameters

service.get_dynamic_domain_parameters

• Summary: Get the Dynamic Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.protocol.DynamicDomainParameters

service.get_static_domain_parameters

• Summary: Get the Static Domain Parameters configured for the domain

• Return type:

– com.digitalasset.canton.protocol.StaticDomainParameters

3.3. User Manual 787

../../canton/scaladoc/com/digitalasset/canton/admin/api/client/data/ListPartiesResult.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/DynamicDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/protocol/StaticDomainParameters.html

Daml SDK Documentation, 2.1.1

service.list_accepted_agreements

• Summary: List the accepted service agreements

• Return type:

– Seq[com.digitalasset.canton.domain.service.ServiceAgreementAcceptance]

service.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Topology Administration

Same as Domain Topology Administration.

3.3.7.11 Sequencer Administration Commands

ethereum.deploy_sequencer_contract

• Summary:

This function attempts to deploy the Solidity sequencer smart contract to the configured (Besu) network.

On success, it returns the contract address, the block height of the deployed

sequencer contract and the absolute path to where the contract config file was

written to. See the Ethereum demo for an example use of this function.

• Arguments:

– sequencerNames: Seq[String]

• Return type:

– (String, java.math.BigInteger, Option[java.nio.file.Path])

• Description: This function attempts to deploy the Solidity sequencer smart contract to

the configured (Besu) network. If any sequencerNames are given to the function, it will also

generate the mix-in configuration for these sequencers that configures the sequencer to

use the contract that was deployed and write the configuration to a tmp directory. In this

case, the absolute path to the file will be returned as java.nio.Path. If no sequencer names

are given, None is returned. On success, it returns the contract address and block height

of the deployed sequencer contract, and optionally an absolute path as described above.

Note that this function can’t be run over gRPC but needs to be used in a local Canton con-

sole. This function can only be executed when using an Ethereum sequencer and it will

use the configured values in the EthereumLedgerNodeConfig (e.g. the configured TLS, au-

thorization and client settings) when deploying the contract. Please refer to the Ethereum

demo for an example use of this function.

ethereum.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

config

• Summary: Returns the sequencer configuration

• Return type:

– com.digitalasset.canton.domain.sequencing.SequencerNodeConfig

is_initialized

788 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/service/ServiceAgreementAcceptance.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/SequencerNodeConfig.html

Daml SDK Documentation, 2.1.1

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

stop

• Summary: Stop the instance

start

• Summary: Start the instance

id

• Summary: Yields the globally unique id of this sequencer. Throws an exception, if the id

has not yet been allocated (e.g., the sequencer has not yet been started).

• Return type:

– com.digitalasset.canton.topology.SequencerId

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Sequencer

sequencer.authorize_ledger_identity (Preview)

• Summary: Authorize a ledger identity (e.g. an EthereumAccount) on the underlying ledger.

• Arguments:

– ledgerIdentity: com.digitalasset.canton.domain.sequencing.se-

quencer.LedgerIdentity

• Description: Authorize a ledger identity (e.g. an EthereumAccount) on the underlying

ledger. Currently only implemented for the Ethereumsequencer andhasno effect for other

sequencer integrations. See the authorization documentation of the Ethereum sequencer

integrations for more detail. “

sequencer.disable_member

• Summary: Disable the providedmember at the Sequencer that will allow any unread data

for them to be removed

• Arguments:

– member: com.digitalasset.canton.topology.Member

• Description: This will prevent any client for the givenmember to reconnect the Sequencer

and allow any unread/unacknowledged data they have to be removed. This should only

be used if the domain operation is confident the member will never need to reconnect

as there is no way to re-enable the member. To view members using the sequencer run

sequencer.status().”

3.3. User Manual 789

../../canton/scaladoc/com/digitalasset/canton/topology/SequencerId.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/LedgerIdentity.html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/LedgerIdentity.html
../../canton/scaladoc/com/digitalasset/canton/topology/Member.html

Daml SDK Documentation, 2.1.1

sequencer.pruning.force_prune_at

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying the exact

time at which to prune

sequencer.pruning.prune_at

• Summary: Remove data that has been read up until the specified time

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

• Return type:

– String

• Description: Similar to the above prune command but allows specifying the exact time at

which to prune

sequencer.pruning.force_prune_with_retention_period

• Summary: Force removing data from the Sequencer including data that may have not

been read by offline clients up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

– dryRun: Boolean

• Return type:

– String

• Description: Similar to the above force_prune command but allows specifying a custom

retention period

sequencer.pruning.prune_with_retention_period

• Summary: Remove data that has been read up until a custom retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

• Return type:

– String

• Description: Similar to the above prune command but allows specifying a custom reten-

tion period

sequencer.pruning.force_prune

• Summary: Force remove data from the Sequencer including data that may have not been

read by offline clients

• Arguments:

– dryRun: Boolean

• Return type:

– String

• Description: Will force pruning up until the default retention period by potentially dis-

abling clients that have not yet read data we would like to remove. Disabling these clients

will prevent them from ever reconnecting to the Domain so should only be used if the

Domain operator is confident they can be permanently ignored. Run with dryRun = true to

review adescription of which clientswill be disabled first. Runwith dryRun = false to disable

these clients and perform a forced pruning.

790 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html

Daml SDK Documentation, 2.1.1

sequencer.pruning.prune

• Summary: Remove unnecessary data from the Sequencer up until the default retention

point

• Return type:

– String

• Description: Removes unnecessary data from the Sequencer that is earlier than the de-

fault retention period. The default retention period is set in the configuration of the can-

ton processing running this command under parameters.retention-period-defaults.sequencer.

This pruning command requires that data is read and acknowledged by clients before con-

sidering it safe to remove. If no data is being removed it could indicate that clients are not

reading or acknowledging data in a timely fashion (typically due to nodes going offline for

long periods). You have the option of disabling the members running on these nodes to

allow removal of this data, however this will mean that they will be unable to reconnect to

the domain in the future. To do this run force_prune(dryRun = true) to return a description

of which members would be disabled in order to prune the Sequencer. If you are happy to

disable the described clients then run force_prune(dryRun = false) to permanently remove

their unread data. Once offline clients have been disabled you can continue to run prune

normally.

sequencer.pruning.status

• Summary: Status of the sequencer and its connected clients

• Return type:

– com.digitalasset.canton.domain.sequencing.sequencer.SequencerPruningStatus

• Description: Provides a detailed breakdown of information required for pruning: - the

current time according to this sequencer instance - domainmembers that the sequencer

supports - for each member when they were registered and whether they are enabled - a

list of clients for eachmember, their last acknowledgement, andwhether they are enabled

sequencer.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Health

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

3.3. User Manual 791

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/SequencerPruningStatus.html

Daml SDK Documentation, 2.1.1

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Database

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3.7.12 Mediator Administration Commands

config

• Summary: Returns the mediator configuration

• Return type:

– com.digitalasset.canton.domain.mediator.MediatorNodeConfig

is_initialized

• Summary: Check if the local instance is running and is fully initialized

• Return type:

– Boolean

is_running

• Summary: Check if the local instance is running

• Return type:

– Boolean

stop

• Summary: Stop the instance

792 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/mediator/MediatorNodeConfig.html

Daml SDK Documentation, 2.1.1

start

• Summary: Start the instance

id

• Summary: Yields the mediator id of this mediator. Throws an exception, if the id has not

yet been allocated (e.g., the mediator has not yet been initialised).

• Return type:

– com.digitalasset.canton.topology.MediatorId

clear_cache (Testing)

• Summary: Clear locally cached variables

• Description: Some commands cache values on the client side. Use this command to ex-

plicitly clear the caches of these values.

help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Mediator

mediator.prune_at

• Summary: Prune the mediator of unnecessary data up to and including the given times-

tamp

• Arguments:

– timestamp: com.digitalasset.canton.data.CantonTimestamp

mediator.prune_with_retention_period

• Summary: Prune the mediator of unnecessary data while keeping data for the provided

retention period

• Arguments:

– retentionPeriod: scala.concurrent.duration.FiniteDuration

mediator.prune

• Summary: Prune the mediator of unnecessary data while keeping data for the default

retention period

• Description: Removes unnecessary data from theMediator that is earlier than the default

retention period. The default retention period is set in the configuration of the cantonnode

running this command under parameters.retention-period-defaults.mediator.

mediator.initialize

• Summary: Initialize a mediator

• Arguments:

– domainId: com.digitalasset.canton.topology.DomainId

– mediatorId: com.digitalasset.canton.topology.MediatorId

– domainParameters: com.digitalasset.canton.protocol.StaticDomainParameters

– sequencerConnection: com.digitalasset.canton.sequencing.SequencerCon-

nection

– topologySnapshot: Option[com.digitalasset.canton.topology.store.Stored-

TopologyTransactions[com.digitalasset.canton.topology.transaction.Topology-

ChangeOp.Positive]]

– cryptoType: String

3.3. User Manual 793

../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/data/CantonTimestamp.html
../../canton/scaladoc/com/digitalasset/canton/topology/DomainId.html
../../canton/scaladoc/com/digitalasset/canton/topology/MediatorId.html
../../canton/scaladoc/com/digitalasset/canton/protocol/StaticDomainParameters.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html
../../canton/scaladoc/com/digitalasset/canton/sequencing/SequencerConnection.html

Daml SDK Documentation, 2.1.1

• Return type:

– com.digitalasset.canton.crypto.PublicKey

mediator.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Health

health.wait_for_initialized

• Summary: Wait for the node to be initialized

health.wait_for_running

• Summary: Wait for the node to be running

health.initialized

• Summary: Returns true if node has been initialized.

• Return type:

– Boolean

health.running

• Summary: Check if the node is running

• Return type:

– Boolean

health.status

• Summary: Get human (and machine) readable status info

• Return type:

– com.digitalasset.canton.health.admin.data.NodeStatus[S]

health.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

Database

db.repair_migration

• Summary: Only use when advised - repairs the database migration of the instance’s

database

• Arguments:

– force: Boolean

• Description: In some rare cases, we change already applied database migration files in

a new release and the repair command resets the checksums we use to ensure that in

general already applied migration files have not been changed. You should only use db.re-

pair_migration when advised and otherwise use it at your own risk - in the worst case run-

ning it may lead to data corruption when an incompatible database migration (one that

should be rejected because the already applied database migration files have changed)

is subsequently falsely applied.

794 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/crypto/PublicKey.html

Daml SDK Documentation, 2.1.1

db.migrate

• Summary: Migrates the instance’s database if using a database storage

db.help

• Summary: Help for specific commands (use help() or help(“method”) for more informa-

tion)

• Arguments:

– methodName: String

3.3.7.13 Code-Generation in Console

The Daml SDK provides code-generation utilities which create Java or Scala bindings for Damlmod-

els. These bindings are a convenient way to interact with the ledger from the console in a typed fash-

ion. The linked documentation explains how to create these bindings using the daml command. The

Scala bindings are not officially supported, so should not be used for application development.

Once you have successfully built the bindings, you can then load the resulting jar into the Canton

console using the magic Ammonite import trick within console scripts:

interp.load.cp(os.Path("codegen.jar", base = os.pwd))

@ // the at triggers the compilation such that we can use the imports subsequently

import ...

3.3.8 Contract Keys in Canton

Daml provides a “contract key” mechanism for contracts, similar to primary keys in relational

databases. When using multi-domain topologies, Canton will support the full syntax of contract

keys, but only a reduced semantics. That is, all valid Daml contracts using keys will run on Canton,

but their behavior may deviate from the prescribed one. This document explains the deviation, as

well as ways of recovering the full functionality of keys in some scenarios. It assumes a reasonable

familiarity with Daml.

Note: This section covers a preview feature, when using contract keys in a multi-domain setup.

By default, contract key uniqueness is enabled, and therefore this section does not apply. However,

contract key uniquenesswill soonbedeprecated, as uniqueness cannot be enforced amongmultiple

domains. We encourage to build your models already anticipating this change.

Keys have two main functions:

• Simplifying the modeling of mutable state in Daml. Daml contracts are immutable and can

be only created andarchived. Mutating a contractC ismodeledby archivingCandcreating

a new contract C
which is amodified version of C. Other than keys, Daml offers nomeans

to capture the relation between C and C
. After archiving C, any contract D that contains

the contract ID of C is left with a dangling reference. This makes it cumbersome to model

mutable state that is split across multiple contracts. Keys provide mutable references

in Daml; giving C and C
 the same key K allows D to store K as a reference that will start

pointing to C
 after archiving C.

• Checking that no active contract with a given key exists at some point in time. This

mainly serves to provide uniqueness guarantees, which are useful in many cases.

3.3. User Manual 795

https://docs.daml.com/tools/codegen.html

Daml SDK Documentation, 2.1.1

One is that they can serve to de-duplicate data coming from external sources. Another

one is that they allow “natural” mutable references, e.g., referring to a user by their

username or e-mail.

Canton participants and domains can be run in two modes:

1. In unique-contract-key (UCK) mode, contract keys in Canton provide both functions; there can be at most one active contract for each key on a UCK domain.

However, only UCK participants can connect to UCK domains and the first UCK domain a

UCK participant connects to is the only domain that the participant can connect to in its

lifetime. UCK domains and their participants are thus isolated islands that are deprived

of Canton’s composability and interoperability features.

2. In non-unique-keys mode, contract keys in Canton provide the first, but not the second function,

at least not without additional effort or restrictions. In particular:

1. In Canton, two (or more) active contracts with the same key may exist simultaneously on

the same or different domains.

2. If no submitting party is a stakeholder of an active contract instance of template Tem-

platewith the keyk visible on the submitting participantwhen the participant processes

the submission, then a lookupByKey @Template kmay return None even if an active

contract instance of template Templatewith the key k exists on the virtual shared ledger

at the point in time when the transaction is committed.

3. A fetchByKey @Template k or an exerciseByKey @Template k or a positive

lookupByKey @Template k (returning Some cid) may return any active contract of

template Template with key k.

In the remainder of the document we:

• give more detailed examples of the differences above

• give an overview of how keys are implemented so that you can better understand their behavior

• show workarounds for recovering the uniqueness functionality in particular scenarios on normal

domains

• give a formal semantics of keys in Canton, in terms of the Daml ledger model

• explain how to run a domain in UCK mode.

3.3.8.1 Domains with Uniqueness Guarantees

By default, Canton domains and participants are currently configured to provide unique contract

key (UCK) semantics. This will be deprecated in the future, as such a uniqueness constraint can not

be supported on a distributed system in a useful way. The semantic differences from the ledger model

disappear if the transactions are submitted to a participant connected to a Canton domain in UCK

mode. The workarounds are therefore not needed.

A UCK participant can connect only to a UCK domain. Moreover, once it has successfully connected

to a UCK domain, it will refuse to connect to another domain. Accordingly, conflict detection on a

single domain suffices to check for key uniqueness. Participants connected to a UCK domain check

for key conflicts whenever they host one of the key maintainers:

• When a contract is created, they check that there is no other active contract with the same key.

• When the submitted transaction contains a negative key lookup, the participants check that

there is indeed no active contract for the given key.

Warning: Daml workflows deployed on a UCK domain are locked into this domain. They cannot

use Canton’s composability and interoperability features because the participants will refuse to

796 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

connect to other domains.

3.3.8.2 Non Unique Contract Keys Mode

This section explains how contract keys behave on participants connected to Canton domains with-

out unique contract keys. This mode can be activated by setting

canton {

domains {

alpha {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

domain-parameters.unique-contract-keys = false

}

}

participants {

participant1 {

// subsequent changes have no effect and the mode of a node can never␣

↪→be changed

parameters.unique-contract-keys = false

}

}

}

Note: Non-Unique contract keys is preview only and currently broken. Multiple keys will override

each other.

Examples of Semantic Differences

Double Key Creation

Consider the following template:

template Keyed

with

sig: Party

k: Int

where

signatory sig

key (sig, k): (Party, Int)

maintainer key._1

The Daml contract key semantics prescribe that no two active Keyed contracts with the same keys

should exist. For example, consider the following Daml script:

multiple = script do

alice <- allocateParty "alice"

submitMustFail alice $ do

createCmd (Keyed with sig = alice, k = 1)

(continues on next page)

3.3. User Manual 797

Daml SDK Documentation, 2.1.1

(continued from previous page)

createCmd (Keyed with sig = alice, k = 1)

pure ()

Alice’s submission must fail, since it attempts to create two contracts with the key (Alice, 1). In

Canton, however, the submission is legal and will succeed (if executed, for example, through Daml

Script). Thus, you cannot directly rely on keys to ensure the uniqueness of user-chosen usernames

or external identifiers (e.g., order identifiers, health record identifiers, entity identifiers) in Canton.

False lookupByKey Negatives

Similarly, your code might rely on the negative case of a lookupByKey:

template Initialization

with

sig: Party

k: Int

where

signatory sig

template Orchestrator

with

sig: Party

where

signatory sig

controller sig can

nonconsuming Initialize: Optional (ContractId Initialization)

with

k: Int

do

optCid <- lookupByKey @Keyed (sig, k)

case optCid of

None -> do

create Keyed with ..

time <- getTime

cid <- create Initialization with sig, k

pure $ Some cid

Some _ -> pure None

When running a process (represented by the Initialization template here), youmight use a pat-

tern like above to ensure that it is run only once. The Initialization template does not have a

key. Nevertheless, if all processing happens through the Orchestrator template, there will only

ever be one Initialization created for the given party and key. For example, the following script

creates only one Initialization contract:

lookupNone = script do

alice <- allocateParty "alice"

orchestratorId <- submit alice do

createCmd Orchestrator with sig = alice

submit alice do

exerciseCmd orchestratorId Initialize with k = 1

submit alice do

exerciseCmd orchestratorId Initialize with k = 1

798 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

In scripts, transactions are executed sequentially. Alice’s second submission above will always

find the existing Keyed contract, and thus execute the Some branch of the Initialize choice. In

real-world applications, transactions may run concurrently. Assume that initTx1 and initTx2

are run concurrently, and that these are the first two transactions running the Initialize choice.

Then, during their preparation, both of them might execute the None branch (i.e., lookupByKey

might return a negative result), and thus both might try to create the Initialization contract.

However, negative lookupByKey results must be committed to the ledger, and the key consistency

requirements prohibit both of them committing. Thus, one of initTx1 and initTx2 might fail, or

they both might succeed (if one of them sees the effects of the other and then executes the Some

branch), but in either case, only one Initialization contract will be created.

In Canton, however, it is possible that both initTx1 and initTx2 execute the None branch, yet both

get committed. For example, if theparticipant processes the submissions forinitTx1andinitTx2

concurrently, neither will see initTx1 the Initialization contract created by initTx2 nor vice

versa. Canton orders the transactions only after the commandshave been interpreted, and in normal

mode it does not check the consistency of negative lookup by keys after ordering any more. Thus,

two Initialization contracts may get created.

Semantics of fetchByKey and Positive lookupByKey

Daml also provides a fetchByKey operation. Daml commands are evaluated against some active

contract set. WhenDaml encounters afetchByKey command, it tries to find an active contract with

the given key (and fails if it cannot). Since Daml semantics prescribe that only one such contract

may exist, it is clear which one to return. For example, consider the script:

fetchSome = script do

alice <- allocateParty "alice"

keyedId1 <- submit alice do

createCmd Keyed with sig = alice, k = 1

keyedId2 <- submitMustFail alice do

createCmd Keyed with sig = alice, k = 1

(foundId, _) <- submit alice do

createAndExerciseCmd (KeyedHelper alice) $ FetchByKey (alice, 1)

assert $ foundId == keyedId1

optFoundId <- submit alice do

createAndExerciseCmd (KeyedHelper alice) $ LookupByKey (alice, 1)

assert $ optFoundId == Some keyedId1

The script uses a helper template KeyedHelper shown at the end of this section because fetch-

ByKey and lookupByKey cannot be used directly in a Daml script.

Daml’s contract key semantics says that Alice’s second submission must fail, since a contract with

the given key already exists. Thus, her third submission will always succeed, and return keyedId1,

since this is the only Keyed contract with the key (Alice, 1). Similarly, her fourth submission will

also successfully find a contract, which will be keyedId1.

As discussed earlier, Alice’s second submission in the above script will succeed in Canton. Alice’s

third and fourth submissions thus may return different contract IDs, with each returning either

keyedId1, or keyedId2. Whichever one is returned, a successful fetchByKey and lookupByKey

still guarantees that the returned contract is active at the time when the transaction gets commit-

ted. As mentioned earlier, negative lookupByKey results may be spurious.

3.3. User Manual 799

https://discuss.daml.com/t/in-daml-script-do-we-have-equivalent-command-for-lookupbykey-fetchbykey/919

Daml SDK Documentation, 2.1.1

template KeyedHelper

with

p: Party

where

signatory p

choice FetchByKey: (ContractId Keyed, Keyed)

with keyP: (Party, Int)

controller p

do fetchByKey @Keyed keyP

choice LookupByKey: Optional (ContractId Keyed)

with keyP: (Party, Int)

controller p

do lookupByKey @Keyed keyP

Canton’s Implementation of Keys

Internally, a Canton participant node has a component that provides the gRPC interface (the “Ledger

API Server”), and another component that synchronizes participants (the “sync service”). When a

command is submitted, the Ledger API Server evaluates the command against its local view, in-

cluding the resolution of key lookups (lookupByKey and fetchByKey). Submitted commands are

evaluated in parallel, both on a single node and across different nodes.

The evaluated command is then sent to the sync service, which runs Canton’s commit protocol. The

protocol provides a linear ordering of all transactions on a single domain, and participants check

all transactions for conflicts, with an earlier-transaction-wins policy. As participants only see parts

of transactions (the joint projection of the parties they host), they only check conflicts on contracts

for which they host stakeholders. During conflict detection, positive key lookups (that find a con-

tract ID based on a key) are treated as ordinary fetch commands on the found contract ID, and the

contract ID is checked to still be active. Negative key lookups, on the other hand, are never checked

by Canton (a malicious submitter, for example, can always successfully claim that the lookup was

negative). Similarly, contract creations are not checked for duplicate keys. Logically, both of these

checks would require checking a “there is no such key” statement. Canton does not check such

statements. While adding the check to the individual participants is straightforward, it is hard to

getmeaningful guarantees from such local checks because each participant has only a limited view

of the entire virtual global ledger. For example, the check could pass locally on a participant even

though there exists a contract with the given key on some domain that the participant is not con-

nected to. Similarly, since the processing of different domains runs in parallel, it is unclear how to

consistently handle the case where transactions on different domains create two contracts with the

same key.

For integrity, the participants also re-evaluate the submitted command (or, more precisely, the sub-

transaction in the joint projection of the parties they host). The commit protocol ensures that any two

involved participants will evaluate the key lookups in the same way as the Ledger API Server of the

submitting participant. That is, if there are two active contracts with the key k, the protocol insures

that a fetchByKey k will return the same contract on all participants.

Once the syncprotocol commits a transaction, it informs the Ledger API server, which thenatomically

updates its set of active contracts. The transactions are passed to the Ledger API server in the order

in which they are recorded on the ledger.

800 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Workarounds for Recovering Uniqueness

Since some form of uniqueness for ledger data is necessary in many cases, we list some strategies

to achieve it in Cantonwithout being locked into a UCKdomain. The strategies’ applicability depends

on your contracts and the deployment setup of your application. In general, none of the strategies

apply to the case where creations and deletions of contracts with keys are delegated.

Setting: Single Maintainer, Single Participant Node

Often, contracts may have a single maintainer (e.g., an “operator” that wants to have unique user

names for its users). In the simplest case, themaintainer party will be hosted on just one participant

node. This setting allows some simple options for recovering uniqueness.

Command ID Deduplication

The Ledger API server deduplicates commands based on their IDs. Note, however, that the IDs are

deduplicated only within a configured window of time. This can simplify the uniqueness bookkeep-

ing of your application as follows. Before your application sends a command that creates a contract

with the key k, it should first check that no contract with the key k exists in a recent ACS snapshot

(obtained from the Ledger API). Then, it should use a command ID that is a deterministic function of

k to send the command. This protects you from the race condition of creating the key twice concur-

rently, without having to keep track of commands in flight. Caveats to keep in mind are:

• you need to know exactly which contracts with keys each of your commands will create

• your commands may only create contracts with a single key k

• only the maintainer party may submit commands that create contracts with keys (i.e., do not

delegate the creation to other parties).

However, these conditions are often true in simple cases (e.g., commands that create new users).

Generator Contract

Another approach is to funnel all creations of the keyed contracts through a “generator” contract.

An example generator for the Keyed template is shown below.

template Generator

with

sig: Party

where

signatory sig

controller sig can

Generate : (ContractId Generator, ContractId Keyed)

with

k: Int

do

existing <- lookupByKey @Keyed (sig, k)

keyed <- case existing of

Some cid -> pure cid

None ->

(continues on next page)

3.3. User Manual 801

Daml SDK Documentation, 2.1.1

(continued from previous page)

create Keyed with ..

gen <- create this

pure (gen, keyed)

The main difference from the Orchestrator contract is that the Generate choice is consuming.

Caveats to keep in mind are:

• Your applicationmust ensure that you only ever create one Generator contract (e.g., by creat-

ing one when initializing the application for the first time).

• All commands that create the Keyed contract must be issued by themaintainer (in particular,

do not delegate choices on the Generator contract to other parties).

• Youmust not create Keyed contracts by any other means other than exercising the Generate

choice.

• The Generate choice as shown abovewill not abort the command if the contract with the given

key already exists, it will just return the existing contract. However, this is easy to change.

• This approach relies on a particular internal behavior of Canton (as discussed below). While

we don’t expect the behavior to change, we do not currentlymake strong guarantees that it will

not change.

• If the participant is connected to multiple domains, the approach may fail in future versions

of Canton. To be future-proof, you should only use it in the settings when your participant is

connected to a single domain.

A usage example script is below.

generator = script do

alice <- allocateParty "Alice"

-- Your application must ensure that the following command runs at most once

gen <- submit alice $

createCmd Generator with sig = alice

(gen, keyed) <- submit alice $

exerciseCmd gen Generate with k = 1

(gen, keyed1) <- submit alice $

exerciseCmd gen Generate with k = 1

assert $ keyed1 == keyed

submit alice $

exerciseCmd keyed Archive

(gen, keyed2) <- submit alice $

exerciseCmd gen Generate with k = 1

assert $ keyed2 /= keyed

To understand why this works, first read how keys are implemented in Canton. With this inmind, since

the Generate choice is consuming, if you issue two or more concurrent commands that use the

Generate choice, at most one of them will succeed (as the Generator contract will be archived

when the first transaction commits). Thus, all accepted commands will be evaluated sequentially

by the Ledger API server. As the server writes the results of accepted commands to its database

atomically, the Keyed contract created by one command that uses Generate will either be visible

to the following command that usesGenerate, or it will have been archivedby someother, unrelated

command in between.

802 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Setting: Single Maintainer, Multiple Participants

Ensuring uniqueness with multiple participants is more complicated, and adds more restrictions

on how you operate on the contract.

The main approach is to track all “allocations” and “deallocations” of a key through a helper con-

tract.

template KeyState

with

sig: Party

k: Int

allocated: Bool

where

signatory sig

controller sig can

Allocate : (ContractId KeyState, ContractId Keyed)

do

assert $ not allocated

newState <- create this with allocated = True

keyed <- create Keyed with ..

pure (newState, keyed)

Deallocate : ContractId KeyState

do

assert $ allocated

(cid, _) <- fetchByKey @Keyed (sig, k)

exercise cid Archive

create this with allocated = False

Caveats:

• Before creating a contract with the key k for the first time, your application must create the

matching KeyState contract with allocated set to False. Such a contract must be created

at most once. Most likely, you will want to choose a “master” participant on which you create

such contracts.

• Do not delegate choices on the Keyed contract to parties other than the maintainers.

• Youmust never send a command that creates or archives the Keyed contract directly. Instead,

you must use the Allocate and Deallocate choices on the KeyState contract. The only

exception are consuming choices on the Keyed contract that immediately recreate a Keyed

contract with the same key. These choices may also be delegated.

A usage example script is below.

state = script do

alice <- allocateParty "Alice"

-- Your application must ensure that the following command executes at most once

state <- submit alice $

createCmd KeyState with sig = alice, k = 1, allocated = False

(state, keyed) <- submit alice $

exerciseCmd state Allocate

submitMustFail alice $

exerciseCmd state Allocate

-- If you archive the keyed contract without going through the

-- KeyState, you must also recreate it in the same transaction.

(continues on next page)

3.3. User Manual 803

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- For example, if Keyed had consuming choices, the choices
 bodies

-- would have to recreate another Keyed contract with the same key

submit alice $ do

exerciseCmd keyed Archive

createCmd Keyed with sig = alice, k = 1

pure ()

state <- submit alice $

exerciseCmd state Deallocate

(state, keyed2) <- submit alice $

exerciseCmd state Allocate

assert $ keyed2 /= keyed

An alternative to this approach, if you want to use a consuming choice ch on the Keyed template

that doesn’t recreate key, is to record the contract ID of theKeyState contract in theKeyed contract.

You can then call Deallocate from ch, but you must first modify Deallocate to not perform a

lookupByKey.

Setting: Multiple Maintainers

Achieving uniqueness for contracts withmultiplemaintainers ismore difficult, and themaintainers

must trust each other. To handle this case, follow the KeyState approach from the previous section.

Themain difference is that the KeyState contractsmust havemultiple signatories. Thus youmust

follow the usual Daml pattern of collecting signatories. Be aware that you must still structure this

such that you only ever create one KeyState contract.

Formal Semantics of Keys in Canton

In termsof theDaml ledgermodel, Canton’s virtual shared ledger satisfies key consistency onlywhen it

represents a single UCK domain. In general, Canton’s virtual shared ledger violates key consistency.

That is, NoSuchKey k actions may happen on the ledger even when there exists an active contract

with the key k. Similarly, Create actions for a contract with the key kmay appear on the ledger even

if another active contract with the key k exists.

In terms of Daml evaluation, i.e., the translation of Daml into the ledger model transactions, the

following changes:

• When evaluated against an active contract set, a fetchByKey k may result in a Fetch c

action for any active contract cwith the key k (in Canton, there can bemultiple such contracts).

In the current implementation, it will favor themost recently created contract within the single

transaction. However, this is not guaranteed to hold in future versions of Canton. If no contract

with key k is active, it will fail as usual.

• Similarly, lookupByKey kmay result in a Fetch c for any active contract c with the key k of

which the submitter is a stakeholder. If no such contract exists, it results in a NoSuchKey k

as usual.

• Likewise, an exerciseByKey kmay result in an Exercise on any contract c with the key k.

It fails if no contract with key k is active.

Important: This feature is only available in Canton Enterprise

804 Chapter 3. Canton Guide

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

3.3.9 Enterprise Drivers

The Canton Enterprise edition provides the following drivers in addition to the PostgreSQL-based

domain in the Canton Community edition.

Important: This feature is only available in Canton Enterprise

3.3.9.1 Trusted Enclave Domain (CCF)

The domain integration is based on trusted enclaves (Intel SGX) and is using the Confidential Con-

sortium Framework (CCF).

Getting Started

The getting started guide assumes that you have access to a Canton Enterprise release, the Canton

Enterprise docker repository, as well as having docker and docker-compose installed.

Run the Demo Deployment

The demo deployment consists of two Canton participant nodes, a Canton Enterprise domain as

well as a CCF-based sequencer. One docker container runs the Canton nodes and another docker

container is running the CCF network. The Ledger API ports of the two Canton participant nodes are

exposed to the host, such that Daml applications can be run from the host and connected to the

Ledger API as with any other Daml ledger.

Note that the demo deployment provides reduced security guarantees and should not be used for a

production deployment.

To spin up the demo deployment, a docker-compose.yaml file is packaged with the release ar-

tifacts. After unpacking the release archive and entering the canton-enterprise release directory,

perform the following steps.

First, we need to set the type of hardware security that is used by the CCF network. If you do not have

access to a SGX-capable machine, set export ENCLAVE=virtual to run with an insecure virtual

mode. If you do, set export ENCLAVE=release.

The demo deployment will by default use the Canton version from the release. However, if you wish

to use a different version, you can specify it with the CANTON_VERSION environment variable. For

example, export CANTON_VERSION=0.19.0 to use Canton v0.19.0. You can choose dev for the

latest main build of Canton.

Now we can start the demo deployment using docker-compose with the following commands:

cd examples/e02-ccf-domain && \

docker-compose -p canton-ccf-demo -f docker-compose.yaml \

-f demo/docker-compose.yaml run --rm --service-ports canton

By default, the Ledger API is available on localhost on the ports 5011 for participant1 and 5021 for

participant2.

3.3. User Manual 805

https://canton.io/enterprise
https://microsoft.github.io/CCF/main/
https://microsoft.github.io/CCF/main/

Daml SDK Documentation, 2.1.1

Once youhave completedusing thedemodeployment, you canshut it downanddelete the temporary

volumes with the following command:

docker-compose -p canton-ccf-demo -f docker-compose.yaml \

-f demo/docker-compose.yaml down -v

Customization of the Demo Configuration

The demo deployment is using a default Canton configuration and bootstrap file located in

examples/e02-ccf-domain/demo, which one can customize and restart the demo deployment.

Note that if you change the participants’ ledger API ports, you also need to change the port map-

pings in examples/e02-ccf-domain/demo/docker-compose.demo.yaml.

Security Considerations

The demo deployment, in particular when run in virtual mode, provides limited security guarantees.

Virtual mode means the CCF application is not leveraging trusted enclaves and runs as a regular

process, which does not provide the same confidentiality and security guarantees as an enclave. A

malicious host can extract any data from the virtual mode CCF application. Furthermore, in virtual

mode the application is logging on debug-level and thus may leak sensitive information to the host

that way too.

The demo deployment is using a test network setup with all CCF nodes running in a single con-

tainer, thus does not provide high availability. Furthermore, the test network operates with a single

pre-provisionedmember certificate, thereby that singlemember controls the entire CCF governance.

Important: This feature is only available in Canton Enterprise

3.3.9.2 Fabric Domain

The Canton-on-Fabric integration runs a Canton domain where events are sequenced using the Hy-

perledger Fabric ledger.

Tutorial

To run the demo Canton Fabric deployment, you will need access to the following:

• a Canton Enterprise release for the example files and the Canton enterprise binary

• Canton Enterprise docker repository access, in order to have access to the Canton docker image

Also make sure to have docker and docker-compose installed.

The following example explains how to set up Canton on Fabric using a topology with 2 sequencer

nodes, (belonging to two different organizations) a domain manager, a mediator, and two partici-

pants nodes.

The demo can be found in the examples directory of the Canton Enterprise release. Unpack the Can-

ton Enterprise release and then cd into examples/e01-fabric-domain/canton-on-fabric.

806 Chapter 3. Canton Guide

https://canton.io/enterprise
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html

Daml SDK Documentation, 2.1.1

Run the script ./run.sh full.

The script will start the following:

1. A Fabric ledger with 2 peers and one orderer node.

2. Two Canton Sequencer nodes that interact with the Fabric ledger.

3. A Canton process running a Canton domainmanager, a mediator, and 2 participants. The con-

figuration for this Canton process is in config/canton/demo.conf

Once the script has finished setting up (you should see the canton service print “Successfully ini-

tialized Canton-on-Fabric” together with the Canton console startup message), you will be able to

interact with the two participants using the config at config/remote/demo.conf.

You can start an instance of the Canton console to connect to the two remote participants (provided

you have also installed Canton):

<<canton-release>>/examples/e01-fabric-domain/canton-on-fabric$../../../bin/

↪→canton -c config/remote/demo.conf

You can then perform various commands in the Canton console:

@ remoteParticipant1.id

res1: ParticipantId = PAR::participant1::012c7af9...

@ remoteParticipant1.domains.list_connected

res2: Seq[(com.digitalasset.canton.DomainAlias, com.digitalasset.canton.

↪→DomainId)] = List((Domain
myDomain
, myDomain::01dafa04...))

@ remoteParticipant1.health.ping(remoteParticipant2)

res3: concurrent.duration.Duration = 946 milliseconds

User Manual

The example files located at examples/e01-fabric-domain/canton-on-fabric provide you

with more flexibility than to run the basic demo just shown.

You will find in this directory ourmain script called run.sh. If you run the script, it will show you the

help instructions with all the options that you can choose to run the deployment with.

The demo deployment will by default use the Canton version from the release. If you wish to use a

different version, you can specify it with the CANTON_VERSION environment variable. For example,

export CANTON_VERSION=2.0.0 to use Canton v2.0.0. You can choose dev for the latest main

build of Canton.

Depending on which options you choose, it will run a docker-compose command using a different

subset of the following docker-compose files below:

• docker-compose-ledger.yaml: Sets up the Fabric ledger. You can see that there is a service

in it called ledger-setup that is a service responsible for creating the crypto materials, set-

ting up the channel and deploying the chaincode. It uses a customized and simplified version

of the test-network from fabric-samples inside a docker container.

• docker-compose-blockchain-explorer.yaml: Runs a blockchain explorer that allows vi-

sualizing the Fabric ledger on the browser.

• docker-compose-canton.yaml: Runs all canton components: a domain manager, a medi-

ator, the two Fabric sequencer(s) and two participants.

3.3. User Manual 807

https://github.com/hyperledger/fabric-samples/tree/v2.0.0/test-network
https://github.com/hyperledger/blockchain-explorer

Daml SDK Documentation, 2.1.1

The bootstrapping process of the distributed domain is done by the docker-compose-canton.

yaml docker-compose file which uses the config/canton/demo.canton script. If you wish to

learn more about this process please refer to domain bootstrapping.

Run with Docker Compose

The script run.sh works by running docker-compose using a different combination of the

docker-compose files shown above, depending on the arguments given to the script.

As was shown, to run Canton with two Fabric Sequencers in amulti-sequencer setup, run ./run.sh

full. That is equivalent to running the following docker-compose command:

<<canton-release>>/examples/e01-fabric-domain/canton-on-fabric$ COMPOSE_PROJECT_

↪→NAME="fabric-sequencer-demo" docker-compose -f docker-compose-ledger.yaml -f␣

↪→docker-compose-canton.yaml up

Note that you can at this point connect the remote participants to this setup just like in demo from

the tutorial.

Cleanup

When you’re done running the sequencer, make sure to run ./run.sh down. This will clean up all

docker resources so that the next run can happen smoothly.

Using the Canton Binary instead of docker

To run the full Canton setup separately outside of docker (with the canton binary or jar):

<<canton-release>>/examples/e01-fabric-domain/canton-on-fabric$./run.sh ledger

After a few seconds you should see the two peers and one orderer nodes are up by running docker

ps and seeing two hyperledger/fabric-peer containers exposing ports 9051 and 7051 and one

hyperledger/fabric-orderer exposing the port 7050. Next run the following:

<<canton-release>>/examples/e01-fabric-domain/canton-on-fabric$../../../bin/

↪→canton -c config/self-contained/demo.conf --bootstrap config/canton/demo.canton

To run the jar file instead of the canton binary, simply replace ../../../bin/canton above with

java -jar ../../../lib/canton-enterprise-*.jar.

Blockchain Explorer

If you wish to start the Hyperledger Blockchain Explorer to browse activity on the running Fabric

Ledger, add the -e flag when running ./run.sh.

Alternatively you can use docker-compose as shown before and add -f

docker-compose-blockchain-explorer.yaml.

You will then be able to see the explorer web UI in your browser if you go to http://

localhost:8080.

808 Chapter 3. Canton Guide

https://github.com/hyperledger/blockchain-explorer

Daml SDK Documentation, 2.1.1

You can start the explorer separately after the ledger has been started by simply running the follow-

ing command:

<<canton-release>>/examples/e01-fabric-domain/canton-on-fabric$ COMPOSE_PROJECT_

↪→NAME="fabric-sequencer-demo" docker-compose -f docker-compose-blockchain-

↪→explorer.yaml up

Note that even when the explorer is working perfectly, it might output some error messages like the

following which can be safely ignored:

[ERROR] FabricGateway - Failed to get block 0 from channel undefined : ␣

↪→TypeError: Cannot read property
toString
 of undefined

Fabric Setup

The Fabric Sequencer operates on top of the Fabric Ledger and uses it as the source of truth for the

state of the sequencer (all the messages and the order of them).

In order for The Fabric Sequencer to successfully operate on a given Fabric Ledger, that ledger must

have been set upwith at least one channelwhere theCantonSequencer chaincodehasbeen installed

and the sequencer needs to be configured properly to have access to the ledger.

As mentioned previously, for our demo setup we use a slightly modified version of the

test-network scripts from fabric-samples inside a docker container to setup a simple local

docker-based Fabric network. This script uses many of the Fabric CLI commands to set up this net-

work, such as configtxgen, peer channel, peer chaincode, and peer lifecycle. In a real-life scenario

one might use this CLI to set up the ledger or some specific UI provided by a cloud service provider

that hosts Blockchain services.

Regarding the chaincode setup, the Fabric Sequencer expects that the chaincode is initialized by

calling the function init (no arguments needed) and with the --isInit flag turned on. You can

find the chaincode source at /ledger-setup/chaincode/src/github.com/digital-asset/

sequencer.

In order to configure a Fabric Sequencer in Canton, make sure to set canton.sequencers.<your

sequencer>.sequencer.type = "fabric". The rest of the Fabric sequencer-specific config

will be under canton.sequencers.<your sequencer>.sequencer.config. Within this sub-

config, you’ll need to set the user key with Fabric client details so that the sequencer can invoke

chaincode functions and read from the ledger. You’ll also need to set organizations details which

include peers and orderers connection details that the sequencer will have access to. The sequencer

needs access to at least enough peers to fulfil the chaincode endorsement policy that has been con-

figured. It is possible to indicate the channel name with the channel.name key and the chain-

code name with the channel.chaincode.name key (defaults to “sequencer”). This is all exem-

plified, including extensive commentary, in the config file used for the first sequencer of the demo,

which you can find at examples/e01-fabric-domain/canton-on-fabric/config/fabric/

fabric-config-1.conf.

3.3. User Manual 809

https://github.com/hyperledger/fabric-samples/tree/v2.0.0/test-network
https://hyperledger-fabric.readthedocs.io/en/release-2.2/command_ref.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/configtxgen.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerchannel.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerchaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/commands/peerlifecycle.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#chaincode-endorsement-policies

Daml SDK Documentation, 2.1.1

Block Cutting Parameters and Performance

It is possible to configure the block cutting parameters of the ledger by changing the file at

ledger-setup/configtx/configtx.yaml.

The relevant parameters are the following:

• Orderer.BatchTimeout: The amount of time to wait before creating a block.

• Orderer.BatchSize.MaxMessageCount: The maximum number of transactions to permit

in a block (block size).

Note: In other kinds of Fabric Ledger setups, one should be able to configure these parameters in

different ways.

If your use case operates under high traffic, you may benefit from increasing the block size in order

to increase your throughput at the expense of latency. If you caremore about latency and don’t need

to support high traffic, then decreasing block size will be of help.

Currently, we have set the values of 200ms for batch timeout and 50 for block size as it has em-

pirically shown to be a good tradeoff after some rounds of long running tests, but feel free to pick

parameters that fit your use-case best.

Note: See slide 17 of http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf for a discussion on

block size influence on throughput and latency.

Authorization

When operating the Fabric infrastructure to support the Fabric Sequencer onemaywant to authorize

only certain organizations to determine the sequencer’s behavior.

In Fabric one can use Policies to achieve this. Fabric policies can be used to define how members

come to agreement on accepting or rejecting changes to the network, a channel, or a smart contract.

Versatile policies can be written using combinations of AND, OR and NOutOf (more detail here). The

most relevant kinds of policies for our purposes here are the channel configuration policy (defined

at the channel level) and endorsement policies (defined at the chaincode level).

See other kinds of policies here.

Important: This feature is only available in Canton Enterprise

3.3.9.3 Ethereum Domain

Introduction

TheCantonEnterprise EthereumSequencer integration interacts via anEthereumclientwith a smart

contract Sequencer.sol deployed on an external Ethereum network. It uses the blockchain as

source-of-truth for sequenced events and is currently tested with the Ethereum client Hyperledger

Besu. The architecture document contains more details on the architecture of the integration.

810 Chapter 3. Canton Guide

http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#how-do-you-write-a-policy-in-fabric
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#an-example-channel-configuration-policy
https://hyperledger-fabric.readthedocs.io/en/latest/policies/policies.html#chaincode-endorsement-policies
https://hyperledger-fabric.readthedocs.io/en/release-2.2/security_model.html#policies
https://canton.io/enterprise
https://www.hyperledger.org/use/besu
https://www.hyperledger.org/use/besu

Daml SDK Documentation, 2.1.1

The Ethereum Demo

Prerequisites

To run the demo Canton Ethereum deployment, you will need access to a Canton Enterprise release,

the Canton Enterprise docker repository, as well as having docker, docker-compose, and Hyperledger

Besu (instructions here) installed.

Introduction

The demo Ethereum deployment can be found inside the examples directory of the Can-

ton Enterprise release. Unpack the Canton Enterprise release and then cd into examples/

e03-ethereum-sequencer.

The script ./run.sh from the folder examples will create a new Besu testnet for the demo deploy-

ment and then start the demo. It has two scenarios: a simple and an advanced scenario. Both

scenarios will start several dockerised services:

• An ethereum testnet, using four Besu nodes with the IBFT consensus protocol. This is the same

for the simple and advanced scenario.

• An instance of Canton. This includes two Participants and a Canton Enterprise Domain with

one Ethereum sequencer for the simple scenario and two Ethereum sequencers for the ad-

vanced scenario. The respective Canton configurations are in canton-conf/simple and

canton-conf/advanced.

The environment variable CANTON_VERSION is used to select the version of Canton to use for the

demo deployment. This should normally be set to the version of the Canton Enterprise release being

used, but can alternatively be set to a different version or dev for the latest main build of Canton.

Simple Scenario

The simple scenario uses one Canton sequencer whose corresponding Sequencer.sol contract is

automatically deployed on startup. It uses mutual TLS between Canton and Besu but doesn’t enable

authorization.

Advanced Scenario

The advanced scenario uses two Canton sequencers, mutual TLS, Ethereum wallets, enables au-

thorization and uses deploy_sequencer_contract for Sequencer.sol deployment. In particular,

it demonstrates how

• deploy_sequencer_contract can be orchestrated to automatically deploy a Sequencer.sol

instance and configure both sequencers to interact with the Sequencer.sol instance when

automatic deployment can’t be used.

• authorize_ledger_identity, along with use of Ethereum wallets, can be orchestrated to allow

another sequencer to interact with a Sequencer.sol instance when it has authorization en-

abled.

3.3. User Manual 811

https://besu.hyperledger.org/en/stable/HowTo/Get-Started/Installation-Options/Install-Binaries

Daml SDK Documentation, 2.1.1

Running a scenario

To start the simple or advanced demo scenario run:

<<canton-release>>/examples/e03-ethereum-sequencer$ CANTON_VERSION=<your version>␣

↪→./run.sh simple

or

<<canton-release>>/examples/e03-ethereum-sequencer$ CANTON_VERSION=<your version>␣

↪→./run.sh advanced

A new Besu testnet will be created and the demo will begin running with the created testnet. Once

the demo is initialized and running, it will print out

Successfully initialized Canton-on-Ethereum

You will then be able to interact with the two participants via their ledger APIs (or their admin APIs)

respectively running on ports 5011 and 5021 (or 5012 and 5022).

For example, you can start an instance of the Canton console to connect to the two remote partici-

pants. You can find the Canton binary in bin/canton of the Canton Enterprise release artifact.

<<canton-release>>/examples/e03-ethereum-sequencer$../../bin/canton -c canton-

↪→conf/remote.conf

You can then perform various commands in the Canton console:

@ remoteParticipant1.id

res5: ParticipantId = ParticipantId(

UniqueIdentifier(Identifier("participant1"), Namespace(Fingerprint(

↪→"01e69a39e2c821fc98eaeb22994b47084162122a01ebcb16dfb2514ccafcedd43d")))

)

@ remoteParticipant2.id

res6: ParticipantId = ParticipantId(

UniqueIdentifier(Identifier("participant2"), Namespace(Fingerprint(

↪→"014aeb29dddff83678bc6f1194c363c6f0d18d3a6c9655927a7fb5adc84ec0532c")))

)

@ remoteParticipant1.domains.list_connected

res7: Seq[(com.digitalasset.canton.DomainAlias, com.digitalasset.canton.

↪→DomainId)] = List(

(Domain
mydomain
, mydomain::01537eb8...)

)

@ remoteParticipant1.health.ping(remoteParticipant2)

res8: concurrent.duration.Duration = 968 milliseconds

To shutdown and remove all Docker containers, you can execute stop-with-purge.sh:

<<canton-release>>/examples/e03-ethereum-sequencer$./stop-with-purge.sh

812 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Generating a Clean Testnet

The directory examples/e03-ethereum-sequencer/ibft-testnet contains the script

generate-testnet.sh. This automatically generates a clean Besu network in a testnet

directory, including new randomized private keys. generate-testnet.sh is automatically called

by run.sh but youmay want to understand and edit it to create your own custom Besu deployment.

When generate-testnet.sh is run:

• The state from any previous runs of generate-testnet.sh is deleted and a new directory

testnet is created.

• A genesis file, a set of keys for four Besu nodes and TLS certificates for Canton and Besu are au-

tomatically generated. These can be found in the folders testnet/nodei (where i has values

1 to 4) and testnet/tls. respectively.

• The four Besu nodes are started via calling start-node.sh.

If the script finds Besu keys or TLS certificates in the same directory as the script, it will attempt to

reuse them. This significantly reduces startup time if you want to test different network configura-

tions.

The generated Besu testnet has been configured largely following these tutorials:

• https://besu.hyperledger.org/en/stable/Tutorials/Private-Network/Create-IBFT-Network/

• and https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/

Note that the RPC HTTP API TXPOOL of Besu needs to be enabled when using the Besu driver.

Customization of the Besu network

The parameters of the generated testnet can be changed by modifying the genesis.json file de-

fined inline in generate-testnet.sh. Similarly, the CLI options with which the Besu nodes are

started can be configured by modifying start-node.sh

Customization of the Demo Configuration

You can also modify the Canton configurations and bootstrap scripts for the demo if, for example,

you want to add persistence to the participants. The Canton configurations are found in

• canton-conf/simple and

• canton-conf/advanced

for the simple and advanced scenarios, respectively. If you want to change Ethereum-specific con-

figuration options, (e.g. to configure a different wallet) please refer to the documentation section on

this page and the corresponding scaladoc configuration option.

Note that if you change port mappings in the Canton config file you may also need to update the

corresponding docker compose files in directory docker-compose/.

3.3. User Manual 813

https://besu.hyperledger.org/en/stable/Tutorials/Private-Network/Create-IBFT-Network/
https://besu.hyperledger.org/en/stable/HowTo/Configure/FreeGas/
https://www.canton.io/docs/dev/user-manual/usermanual/static_conf.html#persistence
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig.html

Daml SDK Documentation, 2.1.1

Smart contract Sequencer.sol

The smart contract deployed to the blockchain is implemented in Solidity. It looks as follows:

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates

//

// Proprietary code. All rights reserved.

pragma solidity 0.8.10;

pragma experimental ABIEncoderV2;

contract Sequencer {

// The ID of the topology manager

string topologyManager = "";

// all members (Canton components) who are registered at this sequencer have␣

↪→CtrueC as value

mapping (string => bool) registeredMembers;

// the ethereum accounts authorized to interact with the sequencer contract.

mapping (address => bool) authorizedAccounts;

// Whether authorization is enabled such that only authorized Ethereum␣

↪→accounts can interact with this contract

bool public authorizationEnabled;

// This version is currently only relevant for Canton-internal checks that it␣

↪→is interacting with the correct

// revision of Sequencer.sol for the configured protocol version

// Every revision of Sequencer.sol will likely lead to a
major
 version␣

↪→change of this version number

string public version = "1.0.0";

constructor(bool enableAuthorization){

authorizationEnabled = enableAuthorization;

if (enableAuthorization) {

authorizedAccounts[msg.sender] = true;

emit AuthorizedAccount("", msg.sender);

}

}

// Emitted if a submission request was successfully written to the blockchain.

event Send(string traceParent, bytes submissionRequest, uint64 timestamp);

event NewMember(string traceParent, string member);

event AuthorizedAccount(string traceParent, address account);

event FatalError(string traceParent, string message);

/**

@notice Authorizes the given Ethereum account to also interact with this␣

↪→contract instance.

Part of the authorization preview feature.

*/

function authorizeAccount(string memory traceParent, address toAuthorize)␣

↪→public ensureSenderIsAuthorized {

if (authorizationEnabled) {

authorizedAccounts[toAuthorize] = true;

(continues on next page)

814 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

emit AuthorizedAccount(traceParent, toAuthorize);

}

}

/**

@notice Checks whether the given Ethereum account is authorized to␣

↪→interact with this contract instance.

Part of the authorization preview feature.

*/

function isAuthorized(address account) public view returns(bool) {

return authorizedAccounts[account];

}

/**

@notice Checks that Cmsg.senderC is among the authorized accounts. This␣

↪→modifier should be implemented

by every public function in CSequencer.solC except by the function␣

↪→CisAuthorizedC.

Part of the authorization preview feature.

*/

modifier ensureSenderIsAuthorized {

if (authorizationEnabled) {

bool isAuthorized_ = authorizedAccounts[msg.sender] == true;

require(isAuthorized_, string(abi.encodePacked("Authorization check for␣

↪→following msg-sender failed: ", msg.sender)));

}

_;

}

/**

@notice Registers the topology manager. Members the TPM references in a␣

↪→sendAsync call are automatically

registered. Emits a CFatalErrorC if the TPM was already set to a␣

↪→different value previously.

*/

function registerTpm(string memory traceParent, string memory tpmID) public␣

↪→ensureSenderIsAuthorized {

if (bytes(topologyManager).length == 0){

topologyManager = tpmID;

if (!isMemberRegistered(tpmID)) {

registerMember(traceParent, tpmID);

}

}

else {

// the solidity == method is "pointer equality"

bool differs = keccak256(abi.encodePacked((topologyManager))) !=␣

↪→keccak256(abi.encodePacked((tpmID)));

if (differs) {

emit FatalError(traceParent, "Unexpected attempt to change the␣

↪→topology manager ID");

}

}

}

function isMemberRegistered(string memory member) private view returns (bool)

↪→{

(continues on next page)

3.3. User Manual 815

Daml SDK Documentation, 2.1.1

(continued from previous page)

return registeredMembers[member];

}

/**

@notice Register a member (Canton component) such that it can receive␣

↪→messages from the sequencer.

This method is idempotent.

*/

function registerMember(string memory traceParent, string memory newMember)␣

↪→public ensureSenderIsAuthorized {

registeredMembers[newMember] = true;

emit NewMember(traceParent, newMember);

}

/**

@notice This is the most important function of the sequencer smart␣

↪→contract. Sequence a batch of events assigning them a timestamp.

*/

function sendAsync(

string memory traceParent,

bytes memory submissionRequest,

uint64 timestamp

) public {

emit Send(traceParent, submissionRequest, timestamp);

}

}

Data is written to the blockchain by emitting events to the transaction logs. The Sequencer Applica-

tion reads all transactions (and transaction logs) created from calls to Sequencer.sol and keeps

its ownstore for a viewof the sequencer history. This enables theSequencer Application to serve read

subscriptions promptly without having to query the Ethereum client and to restart without having

to re-read all the history. The store can either use in-memory storage or persistent storage (using a

database).

Error codes

The Ethereum Sequencer application auto-detects many common configuration and deployment

issues and logs them as warnings or errors with error codes. If you see such a warning or error, please

refer to the respective error code explanation and resolution.

TLS configuration

Canton supports mutual TLS between Canton and Ethereum client nodes and the demo contains an

example of how to configure this. Concretely, the TLS configuration for Canton expects a key store

and the path to the Ethereum TLS certificates:

_tls {

canton-key-store {

path="/canton/testnet-working/tls/canton_store.p12"

password="password"

(continues on next page)

816 Chapter 3. Canton Guide

https://docs.soliditylang.org/en/stable/contracts.html#events
https://www.canton.io/docs/dev/user-manual/usermanual/error_codes.html#ethereumerrors

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

ethereum-certificate-path = "/canton/testnet-working/tls/besu_cert.pem"

}

canton.sequencers.ethereumSequencer1.sequencer.config.tls = ${_tls}

The demo also contains the utility script ibft-testnet/generate-tls.sh which is called by

generate-testnet.sh and writes the TLS certificates to ibft-testnet/testnet/tls. These

certificates are then used by start-node.sh.

If Canton is not configured to use TLS with an Ethereum node, it will attempt to communicate via a

HTTP endpoint on the Ethereum node (and HTTPS for TLS).

For more details on the Canton configuration, please see the scaladocs of the TLS configuration. For

more details on how to configure Besu to accept TLS connections (as done in the demo, see especially

file start-node.sh), please see the Besu documentation.

Ethereum accounts and wallets

Canton allows you to configure an Ethereum wallet (and therefore an Ethereum account) to be used

by an Ethereum sequencer application. The configured Ethereum account is used for all interac-

tions of the Ethereum sequencer with the Ethereum blockchain. If no Ethereum account is explicitly

configured, a random Ethereum account is used.

Note: When multiple Ethereum sequencer applications interact with the same Sequencer.sol

instance, each Ethereum Sequencer process needs to use a separate Ethereum account. Otherwise,

transactions may get stuck due to nonce mismatches.

Canton allows configuring a wallet in UTC JSON and BIP 39 format.

The Ethereum demo includes examples ofmix-in wallet configuration files for both formats; the UTC

JSON-based wallet mix-in looks as follows:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc-json-wallet"

password = "password"

wallet-path = "advanced/utc-wallet.json"

}

with following utc-wallet.json:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc-json-wallet"

password = "password"

wallet-path = "advanced/utc-wallet.json"

}

The BIP39-based wallet mix-in looks as follows:

canton.sequencers.ethereumSequencer2.sequencer.config.wallet {

type = "utc-json-wallet"

(continues on next page)

3.3. User Manual 817

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig\protect \TU\textdollar \protect \TU\textdollar TlsConfig.html
https://besu.hyperledger.org/en/21.10.6/HowTo/Configure/TLS/Configure-TLS/#create-the-known-clients-file
https://theethereum.wiki/accounts__addresses__public_and_private_keys__and_tokens/#UTC_JSON_Keystore_File
https://en.bitcoin.it/wiki/BIP_0039

Daml SDK Documentation, 2.1.1

(continued from previous page)

password = "password"

wallet-path = "advanced/utc-wallet.json"

}

For more details, please refer to the Canton scaladoc documentation.

Deployment of the sequencer contract

Single sequencer

When using a single sequencer, the easiest way to deploy the corresponding sequencer is by config-

uring automatic deployment:

contract {

type = "automatic-deployment",

}

This will deploy the Sequencer.sol smart contract during initialization of the sequencer.

Multiple sequencers

When deploying multiple Ethereum sequencers for a single domain, it is currently not possi-

ble to use automatic deployment because each sequencer would deploy a separate smart con-

tract. Instead you should first manually deploy Sequencer.sol or use the console command de-

ploy_sequencer_contract and then start the sequencers with all sequencers pointing to the same

smart contract. The Ethereum demo illustrates how to do the latter in file docker-compose/

docker-compose-advanced.yaml.

Manual deployment

If you want to manually deploy Sequencer.sol to your Ethereum network, the

file <<canton-release/examples/e03-ethereum-sequencer/ibft-testnet/

sequencer-binary contains the compiled Solidity code you need to deploy. For Besu, for

example, you will need to specify the contents of sequencer-binary in "code": "..." as docu-

mented here. However, we recommend deploying Sequencer.sol using automatic deployment or

using deploy_sequencer_contract so you can deploy Sequencer.sol without needing to restart

the blockchain network.

818 Chapter 3. Canton Guide

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig\protect \TU\textdollar \protect \TU\textdollar WalletConfig.html
https://www.canton.io/docs/dev/user-manual/usermanual/console.html#deploy-sequencer-contract
https://www.canton.io/docs/dev/user-manual/usermanual/console.html#deploy-sequencer-contract
https://besu.hyperledger.org/en/stable/HowTo/Configure/Contracts-in-Genesis/#pre-deploying-contracts-in-the-genesis-file
https://www.canton.io/docs/dev/user-manual/usermanual/console.html#deploy-sequencer-contract

Daml SDK Documentation, 2.1.1

Authorization

Note: Authorization is an early-access feature andmay still significantly change in future releases.

The Ethereum integration offers a simple, optional on-chain authorization mechanism: inside

Sequencer.sol a “whitelist” of authorized accounts is maintained. If an Ethereum account is

authorized (i.e. part of the list of authorized accounts), it can authorize other Ethereum accounts

and call functions of Sequencer.sol. If an Ethereum account isn’t authorized, any interaction with

Sequencer.sol, except the check whether it is authorized, will fail. Initially, only the Ethereum

account which deployed Sequencer.sol is authorized.

Authorization is enabled or disabled by setting authorizationEnabled in the configuration to

true or false:

authorization-enabled = "false"

// ethereum-manual-entry-begin: AutomaticDeployment

contract {

type = "automatic-deployment",

}

// ethereum-manual-entry-end: AutomaticDeployment

tls {

canton-key-store {

path = "./enterprise/app/src/pack/examples/e03-ethereum-sequencer/

↪→ibft-testnet/testnet/tls/canton_store.p12"

password = "password"

}

ethereum-certificate-path = "./enterprise/app/src/pack/examples/e03-

↪→ethereum-sequencer/ibft-testnet/testnet/tls/besu_cert.pem"

}

}

}

}

}

To authorize another Ethereum account, you can use the console command sequencer.autho-

rize_ledger_identity from a Sequencer that is already authorized. Please refer to canton-conf/

advanced/ping.canton for an example use of sequencer.authorize_ledger_identity.

Note: If access to all authorized Ethereum accounts for a Sequencer.sol contract instance with

authorization enabled is lost, thenaccess to thisSequencer.sol contract instance is lost. Recovery

from this state is only possible, if access to one of the authorized Ethereum accounts is restored.

3.3. User Manual 819

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/sequencing/config/EthereumLedgerNodeConfig.html
https://www.canton.io/docs/dev/user-manual/usermanual/console.html#sequencer-authorize-ledger-identity
https://www.canton.io/docs/dev/user-manual/usermanual/console.html#sequencer-authorize-ledger-identity

Daml SDK Documentation, 2.1.1

Requirements for the Ethereum Network

The Canton Ethereum integration is currently tested with the IBFT 2.0 consensus protocol as illus-

trated in the demo. Other setups are possible, but they should fulfill the following requirements:

• The Ethereum client Hyperledger Besu should be used.

• Currently, a free gas network is required. This means setting the gas price to zero.

• The block size limit (oftenmeasured in gas, and sometimes referred to as the ‘gas limit’) must

be larger than any message to be sequenced. It is recommended to set this parameter as high

as possible.

• The contract size limit must be big enough for the Canton Ethereum Domain to store all re-

quired state for sequencing messages. It is recommended to set this parameter as high as

possible.

• Proof of authority protocols are recommended over proof of work.

• Currently, consensus protocols must have immediate finality. This means that ledger forks

should not occur with the chosen consensus protocol.

Furthermore, we also have some suggestions to improve throughput and latency irrespective of the

choice of Ethereum client.

Throughput

Generally, the throughput of a Canton system using Ethereum-based sequencers is limited by the

throughput of the Ethereum client. Thus, if an Ethereum-based sequencer does not deliver the de-

sired throughput, the throughput and deployment of the Ethereum clients should be optimized in

the first instance. For Besu performance optimization, some recommendations can be found in the

Besu documentation - in particular, it is crucial to use a fast storage media.

Latency

Within a Canton transaction, there are three sequential sequencing steps, that is, a single Canton

transaction leads to at least three sequential messages sent to the sequencer. This is illustrated,

e.g., in the message sequence diagram of the Canton 101 section. As a result, a Canton transaction

also leads to at least three Ethereum transactions within three different blocks. Thus, to achieve

relatively low latencies, the Ethereum network networks must be configured with a frequent block

mining frequency (configured via blockperiodseconds in Besu) and ideally co-located with the

Canton sequencer node. A blockmining frequency of at least one block per second is recommended.

Trust Properties of the Ethereum Sequencer Integration

The demo integration uses two participants and two different EthereumSequencer nodes. Each par-

ticipant chooses its preferred Ethereum Sequencer node, and this node performs reads and writes

on behalf of the participant. Therefore, each participant must trust its chosen Ethereum Sequencer

node. Additionally, each participant must trust some proportion of the nodes in the Ethereum net-

work as determined by the consensus protocol.

820 Chapter 3. Canton Guide

https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-Protocols/IBFT/
https://besu.hyperledger.org/en/stable
https://besu.hyperledger.org/en/stable/Concepts/Consensus-Protocols/Comparing-PoA/#immediate-finality
https://besu.hyperledger.org/en/latest/HowTo/Use-Privacy/Performance-Best-Practices/#general-performance
https://besu.hyperledger.org/en/latest/HowTo/Use-Privacy/Performance-Best-Practices/#general-performance

Daml SDK Documentation, 2.1.1

3.3.10 Error codes

Almost all errors and warnings that can be generated by a Canton based system are annotated with

error codes of the form SOMETHING_NOT_SO_GOOD_HAPPENED(x,c). These error codes allow a

developer, user or operator to identify the exact error occurring such that an error can be automati-

cally handled or looked up in the documentation.

In the above example, the upper case stringwith underscores denotes the unique error id. The paren-

theses include key additional information. The id together with the extra information is referred to

as error-code. The x represents the ErrorCategory used to classify the error, and the c represents

the first 8 characters of the correlation-id associated to this request, or 0 if no correlation-id is given.

The purpose of the correlation-id is to allow a user to clearly identify the request, such that the op-

erator can lookup any log information associated with this error.

The majority of the errors are a result of some request processing. Such errors are logged, with a log

level usually depending on the category, and returned to the user as a failed gRPC request (using the

standard StatusRuntimeException). In some cases, errors occur due to background processes (i.e.

network connection issues / transaction confirmation processing). Such errors are only logged.

Generally, we use the following log-levels on the server:

• INFO to log user errors, where the error leads to a failure of the request but the system remains

healthy.

• WARN to log degradations of the system or point out rather unusual behaviour.

• ERROR to log internal errors within the system, where the system does not behave properly and

immediate attention is required.

On the client side, failures are considered to be errors and logged as such.

3.3.10.1 Error Categories

The error categories allow to group errors such that application logic can be built in a sensible way

to automatically deal with errors and decide whether to retry a request or escalate to the operator.

A full list of error categories is documented here.

3.3.10.2 Machine Readable Information

Every error on the API is constructed in a way that allows automated and manual error handling.

First, the error category will map to exactly one gRPC status code. Second, every error description

(of the corresponding StatusRuntimeException.Status) will start with the error information

(SOMETHING_NOT_SO_GOOD_HAPPENED(CN,x)), separated from a human readable description

using a colon (“:”). The rest of the description is targeting humans and should never be parsed by

applications, as the description might change in future releases to improve clarity.

In addition to the status code and the description, the gRPC rich error model is used to convey addi-

tional, machine readable information to the application.

Therefore, to support automatic error processing, an application may:

• parse the error information from the beginning of the description to obtain the error-id, the

error category and the component.

• use the gRPC-code to get the set of possible error categories

3.3. User Manual 821

https://grpc.github.io/grpc-java/javadoc/io/grpc/StatusRuntimeException.html
https://docs.daml.com/app-dev/grpc/error-codes.html#error-categories-inventory
https://grpc.github.io/grpc-java/javadoc/io/grpc/Status.html#getDescription--
https://cloud.google.com/apis/design/errors#error_details

Daml SDK Documentation, 2.1.1

• if present, use the ResourceInfo included as Status.details. Any request that fails due to

some well-defined resource issues (contract, contract-key, package, party, template, domain)

will contain these, calling out on what resource the failure is based on.

• use the RetryInfo to determine the recommended retry interval (ormake this decision based

on the category / gRPC code).

• use the RequestInfo.id as the correlation-id, included as Status.details

• use the ErrorInfo.reason as error-id and ErrorInfo.metadata("category") as error

category, included as Status.details.

All this information is included in errors that are generated by components under our control and

included as Status.details. Many errors will includemore information, but there is no guarantee

given that additional information will be preserved across versions.

Generally, automated error handling can be done on any level (e.g. load balancer using gRPC sta-

tus codes, application using ErrorCategory or human reacting to error-ids). In most cases, it is

advisable to deal with errors on a per category basis and deal with error-ids in very specific situa-

tions which are application dependent. As an example, a command failure with the message “CON-

TRACT_NOT_FOUND” may be an application failure in case the given application is the only actor

on the contracts, whereas a “CONTRACT_NOT_FOUND” message is to be expected in a case where

multiple independent actors operate on the ledger state.

3.3.10.3 List of error codes

1. ParticipantErrorGroup

1.1. Errors

ACS_COMMITMENT_INTERNAL_ERROR

• Explanation: This error indicates that there was an internal error within the ACS commitment

processing.

• Resolution: Inspect error message for details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side.

• Scaladocs: ACS_COMMITMENT_INTERNAL_ERROR

1.1.1. MismatchError

ACS_COMMITMENT_MISMATCH

• Explanation: This error indicates that a remote participant has sent a commitment over an

ACS for a period which does not match the local commitment. This error occurs if a remote

participant hasmanually changed contracts using repair, or due to byzantine behavior, or due

to malfunction of the system. The consequence is that the ledger is forked, and some com-

mands that should pass will not.

• Resolution: Please contact the other participant in order to check the cause of the mismatch.

Either repair the store of this participant or of the counterparty.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

822 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

• Scaladocs: ACS_COMMITMENT_MISMATCH

ACS_MISMATCH_NO_SHARED_CONTRACTS

• Explanation: This error indicates that a remote participant has sent a commitment over an

ACS for a period, while this participant does not think that there is a shared contract state.

This error occurs if a remote participant has manually changed contracts using repair, or due

to byzantine behavior, or due tomalfunction of the system. The consequence is that the ledger

is forked, and some commands that should pass will not.

• Resolution: Please contact the other participant in order to check the cause of the mismatch.

Either repair the store of this participant or of the counterparty.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: ACS_MISMATCH_NO_SHARED_CONTRACTS

1.2. LedgerApiErrors

LEDGER_API_INTERNAL_ERROR

• Explanation: This error occurs if there was an unexpected error in the Ledger API.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

PARTICIPANT_BACKPRESSURE

• Explanation: This error occurs when a participant rejects a command due to excessive load.

Load can be caused by the following factors: 1. when commands are submitted to the partici-

pant through its Ledger API, 2. when the participant receives requests from other participants

through a connected domain.

• Resolution: Wait a bit and retry, preferably with some backoff factor. If possible, ask other

participants to send fewer requests; the domain operator can enforce this by imposing a rate

limit.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status ABORTED including a detailed error message

REQUEST_TIME_OUT

• Explanation: This rejection is given when a request processing status is not known and a

time-out is reached.

• Resolution: Retry for transient problems. If non-transient contact the operator as the time-out

limit might be too short.

• Category: DeadlineExceededRequestStateUnknown

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status DEADLINE_EXCEEDED including a detailed error message

3.3. User Manual 823

../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar MismatchError\protect \TU\textdollar \protect \TU\textdollar CommitmentsMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/pruning/AcsCommitmentProcessor\protect \TU\textdollar \protect \TU\textdollar Errors\protect \TU\textdollar \protect \TU\textdollar MismatchError\protect \TU\textdollar \protect \TU\textdollar NoSharedContracts\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

SERVER_IS_SHUTTING_DOWN

• Explanation: This rejection is given when the participant server is shutting down.

• Resolution: Contact the participant operator.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status UNAVAILABLE including a detailed error message

SERVICE_NOT_RUNNING

• Explanation: This rejection is given when the requested service has already been closed.

• Resolution: Retry re-submitting the request. If the error persists, contact the participant oper-

ator.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status UNAVAILABLE including a detailed error message

UNSUPPORTED_OPERATION

• Explanation: This error category is used to signal that an unimplemented code-path has been

triggered by a client or participant operator request.

• Resolution: This error is caused by a participant node misconfiguration or by an implementa-

tion bug. Resolution requires participant operator intervention.

• Category: InternalUnsupportedOperation

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status UNIMPLEMENTED without any details due to security reasons

1.2.1. CommandExecution

FAILED_TO_DETERMINE_LEDGER_TIME

• Explanation: This error occurs if the participant fails to determine the max ledger time of the

used contracts. Most likely, this means that one of the contracts is not active anymore which

can happen under contention. It can also happen with contract keys.

• Resolution: Retry the transaction submission.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

824 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

1.2.1.1. Package

ALLOWED_LANGUAGE_VERSIONS

• Explanation: This error indicates that the uploaded DAR is based on an unsupported language

version.

• Resolution: Use a DAR compiled with a language version that this participant supports.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

PACKAGE_VALIDATION_FAILED

• Explanation: This error occurs if a package referred to by a command fails validation. This

should not happen as packages are validated when being uploaded.

• Resolution: Contact support.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

1.2.1.2. Preprocessing

COMMAND_PREPROCESSING_FAILED

• Explanation: This error occurs if a command fails during interpreter pre-processing.

• Resolution: Inspect error details and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

1.2.1.3. Interpreter

CONTRACT_NOT_ACTIVE

• Explanation: This error occurs if an exercise or fetch happens on a transaction-locally con-

sumed contract.

• Resolution: This error indicates an application error.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

3.3. User Manual 825

Daml SDK Documentation, 2.1.1

DAML_AUTHORIZATION_ERROR

• Explanation: This error occurs if a Daml transaction fails due to an authorization error. An au-

thorization means that the Daml transaction computed a different set of required submitters

than you have provided during the submission as actAs parties.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

DAML_INTERPRETATION_ERROR

• Explanation: This error occurs if a Daml transaction fails during interpretation.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

DAML_INTERPRETER_INVALID_ARGUMENT

• Explanation: This error occurs if a Daml transaction fails during interpretation due to an in-

valid argument.

• Resolution: This error type occurs if there is an application error.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

1.2.1.3.1. LookupErrors

CONTRACT_KEY_NOT_FOUND

• Explanation: This error occurs if the Daml engine interpreter cannot resolve a contract key to

an active contract. This can be caused by either the contract key not being known to the par-

ticipant, or not being known to the submitting parties or the contract representing an already

archived key.

• Resolution: This error type occurs if there is contention on a contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

826 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

1.2.2. AdminServices

CONFIGURATION_ENTRY_REJECTED

• Explanation: This rejection is given when a new configuration is rejected.

• Resolution: Fetch newest configuration and/or retry.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

PACKAGE_UPLOAD_REJECTED

• Explanation: This rejection is given when a package upload is rejected.

• Resolution: Refer to the detailed message of the received error.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

1.2.2.1. UserManagementServiceErrors

TOO_MANY_USER_RIGHTS

• Explanation: A user can have only a limited number of user rights. There was an attempt to

create a user with too many rights or grant too many rights to a user.

• Resolution: Retry with a smaller number of rights or delete some of the already existing rights

of this user. Contact the participant operator if the limit is too low.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

USER_ALREADY_EXISTS

• Explanation: There already exists a user with the same user-id.

• Resolution: Check that you are connecting to the right participant node and the user-id is

spelled correctly, or use the user that already exists.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

3.3. User Manual 827

Daml SDK Documentation, 2.1.1

USER_NOT_FOUND

• Explanation: The user referred to by the request was not found.

• Resolution: Check that you are connecting to the right participant node and the user-id is

spelled correctly, if yes, create the user.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

1.2.3. ConsistencyErrors

CONTRACT_NOT_FOUND

• Explanation: This error occurs if the Daml engine can not find a referenced contract. This can

be caused by either the contract not being known to the participant, or not being known to the

submitting parties or already being archived.

• Resolution: This error type occurs if there is contention on a contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

DUPLICATE_COMMAND

• Explanation: A commandwith the given command idhas already been successfully processed.

• Resolution: The correct resolution depends on the use case. If the error received pertains to a

submission retried due to a timeout, do nothing, as the previous command has already been

accepted. If the intent is to submit a new command, re-submit using a distinct command id.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

DUPLICATE_CONTRACT_KEY

• Explanation: This error signals that within the transaction we got to a point where two con-

tracts with the same key were active.

• Resolution: This error indicates an application error.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

828 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

INCONSISTENT

• Explanation: At least one input has been altered by a concurrent transaction submission.

• Resolution: The correct resolution depends on the business flow, for example it may be possi-

ble to proceed without an archived contract as an input, or the transaction submissionmay be

retried to load the up-to-date value of a contract key.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

INCONSISTENT_CONTRACTS

• Explanation: An input contract has been archived by a concurrent transaction submission.

• Resolution: The correct resolution depends on the business flow, for example it may be possi-

ble to proceed without the archived contract as an input, or a different contract could be used.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

INCONSISTENT_CONTRACT_KEY

• Explanation: An input contract key was re-assigned to a different contract by a concurrent

transaction submission.

• Resolution: Retry the transaction submission.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

INVALID_LEDGER_TIME

• Explanation: The ledger time of the submission violated some constraint on the ledger time.

• Resolution: Retry the transaction submission.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

SUBMISSION_ALREADY_IN_FLIGHT

• Explanation: Another command submission with the same change ID (application ID, com-

mand ID, actAs) is already being processed.

• Resolution: Listen to the command completion streamuntil a completion for the in-flight com-

mand submission is published. Alternatively, resubmit the command. If the in-flight submis-

sion has finished successfully by then, this will return more detailed information about the

earlier one. If the in-flight submission has failed by then, the resubmission will attempt to

record the new transaction on the ledger.

• Category: ContentionOnSharedResources

3.3. User Manual 829

Daml SDK Documentation, 2.1.1

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

1.2.4. PackageServiceError

DAR_NOT_SELF_CONSISTENT

• Explanation: This error indicates that theuploadedDar is brokenbecause it ismissing internal

dependencies.

• Resolution: Contact the supplier of the Dar.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

DAR_VALIDATION_ERROR

• Explanation: This error indicates that the validation of the uploaded dar failed.

• Resolution: Inspect the error message and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

PACKAGE_SERVICE_INTERNAL_ERROR

• Explanation: This error indicates an internal issue within the package service.

• Resolution: Inspect the error message and contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

1.2.4.1. Reading

DAR_PARSE_ERROR

• Explanation: This error indicates that the content of the Dar file could not be parsed success-

fully.

• Resolution: Inspect the error message and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

830 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

INVALID_DAR

• Explanation: This error indicates that the supplied dar file was invalid.

• Resolution: Inspect the error message for details and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

INVALID_DAR_FILE_NAME

• Explanation: This error indicates that the supplied dar file name did not meet the require-

ments to be stored in the persistence store.

• Resolution: Inspect error message for details and change the file name accordingly

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

INVALID_LEGACY_DAR

• Explanation: This error indicates that the supplied zipped dar is an unsupported legacy Dar.

• Resolution: Please use a more recent dar version.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

INVALID_ZIP_ENTRY

• Explanation: This error indicates that the supplied zipped dar file was invalid.

• Resolution: Inspect the error message for details and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

ZIP_BOMB

• Explanation: This error indicates that the supplied zipped dar is regarded as zip-bomb.

• Resolution: Inspect the dar and contact support.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

3.3. User Manual 831

Daml SDK Documentation, 2.1.1

1.2.5. WriteServiceRejections

DISPUTED

• Explanation: An invalid transaction submission was not detected by the participant.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

OUT_OF_QUOTA

• Explanation: The Participant node did not have sufficient resource quota to submit the trans-

action.

• Resolution: Inspect the error message and retry after after correcting the underlying issue.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

PARTY_NOT_KNOWN_ON_LEDGER

• Explanation: One or more informee parties have not been allocated.

• Resolution: Check that all the informee party identifiers are correct, allocate all the informee

parties, request their allocation or wait for them to be allocated before retrying the transaction

submission.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT

• Explanation: A submitting party is not authorized to act through the participant.

• Resolution: Contact the participant operator or re-submit with an authorized party.

• Category: InsufficientPermission

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status PERMISSION_DENIED without any details due to security reasons

SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

• Explanation: The submitting party has not been allocated.

• Resolution: Check that the party identifier is correct, allocate the submitting party, request its

allocation or wait for it to be allocated before retrying the transaction submission.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

832 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

1.2.5.1. Internal

INTERNALLY_DUPLICATE_KEYS

• Explanation: The participant didn’t detect an attempt by the transaction submission to use

the same key for two active contracts.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

INTERNALLY_INCONSISTENT_KEYS

• Explanation: Theparticipant didn’t detect an inconsistent keyusage in the transaction. Within

the transaction, an exercise, fetch or lookupByKey failed because themapping of key -> contract

ID was inconsistent with earlier actions.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

1.2.6. AuthorizationChecks

INTERNAL_AUTHORIZATION_ERROR

• Explanation: An internal system authorization error occurred.

• Resolution: Contact the participant operator.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

PERMISSION_DENIED

• Explanation: This rejection is given if the supplied authorization token is not sufficient for the

intended command. The exact reason is logged on the participant, but not given to the user for

security reasons.

• Resolution: Inspect your command and your token or ask your participant operator for an ex-

planation why this command failed.

• Category: InsufficientPermission

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status PERMISSION_DENIED without any details due to security reasons

3.3. User Manual 833

Daml SDK Documentation, 2.1.1

STALE_STREAM_AUTHORIZATION

• Explanation: The stream was aborted because the authenticated user’s rights changed, and

the user might thus no longer be authorized to this stream.

• Resolution: The application should automatically retry fetching the stream. It will either suc-

ceed, or fail with an explicit denial of authentication or permission.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

UNAUTHENTICATED

• Explanation: This rejection is given if the submitted command does not contain a JWT token

on a participant enforcing JWT authentication.

• Resolution: Ask your participant operator to provide you with an appropriate JWT token.

• Category: AuthInterceptorInvalidAuthenticationCredentials

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNAUTHENTICATED without any details due to security reasons

1.2.7. RequestValidation

INVALID_ARGUMENT

• Explanation: This error is emitted when a submitted ledger API command contains an invalid

argument.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

INVALID_DEDUPLICATION_PERIOD

• Explanation: This error is emitted when a submitted ledger API command specifies an invalid

deduplication period.

• Resolution: Inspect the error message, adjust the value of the deduplication period or ask the

participant operator to increase the maximum deduplication period.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

834 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

INVALID_FIELD

• Explanation: This error is emittedwhena submitted ledger API commandcontains a field value

that cannot be understood.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

LEDGER_ID_MISMATCH

• Explanation: Every ledger API command contains a ledger-id which is verified against the run-

ning ledger. This error indicates that the provided ledger-id does not match the expected one.

• Resolution: Ensure that your application is correctly configured to use the correct ledger.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

MISSING_FIELD

• Explanation: This error is emitted when a mandatory field is not set in a submitted ledger API

command.

• Resolution: Inspect the reason given and correct your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

NON_HEXADECIMAL_OFFSET

• Explanation: The supplied offset could not be converted to a binary offset.

• Resolution: Ensure the offset is specified as a hexadecimal string.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

OFFSET_AFTER_LEDGER_END

• Explanation: This rejection is given when a read request uses an offset beyond the current

ledger end.

• Resolution: Use an offset that is before the ledger end.

• Category: InvalidGivenCurrentSystemStateSeekAfterEnd

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status OUT_OF_RANGE including a detailed error message

3.3. User Manual 835

Daml SDK Documentation, 2.1.1

OFFSET_OUT_OF_RANGE

• Explanation: This rejection is given when a read request uses an offset invalid in the requests’

context.

• Resolution: Inspect the error message and use a valid offset.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

PARTICIPANT_PRUNED_DATA_ACCESSED

• Explanation: This rejection is given when a read request tries to access pruned data.

• Resolution: Use an offset that is after the pruning offset.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

1.2.7.1. NotFound

LEDGER_CONFIGURATION_NOT_FOUND

• Explanation: The ledger configuration could not be retrieved. This could happen due to incom-

plete initialization of the participant or due to an internal system error.

• Resolution: Contact the participant operator.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

PACKAGE_NOT_FOUND

• Explanation: This rejection is given when a read request tries to access a package which does

not exist on the ledger.

• Resolution: Use a package id pertaining to a package existing on the ledger.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

TRANSACTION_NOT_FOUND

• Explanation: The transaction does not exist or the requesting set of parties are not authorized

to fetch it.

• Resolution: Check the transaction id and verify that the requested transaction is visible to the

requesting parties.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

836 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

1.3. TransactionErrorGroup

1.3.1. TransactionRoutingError

AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED

• Explanation: This error indicates that the automated transfer couldnot succeed, as the current

topology does not allow the transfer to complete, mostly due to lack of confirmation permis-

sions of the involved parties.

• Resolution: Inspect themessage and your topology and ensure appropriate permissions exist.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED

ROUTING_INTERNAL_ERROR

• Explanation: This error indicates an internal error in the Canton domain router.

• Resolution: Please contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: ROUTING_INTERNAL_ERROR

1.3.1.1. TopologyErrors

INFORMEES_NOT_ACTIVE

• Explanation: This error indicates that the informees are known, but there is no connected do-

main on which all the informees are hosted.

• Resolution: Ensure that there is such a domain, as Canton requires a domain where all in-

formees are present.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: INFORMEES_NOT_ACTIVE

NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS

• Explanation: This error indicates that the transaction is referring to contracts on domains to

which this participant is currently not connected.

• Resolution: Check the status of your domain connections.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS

3.3. User Manual 837

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar AutomaticTransferForTransactionFailure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar RoutingInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar InformeesNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NotConnectedToAllContractDomains\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

NO_COMMON_DOMAIN

• Explanation: This error indicates that there is no common domain to which all submitters can

submit and all informees are connected.

• Resolution: Check that your participant node is connected to all domains you expect and check

that the parties are hosted on these domains as you expect them to be.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: NO_COMMON_DOMAIN

NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT

• Explanation: This error indicates that a transaction has been sent where the system can not

find any active ” + “domain on which this participant can submit in the name of the given set

of submitters.

• Resolution: Ensure that you are connected to a domain where this participant has submission

rights. Check that you are actually connected to the domains you expect to be connected and

check that your participant node has the submission permission for each submitting party.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT

SUBMITTER_ALWAYS_STAKEHOLDER

• Explanation: This error indicates that the transaction requires contract transfers for which the

submitter must be a stakeholder.

• Resolution: Check that your participant node is connected to all domains you expect and check

that the parties are hosted on these domains as you expect them to be.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: SUBMITTER_ALWAYS_STAKEHOLDER

UNKNOWN_CONTRACT_DOMAINS

• Explanation: This error indicates that the transaction is referring to contracts whose domain

is not currently known.

• Resolution: Ensure all transfer operations on contracts used by the transaction have com-

pleted.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: UNKNOWN_CONTRACT_DOMAINS

838 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NoCommonDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar NoDomainOnWhichAllSubmittersCanSubmit\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar SubmitterAlwaysStakeholder\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar UnknownContractDomains\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

UNKNOWN_INFORMEES

• Explanation: This error indicates that the transaction is referring to some informees that are

not known on any connected domain.

• Resolution: Check the list of submitted informees and check if your participant is connected

to the domains you are expecting it to be.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: UNKNOWN_INFORMEES

1.3.1.2. MalformedInputErrors

INVALID_DOMAIN_ALIAS

• Explanation: The WorkflowID defined in the transaction metadata is not a valid domain alias.

• Resolution: Check that the workflow ID (if specified) corresponds to a valid domain alias. A

typical rejection reason is a too-long domain alias.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: INVALID_DOMAIN_ALIAS

INVALID_PARTY_IDENTIFIER

• Explanation: The given party identifier is not a valid Canton party identifier.

• Resolution: Ensure that your commands only refer to correct and valid Canton party identifiers

of parties that are properly enabled on the system

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: INVALID_PARTY_IDENTIFIER

INVALID_SUBMITTER

• Explanation: The party defined as a submitter can not be parsed into a valid Canton party.

• Resolution: Check that you only use correctly setup party names in your application.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: INVALID_SUBMITTER

3.3. User Manual 839

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar TopologyErrors\protect \TU\textdollar \protect \TU\textdollar UnknownInformees\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDomainAlias\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidPartyIdentifier\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar MalformedInputErrors\protect \TU\textdollar \protect \TU\textdollar InvalidSubmitter\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.3.1.3. ConfigurationErrors

MULTI_DOMAIN_SUPPORT_NOT_ENABLED

• Explanation: This error indicates that a transaction has been submitted that requires

multi-domain support. Multi-domain support is a preview feature that needs to be enabled

explicitly by configuration.

• Resolution: Set canton.features.enable-preview-commands = yes

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: MULTI_DOMAIN_SUPPORT_NOT_ENABLED

SUBMISSION_DOMAIN_NOT_READY

• Explanation: This error indicates that the transaction should be submitted to a domain which

is not connected or not configured.

• Resolution: Ensure that the domain is correctly connected.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: SUBMISSION_DOMAIN_NOT_READY

1.3.2. SubmissionErrors

CHOSEN_MEDIATOR_IS_INACTIVE

• Explanation: The mediator chosen for the transaction got deactivated before the request was

sequenced.

• Resolution: Resubmit.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: CHOSEN_MEDIATOR_IS_INACTIVE

DOMAIN_BACKPRESSURE

• Explanation: This error occurs when the sequencer refuses to accept a command due to back-

pressure.

• Resolution: Wait a bit and retry, preferably with some backoff factor.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status ABORTED including a detailed error message

• Scaladocs: DOMAIN_BACKPRESSURE

840 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar MultiDomainSupportNotEnabled\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/TransactionRoutingError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionDomainNotReady\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar InactiveMediatorError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar DomainBackpressure\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

DOMAIN_WITHOUT_MEDIATOR

• Explanation: The participant routed the transaction to a domain without an active mediator.

• Resolution: Add a mediator to the domain.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: DOMAIN_WITHOUT_MEDIATOR

MALFORMED_REQUEST

• Explanation: This error has not yet been properly categorised into sub-error codes.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: MALFORMED_REQUEST

NOT_SEQUENCED_TIMEOUT

• Explanation: This error occurs when the transactionwas not sequencedwithin the pre-defined

max-sequencing time and has therefore timed out. The max-sequencing time is derived from

the transaction’s ledger time via the ledger time model skews.

• Resolution: Resubmit if the delay is caused by high load. If the command requires substan-

tial processing on the participant, specify a higher minimum ledger time with the command

submission so that a higher max sequencing time is derived.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: NOT_SEQUENCED_TIMEOUT

PACKAGE_NO_VETTED_BY_RECIPIENTS

• Explanation: This error occurs if a transaction was submitted referring to a package that a

receiving participant has not vetted. Any transaction view can only refer to packages that have

explicitly been approved by the receiving participants.

• Resolution: Ensure that the receiving participant uploads and vets the respective package.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PACKAGE_NO_VETTED_BY_RECIPIENTS

3.3. User Manual 841

../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar DomainWithoutMediatorError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar MalformedRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar TimeoutError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar PackageNotVettedByRecipients\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

SEQUENCER_DELIVER_ERROR

• Explanation: This error occurs when the domain refused to sequence the given message.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: SEQUENCER_DELIVER_ERROR

SEQUENCER_REQUEST_FAILED

• Explanation: This error occurs when the command cannot be sent to the domain.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: SEQUENCER_REQUEST_FAILED

SUBMISSION_DURING_SHUTDOWN

• Explanation: This error occurs when a command is submitted while the system is performing

a shutdown.

• Resolution: Assuming that the participant will restart or failover eventually, retry in a couple

of seconds.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: SUBMISSION_DURING_SHUTDOWN

1.3.3. SyncServiceInjectionError

COMMAND_INJECTION_FAILURE

• Explanation: This errors occurs if an internal error results in an exception.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: COMMAND_INJECTION_FAILURE

842 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SequencerDeliver\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SequencerRequest\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/protocol/TransactionProcessor\protect \TU\textdollar \protect \TU\textdollar SubmissionErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionDuringShutdown\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar InjectionFailure\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

NODE_IS_PASSIVE_REPLICA

• Explanation: This error results if a command is submitted to the passive replica.

• Resolution: Send the command to the active replica.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status UNAVAILABLE including a detailed error message

• Scaladocs: NODE_IS_PASSIVE_REPLICA

NOT_CONNECTED_TO_ANY_DOMAIN

• Explanation: This errors results if a command is submitted to a participant that is not con-

nected to any domain.

• Resolution: Connect your participant to the domain where the given parties are hosted.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: NOT_CONNECTED_TO_ANY_DOMAIN

1.3.4. LocalReject

1.3.4.1. MalformedRejects

LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES

• Explanation: This rejection is made by a participant if a transaction does not contain valid

root hash messages.

• Resolution: This indicates a race condition due to a in-flight topology change, or malicious or

faulty behaviour.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES

LOCAL_VERDICT_DETECTED_MULTIPLE_CONFIRMATION_POLICIES

• Explanation: This rejection is made by a participant if a transaction uses different confirma-

tion policies per view.

• Resolution: This indicates either malicious or faulty behaviour.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_DETECTED_MULTIPLE_CONFIRMATION_POLICIES

3.3. User Manual 843

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar PassiveReplica\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceInjectionError\protect \TU\textdollar \protect \TU\textdollar NotConnectedToAnyDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar BadRootHashMessages\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar MultipleConfirmationPolicies\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

LOCAL_VERDICT_EMPTY_REJECTION

• Explanation: This rejection is emitted by a participant if it receives an aggregated reject with-

out any reason.

• Resolution: This indicates either malicious or faulty mediator.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_EMPTY_REJECTION

LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK

• Explanation: This rejection ismade by a participant if a transaction fails amodel conformance

check.

• Resolution: This indicates either malicious or faulty behaviour.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK

LOCAL_VERDICT_MALFORMED_PAYLOAD

• Explanation: This rejection is made by a participant if a view of the transaction is malformed.

• Resolution: This indicates either malicious or faulty behaviour.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_MALFORMED_PAYLOAD

1.3.4.2. ConsistencyRejections

LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS

• Explanation: This error indicates that the transaction would create already existing contracts.

• Resolution: This error indicates either faulty or malicious behaviour.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS

844 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar EmptyRejection\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar ModelConformance\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar MalformedRejects\protect \TU\textdollar \protect \TU\textdollar Payloads\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar CreatesExistingContracts\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

LOCAL_VERDICT_DUPLICATE_KEY

• Explanation: If the participant provides unique contract key support, this error will indicate

that a transaction would create a unique key which already exists.

• Resolution: It depends on your use case and application whether and when retrying makes

sense or not.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: LOCAL_VERDICT_DUPLICATE_KEY

LOCAL_VERDICT_INACTIVE_CONTRACTS

• Explanation: The transaction is referring to contracts that have either been previously

archived, transferred to another domain, or do not exist.

• Resolution: Inspect your contract state and try a different transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: LOCAL_VERDICT_INACTIVE_CONTRACTS

LOCAL_VERDICT_INCONSISTENT_KEY

• Explanation: If the participant provides unique contract key support, this error will indicate

that a transaction expected a key to be unallocated, but a contract for the key already exists.

• Resolution: It depends on your use case and application whether and when retrying makes

sense or not.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: LOCAL_VERDICT_INCONSISTENT_KEY

LOCAL_VERDICT_LOCKED_CONTRACTS

• Explanation: The transaction is referring to locked contracts which are in the process of be-

ing created, transferred, or archived by another transaction. If the other transaction fails, this

transaction could be successfully retried.

• Resolution: Retry the transaction

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: LOCAL_VERDICT_LOCKED_CONTRACTS

3.3. User Manual 845

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar DuplicateKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar InactiveContracts\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar InconsistentKey\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar LockedContracts\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

LOCAL_VERDICT_LOCKED_KEYS

• Explanation: The transaction is referring to locked keys which are in the process of beingmod-

ified by another transaction.

• Resolution: Retry the transaction

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: LOCAL_VERDICT_LOCKED_KEYS

1.3.4.3. TimeRejects

LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND

• Explanation: This error is thrown if the ledger time and the record time differ more than per-

mitted. This can happen in an overloaded system due to high latencies or for transactions with

long interpretation times.

• Resolution: For long-running transactions, specify a ledger time with the command submis-

sion. For short-running transactions, simply retry.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND

LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND

• Explanation: This error is thrown if the submission time and the record time differ more than

permitted. This can happen in an overloaded system due to high latencies or for transactions

with long interpretation times.

• Resolution: For long-running transactions, adjust the ledger time bounds used with the com-

mand submission. For short-running transactions, simply retry.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND

LOCAL_VERDICT_TIMEOUT

• Explanation: This rejection is sent if the participant locally determined a timeout.

• Resolution: In the first instance, resubmit your transaction. If the rejection still appears spu-

riously, consider increasing the participantResponseTimeout ormediatorReactionTimeout values in

the DynamicDomainParameters. If the rejection appears unrelated to timeout settings, validate

that all other Canton components which take part in the transaction also function correctly

and that, e.g., messages are not stuck at the sequencer.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status ABORTED including a detailed error message

• Scaladocs: LOCAL_VERDICT_TIMEOUT

846 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar ConsistencyRejections\protect \TU\textdollar \protect \TU\textdollar LockedKeys\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar LedgerTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar SubmissionTime\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TimeRejects\protect \TU\textdollar \protect \TU\textdollar LocalTimeout\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.3.4.4. TransferInRejects

TRANSFER_IN_ALREADY_COMPLETED

• Explanation: This rejection is emitted by a participant if a transfer-in has already been com-

pleted.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: TRANSFER_IN_ALREADY_COMPLETED

TRANSFER_IN_CONTRACT_ALREADY_ACTIVE

• Explanation: This rejection is emitted by a participant if a transfer-in has already been made

by another entity.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: TRANSFER_IN_CONTRACT_ALREADY_ACTIVE

TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED

• Explanation: This rejection is emitted by a participant if a transfer would be invoked on an

already archived contract.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED

TRANSFER_IN_CONTRACT_IS_LOCKED

• Explanation: This rejection is emitted by a participant if a transfer-in is referring to an already

locked contract.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: TRANSFER_IN_CONTRACT_IS_LOCKED

3.3. User Manual 847

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar AlreadyCompleted\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractAlreadyActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractAlreadyArchived\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferInRejects\protect \TU\textdollar \protect \TU\textdollar ContractIsLocked\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.3.4.5. TransferOutRejects

TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

• Explanation: Activeness check failed for transfer out submission. This rejection occurs if the

contract to be transferred has already been transferred or is currently locked (due to a compet-

ing transaction) on domain.

• Resolution: Depending on your use-case and your expectation, retry the transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

1.3.5. CommandDeduplicationError

MALFORMED_DEDUPLICATION_OFFSET

• Explanation: The specified deduplication offset is syntactically malformed.

• Resolution: Use a deduplication offset that was produced by this participant node.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: MALFORMED_DEDUPLICATION_OFFSET

1.3.6. MediatorReject

MEDIATOR_SAYS_TX_TIMED_OUT

• Explanation: This rejection indicates that the transaction has been rejected by the mediator

as it didn’t receive enough confirmations within the confirmation timeout window.

• Resolution: Check that all involved participants are available and not overloaded.

• Category: ContentionOnSharedResources

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ABORTED including a detailed error message

• Scaladocs: MEDIATOR_SAYS_TX_TIMED_OUT

1.3.6.1. MaliciousSubmitter

MEDIATOR_SAYS_DECLARED_MEDIATOR_IS_WRONG

• Explanation: This rejection indicates that the submitter sent the request to the wrong media-

tor

• Resolution: Investigate whether the submitter is faulty or malicious.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: MEDIATOR_SAYS_DECLARED_MEDIATOR_IS_WRONG

848 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/LocalReject\protect \TU\textdollar \protect \TU\textdollar TransferOutRejects\protect \TU\textdollar \protect \TU\textdollar ActivenessCheckFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/CommandDeduplicationError\protect \TU\textdollar \protect \TU\textdollar MalformedDeduplicationOffset\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar Timeout\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar MaliciousSubmitter\protect \TU\textdollar \protect \TU\textdollar WrongDeclaredMediator\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

MEDIATOR_SAYS_NOT_ENOUGH_CONFIRMING_PARTIES

• Explanation: This rejection indicates that a submitter has sent a manipulated view.

• Resolution: Investigate whether the submitter is faulty or malicious.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: MEDIATOR_SAYS_NOT_ENOUGH_CONFIRMING_PARTIES

MEDIATOR_SAYS_VIEW_THRESHOLD_BELOW_MINIMUM_THRESHOLD

• Explanation: This rejection indicates that a submitter has sent a manipulated view.

• Resolution: Investigate whether the submitter is faulty or malicious.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: MEDIATOR_SAYS_VIEW_THRESHOLD_BELOW_MINIMUM_THRESHOLD

1.3.6.2. Topology

MEDIATOR_SAYS_INFORMEES_NOT_HOSTED_ON_ACTIVE_PARTICIPANTS

• Explanation: The transaction is referring to informees that are not hosted on any active par-

ticipant on this domain.

• Resolution: This error can happen either if the transaction is racing with a topology state

change, or due to malicious or faulty behaviour.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: MEDIATOR_SAYS_INFORMEES_NOT_HOSTED_ON_ACTIVE_PARTICIPANTS

MEDIATOR_SAYS_INVALID_ROOT_HASH_MESSAGES

• Explanation: This rejection indicates that a submitter has sent a view with invalid root hash

messages.

• Resolution: This error can happen either if the transaction is racing with a topology state

change, or due to malicious or faulty behaviour.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: MEDIATOR_SAYS_INVALID_ROOT_HASH_MESSAGES

3.3. User Manual 849

../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar MaliciousSubmitter\protect \TU\textdollar \protect \TU\textdollar NotEnoughConfirmingParties\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar MaliciousSubmitter\protect \TU\textdollar \protect \TU\textdollar ViewThresholdBelowMinimumThreshold\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar Topology\protect \TU\textdollar \protect \TU\textdollar InformeesNotHostedOnActiveParticipants\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/protocol/messages/Verdict\protect \TU\textdollar \protect \TU\textdollar MediatorReject\protect \TU\textdollar \protect \TU\textdollar Topology\protect \TU\textdollar \protect \TU\textdollar InvalidRootHashMessages\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.4. SyncServiceError

PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN

• Explanation: The participant is not connected to a domain and can therefore not allocate

a party because the party notification is configured as party-notification.type =

via-domain.

• Resolution: Connect the participant to a domain first or change the participant’s party notifi-

cation config to eager.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN

SYNC_SERVICE_ALREADY_ADDED

• Explanation: This error results on an attempt to register a new domain under an alias already

in use.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: SYNC_SERVICE_ALREADY_ADDED

SYNC_SERVICE_DOMAIN_BECAME_PASSIVE

• Explanation: This error is logged when a sync domain is disconnected because the participant

became passive.

• Resolution: Fail over to the active participant replica.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNAVAILABLE including a detailed error message

• Scaladocs: SYNC_SERVICE_DOMAIN_BECAME_PASSIVE

SYNC_SERVICE_DOMAIN_DISABLED_US

• Explanation: This error is logged when the synchronization service shuts down because the

remote domain has disabled this participant.

• Resolution: Contact the domain operator and inquire why you have been booted out.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: SYNC_SERVICE_DOMAIN_DISABLED_US

850 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar PartyAllocationNoDomainError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceAlreadyAdded\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainBecamePassive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainDisabledUs\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

SYNC_SERVICE_DOMAIN_DISCONNECTED

• Explanation: This error is logged when a sync domain is unexpectedly disconnected from the

Canton sync service (after having previously been connected)

• Resolution: Please contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: SYNC_SERVICE_DOMAIN_DISCONNECTED

SYNC_SERVICE_INTERNAL_ERROR

• Explanation: This error indicates an internal issue.

• Resolution: Please contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: SYNC_SERVICE_INTERNAL_ERROR

SYNC_SERVICE_UNKNOWN_DOMAIN

• Explanation: This error results if a domain connectivity command is referring to a domain

alias that has not been registered.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: SYNC_SERVICE_UNKNOWN_DOMAIN

1.4.1. DomainRegistryError

DOMAIN_REGISTRY_INTERNAL_ERROR

• Explanation: This error indicates that there has been an internal error noticed by Canton.

• Resolution: Contact support and provide the failure reason.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: DOMAIN_REGISTRY_INTERNAL_ERROR

3.3. User Manual 851

../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceDomainDisconnect\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/sync/SyncServiceError\protect \TU\textdollar \protect \TU\textdollar SyncServiceUnknownDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar DomainRegistryInternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.4.1.1. ConfigurationErrors

CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE

• Explanation: This error indicates that the participant can not issue a domain trust certificate.

Such a certificate is necessary to become active on a domain. Therefore, it must be present in

the authorized store of the participant topology manager.

• Resolution: Manually upload a valid domain trust certificate for the given domain or upload

the necessary certificates such that participant can issue such certificates automatically.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE

DOMAIN_PARAMETERS_CHANGED

• Explanation: Error indicating that the domain parameters have been changed, while this isn’t

supported yet.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DOMAIN_PARAMETERS_CHANGED

INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE

• Explanation: This error indicates that the domain this participant is trying to connect to is a

domain where unique contract keys are supported, while this participant is already connected

to other domains. Multiple domains and unique contract keys aremutually exclusive features.

• Resolution: Use isolated participants for domains that require unique keys.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE

INVALID_DOMAIN_CONNECTION

• Explanation: This error indicates there is a validation error with the configured connections

for the domain

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: INVALID_DOMAIN_CONNECTION

852 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar CanNotIssueDomainTrustCertificate\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar DomainParametersChanged\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar IncompatibleUniqueContractKeysMode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar InvalidDomainConnections\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

1.4.1.2. HandshakeErrors

DOMAIN_ALIAS_DUPLICATION

• Explanation: This error indicates that the domain alias was previously used to connect to a

domain with a different domain id. This is a known situation when an existing participant is

trying to connect to a freshly re-initialised domain.

• Resolution: Carefully verify the connection settings.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DOMAIN_ALIAS_DUPLICATION

DOMAIN_CRYPTO_HANDSHAKE_FAILED

• Explanation: This error indicates that the domain is using crypto settings which are either not

supported or not enabled on this participant.

• Resolution: Consult the error message and adjust the supported crypto schemes of this par-

ticipant.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DOMAIN_CRYPTO_HANDSHAKE_FAILED

DOMAIN_HANDSHAKE_FAILED

• Explanation: This error indicates that the participant to domain handshake has failed.

• Resolution: Inspect the provided reason for more details and contact support.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DOMAIN_HANDSHAKE_FAILED

DOMAIN_ID_MISMATCH

• Explanation: This error indicates that the domain-id does not match the one that the partici-

pant expects. If this error happens on a first connect, then the domain id defined in the domain

connection settings does not match the remote domain. If this happens on a reconnect, then

the remote domain has been reset for some reason.

• Resolution: Carefully verify the connection settings.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DOMAIN_ID_MISMATCH

3.3. User Manual 853

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainAliasDuplication\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainCryptoHandshakeFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar HandshakeFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar DomainIdMismatch\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

SERVICE_AGREEMENT_ACCEPTANCE_FAILED

• Explanation: This error indicates that the domain requires the participant to accept a service

agreement before connecting to it.

• Resolution: Use the commands $participant.domains.get_agreement and $participant.do-

mains.accept_agreement to accept the agreement.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: SERVICE_AGREEMENT_ACCEPTANCE_FAILED

1.4.1.3. ConnectionErrors

DOMAIN_IS_NOT_AVAILABLE

• Explanation: This error results if the GRPC connection to the domain service fails with GRPC

status UNAVAILABLE.

• Resolution: Check your connection settings and ensure that the domain can really be reached.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status UNAVAILABLE including a detailed error message

• Scaladocs: DOMAIN_IS_NOT_AVAILABLE

FAILED_TO_CONNECT_TO_SEQUENCER

• Explanation: This error indicates that the participant failed to connect to the sequencer.

• Resolution: Inspect the provided reason.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: FAILED_TO_CONNECT_TO_SEQUENCER

GRPC_CONNECTION_FAILURE

• Explanation: This error indicates that the participant failed to connect due to a general GRPC

error.

• Resolution: Inspect the provided reason and contact support.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: GRPC_CONNECTION_FAILURE

854 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar HandshakeErrors\protect \TU\textdollar \protect \TU\textdollar ServiceAgreementAcceptanceFailed\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar DomainIsNotAvailable\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar FailedToConnectToSequencer\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar GrpcFailure\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

PARTICIPANT_IS_NOT_ACTIVE

• Explanation: This error indicates that the connecting participant has either not yet been acti-

vated by the domain operator. If the participant was previously successfully connected to the

domain, then this error indicates that the domain operator has deactivated the participant.

• Resolution: Contact the domain operator and inquire the permissions your participant node

has on the given domain.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PARTICIPANT_IS_NOT_ACTIVE

1.5. AdminWorkflowServices

CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

• Explanation: This error indicates that the admin workflow package could not be vetted. The

admin workflows is a set of packages that are pre-installed and can be used for administrative

processes. The error can happen if the participant is initialised manually but is missing the

appropriate signing keys or certificates in order to issue new topology transactions within the

participants namespace. The adminworkflows can not be used until the participant has vetted

the package.

• Resolution: This error can be fixed by ensuring that an appropriate vetting transaction is is-

sued in the name of this participant and imported into this participant node. If the correspond-

ing certificates have been added after the participant startup, then this error can be fixed by

either restarting theparticipant node, issuing the vetting transactionmanually or re-uploading

the Dar (leaving the vetAllPackages argument as true)

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

1.6. IndexErrors

1.6.1. DatabaseErrors

INDEX_DB_INVALID_RESULT_SET

• Explanation: This error occurs if the result set returned by a query against the Index database

is invalid.

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

3.3. User Manual 855

../../canton/scaladoc/com/digitalasset/canton/participant/domain/DomainRegistryError\protect \TU\textdollar \protect \TU\textdollar ConnectionErrors\protect \TU\textdollar \protect \TU\textdollar ParticipantIsNotActive\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/AdminWorkflowServices\protect \TU\textdollar \protect \TU\textdollar CanNotAutomaticallyVetAdminWorkflowPackage\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

INDEX_DB_SQL_NON_TRANSIENT_ERROR

• Explanation: This error occurs if a non-transient error arises when executing a query against

the index database.

• Resolution: Contact the participant operator.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

INDEX_DB_SQL_TRANSIENT_ERROR

• Explanation: This error occurs if a transient error arises when executing a query against the

index database.

• Resolution: Re-submit the request.

• Category: TransientServerFailure

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status UNAVAILABLE including a detailed error message

1.7. PruningServiceError

INTERNAL_PRUNING_ERROR

• Explanation: Pruning has failed because of an internal server error.

• Resolution: Identify the error in the server log.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: INTERNAL_PRUNING_ERROR

NON_CANTON_OFFSET

• Explanation: The supplied offset has an unexpected lengths.

• Resolution: Ensure the offset has originated from this participant and is 9 bytes in length.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: NON_CANTON_OFFSET

856 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar InternalServerError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar NonCantonOffset\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION

• Explanation: Pruning is not supported in the Community Edition.

• Resolution: Upgrade to the Enterprise Edition.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION

UNSAFE_TO_PRUNE

• Explanation: Pruning is not possible at the specified offset at the current time.

• Resolution: Specify a lower offset or retry pruning after a while. Generally, you can only prune

older events. In particular, the eventsmust be older than the sumofmediator reaction timeout

and participant timeout for every domain. And, you can only prune events that are older than

the deduplication time configured for this participant. Therefore, if you observe this error, you

either just prune older events or you adjust the settings for this participant. The error details

field safe_offset contains the highest offset that can currently be pruned, if any.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: UNSAFE_TO_PRUNE

1.8. CantonPackageServiceError

PACKAGE_OR_DAR_REMOVAL_ERROR

• Explanation: Errors raised by the Package Service on package removal.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PACKAGE_OR_DAR_REMOVAL_ERROR

1.9. ParticipantReplicationServiceError

PARTICIPANT_REPLICATION_INTERNAL_ERROR

• Explanation: Internal error emitted upon internal participant replication errors

• Resolution: Contact support

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: PARTICIPANT_REPLICATION_INTERNAL_ERROR

3.3. User Manual 857

../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar PruningNotSupportedInCommunityEdition\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/PruningServiceError\protect \TU\textdollar \protect \TU\textdollar UnsafeToPrune\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/CantonPackageServiceError\protect \TU\textdollar \protect \TU\textdollar PackageRemovalErrorCode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/ParticipantReplicationServiceError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

• Explanation: Error emitted if the supplied storage configuration does not support replication.

• Resolution: Use a participant storage backend supporting replication.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

2. EthereumErrors

2.1. ConfigurationErrors

AHEAD_OF_HEAD

• Explanation: This warning is logged on startup if the sequencer is configured to only start

reading from a block that wasn’t mined yet by the blockchain (e.g. sequencer is supposed to

start reading from block 500, but the latest block is only 100). This is likely due to a misconfig-

uration.

• Resolution: This issue frequently occurs when the blockchain is reset but the sequencer

database configuration isnot updatedor the sequencer database (whichpersists the last block

that was read by the sequencer) is not reset. Validate these settings and ensure that the se-

quencer is still reading from the same blockchain.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: AHEAD_OF_HEAD

ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE

• Explanation: The sequencer smart contract has detected that a value that is immutable af-

ter being set for the first time (either the signing tolerance or the topology manager ID) was

attempted to be changed. Most frequently this error occurs during testing when a Canton

Ethereumsequencer processwithout persistence is restartedwhile pointing to the samesmart

sequencer contract. An Ethereum sequencer attempts to set the topology manager ID during

initialization, however, without persistence the topology manager ID is randomly regenerated

on the restart which leads to the sequencer attempting to change the topology manager ID in

the sequencer smart contract.

• Resolution: Deploy a new instance of the sequencer contract (Console command ethereum.de-

ploy_sequencer_contract) and configure the Ethereum sequencer to use that instance. If the

errors occur because an Ethereum sequencer process is restarted without persistence, deploy

a fresh instance of the sequencer contract and configure persistence for restarts.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE

858 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/admin/grpc/ParticipantReplicationServiceError\protect \TU\textdollar \protect \TU\textdollar UnsupportedConfig\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AheadOfHead\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AttemptToChangeImmutableValue\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

AUTHORIZATION_ENABLEMENT_MISMATCH

• Explanation: This error is logged when the sequencer detects that (according to the configura-

tion) the corresponding Sequencer.sol contract should have authorization enabled but doesn’t

(and vice versa).

• Resolution: Validate that the sequencer is configured with the correct Sequencer.sol contract

and whether it should be using authorization or not.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: AUTHORIZATION_ENABLEMENT_MISMATCH

MANY_BLOCKS_BEHIND_HEAD

• Explanation: This error is logged when the sequencer is currently processing blocks that are

very far behind the head of the blockchain of the connected Ethereum network. The Ethereum

sequencer won’t observe new transactions in the blockchain until it has caught up to the head.

This may take a long time depending on the blockchain length and number of Canton transac-

tion in the blocks. Empirically, we have observed that the Canton sequencer processes roughly

500 empty blocks/second. This may vary strongly for non-empty blocks. The sequencer logs

once it has caught up to within blocksBehindBlockchainHead blocks behind the blockchain head.

• Resolution: Change the configuration of blockToReadFrom for the Ethereum sequencer when

working with an existing (not fresh) Ethereum network. Alternatively, wait until the sequencer

has caught up to the head of the blockchain.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: MANY_BLOCKS_BEHIND_HEAD

NOT_FREE_GAS_NETWORK

• Explanation: This error is logged when during setup the sequencer detects that it isn’t con-

nected to a free-gas network. This usually leads to transactions silently being dropped by

Ethereum nodes. You should only use a non-free-gas network, if you have configured an

Ethereum wallet for the sequencer to use and have given it gas.

• Resolution: Change the configuration of the Ethereum network to a free-gas network.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: NOT_FREE_GAS_NETWORK

3.3. User Manual 859

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar AuthorizationEnabledMismatch\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar ManyBlocksBehindHead\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar NotFreeGasNetwork\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

UNAUTHORIZED

• Explanation: This error is logged during setup when the sequencer detects that authorization

is enabled on the Sequencer.sol contract, but the Ethereum account used by the sequencer

node is not authorized to interact with the contract.

• Resolution: Authorize this sequencer node from another already-authorized sequencer node

(see console command authorize_ledger_identity).

• Category: AuthInterceptorInvalidAuthenticationCredentials

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNAUTHENTICATED without any details due to security reasons

• Scaladocs: UNAUTHORIZED

WRONG_EVM_BYTECODE

• Explanation: Canton validates on startup that the configured address on the blockchain con-

tains the EVMbytecode of the sequencer smart contract in the latest block. This error indicates

that no bytecode or the wrong bytecode was found. This is a serious error and means that the

sequencer can’t sequence events.

• Resolution: This frequently error occurs when updating the Canton system without updating

the sequencer contract deployed on the blockchain. Validate that the sequencer contract cor-

responding to the current Canton release is deployed in the latest blockchain blocks on the

configured address (see also ethereum.deploy_sequencer_contract). Another common reason for

this error is that the wrong contract address was configured.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: WRONG_EVM_BYTECODE

2.2. TransactionErrors

ETHEREUM_TRANSACTION_SUBMISSION_FAILED

• Explanation: This error is logged when the Sequencer Ethereum application receives an er-

ror when attempting to submit a transaction to the transaction pool of the Ethereum client.

Common causes for this are network errors, or when the Ethereum account of the Sequencer

Ethereum application is used by another application. Less commonly, this error might also

indirectly be caused if the transaction pool of the Ethereum client is full or flushed.

• Resolution: Generally, Canton should recover automatically from this error. If you continue

to see this error, investigate possible root causes such as poor network connections, if the

Ethereumwallet of the EthereumSequencer application is being reusedby another application,

and the health of the Ethereum client.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: ETHEREUM_TRANSACTION_SUBMISSION_FAILED

860 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar Unauthorized\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar ConfigurationErrors\protect \TU\textdollar \protect \TU\textdollar WrongEVMBytecode\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/sequencer/ethereum/EthereumErrors\protect \TU\textdollar \protect \TU\textdollar TransactionErrors\protect \TU\textdollar \protect \TU\textdollar SubmissionFailed\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

3. TopologyManagementErrorGroup

3.1. TopologyManagerError

CERTIFICATE_GENERATION_ERROR

• Explanation: This error indicates that the desired certificate could not be created.

• Resolution: Inspect the underlying error for details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: CERTIFICATE_GENERATION_ERROR

DUPLICATE_TOPOLOGY_TRANSACTION

• Explanation: This error indicates that a transaction has already been added previously.

• Resolution: Nothing to do as the transaction is already registered. Note however that a revoca-

tion is ” + final. If you want to re-enable a statement, you need to re-issue an new transaction.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: DUPLICATE_TOPOLOGY_TRANSACTION

INVALID_TOPOLOGY_TX_SIGNATURE_ERROR

• Explanation: This error indicates that the uploaded signed transaction contained an invalid

signature.

• Resolution: Ensure that the transaction is valid and uses a crypto version understood by this

participant.

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: INVALID_TOPOLOGY_TX_SIGNATURE_ERROR

NO_APPROPRIATE_SIGNING_KEY_IN_STORE

• Explanation: This error results if the topology manager did not find a secret key in its store to

authorize a certain topology transaction.

• Resolution: Inspect your topology transaction and your secret key store and check that you

have the appropriate certificates and keys to issue the desired topology transaction. If the list

of candidates is empty, then you are missing the certificates.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: NO_APPROPRIATE_SIGNING_KEY_IN_STORE

3.3. User Manual 861

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar CertificateGenerationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DuplicateTransaction\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar InvalidSignatureError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar NoAppropriateSigningKeyInStore\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE

• Explanation: This error indicates that the attempt to add a removal transaction was rejected,

as the mapping / element affecting the removal did not exist.

• Resolution: Inspect the topology state and ensure themapping and the element id of the active

transaction you are trying to revoke matches your revocation arguments.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE

PUBLIC_KEY_NOT_IN_STORE

• Explanation: This error indicates that a command contained a fingerprint referring to a public

key not being present in the public key store.

• Resolution: Upload the public key to the public key store using $node.keys.public.load(.) before

retrying.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PUBLIC_KEY_NOT_IN_STORE

REMOVING_LAST_KEY_MUST_BE_FORCED

• Explanation: This error indicates that the attempted key removal would remove the last valid

key of the given entity, making the node unusuable.

• Resolution: Add the force = true flag to your command if you are really sure what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: REMOVING_LAST_KEY_MUST_BE_FORCED

SECRET_KEY_NOT_IN_STORE

• Explanation: This error indicates that the secret key with the respective fingerprint can not be

found.

• Resolution: Ensure you only use fingerprints of secret keys stored in your secret key store.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: SECRET_KEY_NOT_IN_STORE

862 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar NoCorrespondingActiveTxToRevoke\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar PublicKeyNotInStore\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar RemovingLastKeyMustBeForced\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar SecretKeyNotInStore\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

TOPOLOGY_MANAGER_INTERNAL_ERROR

• Explanation: This error indicates that there was an internal error within the topologymanager.

• Resolution: Inspect error message for details.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: TOPOLOGY_MANAGER_INTERNAL_ERROR

TOPOLOGY_MAPPING_ALREADY_EXISTS

• Explanation: This error indicates that a topology transaction would create a state that already

exists and has been authorized with the same key.

• Resolution: Your intended change is already in effect.

• Category: InvalidGivenCurrentSystemStateResourceExists

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status ALREADY_EXISTS including a detailed error message

• Scaladocs: TOPOLOGY_MAPPING_ALREADY_EXISTS

UNAUTHORIZED_TOPOLOGY_TRANSACTION

• Explanation: This error indicates that the attempt to add a transaction was rejected, as the

signing key is not authorized within the current state.

• Resolution: Inspect the topology state and ensure that valid namespace or identifier delega-

tions of the signing key exist or upload them before adding this transaction.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: UNAUTHORIZED_TOPOLOGY_TRANSACTION

3.1.1. DomainTopologyManagerError

ALIEN_DOMAIN_ENTITIES

• Explanation: This error is returned if a transaction attempts to add keys for alien domainman-

ager or sequencer entities to this domain topology manager.

• Resolution: Use a participant topology manager if you want to manage foreign domain keys

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: ALIEN_DOMAIN_ENTITIES

3.3. User Manual 863

../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar InternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar MappingAlreadyExists\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/topology/TopologyManagerError\protect \TU\textdollar \protect \TU\textdollar UnauthorizedTransaction\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar AlienDomainEntities\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

FAILED_TO_ADD_MEMBER

• Explanation: This error indicates an external issue with the member addition hook.

• Resolution: Consult the error details.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side. This error is exposed

on the API with grpc-status UNKNOWN without any details due to security reasons

• Scaladocs: FAILED_TO_ADD_MEMBER

PARTICIPANT_NOT_INITIALIZED

• Explanation: This error is returned if a domain topology manager attempts to activate a par-

ticipant without having previously registered the necessary keys.

• Resolution: Register the necessary keys and try again.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: PARTICIPANT_NOT_INITIALIZED

WRONG_DOMAIN

• Explanation: This error is returned if a transaction restricted to a domain should be added to

another domain.

• Resolution: Recreate the content of the transaction with a correct domain identifier.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: WRONG_DOMAIN

3.1.2. ParticipantTopologyManagerError

CANNOT_VET_DUE_TO_MISSING_PACKAGES

• Explanation: This error indicates that a package vetting command failed due to packages not

existing locally. This can be due to either the packages not being present or their dependencies

being missing. When vetting a package, the package must exist on the participant, as other-

wise the participant will not be able to process a transaction relying on a particular package.

• Resolution: Ensure that the package exists locally before issuing such a transaction.

• Category: InvalidGivenCurrentSystemStateResourceMissing

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status NOT_FOUND including a detailed error message

• Scaladocs: CANNOT_VET_DUE_TO_MISSING_PACKAGES

864 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar FailedToAddMember\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar ParticipantNotInitialized\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar WrongDomain\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar CannotVetDueToMissingPackages\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE

• Explanation: This error indicates that a dangerous owner to key mapping authorization was

rejected. This is the case if a command is run that could break a participant. If the command

was run to assign a key for the given participant, then the command was rejected because the

key is not in the participants private store. If the command is run on a participant to issue

transactions for another participant, then such commands must be run with force, as they

are very dangerous and could easily break the participant. As an example, if we assign an

encryption key to a participant that the participant does not have, then the participant will be

unable to process an incoming transaction. Therefore we must be very careful to not create

such situations.

• Resolution: Set force=true if you really know what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE

DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE

• Explanation: This error indicates that a dangerous package vetting command was rejected.

This is the case if a vetting command, if not run correctly, could potentially lead to a ledger fork.

The vetting authorization checks the participant for the presence of the given set of packages

(including their dependencies) and allows only to vet for the given participant id. In rare cases

where a more centralised topology manager is used, this behaviour can be overridden with

force. However, if a package is vetted but not present on the participant, the participant will

refuse to process any transaction of the given domain until the problematic package has been

uploaded.

• Resolution: Set force=true if you really know what you are doing.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE

DEPENDENCIES_NOT_VETTED

• Explanation: This error indicates a vetting request failed due to dependencies not being vet-

ted. On every vetting request, the set supplied packages is analysed for dependencies. The

system requires that not only the main packages are vetted explicitly but also all dependen-

cies. This is necessary as not all participants are required to have the same packages installed

and therefore not every participant can resolve the dependencies implicitly.

• Resolution: Vet the dependencies first and then repeat your attempt.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: DEPENDENCIES_NOT_VETTED

3.3. User Manual 865

../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DangerousKeyUseCommandRequiresForce\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DangerousVettingCommandsRequireForce\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar DependenciesNotVetted\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

UNINITIALIZED_PARTICIPANT

• Explanation: This error indicates that a request involving topology management was at-

tempted on a participant that is not yet initialised. During initialisation, only namespace and

identifier delegations can be managed.

• Resolution: Initialise the participant and retry.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status FAILED_PRECONDITION including a detailed error message

• Scaladocs: UNINITIALIZED_PARTICIPANT

3.1.3. Domain

3.1.3.1. GrpcSequencerAuthenticationService

CLIENT_AUTHENTICATION_FAULTY

• Explanation: This error indicates that a client failed to authenticate with the sequencer due to

a reason possibly pointing out to faulty or malicious behaviour. The message is logged on the

server in order to support an operator to provide explanations to clients struggling to connect.

• Category: MaliciousOrFaultyBehaviour

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: CLIENT_AUTHENTICATION_FAULTY

CLIENT_AUTHENTICATION_REJECTED

• Explanation: This error indicates that a client failed to authenticate with the sequencer. The

message is logged on the server in order to support an operator to provide explanations to

clients struggling to connect.

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: This error is logged with log-level INFO on the server side.

• Scaladocs: CLIENT_AUTHENTICATION_REJECTED

3.2. DomainTopologySender

TOPOLOGY_DISPATCHING_DEGRADATION

• Explanation: This warning occurs when the topology dispatcher experiences timeouts while

trying to register topology transactions.

• Resolution: This error should normally self-recover due to retries. If issue persist, contact sup-

port and investigate system state.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: TOPOLOGY_DISPATCHING_DEGRADATION

866 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/participant/topology/ParticipantTopologyManagerError\protect \TU\textdollar \protect \TU\textdollar UninitializedParticipant\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/service/GrpcSequencerAuthenticationService\protect \TU\textdollar \protect \TU\textdollar SequencerAuthenticationFaultyOrMalicious\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/sequencing/service/GrpcSequencerAuthenticationService\protect \TU\textdollar \protect \TU\textdollar SequencerAuthenticationFailure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologySender\protect \TU\textdollar \protect \TU\textdollar TopologyDispatchingDegradation\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

TOPOLOGY_DISPATCHING_INTERNAL_ERROR

• Explanation: This error is emitted if there is a fundamental, un-expected situation during

topology dispatching. In such a situation, the topology state of a newly onboarded participant

or of all domain members might become outdated

• Resolution: Contact support.

• Category: SystemInternalAssumptionViolated

• Conveyance: This error is logged with log-level ERROR on the server side. This error is exposed

on the API with grpc-status INTERNAL without any details due to security reasons

• Scaladocs: TOPOLOGY_DISPATCHING_INTERNAL_ERROR

4. ConfigErrors

CANNOT_PARSE_CONFIG_FILES

• Explanation: This error is usually thrown because a config file doesn’t contain configs in valid

HOCON format. The most common cause of an invalid HOCON format is a forgotten bracket.

• Resolution: Make sure that all files are in valid HOCON format.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CANNOT_PARSE_CONFIG_FILES

CANNOT_READ_CONFIG_FILES

• Explanation: This error is usually thrown when Canton can’t find a given configuration file.

• Resolution: Make sure that the path and name of all configuration files is correctly specified.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CANNOT_READ_CONFIG_FILES

CONFIG_SUBSTITUTION_ERROR

• Resolution: A common cause of this error is attempting to use an environment variable that

isn’t defined within a config-file.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CONFIG_SUBSTITUTION_ERROR

3.3. User Manual 867

../../canton/scaladoc/com/digitalasset/canton/domain/topology/DomainTopologySender\protect \TU\textdollar \protect \TU\textdollar TopologyDispatchingInternalError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar CannotParseFilesError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar CannotReadFilesError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar SubstitutionError\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

CONFIG_VALIDATION_ERROR

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: CONFIG_VALIDATION_ERROR

GENERIC_CONFIG_ERROR

• Resolution: In general, this can be one of many errors since this is the ‘miscellaneous cate-

gory’ of configuration errors. One of the more common errors in this category is an ‘unknown

key’ error. This error usually means that a keyword that is not valid (e.g. it may have a typo

‘bort’ instead of ‘port’), or that a valid keyword at the wrong part of the configuration hierarchy

was used (e.g. to enable database replication for a participant, the correct configuration is can-

ton.participants.participant2.replication.enabled = true and not canton.participants.replication.enabled

= true). Please refer to the scaladoc of either CantonEnterpriseConfig or CantonCommunityConfig

(depending on whether the community or enterprise version is used) to find the valid configu-

ration keywords and the correct position in the configuration hierarchy.

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: GENERIC_CONFIG_ERROR

NO_CONFIG_FILES

• Category: InvalidIndependentOfSystemState

• Conveyance: Config errors are logged and output to stdout if starting Canton with a given con-

figuration fails

• Scaladocs: NO_CONFIG_FILES

5. CommandErrors

CONSOLE_COMMAND_INTERNAL_ERROR

• Category: SystemInternalAssumptionViolated

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: CONSOLE_COMMAND_INTERNAL_ERROR

868 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar ValidationError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar GenericConfigError\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/config/ConfigErrors\protect \TU\textdollar \protect \TU\textdollar NoConfigFiles\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar CommandInternalError\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

CONSOLE_COMMAND_TIMED_OUT

• Category: SystemInternalAssumptionViolated

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: CONSOLE_COMMAND_TIMED_OUT

NODE_NOT_STARTED

• Category: InvalidGivenCurrentSystemStateOther

• Conveyance: These errors are shown as errors on the console.

• Scaladocs: NODE_NOT_STARTED

6. DatabaseStorageError

DB_STORAGE_DEGRADATION

• Explanation: This error indicates that degradation of database storage components.

• Resolution: Inspect error message for details.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: DB_STORAGE_DEGRADATION

7. ProtoDeserializationError

PROTO_DESERIALIZATION_FAILURE

• Explanation: This error indicates that an incoming administrative command could not be pro-

cessed due to a malformed message.

• Resolution: Inspect the error details and correct your application

• Category: InvalidIndependentOfSystemState

• Conveyance: This error is logged with log-level INFO on the server side. This error is exposed on

the API with grpc-status INVALID_ARGUMENT including a detailed error message

• Scaladocs: PROTO_DESERIALIZATION_FAILURE

8. ResilientSequencerSubscription

SEQUENCER_SUBSCRIPTION_LOST

• Explanation: This warning is loggedwhen a sequencer subscription is interrupted. The system

will keep on retrying to reconnect indefinitely.

• Resolution: Monitor the situation and contact the server operator if the issues does not resolve

itself automatically.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: SEQUENCER_SUBSCRIPTION_LOST

3.3. User Manual 869

../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar ConsoleTimeout\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/console/CommandErrors\protect \TU\textdollar \protect \TU\textdollar NodeNotStarted\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/resource/DatabaseStorageError\protect \TU\textdollar \protect \TU\textdollar DatabaseStorageDegradation\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/ProtoDeserializationError\protect \TU\textdollar \protect \TU\textdollar ProtoDeserializationFailure\protect \TU\textdollar .html
../../canton/scaladoc/com/digitalasset/canton/sequencing/client/ResilientSequencerSubscription\protect \TU\textdollar \protect \TU\textdollar LostSequencerSubscription\protect \TU\textdollar .html

Daml SDK Documentation, 2.1.1

9. Clock

SYSTEM_CLOCK_RUNNING_BACKWARDS

• Explanation: This error is emitted if the unique time generation detects that the host system

clock is lagging behind the unique time source by more than a second. This can occur if the

system processes more than 2e6 events per second (unlikely) or when the underlying host

system clock is running backwards.

• Resolution: Inspect your host system. Generally, the unique time source is not negatively af-

fected by a clock moving backwards and will keep functioning. Therefore, this message is just

a warning about something strange being detected.

• Category: BackgroundProcessDegradationWarning

• Conveyance: This error is logged with log-level WARN on the server side.

• Scaladocs: SYSTEM_CLOCK_RUNNING_BACKWARDS

Important: This feature is only available in Canton Enterprise

3.3.11 High Availability Usage

3.3.11.1 Overview

Canton nodes can be deployed in a highly available manner to ensure that domains and partici-

pants will continue operating despite isolated machine failures. See High Availability for a detailed

description of the architecture in each Canton component to support HA.

3.3.11.2 Domain Manager

As explained in Domain Architecture and Integrations, a domain internally comprises a sequencer, a

mediator and a topology manager. When running a simple domain node (configured with canton.

domains, as shown in most of the examples), this node will be running a topology manager, a se-

quencer and a mediator all internally.

It is possible however to run sequencer(s) andmediator(s) as standalone nodes, as will be explained

in the next topics. But to complete the domain setup, it is also necessary to run a domain manager

node (configured with canton.domain-managers), which takes care of the bootstrapping of the

distributed domain setup and runs the topology manager.

The domain bootstrapping process is explained in Domain bootstrapping.

The domain manager node itself is currently not HA but it is not on the critical path for transaction

processing, but for onboarding new parties/participants.

870 Chapter 3. Canton Guide

../../canton/scaladoc/com/digitalasset/canton/time/Clock\protect \TU\textdollar \protect \TU\textdollar SystemClockRunningBackwards\protect \TU\textdollar .html
https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

3.3.11.3 HA Setup on Oracle

The HA approach that is used by the participant, mediator, and sequencer nodes requires additional

permissions being granted on Oracle to the database user.

All replicas of a node must be configured with the same DB user name. The DB user must have the

following permissions granted:

GRANT EXECUTE ON SYS.DBMS_LOCK TO $username

GRANT SELECT ON V_$LOCK TO $username

GRANT SELECT ON V_$MYSTAT TO $username

In the above commands the $usernamemust be replaced with the configured DB user name. These

permissions allow the DB user to request application-level locks on Oracle, as well as to query the

state of locks and its own session information.

3.3.11.4 Mediator

The mediator service uses a hot-standby mechanism, with an arbitrary number of replicas.

Running a Stand-Alone Mediator Node

Adomainmaybe statically configuredwith a single embeddedmediator node or itmaybe configured

to work with external mediators. Once the domain has been initialized further mediators can be

added at runtime.

By default a domain node will run an embedded mediator node itself. This is useful in simple de-

ployments where all domain functionality can be co-located on a single host. In a distributed setup

where domain services are operated over manymachines you can instead configure a domainman-

ager node and bootstrap the domain with mediator(s) running externally.

Mediator nodes can be defined the same manner as Canton participants and domains.

mediators {

mediator1 {

admin-api.port = 5017

}

When the domain node starts it will automatically provide the embedded mediator information

about the domain. External mediators have to be initialized using runtime administration in order

to complete the domains initialization.

HA Configuration

HA mediator support is only available in the Enterprise version of Canton and only PostgreSQL and

Oracle based storage are supported for HA.

Mediator node replicas are configured in the Canton configuration file as individual stand-alone

mediator nodes with two required changes for each mediator node replica:

• Using the same storage configuration to ensure access to the shared database.

• Set replication.enabled = true for each mediator node replica.

3.3. User Manual 871

Daml SDK Documentation, 2.1.1

Only the activemediator node replica has to be initialized through the domain bootstrap commands.

The passive replicas observe the initialization via the shared database.

Further replicas can be started at runtime without any additional setup. They remain passive until

the current active mediator node replica fails.

3.3.11.5 Sequencer

The database based sequencer can be horizontally scaled and placed behind a load-balancer to pro-

vide high availability and performance improvements.

Deploy multiple sequencer nodes for the Domain with the following configuration:

• All sequencer nodes share the samedatabase so ensure that the storage configuration for each

sequencer matches.

• All sequencer nodes must be configured with high-availability.enabled = true.

canton {

sequencers {

sequencer1 {

sequencer {

type = database

high-availability.enabled = true

}

The Domain node only supports embedded sequencers, so a distributed setup using a domainman-

ager node must then be configured to use these Sequencer nodes by pointing it at these external

services.

Once configured the domain must be bootstrapped with the new external sequencer using the boot-

strap_domain operational process. These sequencers share a database so just use a single instance

for bootstrapping and the replicas will come online once the shared database has sufficient state

for starting.

As these nodes are likely running in separate processes you could run this command entirely exter-

nally using a remote administration configuration.

canton {

remote-domains {

da {

these details are provided to other nodes to use for how they should␣

↪→connect to the embedded sequencer

public-api {

address = da-domain.local

port = 1234

}

admin-api {

address = da-domain.local

port = 1235

}

}

}

remote-sequencers {

sequencer1 {

these details are provided to other nodes to use for how they should␣

↪→connect to the sequencer (continues on next page)

872 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

public-api {

address = sequencer1.local

port = 1235

}

the server used from running administration commands

admin-api {

address = sequencer1.local

port = 1235

}

}

}

}

There are twomethods available for exposing the horizontally scaled sequencer instances to partic-

ipants.

Total Node Count

The sequencer.high-availability.total-node-count parameter is used to divide up time

among the database sequencers. Because each message sequenced must have a unique times-

tamp, a sequencer node will use timestamps modulo the total-node-count plus own index in

order to create timestamps that do not conflict with other sequencer nodes while sequencing the

messages in a parallel database insertion process. Canton uses microseconds, which yields a

theoretical max throughput of 1 million messages per second per domain. Now, this theoretical

throughput is divided equally among all sequencer nodes (total-node-count). Therefore, if you

set total-node-count too high, then a sequencer might not be able to operate at the maximum

theoretical throughput. We recommend to keep the default value of 10, as all above explanations

are only of theoretical nature and we have not yet seen a database / hard-disk that can handle the

theoretical throughput. Also note that a message might contain multiple events, such that we are

talking about high numbers here.

External load balancer

Using a load balancer is recommended when you have a http2+grpc supporting load balancer avail-

able, and can’t/don’t want to expose details of the backend sequencers to clients. An advanced de-

ployment could also support elastically scaling the number of sequencers available and dynamically

reconfigure the load balancer for this updated set.

An example HAProxy configuration for exposing GRPC services without TLS looks like:

frontend domain_frontend

bind 1234 proto h2

default_backend domain_backend

backend domain_backend

balance roundrobin

server sequencer1 sequencer1.local:1234 proto h2

server sequencer2 sequencer2.local:1234 proto h2

server sequencer3 sequencer3.local:1234 proto h2

3.3. User Manual 873

http://www.haproxy.org/

Daml SDK Documentation, 2.1.1

Client-side load balancing

Using client-side loadbalancing is recommendedwhere a external load-balancing service is unavail-

able (or lacks http2+grpc support), and the set of sequencers is static and can be configured at the

client.

To simply specify multiple sequencers use the domains.connect_ha console command when reg-

istering/connecting to the domain:

myparticipant.domains.connect_ha(

"my_domain_alias",

"https://sequencer1.example.com",

"https://sequencer2.example.com",

"https://sequencer3.example.com"

)

See the documentation on the connect command using a domain connection config for how to add

many sequencer urlswhen combinedwith other domain connection options. Thedomain connection

configuration can also be changed at runtime to add or replace configured sequencer connections.

Note the domain will have to be disconnected and reconnected at the participant for the updated

configuration to be used.

3.3.11.6 Participant

High availability of a participant node is achieved by runningmultiple participant node replicas that

have access to a shared database.

Participant node replicas are configured in the Canton configuration file as individual participants

with two required changes for each participant node replica:

• Using the same storage configuration to ensure access to the shared database. Only Post-

greSQL andOracle based storage is supported for HA. For Oracle it is crucial that the participant

replicas use the same username to access the shared database.

• Set replication.enabled = true for each participant node replica.

874 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Domain Connectivity during Fail-over

During fail-over from one replica to another the new active replica re-connects to all configured do-

mains for which manualConnect = false. This means if the former active replica was manually

connected to a domain, this domain connection is not automatically re-established during fail-over,

but must be performed manually again.

Manual Trigger of a Fail-over

Fail-over from the active to a passive replica is done automatically when the active replica has a

failure, but one can also initiate a graceful fail-over with the following command:

activeParticipantReplica.replication.set_passive()

The command succeeds if there is at least another passive replica that takes over from the current

active replica, otherwise the active replica remains active.

Load Balancer Configuration

Many replicatedparticipants canbeplacedbehindanappropriately sophisticated loadbalancer that

will by health checks determinewhich participant instance is active and direct ledger and admin api

requests to that instance appropriately. This makes participant replication and failover transpar-

ent from the perspective of the ledger-api application or canton console administering the logical

participant, as they will simply be pointed at the load balancer.

Participants should be configured to expose an “IsActive” health status on our health http server

using the following monitoring configuration:

canton {

monitoring {

health {

server {

address = 0.0.0.0

port = 8000

}

check.type = is-active

}

}

}

Once running this server will report a http 200 status code on a http/1 GET request to /health if the

participant is currently the active replica. Otherwise an error will be returned.

To use a load balancer itmust support http/1 health checks for routing requests on a separate http/2

(GRPC) server. This is possible with HAProxy using the following example configuration:

global

log stdout format raw local0

defaults

log global

(continues on next page)

3.3. User Manual 875

http://www.haproxy.org/

Daml SDK Documentation, 2.1.1

(continued from previous page)

mode http

option httplog

enabled so long running connections are logged immediately upon connect

option logasap

expose the admin-api and ledger-api as separate servers

frontend admin-api

bind :15001 proto h2

default_backend admin-api

backend admin-api

enable http health checks

option httpchk

required to create a separate connection to query the load balancer.

this is particularly important as the health http server does not support h2

which would otherwise be the default.

http-check connect

set the health check uri

http-check send meth GET uri /health

list all participant backends

server participant1 participant1.lan:15001 proto h2 check port 8080

server participant2 participant2.lan:15001 proto h2 check port 8080

server participant3 participant3.lan:15001 proto h2 check port 8080

repeat a similar configuration to the above for the ledger-api

frontend ledger-api

bind :15000 proto h2

default_backend ledger-api

backend ledger-api

option httpchk

http-check connect

http-check send meth GET uri /health

server participant1 participant1.lan:15000 proto h2 check port 8080

server participant2 participant2.lan:15000 proto h2 check port 8080

server participant3 participant3.lan:15000 proto h2 check port 8080

3.3.12 Identity Management

On-ledger identity management focuses on the distributed aspect of identities across Canton sys-

tem entities, while user identity management focuses on individual participants managing access

of their users to their ledger APIs.

Canton comes with a built in identitymanagement system used tomanage on-ledger identities. The

technical details are explained in the architecture section, while this write up here is meant to give a

high level explanation.

The identity management system is self-contained and built without a trusted central entity or

pre-defined root certificate such that anyone can connect with anyone, without the need of some

central approval and without the danger of losing self-sovereignty.

876 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.12.1 Introduction

What is a Canton Identity?

When two system entities such as a participant, domain topology manager, mediator or sequencer

communicate with each other, they will use asymmetric cryptography to encryptmessages and sign

message contents such that only the recipient can decrypt the content, verify the authenticity of the

message, or prove its origin. Therefore, we need a method to uniquely identify the system entities

and a way to associate encryption and signing keys with them.

On top of that, Canton uses the contract language Daml, which represents contract ownership and

rights through parties. But parties are not primarymembers of the Canton synchronisation protocol.

They are represented by participants and therefore we need to uniquely identify parties and relate

them to participants, such that a participant can represent several parties (and in Canton, a party

can be represented by several participants).

Unique Identifier

A Canton identity is built out of two components: a random string X and a fingerprint of a public

key N. This combination, (X,N), is called a unique identifier and is assumed to be globally unique by

design. This unique identifier is used in Canton to refer to particular parties, participants or domain

entities. A system entity (such as a party) is described by the combination of role (party, participant,

mediator, sequencer, domain topology manager) and its unique identifier.

The system entities require knowledge about the keys which will be used for encryption and sign-

ing by the respective other entities. This knowledge is distributed and therefore, the system entities

require a way to verify that a certain association of an entity with a key is correct and valid. This is

the purpose of the fingerprint of a public key in the unique identifier, which is referred to as Names-

pace. And the secret key of the corresponding namespace acts as the root of trust for that particular

namespace, as explained later.

Topology Transactions

In order to remain flexible andbe able to change keys and cryptographic algorithms, we don’t identify

the entities using a single static key, but we need a way to dynamically associate participants or

domain entities with keys and parties with participants. We do this through topology transactions.

A topology transaction establishes a certain association of a unique identifier with either a key or a

relationship with another identifier. There are several different types of topology transactions. The

most general one is the OwnerToKeyMapping, which as the name says, associates a key with a unique

identifier. Such a topology transaction will inform all other system entities that a certain system

entity is using a specific key for a specific purpose, such as participant Alice of namespace 12345.. is

using the key identified through the fingerprint AABBCCDDEE.. to sign messages.

Now, this poses two questions: who authorizes these transactions, and who distributes them?

For the authorization, we need to look at the second part of the unique identifier, the Namespace. A

topology transaction that refers to a particular unique identifier operates on that namespace and

we require that such a topology transaction is authorized by the corresponding secret key through

a cryptographic signature of the serialised topology transaction. This authorization can be either

direct, if it is signed by the secret key of the namespace, or indirect, if it is signed by a delegated

3.3. User Manual 877

https://docs.daml.com/concepts/glossary.html#party

Daml SDK Documentation, 2.1.1

key. In order to delegate the signing right to another key, there are other topology transactions of

type NamespaceDelegation or IdentifierDelegation that allow one to do that. A namespace delegation del-

egates entire namespaces to a certain key, such as saying the key identifier through the fingerprint

AABBCCDDEE… is now allowed to authorize topology transactions within the namespace of the key

VVWWXXYYZZ…. An identifier delegation delegates authority over a certain identifier to a key, which

means that the delegation key can only authorize topology transactions that act on a specific iden-

tifier and not the entire namespace.

Now, signing of topology transactions happens in a TopologyManager. Canton has many topology

managers. In fact, every participant node and every domain have topology managers with exactly

the same functional capabilities, just different impact. They can create new keys, new namespaces

and the identity of new participants, parties and even domains. And they can export these topology

transactions such that they can be imported at another topology manager. This allows to manage

Canton identities in quite a wide range of ways. A participant can operate their own topology man-

ager which allows them individually to manage their parties. Or they can associate themselves with

another topology manager and let themmanage the parties that they represent or keys they use. Or

something in between, depending on the introduced delegations and associations.

The difference between the domain topology manager and the participant topology manager is that

the domain topology manager establishes the valid topology state in a particular domain by dis-

tributing topology transactions in a way that every domainmember ends up with the same topology

state. However, the domain topology manager is just a gate keeper of the domain that decides who

is let in and who not on that particular domain, but the actual topology statements originate from

various sources. As such, the domain topology manager can only block the distribution, but cannot

fake topology transactions.

The participant topology manager only manages an isolated topology state. However, there is a dis-

patcher attached to this particular topology manager that attempts to register locally registered

identities with remote domains, by sending them to the domain topology managers, who then de-

cide on whether they want to include them or not.

The careful reader will have noted that the described identity system indeed does not have a single

root of trust or decision maker on who is part of the overall system or not. But also that the topol-

ogy state for the distributed synchronisation varies from domain to domain, allowing very flexible

topologies and setups.

Legal Identities

In Canton, we separate a system identity from the legal identity. While the above mechanism al-

lows to establish a common, verified and authorized knowledge of system entities, it doesn’t guar-

antee that a certain unique identifier really corresponds to a particular legal identity. Even more

so, while the unique identifier remains stable, a legal identity might change, for example in the

case of a merger of two companies. Therefore, Canton provides an administrative command which

allows to associate a randomized system identity with a human readable display name using the

participant.parties.set_display_name command.

Note: A party display name is private to the participant. If such names should be shared among

participants, we recommend to build a corresponding Daml workflow and some automation logic,

listening to the results of the Daml workflow and updating the display name accordingly.

878 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Life of a Party

In the tutorials, we use the participant.parties.enable("name") function to setup a party on

a participant. To understand the identitymanagement system in Canton, it helps to look at the steps

under the hood of how a new party is added:

1. The participant.parties.enable function determines the unique identifier of the partic-

ipant: participant.id.

2. The party name is built as name::<namespace>, where the namespace is the one of the par-

ticipant.

3. A new party to participant mapping is authorized on the admin-api: participant.

topology.party_to_participant_mappings.authorize(...)

4. The ParticipantTopologyManager gets invoked by the GRPC request, creating a new

SignedTopologyTransaction and tests whether the authorization can be added to the local

topology state. If it can, the new topology transaction is added to the store.

5. The ParticipantTopologyDispatcher picks up the new transaction and requests the ad-

dition on all domains via the RegisterTopologyTransactionRequest domain service per

domain.

6. A domain receives this request andprocesses it according to the policy (reject, queue, approve).

The default setting is approve for convenience during development.

7. The approve policy attempts to add the new topology transaction to the DomainTopology-

Manager.

8. The DomainTopologyManager checks whether the new topology transaction can be added to

the domain topology state. If yes, it gets written to the local topology store.

9. The DomainTopologyDispatcher picks up the new transaction and sends it to all partici-

pants (and back to itself) through the sequencer.

10. The sequencer timestamps the transaction and embeds it into the transaction stream.

11. The participants receive the transaction, verify the integrity and correctness against the topol-

ogy state and add it to the state with the timestamp of the sequencer, such that everyone has

a synchronous topology state.

Note that the participant.parties.enable macro only works if the participant controls their

namespace themselves, either directly by having the namespace key or through delegation (via

NamespaceDelegation).

Participant Onboarding

Key to support topological flexibility is that participants can easily be added to new domains. There-

fore, the on-boarding of new participants to domains needs to be secure but convenient. Looking

at the console command, we note that in most examples, we are using the connect command to

connect a participant to a domain. The connect command just wraps a set of admin-api commands:

val certificates = OptionUtil.emptyStringAsNone(certificatesPath).map { path =>

BinaryFileUtil.readByteStringFromFile(path) match {

case Left(err) => throw new IllegalArgumentException(s"failed to load ${path}

↪→: ${err}")

case Right(bs) => bs

}

}

DomainConnectionConfig.grpc(

domainAlias,

connection,

(continues on next page)

3.3. User Manual 879

Daml SDK Documentation, 2.1.1

(continued from previous page)

manualConnect,

domainId,

certificates,

priority,

initialRetryDelay,

maxRetryDelay,

timeTrackerConfig,

)

// register the domain configuration

register(config.copy(manualConnect = true))

if (!config.manualConnect) {

// fetch and confirm domain agreement

config.sequencerConnection match {

case _: GrpcSequencerConnection =>

confirm_agreement(config.domain.unwrap)

case _ => ()

}

reconnect(config.domain.unwrap, retry = false)

// now update the domain settings to auto-connect

modify(config.domain.unwrap, _.copy(manualConnect = false))

}

Wenote that fromauser perspective, all that needs to happen by default is to provide the connection

information and accepting the terms of service (if required by the domain) to set up a new domain

connection. There is no separate on-boarding step performed, no giant certificate signing exercise

happens, everything is set up during the first connection attempt. However, quite a few steps happen

behind the scenes. Therefore, we briefly summarise the process here step by step:

1. The administrator of an existing participant needs to invoke the domains.register com-

mand to add a new domain. The mandatory arguments are a domain alias (used internally to

refer to a particular connection) and the domain connection URL (http or https) including an

optional port http[s]://hostname[:port]/path. Optional are a certificates path for a custom TLS

certificate chain (otherwise the default jre root certificates are used) and the domain id of a

domain. The domain id is the unique identifier of the domain that can be defined to prevent

man-in-the-middle attacks (very similar to a ssh key fingerprint).

2. The participant will contact the DomainService and check if using the domain service re-

quires the signing of specific terms of services. If required, the terms of service will be dis-

played to the user and an approval will be locally stored at the participant for later. If approved,

the participant will attempt to connect to the domain.

3. The participant opens a GRPC channel to the DomainService.

4. The participant verifies that the remote domain is running a protocol version compatible with

the participant’s version using the DomainService.handshake. If the participant runs an

incompatible protocol version, the connection will fail.

5. The participant will download and verify the domain id from the domain. The domain id can be

used to verify the correct authorization of the topology transactions of the domain entities. If

the domain id has been provided previously during the domains.register call (or in a previ-

ous session), the two ids will be compared. If they are not equal, the connection will fail. If the

domain id was not provided during the domains.register call, the participant will use and

store the one downloaded. We assume here that the domain id is obtained by the participant

through a secure channel such that it is sure to be talking to the right domain. Therefore, this

secure channel can be either something happening outside of Canton or can be provided by

TLS during the first time we contact a domain.

880 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

6. The participant will download the domain parameters, which are the parameters used for the

transaction protocol on the particular domain. This happens on every re-connect.

7. The participant sets up an identity pusher which is the process that tries to push all topology

transactions created at the participant node’s topologymanager to the domain topologyman-

ager. If the participant is using its topology manager to manage its identity on its own, these

transactions contain all the information about the participant node keys and the registered

parties.

8. The domain receives the set of topology transactions of the participant node through

the DomainIdentityService.RegisterIdentityTransaction. The registration service

inspects the validity of the transactions and decides based on the configured domain

on-boarding policy. The currently supported policies are auto-accept, queue, reject. While

auto-accept is convenient for permission-less systems and for development, it will accept

any new participant and any topology transaction. The queue policy will store the new re-

quested topology transaction in a store and let the domain administrator decide on whether

a certain topology transaction will be accepted or not. The policy reject will just reject any

topology transaction by default. Therefore, whether a participant can join a domain or not is

a decision of the domain operator. Canton does not make any assumption on how and when

a domain operator decides, but lets the operator implement any process. Note that the cur-

rently implemented policies are experimental features so far with limited documentation and

the final version will allow domain operators to define their own topology transaction request

processing policy rather than having to pick from a pre-defined set.

9. The auto-accept policy auto-approves all topology transactions as long as they are properly

authorised and adds them to the domain topology state. If a new participant appears, the

participant is automatically enabled.

10. When a participant is (re-)enabled, the domain identity dispatcher analyses the set of topology

transactions the participant has missed before. It sends these transactions to the participant

via the sequencer, before publicly enabling the participant. Therefore, when the participant

starts to read messages from the sequencer, the initially received messages will be the topol-

ogy state of the domain.

11. Now, as the participant is properly enabled on the domain and its signing key is known, the

participant can subscribe to the SequencerService with its identity. In order to do that and in

order to verify the authorisation of any action on the SequencerService, the participant requires

to obtain an authorization token from the domain. For this purpose, the participant requests a

challenge from the domain. The domain will provide it with a nonce and the fingerprint of the key

to be used for authentication. The participant signs this nonce (together with the domain id)

using the corresponding private key. The reason for the fingerprint is simple: the participant

needs to sign the token using the participants signing key as defined by the domain topology

state. However, as the participant will learn the true domain topology state only by reading

from the sequencer service, it can not know what the key is. Therefore, the domain discloses this

part of the domain topology state as part of the authorisation challenge.

12. Using the created authentication token, the participant starts to use the SequencerService. On

the domain side, the domain verifies the authenticity and validity of the token by verifying that

the token is the expected one and is signed by the participant’s signing key.

13. As mentioned above, the first set of messages received by the participant through the se-

quencer will contain the domain topology state, which includes the signing keys of the do-

main entities. These messages are signed by the sequencer and topology manager and are

self-consistent. If the participants know the domain id, they can verify that they are talking

to the expected domain and that the keys of the domain entities have been authorized by the

owner of the key governing the domain id.

14. Once the initial topology transactions have been read, the participant is ready to process trans-

actions and send commands.

3.3. User Manual 881

Daml SDK Documentation, 2.1.1

Default Initialization

The default initialization behaviour of participant and domain nodes is to run their own topology

manager. This provides a convenient, automatic way to configure the nodes and make them usable

without manual intervention, but it can be turned off by setting the auto-init = false configu-

ration option before the first startup.

During the auto initialization, the following steps will happen:

1. On the domain, we generate four signing keys: one for the namespace and one each for the

sequencer, mediator and topology manager. On the participant, we create a namespace key, a

signing key and an encryption key for the participant.

2. Using the fingerprint of the namespace, we generate the participant identity. For understand-

ability, we use the node name used in the configuration file. This will change into a random

identifier for privacy reasons. Once we’ve generated it, we set it using the set_id admin-api

call.

3. We create a root certificate as NamespaceDelegation using the namespace key, signing with

the namespace key.

4. Then, we create an OwnerToKeyMapping for the participant or domain entities.

Identity Setup Guide

As explained, Canton nodes auto-initialise themselves by default, running their own topology man-

agers. This is convenient for development and prototyping. Actual deployments require more care

and therefore, this section should serve as a brief guideline.

Canton topologymanagershave one crucial task theymustnot fail at: donot lose access to or control

of the root of trust (namespace keys). Any other key problem can somehow be recovered by revoking

an old key and issuing a new owner to key association. Therefore, it is advisable that participants

and parties are associated with a namespace managed by a topology manager that has sufficient

operational setups to guarantee the security and integrity of the namespace.

Therefore, a participant or domain can

1. Run their own topology manager with their identity namespace key as part of the participant

node.

2. Run their own topology manager on a detached computer in a self-built setup that exports

topology transactions and transports them to the respective node (i.e. via burned CD roms).

3. Ask a trusted topology manager to issue a set of identifiers within the trusted topology man-

agers namespace as delegations and import the delegations to the local participant topology

manager.

4. Let a trusted topology manager manage all the topology state on-behalf.

Obviously, there aremore combinations and options possible, but these options here describe some

common options with different security and recoverability options.

In order to reduce the risk of losing namespace keys, additional keys can be created and allowed to

operate on a certain namespace. In fact, we recommend doing this and avoid storing the root key on

a live node.

882 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.12.2 User Identity Management

Up to here, we covered how on ledger identities are managed. However, every participant needs to

manage the access to their local ledger API and be able to permission applications to read or write

to that API on behalf of one or more parties. This is done through the appropriate authorization

configuration in the ledger API configuration section.

The default implemented authorization will be based on JWT token inspection which can be used

with OAuth2, but custom authorization methods can be implemented as a plugin.

Note: This is currently being delivered as an upstream feature and will be exposed as soon as it is

available.

3.3.12.3 Cookbook

Adding a new Party to a Participant

The simplest operation is adding a new party to a participant. For this, we add it normally at the

topology manager of the participant, which in the default case is part of the participant node. There

is a simple macro to enable the party on a given participant if the participant is running their own

topology manager:

val name = "Gottlieb"

participant1.parties.enable(name)

This will create a new party in the namespace of the participants topology manager.

And there is the corresponding disable macro:

participant1.parties.disable(name)

The macros themselves just use topology.party_to_participant_mappings.authorize to

create the new party, but add some convenience such as automatically determining the parameters

for the authorize call.

Note: Please note that the participant.parties.enablemacro will add the parties to the same

namespace as the participant is in. It only works if the participant has authority over that names-

pace either by possessing the root or a delegated key.

Manually Initializing a Node

There are situations where a node should not be automatically initialized, but where we prefer to

control each step of the initialization. For example, when a node in the setup does not control its

own identity, or when we do not want to store the identity key on the node for security reasons.

In the following, we demonstrate the basic steps how to initialise a node:

3.3. User Manual 883

Daml SDK Documentation, 2.1.1

Domain Initialization

The following steps describe how to manually initialize a domain node:

// first, let
s create a signing key that is going to control our identity

val identityKey = mydomain.keys.secret.generate_signing_key("default")

// use the fingerprint of this key for our identity

val namespace = identityKey.fingerprint

// initialise the identity of this domain

val uid = mydomain.topology.init_id("mydomain", namespace)

// create the root certificate for this namespace

mydomain.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

namespace,

namespace,

isRootDelegation = true,

)

// set the initial dynamic domain parameters for the domain

mydomain.topology.domain_parameters_changes

.authorize(DomainId(uid), initialDynamicDomainParameters)

val mediatorId = MediatorId(uid)

Seq[KeyOwner](DomainTopologyManagerId(uid), SequencerId(uid), mediatorId).foreach

↪→{

keyOwner =>

// in this case, we are using an embedded domain. therefore, we initialise␣

↪→all domain

// entities at once. in a distributed setup, the process needs to be invoked␣

↪→on

// the separate entities, and therefore requires a bit more coordination.

// however, the steps remain the same.

// first, create a signing key for this entity

val signingKey = mydomain.keys.secret.generate_signing_key(

keyOwner.code.threeLetterId.unwrap + "-signing-key"

)

// then, create a topology transaction linking the entity to the signing key

mydomain.topology.owner_to_key_mappings.authorize(

TopologyChangeOp.Add,

keyOwner,

signingKey.fingerprint,

KeyPurpose.Signing,

)

}

// Register the mediator

mydomain.topology.mediator_domain_states.authorize(

TopologyChangeOp.Add,

mydomain.id,

mediatorId,

RequestSide.Both,

)

884 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Participant Initialization

The following steps describe how to manually initialize a participant node:

// first, let
s create a signing key that is going to control our identity

val identityKey = participant1.keys.secret.generate_signing_key("my-identity")

// use the fingerprint of this key for our identity

val namespace = identityKey.fingerprint

// create the root certificate (self-signed)

participant1.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

namespace,

namespace,

isRootDelegation = true,

)

// initialise the id: this needs to happen AFTER we created the namespace␣

↪→delegation

// (on participants; for the domain, it
s the other way around ... sorry for that)

// if we initialize the identity before we added the root certificate, then the␣

↪→system will

// complain about not being able to vet the admin workflow packages automatically.

// that would not be tragic, but would require a manual vetting step.

// in production, use a "random" identifier. for testing and development, use␣

↪→something

// helpful so you don
t have to grep for hashes in your log files.

participant1.topology.init_id("manualInit", namespace)

// create signing and encryption keys

val enc = participant1.keys.secret.generate_encryption_key()

val sig = participant1.keys.secret.generate_signing_key()

// assign new keys to this participant

Seq(enc, sig).foreach { key =>

participant1.topology.owner_to_key_mappings.authorize(

TopologyChangeOp.Add,

participant1.id,

key.fingerprint,

key.purpose,

)

}

Party on two Nodes

Assuming we have party ("Jesper", N1) which we want to host on two participants:

("participant1", N1) and ("participant2", N2). In this case, we have the party “Jesper” in

namespace N1, whereas the participant2 is in namespace N2. Therefore, we first need to enable the

party on the first node, and then we need to authorize the mapping of the party to the participant on

both topology managers, as given in below code snippet.

// enable party on participant1 (will invoke topology.party_to_participant_

↪→mappings.authorize) under the hood

val partyId = participant1.parties.enable("Jesper")

(continues on next page)

3.3. User Manual 885

Daml SDK Documentation, 2.1.1

(continued from previous page)

val p2id = participant2.id

// authorize mapping of Jesper to P2 on the topology manager of Jesper

participant1.topology.party_to_participant_mappings.authorize(

TopologyChangeOp.Add,

party = partyId, // party unique identifier

participant = p2id, // participant unique identifier

side =

RequestSide.From, // request side is From if signed by the party idm, To if␣

↪→signed by the participant idm.

permission =

ParticipantPermission.Submission, // optional argument defaulting to␣

↪→CSubmissionC.

)

// authorize mapping of Jesper to P2 on the topology manager of P2

participant2.topology.party_to_participant_mappings.authorize(

TopologyChangeOp.Add,

partyId,

p2id,

side = RequestSide.To,

permission = ParticipantPermission.Submission,

)

Please note however that this currently only works for newly permissioned parties as we don’t yet

support migrating the current active contract set.

Note that we can restrict the permission of the node by setting the appropriate ParticipantPer-

mission in the authorization call to either Observation or Confirmation instead of the default

Submission. This allows to create setups where a party is hosted with Submission permissions

on one node and Observation on another to increase the liveness of the system.

Note: The distinction between Submission and Confirmation is only enforced in the participant

node. A malicious participant node with Confirmation permission for a certain party can submit

transactions in the name of the party. This is due to Canton’s high level of privacy where validators

may not learn the identity of the submitting participant. Therefore, a party who delegates Confir-

mation permissions to a participant should trust the participant sufficiently.

3.3.13 Monitoring

3.3.13.1 Logging

Canton uses Logback as the logging library. All Canton logs derive from the logger com.

digitalasset.canton. By default, Canton will write a log to the file log/canton.log using the

INFO log-level and will also log WARN and ERROR to stdout.

How Canton produces log files can be configured extensively on the command line using the follow-

ing options:

• -v (or --verbose) is a short option to set the canton log level to DEBUG. This is likely the most

common log option you will use.

• --debug sets all log levels, except stdout which is set to INFO, to DEBUG. Note that DEBUG logs

of external libraries can be very noisy.

886 Chapter 3. Canton Guide

https://logback.qos.ch

Daml SDK Documentation, 2.1.1

• --log-level-root=<level> configures the log-level of the root logger. This changes the log

level of Canton and of external libraries, but not of stdout.

• --log-level-canton=<level> configures the log-level of only the Canton logger.

• --log-level-stdout=<level> configures the log-level of stdout. This will usually be the

text displayed in the Canton console.

• --log-file-name=log/canton.log configures the location of the log file.

• --log-file-appender=flat|rolling|off configures if and how logging to a file should

be done. The rolling appender will roll the files according to the defined date-time pattern.

• --log-file-rolling-history=12 configures the number of historical files to keep when

using the rolling appender.

• --log-file-rolling-pattern=YYYY-mm-dd configures the rolling file suffix (and there-

fore the frequency) of how files should be rolled.

• --log-truncate configures whether the log file should be truncated on startup.

• --log-profile=container provides a default set of logging settings for a particular setup.

Right now, we only support the container profile which logs to STDOUT and turns of flat file

logging to avoid storage leaks due to log files within a container.

Please note that if you use --log-profile, the order of the command line argumentsmatters. The

profile settings can be overridden on the command line by placing adjustments after the profile has

been selected.

Canton supports the normal log4j logging levels: TRACE, DEBUG, INFO, WARN, ERROR.

For further customization, a custom logback configuration can be provided using JAVA_OPTS.

JAVA_OPTS="-Dlogback.configurationFile=./path-to-file.xml" ./bin/canton --config .

↪→..

If you use a custom log-file, the command line arguments for logging will not have any effect, except

--log-level-canton and --log-level-root which can still be used to adjust the log level of

the root loggers.

Viewing Logs

We strongly recommend the use of a log file viewer such as lnav to view Canton logs and resolve

issues. Among other features, lnav has automatic syntax highlighting, convenient filtering for spe-

cific logmessages, and allows viewing log files of different Canton components in a single view. This

makes viewing logs and resolving issues a lot more efficient than simply using standard UNIX tools

such as less or grep.

In particular, we have found the following features especially useful when using lnav:

• viewing log files of different Canton components in a single view merged according to times-

tamps (lnav <log1> <log2> ...).

• filtering specific log messages in (:filter-in <regex>) or out (:filter-out <regex>).

When filtering messages, e.g. with a given trace-id, in, a transaction can be traced across dif-

ferent components, especially when using the single-view-feature described above.

• searching for specific log messages (/<regex>) and jumping in-between them (n and N).

• automatic syntax highlighting of parts of log messages (e.g. timestamps) and log messages

themselves (e.g. WARN log messages are yellow).

• jumping in-between error (e and E) and warn messages (w and W).

• selectively activating and deactivating different filters and files (TAB and `` `` to activate/deac-

tivate a filter).

3.3. User Manual 887

https://logback.qos.ch/manual/configuration.html
https://lnav.org/
https://lnav.org/features#single-log-view
https://docs.lnav.org/en/latest/usage.html#filtering
https://docs.lnav.org/en/latest/usage.html#searching
https://docs.lnav.org/en/latest/usage.html#searching

Daml SDK Documentation, 2.1.1

• marking lines (m) and jumping back-and-forth between marked lines (u and U).

The custom lnav log format file for Canton logs canton.lnav.json is bundled in any Canton re-

lease. It can be installed with lnav -i canton.lnav.json.

Detailed Logging

By default, logging will omit details in order to not write sensitive data into log files. For debug or

educational purposes, you can turn onadditional loggingusing the following configuration switches:

canton.monitoring.logging {

event-details = true

api {

message-payloads = true

max-method-length = 1000

max-message-lines = 10000

max-string-length = 10000

max-metadata-size = 10000

}

}

In particular, this will turn on payload logging in the ApiRequestLogger, which records every GRPC

API invocation, and will turn on detailed logging of the SequencerClient and for the transaction

trees. Please note that all additional events will be logged at DEBUG level.

3.3.13.2 Tracing

For further debuggability, Cantonprovides a trace-idwhich allows to trace the processing of requests

through the system. The trace-id is exposed to logback through the mapping diagnostic context and

can be included in the logback output pattern using %mdc{trace-id}.

The trace-id propagation is enabled by setting the canton.monitoring.tracing.propagation

= enabled configuration option, which is already enabled by default.

It is also possible to configure the service where traces and spans are reported to. Currently Jaeger

and Zipkin are supported. For example, Jaeger reporting can be configure as follows:

monitoring.tracing.tracer.exporter {

type = jaeger

address = ... // default: "localhost"

port = ... // default: 14250

}

It is possible to try it out locally very easily by running Jaeger on a Docker container as follows:

docker run --rm -it --name jaeger\

-p 16686:16686 \

-p 14250:14250 \

jaegertracing/all-in-one:1.22.0

888 Chapter 3. Canton Guide

https://docs.lnav.org/en/latest/formats.html

Daml SDK Documentation, 2.1.1

Sampling

It is also possible to change how often spans are sampled (i.e. reported to the configured exporter).

By default it will always report (monitoring.tracing.tracer.sampler.type = always-on).

It can also be configured to never report (monitoring.tracing.tracer.sampler.type =

always-off, although not super useful). And it can also be configured so that a specific fraction of

spans are reported like below:

monitoring.tracing.tracer.sampler = {

type = trace-id-ratio

ratio = 0.5

}

There is one last property of sampling that can be optionally changed. By default we have

parent-based sampling on (monitoring.tracing.tracer.sampler.parent-based = true)

which means that a span is sampled iff its parent is sampled (the root span will follow the config-

ured sampling strategy). This way, there will never be incomplete traces, so either the full trace is

sampled or not. If this property is changed, all spans will follow the configured sampling strategy

ignoring whether the parent is sampled or not.

Known Limitations

Not every trace created which can currently be observed in logs are reported to the configured trace

collector service. Traces originated at console commands or that are part of the transaction protocol

are largely well reported, while other kinds of traces are being added to the set of reported traces as

the need arise.

Also, even the transaction protocol trace has a know limitation which is that once some command

is submitted (and its trace fully reported), if there are any resulting daml events which are subse-

quently processed as a result, a new trace is created as currently the ledger api does not propagate

any trace context info from command submission to transaction subscription. This can be observed

for example by the fact that if a participant creates a ping command, it is possible to see the full

transaction processing trace of the ping command being submitted, but then the participant which

processes the ping by creating a pong command will then create a separate trace instead of contin-

uing to use the same one.

3.3.13.3 Status

Each Canton node exposes rich status information. Running

<node>.health.status

will return a status object which can be one of

• Failure - if the status of the node can not be determined, including an error message why it

failed

• NotInitialized - if the node is not yet initialized

• Success[NodeStatus] - if the status could be determined including the detailed status.

Depending on the node type, the NodeStatus will differ. A participant node will respond with a

message containing

3.3. User Manual 889

Daml SDK Documentation, 2.1.1

• Participant id: - the participant id of the node

• Uptime: - the uptime of this node

• Ports: - the ports on which the participant node exposes the Ledger and the Admin API.

• Connected domains: - list of domains the participant is currently connected to properly

• Unhealthy domains: - list of domains the participant is trying to be connected to but where

the connection is not ready for command submission.

• Active: - true if this instance is the active replica (can be false in case of the passive instance

of a high-availability deployment)

A domain node or a sequencer node will respond with a message containing

• Domain id: - the unique identifier of the domain

• Uptime: - the uptime of this node

• Ports: - the ports on which the domain node exposes the Public and the Admin API

• Connected Participants: - the list of connected participants

• Sequencer: - a boolean flag indicating if the embedded sequencer writer is operational

A domain topology manager or a mediator node will return

• Node uid: - the unique identifier of the node

• Uptime: - the uptime of this node

• Ports: - the ports on which the node hosts its APIs.

• Active: - true if this instance is the active replica (can be false in case of the passive instance

of a high-availability deployment)

3.3.13.4 Health Dumps

In order to provide efficient support, we need as much information as possible. For this purpose,

Canton implements an information gathering facility that will gather key essential system informa-

tion for our support staff. Therefore, if you encounter an error where you need our help, please ensure

the following:

• Start Canton in interactive mode, with the -v option to enable debug logging: ./bin/canton

-v -c <myconfig>. This will provide you with a console prompt.

• Reproduce the error by following the steps that previously caused the error. Write down these

steps so they can be provided to support staff.

• After you observe the error, type health.dump() into the Canton console to generate the ZIP

file.

This will create a dump file (.zip) that stores the following information:

• The configuration you are using, with all sensitive data stripped from it (no passwords).

• An extract of the logfile. We don’t log overly sensitive data into log files.

• A current snapshot on Canton metrics.

• A stacktrace for each running thread.

Please provide the gathered information together with the exact list of steps you did that lead to the

issue to your support contact. Providing complete information is very important to us in order to

help you troubleshoot your issues.

890 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.3.13.5 Health Check

The canton process can optionally expose an HTTP endpoint indicating if the process believes it

is healthy. This is intended for use in uptime checks and liveness probes. If enabled, the /health

endpoint will respond to aGEThttp request with a 200HTTP status code if healthy or 500 if unhealthy

(with a plain text description of why it is unhealthy).

To enable this health endpoint add a monitoring section to the canton configuration. As this health

check is for the whole process, it is added directly to the canton configuration rather than for a

specific node.

canton {

monitoring.health {

server {

port = 7000

}

check {

type = ping

participant = participant1

interval = 30s

}

}

This health check will have participant1 “ledger ping” itself every 30 seconds. The process will

be considered healthy if the ping is successful.

3.3.13.6 Metrics

Canton uses dropwizard’s metrics library to report metrics. The metrics library supports a variety of

reporting backends. JMX based reporting (only for testing purposes) can be enabled using

canton.monitoring.metrics.reporters = [{ type = jmx }]

Additionally, metrics can be written to a file

canton.monitoring.metrics.reporters = [{

type = jmx

}, {

type = csv

directory = "metrics"

interval = 5s // default

filters = [{

contains = "canton"

}]

}]

or reported via Graphite (to Grafana) using

canton.monitoring.metrics.reporters = [{

type = graphite

address = "localhost" // default

port = 2003

prefix.type = hostname // default

(continues on next page)

3.3. User Manual 891

https://metrics.dropwizard.io/

Daml SDK Documentation, 2.1.1

(continued from previous page)

interval = 30s // default

filters = [{

contains = "canton"

}]

}]

or reported via Prometheus (to Grafana) using

canton.monitoring.metrics.reporters = [{

type = prometheus

address = "localhost" // default

port = 9000 // default

}]

When using the graphite or csv reporters, Canton will periodically evaluate all metrics matching

the given filters. It is therefore advisable to filter for only those metrics that are relevant to you.

In addition to Canton metrics, the process can also report Daml metrics (of the ledger api server).

Optionally, JVMmetrics can be included using

canton.monitoring.metrics.report-jvm-metrics = yes // default no

Participant Metrics

canton.<domain>.conflict-detection.sequencer-counter-queue

• Summary: Size of conflict detection sequencer counter queue

• Description: The task scheduler will work off tasks according to the timestamp order, schedul-

ing the tasks whenever a new timestamp has been observed. This metric exposes the number

of un-processed sequencer messages that will trigger a timestamp advancement.

• Type: Gauge

canton.<domain>.conflict-detection.task-queue

• Summary: Size of conflict detection task queue

• Description: The task scheduler will schedule tasks to run at a given timestamp. This metric

exposes thenumber of tasks that arewaiting in the taskqueue for the right time topass. A huge

number does not necessarily indicate a bottleneck; it could also mean that a huge number of

tasks have not yet arrived at their execution time.

• Type: Gauge

892 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.<domain>.protocol-messages.confirmation-request-creation

• Summary: Time to create a confirmation request

• Description: The time that the transaction protocol processor needs to create a confirmation

request.

• Type: Timer

canton.<domain>.protocol-messages.confirmation-request-size

• Summary: Confirmation request size

• Description: Records the histogram of the sizes of (transaction) confirmation requests.

• Type: Histogram

canton.<domain>.protocol-messages.transaction-message-receipt

• Summary: Time to parse a transaction message

• Description: The time that the transaction protocol processor needs to parse and decrypt an

incoming confirmation request.

• Type: Timer

canton.<domain>.request-tracker.sequencer-counter-queue

• Summary: Size of record order publisher sequencer counter queue

• Description: Same as for conflict-detection, but measuring the sequencer counter queues for

the publishing to the ledger api server according to record time.

• Type: Gauge

canton.<domain>.request-tracker.task-queue

• Summary: Size of record order publisher task queue

• Description: The task scheduler will schedule tasks to run at a given timestamp. This metric

exposes the number of tasks that are waiting in the task queue for the right time to pass.

• Type: Gauge

canton.<domain>.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

3.3. User Manual 893

Daml SDK Documentation, 2.1.1

canton.<domain>.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp. The delay pro-

vides the difference between the sequencing time and the processing time. The difference can

be a result of either clock-skew or if the system is overloaded and doesn’t manage to keep up

with processing events.

• Type: Gauge

canton.<domain>.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

canton.<domain>.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

canton.<domain>.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

canton.<domain>.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Gauge

894 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.<domain>.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

canton.<domain>.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

canton.<domain>.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

canton.commitments.compute

• Summary: Time spent on commitment computations.

• Description: Participant nodes compute bilateral commitments at regular intervals. Thismet-

ric exposes the time spent on each computation. If the time to compute the metrics starts to

exceed the commitment intervals, this likely indicates a problem.

• Type: Timer

canton.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

3.3. User Manual 895

Daml SDK Documentation, 2.1.1

canton.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

canton.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.db-storage.general.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

canton.db-storage.general.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

896 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.db-storage.general.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.db-storage.write.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

canton.db-storage.write.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

canton.db-storage.write.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.prune

• Summary: Duration of prune operations.

• Description: This timer exposes the duration of pruning requests from the Canton portion of

the ledger.

• Type: Timer

canton.updates-published

• Summary: Number of updates published through the read service to the indexer

• Description: When an update is published through the read service, it has already been com-

mitted to the ledger. The indexer will subsequently store the update in a form that allows for

querying the ledger efficiently.

• Type: Meter

3.3. User Manual 897

Daml SDK Documentation, 2.1.1

Domain Metrics

canton.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

canton.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

canton.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.db-storage.general.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

898 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.db-storage.general.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

canton.db-storage.general.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.db-storage.write.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

canton.db-storage.write.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

canton.db-storage.write.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.mediator.outstanding-requests

• Summary: Number of currently outstanding requests

• Description: This metric provides the number of currently open requests registered with the

mediator.

• Type: Gauge

3.3. User Manual 899

Daml SDK Documentation, 2.1.1

canton.mediator.requests

• Summary: Number of totally processed requests

• Description: This metric provides the number of totally processed requests since the system

has been started.

• Type: Meter

canton.mediator.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

canton.mediator.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp. The delay pro-

vides the difference between the sequencing time and the processing time. The difference can

be a result of either clock-skew or if the system is overloaded and doesn’t manage to keep up

with processing events.

• Type: Gauge

canton.mediator.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

canton.mediator.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

canton.mediator.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

900 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

• Type: Counter

canton.mediator.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Gauge

canton.mediator.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

canton.mediator.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

canton.mediator.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

canton.sequencer.db-storage.<storage>

• Summary: Timer monitoring duration and rate of accessing the given storage

• Description: Covers both read from and writes to the storage.

• Type: Timer

3.3. User Manual 901

Daml SDK Documentation, 2.1.1

canton.sequencer.db-storage.<storage>.load

• Summary: The load on the given storage

• Description: The load is a factor between 0 and 1 describing how much of an existing interval

has been spent reading from or writing to the storage.

• Type: Gauge

canton.sequencer.db-storage.alerts.multi-domain-event-log

• Summary: Number of failed writes to the multi-domain event log

• Description: Failed writes to the multi domain event log indicate an issue requiring user in-

tervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.sequencer.db-storage.alerts.single-dimension-event-log

• Summary: Number of failed writes to the event log

• Description: Failed writes to the single dimension event log indicate an issue requiring user

intervention. In the case of domain event logs, the corresponding domain no longer emits any

subsequent events until domain recovery is initiated (e.g. by disconnecting and reconnecting

the participant from the domain). In the case of the participant event log, an operation might

need to be reissued. If this counter is larger than zero, check the canton log for errors for details.

• Type: Counter

canton.sequencer.db-storage.general.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

canton.sequencer.db-storage.general.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

902 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.sequencer.db-storage.general.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.sequencer.db-storage.write.executor.queued

• Summary: Number of database access tasks waiting in queue

• Description: Database access tasks get scheduled in this queue and get executed using one

of the existing asynchronous sessions. A large queue indicates that the database connection

is not able to deal with the large number of requests. Note that the queue has amaximum size.

Tasks that do not fit into the queue will be retried, but won’t show up in this metric.

• Type: Gauge

canton.sequencer.db-storage.write.executor.running

• Summary: Number of database access tasks currently running

• Description: Database access tasks run on an async executor. This metric shows the current

number of tasks running in parallel.

• Type: Gauge

canton.sequencer.db-storage.write.executor.waittime

• Summary: Scheduling time metric for database tasks

• Description: Every database query is scheduled using an asynchronous executor with a queue.

The time a task is waiting in this queue is monitored using this metric.

• Type: Timer

canton.sequencer.processed

• Summary: Number of messages processed by the sequencer

• Description: Thismetric measures the number of successfully validatedmessages processed

by the sequencer since the start of this process.

• Type: Meter

canton.sequencer.processed-bytes

• Summary: Number of message bytes processed by the sequencer

• Description: This metric measures the total number of message bytes processed by the se-

quencer.

• Type: Meter

3.3. User Manual 903

Daml SDK Documentation, 2.1.1

canton.sequencer.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

canton.sequencer.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp. The delay pro-

vides the difference between the sequencing time and the processing time. The difference can

be a result of either clock-skew or if the system is overloaded and doesn’t manage to keep up

with processing events.

• Type: Gauge

canton.sequencer.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

canton.sequencer.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

canton.sequencer.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

904 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.sequencer.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Gauge

canton.sequencer.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

canton.sequencer.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

canton.sequencer.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

canton.sequencer.subscriptions

• Summary: Number of active sequencer subscriptions

• Description: This metric indicates the number of active subscriptions currently open and ac-

tively served subscriptions at the sequencer.

• Type: Gauge

3.3. User Manual 905

Daml SDK Documentation, 2.1.1

canton.sequencer.time-requests

• Summary: Number of time requests received by the sequencer

• Description: When a Participant needs to know the domain time it will make a request for a

timeproof to be sequenced. It wouldbenormal to see a small number of thesebeing sequenced,

however if this number becomes a significant portion of the total requests to the sequencer

it could indicate that the strategy for requesting times may need to be revised to deal with

different clock skews and latencies between the sequencer and participants.

• Type: Meter

canton.topology-manager.sequencer-client.application-handle

• Summary: Timermonitoring time and rate of sequentially handling the event application logic

• Description: All events are received sequentially. This handler records the the rate and time it

takes the application (participant or domain) to handle the events.

• Type: Timer

canton.topology-manager.sequencer-client.delay

• Summary: The delay on the event processing

• Description: Every message received from the sequencer carries a timestamp. The delay pro-

vides the difference between the sequencing time and the processing time. The difference can

be a result of either clock-skew or if the system is overloaded and doesn’t manage to keep up

with processing events.

• Type: Gauge

canton.topology-manager.sequencer-client.event-handle

• Summary: Timer monitoring time and rate of entire event handling

• Description: Most event handling cost should come from the application-handle. This timer

measures the full time (which should just be marginally more than the application handle.

• Type: Timer

canton.topology-manager.sequencer-client.load

• Summary: The load on the event subscription

• Description: The event subscription processor is a sequential process. The load is a factor be-

tween 0 and 1 describing howmuch of an existing interval has been spent in the event handler.

• Type: Gauge

906 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

canton.topology-manager.sequencer-client.submissions.dropped

• Summary: Count of send requests that did not cause an event to be sequenced

• Description: Counter of send requests we did not witness a corresponding event to be se-

quenced by the supplied max-sequencing-time. There could be many reasons for this hap-

pening: the request may have been lost before reaching the sequencer, the sequencer may be

at capacity and the the max-sequencing-time was exceeded by the time the request was pro-

cessed, or the supplied max-sequencing-time may just be too small for the sequencer to be

able to sequence the request.

• Type: Counter

canton.topology-manager.sequencer-client.submissions.in-flight

• Summary: Number of sequencer send requests we have that are waiting for an outcome or

timeout

• Description: Incremented on every successful send to the sequencer. Decremented when the

event or an error is sequenced, or when the max-sequencing-time has elapsed.

• Type: Gauge

canton.topology-manager.sequencer-client.submissions.overloaded

• Summary: Count of send requests which receive an overloaded response

• Description: Counter that is incremented if a send request receives an overloaded response

from the sequencer.

• Type: Counter

canton.topology-manager.sequencer-client.submissions.sends

• Summary: Rate and timings of send requests to the sequencer

• Description: Provides a rate and time of how long it takes for send requests to be accepted by

the sequencer. Note that this is just for the request to bemade and not for the requested event

to actually be sequenced.

• Type: Timer

canton.topology-manager.sequencer-client.submissions.sequencing

• Summary: Rate and timings of sequencing requests

• Description: This timer is started when a submission ismade to the sequencer and then com-

pleted when a corresponding event is witnessed from the sequencer, so will encompass the

entire duration for the sequencer to sequence the request. If the request does not result in an

event no timing will be recorded.

• Type: Timer

3.3. User Manual 907

Daml SDK Documentation, 2.1.1

3.3.14 Operational Processes

3.3.14.1 Managing domain entities

Domain bootstrapping

If you’re running a domain node in its default configuration, it will have a sequence and mediator

embedded and these components will be automatically bootstrapped for you.

However if your domain operates with external sequencers and mediators for improved availability

and performance properties, you need to instead configure a domainmanager node (which only runs

topology management) and bootstrap your domain with at least one external sequencer node and

one external mediator node as illustrated below:

domainManager1.setup.bootstrap_domain(Seq(sequencer1), Seq(mediator1))

Domain managers are configured as domain-managers under the canton configuration. Domain

managers are configured similarly to domain nodes, except that there is no sequencer, mediator,

public api or service agreement configs.

Please note that if your sequencer is database based and you’re horizontally scaling it as described

under sequencer high availability, you do not need to pass all sequencer nodes into the command

above. Since they all share the same relational database, you only need to run this initialization

step on one of them.

For other non-database based sequencer such as Ethereum or Fabric sequencers you need to have

each node initialized individually. For these kinds of sequencers you can either initialize them as

part of the initial domain bootstrap shown above or you can dynamically add a new sequencer at a

later point like follows:

domainManager1.setup.onboard_new_sequencer(

initialSequencer = sequencer1,

newSequencer = sequencer2,

)

Distributed domain bootstrapping with separate consoles

The process outlined in the previous section only works if all nodes are accessible from the same

console environment. In cases where they may each have their own isolated console environment,

the bootstrapping process must be coordinated in steps with the exchange of data via files using

any secure channel of communication between the environments:

// Domain manager
s console: writes domain params to file

{

domainManager1.service.get_static_domain_parameters.writeToFile(paramsFile)

}

// Sequencer
s console: reads domain params from file and writes public key

{

val domainParameters = StaticDomainParameters.tryReadFromFile(paramsFile)

val initResponse =

sequencer.initialization.initialize_from_beginning(domainId, domainParameters)

(continues on next page)

908 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

initResponse.publicKey.writeToFile(file)

}

// Domain manager
s console: reads sequencer
s public key

{

val sequencerPublicKey = SigningPublicKey.tryReadFromFile(file)

domainManager1.setup.helper.authorizeKey(

sequencerPublicKey,

"sequencer",

SequencerId(domainId),

)

}

// Mediator
s console: writes public key

mediator1.keys.secret.generate_signing_key("initial-key").writeToFile(file)

// Domain manager
s console: reads mediator
s public key and writes initial␣

↪→topology snapshot

{

val mediatorKey = SigningPublicKey.tryReadFromFile(file)

domainManager1.setup.helper.authorizeKey(

mediatorKey,

"mediator1",

MediatorId(domainId),

)

domainManager1.topology.mediator_domain_states.authorize(

TopologyChangeOp.Add,

domainId,

MediatorId(domainId),

RequestSide.Both,

)

domainManager1.topology.all

.list()

.collectOfType[TopologyChangeOp.Positive]

.writeToFile(file)

}

// Sequencer
s console: reads initial topology snapshot and writes connection info

{

val initialTopology =

StoredTopologyTransactions

.tryReadFromFile(file)

.collectOfType[TopologyChangeOp.Positive]

sequencer.initialization.bootstrap_topology(initialTopology)

sequencer.sequencerConnection.writeToFile(file)

}

// Mediator
s console: reads sequencer connection and domain params

{

val sequencerConnection = SequencerConnection.tryReadFromFile(file)

val domainParameters = StaticDomainParameters.tryReadFromFile(paramsFile)

mediator1.mediator

.initialize(

domainId,

(continues on next page)

3.3. User Manual 909

Daml SDK Documentation, 2.1.1

(continued from previous page)

MediatorId(domainId),

domainParameters,

sequencerConnection,

None,

)

mediator1.health.wait_for_initialized()

}

// Domain manager
s console: reads sequencer connection

{

val sequencerConnection = SequencerConnection.tryReadFromFile(file)

domainManager1.setup.init(sequencerConnection)

domainManager1.health.wait_for_initialized()

}

Similarly, dynamically onboarding new sequencers (supported by Fabric and Ethereum sequencers)

can be achieved in separate consoles as follows:

// Second sequencer
s console: write signing key to file

{

secondSequencer.keys.secret

.generate_signing_key(s"${secondSequencer.name}-signing")

.writeToFile(file1)

}

// Domain manager
s console: write domain params and current topology

{

domainManager1.service.get_static_domain_parameters.writeToFile(paramsFile)

val sequencerSigningKey = SigningPublicKey.tryReadFromFile(file1)

domainManager1.setup.helper.authorizeKey(

sequencerSigningKey,

s"${secondSequencer.name}-signing",

sequencerId,

)

domainManager1.setup.helper.waitForKeyAuthorizationToBeSequenced(

sequencerId,

sequencerSigningKey,

)

domainManager1.topology.all

.list(domainId.filterString)

.collectOfType[TopologyChangeOp.Positive]

.writeToFile(file1)

}

// Initial sequencer
s console: read topology and write snapshot to file

{

val topologySnapshotPositive =

StoredTopologyTransactions

.tryReadFromFile(file1)

.collectOfType[TopologyChangeOp.Positive]

val sequencingTimestamp = topologySnapshotPositive.lastChangeTimestamp.

↪→getOrElse(

(continues on next page)

910 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

sys.error("topology snapshot is empty")

)

sequencer.sequencer.snapshot(sequencingTimestamp).writeToFile(file2)

}

// Second sequencer
s console: read topology, snapshot and domain params

{

val topologySnapshotPositive =

StoredTopologyTransactions

.tryReadFromFile(file1)

.collectOfType[TopologyChangeOp.Positive]

val state = SequencerSnapshot.tryReadFromFile(file2)

val domainParameters = StaticDomainParameters.tryReadFromFile(paramsFile)

secondSequencer.initialization

.initialize_from_snapshot(

domainId,

topologySnapshotPositive,

state,

domainParameters,

)

.publicKey

secondSequencer.health.initialized() shouldBe true

}

3.3.14.2 Dynamic domain parameters

In addition to the parameters that are specified in the configuration, some parameters can be

changed at runtime (i.e., while the domain is running); these are called dynamic domain param-

eters.

A participant can get the current parameters on a domain it is connected to using the following

command:

participant.topology.domain_parameters_changes.get_latest(mydomain.id)

A domain operator can update some of the parameters as follows:

mydomain.service.update_dynamic_parameters(_.copy(

participantResponseTimeout = TimeoutDuration.ofSeconds(10)

))

3.3. User Manual 911

Daml SDK Documentation, 2.1.1

3.3.14.3 Importing existing Contracts

You may have existing contracts, parties, and DARs in other Daml Participant Nodes (such as the

Daml sandbox) that you want to import into your Canton-based participant node. To address this

need, you can extract contracts and associated parties via the ledger api, modify contracts, parties,

and daml archived as needed, and upload the data to Canton using the Canton Console.

You can also import existing contracts from Canton as that is useful as part of Canton upgrades

across major versions with incompatible internal storage.

912 Chapter 3. Canton Guide

https://docs.daml.com/tools/sandbox.html

Daml SDK Documentation, 2.1.1

Preparation

As contracts (1) “belong to”parties and (2) are instances of Daml templates defined inDaml Archives

(DARs), importing contracts to Canton also requires creating corresponding parties and uploading

DARs.

• Contracts are often interdependent requiring care to honor dependencies such that the set of

imported contracts is internally consistent. This requires particular attention if you choose to

modify contracts prior to their import.

• Additionally use of divulgence in the original ledger has likely introduced non-obvious depen-

dencies that may impede exercising contract choices after import. As a result such divulged

contracts need to be re-divulged as part of the import (by exercising existing choices or if there

are no-side-effect-free choices that re-divulge the necessary contracts by extending your Daml

models with new choices).

• Party Ids have a stricter format on Canton than on non-Canton ledgers ending with a required

“fingerprint” suffix, so at a minimum, you will need to “remap” party ids.

• Canton contract keys do not have to be unique, so if your Daml models rely on uniqueness, con-

sider extending the models using these strategies or limit your Canton Participants to connect

to a single Canton domain with unique contract key semantics.

• Canton does not support implicit party creation, so be sure to create all needed parties explic-

itly.

• In addition you could choose to spread contracts, parties, and DARs across multiple Canton

Participants.

With the above requirements in mind, you are ready to plan and execute the following three step

process:

1. Download parties and contracts from the existing Daml Participant Node and locate the DAR

files that the contracts are based on.

2. Modify the parties and contracts (at the minimum assigning Canton-conformant party ids).

3. ProvisionCantonParticipants alongwith at least oneCantonDomain. ThenuploadDARs, create

parties, and finally the contracts to the Canton participants. Finally connect the participants

to the domain(s).

Importing an actual Ledger

To follow along with this guide, ensure you have installed and unpacked the Canton release bundle and

run the following commands from the “canton-X.Y.Z” directory to set up the initial topology.

export CANTON=CpwdC

export CONF="$CANTON/examples/03-advanced-configuration"

export IMPORT="$CANTON/examples/07-repair"

bin/canton \

-c $IMPORT/participant1.conf,$IMPORT/participant2.conf,$IMPORT/participant3.

↪→conf,$IMPORT/participant4.conf \

-c $IMPORT/domain-export-ledger.conf,$IMPORT/domain-import-ledger.conf \

-c $CONF/storage/h2.conf,$IMPORT/enable-preview-commands.conf \

--bootstrap $IMPORT/import-ledger-init.canton

This sets up an “exportLedger” with a set of parties consisting of painters, house owners, and banks

along with a handful of paint offer contracts and IOUs.

Define the following helper functions useful to extract parties and contracts via the ledger api:

3.3. User Manual 913

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html#divulgence-when-non-stakeholders-see-contracts

Daml SDK Documentation, 2.1.1

def queryActiveContractsFromDamlLedger(

hostname: String,

port: Port,

tls: Option[TlsClientConfig],

token: Option[String] = None,

)(implicit consoleEnvironment: ConsoleEnvironment): Seq[CreatedEvent] = {

// Helper to query the ledger api using the specified command.

def queryLedgerApi[Svc <: AbstractStub[Svc], Result](

command: GrpcAdminCommand[_, _, Result]

): Either[String, Result] =

consoleEnvironment.grpcAdminCommandRunner

.runCommand("sourceLedger", command, ClientConfig(hostname, port, tls),␣

↪→token)

.toEither

(for {

// Identify all the parties on the ledger and narrow down the list to local␣

↪→parties.

allParties <- queryLedgerApi(LedgerApiCommands.PartyManagementService.

↪→ListKnownParties())

localParties = allParties.collect {

case PartyDetails(party, _, isLocal) if isLocal => LfPartyId.

↪→assertFromString(party)

}

// Look up the ledger id needed next to query for the contracts.

ledgerId <- queryLedgerApi(LedgerApiCommands.LedgerIdentityService.

↪→GetLedgerIdentity())

// Query the ActiveContractsService for the actual contracts

acs <- queryLedgerApi(

LedgerApiCommands.AcsService.GetActiveContracts(ledgerId, localParties.

↪→toSet)

)

} yield acs.map(_.event)).valueOr(err =>

throw new IllegalStateException(s"Failed to query parties, ledger id, or acs:

↪→$err")

)

}

def removeCantonSpecifics(acs: Seq[CreatedEvent]): Seq[CreatedEvent] = {

def stripPartyIdSuffix(suffixedPartyId: String): String =

suffixedPartyId.split(SafeSimpleString.delimiter).head

acs.map { event =>

ValueRemapper.convertEvent(identity, stripPartyIdSuffix)(event)

}

}

def lookUpPartyId(participant: ParticipantReference, party: String): PartyId =

participant.parties.list(filterParty = party + SafeSimpleString.delimiter).map(_

↪→.party).head

As the first step, export the active contract set (ACS). To illustrate how to import data from

non-Canton ledgers, strip the Canton-specifics by making the party ids generic (stripping the

Canton-specific suffix).

914 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

val acs =

queryActiveContractsFromDamlLedger(

exportLedger.config.ledgerApi.address,

exportLedger.config.ledgerApi.port,

exportLedger.config.ledgerApi.tls.map(_.clientConfig),

)

val acsExported = removeCantonSpecifics(acs).toList

Step number two involves preparing the Canton participants and domain by uploading DARs and

creating parties. Here we choose to place the house owners, painters, and banks on different partic-

ipants.

Also modify the events to be based on the newly created party ids.

// Decide on which canton participants to host which parties along with their␣

↪→contracts.

// We place house owners, painters, and banks on separate participants.

val participants = Seq(participant1, participant2, participant3)

val partyAssignments =

Seq(participant1 -> houseOwners, participant2 -> painters, participant3 ->␣

↪→banks)

// Connect to domain prior to uploading dars and parties.

participants.foreach { participant =>

participant.domains.connect_local(importLedgerDomain)

(continues on next page)

3.3. User Manual 915

Daml SDK Documentation, 2.1.1

(continued from previous page)

participant.dars.upload(darPath)

}

// Create canton party ids and remember mapping of plain to canton party ids.

val toCantonParty: Map[String, String] =

partyAssignments.flatMap { case (participant, parties) =>

val partyMappingOnParticipant = parties.map { party =>

participant.ledger_api.parties.allocate(party, party)

party -> lookUpPartyId(participant, party).toLf

}

partyMappingOnParticipant

}.toMap

// Create traffic on all participants so that the repair commands will pick an␣

↪→identity snapshot that is aware of

// all party allocations

participants.foreach { participant =>

participant.health.ping(participant, workflowId = importLedgerDomain.name)

}

// Switch the ACS to be based on canton party ids.

val acsToImportToCanton =

acsExported.map(ValueRemapper.convertEvent(identity, toCantonParty(_)))

As the third step, perform the actual import to each participant filtering the contracts based on the

location of contract stakeholders and witnesses.

// Disconnect from domain temporarily to allow import to be performed.

participants.foreach(_.domains.disconnect(importLedgerDomain.name))

// Pick a ledger create time according to the domain
s clock.

val ledgerCreateTime =

consoleEnvironment.environment.domains

.getRunning(importLedgerDomain.name)

.get

.clock

.now

.toInstant

// Filter active contracts based on participant parties and upload.

partyAssignments.foreach { case (participant, rawParties) =>

val parties = rawParties.map(toCantonParty(_))

val participantAcs = acsToImportToCanton

.collect {

case event

if event.signatories.intersect(parties).nonEmpty

|| event.observers.intersect(parties).nonEmpty

|| event.witnessParties.intersect(parties).nonEmpty =>

val wrappedCreatedEvent = WrappedCreatedEvent(event)

SerializableContractWithWitnesses(

utils

.contract_data_to_instance(wrappedCreatedEvent.toContractData,␣

↪→ledgerCreateTime),

Set.empty,

(continues on next page)

916 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

)

}

participant.repair.add(importLedgerDomain.name, participantAcs,␣

↪→ignoreAlreadyAdded = false)

}

def verifyActiveContractCounts() = {

Map[LocalParticipantReference, (Boolean, Boolean)](

participant1 -> ((true, true)),

participant2 -> ((true, false)),

participant3 -> ((false, true)),

).foreach { case (participant, (hostsPaintOfferStakeholder,␣

↪→hostsIouStakeholder)) =>

val expectedCounts =

(houseOwners.map { houseOwner =>

houseOwner.toPartyId(participant) ->

((if (hostsPaintOfferStakeholder) paintOffersPerHouseOwner else 0)

+ (if (hostsIouStakeholder) 1 else 0))

}

++ painters.map { painter =>

painter.toPartyId(participant) -> (if (hostsPaintOfferStakeholder)

paintOffersPerPainter

else 0)

}

++ banks.map { bank =>

bank.toPartyId(participant) -> (if (hostsIouStakeholder) iousPerBank␣

↪→else 0)

}).toMap[PartyId, Int]

assertAcsCounts((participant, expectedCounts))

}

}

/*

If the test fails because of Errors.MismatchError.NoSharedContracts error, it␣

↪→could be worth to

extend the scope of the suppressing logger.

*/

loggerFactory.assertLogsUnorderedOptional(

{

// Finally reconnect to the domain.

participants.foreach(_.domains.reconnect(importLedgerDomain.name))

To demonstrate that the imported ledger works, let’s have each of the house owners accept one of

the painters’ offer to paint their house.

def yesYouMayPaintMyHouse(

houseOwner: PartyId,

painter: PartyId,

participant: ParticipantReference,

): Unit = {

val iou = participant.ledger_api.acs.await[Iou.Iou](houseOwner, Iou.Iou)

val bank = iou.value.payer

val paintProposal = participant.ledger_api.acs

(continues on next page)

3.3. User Manual 917

Daml SDK Documentation, 2.1.1

(continued from previous page)

.await[Paint.OfferToPaintHouseByPainter](

houseOwner,

Paint.OfferToPaintHouseByPainter,

pp => pp.value.painter == painter.toPrim && pp.value.bank == bank,

)

val cmd = paintProposal.contractId

.exerciseAcceptByOwner(houseOwner.toPrim, iou.contractId)

.command

val _ = clue(

s"$houseOwner accepts paint proposal by $painter financing through ${bank.

↪→toString}"

)(participant.ledger_api.commands.submit(Seq(houseOwner), Seq(cmd)))

}

// Have each house owner accept one of the paint offers to illustrate use of the␣

↪→imported ledger.

houseOwners.zip(painters).foreach { case (houseOwner, painter) =>

yesYouMayPaintMyHouse(

lookUpPartyId(participant1, houseOwner),

lookUpPartyId(participant1, painter),

participant1,

)

}

// Illustrate that acceptance of have resulted in

{

val paintHouseContracts = painters.map { painter =>

participant2.ledger_api.acs

.await[Paint.PaintHouse](lookUpPartyId(participant2, painter), Paint.

↪→PaintHouse)

}

assert(paintHouseContracts.size == 4)

paintHouseContracts

}

This guide has demonstrated how to import data from non-Canton Daml Participant Nodes or from

a Canton Participant of a lower major version as part of a Canton upgrade.

3.3.14.4 Backup and Restore

It is recommended that your database is frequently backed up so that the data can be restored in

case of a disaster.

In the case of a restore, a participant can replay missing data from the domain considering the

domain’s backup is more recent than that of the participant’s. It is important that the participant’s

backup is notmore recent than that of the domain’s as that would constitute a ledger fork. Therefore

if you backup both participant and domain, always backup participant database before the domain.

In case of a domain restore from a backup, if a participant is ahead of the domain, the participant

will refuse to connect to the domain and you must either:

• restore the participant’s state to a backup before the disaster of the domain,

• or roll out a new domain as a repair strategy in order to recover from a lost domain

We recommend that in production, a domain should be run with offsite synchronous replication to

918 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

assure the most crucial data is always safely backed up and as up-to-date as possible.

Postgres Example

If you are using Postgres to persist the participant or domain node data, you can create backups to

a file and restore it using Postgres’s utility commands pg_dump and pg_restore as shown below:

Backing up Postgres database to a file:

pg_dump -U <user> -h <host> -p <port> -w -F tar -f <fileName> <dbName>

Restoring Postgres database data from a file:

pg_restore -U <user> -h <host> -p <port> -w -d <dbName> <fileName>

Although the approach shown above works for small deployments, it is not recommended in larger

deployments. For that, we suggest looking into incremental backups and refer to the resources be-

low:

• PostgreSQL Documentation: Backup and Restore

• How incremental backups work in PostgreSQL

3.3.14.5 Database Failover

A database backup allows you to recover the ledger up to the point when the last backupwas created.

However, any command accepted after creation of the backup may be lost in case of a disaster.

Therefore, restoring a backup will likely result in data loss.

If such data loss is unacceptable, you need to run Canton against a replicated database. If the data

in one replica gets lost, the database can still failover to another replica without any data loss. For

detailed instructions on how to setup a replicated database and how to perform failovers, we refer

to the database system documentation, e.g. the high availability documentation of PostgreSQL.

It is strongly recommended to configure replication as synchronous. That means, the database

should report a database transaction as successfully committed only after it has been persisted to

all database replicas. In PostgreSQL, this corresponds to the setting synchronous_commit = on.

If you do not follow this recommendation, you may observe data loss and/or a corrupt state after a

database failover.

For PostgreSQL, Canton strives to validate the database replication configuration and fail with an

error, if a misconfiguration is detected. However, this validation is of a best-effort nature; so it may

fail to detect an incorrect replication configuration. For Oracle, no attempt is made to validate the

database configuration. Overall, you should not rely on Canton detecting mistakes in the database

configuration.

3.3. User Manual 919

https://www.postgresql.org/docs/current/backup.html
https://kcaps.medium.com/how-incremental-backups-work-in-postgresql-and-how-to-implement-them-in-10-minutes-d3689e8414d9
https://www.postgresql.org/docs/11/high-availability.html

Daml SDK Documentation, 2.1.1

3.3.14.6 Ledger Pruning

Pruning the ledger frees up storage space by deleting state no longer needed by participants, do-

main sequencers, and mediators. It also serves as a mechanism to help implement right-to-forget

mandates such as GDPR.

The following commands allow you to prune events and inactive contracts up to a specified time

from the various components:

• Prune participants via the prune command specifying a “ledger offset” obtained by specifying

a timestamp received by a call to “get_offset_by_time”.

• Prune domain sequencers and mediators via their respective prune_at commands.

The pruning operations impact the “regular” workload (lowering throughput during pruning by as

much as 50% in our test environments), so depending on your requirements it might make sense to

schedule pruning at off-peak times or during maintenance windows such as after taking database

backups.

The following canton console code illustrates best practices such as :

• Error handling ensures that pruning errors raise an alert. Catching the CommandFailure excep-

tion also ensures that a problem encountered while pruning one component still lets pruning

other components proceed allowing corresponding storage to be freed up.

• Pruning one node at a time rather than all nodes in parallel somewhat limits the impact on

concurrently executingworkload. If you configure pruning to runduring amaintenancewindow

with no concurrent workload, and as long as the database backend has sufficient capacity, you

may prune participants and domains in parallel.

import com.digitalasset.canton.console.{CommandFailure, ParticipantReference}

import com.digitalasset.canton.data.CantonTimestamp

import java.time.Duration

def pruneAllNodes(pruneUpToIncluding: CantonTimestamp)(implicit env:␣

↪→ConsoleEnvironment): Unit = {

import env._

// If pruning a particular component fails, alert the user, but proceed pruning␣

↪→other components.

// Therefore prune failures in one component still allow other components to be␣

↪→pruned

// minimizing the chance of running out of overall storage space.

def alertOnErrorButMoveOn(

component: String,

ts: CantonTimestamp,

invokePruning: CantonTimestamp => Unit,

): Unit =

try {

invokePruning(ts)

} catch {

case _: CommandFailure =>

logger.warn(

s"Error pruning ${component} up to ${ts}. See previous log error for␣

↪→details. Moving on..."

)

}

(continues on next page)

920 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Helper to prune a participant by time for consistency with domain prune␣

↪→signatures

def pruneParticipantAt(p: ParticipantReference)(pruneUpToIncluding:␣

↪→CantonTimestamp): Unit = {

val pruneUpToOffset = p.pruning.get_offset_by_time(pruneUpToIncluding.

↪→toInstant)

pruneUpToOffset match {

case Some(offset) => p.pruning.prune(offset)

case None => logger.info(s"Nothing to prune up to ${pruneUpToIncluding}")

}

}

val participantsToPrune = participants.all

val domainsToPrune = domains.all

// Prune all nodes one after the other rather than in parallel to limit the␣

↪→impact on concurrent workload.

participantsToPrune.foreach(participant =>

alertOnErrorButMoveOn(participant.name, pruneUpToIncluding,␣

↪→pruneParticipantAt(participant))

)

domainsToPrune.foreach { domain =>

alertOnErrorButMoveOn(

s"${domain.name} sequencer",

pruneUpToIncluding,

domain.sequencer.pruning.prune_at,

)

alertOnErrorButMoveOn(

s"${domain.name} mediator",

pruneUpToIncluding,

domain.mediator.prune_at,

)

}

}

Invoke pruning fromwithin your scheduling environment and by specifying the ledger data retention

period like so:

val retainMostRecent = Duration.ofDays(30)

pruneAllNodes(CantonTimestamp.now().minus(retainMostRecent))

Pruning Ledgers in Test Environments

While it is a best practice for test environments tomatch production configurations, testing pruning

involves challenges related to the amount of retained data:

• Test environments may not have the same amount of storage space to hold data volumes

present in production.

• It may be impractical to wait long enough until test environments have accrued data to ex-

pected production retention times that are often measured in months.

As a result you may choose to prune test environments more aggressively. When using databases

other than Oracle with a lower retention time, use the same code as when pruning production. On

3.3. User Manual 921

Daml SDK Documentation, 2.1.1

Oracle however you may observe performance degradation when pruning the majority of the ledger

data in one go. In such cases breaking up pruning invocations into multiple chunks likely speeds

up pruning:

// An example test environment configuration in which hardly any data is retained.

val pruningFrequency = Duration.ofDays(1)

val retainMostRecent = Duration.ofMinutes(20)

val pruningStartedAt = CantonTimestamp.now()

val isOracle = true

// Deleting the majority of rows from an Oracle table has been observed to

// take a long time. Avoid non-linear performance degradation by breaking up one␣

↪→prune call into

// several calls with progressively more recent pruning timestamps.

if (isOracle && retainMostRecent.compareTo(pruningFrequency) < 0) {

val numChunks = 8L

val delta = pruningFrequency.minus(retainMostRecent).dividedBy(numChunks)

for (chunk <- 1L to numChunks) yield {

val chunkRetentionTimestamp = pruningFrequency.minus(delta.

↪→multipliedBy(chunk))

pruneAllNodes(pruningStartedAt.minus(chunkRetentionTimestamp))

}

}

pruneAllNodes(pruningStartedAt.minus(retainMostRecent))

3.3.14.7 Repairing Participants

Canton enables interoperability of distributed participants and domains. Particularly in distributed

settings without trust assumptions, faults in one part of the system should ideally produceminimal

irrecoverable damage to other parts. For example if a domain is irreparably lost, the participants

previously connected to that domain need to recover and be empowered to continue their workflows

on a new domain.

This guide will illustrate how to replace a lost domain with a new domain providing business conti-

nuity to affected participants.

Recovering from a Lost Domain

Note: Please note that the given section describes a preview feature, due to the fact that using

multiple domains is only a preview feature.

Suppose that a set of participants have been conducting workflows via a domain that runs into

trouble. In fact consider that the domain has gotten into such a disastrous state that the domain is

beyond repair, for example:

• The domain has experienced data loss and is unable to be restored from backups or the back-

ups are missing crucial recent history.

• The domain data is found to be corrupt causing participants to lose trust in the domain as a

mediator.

922 Chapter 3. Canton Guide

https://docs.daml.com/concepts/glossary.html#participant-node
https://docs.daml.com/concepts/glossary.html#domain

Daml SDK Documentation, 2.1.1

Next the participant operators each examine their local state, and upon coordinating conclude that

their participants’ active contracts are “mostly the same”. This domain-recovery repair demo illus-

trates how the participants can

• coordinate to agree on a set of contracts to use moving forward, serving as a new consistent

state,

• copying over the agreed-upon set of contracts to a brand new domain,

• “fail over” to the new domain,

• and finally continue running workflows on the new domain having recovered from the perma-

nent loss of the old domain.

Repairing an actual Topology

To follow along with this guide, ensure you have installed and unpacked the Canton release bundle and

run the following commands from the “canton-X.Y.Z” directory to set up the initial topology.

export CANTON=CpwdC

export CONF="$CANTON/examples/03-advanced-configuration"

export REPAIR="$CANTON/examples/07-repair"

bin/canton \

-c $REPAIR/participant1.conf,$REPAIR/participant2.conf,$REPAIR/domain-repair-

↪→lost.conf,$REPAIR/domain-repair-new.conf \

-c $CONF/storage/h2.conf,$REPAIR/enable-preview-commands.conf \

--bootstrap $REPAIR/domain-repair-init.canton

To simplify the demonstration, this not only sets up the starting topology of

• two participants, “participant1” and “participant2”, along with

• one domain “lostDomain” that is about to become permanently unavailable leaving “partici-

pant1” and “participant2” unable to continue executing workflows,

but also already includes the ingredients needed to recover:

• The setup includes “newDomain” that we will rely on as a replacement domain, and

• we already enable the “enable-preview-commands” configuration needed to make available

the “repair.change_domain” command.

In practice you would only add the new domain once you have the need to recover from domain loss

and also only then enable the repair commands.

We simulate “lostDomain” permanently disappearing by stopping the domain and never bringing

it up again to emphasize the point that the participants no longer have access to any state from do-

main1. We also disconnect “participant1” and “participant2” from “lostDomain” to reflect that the

participants have “given up” on the domain and recognize the need for a replacement for business

continuity. The fact that we disconnect the participants “at the same time” is somewhat artificial

as in practice the participants might have lost connectivity to the domain at different times (more

on reconciling contracts below).

lostDomain.stop()

Seq(participant1, participant2).foreach { p =>

p.domains.disconnect(lostDomain.name)

// Also let the participant know not to attempt to reconnect to lostDomain

p.domains.modify(lostDomain.name, _.copy(manualConnect = true))

}

3.3. User Manual 923

Daml SDK Documentation, 2.1.1

Even though the domain is “the node that has broken”, recovering entails repairing the participants

using the “newDomain” already set up. As of now, participant repairs have to be performed in an

offline fashion requiring participants being repaired to be disconnected from the the new domain.

However we temporarily connect to the domain, to let the topology state initialize, and disconnect

only once the parties can be used on the new domain.

Seq(participant1, participant2).foreach(_.domains.connect_local(newDomain))

// Wait for topology state to appear before disconnecting again.

clue("newDomain initialization timed out") {

eventually()(

(

participant1.domains.active(newDomain.name),

participant2.domains.active(newDomain.name),

) shouldBe (true, true)

)

}

// Run a few transactions on the new domain so that the topology state chosen by␣

↪→the repair commands

// really is the active one that we
ve seen

participant1.health.ping(participant2, workflowId = newDomain.name)

Seq(participant1, participant2).foreach(_.domains.disconnect(newDomain.name))

With the participants connected neither to “lostDomain” nor “newDomain”, each participant can

• locally lookup theactive contracts assigned to the lost domainusing the “testing.pcs_search”

command made available via the “features.enable-testing-commands” configuration,

• and invoke “repair.change_domain” (enabled via the “features.enable-preview-commands”

configuration) in order to “move” the contracts to the new domain.

// Extract participant contracts from "lostDomain".

val contracts1 =

participant1.testing.pcs_search(lostDomain.name, filterTemplate = "^Iou",␣

↪→activeSet = true)

val contracts2 =

participant2.testing.pcs_search(lostDomain.name, filterTemplate = "^Iou",␣

↪→activeSet = true)

// Ensure that shared contracts match.

val Seq(sharedContracts1, sharedContracts2) = Seq(contracts1, contracts2).map(

_.filter { case (_isActive, contract) =>

contract.metadata.stakeholders.contains(Alice.toLf) &&

contract.metadata.stakeholders.contains(Bob.toLf)

}.toSet

)

clue("checking if contracts match") {

sharedContracts1 shouldBe sharedContracts2

(continues on next page)

924 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

// Finally change the contracts from "lostDomain" to "newDomain"

participant1.repair.change_domain(

contracts1.map(_._2.contractId),

lostDomain.name,

newDomain.name,

)

participant2.repair.change_domain(

contracts2.map(_._2.contractId),

lostDomain.name,

newDomain.name,

skipInactive = false,

)

Note: The code snippet above includes a check that the contracts shared among the participants

match (as determined by each participant, “sharedContracts1” by “participant1” and “sharedCon-

tracts2” by “participant2). Should the contracts notmatch (as could happen if the participants had

lost connectivity to the domain at different times), this check fails soliciting the participant opera-

tors to reach an agreement on the set of contracts. The agreed-upon set of active contracts may for

example be

• the intersection of the active contracts among the participants

• or perhaps the union (for which the operators can use the “repair.add” command to create the

contracts missing from one participant).

Also note that both the repair commands and the “testing.pcs_search” command are currently

“preview” features, and therefore their names may change.

Once each participant has associated the contracts with “newDomain”, let’s have them reconnect,

and we should be able to confirm that the new domain is able to execute workflows from where the

lost domain disappeared.

Seq(participant1, participant2).foreach(_.domains.reconnect(newDomain.name))

// Look up a couple of contracts moved from lostDomain

val Seq(iouAlice, iouBob) = Seq(participant1 -> Alice, participant2 -> Bob).map {

case (participant, party) =>

participant.ledger_api.acs.await[Iou.Iou](party, Iou.Iou, _.value.owner ==␣

↪→party.toPrim)

}

// Ensure that we can create new contracts

Seq(participant1 -> ((Alice, Bob)), participant2 -> ((Bob, Alice))).foreach {

case (participant, (payer, owner)) =>

participant.ledger_api.commands.submit_flat(

Seq(payer),

Seq(

Iou

.Iou(

payer.toPrim,

owner.toPrim,

Iou.Amount(value = 200, currency = "USD"),

(continues on next page)

3.3. User Manual 925

Daml SDK Documentation, 2.1.1

(continued from previous page)

List.empty,

)

.create

.command

),

)

}

// Even better: Confirm that we can exercise choices on the moved contracts

Seq(participant2 -> ((Bob, iouBob)), participant1 -> ((Alice, iouAlice))).foreach

↪→{

case (participant, (owner, iou)) =>

participant.ledger_api.commands

.submit_flat(Seq(owner), Seq(iou.contractId.exerciseCall(owner.toPrim).

↪→command))

}

In practice, we would now be in a position to remove the “lostDomain” from both participants and

to disable the repair commands again to prevent accidental use of these “dangerously powerful”

tools.

This guide has demonstrated how participants can recover from losing a domain that has been per-

manently lost or somehow become irreparably corrupted.

3.3.15 Security

3.3.15.1 Cryptographic Key Usage

This section covers the generation and usage of cryptographic keys in the Canton nodes. It assumes

that the configuration sets auto-init = truewhich leads to the generation of thedefault keys onanode’s

startup.

The scope of cryptographic keys covers all Canton-protocol specific keys, private keys for TLS, as well

as additional keys required for the domain integrations, e.g., with Besu.

926 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Supported Cryptographic Schemes in Canton

Within Canton we use the cryptographic primitives of signing, symmetric and asymmetric encryp-

tion, and MAC with the following supported schemes:

Signing:

• Ed25519 (default)

• ECDSA with P-256 and P-384

• SM2 (experimental)

Symmetric Encryption:

• AES128-GCM (default)

Asymmetric Encryption:

• ECIES on P-256 with HMAC-256 and AES128-GCM (default)

MAC:

• HMAC with SHA-256

Key Generation and storage

Keys are generated in the node and stored in the node’s primary storage. We intend to add support

for key management systems (KMS) and hardware security modules (HSM) for secure key storage

in the future.

Public Key Distribution using Topology Management

The public keys of the corresponding key pairs that are used for signing and asymmetric encryp-

tion within Canton are distributed using Canton’s Topology Management. Specifically, signing and

asymmetric encryption public keys are distributed using OwnerToKeyMapping transactions, which as-

sociate a node with a public key for either signing or encryption, and NamespaceDelegation for names-

pace signing public keys.

See Topology Transactions for details on the specific topology transactions in use.

Common Node Keys

Each node provides an Admin API for administrative purposes, which is secured using TLS.

The node reads the private key for the TLS server certificate from a file at startup.

3.3. User Manual 927

Daml SDK Documentation, 2.1.1

Participant Node Keys

Participant Namespace Signing Key

A Canton participant node spans its own identity namespace, for instance for its own id and the

Daml parties allocated on the participant node. The namespace is the hash of the public key of the

participant namespace signing key.

The private key is used to sign and thereby authorize all topology transactions for this namespace

and this participant, including the following transactions:

• Root NamespaceDelegation for the new identity namespace of the participant

• OwnerToKeyMapping for all the public keys that the participant will generate and use (these keys

will be explained in the follow-up sections)

• PartyToParticipant for the parties allocated on this participant

• VettedPackages for the packages that have been vetted by this participant

Signing Key

In addition to the topology signing key, a participant nodewill generate another signing key pair that

is used for the Canton transaction protocol in the following cases:

• Sequencer Authentication: Signing the nonce generated by the sequencer as part of its

challenge-response authentication protocol. The sequencer verifies the signature with the

public key registered for the member in the topology state.

• Transaction Protocol - The Merkle tree root hash of confirmation requests is signed for a

top-level view. - The confirmation responses sent to the mediator are signed as a whole. -

The Merkle tree root hash of transfer-in and transfer-out messages is signed.

• Pruning: Signing of ACS commitments.

Participant Encryption Key

In addition to a signing key pair, a participant node also generates a key pair for encryption based

on an asymmetric encryption scheme. A transaction payload is encrypted for a recipient based on

the recipient’s public encryption key that is part of the topology state.

See the next section on how a transaction is encrypted using an ephemeral symmetric key.

View Encryption Key

A transaction is composed of multiple views due to sub-transaction privacy. Instead of duplicat-

ing each view by directly encrypting the view for each recipient using their participant encryption

public key, Canton derives a symmetric key for each view to encrypt that view. The key is derived

using a HKDF from a secure seed that is only stored encrypted under the public encryption key of a

participants. Thereby, only the encrypted seed is duplicated but not a view.

928 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

HMAC Secret

The participant generates and stores an HMAC secret that is used as the key for computing an HMAC.

HMACs are used in the Canton transaction protocol to generate salts for the Merkle trees and for

unique contract identifiers.

Ledger API TLS Key

The private key for the TLS server certificate is provided as a file, which can optionally be encrypted

and the symmetric decryption key is fetched from a given URL.

Domain Topology Manager Keys

Domain Namespace Signing Key

The domain topology manager governs the namespace of the domain and has a signing key pair for

the namespace. The hash of the public key forms the namespace and all entities in the domain (me-

diator, sequencer, the topology manager itself) may have identities under the domain namespace.

The domain topology manager signs and thereby authorizes the following topology transactions:

• NamespaceDelegation to register the namespace public key for the new namespace

• OwnerToKeyMapping to register both its ownsigningpublic key (see next section) and the signing

public keys of the other domain entities as part of the domain onboarding

• ParticipantState to enable a new participant on the domain

• MediatorDomainState to enable a new mediator on the domain

Signing Key

The domain topology manager is not part of the Canton transaction protocol, but it receives topol-

ogy transactions via the sequencer. Therefore, in addition to the domain namespace, the domain

topology manager has a signing key pair, which is registered in the topology state for the topology

manager. This signing key is used to perform the challenge-response protocol of the sequencer.

Sequencer Node Keys

Signing Key

The sequencer has a signing key pair that is used to sign all events the sequencer sends to a sub-

scriber.

3.3. User Manual 929

Daml SDK Documentation, 2.1.1

Ethereum Sequencer

The Ethereum-based sequencer is a client of a Besu node and additional keys are used in this de-

ployment:

• TLS client certificate and private key to authenticate towards a Besu node if mutual authenti-

cation is configured.

• A Wallet (in BIP-39 or UTC / JSON format), which contains or will result in a signing key pair for

Ethereum transactions.

Fabric Sequencer

The Fabric-based sequencer is a Fabric application connecting to an organization’s peer node and

the following additional keys are required:

• TLS client certificate and private key to authenticate towards a Fabric peer node if mutual au-

thentication is required.

• The client identity’s certificate and private key.

Public API TLS Key

The private key for the TLS server certificate is provided as a file.

Mediator Node Keys

Signing Key

The mediator node is part of the Canton transaction protocol and uses a signing key pair for the

following:

• Sequencer Authentication: Signing of the challenge as part of the sequencer

challenge-response protocol.

• Signingof transaction results, transfer results, and rejections ofmalformedmediator requests.

Domain Node Keys

The domain node embeds a sequencer, mediator, and domain topology manager. The set of keys

remains the same as for the individual nodes.

930 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Canton Console Keys

When the Canton console runs separate from the node and mutual authentication is configured on

the Admin API, then the console requires a TLS client certificate and corresponding private key as a

file.

3.3.15.2 Cryptographic Key Management

Rotating Canton Node Keys

Canton supports rotating of node keys (signing and encryption) during live operation through its

topology management. In order to ensure continuous operation, the new key is added first and then

the previous key is removed.

For participant nodes, domain nodes, and domain topology managers, the nodes can rotate their

keys directly using their own identity manager. For sequencer andmediator nodes that are part of a

domain, the domain topology manager authorizes the key rotation.

The key rotation requires the following inputs:

• A console reference to the node owning the key

• A console reference to the identity manager, which is the same as the node for participants,

domain nodes, and domain managers

• The name of the new key that is being generated

• The purpose of the key that is rotated

and is done with the following set of commands:

// Get the key owner id from the node id

val owner = node.id match {

case domainId: DomainId => DomainTopologyManagerId(domainId)

case owner: KeyOwner => owner

case unknown =>

fail(s"Unknown key owner: $unknown")

}

// Find the current key in the identity manager
s store

val currentKey = identityManager.topology.owner_to_key_mappings

.list(filterStore = AuthorizedStore.filterName, filterKeyOwnerUid = owner.

↪→filterString)

.find(x => x.item.owner == owner && x.item.key.purpose == purpose)

.map(_.item.key)

.getOrElse(sys.error(s"No key found for owner $owner of purpose $purpose"))

// Generate a new key on the node

val newKey = purpose match {

case KeyPurpose.Signing => node.keys.secret.generate_signing_key(newKeyName)

case KeyPurpose.Encryption => node.keys.secret.generate_encryption_

↪→key(newKeyName)

}

// Import the generated public key into the identity manager if node and identity␣

↪→manager are separate nodes

if (identityManager != node) {

(continues on next page)

3.3. User Manual 931

Daml SDK Documentation, 2.1.1

(continued from previous page)

identityManager.keys.public.upload(newKey, Some(newKeyName))

}

// Rotate the key for the node through the identity manager

identityManager.topology.owner_to_key_mappings.rotate_key(

owner,

currentKey,

newKey,

)

Namespace Intermediate Key Management

Relying on the namespace root key to authorize topology transactions for the namespace is prob-

lematic because we cannot rotate the root key without losing the namespace. Instead we can create

intermediate keys for the namespace, similar to an intermediate certificate authority, in the follow-

ing way:

// create a new namespace intermediate key

val intermediateKey = identityManager.keys.secret.generate_signing_key()

// Create a namespace delegation for the intermediate key with the namespace root␣

↪→key

identityManager.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

rootKey.fingerprint,

intermediateKey.fingerprint,

)

We can rotate an intermediate key by creating a new one and renewing the existing topology trans-

actions that have been authorized with the previous intermediate key. First the new intermediate

key has to be created in the same way as the initial intermediate key. To rotate the intermediate key

and renew existing topology transactions:

// Renew all active topology transactions that have been authorized by the␣

↪→previous intermediate key with the new intermediate key

identityManager.topology.all.renew(intermediateKey.fingerprint,␣

↪→newIntermediateKey.fingerprint)

// Remove the previous intermediate key

identityManager.topology.namespace_delegations.authorize(

TopologyChangeOp.Remove,

rootKey.fingerprint,

intermediateKey.fingerprint,

)

932 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Moving the Namespace Secret Key to Offline Storage

An identity is ultimately bound to a particular secret key. Owning that secret key gives full authority

over the entire namespace. Froma security standpoint, it is therefore critical to keep the namespace

secret key confidential. This can be achieved by moving the key off the node for offline storage. The

identity management system can still be used by creating a new key and an appropriate intermedi-

ate certificate. The following steps illustrate how:

// fingerprint of namespace giving key

val participantId = participant1.id

val namespace = participantId.uid.namespace.fingerprint

// create new key

val name = "new-identity-key"

val fingerprint = participant1.keys.secret.generate_signing_key(name = name).

↪→fingerprint

// create an intermediate certificate authority through a namespace delegation

// we do this by adding a new namespace delegation for the newly generated key

// and we sign this using the root namespace key

participant1.topology.namespace_delegations.authorize(

TopologyChangeOp.Add,

namespace,

fingerprint,

signedBy = Some(namespace),

)

// export namespace key to file for offline storage, in this example, it
s a␣

↪→temporary file

better.files.File.usingTemporaryFile("namespace", ".key") { privateKeyFile =>

participant1.keys.secret.download(namespace, Some(privateKeyFile.toString))

// delete namespace key (very dangerous ...)

participant1.keys.secret.delete(namespace, force = true)

When the root namespace key is required, it canbe imported again on the original node or onanother,

using the following steps:

// import it back wherever needed

other.keys.secret.upload(privateKeyFile.toString, Some("newly-imported-identity-

↪→key"))

Identifier Delegation Key Management

Identifier delegations work similar to namespace delegations, however a key is only allowed to op-

erate on a specific identity and not an entire namespace (cf. Topology Transactions).

Therefore the keymanagement for identifier delegations also works the sameway as for namespace

delegations, where all the topology transactions authorized by the previous identifier delegation key

have to be renewed.

3.3. User Manual 933

Daml SDK Documentation, 2.1.1

Rotating Participant HMAC Secret

We can replace the stored HMAC secret in a participant with a newly generated one using the follow-

ing command:

participant1.keys.secret.rotate_hmac_secret()

3.3.15.3 Ledger-API Authorization

The Ledger Api provides authorization support using JWT tokens. While the JWT token authorization

allows third party applications to be authorized properly, it poses some issues for Canton internal

services such as the PingService or the DarService, which are used to manage domain wide concerns.

Therefore Canton generates a new admin bearer token (64 bytes, randomly generated, hex-encoded)

on each startup, which is communicated to these services internally and used by these services to

authorize themselves on the Ledger Api. The admin token allows to act as any party registered on

that participant node.

The admin token is only used within the same process. Therefore, in order to obtain this token, an

attacker needs to be able to either dump the memory or capture the network traffic, which typically

only a privileged user can do.

It is important to enable TLS together with JWT support in general, as otherwise tokens can be leaked

to an attacker that has the ability to inspect network traffic.

3.3.16 Versioning

3.3.16.1 Canton release version

The Canton release version (release version for short) is the primary version assigned to a Canton

release. It is semantically versioned, i.e., breaking changes to a public API will always lead to amajor

version increase of the release version. The public APIs encompassed by the release version are the

following:

• Ledger API server (for participants)

• Non-preview and non-testing Admin API & Console commands

• Error code format (machine-readable parts, see also the error code documentation)

• Canton configuration file format

• Command line arguments

• Internal storage (data continuity between non-major upgrades)

• Canton protocol version

As a result, Canton components are always safely upgradeable with respect to these APIs. In par-

ticular, the inclusion of the Canton protocol version as a Public API guarantees that any two Canton

components of the same release version can interact with each other and can be independently up-

graded within a major version without any loss of interoperability (see also the documentation on the

Canton protocol version).

934 Chapter 3. Canton Guide

https://jwt.io
https://github.com/digital-asset/daml/releases
https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.1.1

3.3.16.2 For application developers and operators

Applications using Canton have the following guarantees:

• Participants can be upgraded independently of each other and of applications and domains

within a major release version.

• Domain drivers can be upgraded independently of applications and connected participants

within a major release version.

• Major versions of anything are supported for a minimum of 12 months from the release of the

next major release version.

As a result, applications written today can keep running unchanged for a minimum of 12 months

while upgrading participants and domains within a major release version. See also the versioning

as well as portability, compatibility and support duration guarantees that hold for any Daml appli-

cation.

3.3.16.3 For Canton participant and domain operators

In addition to the Canton release version, the Canton protocol version is another important version

for participant and domain operators. It has major, minor and patch digits.

Canton protocol version

The Canton protocol determines how different Canton components interact with each other. We ver-

sion it using the Canton protocol version (protocol version for short) and conceptually, two Canton

components can interact (are interoperable) if they support the same protocol version. For exam-

ple, a participant can connect to a domain if it supports the protocol version that is spoken on the

domain, and a mediator can become the mediator for a domain, if it supports the protocol version

required by the domain. If two Canton components have the same major release version, they also

share at least one protocol version and can thus interact with each other.

A Canton component advertises the highest protocol version it supports and supports all previous

protocol versions of the same major version. That is, a participant or driver supporting a certain

protocol version, is able to transact with all other participants or drivers supporting a lower or equal

protocol version but may not be able to transact with participants or drivers supporting a higher

Canton protocol if they are configured to use a more recent version of the protocol. For example,

a release of a participant supporting protocol version 1.3.0 will be able to connect to all domains

configured to use protocol version <= 1.3.0. It won’t be able to connect to a domain configured to use

protocol version > 1.3.0. As a result, minor and patch version upgrades of Canton components can be

done independently without any loss of interoperability.

To see the highest protocol version a Canton component supports (e.g., 1.5.0), run

canton --version

(where canton is an alias for the path pointing to the Canton release binary bin/canton).

3.3. User Manual 935

https://docs.daml.com/support/releases.html#support-duration
https://docs.daml.com/support/compatibility.html

Daml SDK Documentation, 2.1.1

Configuring the protocol version

A Canton driver or domain operator is able to configure the protocol version spoken on the domain

(e.g. 1.3.2). If the domain operator sets the protocol version spoken on a domain too high, they may

exclude participants that don’t support this protocol version yet.

For example, if the domain operator sets the protocol version on a domain to 1.3.0, participants that

only support protocol version 1.2.0 aren’t able to connect to the domain. Theywould be able to connect

and transact on the domain, if the protocol version set on the domain is set to 1.2.0 or lower. Note

that this is always possible in such a scenario because if a domains supports protocol version 1.3.0,

it also supports protocol version 1.2.0.

Minimum protocol version

Similar to how a domain operator is able to configure the protocol version spoken on a domain, a

participant operator is able to configure a minimum protocol version for a participant. Configuring

a minimum protocol version guarantees that a participant will only connect to domain that use at

least this protocol versionor anewer one. This is especially desirable to ensure that aparticipant only

connects to domains that have certain security patches applied or that support particular protocol

features.

Support and bug fixes

Canton protocol major versions are supported for a minimum of 12 months from the release of the

next major version. Within a major version, only the latest minor version receives security and bug

fixes.

3.3.17 Frequently Asked Questions

This section covers other questions that frequently arise when using Canton. If your question is not

answered here, consider searching the Daml forum and creating a post if you can’t find the answer.

3.3.17.1 Log Messages

Database task queue full

If you see the log message:

java.util.concurrent.RejectedExecutionException:

Task slick.basic.BasicBackend$DatabaseDef$@... rejected from slick.util.

↪→AsyncExecutorWithMetrics$$...

[Running, pool size = 25, active threads = 25, queued tasks = 1000, completed␣

↪→tasks = 181375]

It is likely that the database task queue is full. You can check this by inspecting the log message: if

the logged queued tasks is equal to the limit for the database task queue, then the task queue is

full. This error message does not indicate that anything is broken, and the task will be retried after

a delay.

936 Chapter 3. Canton Guide

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/domain/config/DomainParametersConfig.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/participant/config/ParticipantNodeParameters.html
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

If the error occurs frequently, consider increasing the size of the task queue:

canton.participants.participant1.storage.config.queueSize = 10000

A higher queue size can lead to better performance, because it avoids the overhead of retrying tasks;

on the flip side, a higher queue size comes with higher memory usage.

3.3.17.2 Console Commands

I received an error saying that the DomainAlias I used was too long. Where I can see the

limits of String types in Canton?

• Generally speaking, you don’t need to worry about too-long Strings as Canton will exit in a safe

manner, and return an error message specifying the String you gave, its length and the maxi-

mum length allowed in the context the error occurred. Nonetheless, the known subclasses of

LengthLimitedStringWrapper and the type aliases defined in the companion object of Length-

LimitedString list the limits of String types in Canton.

3.3.17.3 Bootstrap Scripts

Why do you have an additional new line between each line in your example scripts?

• Whenwewrite participant1 start the scala compiler translates this into participant1.

start(). This works great in the console when each line is parsed independently. However

with a script all of it’s content is parsed at once, and in which case if there is anything on the

line following participant1 start it will assume it is an argument for start and fail. An

additional newline prevents this. Adding parenthesis would also work.

How can I use nested import statements to split my script into multiple files?

• Ammonite supports splitting scripts into several files using two mechanisms. The old one is

interp.load.module(..). The new one is import $file.<fname>. The former will com-

pile themodule as a whole, whichmeans that variables defined in onemodule can not be used

in another one as they are not available during compilation. The import $file. syntax how-

ever will make all variables accessible in the importing script. However, it only works with

relative paths as e.g. ../path/to/foo/bar.sc needs to be converted into import $file.

^.path.to.foo.bar and it only works if the script file is named with suffix .sc.

How do I write data to a file and how do I read it back?

• Cantonuses Protobuf for serializationandasa result, you can leverage Protobuf towrite objects

to a file. Here is a basic example:

// Obtain the last event.

val lastEvent: PossiblyIgnoredProtocolEvent =

participant1.testing.state_inspection

.findMessage(da.name, LatestUpto(CantonTimestamp.MaxValue))

.getOrElse(throw new NoSuchElementException("Unable to find last event.

↪→")) (continues on next page)

3.3. User Manual 937

https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedStringWrapper.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedStringWrapper.html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedString\protect \TU\textdollar .html
https://docs.daml.com/2.1.1/canton/scaladoc/com/digitalasset/canton/config/RequireTypes\protect \TU\textdollar \protect \TU\textdollar LengthLimitedString\protect \TU\textdollar .html
https://developers.google.com/protocol-buffers/

Daml SDK Documentation, 2.1.1

(continued from previous page)

// Dump the last event to a file.

utils.write_to_file(lastEvent.toProtoV0, dumpFilePath)

// Read the last event back from the file.

val dumpedLastEventP: v0.PossiblyIgnoredSequencedEvent =

utils.read_first_message_from_file[v0.PossiblyIgnoredSequencedEvent](

dumpFilePath

)

val dumpedLastEventOrErr: Either[

ProtoDeserializationError,

PossiblyIgnoredProtocolEvent,

] =

PossiblyIgnoredSequencedEvent

.fromProtoV0(cryptoPureApi(participant1.config))(dumpedLastEventP)

- You can also dump several objects to the same file:

// Obtain all events.

val allEvents: Seq[PossiblyIgnoredProtocolEvent] =

participant1.testing.state_inspection.findMessages(da.name, None, None,␣

↪→None)

// Dump all events to a file.

utils.write_to_file(allEvents.map(_.toProtoV0), dumpFilePath)

// Read the dumped events back from the file.

val dumpedEventsP: Seq[v0.PossiblyIgnoredSequencedEvent] =

utils.read_all_messages_from_file[v0.PossiblyIgnoredSequencedEvent](

dumpFilePath

)

val dumpedEventsOrErr: Seq[Either[

ProtoDeserializationError,

PossiblyIgnoredProtocolEvent,

]] =

dumpedEventsP.map {

PossiblyIgnoredSequencedEvent.fromProtoV0(cryptoPureApi(participant1.

↪→config))(_)

}

- Some classes do not have a (public) CCtoProto*CC method, but they can be␣

↪→serialized to a

CByteString <https://developers.google.com/protocol-buffers/docs/reference/java/

↪→com/google/protobuf/ByteString>C__

instead. You can dump the corresponding instances as follows:

// Obtain the last acs commitment.

val lastCommitment: AcsCommitment = participant1.commitments

.received(

da.name,

CantonTimestamp.MinValue.toInstant,

(continues on next page)

938 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

CantonTimestamp.MaxValue.toInstant,

)

.lastOption

.getOrElse(

throw new NoSuchElementException("Unable to find an acs commitment.")

)

.message

// Dump the commitment to a file.

utils.write_to_file(

lastCommitment.toByteString(ProtocolVersion.latestForTest),

dumpFilePath,

)

// Read the dumped commitment back from the file.

val dumpedLastCommitmentBytes: ByteString =

utils.read_byte_string_from_file(dumpFilePath)

val dumpedLastCommitmentOrErr: Either[

ProtoDeserializationError,

AcsCommitment,

] =

AcsCommitment.fromByteString(dumpedLastCommitmentBytes)

3.3.17.4 How to Setup Canton to Get Best Performance?

In this section, the findings from our internal performance tests are outlined to help you achieve

best performance for your Canton application.

System Design / Architecture

Make sure to use Canton Enterprise because it is heavily optimized when compared with the com-

munity edition.

Plan your topology such that your DAML parties can be partitioned into independent blocks. That

means, most of your DAML commands involve parties of a single block only. It is ok if some com-

mands involve parties of several (or all) blocks, as long as this happens only very rarely. In particular,

avoid having a single master party that is involved in every command, because that party would be-

come a bottleneck of the system.

If your participants are becoming a bottleneck, add more participant nodes to your system. Make

sure that each block runs on its own participant. If your domain(s) are becoming a bottleneck, add

more domain nodes and distribute the load evenly over all domains.

Prefer sending big commands with multiple actions (creates / exercise) over sending numerous

small commands. Avoid sending unnecessary commands through the ledger API. Try to minimize

the payload of commands.

Further information can be found in Section Scaling and Performance.

3.3. User Manual 939

Daml SDK Documentation, 2.1.1

Hardware and Database

Do not run Canton nodes with an in-memory storage or with an H2 storage in production or during

performance tests. You may observe very good performance in the beginning, but performance can

degrade substantially once the data stores fill up.

Measure memory usage, CPU usage and disk throughput and improve your hardware as needed.

For simplicity, it makes sense to start on a single machine. Once the resources of a machine are

becoming a bottleneck, distribute your nodes and databases to different machines.

Try to make sure that the latency between a Canton node and its database is very low (ideally in the

order of microseconds). Prefer hosting a Canton node and its database on the same machine. This

is likely faster than running several Canton nodes on the same machine and the databases on a

separate machine; for, the latency between Canton nodes is much less performance critical than

the latency between a Canton node and its database.

Optimize the configuration of your database, and make sure the database has sufficient memory

and is stored on SSD disks with a very high throughput. For Postgres, this online tool is a good

starting point for finding reasonable parameters.

Configuration

In the following, we go through the parameters with known impact on performance.

Timeouts. Under high load, you may observe that commands timeout. This will negatively impact

throughput, because the commands consume resources without contributing to the number of ac-

cepted commands. To avoid this situation increase timeout parameters from the Canton console:

myDomain.service.update_dynamic_parameters(

_.copy(

participantResponseTimeout = TimeoutDuration.ofSeconds(60),

mediatorReactionTimeout = TimeoutDuration.ofSeconds(60),

)

)

If timeouts keep occurring, change your setup to submit commands at a lower rate. In addition, take

the next paragraph on resource limits into account.

Configure generous resource limits. Resource limits are used to prevent ledger applications from

overloading Canton by sending commands at an excessive rate. While they may be required to pro-

tect the system from denial of service attacks in a production environment, they can get in the way

when doing performance measurements. Resource limits can be configured as follows from the

Canton console:

participant1.resources.set_resource_limits(

ResourceLimits(

maxDirtyRequests = Some(10000),

maxRate = Some(10000),

)

)

Size of connection pools. Make sure that every node uses a connection pool to communicate with

the database. This avoids the extra cost of creating a new connection on every database query. Can-

ton chooses a suitable connection pool by default. Configure the maximum number of connections

940 Chapter 3. Canton Guide

https://pgtune.leopard.in.ua/

Daml SDK Documentation, 2.1.1

such that the database is fully loaded, but not overloaded. Detailed instructions can be found in the

Section Max Connection Settings.

Size of database task queue. If you are seeing frequent RejectedExecutionExceptions when

Canton queries the database, increase the size of the task queue, as described in Section Database

task queue full.

JVM heap size. In case you observe OutOfMemoryErrors or high overhead of garbage collection,

you must increase the heap size of the JVM, as described in Section Java Virtual Machine Arguments.

Use tools of your JVM provider (such as VisualVM) tomonitor the garbage collector to check whether

the heap size is tight.

Size of thread pools. Every Canton process has a thread pool for executing internal tasks. By default,

the size of the thread-pool is configured as the number of (virtual) cores of the underlying (physical)

machine. If the underlying machine runs other processes (e.g., a database) or if Canton runs inside

of a container, the thread-pool may be too big, resulting in excessive context switching. To avoid

that, configure the size of the thread pool explicitly like this:

"bin/canton -Dscala.concurrent.context.numThreads=12 --config examples/01-simple-

↪→topology/simple-topology.conf"

As a result, Canton will log the following line:

"INFO c.d.c.e.EnterpriseEnvironment - Deriving 12 as number of threads from
-

↪→Dscala.concurrent.context.numThreads
."

Asynchronous commits. If you are using a Postgres database, configure the participant’s ledger api

server to commit database transactions asynchronously by including the following line into your

Canton configuration:

canton.participants.participant1.ledger-api.synchronous-commit-mode = off

Log level. Make sure that Canton outputs log messages only at level INFO and above.

Disable additional consistency checks. Additional consistency-checks would degrade perfor-

mance substantially. Make sure they are disabled by including the following line into your Canton

configuration:

canton.parameters.enable-additional-consistency-checks = false

3.3.17.5 Why is Canton complaining about my database version?

Postgres

Canton is tested with Postgres 10, 11, 12, 13, and 14 – so these are the recommended versions. Canton

is also likely to work with any higher versions, but will WARN when a higher version is encountered.

By default, Canton will not start when the Postgres version is below 10.

3.3. User Manual 941

Daml SDK Documentation, 2.1.1

Oracle

Canton Enterprise additionally supports using Oracle for storage. Only Oracle 19 has been tested, so

by default Canton will not start if the Oracle version is not 19.

Note that Canton’s version checks use the v$$version table so, for the version check to succeed,

this table must exist and the database user must have SELECT privileges on the table.

Using non-standard database versions

Canton’s database version checks can be disabled with the following config option:

canton.parameters.non-standard-config = "yes"

Note that this will disable all “standard config” checks, not just those for the database.

3.4 Architecture In-Depth

A thorough understanding of Canton architecture can help you build more efficient and flexible

ledgers. These documents are intended for users who already have a basic familiarity with Daml

and Canton and want to know more.

3.4.1 High-Level Requirements

As detailed in the DA ledger model, the Daml ledger interoperability protocol provides parties with a

virtual shared ledger, which contains their interaction history and the current state of their shared

Daml contracts. To access the ledger, the parties must deploy (or have someone deploy for them)

the so-called participant nodes. The participant nodes then expose the Ledger API, which enables the

parties to request changes and get notified about the changes to the ledger. To apply the changes,

the participant nodes run a synchronization protocol. We can visualize the setup as follows.

942 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

In general, the setupmight bemore complicated than shown above, as a single participant node can

provide services for more than one party and parties can be hosted on multiple participant nodes.

Note, however, that this feature is currently limited. In particular, a party hosted on multiple partic-

ipants should be on-boarded on all of them before participating to any transaction.

In this section, we list the high-level functional requirements on the Ledger API, as well as

non-functional requirements on the synchronization protocol.

3.4.1.1 Functional requirements

Functional requirements specify the constraints on and between the system’s observable outputs

and inputs. A difficulty in specifying the requirements for the synchronization service is that the

system and its inputs and outputs are distributed, and that the system can include Byzantine par-

ticipant nodes, i.e., participants that are malicious, malfunctioning or compromised. The system

does not have to give any guarantees to parties using such nodes, beyond the ability to recover from

malfunction/compromise. However, the systemmust protect the honestly represented parties (i.e.,

parties all of whose participant nodes implement the synchronization service correctly) from ma-

licious behavior. To account for this in our requirements, we exploit the fact that the conceptual

purpose of the ledger synchronization service is to provide parties with a virtual shared ledger and

we:

1. use such a shared ledger and the associated properties (described in the DA ledger model) to

constrain the input-output relation;

2. express all requirements from the perspective of an honestly represented party;

3. use the same shared ledger for all parties and requirements, guaranteeing synchronization.

We express the high-level functional requirements as user stories, always from the perspective of

an honestly represented party, i.e., Ledger API user, and thus omit the role. As the observable inputs

and outputs, we take the Ledger API inputs and outputs. Additionally, we assume that crashes and

recoveries of participant nodes are observable. The requirements ensure that the virtual shared

3.4. Architecture In-Depth 943

Daml SDK Documentation, 2.1.1

ledger describes a world that is compatible with the honestly represented parties’ perspectives, but

itmaydeviate in any respect fromwhat Byzantine nodespresent to their parties. We call suchparties

dishonestly represented parties.

Some requirements have explicit exceptions and design limitations. Exceptions are fundamental,

and cannot be improved on by further design iterations. Design limitations refer to the design of

the Canton synchronization protocol and can be improved in future versions. We discuss the conse-

quences of the most important exceptions and design limitations later in the section.

Note: The fulfillment of these requirements is conditional on the system’s assumptions (in partic-

ular, any trusted participants must behave correctly).

• Synchronization. I want the platform to provide a virtual ledger (according to the DA ledger

model) that is shared with all other parties in the system (honestly represented or not), so that

I stay synchronized with my counterparties.

• Change requests possible. I want to be able to submit change requests to the shared ledger.

• Change request identification. I want to be able to assign an identifier to all my change re-

quests.

• Change request deduplication. I want the system to deduplicate my change requests with

the same identifiers, if they are submitted within a time window configurable per participant,

so that my applications can resend change requests in case of a restart without adding the

changes to the ledger twice.

• Bounded decision time. I want to be able to learn within some bounded time from the submis-

sion (on the order of minutes) the decision aboutmy change request, i.e., whether it was added

to the ledger or not.

Design limitation: If the participant node used for the submission crashes, the bound can be

exceeded. This can be improved in future versions by employing multiple participant nodes.

• Transparency. I want to get notified in a timely fashion (on the order of seconds) about the

changes to my projection of the shared ledger, according to the DA ledger model, so that I stay

synchronized with my counterparties.

Design limitation: If the system is overloaded or in case of network failures, the bound can be

exceeded. This can be improved in future versions by employing multiple participant nodes.

Design limitation: The transparency requirement can be violated if the submitter node is

Byzantine. In particular, it can happen that I learn about the existence of these actions, but

not about their contents (including the contracts used).

• Integrity: ledger validity. I want the shared ledger to be valid according to the DA ledger model.

Exception: The consistency aspect of the validity requirement on the shared ledger can be

violated for contracts with no honestly represented signatories, even if I am an observer on the

contract.

• Integrity: request authenticity. I want the shared ledger to contain a record of a change with

me as one of the requesters if and only if:

1. I actually requested that exact change, i.e., I submitted the change via the command sub-

mission service, and

2. I am notified that my change request was added to the shared ledger, unless my partici-

pant node crashes forever,

so that, together with the ledger validity requirement, I can be sure that the ledger contains no

records of:

1. obligations imposed on me,

2. rights taken away fromme, and

3. my counterparties removing their existing obligations

without my explicit consent. In particular, I am the only requester of any such change. Note

944 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

that this requirement implies that the change is done atomically, i.e. either it is added in its

entirety, or not at all.

Remark: As functional requirements apply only to honestly represented parties, any dishon-

estly represented party can be a requester of a commit on the virtual shared ledger, even if it

has never submitted a command via the command submission service. However, this is pos-

sible only if no requester of the commit is honestly represented.

Note: The two integrity requirements come with further limitations and trust assumptions,

whenever the trust-liveness trade-offs below are used.

• Non-repudiation. I want the service to provide me with irrefutable evidence of all ledger

changes that I get notified about, so that I can prove to a third party (e.g., a court) that a contract

of which I am a stakeholder was created or archived at a certain point in time.

• Finality. I want the shared ledger to be append-only, so that, once I am notified about a change

to the ledger, that change cannot be removed from the ledger.

• Daml package uploads. I want to be able to upload a new Daml package to my participant

node, so that I can start using new Daml contract templates or upgraded versions of existing

ones. The authority to upload packages can be limited to particular parties (e.g., a participant

administrator party), or done through a separate API.

• Daml package notification. I want to be able to get notified about new packages distributed

to me by other parties in the system, so that I can inspect the contents of the package, either

automatically or manually.

• Automatic Daml package distribution. I want the system to notify my counterparties about

my uploaded Daml packages the first time that I submit a change request that includes a con-

tract that both comes from this new package and has the counterparty as a stakeholder on

it.

• Daml package vetting. I want to be able to explicitly approve (manually or automatically, e.g.,

based on a signature by a trusted party) every new package sent tome by another party, so that

the participant node does not execute any code that has not been approved. The authority to

vet packages can be limited to particular parties, or done through a separate API.

Exception: I cannot approve a package without approving all of its dependencies first.

• No unnecessary rejections. I want the system to add all my well-authorized and

Daml-conformant change requests to the ledger, unless:

1. they are duplicated, or

2. they use Daml templates my counterparties’ participants have not vetted, or

3. they conflict with other changes that are included in the shared ledger prior to or at ap-

proximately the same time as my request, or

4. the processing capacity of my participant node or the participant nodes of my counter-

parties is exhausted by other change requests submitted by myself or others roughly si-

multaneously,

in which case I want the decision to include the appropriate reason for rejection.

Exception 1: This requirement may be violated whenever my participant node crashes, or if

there is contention in the system (multiple conflicting requests are issued in a short period of

time). The rejection reason reported in the decision in the exceptional case must differ from

those reported because of other causes listed in this requirement.

Exception 2: If my change request contains an exercise on a contract identifier, and I have not

witnessed (e.g., through divulgence) any actions ona contractwith this identifier inmy projection

of the shared ledger (according to the DA ledger model), then my change request may fail.

Design limitation 1: My change requests can also be rejected if a participant of some coun-

terparty (hosting a signatory or an observer) in my change request is crashed, unless some

trusted participant (e.g., one run by a market operator) is a stakeholder participant on all con-

3.4. Architecture In-Depth 945

Daml SDK Documentation, 2.1.1

tracts in my change request.

Design limitation 2: My change requests can also be rejected if any of my counterparties in

the change request is Byzantine, unless some trusted participant (e.g., one run by a market

operator) is a stakeholder participant on all contracts in my change request.

Design limitation 3: If the underlying sequencer queue is full for a participant, then we can

get an unnecessary rejection. We assume however that the queue size is so large that it can

be considered to be infinite, so this unnecessary rejection doesn’t happen in practice, and the

situation would be resolved operationally before the queue fills up.

• Seek support for notifications. I want to be able to receive notifications (about ledger changes

and about the decisions on my change requests) only from a particular known offset, so that

I can synchronize my application state with the set of active contracts on the shared ledger

after crashes and other events, without having to read all historical changes.

Exception: A participant can define a bound on how far in the past the seek can be requested.

• Active contract snapshots. I want the system to provide me a way to obtain a recent (on the

order of seconds) snapshot of the set of active contracts on the shared ledger, so that I can

initialize my application state and synchronize with the set of active contracts on the ledger

efficiently.

• Change request processing limited to participant nods. I want only the following (and no

other) functionality related to change request processing:

1. submitting change requests

2. receiving information about change request processing and results

3. (possibly) vetting Daml packages

to be exposed on the Ledger API, so that the unavailability of my or my counterparties’ applica-

tions cannot influence whether a change I previously requested through the API is included in

the shared ledger, except if the request is using packages not previously vetted. Note that this

inclusionmay still be influenced by the availability ofmy counterparties’ participant nodes (as

specified in the limitations on the requirement on no unnecessary rejections)

3.4.1.2 Resource limits

This section specifies upper bounds on the sizes of data structures. The system must be able to

process data structures within the given size limits.

If a data structure exceeds a limit, the system must reject transactions containing the data struc-

ture. Note that it would be impossible to check violations of resource limits at compile time; there-

fore the Daml compiler will not emit an error or warning if a resource limit is violated.

Maximum transaction depth: 100

Definition: Themaximumnumber of levels (except for the top-level) in a transaction tree.

Example: The following transaction has a depth of 2:

946 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Purpose: This limit is to mitigate the higher cost of implementing stack-safe algorithms

on transaction trees. The limit may be relaxed in future versions.

Maximum depth of a Daml value: 100

Definition: The maximum numbers of nestings in a Daml value.

Example:

• The value “17” has a depth of 0.

• The value “{myField: 17}” has a depth of 1.

• The value “[{myField: 17}]” has a depth of 2.

• The value “[‘observer1’, ‘observer2’, …, ‘observer100’]” has a depth of 1.

Purpose:

1. Applications interfacing the DA ledger likely have to process Daml values and likely

are developed outside of DA. By limiting the depth of Daml values, application devel-

opers have to be less concerned about stack usage of their applications. So the limit

effectively facilitates the development of applications.

2. This limit allows for a readable wire format for Daml-LF values, as it is not necessary

to flatten values before transmission.

3.4.1.3 Non-functional requirements

These requirements specify the characteristics of the internal system operation. In addition to the

participant nodes, the implementation of the synchronization protocol may involve a set of addi-

tional operational entities. For example, this set can include a sequencer. We call a single deploy-

ment of such a set of operational entities a domain, and refer to the entities as domain entities.

As before, the requirements are expressed as user stories, with the user always being the Ledger API

user. Additionally, we list specific requirements for financial market infrastructure providers. Some

requirements have explicit exceptions; we discuss the consequences of these exceptions later in the

section.

• Privacy. I want the visibility of the ledger contents to be restricted according to the privacy

model of DA ledgers, so that the information about any (sub)action on the ledger is provided only

to participant nodes of parties privy to this action. In particular, other participant nodes must

not receive any information about the action, not even in an encrypted form.

3.4. Architecture In-Depth 947

Daml SDK Documentation, 2.1.1

Exception: domain entities operated by trusted third parties (such as market operators) may

receive encrypted versions of any of the ledger data (but not plain text).

Design limitation 1: Participant nodes of parties privy to an action (according to the ledger

privacy model) may learn the following:

– How deeply lies the action within a ledger commit.

– Howmany sibling actions each parent action has.

– The transaction identifiers (but not the transactions’ contents) that have created the con-

tracts used by the action.

Design limitation 2: Domain entities operated by trusted third parties may learn the hierar-

chical structure and stakeholders of all actions of the ledger (but none of the contents of the

contracts, such as templates used or their arguments).

• Transaction stream auditability. I want the system to be able to convince a third party (e.g., an

auditor) that they have been presented with my complete transaction stream within a config-

urable time period (on the order of years), so that they can be sure that the stream represents

a complete record of my ledger projection, with no omissions or additions.

Exception: The evidence can be linear in the size of my transaction stream.

Design limitation: The evidence need not be privacy-preserving with respect to other parties

with whom I share participant nodes, and the process can be manual.

This item is scheduled on the Daml roadmap.

• Service Auditability. I want the synchronization protocol implementation to store all requests

and responses of all participant nodeswithin a configurable time period (on the order of years),

so that an independent third party can manually audit the correct behavior of any individual

participant and ensure that all requests and responses it sent comply with the protocol.

• Compliance. I want the system to be compliant with international regulations.

• Configurable trust-liveness trade-off. I want each domain to allow me to choose from a pre-

defined (by the domain) set of trade-offs between trust and liveness for my change requests,

so that my change requests get included in the ledger even if some of my participant nodes

of my counterparties are offline or Byzantine, at the expense of making additional trust as-

sumptions: on (1) the domain entities (for privacy and integrity), and/or (2) participant nodes

run by counterparties in my change request that are marked as “VIP” by the domain (for in-

tegrity), and/or (3) participant nodes run by other counterparties in my change request (also

for integrity).

Exception: If the honest and online participants do not have sufficient information about the

activeness of the contracts used by my change request, the request can still be rejected.

Design limitation: The only trade-off allowed by the current design is through confirmation

policies. Currently, the only fully supported policies are the full, signatory, and VIP confirmation

policies. The implementation does not support the serialization of other policies. Furthermore,

integrity need not hold under other policies. This corresponds to allowing only the trade-off (2)

above (making additional trust assumptions on VIP participants). In this case, the VIP partici-

pants must be trusted.

Note: If a participant is trusted, then the trust assumption extends to all parties hosted by

the participant. Conversely, the system does not support to trust a participant for the actions

performed on behalf of one party and distrust the same participant for the actions performed

on behalf of a different party.

• Workflow isolation. I want the system to be built such that workflows (groups of change re-

quests serving a particular business purpose) that are independent, i.e. do not conflict with

other, do not affect each other’s performance.

This item is scheduled on the roadmap.

• Garbage collection. I want the system to provide garbage collection capabilities, so that the

948 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

required hot storage capacity for each participant node depends only on:

1. the size of currently active contracts whose processing the node is involved in,

2. node’s the past traffic volume within a (per-participant) configurable time window

and does not otherwise grow unboundedly as the system continues operating. Cold storage

requirements are allowed to keep growing continuously with system operation, for auditability

purposes.

• Multi-domain participant nodes. I want to be able to use multiple domains simultaneously

from the same participant node.

• Internal participant node domain. I want to be able to use an internal domain for workflows

involving only local parties exclusively hosted by the participant node.

• Connecting to domains. I want to be able to connect my participant node to a new domain at

any point in time, as long as I am accepted by the domain operators.

• Workflow transfer. I want to be able to transfer the processing of any Daml contract that I

am a stakeholder of or have delegation rights on, from one domain to another domain that has

been vetted as appropriate by all contract stakeholders through someprocedure defined by the

synchronization service, so that I can use domains with better performance, do load balancing

and disaster recovery.

• Workflow composability. I want to be able to atomically execute steps (Daml actions) in dif-

ferent workflows across different domains, as long as there exists a single domain to which all

participants in all workflows are connected.

This item is scheduled on the roadmap.

• Standards compliant cryptography. I want the system to be built using configurable cryp-

tographic primitives approved by standardization bodies such as NIST, so that I can rely on

existing audits and hardware security module support for all the primitives.

• Upgradability. I want to be able to upgrade system components, both individually and jointly,

so that I can deploy fixes and improvements to the components and the protocol without stop-

ping the system’s operation.

Note: This item is not yet implemented.

• Semantic versioning. I want all interfaces, protocols and persistent data schemas to be ver-

sioned, so that version mismatches are prevented. The versioning scheme must be semantic,

so that breaking changes always bump the major versions.

• Backwards and forward protocol compatibility within a major version. I want system com-

ponents supporting the same major version of the protocol to be able to communicate seam-

lessly.

• Domain approved protocol versions. I want domains to specify the allowed set of protocol

versions on the domain, so that old versions of the protocol can be decommissioned, and that

new versions can be introduced and rolled back if operational problems are discovered.

Design limitation: Initially, the domain can specify only a single protocol version as allowed,

which can change over time.

• Cross-version backward and forward protocol compatibility. I want new versions of system

components to still support at least one previous major version of the synchronization proto-

col, so that entities capable of using newer versions of the protocol can still use domains that

specify only old versions as allowed. Note that the requirement does not apply to completely

different synchronization protocols (e.g., Daml on SQL and Canton).

Note: This item is not yet implemented.

• Testability of participant node upgrades on historical data. I want to be able to test new

3.4. Architecture In-Depth 949

Daml SDK Documentation, 2.1.1

versions of participant nodes against historical data from a time window and compare the

results to those obtained from old versions, so that I can increase my certainty that the new

version does not introduce unintended differences in behavior.

Note: This item is not yet implemented.

• Seamless participant failover. I want the applications using the ledger API to seamlessly fail

over to my other participant nodes, once one of my nodes crashes.

This item is scheduled on the Daml roadmap.

• Seamless failover for domain entities. I want the implementation of all domain entities to

include seamless failover capabilities, so that the system can continue operating uninterrupt-

edly on the failure of an instance of a domain entity.

This item is scheduled on the roadmap.

• Backups. I want to be able to periodically backup the system state (ledger databases) so that

it can be subsequently restored if required for disaster recovery purposes.

• Site-wide disaster recovery. I want the system to be built with the ability to recover from a

failure of an entire data center by moving the operations to a different data center, without

loss of data.

This item is scheduled on the roadmap.

• Participant compromise recovery. I want to have a procedure in place that can be followed

to recover from a malfunctioning or a compromised participant node, so that when the pro-

cedure is finished I obtain the same guarantees (in particular, integrity and transparency) as

the honest participants on the part of the shared ledger created after the end of the recovery

procedure.

Note: This item is not yet implemented.

• Domain entity compromise recovery. I want to have a procedure in place that can be followed

to recover a compromised domain entity, so that the system guarantees can be restored after

the procedure is complete.

• Fundamental dispute resolution. I want to have a procedure in place that allows me to limit

and resolve the damage to the ledger state in the case of a fundamental dispute on the out-

come of a transaction that was added to the virtual shared ledger, so that I can reconcile the set

of active contracts with my counterparties in case of any disagreement over this set. Example

causes of disagreement include disagreement with the state found after recovering a com-

promised participant, or disagreement due to a change in the regulatory environment making

some existing contracts illegal.

Note: This item is not yet implemented.

• Distributed recovery of participant data. I want to be able to reconstruct which of my con-

tracts are currently active from the information that the participants of my counterparties

store, so that I can recover my data in case of a catastrophic event. This assumes that the

other participants are cooperating and have not suffered catastrophic failures themselves.

Note: This item is not yet implemented.

950 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

• Adding parties to participants. I want to be able to start using the DA system at any point in

time, by choosing to use a new or an already existing participant node.

• Identity provider integration. I want the synchronization protocol to integrate with an iden-

tity provider service, so that I can use this service to manage the party-to-participant and

participant-to-cryptographic-keys mappings.

• Identity information updates. I want the synchronization protocol to track updates by the

identity provider service, so that the parties can switch participants, and participants can roll

and/or revoke keys, while ensuring continuous system operation.

• Party migration. I want to be able to switch from using one participant node to using an-

other participant node, without losing the data about the set of active contracts on the shared

ledger that I am a stakeholder of. The new participant node need not providemewith the ledger

changes prior to migration.

• Parties using multiple participants. I want to be able to use the system through multiple

participant nodes, so that I can do load balancing, and continue using the system even if one

of my participant nodes crashes.

• Read-only participants. I want to be able to configure some participants as read-only, so that

I can provide a live stream of the changes to my ledger view to an auditor, without giving them

the ability to submit change requests.

• Reuse of off-the-shelf solutions. I want the system to rely on industry-standard abstractions

for:

1. messaging

2. persistent storage (e.g., SQL)

3. identity providers (e.g., Oauth)

4. metrics (e.g., MetricsRegistry)

5. logging (e.g., Logback)

6. monitoring (e.g., exposing /health endpoints)

so that I can use off-the-shelf solutions for these purposes.

• Metrics on communication. I want the system to provide metrics on the state of all commu-

nication links in the system, and make them available on both link endpoints.

• Metrics on processing. I want the system to providemetrics for every major processing phase

within the system.

• Component health monitoring. I want the system to providemonitoring information for every

system component, so that I am alerted when a component fails.

This item is scheduled on the roadmap.

• Remote debugability. I want the system to capture sufficient information such that I can de-

bug remotely and post-mortem any issue in environments that are not within my control (OP).

• Horizontal scalability. I want the system to be able to horizontally scale all parallelizable parts

of the system, by adding processing units for these parts.

This item is scheduled on the roadmap.

• Large transaction support. I want the system to support large transactions such that I can

guarantee atomicity of large scale workflows.

This item is scheduled on the roadmap.

• Resilience to erroneous behavior. I want that the system is thoroughly tested to be resilient

against erroneous behavior of users and participants such that I can entrust the system to

handle my business.

This item is scheduled on the roadmap.

• Resilience to faulty domain behavior. I want that the system is thoroughly tested to be able to

3.4. Architecture In-Depth 951

Daml SDK Documentation, 2.1.1

detect and recover from faulty behaviour of domain components, such that occasional issues

don’t break the system permanently.

Note: This item is not yet implemented.

3.4.1.4 Known limitations

In this section, we explain current limitations of Canton that we intend to overcome in future ver-

sions. Requirements that have beenmarked as “not implemented” or “scheduled on the roadmap”

are not repeated in this section.

Limitations that apply always

Missing Key features

• Cross-domain transactions currently require the submitter of the transaction to transfer all

used contracts to a common domain. Cross-domain transactions without first transferring to

a single domain are not supported yet. Only the stakeholders of a contract may transfer the

contract to a different domain. Therefore, if a transaction spans several domains and makes

use of delegation to non-stakeholders, the submitter currently needs to coordinate with other

participants to run the transaction, because the submitter by itself cannot transfer all used

contracts to a single domain.

• Cryptographic evidence extraction: There is currently no public tooling to extract crypto-

graphic evidence for audit and legal actions.

Reliability

• Data store consistency: There is no tooling for verifying the consistency of data stores. This

toolingwouldallowusers todouble-check if crash recoveryhas recoveredanode to a consistent

state.

• Exceeding resource limits: Wehave not yet tested systematically whether Canton always fails

gracefully, if its resource limits are exceeded.

• H2 support: The H2 database backend is not supported for production scenarios.

Manageability

• Party migration is still an experimental feature. A party can already be migrated to a “fresh”

participant that has not yet been connected to any domains. Party migration is currently a

manual process that needs to be executed with some care.

• Data store content upgradeability: We version andmanage data stores, but as the product is

unfinished, we take the freedom to optimize the stores without providing data continuity.

• Protocol upgradeability: We check the protocol version and refuse to operate if the protocol

versions mismatch. We do not yet support running nodes with multiple major versions of the

protocol so that nodes can be upgraded one by one. To upgrade the Canton version of a node,

the node currently needs to be shutdown.

952 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Security

• No resilience to dishonest submitters: We have not yet implemented all planned validations

on incoming requests. Therefore, compromise of a submitter participant may remain unde-

tected and get the system into an inconsistent state. Consequently, if Canton is run across

organizations, these organizations need to mutually trust each other. As part of our future

roadmap, we will implement the missing validations.

• Denial of service attacks: We have not yet systematically implemented countermeasures to

denial of service attacks. E.g., a faulty or malicious participant may overload the system by

sending large numbers of messages.

• Information leakage: As the product is unfinished, we sometimes take the freedom to write

contract data to log files. As part of our future roadmap, we will systematically ensure that we

do not leak confidential information in unexpected ways.

• Public identity information: The topology state of a domain (i.e., participants known to the

domain and parties hosted by them) is known to all participants connected to the domain.

Limitations that apply only sometimes

Reliability

• Crash recovery: Both the domain and participants can generally recover from a crash to a con-

sistent state. Currently, we cannot exclude the possibility that recovery may fail, as we might

have not yet tested every possible scenario. As part of our future roadmap, we will perform

the required testing and hardening. In the meantime, the set of repair commands allows an

administrator to manually address any issues resulting from failed recovery.

• Sub-component health monitoring: Components are not yet systematically monitored and

may therefore not shutdown in case of faulty behavior.

• System hardening: Canton is designed to deal gracefully with hazardous events such as net-

work or database outages. However, there may be scenarios that we have not yet covered.

• Unbounded decision time: A participant strives for delivering a command completion for ev-

ery command that has been submitted. In every distributed system it may occur that the sys-

tem does not produce a response to a request (e.g. due to network or database outages). Con-

sequently, it may happen that Canton does not output a command completion for a submitted

command.

• Unnecessary rejections: Under adverse conditions (e.g. database or network outages, high

load), Canton may reject commands that it would otherwise accept.

• Clean shutdown: We cannot yet exclude the possibility that a node reports errors if it is shut-

down while processing requests. As part of our roadmap, we will perform further hardening

and testing.

3.4. Architecture In-Depth 953

Daml SDK Documentation, 2.1.1

Manageability

• Multi-participant parties: Hosting a party on several participants is an experimental feature.

If such aparty is involved in a contract transfer, the transfermay result in a ledger fork, because

the ledger API is not able to represent the situation that a contract is transferred out of scope of

a participant. If one of the participants hosting a party is temporarily disabled, the participant

may end up in an outdated state. The ledger API does not support managing parties hosted on

several participants.

• Disabling parties: If a party is disabled on a participant, it will remain visible on the ledger API

of the participant, although it cannot be used anymore.

• Pruning is an experimental feature. As part of our future roadmap, we plan to perform fur-

ther hardening and testing, including improvements to user experience and performance. The

public API does not yet allow for pruning transfers, transferred contracts, parties, participants,

domains, DARs or packages that are no longer in use.

• DAR and package management through the ledger API: A participant provides two APIs for

managing DARs and Daml packages: the ledger API and the admin API. When a DAR is uploaded

through the ledger API, only the contained packages can be retrieved through the admin API;

the DAR itself cannot. When a package is uploaded through the ledger API, Canton needs to

perform some asynchronous processing until the package is ready to use. The ledger API does

not allow for querying whether a package is ready to use. Therefore, the admin API should be

preferred for managing DARs and packages.

• Error messages: On invalid user input or configuration, Canton will output an error message.

Sometimes the error message is not yet as descriptive as it could be.

• The Canton documentation is quite extensive but may require some restructuring for read-

ability.

• Minor version compatibility: We do not yet exhaustively test whether different minor Canton

versions are compatible.

Performance

• Performance tuning: While we havemade sure that the architecture can deliver high through-

put numbers, we are still in the process of improving the efficency of our implementation, in-

creasing the throughput.

3.4.1.5 Requirement Exceptions: Notes

In this section, we explain the consequences of the exceptions to the requirements. In contrast to

the known limitations, a requirements exception is a fundamental limitation of Canton that will most

likely not be overcome in the foreseeable future.

954 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Ledger consistency

The validity requirement on the ledger made an exception for the consistency of contracts without

honestly represented signatories. We explain the exception using the paint offer example from the

ledger model. Recall that the example assumed contracts of the form PaintOffer houseOwner painter

obligorwith the painter as the signatory, and the houseOwner as an observer (while the obligor is not a

stakeholder). Additionally, assume that we extend the model with an action that allows the painter

to rescind the offer. The resulting model is then:

Assume that Alice (A) is the house owner, P the painter, and that the painter is dishonestly repre-

sented, in that he employs a malicious participant, while Alice is honestly represented. Then, the

following shared ledgers are allowed, together with their projections for A, which in this case are just

the list of transactions in the shared ledger.

3.4. Architecture In-Depth 955

Daml SDK Documentation, 2.1.1

That is, the dishonestly represented painter can rescind the offer twice in the shared ledger, even

though the offer is not active any more by the time it is rescinded (and thus consumed) for the

second time, violating the consistency criterion. Similarly, the dishonestly represented painter can

rescind an offer that was never created in the first place.

However, this exception is not a problem for the stated benefits of the integrity requirement, as the

resulting ledgers still ensure that honestly represented parties cannot have obligations imposed on

them or rights taken away from them, and that their counterparties cannot escape their existing

obligations. For instance, the example of a malicious Alice double spending her IOU:

is still disallowed even under the exception, as long as the bank is honestly represented. If the bank

was dishonestly represented, then the double spend would be possible. But the bank would not gain

anything by this dishonest behavior – it would just incur more obligations.

No unnecessary rejections

This requirement made exceptions for (1) contention, and included a design limitation for (2)

crashes/Byzantine behavior of participant nodes. Contention is a fundamental limitation, given

the requirement for a bounded decision time. Consider a sequence cr1, . . . crn of change requests,

each of which conflicts with the previous one, but otherwise have no conflicts, except for maybe cr1.
Then all the odd-numbered requests should get added to the ledger exactly when cr1 is added, and

the even-numbered ones exactly when cr1 is rejected. Since detecting conflicts and other forms of

processing (e.g. communication, Daml interpretation) incur processing delays, deciding precisely

whether crn gets added to the ledger takes time proportional to n. By lengthening the sequence of

requests, we eventually exceed any fixed bound within which we must decide on crn.

956 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Crashes and Byzantine behavior can inhibit liveness. To cope, the so-called VIP confirmation policy

allows any trusted participant to add change requests to the ledger without the involvement of other

parties. This policy can be used in settings where there is a central trusted party. Today’s financial

markets are an example of such a setting.

The no-rejection guarantees can be further improved by constructing Damlmodels that ensure that

the submitter is a stakeholder on all contracts in a transaction. That way, rejects due to Byzantine

behavior of other participants can be detected by the submitter. Furthermore, if necessary, the syn-

chronization service itself couldbe changed to improve its properties in a future version, by including

so-called bounded timeout extensions and attestators.

Privacy

Consider a transaction where Alice buys some shares from Bob (a delivery-versus-payment transac-

tion). The shares are registered at the share registry SR, and Alice is paying with an IOU issued to her

by a bank. We depict the transaction in the first image below. Next, we show the bank’s projection

of this transaction, according to the DA ledger model. Below, we demonstrate what the bank’s view

obtained through the ledger synchronization protocol may look like. The bank sees that the transfer

happens as a direct consequence of another action that has an additional consequence. However,

the bank learns nothing else about the parent action or this other consequence. It does not learn

that the parent action was on a DvP contract, that the other consequence is a transfer of shares, and

that this consequence has further consequences. It learns neither the number nor the identities of

the parties involved in any part of the transaction other than the IOU transfer. This illustrates the

first design limitation for the privacy requirement.

At the bottom, we see that the domain entities run by a trusted third party can learn the complete

structure of the transaction and the stakeholders of all actions in the transaction (second design

limitations). Lastly, they also see some data about the contracts onwhich the actions are performed,

but this data is visible only in an encrypted form. The decryption keys are never sharedwith the domain

entities.

3.4. Architecture In-Depth 957

Daml SDK Documentation, 2.1.1

958 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.4.2 Overview and Assumptions

In this section, we provide an overview of the Canton architecture, illustrate the high-level flows,

entities (defining trust domains) and components. We then state the trust assumptions we make

on the different entities, and the assumptions on communication links.

Canton is designed to fulfill its high-level requirements and we assume that the reader is familiar with

the Daml language and the hierarchical transactions of the DA ledger model.

3.4.2.1 Canton 101

A Basic Example

We will use a simple delivery-versus-payment (DvP) example to provide some background on how

Canton works. Alice and Bob want to exchange an IOU given to Alice by a bank for some shares that

Bob owns. We have four parties: Alice (aka A), Bob (aka B), a Bank and a share registry SR. There are

also three types of contracts:

1. an Iou contract, always with Bank as the backer

2. a Share contract, always with SR as the registry

3. a DvP contract between Alice and Bob

Assume that Alice has a “swap” choice on a DvP contract instance that exchanges an Iou she owns

for a Share that Bob has. We assume that the Iou and Share contract instances have already been al-

located in the DvP. Alice wishes to commit a transaction executing this swap choice; the transaction

has the following structure:

3.4. Architecture In-Depth 959

Daml SDK Documentation, 2.1.1

Transaction Processing in Canton

In Canton, committing the example transaction consists of two steps:

1. Alice’s participant prepares a confirmation request for the transaction. The request provides

different views on the transaction; participants see only the subtransactions exercising, fetch-

ing or creating contracts onwhich their parties are stakeholders (more precisely, the subtrans-

actionswhere theseparties are informees). The views for theDvP, and their recipients, are shown

in the figure below. Alice’s participant submits the request to a sequencer, who orders all con-

firmation requests on a Canton domain; whenever two participants see the same two requests,

they will see them according to this sequencer order. The sequencer has only two functions:

ordering messages and delivering them to their stated recipients. The message contents are

encrypted and not visible to the sequencer.

Fig. 2: Views in the transaction; each box represents a transaction part visible to the participants in

its bottom-right corner. A participant might receive several views, some of which can be nested.

2. The recipients then check the validity of the views that they receive. The validity checks cover

three aspects:

1. validity as defined in the DA ledger model: consistency, (mainly: no double spends), confor-

mance (the view is a result of a valid Daml interpretation) and authorization (guaranteeing

that the actors and submitters are allowed to perform the view’s action)

2. authenticity (guaranteeing that the actors and submitters are who they claim to be).

3. transparency (guaranteeing that participants who should be notified get notified).

Conformance, authorization, authenticity and transparency problems only arise due to sub-

mitter malice. Consistency problems can arise with no malice. For example, the Iou that is

to be transferred to Bob might simply have already been spent (assuming that we do not use

the “locking” technique in Daml). Based on the check’s result, a subset of recipients, called

confirmers then prepares a (positive or negative) confirmation response for each view sep-

arately. A confirmation policy associated with the request specifies which participants are

confirmers, given the transaction’s informees.

960 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

The confirmers send their responses to amediator, another special entity that aggregates the

responses into a single decision for the entire confirmation request. The mediator serves to

hide the participants’ identities from each other (so that Bank and SR do not need to know

that they are part of the same transaction). Like the sequencer, the mediator does not learn

the transactions’ contents. Instead, Alice’s participant, in addition to sending the request, also

simultaneously notifies the mediator about the informees of each view. The mediator receives

a version of the transaction where only the informees of a view are visible and the contents

blinded, as conceptually visualized in the diagram below.

Fig. 3: In the informee tree for the mediator, all transaction contents are blinded.

From this, themediator deriveswhich (positive) confirmation responses are necessary in order

to decide the confirmation request as approved.

Requests submitted by malicious participants can contain bogus views. As participants can

see only parts of requests (due to privacy reasons), upon receiving an approval for a request,

each participant locally filters out the bogus views that are visible to it, and accepts all remain-

ing valid views of an approved confirmation request. Under the confirmation policy’s trust as-

sumptions, the protocol ensures that the local decisions of honest participants match for all

views that they jointly see. The protocol thus provides a virtual shared ledger between the par-

ticipants, whose transactions consist of such valid views. Once approved, the accepted views

are final, i.e., they will never be removed from the participants’ records or the virtual ledger.

We can represent the confirmation workflow described above by the following message sequence

diagram, assuming that each party in the example runs their own participant node.

The sequencer and the mediator, together with a so-called topology manager (described shortly),

constitute a Canton domain. All messages within the domain are exchanged over the sequencer,

which ensures a total order between all messages exchanged within a domain.

The total ordering ensures that participants see all confirmation requests and responses in the same

order. The Canton protocol additionally ensures that all non-Byzantine (i.e. notmalicious or compro-

mised) participants see their shared views (such as the exercise of the Iou transfer, shared between

3.4. Architecture In-Depth 961

Daml SDK Documentation, 2.1.1

962 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

the participants of Bank and A) in the same order, even with Byzantine submitters. This has the

following implications:

1. The correct confirmation response for each view is always uniquely determined, because Daml

is deterministic. However, for performance reasons, we allow occasional incorrect negative re-

sponses, when participants start behaving in a Byzantine fashion or under contention. The

system provides the honest participants with evidence of either the correctness of their re-

sponses or the reason for the incorrect rejections.

2. The global ordering creates a (virtual)global timewithin adomain,measured at the sequencer;

participants learn that time has progressed whenever they receive a message from the se-

quencer. This global time is used for detecting and resolving conflicts and determining when

timeouts occur. Conceptually, we can therefore speak of a step happening at several partici-

pants simultaneously with respect to this global time, although each participant performs this

step at a different physical time. For example, in the above message sequence diagram, Alice,

Bob, the Bank, and the share registry’s participants receive the confirmation request at differ-

ent physical times, but conceptually this happens at the timestamp ts1 of the global time, and

similarly for the result message at timestamp ts6.

In this document, we focus on the basic version of Canton, with just a single domain. Canton also

supports connecting a participant tomultiple domains and transferring contracts betweendomains

(see composability).

As mentioned in the introduction, the main challenges for Canton are reconciling integrity and pri-

vacy concernswhile ensuring progresswith the confirmation-based design, given that partiesmight

be overloaded, offline, or simply refusing to respond. The main ways we cope with this problem are

as follows:

• We use timeouts: if a transaction’s validity cannot be determined after a timeout (which is a

domain-wide constant), the transaction is rejected.

• If a confirmation request times out, the system informs the participant submitting the request

on which participants have failed to send a confirmation response. This allows the submitting

participant to take out of band actions against misbehaviour.

• Flexible confirmation policies: To offer a trade-off between trust, integrity, and liveness, we al-

low Canton domains to choose their confirmation policies. Confirmation policies specify which

participants need to confirm which views. This enables the mediator to determine the suf-

ficient conditions to declare a request approved. Of particular interest is the VIP confirmation

policy, applicable to transactions which involve a trusted (VIP) party as an informee on every

action. An example of a VIP party is a market operator. The policy ensures ledger validity as-

suming the VIP party’s participants behave correctly; incorrect behavior can still be detected

and proven in this case, but the fallout must be handled outside of the system. Another impor-

tant policy is the signatory confirmation policy, in which all signatories and actors are required

to confirm. This requires a lower level of trust compared to the VIP confirmation policy sacrific-

ing liveness when participants hosting signatories or actors are unresponsive. Another policy

(being deprecated) is the full confirmation policy, in which all informees are required to confirm.

This requires the lowest level of trust, but sacrifices liveness when some of the involved par-

ticipants are unresponsive.

• In the future, we will support attestators, which can be thought of as on-demand VIP partici-

pants. Instead of constructing Daml models so that VIP parties are informees on every action,

attestators are only used on-demand. The participants who wish to have the transaction com-

mitted must disclose sufficient amount of history to provide the attestator with unequivocal

evidence of a subtransaction’s validity. The attestator’s statement then substitutes the con-

firmations of the unresponsive participants.

The following image shows the state transition diagram of a confirmation request; all states except

3.4. Architecture In-Depth 963

Daml SDK Documentation, 2.1.1

for Submitted are final.

A confirmation request can be rejected for several reasons:

Multiple domains The transaction tried to use contracts created on different Canton domains.

Multi-domain transactions are currently not supported.

Timeout Insufficient confirmations have been received within the timeout window to declare the

transaction as accepted according to the confirmation policy. This happens due to one of the

involved participants being unresponsive. The request then times out and is aborted. In the

future, we will add a feature where aborts can be triggered by the submitting party, or anyone

else who controls a contract in the submitted transaction. The aborts still have to happen

after the timeout, but are not mandatory. Additionally, attestators can be used to supplant the

confirmations from the unresponsive participants.

Inconsistency It conflicts with an earlier pending request, i.e., a request that has neither been ap-

proved nor rejected yet. Canton currently implements a simple pessimistic conflict resolution

policy, which always fails the later request, even if the earlier request itself gets rejected at some

later point.

Conflicting responses Conflicting responses were received. In Canton, this only happens when one

of the participants is Byzantine.

964 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Conflict Detection

Participants detect conflicts between concurrent transactions by locking the contracts that a trans-

action consumes. The participant locks a contract when it receives the confirmation request of a

transaction that archives the contract. The lock indicates that the contract is possibly archived.

When the mediator’s decision arrives later, the contract is unlocked again - and archived if the

transaction was approved. When a transaction wants to use a possibly archived contract, then this

transaction will be rejected in the current version of Canton. This design decision is based on the op-

timistic assumption that transactions are typically accepted; the later conflicting transaction can

therefore be pessimistically rejected.

The next three diagrams illustrate locking and pessimistic rejections using the counteroffer example

from the DA ledger model. There are two transactions and three parties and every party runs their

own participant node.

• The painter P accepts A‘s Counteroffer in transaction tx1. This transaction consumes two con-

tracts:

– The Iou between A and the Bank, referred to as c1.

– The Counteroffer with stakeholders A and P, referred to as c2.

The created contracts (the new Iou and the PaintAgreement) are irrelevant for this example.

• Suppose that the Counteroffer contains an additional consuming choice controlled by A, e.g.,

Alice can retract her Counteroffer. In transaction tx2, A exercises this choice to consume the

Counteroffer c2.

Since the messages from the sequencer synchronize all participants on the (virtual) global time, we

may think of all participants performing the locking, unlocking, and archiving simultaneously.

In the first diagram, the sequencer sequences tx1 before tx2. Consequently, A and the Bank lock c1

when they receive the confirmation request, and so do A and P for c2. So when tx2 later arrives at A

and P, the contract c2 is locked. Thus, A and P respond with a rejection and themediator follows suit.

In contrast, all stakeholders approve tx1; when the mediator’s approval arrives at the participants,

each participant archives the appropriate contracts: A archives c1 and c2, the Bank archives c1, and P

archives c2.

Fig. 4: When two transactions conflict while they are in flight, the later transaction is always rejected.

The second diagram shows the scenario where A‘s retraction is sequenced before P‘s acceptance

of the Counteroffer. So A and P lock c2 when they receive the confirmation request for tx2 from the

sequencer and later approve it. For tx1, A and P notice that c2 is possibly archived and therefore reject

tx1, whereas everything looks fine for the Bank. Consequently, the Bank and, for consistency, A lock c1

until the mediator sends the rejection for tx1.

Note: In reality, participants approve each view individually rather than the transaction as a whole.

So A sends two responses for tx1: An approval for c1‘s archival and a rejection for c2‘s archival. The

3.4. Architecture In-Depth 965

Daml SDK Documentation, 2.1.1

Fig. 5: Transaction tx2 is now submitted before tx1. The consumed contract c1 remains locked by the

rejected transaction until the mediator sends the result message.

diagrams omit this technicality.

The third diagram shows how locking and pessimistic rejections can lead to incorrect negative re-

sponses. Now, the painter’s acceptance of tx1 is sequenced before Alice’s retraction like in the first

diagram, but the Iou between A and the Bank has already been archived earlier. The painter receives

only the view for c2, since P is not a stakeholder of the Iou c1. Since everything looks fine, P locks c2

when the confirmation request for tx1 arrives. For consistency, A does the same, although A already

knows that the transaction will fail because c1 is archived. Hence, both P and A reject tx2 because it

tries to consume the locked contract c2. Later, when tx1‘s rejection arrives, c2 becomes active again,

but the transaction tx2 remains rejected.

Fig. 6: Even if the earlier transaction tx1 is rejected later, the later conflicting transaction tx2 remains

rejected and the contract remains locked until the result message.

Time in Canton

The connection between time in Daml transactions and the time defined in Canton is explained in

the respective ledger model section on time.

The respective section introduces ledger time and record time. The ledger time is the time the partic-

ipant (or the application) chooses when computing the transaction prior to submission. We need

the participant to choose this time as the transaction is pre-computed by the submitting partici-

pant and this transaction depends on the chosen time. The record time is assigned by the sequencer

when registering the confirmation request (initial submission of the transaction).

There is only a bounded relationship between these times, ensuring that the ledger time must be in

a pre-defined bound around the record time. The tolerance (max_skew) is defined on the domain as

a domain parameter, known to all participants

966 Chapter 3. Canton Guide

https://docs.daml.com/concepts/time.html#time

Daml SDK Documentation, 2.1.1

canton.domains.mydomain.parameters.ledger-time-record-time-tolerance

The bounds are symmetric in Canton, so min_skew equals max_skew, equal to above parameter.

Note: Canton does not support querying the time model parameters via the ledger API, as the time

model is a per domain property and this can not be properly exposed on the respective ledger API

endpoint.

Checking that the record time is within the required bounds is done by the validating participants and

is visible to everyone. The sequencer does not know what was timestamped and therefore doesn’t

perform this validation.

Therefore, a submitting participant can not control the output of a transaction depending on record

time, as the submitting participant does not know exactly the point in timewhen the transaction will

be timestamped by the sequencer. But the participant can guarantee that a transaction will either

be registered before a certain record time, or the transaction will fail.

Subtransaction privacy

Canton splits a Daml transaction into views, as described above under transaction processing. The

submitting participant sends these views via the domain’s sequencer to all involved participants

on a need-to-know basis. This section explains how the views are encrypted, distributed, and stored

so that only the intended recipients learn the contents of the transaction.

In the above DvP example, Canton creates a view for each node, as indicated by the boxes with the dif-

ferent colors. Canton captures this hierarchical view structure in aMerkle-like tree. For example, the

view for exercising the “xfer” choice conceptually looks as follows, where the hashes 0x... commit

to the contents of the hidden nodes and subtrees without revealing the content. In particular, the

second leg’s structure, contents, and recipients are completely hidden in the hash 0x1210....

The subview that creates the transferred Iou has a similar structure, except that the hash 0x738f.

.. is now unblinded into the view content and the parent view’s Exercise action is represented by

its hash 0x8912...

Using the hashes, every recipient can correctly reconstruct their projection of the transaction from

the views they receive.

As illustrated in the confirmation workflow, the submitting participant sends the views to the partici-

pants hosting an informee or witness of a view’s actions. This ensures subtransaction privacy as a

participant receives only the data for the witnesses it hosts, not all of the transaction. Each Canton

participant persists all messages it receives from the sequencer, including the views.

Moreover, Canton hides the transaction contents from the domain too. To that end, the submitting

participant encrypts the views using the following hybrid encryption scheme:

1. It generates cryptographic randomness for the transaction, the transaction seed. From the

transaction seed, a view seed is derived for each view following the hierarchical view structure,

using a pseudo-random function. In the DvP example, a view seed seed0 for the action at the

top is derived from the transaction seed. The seed seed1 for the view that exercises the “xfer”

choice is derived from the parent view’s seed seed0, and similarly the seed seed2 for the view

that creates Bob’s IOU is derived from seed1.

3.4. Architecture In-Depth 967

Daml SDK Documentation, 2.1.1

Fig. 7: Idealized Merke tree for the view that exercises the “xfer” choice on Alice’s Iou.

Fig. 8: Idealized Merkle tree for the view that creates Bob’s new Iou.

968 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

2. For each view, it derives a symmetric encryption key from the view seed using a key deriva-

tion function. For example, the symmetric key for the view that creates Bob’s IOU is derived

from seed2. Since the transaction seed is fresh for every submission and all derivations are

cryptographically secure, each such symmetric key is used only once.

3. It encrypts the serialization of each view’s Merkle tree with the symmetric key derived for this

view. The view seed itself is encrypted with the public key of each participant hosting an in-

formee of the view. The encrypted Merkle tree and the encryptions of the view seed form the

data that is sent via the sequencer to the recipients.

Note: The view seed is encrypted only with the public key of the participants that host an

informee, while the encrypted Merkle tree itself is also sent to participants hosting only wit-

nesses. The latter participants can nevertheless decrypt the Merkle tree because they receive

the view seed of a parent view and can derive the symmetric key of the witnessed view using

the derivation functions.

Even though the sequencer persists the encrypted views for a limited period, the domain cannot ac-

cess the symmetric keysunless it knows the secret key of oneof the informeeparticipants. Therefore,

the transaction contents remain confidential with respect to the domain.

3.4.2.2 Domain Entities

A Canton domain consists of three entities:

• the sequencer

• the mediator

• and topology manager, providing a PKI infrastructure, and party to participant mappings.

We call these the domain entities. The high-level communication channels between the domain

entities are depicted below.

In general, every domain entity can run in a separate trust domain (i.e., can be operated by an inde-

pendent organization). In practice, we assume that all domain entities are run by a single organiza-

tion, and that the domain entities belong to a single trust domain.

Furthermore, each participant node runs in its own trust domain. Additionally, the participant may

outsource a part of its identitymanagement infrastructure, for example to a certificate authority. We

assume that the participant trusts this infrastructure, that is, that the participant and its identity

management belong to the same trust domain. Some participant nodes can be designated as VIP

3.4. Architecture In-Depth 969

Daml SDK Documentation, 2.1.1

nodes, meaning that they are operated by trusted parties. Such nodes are important for the VIP

confirmation policy.

The generic termmember will refer to either a domain entity or a participant node.

Sequencer

We now list the high-level requirements on the sequencer.

Ordering: The sequencer provides a global total-order multicast where messages are uniquely

time-stamped and the global ordering is derived from the timestamps. Instead of delivering a sin-

gle message, the sequencer provides message batching, that is, a list of individual messages are

submitted. All thesemessages get the timestamp of the batch they are contained in. Eachmessage

may have a different set of recipients; the messages in each recipient’s batch are in the same order

as in the sent batch.

Evidence: The sequencer provides the recipients with a cryptographic proof of authenticity for every

message batch it delivers, including evidence on the order of batches.

Sender and Recipient Privacy: The recipients do not learn the identity of the submitting participant.

A recipient only learns the identities of recipients on a particular message from a batch if it is itself

a recipient of that message.

Mediator

The mediator’s purpose is to compute the final result for a confirmation request and distribute it

to the participants, ensuring that transactions are atomically committed across participants, while

preserving the participants’ privacy, by not revealing their identities to each other. At a high level,

the mediator:

• collects confirmation responses from participants,

• validates them according to the Canton protocol,

• computes the conclusions (approve / reject / timed out) according to the confirmation policy,

and

• sends the result message.

Additionally, for auditability, the mediator persists every received message (containing informee

information or confirmation responses) in long term storage and allows an auditor to retrieve mes-

sages from this storage.

Topology Manager

The topology manager allows participants to join and leave the Canton domain, and to register, re-

voke and rotate public keys. It knows the parties hosted by a given participant. It defines the trust

level of each participant. The trust level is either ordinary or VIP. A VIP trust level indicates that the

participant is trusted to act honestly. A canonical example is a participant run by a trusted market

operator.

970 Chapter 3. Canton Guide

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.3282&rep=rep1&type=pdf

Daml SDK Documentation, 2.1.1

3.4.2.3 Participant-internal Canton Components

Canton uses the Daml-on-X architecture, to promote code reuse. In this architecture, the participant

node is broken down into a set of services, all but one of which are reused among ledger implementa-

tions. This ledger-specific service is called the Ledger Synchronization Service (LSS), which Canton

implements using its protocol. This implementation is further broken down further into multiple

components. We now describe the interface and properties of each component. The following figure

shows the interaction between the different components and the relation to the existing Ledger API’s

command and event services.

We next explain each component in turn.

Transactions

This is the central component of LSS within Canton. We describe the main tasks below.

Submission and Segregation: A Daml transaction has a tree-like structure. The ledger privacy model

defines which parts of a transaction are visible to which party, and thus participant. Each recipi-

ent obtains only the subtransaction (projection) it is entitled to see; other parts of the transaction

are never shared with the participant, not even in an encrypted form. Furthermore, depending on the

confirmation policy, some informees aremarked as confirmers. In addition to distributing the trans-

action projections amongparticipants, the submitter informs themediator about the informees and

confirmers of the transaction.

Validity and Confirmations Responses: Each informee of a requested transaction performs local

checks on the validity of its visible subtransaction. The informees check that their provided projec-

tion conforms to the Daml semantics, and the ledger authorization model. Additionally, they check

whether the request conflicts with an earlier request that is accepted or is not yet decided. Based on

3.4. Architecture In-Depth 971

Daml SDK Documentation, 2.1.1

this, they send their responses (one for each of their views), together with the informee information

for their projection, to the mediator. When the other participants or domain entities do not behave

according to the protocol (for example, not sending timely confirmation responses, or sending mal-

formed requests), the transaction processing component raises alarms.

Confirmation Result Processing. Based on the result message from the mediator, the transaction

component commits or aborts the requested transaction.

Sequencer Client

The sequencer client handles the connection to the sequencer, ensures in-order delivery and stores

the cryptographic proofs of authenticity for the messages from the sequencer.

Identity Client

The identity client handles the messages coming from the domain topology manager, and verifies

the validity of the received identity information changes (for example, the validity of public key del-

egations).

3.4.2.4 System Model And Trust Assumptions

The different sets of rules that Canton domains specify affect the security and liveness properties in

different ways. In this section, we summarize the systemmodel that we assume, as well as the trust

assumptions. Some trust assumptions are dependent on the domain rules, which we indicate in

the text. As specified in the high-level requirements, the system provides guarantees only to honestly

represented parties. Hence, every party must fully trust its participant (but no other participants)

to execute the protocol correctly. In particular, signatures by participant nodes may be deemed as

evidence of the party’s action in the transaction protocol.

System Model

We assume that pairwise communication is possible between any two system members. The links

connecting the participant nodes to the sequencers and the referees are assumed to bemostly timely:

there exists a known bound 𝛅 on the delay such that the overwhelming majority of messages ex-

changed between the participant and the sequencer are delivered within 𝛅. Domain entities are as-

sumed to have clocks that are closely synchronized (up to some known bound) for an overwhelming

majority of time. Finally, we assume that the participants know a probability distribution over the

message latencies within the system.

972 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

General Trust Assumptions

These assumptions are relevant for all system properties, except for privacy.

• The sequencer is trusted to correctly provide a global total-order multicast service, with evi-

dence and ensuring the sender and recipient privacy. .

• The mediator is trusted to produce and distribute all results correctly.

• The topologymanagers of honest participants (including the underlying public key infrastruc-

ture, if any) are operating correctly.

When a transaction is submitted with the VIP confirmation policy (in which case every action in the

transaction must have at least one VIP informee), there exist an additional integrity assumption:

• All VIP stakeholdersmust be hosted by honest participants, i.e., participants that run the trans-

action protocol correctly.

We note that the assumptions can be weakened by replicating the trusted entities among multiple

organization with a Byzantine fault tolerant replication protocol, if the assumptions are deemed too

strong. Furthermore, webelieve thatwith someextensions to theprotocolwe canmake the violations

of one of the above assumptions detectable by at least one participant inmost cases, and often also

provable to other participants or external entities. Thiswould require direct communication between

the participants, which we leave as future work.

Assumptions Relevant for Privacy

The following common assumptions are relevant for privacy:

• The private keys of honest participants are not compromised, and all certificate authorities

that the honest participants use are trusted.

• The sequencer is privy to:

1. the submitters and recipients of all messages

2. the view structure of a transaction in a confirmation request, including informees and

confirming parties

3. the confirmation responses (approve / reject / ill-formed) of confirmers.

4. encrypted transaction views

5. timestamps of all messages

• The sequencer is trusted with not storing messages for longer than necessary for operational

procedures (e.g., delivering messages to offline parties or for crash recovery).

• The mediator is privy to:

1. the view structure of a transaction including informees and confirming parties, and the

submitting party

2. the confirmation responses (approve / reject / ill-formed) of confirmers

3. timestamps of messages

• The informees of a part of a transaction are trusted with not violating the privacy of the other

stakeholders in that same part. In particular, the submitter is trusted with choosing strong

randomness for transaction and contract IDs. Note that this assumption is not relevant for

integrity, as Canton ensures the uniqueness of these IDs.

When a transaction is submitted with the VIP confirmation policy, every action in the transaction

must have at least one VIP informee. Thus, the VIP informee is automatically privy to the entire con-

tents of the transaction, according to the ledger privacy model.

3.4. Architecture In-Depth 973

Daml SDK Documentation, 2.1.1

Assumptions Relevant for Liveness

In addition to the general trust assumptions, the following additional assumptions are relevant for

liveness and bounded liveness functional requirements on the system: bounded decision time, and

no unnecessary rejections:

• All the domain entities in Canton (the sequencer, the mediator, and the topology manager) are

highly available.

• The sequencer is trusted to deliver the messages timely and fairly (as measured by the proba-

bility distribution over the latencies).

• The domain topology manager forwards all identity updates correctly.

• Participants hosting confirming parties according to the confirmation policy are assumed to

be highly available and responding correctly. For example in the VIP confirmation policy, only

the VIP participant needs to be available whereas in the signatory policy, liveness depends on

the availability of all participants that host signatories and actors.

3.4.2.5 Scaling and Performance

Network Scaling

The scaling and performance characteristics of a Canton based system are determined bymany fac-

tors. The simplest approach is when Canton is deployed as a simplemonolith where vertical scaling

would add more CPUs, memory, etc. to the compute resource. However, it is expected the most fre-

quent deployment of Canton is as a distributed,micro-service architecture, running in different data

centers of different organizations, with many opportunities to incrementally increase throughput.

This is outlined below.

The ledger state in Canton does not exist globally so there is no single node that, by design, hosts all

contracts. Instead, participant nodes are involved in transactions that operate on the ledger state

on a strict need to know basis (data minimization), only exchanging (encrypted) information on the

domains used as coordination points for the given input contracts. For example, if participants Alice

and Bank transact on an i-owe-you contract on domain A, another participant Bob or another domain

Bwill not even receive a single bit related to this transaction. This is in contrast to blockchains, where

each node has to process each block regardless of howactive or directly affected they are by a certain

transaction. This lends itself to a micro-service approach that can scale horizontally.

The micro-services deployment of Canton includes the set of participant and domain nodes (here-

after, “participant” or “participants” and “domain” or “domains” respectively), as well as the ser-

vices internal to the domain (e.g., Topology Manager). In general, each Canton micro-service follows

the best practice of having its own local database which increases throughput. Deploying a service

to its own compute server increases throughput because of the additional CPU and disk capacity. In

fact, a vertical scaling approach can be used to increase throughput if a single service becomes a

bottleneck, along with the option of horizontal scaling that is discussed next.

An initial Canton deployment can increase its scaling in multiple ways that build on each other. If

a single participant node has many parties, then throughput can be increased by migrating parties

off to a new, additional participant node (currently supported as amanual early access feature). For

example, if there are 100 parties performingmulti-lateral transactions with each other, then the sys-

tem can reallocate parties to 10 participants with 10 parties each, or say 100 participants with 1 party

each. As most of the computation occurs on the participants, a domain can sustain a very substan-

tial load from multiple participants. If the domain were to be a bottleneck then the Sequencer(s),

974 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Topology Manager, and Mediator can be run on their own compute server which increases the do-

main throughput. Therefore, new compute servers with additional Canton nodes can be added to

the network when needed, allowing the entire system to scale horizontally.

If even more throughput is needed then the multiple domain feature of Canton can be leveraged

to increase throughput. In a large and active network where a domain reaches the capacity limit,

additional domains can be rolled out, such that the workflows can be sharded over the available

domains (early access). This is a standard technique for load balancing where the client application

does the load balancing via sharding.

If a single party is abottleneck then the throughput canbe increasedby sharding theworkflowacross

multiple parties hosted on separate participants. If a workflow is involving some large operator (i.e.

an exchange), then an option would be to shard the operator by creating two operator parties and

distribute the workflows evenly over the two operators (eventually hosted on different participants),

and by adding some intermediate steps for the few cases where the workflows would span across

the two shards.

There are some anti-patterns that need to be avoided for the maximum scaling opportunity. For ex-

ample, having one participant with almost all of the parties on a single participant is an anti-pattern

to be avoided since that participant will be a bottleneck. Similarly, the design of the Damlmodel has

a strong impact on the degree to which sharding is possible. For example, having a Daml applica-

tion that introduces a synchronization party through which all transactions need to be validated

introduces a bottleneck so it is also an anti-pattern to avoid.

The bottom-line is that a Canton system can scale out horizontally if commands involve only a small

number of participants and domains.

Important: This feature is only available in Canton Enterprise

Node Scaling

The Canton Enterprise edition supports the following scaling of nodes:

• The database backed drivers (Postgres and Oracle) can run in an active-active setup with par-

allel processing, supporting multiple writer and reader processes. Thus, such nodes can scale

horizontally.

• The enterprise participant node processes transactions in parallel (except the process of con-

flict detection which by definitionmust be sequential), allowingmuch higher throughput than

the community version. The community version is processing each transaction sequentially.

Canton processes make use of multiple cpus and will detect the number of available cpus au-

tomatically. The number of parallel threads can be controlled by setting the JVM properties

scala.concurrent.context.numThreads to the desired value.

Generally, the performance of Canton nodes is currently storage I/O bound. Therefore, their perfor-

mance depends on the scaling behaviour and throughput performance of the underlying storage

layer, which can be a database, or a distributed ledger for some drivers. Therefore, appropriately

sizing the database is key to achieve the necessary performance.

On a related note: the Daml interpretation is a pure operation, without side-effects. Therefore, the

interpretation of each transaction can run in parallel, and only the conflict-detection between trans-

actions must run sequentially.

3.4. Architecture In-Depth 975

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

Performance and Sizing

A Daml workflow can be computationally arbitrarily complex, performing lots of computation (cpu!)

or fetchingmany contracts (io!), and involve different numbers of parties, participants and domains.

Canton nodes store their entire data in the storage layer (database), with additional indexes. Every

workflow and topology is different, and therefore, sizing requirements depend on the Daml applica-

tion that is going to run, and on the resource requirements of the storage layer. Therefore, in order

to obtain sizing estimates, you must measure the resource usage of dominant workflows using a

representative topology and setup of your use-case.

Batching

As every transaction comes with an overhead (signatures, symmetric encryption keys, serialization

and wrapping into messages for transport, http headers etc), we recommend to design the applica-

tions submitting commands in a way that batches smaller requests together into a single transac-

tion.

Optimal batch sizes depend on the workflow and the topology, and need to be determined experi-

mentally.

Storage Estimation

A priori storage estimation of a Canton installation is tricky. Generally, we can give the following

reasoning around the storage used. As explained above, storage usage depends highly on topology,

payload, Daml models used and what type of storage layer is configured. However, the following

example might be used to understand the storage usage for your use case.

First, a command submitted through the Ledger Api is sent to the participant as a serialized gRPC

request.

This command is first interpreted and translated into a Daml-LF transaction. The inter-

preted transaction is next translated into a Canton transaction view-decomposition, which is a

privacy-preserving representation of the full transaction tree structure. A transaction typically con-

sists of several transaction views; in the worst case every action node in the transaction tree be-

comes a separate transaction view. Each view contains the full set of arguments required by that

view, including the contract arguments of the input contracts. So the data representation can be

multiplied quite a bit. Here, we can not estimate the resulting size without having a concrete ex-

ample. For simplicity, let us consider the simple case where a participant is exercising a simple

“Transfer” choice on an typical “Iou” contract to a new owner, preserving the other contract argu-

ments. We assume that the old and new owner of the Iou are hosted on the sameparticipant whereas

the Iou issuer is hosted on a second participant.

In this case, the resulting Canton transaction consists of two views (one for the Exercise node of

the Transfer choice and one for the Create node of the transferred Iou). Both views contian some

metadata such as the package and template identifiers, contract keys, stakeholders, and involved

participants. The view for the Exercise node contains the contract arguments of the input Iou, say

of size Y. The view for the Create node contains the updated contract arguments for the created

contract, again of size Y. Note that there is no fixed relation between the command size X and the

size of the input contracts Y. Typically X only contains the receiver of the transfer, but not the contract

arguments that are stored on the ledger.

Then, we observe the following storage usage:

976 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

• Two encrypted envelopes with payload Y each, one symmetric key per view and informee par-

ticipant of that view, two root hashes for each participant and the participant ids as recipi-

ents at the sequencer store, and the informee tree for themediator (informees and transaction

metadata, but no payload), together with the sequencer database indexes. - Two encrypted en-

velopes with payload Y each and the symmetric keys for the views, in the participant events

table of each participant (as both receive the data)

• Decrypted new resulting contract of size Y in the private contract store and some status infor-

mation of that contract on the active contract journal of the sync service.

• The full decrypted transactionwith payload of size Y for the created contract, in the sync service

linear event log. This transaction does not contain the input contract arguments.

• The full decrypted transaction with Y in the indexer events table, excluding input contracts, but

including newly divulged input contracts.

If we assume that payloads dominate the storage requirements, we conclude that the storage re-

quirement is given by the payloadmultiplication due to the view decomposition. In our example, the

transaction requires 5*Y storage on each participant and 2*Y on the sequencer. For the two partici-

pants, this makes 11*Y in total.

Additionally to this, some indexes have to be built by the database in order to serve the contracts and

events efficiently. The exact estimation of the size usage of such indexes for each database layer is

beyond the scope of our documentation.

Note: Please note that we do have plans to remove the storage duplication between the sync service

and the indexer. Ideally, will be able to reduce the storage on the participant for this example from 5*Y

down to 3*Y: once for the unencrypted created contract and twice for the two encrypted transaction

views.

Generally, in order to recover used storage, a participant and a domain can be pruned. Pruning is

available on Canton Enterprise through a set of console commands and allows to remove past events

and archived contracts based on a timestamp. This way, the storage usage of a Canton deployment

can be kept constant by continuously removing obsolete data. Non-repudiation and auditability of

the unpruned history is preserved due to the bilateral commitments.

3.4.3 Domain Architecture and Integrations

Recall the high-level topology with Canton domains being backed by different technologies, such as

a relational database as well as block-chains like Hyperledger Fabric or Ethereum.

In this chapter we define the requirements specific to a Canton domain, explain the generic domain

architecture, as well as the concrete integrations for Canton domains.

3.4. Architecture In-Depth 977

Daml SDK Documentation, 2.1.1

978 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

3.4.3.1 Domain-specific Requirements

The high-level requirements define requirements for Canton in general, covering both participant

and domains. This section categorizes and expands on these high-level requirements and defines

domain-specific requirements, both functional and non-functional ones.

Functional Requirements

The domain contributes to the high-level functional requirements in terms of facilitating the syn-

chronization of changes. As the domain can only see encrypted transactions, refer to transaction

privacy in the non-functional requirements, the functional requirements are satisfied on a lower

level than the Daml transaction level.

• Synchronization: The domainmust facilitate the synchronization of the shared ledger among

participants by establishing a total-order of transactions.

• Transparency: The domain must inform the designated participants timely on changes to the

shared ledger.

• Finality: The domain must facilitate the synchronization of the shared ledger in an

append-only fashion.

• No unnecessary rejections: The domain should minimize unnecessary rejections of valid

transactions.

• Seek support for notifications: The domain must facilitate offset-based access to the notifi-

cations of the shared ledger.

Non-Functional Requirements

Performance

The performance targets cover the entire Canton system and are not broken down to individual com-

ponent performance targets.

• Canton Alpha-level Performance: 5 transactions/second (tps) with up to 3 second latency.

• Canton Beta-level Performance: 20 tps with up to 1s latency.

Throughput ismeasuredwith a simple Damlworkflowwhere one participant node creates a contract

and another participant node must observe the contract. Performance is measured using the Daml

Ledger API test tool.

3.4. Architecture In-Depth 979

Daml SDK Documentation, 2.1.1

Reliability

• Seamless fail-over for domain entities: All domain entities must be able to tolerate crash

faults up to a certain failure rate, e.g., 1 sequencer node out of 3 can fail without interruption.

• Resilience to faulty domain behavior: The domain must be able to detect and recover from

failures of the domain entities, such as performing a fail-over on crash failures or retrying op-

erations on transient failures if possible. The domain should tolerate byzantine failures of the

domain entities.

• Backups: The state of the domain entities have to be backed up such that in case of disaster

recovery only minimal amount of data is lost.

• Site-wide disaster recovery: In case of a failure of a data-center hosting a domain, the system

must be able to fail-over to another data-center and recover operations.

• Resilience to erroneous behavior: The domain must be resilient to erroneous behavior from

the participants interacting with the domain.

Scalability

• Horizontal scalability: The parallelizable domain entities and their sub-components must be

able to horizontally scale.

• Large transaction support: The domain entities must be able to cope with large transactions

and their resulting large payloads.

Security

• Domain entity compromise recovery: In case of a compromise of a domain entity, the do-

main must provide procedures to mitigate the impact of the compromise and allow to restore

operations.

• Standards compliant cryptography: All used cryptographic primitives and their configura-

tionsmust be compliant to approved standards and based on existing and audited implemen-

tations.

• Authentication and authorization: The participants interacting with the domain as well as

the domain entities internal to the domain must authenticate themselves and have their ap-

propriate permissions enforced.

• Secure channel (TLS): All communication channels between the participants and the domain

as well as between the domain entities themselves have to support a secure channel option

using TLS, optionally with client certificate-based mutual authentication.

• Distributed Trust: The domain should be able to be operated by a consortium in order to dis-

tribute the trust by the participants in the domain among many organizations.

• TransactionMetadata Privacy: The domain entitiesmust never learn the content of the trans-

actions. The domain entities should learn a limited amount of transaction metadata, such as

structural properties of a transaction and involved stakeholders.

980 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Manageability

• Garbage collection: The domain entities must provide ways to minimize the amount of data

kept on hot storage, in particular data that is only required for auditability can move to cold

storage or data that has been processed and stored by the participants could be removed after

a specific retention period.

• Upgradeability: The domain as a whole or individual domain entities must be able to upgrade

with minimal downtime.

• Semantic versioning: The interfaces, protocols, and persistent data schemas of the domain

entities must be versioned according to semantic versioning guidelines.

• Domain approved protocol versions: The domainmust offer and verify the supported versions

towards the participants. The domainmust further ensure that the domain entities operate on

compatible versions.

• Reuse off-the-shelf solutions: The domain entities should use off-the-shelf solutions for per-

sistence, API specification, logging, and metrics.

• Metrics on communication and processing: The domain entities must expose metrics on

communication and processing to facilitate operations and trouble shooting.

• Component health monitoring: The domain entities must expose a health endpoint for mon-

itoring.

3.4.3.2 Domain-Internal Components

The following diagram shows the architecture and components of a Canton domain as well as how

a participant node interacts with the domain.

The domain consists of the following components:

• Domain Service: The first point of contact for a participant nodewhen connecting to a domain.

The participant performsa version handshakewith the domain service anddiscovers the avail-

3.4. Architecture In-Depth 981

Daml SDK Documentation, 2.1.1

able other services, such as the sequencer. If the domain requires a service agreement to be

accepted by connecting participants, the domain service will provide the agreement.

• Domain Topology Service: The domain topology services is responsible for all topology man-

agement operations on a domain. The service provides the essential topology state to a new

participant node, i.e., the set of keys for the domain entities to bootstrap the participant node.

Furthermore, participant nodes can upload their own topology transactions to the domain

topology service, which inspects and possibly approves and publishes those topology transac-

tions on the domain via the sequencer.

• Sequencer Authentication Service: A node can authenticate itself to the sequencer service

either using a client certificate or using anauthentication token. The sequencer authentication

service issues suchauthentication tokens after performing a challenge-responseprotocolwith

the node. The node has to sign the challenge with their private key corresponding to a public

key that has been approved and published by the domain identity service.

• Sequencer Service: The sequencer services establishes the total-order ofmessages, including

transactions, within a domain. The service implements a total-order multicast, i.e., the sender

of a message indicates the set of recipients to which the message is delivered. The order is

established based on a unique timestamp assigned by the sequencer to each message.

• Sequencer Manager: The sequencermanager is responsible for initializing the sequencer ser-

vice.

• Mediator: Themediator participates in the Canton transaction protocol and acts as the trans-

action commit coordinator to register new transaction requests and finalizes those requests

by collecting transaction confirmations. Themediator provides privacy among the set of trans-

action stakeholders as the stakeholders do not communicate directly but always via the me-

diator.

The domain operator is responsible to operate the domain infrastructure and (optionally) also veri-

fies and approves topology transactions, in particular to admit new participant nodes to a domain.

The operator can either be a single entity managing the entire domain or a consortium of operators,

refer to the distributed trust security requirement.

3.4.3.3 Drivers

Based on the set of domain internal components, a driver implements one or more components

based on a particular technology. The prime component is the sequencer service and its ordering

functionality, with implementations ranging from a relational database to a distributed blockchain.

Components can be shared among integrations, for example, a mediator implemented on a rela-

tional database can be used together with a blockchain-based sequencer.

Canton Domain on Ethereum

ACanton Ethereumdomainuses a sequencer backedby Ethereum instead of by another ledger (such

as Postgres or Fabric). The other domain components (mediator, domain manager) are reused from

the relational database driver. Architecturally, the Canton Ethereum sequencer is a JVM applica-

tion that interacts with an Ethereum client via the RPC JSON API to write events to the blockchain.

Specifically, it interacts with an instance of the smart contract Sequencer.sol and calls function

of Sequencer.sol to persist transactions and requests to the blockchain. It uses the configured

Ethereum account to execute these calls. Analogous to the database-based sequencer implementa-

tions, multiple Ethereum sequencer applications can read and write to the same Sequencer.sol

smart contract instance and they can do so through different Ethereum client nodes for high avail-

ability, scalability, and trust. The following diagrams shows the architecture of an Ethereum-based

982 Chapter 3. Canton Guide

https://eth.wiki/json-rpc/API

Daml SDK Documentation, 2.1.1

domain:

Note: When running in a multi-writer setup, each Ethereum Sequencer application needs to use a

separate Ethereum account. Otherwise, transactions may get stuck due to nonce mismatches.

Canton Domain on Fabric

Introduction to Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology

(DLT) platform.

Components of the Fabric Blockchain Network

The following key concepts of Fabric are relevant for the Canton domain integration with Fabric. For

further details, refer to the Fabric documentation.

• Peers: A network entity that maintains a Fabric ledger and runs chaincode containers in or-

der to perform read/write operations to the Fabric ledger. Peers are owned and maintained by

organizations.

• Channels: A channel is a private blockchain overlay which allows for data isolation and con-

fidentiality. A channel-specific Fabric ledger is shared across the peers in the channel, and

transacting parties must be authenticated to a channel in order to interact with it. Members

who are not a part of the channel are unable see the transactions or even know that the channel

exists.

• Ordering Service: Also known as orderer. A defined collective of nodes that orders transac-

tions into a block and then distributes blocks to connected peers for validation and commit.

3.4. Architecture In-Depth 983

https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/key_concepts.html

Daml SDK Documentation, 2.1.1

Fig. 9: An example Fabric blockchain network with four organizations. The ordering service has or-

dering nodes for ordering and distributing blocks on each of the channels defined under the ordering

service. Channel A includes all four organizations, while channel B includes only Org 3 and Org 4. Au-

thenticated client applications can send calls to their associated peers on the network.

984 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

The ordering service exists independent of the peer processes and orders transactions on a

first-come-first-serve basis for all channels on the network.

• Chaincode: Asmart contract is code – invokedbya client application external to theblockchain

network – that manages access andmodifications to the current Fabric ledger state via trans-

actions. In Hyperledger Fabric, smart contracts are packaged as chaincode. Chaincode is in-

stalled on peers and then defined and used on one or more channels. An endorsement policy

specifies for each instantiation of a chaincode which peers have to validate and endorse a

transaction, such that the transaction is considered valid and part of the Fabric ledger.

• Applications: Client applications in a Fabric-based network interact with the Fabric ledger us-

ing one of the available Fabric SDKs. Applications are able to propose changes to the ledger

as well as to query the state of the ledger by using an identity issued by the organization’s

certificate authority (CA).

Architecture

In the v1 architecture of the Fabric driver, only the sequencer is integrated on top of Fabric. The other

domain components are reused from the relational database driver. The Fabric-based sequencer

supports running in a multi-writer, multi-reader topology for high availability, scalability, and trust.

The following diagrams shows the architecture of a Fabric-based domain integration.

3.4. Architecture In-Depth 985

Daml SDK Documentation, 2.1.1

Fabric-based Sequencer

The Fabric Sequencer Application serves as an external standalone sequencer application that par-

ticipants and other domain entities in a Canton network connect to in order to exchange ordered

messages. It is an application that runs over Fabric by a consortium of organizations.

Typically each app operates via one Fabric client that belongs to a specific organization. These Fabric

peers have visibility of the sequencermessages’ metadata (sender and recipients of themessages),

however the messages’ payloads are fully encrypted.

A Canton domain requires beside the Sequencers one Domain Manager and one or more indepen-

dently operated Mediators. All these nodes exclusively communicate with Participants via the Se-

quencer.

Participants trust the app they connect to and they can specify which one to connect to among the

available ones. Participants could verify that Sequencer Applications are reporting consistent in-

formation by connecting to many or periodically checking other apps as they all need to report the

same data.

The application supports a multi-writer, multi-reader architecture, such that multiple Fabric appli-

cations can operate on top of the same Fabric ledger. Sequencer clients within the Participants, Do-

main Manager or Mediators will communicate with the Sequencer Fabric Application and they can

read or write fromany of the available sequencer apps as they will have shared view of the Sequencer

history for the domain.

Additionally, the sameFabric setupwith adifferent channel canbeused to operate different domains

on the same Fabric infrastructure, since each channel contains a separate isolated Fabric ledger.

Sequencer Chaincode

The chaincode is implemented in Go. It supports:

• Registering new members with the sequencer

• Sending messages over the sequencer

– the messages are ordered by the Fabric ordering service and we subsequently use that

order to define counters and timestamps

– if instead the order were defined in chaincode by keeping track of the last message

counter, congestion would be created because the application would either have to pro-

cess onemessage at a time or create amechanism of batchingmessages to be processed

in one transaction

The Sequencer Application reads all transactions created from chaincode operations and keeps its

own store for a view of the sequencer history enabling them to serve read subscriptions promptly

without having to constantly query chaincode and to restart without having to re-read all the history.

986 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Analysis and Limitations

Below is an analysis with regard to driver requirements (functional and non-functional).

Functional Requirements

The Fabric driver must satisfy the following functional requirements:

Synchronization Fabric’s ordering service establishes a total-order of transactions within a channel.

A Canton domain is based on a single channel.

Transparency The Fabric blockchain ensures that all sequencer nodes obtain the same set of mes-

sages in the same order as established by the ordering service. The sequencer nodes inform

their connected clients about their designated messages where the client is a recipient on.

Finality Fabric’s ordering service provides finality, i.e., there will be no ledger forks and validated

transactions will never be reverted.

Seek support for notifications The Fabric blockchain retains all sent messages and notifications. For

efficiency purposes, the sequencer node caches the messages to satisfy read operations for a

given offset without fetching the corresponding block.

Performance

The current performance we observe with the Fabric integration is around 15 tps of

throughput and average latency of 800ms. Those numbers are based on local perfor-

mance tests using the Daml Ledger API test tool with a simple 2 organizations with 1 peer

each and 1 orderer node topology and a 2 of 2 endorsement policy.

Some factors that positively contribute to the current performance are:

• Using Java for the SDK and Go for chaincode are good choices as opposed to some-

thing like Javascript for being compiled languages

• We added more memory (2GB) to each peer and orderer node in our setup, which

showed considerable performance improvement

• The simplicity of the setup (only 2 peers, one orderer and all local)

• Transactions are usually very small

• Chaincode implementation is very simple

• Some experimentswere conductedwith block cutting parameters such asmaxmes-

sage count (max number of transactions that can exist in a block before a new block

is cut) and batch timeout (max amount of time to wait before creating a block) in

order to find a good balance of throughput and latency for our applications. A good

tradeoff was found at 50 for maxmessage count and 200ms for batch timeout, with

an improvement for throughput at a slight increase in latency.

This paper by IBM Research, India and this article by IBM themany factors that can influ-

ence performance.

3.4. Architecture In-Depth 987

http://www.mscs.mu.edu/~mascots/Papers/blockchain.pdf
https://www.ibm.com/blogs/blockchain/2019/01/answering-your-questions-on-hyperledger-fabric-performance-and-scale/

Daml SDK Documentation, 2.1.1

Reliability

Seamless fail-over for domain entities The sequencer can be deployed in a multi-writer and

multi-reader topology (i.e. multiple sequencer nodes for the same domain) to achieve

high availability. Since all Fabric sequencer nodes run on top of the same Fabric ledger, they

will all see the same data and does not matter which sequencer is being used to write to and

read from.

Additionally the Fabric sequencer node is backed by a database that caches the data read from

the Fabric ledger such that in case of a crash it won’t have to read the whole blockchain again.

Instead it just needs to start reading the blocks fromwhere it has last processed. The app also

supports crash recovery.

The mediator is also highly available but the domain manager currently is not.

Resilience to faulty domain behavior Although Fabric supports for pluggable consensus protocols

such as crash fault-tolerant (CFT) or byzantine fault tolerant (BFT) protocols that enable the

platform to be customized to fit particular use cases and trust models, at the moment Fabric

only offers a CFT ordering service implementation based on the Raft protocol.

Backups The backup procedures of the Fabric ledger must be used. The state of the sequencer node

is just a cache and can be rehydrated from the state of the ledger.

Site-wide disaster recovery In a multi-writer, multi-reader topology, the sequencer nodes can be

hosted by different organizations and across multiple datacenters to recover from the failure

of an entire datacenter.

Resilience to erroneous behavior The Fabric sequencer node offers limited resilience against an erro-

neous participant, for instance it checks that a participant does not send messages to invalid

recipients.

Scalability

Horizontal scalability Adding more sequencers to a domain is simply a matter of creating a new or-

ganization and a new sequencer application on that organization. It will horizontally scale as

well as a Fabric ledger will, which means performance could possibly suffer from a more com-

plex Fabric topology by adding peers and orderer nodes deployed, in particular if their latency

to each other is high. But there are ways to make up for that such as using a simpler endorse-

ment policy that does not include all organizations in the setup. That’s a trade-off between

performance and trust that needs to be defined by the consortium.

Large transaction support Some Fabric platforms have a limit on the size of the block (commonly

99MB). This is therefore a hard limit that this sequencer has on the size of the transactions.

Security

Domain entity compromise recovery Without BFT support, a compromised orderer node cannot be re-

covered from automatically. Operational procedures, such as revoking the node’s certificate,

can limit further impact. Additionally, compromised peer nodes could endorse invalid trans-

actions, but it would take a number of compromised peers enough to satisfy the endorsement

policy to create incorrectly endorsed transactions on the ledger. All sequencer nodesmust pro-

vide the same stream of messages, thus a compromised and malicious sequencer node can

be detected if their stream differs.

Standards compliant cryptography The sequencer node and the other Canton domain entities use

standard modern cryptography (EC-DSA with NIST curves and Ed25519 for signatures, AES128

988 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

GCM for symmetric encryption, SHA256 for hashes) provided by Tink/BouncyCastle. Fabric

nodes can be deployed using cryptography provided by an HSM.

Authentication and authorization Authentication is implemented such that any sequencer client

needs to be registered by the topology manager before they can connect. There are also autho-

rization checks such as making sure that the declared sender is the currently authenticated

client. And based on the type of member that is authenticated there are certain operations

which may or may not be allowed.

Secure channel (TLS) The sequencer node provides an API secured with TLS. The Fabric network

should be deployed according to its operations guide with TLS.

Distributed Trust A Fabric network can be operated by multiple organizations forming a consortium

and distributing the trust among the organizations. TheMediator(s) and DomainManager can

only be operated by a single entity, so there is no distribution of trust for these nodes.

Transaction Metadata Privacy The sequencer node and the Fabric nodes (peers, orderer) learn the

metadata of the transaction, in particular the stakeholders involved in the transaction.

Manageability

Garbage collection As Fabric is based on an immutable block-chain, processed sequencermessages

cannot be removed. However there is a preview feature that allow messages to be removed by

storing them in private data collections (which can be purged).

Upgradeability Upgrades of individual domain entitieswithminimal downtimenot yet implemented.

Semantic versioning Canton is released under semantic versioning. The sequencer gRPC API is ver-

sioned with a major version number.

Domain approved protocol versions The authentication protocol validates the version compatibility

between the sequencer nodes and the connecting node.

Reuse off-the-shelf solutions The local state of the sequencer node is stored in a relational database

(Postgres).

Metrics on communication and processing Metrics are not yet fully implemented.

Component health monitoring The sequencer node contains basic health monitoring as an admin

command.

3.4.4 High Availability

This section describes how Canton can be run with high availability (HA). Support for HA is being

added to the Canton components gradually. The specifics and configuration of HA for each compo-

nent will be filled in as the implementation is completed. Furthermore, we are mostly starting with

cold andwarmstandby solutions, andwill graduallymove to hot standby and active-active solutions

to improve the mean time to recovery.

3.4.4.1 Canton High Availability: Overview and Principles

HA of Canton translates into the HA of its main components (see Canton Concepts for a description

of each of the components):

• the participant nodes, consisting of the following subcomponents:

– gRPC server, which provides the Ledger API access

– sync service, which executes the Canton protocol

– indexer, which builds a read cache

• the domains, which have the following subcomponents:

3.4. Architecture In-Depth 989

https://hyperledger-fabric.readthedocs.io/en/release-2.2/hsm.html
https://docs.daml.com/concepts/glossary.html#canton-concepts

Daml SDK Documentation, 2.1.1

– sequencer, which orders and delivers messages

– mediator, which coordinates transaction processing

– topology manager, that manages known identities on the domain

– domain service, which manages registration

The components, their subcomponents, and their data stores are illustrated in the image below,

where the arrows show the direction of the data flow, dashed lines denote the logical components,

and solid lines denote maximal process separation, i.e., the subcomponents which can be run in

separate processes.

While multiple components can be run in the same process, to achieve HA, you should run each

component in its own process. That way, the availability of one component is not affected by the

lack of availability of other ones, except for the workflows that directly involve both components.

In particular, the availability of a Canton participant A is not affected by the availability of a partici-

pant B, except for the workflows that:

1. involve both A and B and where

2. A and B don’t have the same visibility into workflow data, i.e., they manage different parties

involved in the workflow.

That is, if A and B host the same party P, then processing of transactions involving P can still con-

tinue as long as either A or B is available. However, note that an application operating on behalf of

P currently cannot transparently fail over from A to B or vice versa, due to the difference in offsets

emitted on each participant.

Furthermore, the availability of A is also not affected by the availability of the domainD, except for the

workflows that use D. This allows each participant and domain to take care of its HA separately. To

achieve HA, the components will be replicated, and all replicas of the same component are assumed

to have the same trust assumptions, i.e., the operators of one replicamust trust the operators of the

other replicas.

In general, whenever a component is backed by a database/ledger, the HA of the component cur-

rently relies on the HA of the database/ledger. The component’s operator must handle the HA of the

database separately. All database-backed Canton components are designed to be tolerant to tem-

990 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

porary database outages. During the failover period for the database, such Canton components halt

processing until the database becomes available again, and resume processing thereafter. Transac-

tions that involve these Canton componentsmay time out if the failover takes too long. Nevertheless,

they can be safely resubmitted, as command deduplication provides idempotency.

Canton components can expose a health endpoint, that can be used to check the health of the com-

ponents and its subcomponents.

In the following sections, we describe the HA approach of each component.

Important: This feature is only available in Canton Enterprise

3.4.4.2 Replicated Participant Node Architecture

High availability of a participant node is achieved with a replicated participant node in an

active-passive configuration, where the active replica is serving requests and one or more passive

replicas are in a warm stand-by mode ready to take over when the active replica fails.

High-Level System Design

A logical participant node can consist of multiple physical participant node replicas using a shared

database and each replica exposing its own ledger API. However from an application point of view,

the fact thatmultiple replicas exists can be hidden by exposing a single ledger API endpoint through

a highly available load balancer.

3.4. Architecture In-Depth 991

https://canton.io/enterprise

Daml SDK Documentation, 2.1.1

Why a Shared Database?

The replicas of a replicated participant node share the same database, which is required for two

reasons:

• Share the command ID deduplication state of the ledger API command submission service

between replicas to prevent double submission of commands in case of fail-over.

• Obtain consistent ledger offsets across the replicas, otherwise the application could not seam-

lessly fail-over to another replica. The ledger offsets are decided by the database based on the

insertion order of publishing events in themulti-domain event log, i.e., the ledger offset deriva-

tion is not deterministic.

992 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Participant Node Replica Monitoring and Fail-Over

Operating a participant node in a replicated active-passive configuration with a shared database

requires to establish the active replica, i.e., perform a leader election, and to enforce a single writer,

i.e., the active replica, to the shared database.

We are using exclusive application-level database locks tied to the lifetime of the connection to the

database to achieve leader election and a enforce single writer. Alternative existing approaches for

leader election, such as using Raft, are not suitable because in between the leader check and the use

of the shared resource, i.e., writing to the database, the leader status could have been lost and we

cannot guarantee a single writer.

Leader Election through Exclusive Lock Acquisition

A participant node replica tries to acquire an exclusive application level lock (e.g. Postgres advisory

lock) bound to a particular database connection and use that same connection for all writes that are

not idempotent. The replica that has acquired the lock is the leader and the active replica. Using the

same connection for writes ensures that the lock is held while writes are performed.

Lock ID Allocation

The exclusive application level locks are identified by a 30bit integer. The lock id is allocated based

on the scope name of the lock and a lock counter. The lock counter differentiates locks used in

Canton from each other, depending on their usage. The scope ensures the uniqueness of the lock id

for a given lock counter. For the allocation the scope and counter are hashed and truncated to 30bit

to generate a unique lock id.

On Oracle the lock scope is the schema name, i.e., the user name. On Postgres it is the name of

the database. The participant replicas must allocate the same lock ids for the same lock counter,

therefore it is crucial that the replicas are configured with the same storage configuration, e.g., for

Oracle using the same username to allocate the lock ids with the same scope.

Enforce Passive Replica

The replicas that do not hold the exclusive lock are passive and cannot write to the shared database.

To avoid any attempts to write to the database, which would fail and produce an error, we use a

coarse-grained guard on domain connectivity and API services to enforce a passive replica.

To prevent the passive replica from processing any domain events and reject incoming ledger API

requests, we keep the passive replica disconnected from the domains as a coarse-grained enforce-

ment.

3.4. Architecture In-Depth 993

https://www.postgresql.org/docs/11/explicit-locking.html#ADVISORY-LOCKS
https://www.postgresql.org/docs/11/explicit-locking.html#ADVISORY-LOCKS

Daml SDK Documentation, 2.1.1

Lock Loss and Fail-Over

If the active replica crashes or loses connection to the database, the lock will be released and a

passive replica can claim the lock and become active. Any pending writes in the formerly active

replica will fail as the underlying connection and the corresponding lock has been lost.

There is a grace period for the active replica to rebuild the connection and reclaim the lock to avoid

unnecessary fail-overs on short connection interruptions. The passive replicas continuously try to

acquire the lock with a configurable interval. Once the lock is acquired, the participant replication

manager sets the state of the replica to active and completes the fail-over.

As part of a passive replica becoming active, the replica is connected to previously connected do-

mains to resume processing of events. Further the new active replica now accepts incoming re-

quests, e.g., on the ledger API. On the other hand, the former active replica that is now passive needs

to reject any incoming requests as the replica can no longer write to the shared database.

Ledger API Client Fail-Over via Load Balancer

To hide the fact that a participant is replicated and to offer a single ledger API endpoint towards

applications, we recommend the usage of layer 4 (=TCP level), highly available load balancer.

The load balancer (LB) is configured with a pool of backend servers based on the ledger API server

addresses and ports of the participant node replicas. The participant node replicas expose their

status if they are the active or passive replica via a health endpoint. The LB periodically checks the

health API endpoint of the replicas andmarks a backend server offline if the replica is passive. Thus

the load balancer only sends requests to the active backend server. The polling frequency of the

health endpoints affect the fail-over times.

During fail-over requests may still be send to the former active replica, which will be rejected and

the application has to retry the submission of commands in that case until they are forwarded to

the new active replica.

3.4.4.3 Domain HA

A domain is fully available only when all of its subcomponents are available. However, transaction

processing can still run over the domain even if only the mediator and the sequencer are available.

The domain services handle new connections to domains, and the topology manager handles the

changes to the topology state; unavailability of these two components affects only the services they

handle. As all of these components can run in separate processes, we handle the HA of each compo-

nent separately.

Sequencer HA

The HA properties of the Sequencer depend on the chosen implementation. When the sequencer

is based on a HA ledger, such as Hyperledger Fabric, the sequencer automatically becomes HA. The

domain service can return multiple sequenced endpoints, any of which can be used to interact with

the underlying ledger.

For the database sequencer, we use an active-active setup over a shared database. The setup relies

on the database for both HA and consistency.

994 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Database Sequencer HA

The database Sequencer uses the database itself to ensure that events are sequenced with a con-

sistent order. Many Sequencer nodes can be deployed where each node has a Sequencer reader and

writer component, all of these components can concurrently read and write to the same database.

A load balancer can be used to evenly distribute requests between these nodes. The canton health

endpoint can be used to halt sending requests to a node that reports itself as unhealthy.

Sequencers nodes are statically configured with the total number of possible Sequencer nodes and

each node is assigned a distinct index from this range. This index is used to partition available event

timestamps to ensure two sequencer node will never use the same event id/timestamp.

Events are written to the events table and can be read in ascending timestamp order. To provide

a continuous monotonic stream of events, readers need to know the point at which events can be

read without the risk of an earlier event being inserted by a writer process. To do this writers regu-

larly update a watermark table where they publish their latest event timestamp. Readers take the

3.4. Architecture In-Depth 995

Daml SDK Documentation, 2.1.1

minimum timestamp from this table as the point they can safely query events for.

If a Sequencer nodewas to fail, it would stop updating its watermark value andwhen it becomes the

minimum timestamp thiswill cause all readers to effectively pause at this point (at they cannot read

beyond this point). Other Sequencerswriterswhenupdating their ownwatermarkalso check that the

other sequencer watermarks are being updated in a timely manner. If it is noticed that a Sequencer

node has not updated its watermark within a configurable interval then it will be marked as offline

and this watermark will no longer be included in the query for the minimum event timestamp. This

causes future events from the offline Sequencer to be ignored after this timestamp. For this process

to operate optimally the clocks of the hosts of the Sequencer nodes are expected to be synchronized

- this is considered reasonable for where all Sequencer hosts are co-located and NTP is used.

If the failed Sequencer has recovered and would like to resume operation, it should delete all events

past its last know watermark to avoid incorrectly re-inserting them into the events the readers will

see, as readers may have read subsequent events by this time. This is safe to do without effecting

events that have been read as any events written by the offline Sequencer after it is marked offline

are ignored by readers. It should then replace its old watermark with a new timestamp for events

it will start inserting then resume normal operation, ensuring that this is greater than any existing

value.

When a Sequencer fails and resumes operation there will be short pause in reading from other Se-

quencers due to updates to the watermark table. However requests to the other Sequencer nodes

should continue successfully, and any events written during this period will be available to read as

soon as the pause has completed. Any send requests that were being processed by the failed Se-

quencer process will likely be lost, but can be safely retried once their max-sequencing-time has

been exceeded without the risk of creating duplicate events.

Mediator HA

The approach for mediator node HA follows the same principles as outlined for participant HA in

Replicated Participant Node Architecture. Namely a mediator node is replicated and only one replica is

active. All replicas of the same mediator node share the same database, both for sharing the state

as well as to coordinate the active mediator node replica.

3.4.5 Identity Management

3.4.5.1 Identity Providing Service

Every synchronization domain requires a shared and synchronized knowledge of identities and their

associated keys among all participants and domain entities as the synchronisation protocol is built

with the principle that provided the samedata, all validatorsmust come verifiably to the same result.

The service that establishes this shared understanding in a domain is the Identity Providing Service

(IPS). From a synchronisation protocol perspective, the IPS is an abstract component and the syn-

chronisation protocol only ever interacts with the read API of the IPS. There is no assumption on how

the IPS is implemented, only the data it provides is relevant from a synchronisation perspective.

The participant nodes, the sequencer and themediator have a local component called the Identity Pro-

viding Service Client (IPS client). This component establishes the connection to the IPS of the domain

to read and validate the identity information in the domain.

996 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

The IPS client exposes a read API providing aggregated access to the domain topology information

and public keys provided by the IPS of one or more domains.

The identity providing service receives keys and certificates through some process and evaluates

the justifications, before presenting the information to the IPS clients of the participant or domain

entities. The IPS clients verify the information. The local consumers of the IPS client read API trust the

provided information without verifying the justifications, leading to a separation of synchronisation

and identity management.

Requirements

The identity providing service describes the interface between the identity management process

and the synchronisation functionality. It satisfies the high-level platform requirements on identity

provider integration and identity information updates. The following requirements are written from the

perspective of the IPS client, i.e., the synchronisation layer components.

• Mapping of Parties to Participants. I can query the state at a certain time and subscribe to a

stream of updates associating a known identifier of a party to a set of participants as well as

the local participant to a set of hosted parties. Mapping to a set of participants satisfies the

high-level requirement on parties using multiple participants.

• Participant Qualification. I can query the state at a certain time and subscribe to a stream of

updates informing me about the trust level of a participant indicating either untrusted (trust

level of 0) or trusted (trust level of 1).

• Participant Relationship Qualification. A party to participant relationship is qualified, re-

stricted to submission (including confirmation), confirmation, observation (read-only). This

also satisfies the high-level requirement on read-only participants.

• Domain aware mapping of Participants to Keys. I can query the state at a certain time and

subscribe to a stream of updates mapping participants to a set of keys per synchronization

domain.

• Domain Entity Keys. I can query the current state and subscribe to a stream of updates on the

keys of the domain entities.

• Lifetime and Purpose of Keys. I can learn for any key that I receive for what it can be used, what

cryptographic protocol it refers to and when it expires.

• Signature Checking. Given a blob, a key I obtained from the IPS and a signature, I can verify

that the signature is a valid signature for the given blob, signed with the respective key at a

certain time.

• Immutability. The history of all keys is preservedwithin the same time boundaries asmy audit

logs such that I can always audit my participant or domain entity logs.

• Evidence. For any data which I receive from the IPS I can get the set of associated evidence

such that I can prove my arguments in a legal dispute. The associated evidence contains a

descriptor which I can use to read up in the documentation on the definition of the otherwise

opaque blob.

• Race Condition Free. I can be sure that I am always certain about the validity of a key with

respect to a transaction such that there can not be a disagreement on the validity of a trans-

action due to an in-flight key change.

• Querying for Parties. I can query, using an opaque query statement, the IPS for a party and will

receive results based on a privacy policy not known to me.

• Party metadata. I can access metadata associated with a party for display purposes.

• Equivalent Trust Assumptions A federation protocol of the reference identity management

service needs to be based on equivalent trust assumptions as the interoperability protocol

such that there is no mismatch between the capabilities of the two.

3.4. Architecture In-Depth 997

Daml SDK Documentation, 2.1.1

Associated requirements that extend beyond the scope of the IPS:

• API Versioning. I can use a versioned API which supports further extensions, see our general

principles of upgradability and Software Versioning.

• GDPR compliance. The identity providing service needs to comply with regulatory require-

ments such as the GRPR right to be forgotten.

• Composability. The identity providing service needs to be composable such that I can add my

own identity providing service based on the documentation and released binary artefacts.

3.4.5.2 Identity Management Design

While the previous section introduced the IPS as an abstract concept, we describe here the concrete

implementation of our globally composable topologymanagement systemwhich incorporates iden-

tity. The design is introduced by first calling out a few basic design principles. We then introduce a

formalism for the necessary topology management transactions. Finally, we connect the formalism

to actual processes and cryptographic artefacts that describe the concrete implementation.

Design Principles

In order to understand the approach, a few key principles need to be introduced.

The synchronisation protocol is separated from the topology protocol. However, in order to leverage

the composability properties of the synchronisation protocol, an equivalent approach is required for

topology transactions. As such, given that there is no single globally trusted entity we can rely on for

synchronisation, we also can’t rely on a single globally trusted entity to establish identities, which

leads us to the first principle:

Principle 1: For global synchronization to work in reality, there can not be a single trust anchor.

A cryptographic key pair can uniquely be identified through the fingerprint of the public key. By

owning the associated private key, an entity can always prove unambigously through a signature

that the entity is the owner of the public key. We are using this principle heavily in our system to

verify andauthorize the activities of the participants. As such, we can introduce the secondprinciple:

Principle 2: A participant is someone who can authorize and whose authorizations can be verified

(someone with a known key)

In short, a participant is someone with a key or with a set of keys that are known to belong together.

However, the above definition doesn’t mean that we necessarily know who owns the key. Ownership

is an abstract aspect of the real world and is not relevant for the synchronisation itself. Real world

ownership is only relevant for the interpretation of the meaning of some shared data, but not of the

data processing itself.

Therefore, we introduce the third principle:

Principle 3: We separate certification of system identities and legal identities (or separation of

cryptographical identity and metadata)

Using keys, we can build trust chains by having a key sign a certificate certifying some ownership or

some fact to be associated with another key. However, at the root of such chains is always the root

key. The root key itself is not certified and the legal ownership can not be verified: we just need to

believe it. As an example, if we look at our local certificate store on our device, then we just believe

that a certain root is owned by a named certificate authority. And our believe is rooted in the trust

into our operating system provider that they have included only legitimate keys.

998 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

As such, any link between legal identities to cryptographic keys through certificates is based on a

believe that the entity controlling the root key is honest and ensured that everybody attached to the

trust-root has been appropriately vetted. Therefore, we can only believe that legal identities are prop-

erly associated, but verifying it in the absolute sense is very difficult, especially impossible online.

Another relevant aspect is that identity requirements are asymmetrical properties. While large cor-

porations want to be known by their name (BANK), individuals tend to be more closed and would

rather like that their identity is only revealed if really necessary (GDPR, HIPAA, confidential informa-

tion, bank secrecy). Also, by looking at a bearer bond for example, the owner has a much higher

interest in the identity of the obligor than the obligor has in the owner. If the obligor turns out to

be bad or fraud, the owner might loose all their money. In contrast, the obligor doesn’t really care

to whom they are paying back the bond, except for some regulatory reasons. Therefore, we conclude

the fourth principle

Principle 4: Identities on the ledger are an asymmetric problem, where privacy and publicity needs

to be carefully weighted on a case by case basis.

Formalism for a Global Composeable Topology System

Definitions

In order to construct a global composable topology system that incorporates identity, we will intro-

duce an topology scheme leading to globally unique identifiers. This allows us to avoid federation

which would require cooperation between identity providers or consensus among all participants

and would be difficult to integrate with the synchronisation protocol.

We will use (pxk, s
x
k) to refer to a public/private key pair of some cryptographic scheme, where the

super-script x will provide the context of the usage of the key and the sub-script k will be used to

distinguish keys.

In the following, we will use the fingerprint of a public key Ik = fingerprint(pk) in order to refer to a

key-pair (pk, sk).

Based on this, we will use Ik , resp. (pk, sk), as an identity root key pair in the following. There can be

multiple thereof and we do not make any statement on who the owner of such a key is.

Now, we introduce a globally unique identifier as a tuple (X, Ik) , where Ik refers to the previously

introduced fingerprint of an identity root key andX is in principle some abstract identifier such that

we can verify equality. As such, (X, Ik) = (Y, Il) ifX = Y and Ik = Il . The identifier is globally unique

by definition: there can not be a collision as we defined two identifiers to be equal by definition if

they collide. As such, the identity key Ik spans a namespace and guarantees that the namespace is,

by definition, collision free.

The unique identifier within the project is defined as

/** A namespace spanned by the fingerprint of a pub-key

*

* This is based on the assumption that the fingerprint is unique to the public-

↪→key

*/

final case class Namespace(fingerprint: Fingerprint) extends PrettyPrinting {

def unwrap: String = fingerprint.unwrap

def toProtoPrimitive: String = fingerprint.toProtoPrimitive

def toLengthLimitedString: String68 = fingerprint.toLengthLimitedString

(continues on next page)

3.4. Architecture In-Depth 999

Daml SDK Documentation, 2.1.1

(continued from previous page)

override def pretty: Pretty[Namespace] = prettyOfParam(_.fingerprint)

}

/** a unique identifier within a namespace

* Based on the Ledger API PartyIds/LedgerStrings being limited to 255␣

↪→characters, we allocate

* - 64 + 4 characters to the namespace/fingerprint (essentially SHA256 with␣

↪→extra bytes),

* - 2 characters as delimiters, and

* - the last 185 characters for the Identifier.

*/

final case class UniqueIdentifier(id: Identifier, namespace: Namespace) extends␣

↪→PrettyPrinting {

We will use the global unique identifier to identify participant nodesN = (N, Ik), parties P = (P, Ik)
and domain entitiesD = (D, Ik) (which means thatX is short for (X, Ik)). For parties P and partic-

ipant nodes N , we should use a sufficiently long random number for privacy reasons. For domains

D, we use readable names.

Incremental Changes

The topology state is build from incremental changes, so called topology transactions {+/−;ω}[sk]t

where + is the addition and − the subsequent removal. The incremental changes are not commu-

tative and are ordered by time. For a given operand ω we note that the only accepted sequences are

+ or +−, but that −+ or −− or ++ are not accepted. The t denotes the time when the change was

effected, i.e. when it was sequenced by the identity providing service.

The {.}[sk] denotes the list of keys that authorized the change by signing the topology transaction.

The authorization rules (which keys [sk]need to sign an topology transaction {.}) depend on the com-

mand ω. Most but not all transactions require the signatures to be nested in some form. Generally,

we note that anything that is distributed by the identity providing service needs to be signed with

its key sD and therefore ∀{.}[sk] : sD = tail [sk].

For the sake of brevity, we will omit the identity providing service signature using sD in the following

and assume that it is always added upon distribution together with the timestamp t.

1000 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Topology Transactions

We can distinguish three types of topology transactions: identity delegations,mapping updates and

domain governance updates. In the following, we will establish what these transactions mean and

what they do and what the authorization rules are.

Delegation

The general delegation transaction is represented as

{+/−; (?, Ik) ⇒ pl}sk

where the ? is a place-holder for a specific permissioning level. The delegation transaction indicates

that a certain set of operations on the namespace spanned by the root key pair Ik is delegated to the

public key pl . The delegation is not exclusive, whichmeans that there can bemultiple keys that have

to right to sign a specific transaction on the specific namespace.

There are two types of delegations:

• namespace delegations: {+/−; (∗; Ik) ⇒ pl}[s̃k] which delegates to pl the right to do all topol-

ogy transactions on that particular namespace. The signature of such a delegated key is then

considered to be equivalent to the signature of the root key: sl ' sk . If such a namespace

delegation is a root delegation, then the delegated key is as powerful as the root key. If the root

delegation flag is set to false, then the key can do everything on that namespace, except of is-

suing NamespaceDelegation. Therefore, such a delegation with the root delegation flag set to

false effectively represents an intermediate CA, whereas with true, it’s an equivalent root key.

This operation is particularly useful to support offline storage of root keys, but as we will see

later, it is also used to roll keys.

final case class NamespaceDelegation(

namespace: Namespace,

target: SigningPublicKey,

isRootDelegation: Boolean,

) extends TopologyStateUpdateMapping

with HasProtoV0[v0.NamespaceDelegation] {

• identifier delegations: {+/−; (X; Ik) ⇒ pl}[s̃k] which delegates the right to assignmappings to

a particular identifier (X, Ik). With this right, the key holder can assign a party to a participant

or run the party as a participant by assigning a key to it. This effectively represents a certificate.

final case class IdentifierDelegation(identifier: UniqueIdentifier, target:␣

↪→SigningPublicKey)

extends TopologyStateUpdateMapping

with HasProtoV0[v0.IdentifierDelegation] {

From an authorization rule perspective, these delegations can delegate permissions to other keys

and can be used to verify whether a certain key is allowed to sign an topology transaction. Therefore,

we use for now the notation s̃Ik to indicate that some operation requires a signature of the root key

sIk or by a key which was directly or indirectly authorised by the root key.

3.4. Architecture In-Depth 1001

Daml SDK Documentation, 2.1.1

Mapping Updates

The generic second type of topology transactions are mapping updates which are represented as

{+/−, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l]

The above transaction maps one item of one namespace to something of a second namespace. For

somemapping updates, the second namespace is always equal to the first namespace and we only

require a single signature. The ct provides context to the mapping update and might include usage

restrictions, depending on the type of mapping.

For transactions that require two signatures we support the composition of the add operation

through

{+, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l] = {+, (X, Ik) → (Y, Il, ct)}[s̃k] + {+, (X, Ik) → (Y, Il, ct)}[s̃l]

and the removal operation through

{−, (X, Ik) → (Y, Il, ct)}[s̃k,s̃l] = {−, (X, Ik) → (Y, Il, ct)}[s̃k]||{−, (X, Ik) → (Y, Il, ct)}[s̃l]

There are four different sub-types of valid mapping transactions:

• Domain Keys: The mapping transaction of {+, D → (pD, ct)}sD updates the keys for the do-

main entities. Valid qualifiers for ct are identity, sequencer,mediator. As every state update needs

to be signed by the domain, the domain definition corresponds to the initial seed of the identity

transaction stream {D → (pD, identity)}sD . If a participant knows the domain id of D, it can

verify that this initial seed is correctly authorized by the owner of the key governing the unique

identifier of the domain id.

• Owner to Key Mappings: The mapping transaction {+, (N, Ik) → (pl, ct)}[s̃k] updates the keys

that are associated with an owner such as a participant or a domain entity. The key purposes

can be signing and/or encryption. If more than one key is defined, all systems are supposed to

use the key that was observed first and is still active.

final case class OwnerToKeyMapping(owner: KeyOwner, key: PublicKey)

extends TopologyStateUpdateMapping

with HasProtoV0[v0.OwnerToKeyMapping] {

• Party to Participant Mappings: The mapping transaction {+, (P, Ik) → (N, Il, ct)}[s̃k,s̃l] maps

a party to a participant. The context ct would call out the permissions such as submission,

confirmation or observation.

final case class PartyToParticipant(

side: RequestSide,

party: PartyId,

participant: ParticipantId,

permission: ParticipantPermission,

) extends TopologyStateUpdateMapping

with HasProtoV0[v0.PartyToParticipant] {

1002 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Participant State Updates

The fourth type of topology transactions are participant state updates as domain governance trans-

actions {d|a|c|p,N}sD . Here, d means disabled (participant can not be involved in any transaction,

a means participant is active, c means participant can not submit transactions but only confirm, p
means participant is purged and will never be back again. Participant states are owned by the oper-

ator of the committer. It is at the committers discretion to decide whether a participant is allowed

to use the domain or not.

final case class ParticipantState(

side: RequestSide,

domain: DomainId,

participant: ParticipantId,

permission: ParticipantPermission,

trustLevel: TrustLevel,

) extends TopologyStateUpdateMapping

with HasProtoV0[v0.ParticipantState] {

require(

permission.canConfirm || trustLevel == TrustLevel.Ordinary,

"participant trust level must either be ordinary or permission must be␣

↪→confirming",

)

Some Considerations

Removal Authorizations

We note that the authorization rules for the addition are more strict than for the removal: Any re-

moval can be authorized by the domain key sD such that the domain operator can prune the topol-

ogy state if necessary, which is fine, as the accessibility of a domain is anyway dependent on the

cooperation of the domain operator.

Therefore, when talking about removal authorization, we explain the authorization check the IPS will

make if it receives a removal request from an untrusted source. Consequently, all participants will

at least be aware whether a certain topology transaction removal was authorized by the domain

topology manager or by the actual authority of that topology transaction.

Revocations

One important point to note is that all topology transactions have a local effect. This means that

a removal of a root key {−, pk} will not invalidate all transactions that have been signed before by

the key directly or indirectly. Therefore, to revoke a key as in “invalidating everything the key has

signed” requires publishing a set of topology transactions together.

3.4. Architecture In-Depth 1003

Daml SDK Documentation, 2.1.1

Domain Topology State

Looking at the given formalism, we candistinguish between the topology state and the domain topology

state. The difference between these two is that the topology state is comprised of all delegation and

mapping transactions. The domain topology state extends this definition by adding domain gover-

nance updates such as participant states. And the domain topology state overrides the authorization

rule by allowing a domain to remove any previous topology transaction.

Bootstrapping

Based on the above explanations, we observe that the authorized domain topology state is given

by all signed and properly authorized topology transaction which additionally have been ordered

and signed by the domain topology manager and distributed (and signed) by the sequencer. Con-

sequently, for a new participant connecting to a domain, in order to validate the topology state and

know that they are talking to the right sequencer, it only needs to know the unique-identifier of the

domain. Using this unique identifier, it can verify the authenticity and correctness of the topology

state, as it can verify the correct authorization of the corresponding topology transactions.

This is the bootstrapping problem of any Canton network: In order to connect to a domain, a par-

ticipant needs to know the domain id (a unique identifier) of a domain, which it needs to receive

through a trusted channel.

Default Party

Given that (N, Ik) and (P, Ik) are both unique identifiers which we use to refer to participants and

parties, we can introduce for every participant its default party. This provides amore straight forward

meaning of a party as being a virtualisation concept on top of the synchronisation structure.

Therefore, any party in the system can either self-host on a participant, or delegate the hosting to

another participant. Or do a mixture of both.

Submission vs Confirmation

Due to sub-transaction privacy, validating participants only learn the identity of the submitter if

they are stakeholders of the root transaction node. Therefore, the distinction between submission

and confirmation permissions in the party to participant mappings are only respected by the default

implementation. A malicious submitter with confirmation permissions can submit transactions in

the name of the party. Such a behaviour will be detected by any other participant hosting the party,

but these participants cannot prevent the transaction from being accepted.

1004 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Topology State Accumulation

Now, we define the topology state St at time t as provided by the identity service provider of a domain

incrementally as

St = St−1 + {., ω}sk,sk′t

=
⊕
t′<t

{., ω}[s.]t′

= [(., I) ⇒ p] + [((X, I) → Y)] + [(., N)]

Here, the first expression on the last line represents the delegations, the second corresponds to the

mapping updates and the third one to the participant state updates.

We assume that the identity providing service (which is part of the committer) is presented by some-

one with an topology transaction {.}sk . Upon a vetting operation where the operator can decide if the

proposed change is acceptable, the IPS sequences, validates, signs (using the domain key sD) and

distributes the topology state changes to all affected domain entities.

Privacy by Design

A tricky question is how to provide privacy by design, allowing participants only to learn about other

parties and participants on a need to know basis, while still ensuring that enough information is

available for the participant to progress and ensuring that the information remains immutable and

verifiable.

We do this by generally restricting what is shared with participants by default. Instead of broadcast-

ing the mappingsX → Y to all participants, we broadcast T = (H(X), tid) instead.

We include a service with the committer that allows to query the data once the left hand side has

been learnt. This means that onceX ofH(X) is known, a participant can call a service that returns

the corresponding topology transactions, which in turn can be verified to be justified.

Looking at the participant to key mappingsN → K we note that by only broadcastingH(N) instead
of N , other participants can not transact with a participant P unless they have learned P’s identity.

This is a similar property aswe seewith phone numbers. Guessing a phone number is hard. However,

once we receive a call from a phone, we know the calling number.

By restricting the data we broadcast about the party to participant mappings, we prevent two as-

pects. First, nobody can contact a party unless they have learned the party identifier before. This is

important as otherwise, any participant on the ledgermight e.g. contact all parties of another partic-

ipating bank. Second, we also protect that somebody can know how many parties e.g. a participant

manages. This prevents learning questions such as how many parties are represented by a certain

participant (how many clients does my competitor have).

3.4. Architecture In-Depth 1005

Daml SDK Documentation, 2.1.1

Cross-Domain Delegations

In our design of participants and parties, we observe that a participant is a system entity whereas

a party is meant to represent some actor in the real world. In order to commoditise the ledger as a

service, we need to provide away thatmakes a party something fluid that can bemoved around from

participant. As the participant should just be a service, itmight be acceptable to keep it pinned to an

identity domain. But a party should be able to travel but still be hold accountable for the obligations.

Permissioning a party on a second participant node that exists in the same domain is already pos-

sible in the present formalism: {(P, Ik) → (N2, Ik)}sk

A straight-forward extension to permission a party on a second participant in another identity

namespace is: {(P, Ik) → (N2, Il)}sk,sl Based on the additivity of such statements, we can also build

such a permission from two individually signed transactions.

The party delegation transaction supports delegating the permissioning of a party to a key outside

of the root key namespace: {(P, Ik) ⇒ pl}sk

Multi-Domain Transaction

The key challenge of the identity management aspect is to design it such that we can support

multi-domain synchronisation without requiring the committers cooperate.

First, we note that we avoid collision problems by using globally unique identifiers derived from

namespaces generated by root keys by design.

Second, we note that we do not need to have complete consistency of identities between the com-

mitters. All that is required is a sufficient overlap.

We first introduce a new mapping transaction denoted the transfer permission as {P → DT } on

the source domain DS . The transfer permission means that for the given party, out-transfers of

contracts to the target domainDT are allowed. However, this does not imply that the target domain

has a corresponding permission to move the contract back. It might, but there is no guarantee.

Right now, in the transfer-out protocol, the transfer-out request check reads The target domain is ac-

ceptable to all stakeholders. By introducing {P → D} we are now explicit about what an acceptable

domain is: for all stakeholder parties of the particular contract, there is an approriate transfer per-

mission on the current domain.

However, there are edge cases we need to deal with: what happens if on domain DT , the party P
doesn’t exist? Or what happens if the participants representing P on DS are completely different

than on DT ? This can happen either due to a misconfiguration or due to a race-condition of an

inflight change.

Clearly, in such a case, the transfer must fail in a predicatable manner. Therefore, we introduce two

new rules

1) transfer-our onDS will be rejected if (P → [N])t1DS
∩ (P → [N])t0DT

= ∅

2) transfer-in onDT will be rejected if (P → [N])t1DS
∩ (P → [N])t2DT

= ∅

These rules boil down to the simple verbal requirement that at least one participant representing

the affected party needs to be present on both domains while the transfer takes place from t0 to t2.

1006 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

Validation

Scenario: How to roll participant keys?

This corresponds to {+, (N, Ik) → p2}s̃k{−, (N, Ik) → p1}s̃k

Scenario: I can setup my local committer and my local participant and subsequently connect to a remote

committer.

Either locally create an identity key and get it vetted by the committer. Or get IdentifierDelegations
byanother identity key holder, load it locally into the identity store, subsequently pushing to a remote

committer.

Scenario: I can register a party on multiple participants?

{+, P → N1}{+,→ N2}

Scenario: I can introduce a new cryptographic signing scheme without loosingmy identities or I can roll a root

identity key.

Assuming that {ISk } is the original key of scheme S and we want to use scheme S′, then the following

transaction should suffice: {JS′
k }ISk . Now the new key is endorsed to act on the namespace originally

spanned by Ik . If furthermore Ik is revoked, then the new key becomes the root key. If the signature

of the old key is not trusted then the delegation needs to be “believed”.

There is a corresponding RFC for X509s for that https://tools.ietf.org/html/rfc6489

Scenario: I can migrate a party from one participant to another.

{+, (P, Ik) → (N2, Il)}Ik,Il{−, P → (N2, Ik)}Ik

3.4.5.3 Implementation

Domain Id

We assume that the domain id is shared with the connecting participant through a trusted channel.

This can be implemented as a secure out of band process or by trusting TLS server authentication

when initially requesting the domain id from the Sequencer Service.

Identity Providing Service API

The Identity Providing Service client API is defined as follows:

/** Client side API for the Identity Providing Service. This API is used to get␣

↪→information about the layout of

* the domains, such as party-participant relationships, used encryption and␣

↪→signing keys,

* package information, participant states, domain parameters, and so on.

*/

class IdentityProvidingServiceClient {

private val domains = TrieMap.empty[DomainId, DomainTopologyClient]

def add(domainClient: DomainTopologyClient): IdentityProvidingServiceClient = {

domains += (domainClient.domainId -> domainClient)

(continues on next page)

3.4. Architecture In-Depth 1007

https://tools.ietf.org/html/rfc6489

Daml SDK Documentation, 2.1.1

(continued from previous page)

this

}

def allDomains: Iterable[DomainTopologyClient] = domains.values

def tryForDomain(domain: DomainId): DomainTopologyClient =

domains.getOrElse(domain, sys.error("unknown domain " + domain.toString))

def forDomain(domain: DomainId): Option[DomainTopologyClient] = domains.

↪→get(domain)

}

trait TopologyClientApi[T] {

/** The domain this client applies to */

def domainId: DomainId

/** Our current snapshot approximation

*

* As topology transactions are future dated (to prevent sequential␣

↪→bottlenecks), we do

* have to "guess" the current state, as time is defined by the sequencer after

* we
ve sent the transaction. Therefore, this function will return the

* best snapshot approximation known.

*/

def currentSnapshotApproximation(implicit traceContext: TraceContext): T

/** Possibly future dated head snapshot

*

* As we future date topology transactions, the head snapshot is our latest␣

↪→knowledge of the topology state,

* but as it can be still future dated, we need to be careful when actually␣

↪→using it: the state might not

* yet be active, as the topology transactions are future dated. Therefore, do␣

↪→not act towards the sequencer

* using this snapshot, but use the currentSnapshotApproximation instead.

*/

def headSnapshot(implicit traceContext: TraceContext): T = checked(

trySnapshot(topologyKnownUntilTimestamp)

)

/** The approximate timestamp

*

* This is either the last observed sequencer timestamp OR the effective␣

↪→timestamp after we observed

* the time difference of (effective - sequencer = epsilon) to elapse

*/

def approximateTimestamp: CantonTimestamp

/** The most recently observed effective timestamp

*

* The effective timestamp is sequencer_time + epsilon(sequencer_time), where

* epsilon is given by the topology change delay time, defined using the␣

↪→domain parameters.

*

(continues on next page)

1008 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

* This is the highest timestamp for which we can serve snapshots

*/

def topologyKnownUntilTimestamp: CantonTimestamp

/** Returns true if the topology information at the passed timestamp is already␣

↪→known */

def snapshotAvailable(timestamp: CantonTimestamp): Boolean

/** Returns the topology information at a certain point in time

*

* Use this method if you are sure to be synchronized with the topology state␣

↪→updates.

* The method will block & wait for an update, but emit a warning if it is not␣

↪→available

*/

def snapshot(timestamp: CantonTimestamp)(implicit traceContext: TraceContext):␣

↪→Future[T]

/** Waits until a snapshot is available */

def awaitSnapshot(timestamp: CantonTimestamp)(implicit traceContext:␣

↪→TraceContext): Future[T]

/** Shutdown safe version of await snapshot */

def awaitSnapshotUS(timestamp: CantonTimestamp)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[T]

/** Returns the topology information at a certain point in time

*

* Fails with an exception if the state is not yet known.

*/

def trySnapshot(timestamp: CantonTimestamp)(implicit traceContext:␣

↪→TraceContext): T

/** Returns an optional future which will complete when the timestamp has been␣

↪→observed

*

* If the timestamp is already observed, we return None.

*

* Note that this function allows to wait for effective time (true) and␣

↪→sequenced time (false).

* If we wait for effective time, we wait until the topology snapshot for that␣

↪→given

* point in time is known. As we future date topology transactions (to avoid␣

↪→bottlenecks),

* this might be before we actually observed a sequencing timestamp.

*/

def awaitTimestamp(

timestamp: CantonTimestamp,

waitForEffectiveTime: Boolean,

)(implicit traceContext: TraceContext): Option[Future[Unit]]

def awaitTimestampUS(

timestamp: CantonTimestamp,

waitForEffectiveTime: Boolean,

)(implicit traceContext: TraceContext): Option[FutureUnlessShutdown[Unit]]

(continues on next page)

3.4. Architecture In-Depth 1009

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

/** The client that provides the topology information on a per domain basis

*/

trait DomainTopologyClient extends TopologyClientApi[TopologySnapshot] with␣

↪→AutoCloseable {

/** Subscribe to topology information updates */

def subscribe(subscriber: DomainTopologyClient.Subscriber): Unit

/** Remove observer from topology information updates */

def unsubscribe(subscriber: DomainTopologyClient.Subscriber): Unit

/** Wait for a condition to become true according to the current snapshot␣

↪→approximation

*

* @return true if the condition became true, false if it timed out

*/

def await(condition: TopologySnapshot => Future[Boolean], timeout:␣

↪→Duration)(implicit

traceContext: TraceContext

): FutureUnlessShutdown[Boolean]

}

object DomainTopologyClient {

trait Subscriber {

/** Inform the subscriber about the processed transactions */

def observed(

sequencedTimestamp: SequencedTime,

effectiveTimestamp: EffectiveTime,

sequencerCounter: SequencerCounter,

transactions: Seq[SignedTopologyTransaction[TopologyChangeOp]],

)(implicit traceContext: TraceContext): Unit

}

trait TransactionSubscriber extends Subscriber {

def observedTransaction(transaction:␣

↪→SignedTopologyTransaction[TopologyChangeOp])(implicit

traceContext: TraceContext

): Unit

final override def observed(

sequencedTimestamp: SequencedTime,

effectiveTimestamp: EffectiveTime,

sequencerCounter: SequencerCounter,

transactions: Seq[SignedTopologyTransaction[TopologyChangeOp]],

)(implicit traceContext: TraceContext): Unit =

transactions.foreach(observedTransaction)

}

(continues on next page)

1010 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

trait BaseTopologySnapshotClient {

protected implicit def executionContext: ExecutionContext

/** The official timestamp corresponding to this snapshot */

def timestamp: CantonTimestamp

/** Internally used reference time (representing when the last change happened␣

↪→that affected this snapshot) */

def referenceTime: CantonTimestamp = timestamp

}

/** The subset of the topology client providing party to participant mapping␣

↪→information */

trait PartyTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

/** Load the set of active participants for the given parties */

def activeParticipantsOfParties(

parties: Seq[LfPartyId]

): Future[Map[LfPartyId, Set[ParticipantId]]]

/** Returns the set of active participants the given party is represented by as␣

↪→of the snapshot timestamp

*

* Should never return a PartyParticipantRelationship where␣

↪→ParticipantPermission is DISABLED.

*/

def activeParticipantsOf(party: LfPartyId): Future[Map[ParticipantId,␣

↪→ParticipantAttributes]]

/** Returns Right if all parties have at least an active participant passing␣

↪→the check. Otherwise, all parties not passing are passed as Left */

def allHaveActiveParticipants(

parties: Set[LfPartyId],

check: (ParticipantPermission => Boolean) = _.isActive,

): EitherT[Future, Set[LfPartyId], Unit]

/** Returns true if there is at least one participant that can confirm */

def isHostedByAtLeastOneParticipantF(

party: LfPartyId,

check: ParticipantAttributes => Boolean,

): Future[Boolean]

/** Returns the participant permission for that particular participant (if␣

↪→there is one) */

def hostedOn(

partyId: LfPartyId,

participantId: ParticipantId,

): Future[Option[ParticipantAttributes]]

/** Returns true of all given party ids are hosted on a certain participant */

(continues on next page)

3.4. Architecture In-Depth 1011

Daml SDK Documentation, 2.1.1

(continued from previous page)

def allHostedOn(

partyIds: Set[LfPartyId],

participantId: ParticipantId,

permissionCheck: ParticipantAttributes => Boolean = _.permission.isActive,

): Future[Boolean]

/** Returns whether a participant can confirm on behalf of a party. */

def canConfirm(

participant: ParticipantId,

party: LfPartyId,

requiredTrustLevel: TrustLevel = TrustLevel.Ordinary,

): Future[Boolean]

/** Returns all active participants of all the given parties. Returns a Left if␣

↪→some of the parties don
t have active

* participants, in which case the parties with missing active participants␣

↪→are returned. Note that it will return

* an empty set as a Right when given an empty list of parties.

*/

def activeParticipantsOfAll(

parties: List[LfPartyId]

): EitherT[Future, Set[LfPartyId], Set[ParticipantId]]

/** Returns a list of all known parties on this domain */

def inspectKnownParties(

filterParty: String,

filterParticipant: String,

limit: Int,

): Future[Set[PartyId]]

}

/** The subset of the topology client, providing signing and encryption key␣

↪→information */

trait KeyTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

/** returns newest signing public key */

def signingKey(owner: KeyOwner): Future[Option[SigningPublicKey]]

/** returns all signing keys */

def signingKeys(owner: KeyOwner): Future[Seq[SigningPublicKey]]

/** returns newest encryption public key */

def encryptionKey(owner: KeyOwner): Future[Option[EncryptionPublicKey]]

/** returns all signing keys */

def encryptionKeys(owner: KeyOwner): Future[Seq[EncryptionPublicKey]]

/** Returns a list of all known parties on this domain */

def inspectKeys(

filterOwner: String,

filterOwnerType: Option[KeyOwnerCode],

limit: Int,

): Future[Map[KeyOwner, KeyCollection]]

(continues on next page)

1012 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

/** The subset of the topology client, providing participant state information */

trait ParticipantTopologySnapshotClient {

this: BaseTopologySnapshotClient =>

// used by domain to fetch all participants

// used by participant to know to which participant to send a use package␣

↪→contract (will be removed)

@Deprecated

def participants(): Future[Seq[(ParticipantId, ParticipantPermission)]]

/** Checks whether the provided participant exists and is active */

def isParticipantActive(participantId: ParticipantId): Future[Boolean]

}

/** The subset of the topology client providing mediator state information */

trait MediatorDomainStateClient {

this: BaseTopologySnapshotClient =>

/** returns the list of currently known mediators */

def mediators(): Future[Seq[MediatorId]]

def isMediatorActive(mediatorId: MediatorId): Future[Boolean] =

mediators().map(_.contains(mediatorId))

}

trait CertificateSnapshotClient {

this: BaseTopologySnapshotClient =>

def hasParticipantCertificate(participantId: ParticipantId)(implicit

traceContext: TraceContext

): Future[Boolean] =

findParticipantCertificate(participantId).map(_.isDefined)

def findParticipantCertificate(participantId: ParticipantId)(implicit

traceContext: TraceContext

): Future[Option[X509Cert]]

}

trait VettedPackagesSnapshotClient {

this: BaseTopologySnapshotClient =>

/** Returns the set of packages that are not vetted by the given participant

*

* @param participantId the participant for which we want to check the package␣

↪→vettings

* @param packages the set of packages that should be vetted

* @return Right the set of unvetted packages (which is empty if all packages␣

↪→are vetted)

(continues on next page)

3.4. Architecture In-Depth 1013

Daml SDK Documentation, 2.1.1

(continued from previous page)

* Left if a package is missing locally such that we can not verify␣

↪→the vetting state of the package dependencies

*/

def findUnvettedPackagesOrDependencies(

participantId: ParticipantId,

packages: Set[PackageId],

): EitherT[Future, PackageId, Set[PackageId]]

}

trait DomainGovernanceSnapshotClient {

this: BaseTopologySnapshotClient =>

def findDynamicDomainParametersOrDefault(warnOnUsingDefault: Boolean =␣

↪→true)(implicit

traceContext: TraceContext

): Future[DynamicDomainParameters]

/** List all the dynamic domain parameters (past and current) */

def listDynamicDomainParametersChanges()(implicit

traceContext: TraceContext

): Future[Seq[DynamicDomainParameters.WithValidity]]

}

trait TopologySnapshot

extends PartyTopologySnapshotClient

with BaseTopologySnapshotClient

with ParticipantTopologySnapshotClient

with KeyTopologySnapshotClient

with CertificateSnapshotClient

with VettedPackagesSnapshotClient

with MediatorDomainStateClient

with DomainGovernanceSnapshotClient {}

Based on this API, the following Sync Crypto API can be built, which allows to decouple the crypto

operations used in the synchronisation protocol from the crypto protocol and identity management

implementation.

Sync Crypto Api

Within Canton, the entire identity, key and signing management is abstracted and hidden from the

synchronisation protocol behind the SyncCryptoApi.

/** impure part of the crypto api with access to private key store and knowledge␣

↪→about the current entity to key assoc */

trait SyncCryptoApi {

def pureCrypto: CryptoPureApi

/** Signs the given hash using the private signing key. */

def sign(hash: Hash)(implicit

traceContext: TraceContext

): EitherT[Future, SyncCryptoError, Signature]

(continues on next page)

1014 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

/** Decrypts a message using the private encryption key */

def decrypt[M](encryptedMessage: Encrypted[M])(

deserialize: ByteString => Either[DeserializationError, M]

): EitherT[Future, SyncCryptoError, M]

/** Verify signature of a given owner

*

* Convenience method to lookup a key of a given owner, domain and timestamp␣

↪→and verify the result.

*/

def verifySignature(

hash: Hash,

signer: KeyOwner,

signature: Signature,

): EitherT[Future, SignatureCheckError, Unit]

/** Encrypts a message for the given key owner

*

* Utility method to lookup a key on an IPS snapshot and then encrypt the␣

↪→given message with the

* most suitable key for the respective key owner.

*/

def encryptFor[M <: HasVersionedToByteString](

message: M,

owner: KeyOwner,

version: ProtocolVersion,

): EitherT[Future, SyncCryptoError, Encrypted[M]]

}

This class contains the appropriate methods in order to sign, verify signatures, encrypt or decrypt on

a per member basis. Which key and which cryptographic method is used is hidden entirely behind

this API.

The API is obtained on a per domain and timestamp basis. The SyncCryptoApiProvider combines the

information about the owner of the node, the connected domain, the cryptographic module in use

and the topology state for a particular time andprovides a factorymethod to obtain the SyncCryptoApi

for a particular domain and time combination.

High-Level Picture

The following drawing provides a high-level overview of the identity management architecture and

flows.

3.4. Architecture In-Depth 1015

Daml SDK Documentation, 2.1.1

Transaction Flow

The following chart lays out all components of the Canton identity management system. Some of

the components are shared between participant node and domain node, while some have slightly

different functionality. The arrow indicates data flow.

In the following, we describe how a topology command invoked on the participant node propagates

through the system. Ultimately, the component fully describing the topology state is the topology

providing service client (TPSC). Therefore, we can track the propagation from the command until it

reaches the IPSC.

• CLI/GRPC Topology Management Request - The topology management system is accessible

through the topology_manager_write_service, the topology_manager_read_service and the topol-

1016 Chapter 3. Canton Guide

Daml SDK Documentation, 2.1.1

ogy_aggregation_service, which are GRPC based services. The Canton shell exposes all these

services directly through appropriate commands.

• Topology ManagerWrite Service - In order to effect changes to the topology state, an adminis-

trator needs to create a new topology transaction and authorize is by signing it with an eligible

key. These authorization commands are externally accessible using thewrite service, exposing

the GRPC API.

• Participant Topology Manager - Every participant has a local topology manager. The partici-

pant can populate the store by either importing authorized transactions or create new autho-

rized transactions himself. The topology manager checks every locally added transaction for

consistency and correctness.

• Participant Topology Dispatcher - The dispatcher monitors the topology state managed by

the local topology manager and tries to push the local authorized topology state to any con-

nected domain. As an example, if a party is added locally, the dispatcher tries to propagate the

corresponding topology transaction to any connected domain.

• Sequencer Connect Service - Every sequencer exposes a public service, called sequencer con-

nect service, for handshake and administrative purposes. Here, participants obtain the appli-

cable domain rules, the protocol version and the domain id.

• Domain Topology Manager Request Service - Any topology transaction upload from the do-

main service is processed through the request service. The request service is configured with

a request strategy. The request strategy inspects the topology transaction and decides how

to deal with an topology transaction. Right now, three strategies have been implemented:

auto-approve for un-permissioned domains, queue for permissioned domains (where trans-

actions are just stored for later decision in the Request Store) and reject for closed domains.

• Domain Topology Manager - Similar to the participant node topology manager, except the

added functionality required for a domain, allowing to set participant states. Changes to the

domain topologymanager either come from the local administrator through the topologyman-

ager write service or through accepted topology transactions from the request service. The

sequencer listens to the domain topology manager and sets up new member queues if a new

participant is added to the system.

• Domain Topology Dispatcher - The domain topology dispatcher monitors the local authorized

domain topology state. Upon a change, the dispatcher computes who needs to be informed

of the given topology transaction (i.e. all active participant nodes). Or, if a new participant

has been added, the dispatcher ensures that the first transactions a new participant will ob-

serve when connecting to the sequencer are the topology transactions. This prevents any

race-condition or inconsistent topology state.

• Message Forwarder - The topology state requires that the topology transactions are applied

in the previously established order. The message forwarder therefore ensures the absolute

guaranteed in order delivery of all topology transactions, in particular in the case of tempo-

rary delivery to sequencer failure. The message forwarder sends the topology transactions as

instructed by the dispatcher via the sequencer to all participant nodes and domain entities.

• Identity Providing Service Client - The implementation of the IPSC listens to the stream of

sequenced messages and receives the identity updates. The client inspects the message, val-

idates the signatures and appends the topology transaction to the topology state.

• Topology Aggregation Service - Inspect via GRPC the aggregated topology state as exposed by

the IPSC internally.

Not direct part of the transaction flow, but essential components for topology management are the

following components:

• Authorized/Request/Domain Topology Store - There are several stores for topology transac-

tions. The authorized store is the set of topology transactions that have been added to the local

topology manager. The domain identity store is the store of topology transactions that have

3.4. Architecture In-Depth 1017

Daml SDK Documentation, 2.1.1

been timestamped by the sequencer. The authorized store of a domain and the domain iden-

tity store will contain the same content, except that the authorized store can hold data which

has not yet been timestamped by the sequencer. The content of the domain identity stores on

the participant (one per connected domain) is exactly the same among all participants on a

domain. These stores are used by the synchronisation protocol.

• Topology Manager Read Service - The topology manager read services just serves inspection

purposes in order to look deeply into the topology state. The read services plugs directly onto

a topology store and expose the content via GRPC.

3.4.6 Research Publications

Daml, Canton, and their underlying theory are described in the following research publications:

• Daml: A Smart Contract Language for Securely Automating Real-World Multi-Party Business

Workflows describes the theory underlyingDaml’s language primitives for smart contracts and

how Daml is compiled.

Alexander Bernauer, Sofia Faro, Rémy Hämmerle, Martin Huschenbett, Moritz Kiefer, Andreas

Lochbihler, Jussi Mäki, Francesco Mazzoli, Simon Meier, Neil Mitchell, Ratko G. Veprek. Daml:

A Smart Contract Language for Securely Automating Real-World Multi-Party Business Workflows. In:

arXiv:2303.03749, 2023.

Abstract: Distributed ledger technologies, also known as blockchains for enterprises, promise

to significantly reduce the high cost of automating multi-party business workflows. We argue

that a programming language for writing such on-ledger logic should satisfy three desiderata:

1. Provide concepts to capture the legal rules that govern real-world business workflows.

2. Include simple means for specifying policies for access and authorization.

3. Support the composition of simple workflows into complex ones, even when the simple

workflows have already been deployed.

We present the open-source smart contract language Daml based on Haskell with strict evalu-

ation. Daml achieves these desiderata by offering novel primitives for representing, accessing,

andmodifying data on the ledger, which aremimicking the primitives of today’s legal systems.

Robust access and authorization policies are specified as part of these primitives, and Daml’s

built-in authorization rules enable delegation, which is key for workflow composability. These

properties make Daml well-suited for orchestrating business workflows across multiple, oth-

erwise heterogeneous parties.

Daml contracts run (1) on centralized ledgers backed by a database, (2) on distributed deploy-

ments with Byzantine fault tolerant consensus, and (3) on top of conventional blockchains, as

a second layer via an atomic commit protocol.

• A Structured Semantic Domain for Smart Contracts describes how Canton relates to Daml and

the ledger model.

Extended abstract presented at Computer Security Foundations 2019.

• Authenticated Data Structures As Functors in Isabelle/HOL formalizes Canton’s Merkle tree

data structures in the theorem prover Isabelle/HOL.

– Andreas Lochbihler and Ognjen Maric. Authenticated Data Structures As Functors in Is-

abelle/HOL. In: Bruno Bernardo and Diego Marmsoler (eds.) Formal Methods for Blockchain

2020. OASIcs vol. 84, 6:1-6:15, 2020.

– DOI

– Preprint PDF

– Pre-reecorded talk

– Live presentation (1:48 to 12:50)

A longer versionwas presented at the IsabelleWorkshop 2020 (recording). The Isabelle theories

are available in the Archive of Formal Proofs.

1018 Chapter 3. Canton Guide

https://arxiv.org/abs/2303.03749
https://arxiv.org/abs/2303.03749
https://arxiv.org/abs/2303.03749
https://www.canton.io/publications/csf2019-abstract.pdf
https://www.daml.com
https://docs.daml.com/concepts/ledger-model/index.html
https://web.stevens.edu/csf2019/index.html
https://www.canton.io/publications/fmbc2020.pdf
https://fmbc.gitlab.io/2020/
https://doi.org/10.4230/OASIcs.FMBC.2020.6
https://www.canton.io/publications/fmbc2020.pdf
https://www.youtube.com/watch?v=A9Q4G_pCSj4
https://www.youtube.com/watch?v=mTM5D6MeBRw
https://www.canton.io/publications/iw2020.pdf
https://sketis.net/isabelle/isabelle-workshop-2020
https://www.youtube.com/watch?v=GvSnSL8eSEw
https://www.isa-afp.org/entries/ADS_Functor.html

Daml SDK Documentation, 2.1.1

Abstract: Merkle trees are ubiquitous in blockchains and other distributed ledger technologies

(DLTs). They guarantee that the involved systems are referring to the same binary tree, even if

each of them knows only the cryptographic hash of the root. Inclusion proofs allow knowl-

edgeable systems to share subtrees with other systems and the latter can verify the subtrees’

authenticity. Often, blockchains and DLTs use data structures more complicated than binary

trees; authenticated data structures generalize Merkle trees to such structures.

We show how to formally define and reason about authenticated data structures, their inclu-

sion proofs, and operations thereon as datatypes in Isabelle/HOL. The construction lives in the

symbolic model, i.e., we assume that no hash collisions occur. Our approach is modular and

allows us to construct complicated trees from reusable building blocks, which we call Merkle

functors. Merkle functors include sums, products, and function spaces and are closed under

composition and least fixpoints. As a practical application, wemodel the hierarchical transac-

tions of Canton, a practical interoperability protocol for distributed ledgers, as authenticated

data structures. This is a first step towards formalizing the Canton protocol and verifying its

integrity and security guarantees.

• A semantic domain for privacy-aware smart contracts and interoperable sharded ledgers

Lightning talk presented at Certified Proofs and Programs 2021.

Abstract:

Daml is a Haskell-based smart contract programming language used to coordinate business

workflows across trust boundaries. Daml’s semantics are defined over an abstract ledger,

which provides a clear semantics for Daml’s authorization rules, double-spending protection,

and privacy guarantees. In its simplest form, a ledger is represented as a list of commits, i.e.,

hierarchical transactions and their authorizers. This representation allows for easy reason-

ing about Daml smart contracts because the total order hides the intricacies of a distributed,

Byzantine-fault tolerant system. It is also adequate for Daml running on a single blockchain,

as it defines a total order on all transactions.

Yet, for distributed ledgers to fully eliminate data silos, smart contracts must not be tied to a

single blockchain, which would then just become another silo. Daml therefore runs on differ-

ent blockchains such as Hyperledger Fabric, Ethereum, and FISCO-BCOS aswell as off-the-shelf

databases. The underlying protocol Canton supports atomic transactions across all these

Daml ledgers. This makes Daml ledgers sharded for higher throughput as well as interoper-

able to avoid data silos.

Semantically, Canton creates a virtual shared ledger by merging the individual ledgers’ lists

of commits. The virtual shared ledger is not totally ordered, to account for the fact that there

is no global notion of time across ledgers. Still, transactions can use only contracts that have

been created within earlier transactions. This ensures that causality is respected even though

individual system users cannot see all dependencies due to the privacy rules. Canton tracks

privacy-aware causality using vector clocks.

To ensure that Daml and Canton achieve their claimed properties, we have started to formalize

the Daml ledgermodel and prove its properties in Isabelle/HOL. The twomain verification goals

are as follows:

1. Canton’s vector clock tracking correctly implements causality.

2. The synchronization due to vector clocks cannot cause deadlocks.

The challenge here is that these guarantees should hold for honest nodes in the system even

if other systems fail or behave Byzantine.

In the lightning talk, we give an idea of the ledger model, privacy-aware causality, and the cur-

rent state of the verification.

3.4. Architecture In-Depth 1019

https://www.canton.io/publications/cpp2021-slides.pdf
https://popl21.sigplan.org/details/CPP-2021-certified-programs-and-proofs-lightning-talks/6/A-semantic-domain-for-privacy-aware-smart-contracts-and-interoperable-sharded-ledgers
https://popl21.sigplan.org/home/CPP-2021

Chapter 4

Help

4.1 Troubleshooting

4.1.1 Error: “<X> is not authorized to commit an update”

This error occurs when there are multiple obligables on a contract.

A cornerstone of Daml is that you cannot create a contract thatwill force someother party (or parties)

into an obligation. This error means that a party is trying to do something that would force another

parties into an agreement without their consent.

To solve this, make sure each party is entering into the contract freely by exercising a choice. A good

way of ensuring this is the “initial and accept” pattern: see the Daml patterns for more details.

4.1.2 Error “Argument is not of serializable type”

This error occurs when you’re using a function as a parameter to a template. For example, here is a

contract that creates a Payout controller by a receiver’s supervisor:

template SupervisedPayout

with

supervisor : Party -> Party

receiver : Party

giver : Party

amount : Decimal

where

signatory giver

observer (supervisor receiver)

choice SupervisedPayout_Call

: ContractId Payout

controller supervisor receiver

do create Payout with giver; receiver; amount

Hovering over the compilation error displays:

[Type checker] Argument expands to non-serializable type Party -> Party.

1020

Daml SDK Documentation, 2.1.1

4.1.3 Modeling questions

4.1.3.1 How to model an agreement with another party

To enter into an agreement, create a contract from a template that has explicit signatory and

agreement statements.

You’ll need to use a series of contracts that give each party the chance to consent, via a contract

choice.

Because of the rules that Daml enforces, it is not possible for a single party to create an instance

of a multi-party agreement. This is because such a creation would force the other parties into that

agreement, without giving them a choice to enter it or not.

4.1.3.2 How to model rights

Use a contract choice to model a right. A party exercises that right by exercising the choice.

4.1.3.3 How to void a contract

To allow voiding a contract, provide a choice that does not create any new contracts. Daml contracts

are archived (but not deleted)when a consuming choice ismade - so exercising the choice effectively

voids the contract.

However, you should bear inmind who is allowed to void a contract, especially without the re-sought

consent of the other signatories.

4.1.3.4 How to represent off-ledger parties

You’d need to do this if you can’t set up all parties as ledger participants, because the Daml Party

type gets associated with a cryptographic key and can so only be used with parties that have been

set up accordingly.

To model off-ledger parties in Daml, they must be represented on-ledger by a participant who can

sign on their behalf. You could represent them with an ordinary Text argument.

This isn’t very private, so you could use a numeric ID/an accountId to identify the off-ledger client.

4.1.3.5 How to limit a choice by time

Some rights have a time limit: either a time by which it must be exercised or a time before which it

cannot be exercised.

You can use getTime to get the current time, and compare your desired time to it. Use assert to

abort the choice if your time condition is not met.

4.1. Troubleshooting 1021

Daml SDK Documentation, 2.1.1

4.1.3.6 How to model a mandatory action

If you want to ensure that a party takes some action within a given time period. Might want to incur

a penalty if they don’t - because that would breach the contract.

For example: an Invoice that must be paid by a certain date, with a penalty (could be something like

an added interest charge or a penalty fee). To do this, you could have a time-limited Penalty choice

that can only be exercised after the time period has expired.

However, note that the penalty action can only ever create another contract on the ledger, which

represents an agreement between all parties that the initial contract has been breached. Ultimately,

the recourse for any breach is legal action of some kind. What Daml provides is provable violation

of the agreement.

4.1.3.7 When to use Optional

The Optional type, from the standard library, to indicate that a value is optional, i.e, that in some

cases it may be missing.

In functional languages, Optional is a better way of indicating amissing value than using themore

familiar value “NULL”, present in imperative languages like Java.

To use Optional, include Optional.daml from the standard library:

import DA.Optional

Then, you can create Optional values like this:

Some "Some text" -- Optional value exists.

None -- Optional value does not exist.

You can test for existence in various ways:

-- isSome returns True if there is a value.

if isSome m

then "Yes"

else "No"

-- The inverse is isNone.

if isNone m

then "No"

else "Yes"

If you need to extract the value, use the optional function.

It returns a value of a defined type, and takes a Optional value and a function that can transform

the value contained in a Some value of the Optional to that type. If it is missing optional also

takes a value of the return type (the default value), which will be returned if the Optional value is

None

let f = \ (i : Int) -> "The number is " <> (show i)

let t = optional "No number" f someValue

1022 Chapter 4. Help

Daml SDK Documentation, 2.1.1

If optionalValue is Some 5, the value of t would be "The number is 5". If it was None, t

would be "No number". Note that with optional, it is possible to return a different type from that

contained in the Optional value. This makes the Optional type very flexible.

There are many other functions in “Optional.daml” that let you perform familiar functional opera-

tions onstructures that containOptional values – suchasmap,filter, etc. onListsofOptional

values.

4.1.4 Testing questions

4.1.4.1 How to test that a contract is visible to a party

Use queryContractId: its first argument is a party, and the second is a ContractId. If the con-

tract corresponding to that ContractId exists and is visible to the party, the result will be wrapped

in Some, otherwise the result will be None.

Use a submit block and a fetch operation. The submit block tests that the contract (as a Con-

tractId) is visible to that party, and the fetch tests that it is valid, i.e., that the contract does exist.

For example, if we wanted to test for the existence and visibility of an Invoice, visible to ‘Alice’,

whose ContractId is bound to invoiceCid, we could say:

Some result <- alice CqueryContractIdC invoiceCid

Note that we pattern match on the Some constructor. If the contract doesn’t exist or is not visible to

‘Alice’, the test will fail with a pattern match error.

Now that the contract is bound to a variable, we can check whether it has some expected values:

result === Invoice with

payee = alice

payer = acme

amount = 130.0

service = "A job well done"

timeLimit = datetime 1970 Feb 20 0 0 0

4.1.4.2 How to test that an update action cannot be committed

Use the submitMustFail function. This is similar in form to the submit function, but is an asser-

tion that an update will fail if attempted by some Party.

4.2 Getting Help

Have questions or feedback? You’re in the right place.

• Questions: Forum

For “how do I?”, “why does something work this way” or “I’ve got a programming problem I’m

trying to solve” questions, the Questions category on our forum is the best place to ask.

If you’re not sure what makes a good question, take a look at our guide on the topic.

• Feedback: Forum

If you want to give feedback, you can make a topic in the General category on our forum.

4.2. Getting Help 1023

https://discuss.daml.com
https://discuss.daml.com/t/how-to-ask-questions/304
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

When you’re in the community Forum or on Stack Overflow, please keep to our Code of Conduct.

4.2.1 Support expectations

For Daml Open Source users:

• Timing: You can enjoy the support of the community, which is provided for you out of their own

good will and free time. On top of that, a Digital Asset employee will try to reply to unanswered

questions within two business days.

Business days are affected by public holidays. Engineers contributing to Daml are mostly lo-

cated in Zurich and New York, so please be mindful of the public holidays in those locations

(timeanddate.commaintains an unofficial list of holidays for both Switzerland and the United

States).

• Public support: We offer public support in the Questions category on our forum.

We can’t answer questions in private messages or over email, so please only ask questions in

public forums.

• Level of support: We’re happy to answer questions about error messages you’re encountering,

or discuss Daml design questions. However, we can’t provide more extensive consultation on

how to build your Daml application or the languages, frameworks, libraries and tools you may

use to build it.

If you need private support, or want consultation from Digital Asset about how to build your Daml

application, they offer paid support. Please contact Digital Asset to ask about pricing.

4.3 Portability, Compatibility, and Support Durations

The Daml Ecosystem offers a number of forward and backward compatibility guarantees aiming to

give the Ecosystem as a whole the following properties. See Architecture for the terms used here and

how they fit together.

Application Portability

A Daml application should not depend on the underlying Database or DLT used by a Daml

network.

Network Upgradeability

Ledger Operators should be able to upgrade Daml network or Participant Nodes seam-

lessly to stay up to date with the latest features and fixes. A Daml application should be

able to operate without significant change across such Network Upgrades.

Daml Upgradeability

Application Developers should be able to update their developer tools seamlessly to stay

up to date with the latest features and fixes, and stay able to maintain and develop their

existing applications.

1024 Chapter 4. Help

https://github.com/digital-asset/daml/blob/main/CODE_OF_CONDUCT.md
https://www.timeanddate.com
https://www.timeanddate.com/holidays/switzerland/
https://www.timeanddate.com/holidays/us/
https://www.timeanddate.com/holidays/us/
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

4.3.1 Ledger API Compatibility: Application Portability

Application Portability and to some extent Network Upgradeability are achieved by intermediating

through the Ledger API. As per Versioning, and Architecture, the Ledger API is independently semanti-

cally versioned, and the compatibility guarantees derived from that semantic versioning extend to

the entire semantics of the API, including the behavior of Daml Packages on the Ledger. Since all in-

teractionwith aDaml Ledger happens through theDaml Ledger API, a Daml Application is guaranteed

to work as long as the Participant Node exposes a compatible Ledger API version.

Specifically, if a Daml Application is built against Ledger API version X.Y.Z and a Participant Node

exposes Ledger API version X.Y2.Z2, the application is guaranteed to work as long as Y2.Z2 >= Y.Z.

Participant Nodes advertise the Ledger API version they support via the version service.

As a concrete example, Daml for Postgres 1.4.0 has the Participant Node integrated, and exposes

Ledger API version 1.4.0 and the Daml for VMware Blockchain 1.0 Participant Nodes expose Ledger API

version 1.6.0. So any application that runs on Daml for Postgres 1.4.0 will also run on Daml for VMware

Blockchain 1.0.

4.3.1.1 List of Ledger API Versions supported by Daml

The below lists with which Daml version a new Ledger API version was introduced.

Ledger API Version Daml Version

2.0 2.0

1.12 1.15

1.11 1.14

1.10 1.11

1.9 1.10

1.8 1.9

<= 1.7 Introduced with the same Daml SDK version

4.3. Portability, Compatibility, and Support Durations 1025

Daml SDK Documentation, 2.1.1

4.3.1.2 Summary of Ledger API Changes

Ledger API Version Changes

2.0

Introduce User Management Service

Introduce Metering Report Service

Remove Reset Service

Deprecate Ledger Identity Service

Make ledger_id and application_id fields

optional

Change error codes returned by the gRPC

services

1.12 Introduce Daml-LF 1.14

1.11 Introduce Daml-LF 1.13

1.10 Introduce Daml-LF 1.12

Stabilize participant pruning

1.9 Introduce Daml-LF 1.11

1.8 Introduce Multi-Party Submissions

<= 1.7 See Daml (SDK) release notes of same version

number.

4.3.2 Driver and Participant Compatibility: Network Upgradeability

Given the Ledger API Compatibility above, network upgrades are seamless if they preserve data, and

Participant Nodes keep exposing the same or a newer minor version of the same major Ledger API

Version. The semantic versioning of Daml drivers and participant nodes gives this guarantee. Up-

grades from one minor version to another are data preserving, and major Ledger API versions may

only be removed with a new major version of integration components, Daml drivers and Participant

Nodes.

As an example, from an application standpoint, the only effect of upgrading Daml for Postgres 1.4.0

to Daml for Postgres 1.6.0 is an uptick in the Ledger API version. There may be significant changes to

components or database schemas, but these are not public APIs.

4.3.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability

As long as amajor Ledger API version is supported (see Ledger API Support Duration), there will be sup-

ported version of Daml able to target all minor versions of that major version. This has the obvious

caveat that new features may not be available with old Ledger API versions.

For example, an application built and compiledwithDaml SDK 1.4.0 against Ledger API 1.4.0, it can still

be compiled using SDK 1.6.0 and can be run against Ledger API 1.4.0 using 1.6.0 libraries and runtime

components.

1026 Chapter 4. Help

https://daml.com/release-notes

Daml SDK Documentation, 2.1.1

4.3.4 Ledger API Support Duration

Major Ledger API versions behave like stable features in Status Definitions. They are supported from

the time they are first released as “stable” to the point where they are removed from Integration

Components and Daml following a 12 month deprecation cycle. The earliest point a major Ledger

API version can be deprecated is with the release of the next major version. The earliest it can be

removed is 12 months later with a major version release of the Integration Components.

Other than for hotfix releases, new releases of the IntegrationComponentswill only support the latest

minor/patch version of each major Ledger API version.

As a result we can make this overall statement:

An application built using Daml SDK U.V.W against Ledger API X.Y.Z can be maintained using

any Daml SDK version U2.V2.W2 >= U.V.W as long as Ledger API major version X is still supported

at the time of release of U2.V2.W2, and run against any Daml Network with Participant Nodes

exposing Ledger API X.Y2.Z2 >= X.Y.Z.

4.3. Portability, Compatibility, and Support Durations 1027

Chapter 5

Reference

5.1 Glossary of concepts

5.1.1 Key Concepts

5.1.1.1 Daml

Daml is a platform for building and running sophisticated, multi-party applications. At its core, it

contains a smart contract language and tooling that defines the schema, semantics, and execution

of transactions between parties. Daml includes Canton, a privacy-enabled distributed ledger that is

enhanced when deployed with complementary blockchains.

5.1.1.2 Daml Language

The Daml language is a purpose-built language for rapid development of composable multi-party

applications. It is amodern, ergonomically designed functional language that carefully avoidsmany

of the pitfalls that hinder multi-party application development in other languages.

1028

Daml SDK Documentation, 2.1.1

5.1.1.3 Daml Ledger

ADaml ledger is a distributed ledger system runningDaml smart contracts according to theDaml ledger

model and exposes the Daml Ledger APIs. All current implementations of Daml ledgers consists of a

Daml driver that utilises and underlying Synchronization Technology to either implement the Daml

ledger directly, or run the Canton protocol.

Canton Ledger

A Canton ledger is a privacy-enabled Daml ledger implemented using the Canton application, nodes,

and protocol.

5.1.1.4 Canton Protocol

The Canton protocol is the technologywhich synchronizes participant nodes across any Daml-enabled

blockchain or database. The Canton protocol not only makes Daml applications portable between

different underlying synchronization technologies, but also allows applications to transact with each

other across them.

5.1.1.5 Synchronization Technology

The syncronization technology is the database or blockchain that Daml uses for synchronization,

messaging and topology. Daml runs on a range of synchronization technologies, from centralized

databases to fully distributed deployments, and users can employ the technology that best suits

their technical and operational needs.

5.1.1.6 Daml Drivers

Daml drivers enable a ledger to be implemented on top of different synchronization technologies; a

database or distributed ledger technology.

5.1.2 Daml Language Concepts

5.1.2.1 Contract

A contract is an item on a ledger. They are created from blueprints called templates, and include:

• data (parameters)

• roles (signatory, observer)

• choices (and controllers)

Contracts are immutable: once they are created on the ledger, the information in the contract cannot

be changed. The only thing that can happen to it is that the contract can be archived.

5.1. Glossary of concepts 1029

Daml SDK Documentation, 2.1.1

Active contract, archived contract

When a contract is created on a ledger, it becomes active. But that doesn’t mean it will stay active

forever: it can be archived. This can happen:

• if the signatories of the contract decide to archive it

• if a consuming choice is exercised on the contract

Once the contract is archived, it is no longer valid, and choices on the contract can no longer be

exercised.

5.1.2.2 Template

A template is a blueprint for creating a contract. This is the Daml code you write.

For full documentation on what can be in a template, see Reference: templates.

5.1.2.3 Choice

A choice is something that a party can exercise on a contract. You write code in the choice body that

specifies what happens when the choice is exercised: for example, it could create a new contract.

Choices give you a way to transform the data in a contract: while the contract itself is immutable,

you can write a choice that archives the contract and creates a new version of it with updated data.

A choice can only be exercised by its controller. Within the choice body, you have the authorization of

all of the contract’s signatories.

For full documentation on choices, see Reference: choices.

Consuming choice

A consuming choicemeans that, when the choices is exercised, the contract it is on will be archived.

The alternative is a nonconsuming choice.

Consuming choices can be preconsuming or postconsuming.

Preconsuming choice

A choice marked preconsuming will be archived at the start of that exercise.

Postconsuming choice

A choice marked postconsuming will not be archived until the end of the exercise choice body.

1030 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Nonconsuming choice

A nonconsuming choice does NOT archive the contract it is on when exercised. This means the choice

can be exercised more than once on the same contract.

Disjunction choice, flexible controllers

A disjunction choice has more than one controller.

If a contract uses flexible controllers, this means you don’t specify the controller of the choice at

creation time of the contract, but at exercise time.

5.1.2.4 Party

A party represents a person or legal entity. Parties can create contracts and exercise choices.

Signatories, observers, controllers, and maintainers all must be parties, represented by the Party data type in Daml and determine who may see

contract data.

Parties are hosted on participant nodes and a participant node can hostmore than one party. A party

can be hosted on several participant nodes simultaneously.

Signatory

A signatory is a party on a contract. The signatories MUST consent to the creation of the contract by

authorizing it: if they don’t, contract creation will fail. Once the contract is created, signatories can

see the contracts and all exercises of that contract.

For documentation on signatories, see Reference: templates.

Observer

An observer is a party on a contract. Being an observer allows them to see that instance and all the

information about it. They do NOT have to consent to the creation.

For documentation on observers, see Reference: templates.

Controller

A controller is a party that is able to exercise a particular choice on a particular contract.

Controllers must be at least an observer, otherwise they can’t see the contract to exercise it on. But

they don’t have to be a signatory. this enables the propose-accept pattern.

5.1. Glossary of concepts 1031

Daml SDK Documentation, 2.1.1

Choice Observer

A choice observer is a party on a choice. Choice observers are guaranteed to see the choice being

exercised and all its consequences with it.

Stakeholder

Stakeholder is not a term used within the Daml language, but the concept refers to the signatories

and observers collectively. That is, it means all of the parties that are interested in a contract.

Maintainer

Themaintainer is a party that is part of a contract key. Theymust always be a signatory on the contract

that they maintain the key for.

It’s not possible for keys to be globally unique, because there is no party that will necessarily know

about every contract. However, by including a party as part of the key, this ensures that the main-

tainerwill know about all of the contracts, and so can guarantee the uniqueness of the keys that they

know about.

For documentation on contract keys, see Reference: Contract keys.

5.1.2.5 Authorization, signing

The Daml runtime checks that every submitted transaction is well-authorized, according to the au-

thorization rules of the ledger model, which guarantee the integrity of the underlying ledger.

A Daml update is the composition of update actions created with one of the items in the table below.

A Daml update is well-authorized when all its contained update actions are well-authorized. Each

operation has an associated set of parties that need to authorize it:

Table 1: Updates and required authorization

Update

action

Type Authorization

create (Template c) => c -> Update

(ContractId c)

All signatories of the created contract

exercise ContractId c -> e -> Update

r

All controllers of the choice

fetch ContractId c -> e -> Update

r

One of the union of signatories and ob-

servers of the fetched contract

fetch-

ByKey

k -> Update (ContractId c,

c)

Same as fetch

lookup-

ByKey

k -> Update (Optional (Con-

tractId c))

All key maintainers

At runtime, the Daml execution engine computes the required authorizing parties from this map-

ping. It also computes which parties have given authorization to the update in question. A party is

giving authorization to an update in one of two ways:

• It is the signatory of the contract that contains the update action.

1032 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

• It is element of the controllers executing the choice containing the update action.

Only if all required parties have given their authorization to an update action, the update action is

well-authorized and therefore executed. A missing authorization leads to the abortion of the update

action and the failure of the containing transaction.

It is noteworthy, that authorizing parties are always determined only from the local context of a

choice in question, that is, its controllers and the contract’s signatories. Authorization is never in-

herited from earlier execution contexts.

5.1.2.6 Standard library

The Daml standard library is a set of Daml functions, classes and more that make developing with

Daml easier.

For documentation, see The standard library.

5.1.2.7 Agreement

An agreement is part of a contract. It is text that explains what the contract represents.

It can be used to clarify the legal intent of a contract, but this text isn’t evaluated programmatically.

See Reference: templates.

5.1.2.8 Create

A create is an update that creates a contract on the ledger.

Contract creation requires authorization from all its signatories, or the create will fail. For how to get

authorization, see the propose-accept and multi-party agreement patterns.

A party submits a create command.

See Reference: updates.

5.1.2.9 Exercise

An exercise is an action that exercises a choice on a contract on the ledger. If the choice is consuming,

the exercise will archive the contract; if it is nonconsuming, the contract will stay active.

Exercising a choice requires authorization from all of the controllers of the choice.

A party submits an exercise command.

See Reference: updates.

5.1. Glossary of concepts 1033

Daml SDK Documentation, 2.1.1

5.1.2.10 Daml Script

Daml Script provides a way of testing Daml code during development. You can run Daml Script

inside Daml Studio, or write them to be executed on Sandbox when it starts up.

They’re useful for:

• expressing clearly the intended workflow of your contracts

• ensuring that parties can exclusively create contracts, observe contracts, and exercise choices

that they are meant to

• acting as regression tests to confirm that everything keeps working correctly

In Daml Studio, Daml Script runs in an emulated ledger. You specify a linear sequence of actions

that various parties take, and these are evaluated in order, according to the same consistency, au-

thorization, andprivacy rules as theywouldbe onaDaml ledger. DamlStudio shows you the resulting

transaction graph, and (if a Daml Script fails) what caused it to fail.

See 2 Testing templates using Daml Script.

5.1.2.11 Contract key

A contract key allows you to uniquely identify a contract of a particular template, similarly to a primary

key in a database table.

A contract key requires amaintainer: a simple key would be something like a tuple of text and main-

tainer, like (accountId, bank).

See Reference: Contract keys.

5.1.2.12 DAR file, DALF file

A Daml Archive file, known as a .dar file is the result of compiling Daml code using the Assistant

which can be interpreted using a Daml interpreter.

You upload .dar files to a ledger in order to be able to create contracts from the templates in that

file.

A .dar contains multiple .dalf files. A .dalf file is the output of a compiled Daml package or

library. Its underlying format is Daml-LF.

5.1.3 Developer tools

5.1.3.1 Assistant

Daml Assistant is a command-line tool for many tasks related to Daml. Using it, you can create

Daml projects, compile Daml projects into .dar files, launch other developer tools, and download new

SDK versions.

See Daml Assistant (daml).

1034 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.1.3.2 Studio

Daml Studio is a plugin for Visual Studio Code, and is the IDE for writing Daml code.

See Daml Studio.

5.1.3.3 Sandbox

Sandbox is a lightweight ledger implementation. In its normal mode, you can use it for testing.

You can also run the Sandbox connected to a PostgreSQL back end, which gives you persistence and

a more production-like experience.

See Daml Sandbox.

5.1.3.4 Navigator

Navigator is a tool for exploring what’s on the ledger. You can use it to see what contracts can be

seen by different parties, and submit commands on behalf of those parties.

Navigator GUI

This is the version of Navigator that runs as a web app.

See Navigator.

5.1.4 Building applications

5.1.4.1 Application, ledger client, integration

Application, ledger client and integration are all terms for an application that sits on top of the

ledger. These usually read from the ledger, send commands to the ledger, or both.

There’s a lot of information available about application development, starting with the Application

architecture page.

5.1.4.2 Ledger API

The Ledger API is an API that’s exposed by any ledger on a participant node. Users access and ma-

nipulate the ledger state through the leger API. An alternative name for the Ledger API is the gRPC

Ledger API if disambiguation from other technologies is needed. See The Ledger API page. It includes

the following services.

5.1. Glossary of concepts 1035

Daml SDK Documentation, 2.1.1

Command submission service

Use the command submission service to submit commands - either create commands or exercise

commands - to the ledger. See Command submission service.

Command completion service

Use the command completion service to find out whether or not commands you have submitted have

completed, and what their status was. See Command completion service.

Command service

Use the command service when you want to submit a command and wait for it to be executed. See

Command service.

Transaction service

Use the transaction service to listen to changes in the ledger, reported as a stream of transactions.

See Transaction service.

Active contract service

Use the active contract service to obtain a party-specific view of all contracts currently active on the

ledger. See Active contracts service.

Package service

Use the package service to obtain information about Daml packages available on the ledger. See

Package service.

Ledger identity service

Use the ledger identity service to get the identity string of the ledger that your application is con-

nected to. See Ledger identity service (DEPRECATED).

Ledger configuration service

Use the ledger configuration service to subscribe to changes in ledger configuration. See Ledger

configuration service.

1036 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.1.4.3 Ledger API libraries

The following libraries wrap the ledger API for more native experience applications development.

Java bindings

An idiomatic Java library for writing ledger applications. See Java bindings.

5.1.4.4 Reading from the ledger

Applications get information about the ledger by reading from it. You can’t query the ledger, but you

can subscribe to the transaction stream to get the events, or themore sophisticated active contract

service.

5.1.4.5 Submitting commands, writing to the ledger

Applications make changes to the ledger by submitting commands. You can’t change it directly: an

application submits a command of transactions. The command gets evaluated by the runtime, and

will only be accepted if it’s valid.

For example, a commandmight get rejected because the transactions aren’twell-authorized; because

the contract isn’t active (perhaps someone else archived it); or for other reasons.

This is echoed in Daml script, where you can mock an application by having parties submit trans-

actions/updates to the ledger. You can use submit or submitMustFail to express what should

succeed and what shouldn’t.

Commands

A command is an instruction to add a transaction to the ledger.

5.1.4.6 Participant Node

The participant node is a server that provides users a consistent programmatic access to a ledger

through the Ledger API. The participant nodes handles transaction signing and validation, such that

users don’t have to deal with cryptographic primitives but can trust the participant node that the

data they are observing has been properly verified to be correct.

5.1.4.7 Sub-Transaction Privacy

Sub-transaction privacy is where participants to a transaction only learn about the subset of the

transaction they are directly involved in, but not about any other part of the transaction. This applies

to both the content of the transaction as well as other involved participants.

5.1. Glossary of concepts 1037

https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html

Daml SDK Documentation, 2.1.1

5.1.4.8 Daml-LF

When you compile Daml source code into a .dar file, the underlying format is Daml-LF. Daml-LF is

similar to Daml, but is stripped down to a core set of features. The relationship between the surface

Daml syntax and Daml-LF is loosely similar to that between Java and JVM bytecode.

As a user, you don’t need to interact with Daml-LF directly. But internally, it’s used for:

• executing Daml code on the Sandbox or on another platform

• sending and receiving values via the Ledger API (using a protocol such as gRPC)

• generating code in other languages for interacting with Damlmodels (often called “codegen”)

5.1.4.9 Composability

Composability is the ability of a participant to extend an existing systemwith newDaml applications

or new topologiesunilaterallywithout requiring cooperation fromanyone except thedirectly involved

participants who wish to be part of the new application functionality.

5.1.4.10 Trust domain

A trust domain encompasses a part of the system (in particular, a Daml ledger) operated by a single

real-world entity. This subsystem may consist of one or more physical nodes. A single physical

machine is always assumed to be controlled by exactly one real-world entity.

5.1.5 Canton Concepts

5.1.5.1 Domain

The domain provides total ordered, guaranteed delivery multi-cast to the participants. This means

that participant nodes communicate with each other by sending end-to-end encrypted messages

through the domain.

The sequencer service of the domain orders these messages without knowing about the content and

ensures that every participant receives the messages in the same order.

The other services of the domain are the mediator and the domain identity manager.

5.1.5.2 Private Contract Store

Every participant node manages its own private contract store (PCS) which contains only contracts

the participant is privy to. There is no global state or global contract store.

1038 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.1.5.3 Virtual Global Ledger

While every participant has their own private contract store (PCS), the Canton protocol guarantees

that the contracts which are stored in the PCS are well-authorized and that any change to the store

is justified, authorized and valid. The result is that every participant only possesses a small part

of the virtual global ledger. All the local stores together make up that virtual global ledger and they

are thus synchronized. The Canton protocol guarantees that the virtual ledger provides integrity,

privacy, transparency and auditability. The ledger is logically global, even though physically, it runs

on segregated and isolated domains that are not aware of each other.

5.1.5.4 Mediator

The mediator is a service provided by the domain and used by the Canton protocol. The mediator acts

as commit coordinator, collecting individual transaction verdicts issued by validating participants

and aggregates them into a single result. The mediator does not learn about the content of the

transaction, they only learn about the involved participants.

5.1.5.5 Sequencer

The sequencer is a service provided by the domain, used by the Canton protocol. The sequencer for-

wards encrypted addressed messages from participants and ensures that every member receives

the messages in the same order. Think about registered and sealed mail delivered according to the

postal datestamp.

5.1.5.6 Domain Identity Manager

The Domain Identity Manager is a service provided by the domain, used by the Canton protocol. Par-

ticipants join a new domain by registering with the domain identity manager. The domain identity

manager establishes a consistent identity state among all participants. The domain identity man-

ager only forwards identity updates. It can not invent them.

5.1.5.7 Consensus

The Canton protocol does not use PBFT or any similar consensus algorithm. There is no proof of work

or proof of stake involved. Instead, Canton uses a variant of a stakeholder based two-phase com-

mit protocol. As such, only stakeholders of a transaction are involved in it and need to process it,

providing efficiency, privacy and horizontal scalability. Canton based ledgers are resilient to mali-

cious participants as long as there is at least a single honest participant. A domain integration itself

might be using the consensusmechanism of the underlying platform, but participant nodes will not

be involved in that process.

5.1. Glossary of concepts 1039

Daml SDK Documentation, 2.1.1

5.2 Daml Ledger Model

Daml Ledgers enable multi-party workflows by providing parties with a virtual shared ledger, which

encodes the current state of their shared contracts, written in Daml. At a high level, the interactions

are visualized as follows:

The Daml ledger model defines:

1. what the ledger looks like - the structure of Daml ledgers

2. who can request which changes - the integrity model for Daml ledgers

3. who sees which changes and data - the privacy model for Daml ledgers

The below sections review these concepts of the ledger model in turn. They also briefly describe the

link between Daml and the model.

1040 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.2.1 Structure

This section looks at the structure of a Daml ledger and the associated ledger changes. The basic

building blocks of changes are actions, which get grouped into transactions.

5.2.1.1 Actions and Transactions

One of the main features of the Daml ledger model is a hierarchical action structure.

This structure is illustrated below on a toy example of a multi-party interaction. Alice (A) gets some

digital cash, in the formof an I-Owe-You (IOU for short) fromabank, and she needs her house painted.

She gets an offer from a painter (P) with reference number P123 to paint her house in exchange for

this IOU. Lastly, A accepts the offer, transferring themoney and signing a contract with P, whereby he

is promising to paint her house.

This acceptance can be viewed as A exercising her right to accept the offer. Her acceptance has two

consequences. First, A transfers her IOU, that is, exercises her right to transfer the IOU, after which a

new IOU for P is created. Second, a new contract is created that requires P to paint A’s house.

Thus, the acceptance in this example is reduced to two types of actions: (1) creating contracts, and

(2) exercising rights on them. These are also the twomain kinds of actions in the Daml ledgermodel.

The visual notation below records the relations between the actions during the above acceptance.

Formally, an action is one of the following:

1. a Create action on a contract, which records the creation of the contract

2. an Exercise action on a contract, which records that one ormore parties have exercised a right

they have on the contract, and which also contains:

1. An associated set of parties called actors. These are the parties who perform the action.

2. An exercise kind, which is either consuming or non-consuming. Once consumed, a con-

tract cannot be used again (for example, Alice should not be able to accept the painter’s

offer twice). Contracts exercised in a non-consuming fashion can be reused.

3. A list of consequences, which are themselves actions. Note that the consequences, as

well as the kind and the actors, are considered a part of the exercise action itself. This

nesting of actions within other actions through consequences of exercises gives rise to

the hierarchical structure. The exercise action is the parent action of its consequences.

3. a Fetch action on a contract, which demonstrates that the contract exists and is active at the

time of fetching. The action also contains actors, the parties who fetch the contract. A Fetch

behaves like a non-consuming exercise with no consequences, and can be repeated.

4. a Key assertion, which records the assertion that the given contract key is not assigned to any

unconsumed contract on the ledger.

5.2. Daml Ledger Model 1041

Daml SDK Documentation, 2.1.1

An Exercise or a Fetch action on a contract is said to use the contract. Moreover, a consuming Ex-

ercise is said to consume (or archive) its contract.

The following EBNF-like grammar summarizes the structure of actions and transactions. Here, “s |

t” represents the choice between s and t, “s t” represents s followed by t, and “s*” represents the

repetition of s zero or more times. The terminal ‘contract’ denotes the underlying type of contracts,

and the terminal ‘party’ the underlying type of parties.

Action ::=
Create
 contract

|
Exercise
 party* contract Kind Transaction

|
Fetch
 party* contract

|
NoSuchKey
 key

Transaction ::= Action*

Kind ::=
Consuming
 |
NonConsuming

The visual notation presented earlier captures actions precisely with conventions that:

1. Exercise denotes consuming, ExerciseN non-consuming exercises, and Fetch a fetch.

2. double arrows connect exercises to their consequences, if any.

3. the consequences are ordered left-to-right.

4. to aid intuitions, exercise actions are annotated with suggestive names like “accept” or

“transfer”. Intuitively, these correspond to names of Daml choices, but they have no semantic

meaning.

An alternative shorthand notation, shown below uses the abbreviations Exe and ExeN for exercises,

and omits the Create labels on create actions.

To show an example of a non-consuming exercise, consider a different offer example with an easily

replenishable subject. For example, if P was a car manufacturer, and A a car dealer, P could make an

offer that could be accepted multiple times.

1042 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

To see an example of a fetch, we can extend this example to the case where P produces exclusive cars

and allows only certified dealers to sell them. Thus, when accepting the offer, A has to additionally

show a valid quality certificate issued by some standards body S.

In the paint offer example, the underlying type of contracts consists of three sorts of contracts:

PaintOffer houseOwner painter obligor refNo Intuitively an offer (with a reference number) by

which the painter proposes to the house owner to paint her house, in exchange for a single

IOU token issued by the specified obligor.

PaintAgree painter houseOwner refNo Intuitively a contract whereby the painter agrees to paint

the owner’s house

Iou obligor owner An IOU token from an obligor to an owner (for simplicity, the token is of unit

amount).

In practice, multiple IOU contracts can exist between the same obligor and owner, in which case each

contract should have a unique identifier. However, in this section, each contract only appears once,

allowing us to drop the notion of identifiers for simplicity reasons.

A transaction is a list of actions. Thus, the consequences of an exercise form a transaction. In

the example, the consequences of Alice’s exercise form the following transaction, where actions are

again ordered left-to-right.

5.2. Daml Ledger Model 1043

Daml SDK Documentation, 2.1.1

For an action act, its proper subactions are all actions in the consequences of act, together with all

of their proper subactions. Additionally, act is a (non-proper) subaction of itself.

The subaction relation is visualized below. Both the green and yellow boxes are proper subactions of

Alice’s exercise on the paint offer. Additionally, the creation of Iou Bank P (yellow box) is also a proper

subaction of the exercise on the Iou Bank A.

Similarly, a subtransaction of a transaction is either the transaction itself, or a proper subtransac-

tion: a transaction obtained by removing at least one action, or replacing it by a subtransaction of

its consequences. For example, given the transaction consisting of just one action, the paint offer

acceptance, the image below shows all its proper non-empty subtransactions on the right (yellow

boxes).

To illustrate contract keys, suppose that the contract key for a PaintOffer consists of the reference

number and the painter. So Alice can refer to the PaintOffer by its key (P, P123). To make this explicit,

we use the notation PaintOffer @P A&P123 for contracts, where@ and&mark the parts that belong to

a key. (The difference between @ and & will be explained in the integrity section.) The ledger integrity

1044 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

constraints in the next section ensure that there is always at most one active PaintOffer for a given

key. So if the painter retracts its PaintOffer and later Alice tries to accept it, she can then record the

absence with a NoSuchKey (P, P123) key assertion.

5.2.1.2 Ledgers

The transaction structure records the contents of the changes, but not who requested them. This in-

formation is added by the notion of a commit: a transaction paired with the parties that requested

it, called the requesters of the commit. A commit may have one or more requesters. Given a commit

(p, tx) with transaction tx = act1, …, actn, every acti is called a top-level action of the commit. A ledger

is a sequence of commits. A top-level action of any ledger commit is also a top-level action of the

ledger.

The following EBNF grammar summarizes the structure of commits and ledgers:

Commit ::= party+ Transaction

Ledger ::= Commit*

A Daml ledger thus represents the full history of all actions taken by parties.1 Since the ledger is a se-

quence (of dependent actions), it induces an order on the commits in the ledger. Visually, a ledger can

be represented as a sequence growing from left to right as time progresses. Below, dashed vertical

lines mark the boundaries of commits, and each commit is annotated with its requester(s). Arrows

link the create and exercise actions on the same contracts. These additional arrows highlight that

the ledger forms a transaction graph. For example, the aforementioned house painting scenario is

visually represented as follows.

The definitions presented here are all the ingredients required to record the interaction between par-

ties in a Daml ledger. That is, they address the first question: “what do changes and ledgers look

like?”. To answer the next question, “who can request which changes”, a precise definition is needed

of which ledgers are permissible, and which are not. For example, the above paint offer ledger is in-

tuitively permissible, while all of the following ledgers are not.

The next section discusses the criteria that rule out the above examples as invalid ledgers.

1 Calling such a complete record “ledger” is standard in the distributed ledger technology community. In accounting

terminology, this record is closer to a journal than to a ledger.

5.2. Daml Ledger Model 1045

Daml SDK Documentation, 2.1.1

Fig. 1: Alice spending her IOU twice (“double spend”), once transferring it to B and once to P.

Fig. 2: Alice changing the offer’s outcome by removing the transfer of the Iou.

Fig. 3: An obligation imposed on the painter without his consent.

1046 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Fig. 4: Painter stealing Alice’s IOU. Note that the ledger would be intuitively permissible if it was Alice

performing the last commit.

Fig. 5: Painter falsely claiming that there is no offer.

Fig. 6: Painter trying to create two different paint offers with the same reference number.

5.2. Daml Ledger Model 1047

Daml SDK Documentation, 2.1.1

5.2.2 Integrity

This section addresses the question of who can request which changes.

5.2.2.1 Valid Ledgers

At the core is the concept of a valid ledger; changes are permissible if adding the corresponding com-

mit to the ledger results in a valid ledger. Valid ledgers are those that fulfill three conditions:

Consistency Exercises and fetches on inactive contracts are not allowed, i.e. contracts that have not

yet been created or have already been consumed by an exercise. A contract with a contract key

can be created only if the key is not associated to another unconsumed contract, and all key

assertions hold.

Conformance Only a restricted set of actions is allowed on a given contract.

Authorization The parties who may request a particular change are restricted.

Only the last of these conditions depends on the party (or parties) requesting the change; the other

two are general.

5.2.2.2 Consistency

Consistency consists of two parts:

1. Contract consistency: Contracts must be created before they are used, and they cannot be used

once they are consumed.

2. Key consistency: Keys are unique and key assertions are satisfied.

To define this precisely, notions of “before” and “after” are needed. These are given by putting all

actions in a sequence. Technically, the sequence is obtained by a pre-order traversal of the ledger’s

actions, noting that these actions form an (ordered) forest. Intuitively, it is obtained by always pick-

ing parent actions before their proper subactions, and otherwise always picking the actions on the

left before the actions on the right. The image below depicts the resulting order on the paint offer

example:

In the image, an action act happens before action act’ if there is a (non-empty) path from act to act’.

Then, act’ happens after act.

1048 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Contract consistency

Contract consistency ensures that contracts are used after they have been created and before they

are consumed.

Definition »contract consistency« A ledger is consistent for a contract c if all of the following

holds for all actions act on c:

1. either act is itself Create c or a Create c happens before act

2. act does not happen before any Create c action

3. act does not happen after any Exercise action consuming c.

The consistency condition rules out the double spend example. As the red path below indicates, the

second exercise in the example happens after a consuming exercise on the same contract, violating

the contract consistency criteria.

In addition to the consistency notions, the before-after relation on actions can also be used to define

the notion of contract state at any point in a given transaction. The contract state is changed by

creating the contract and by exercising it consumingly. At any point in a transaction, we can then

define the latest state change in the obvious way. Then, given a point in a transaction, the contract

state of c is:

1. active, if the latest state change of c was a create;

2. archived, if the latest state change of c was a consuming exercise;

3. inexistent, if c never changed state.

A ledger is consistent for c exactly ifExerciseand Fetchactions on chappenonlywhen c is active, and

Create actions only when c is inexistent. The figures below visualize the state of different contracts

at all points in the example ledger.

The notion of order can be defined on all the different ledger structures: actions, transactions, lists of

transactions, and ledgers. Thus, the notions of consistency, inputs and outputs, and contract state

can also all be defined on all these structures. The active contract set of a ledger is the set of all

contracts that are active on the ledger. For the example above, it consists of contracts Iou Bank P and

PaintAgree P A.

5.2. Daml Ledger Model 1049

Daml SDK Documentation, 2.1.1

Fig. 7: Activeness of the PaintOffer contract

Fig. 8: Activeness of the Iou Bank A contract

1050 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Key consistency

Contract keys introduce a key uniqueness constraint for the ledger. To capture this notion, the con-

tract model must specify for every contract in the system whether the contract has a key and, if so,

the key. Every contract can have at most one key.

Like contracts, every key has a state. An action act is an action on a key k if

• act is a Create, Exercise, or a Fetch action on a contract c with key k, or

• act is the key assertion NoSuchKey k.

Definition »key state« The key state of a key on a ledger is determined by the last action act on the

key:

• If act is a Create, non-consuming Exercise, or Fetch action on a contract c, then the key

state is assigned to c.

• If act is a consuming Exercise action or a NoSuchKey assertion, then the key state is free.

• If there is no such action act, then the key state is unknown.

A key is unassigned if its key state is either free or unknown.

Key consistency ensures that there is at most one active contract for each key and that all key as-

sertions are satisfied.

Definition »key consistency« A ledger is consistent for a key k if for every action act on k, the key

state s before act satisfies

• If act is a Create action or NoSuchKey assertion, then s is free or unknown.

• If act is an Exercise or Fetch action on some contract c, then s is assigned to c orunknown.

Key consistency rules out the problematic examples around key consistency. For example, suppose

that the painter P hasmade a paint offer to A with reference number P123, but A has not yet accepted

it. When P tries to create another paint offer to David with the same reference number P123, then this

creation action would violate key uniqueness. The following ledger violates key uniqueness for the

key (P, P123).

Key assertions can be used in workflows to evidence the inexistence of a certain kind of contract. For

example, suppose that the painter P is a member of the union of painters U. This union maintains

a blacklist of potential customers that its members must not do business with. A customer A is

considered to be on the blacklist if there is an active contract Blacklist @U&A. To make sure that the

painter P does not make a paint offer if A is blacklisted, the painter combines its commit with a No-

SuchKey assertion on the key (U, A). The following ledger shows the transaction, where UnionMember

U P represents P’s membership in the union U. It grants P the choice to perform such an assertion,

which is needed for authorization.

Key consistency extends to actions, transactions and lists of transactions just like the other consis-

tency notions.

5.2. Daml Ledger Model 1051

Daml SDK Documentation, 2.1.1

Ledger consistency

Definition »ledger consistency« A ledger is consistent if it is consistent for all contracts and for

all keys.

Internal consistency

The above consistency requirement is too strong for actions and transactions in isolation. For exam-

ple, the acceptance transaction from the paint offer example is not consistent as a ledger, because

PaintOffer A P Bank and the Iou Bank A contracts are used without being created before:

However, the transaction can still be appended to a ledger that creates these contracts and yields

a consistent ledger. Such transactions are said to be internally consistent, and contracts such as

the PaintOffer A P Bank P123 and Iou Bank A are called input contracts of the transaction. Dually, output

contracts of a transaction are the contracts that a transaction creates and does not archive.

Definition »internal consistency for a contract« A transaction is internally consistent for a con-

tract c if the following holds for all of its subactions act on the contract c

1. act does not happen before any Create c action

2. act does not happen after any exercise consuming c.

A transaction is internally consistent if it is internally consistent for all contracts and consis-

tent for all keys.

Definition »input contract« For an internally consistent transaction, a contract c is an input con-

tract of the transaction if the transaction contains an Exercise or a Fetch action on c but not

a Create c action.

1052 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Definition »output contract« For an internally consistent transaction, a contract c is an output

contract of the transaction if the transaction contains a Create c action, but not a consuming

Exercise action on c.

Note that the input and output contracts are undefined for transactions that are not internally con-

sistent. The image below shows some examples of internally consistent and inconsistent transac-

tions.

Fig. 9: The first two transactions violate the conditions of internal consistency. The first transaction

creates the Iou after exercising it consumingly, violating both conditions. The second transaction

contains a (non-consuming) exercise on the Iou after a consuming one, violating the second condi-

tion. The last transaction is internally consistent.

Similar to input contracts, we define the input keys as the set that must be unassigned at the be-

ginning of a transaction.

Definition »input key« A key k is an input key to an internally consistent transaction if the first

action act on k is either a Create action or a NoSuchKey assertion.

In the blacklisting example, P‘s transaction has two input keys: (U, A) due to theNoSuchKey action and

(P, P123) as it creates a PaintOffer contract.

5.2.2.3 Conformance

The conformance condition constrains the actions that may occur on the ledger. This is done by con-

sidering a contract model M (or amodel for short), which specifies the set of all possible actions. A

ledger is conformant to M (or conforms to M) if all top-level actions on the ledger are members of

M. Like consistency, the notion of conformance does not depend on the requesters of a commit, so it

can also be applied to transactions and lists of transactions.

For example, the set of allowed actions on IOU contracts could be described as follows.

5.2. Daml Ledger Model 1053

Daml SDK Documentation, 2.1.1

The boxes in the image are templates in the sense that the contract parameters in a box (such as

obligor or owner) can be instantiated by arbitrary values of the appropriate type. To facilitate un-

derstanding, each box includes a label describing the intuitive purpose of the corresponding set of

actions. As the image suggests, the transfer box imposes the constraint that the bankmust remain

the same both in the exercised IOU contract, and in the newly created IOU contract. However, the

owner can change arbitrarily. In contrast, in the settle actions, both the bank and the owner must

remain the same. Furthermore, to be conformant, the actor of a transfer actionmust be the same as

the owner of the contract.

Of course, the constraints on the relationship between the parameters can be arbitrarily complex,

and cannot conveniently be reproduced in this graphical representation. This is the role of Daml – it

provides a much more convenient way of representing contract models. The link between Daml and

contract models is explained in more detail in a later section.

To see the conformance criterion in action, assume that the contractmodel allows only the following

actions on PaintOffer and PaintAgree contracts.

The problem with the example where Alice changes the offer’s outcome to avoid transferring the

money now becomes apparent.

1054 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

A’s commit is not conformant to the contract model, as the model does not contain the top-level

action she is trying to commit.

5.2.2.4 Authorization

The last criterion rules out the last two problematic examples, an obligation imposed on a painter, and

the painter stealing Alice’s money. The first of those is visualized below.

The reason why the example is intuitively impermissible is that the PaintAgree contract is supposed

to express that the painter has an obligation to paint Alice’s house, but he never agreed to that obli-

gation. On paper contracts, obligations are expressed in the body of the contract, and imposed on

the contract’s signatories.

Signatories, Agreements, and Maintainers

To capture these elements of real-world contracts, the contract model additionally specifies, for

each contract in the system:

1. A non-empty set of signatories, the parties bound by the contract.

2. An optional agreement text associated with the contract, specifying the off-ledger, real-world

obligations of the signatories.

3. If the contract is associated with a key, a non-empty set ofmaintainers, the parties that make

sure that at most one unconsumed contract exists for the key. The maintainers must be a

subset of the signatories and depend only on the key. This dependence is captured by the

function maintainers that takes a key and returns the key’s maintainers.

In the example, the contract model specifies that

5.2. Daml Ledger Model 1055

Daml SDK Documentation, 2.1.1

1. an Iou obligor owner contract has only the obligor as a signatory, and no agreement text.

2. aMustPay obligor owner contract has both the obligor and the owner as signatories, with an agree-

ment text requiring the obligor to pay the owner a certain amount, off the ledger.

3. a PaintOffer houseOwner painter obligor refNo contract has only the painter as the signatory, with

no agreement text. Its associated key consists of the painter and the reference number. The

painter is the maintainer.

4. a PaintAgree houseOwner painter refNo contract has both the house owner and the painter as sig-

natories, with an agreement text requiring the painter to paint the house. The key consists of

the painter and the reference number. The painter is the only maintainer.

In the graphical representation below, signatories of a contract are indicated with a dollar sign (as

a mnemonic for an obligation) and use a bold font. Maintainers are marked with@ (as a mnemonic

who enforces uniqueness). Since maintainers are always signatories, parties marked with @ are

implicitly signatories. For example, annotating the paint offer acceptance action with signatories

yields the image below.

Authorization Rules

Signatories allow one to precisely state that the painter has an obligation. The imposed obligation

is intuitively invalid because the painter did not agree to this obligation. In other words, the painter

did not authorize the creation of the obligation.

In a Daml ledger, a party can authorize a subaction of a commit in either of the following ways:

• Every top-level action of the commit is authorized by all requesters of the commit.

• Every consequence of an exercise action act on a contract c is authorized by all signatories of c

and all actors of act.

The second authorization rule encodes the offer-acceptance pattern, which is a prerequisite for con-

tract formation in contract law. The contract c is effectively an offer by its signatories who act as

offerers. The exercise is an acceptance of the offer by the actors who are the offerees. The conse-

quences of the exercise can be interpreted as the contract body so the authorization rules of Daml

ledgers closely model the rules for contract formation in contract law.

A commit is well-authorized if every subaction act of the commit is authorized by at least all of the

required authorizers of act, where:

1. the required authorizers of a Create action on a contract c are the signatories of c.

2. the required authorizers of an Exercise or a Fetch action are its actors.

3. the required authorizers of a NoSuchKey assertion are the maintainers of the key.

1056 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

We lift this notion to ledgers, whereby a ledger is well-authorized exactly when all of its commits are.

Examples

An intuition for how the authorization definitions work is most easily developed by looking at some

examples. Themain example, the paint offer ledger, is intuitively legitimate. It should therefore also

be well-authorized according to our definitions, which it is indeed.

In the visualizations below, ΠX act denotes that the parties Π authorize the action act. The resulting

authorizations are shown below.

In the first commit, the bank authorizes the creation of the IOU by requesting that commit. As the

bank is the sole signatory on the IOU contract, this commit is well-authorized. Similarly, in the sec-

ond commit, the painter authorizes the creation of the paint offer contract, and painter is the only

signatory on that contract, making this commit also well-authorized.

The third commit is more complicated. First, Alice authorizes the exercise on the paint offer by re-

questing it. She is the only actor on this exercise, so this complies with the authorization require-

ment. Since the painter is the signatory of the paint offer, and Alice the actor of the exercise, they

jointly authorize all consequences of the exercise. The first consequence is an exercise on the IOU,

with Alice as the actor; so this is permissible. The second consequence is the creation of the paint

agreement, which has Alice and the painter as signatories. Since they both authorize this action,

this is also permissible. Finally, the creation of the new IOU (for P) is a consequence of the exercise

on the old one (for A). As the old IOUwas signed by the bank, and as Alice was the actor of the exercise,

the bank and Alice jointly authorize the creation of the new IOU. Since the bank is the sole signatory

of this IOU, this action is also permissible. Thus, the entire third commit is also well-authorized, and

then so is the ledger.

Similarly, the intuitively problematic examples are prohibited by our authorization criterion. In the

first example, Alice forced the painter to paint her house. The authorizations for the example are

shown below.

5.2. Daml Ledger Model 1057

Daml SDK Documentation, 2.1.1

Alice authorizes the Create action on the PaintAgree contract by requesting it. However, the painter

is also a signatory on the PaintAgree contract, but he did not authorize the Create action. Thus, this

ledger is indeed not well-authorized.

In the second example, the painter steals money from Alice.

The bank authorizes the creation of the IOU by requesting this action. Similarly, the painter autho-

rizes the exercise that transfers the IOU to him. However, the actor of this exercise is Alice, who has

not authorized the exercise. Thus, this ledger is not well-authorized.

The rationale for making the maintainers required authorizers for a NoSuchKey assertion is dis-

cussed in the next section about privacy.

5.2.2.5 Valid Ledgers, Obligations, Offers and Rights

Daml ledgers are designed to mimic real-world interactions between parties, which are governed

by contract law. The validity conditions on the ledgers, and the information contained in contract

models have several subtle links to the concepts of the contract law that are worth pointing out.

First, in addition to the explicit off-ledger obligations specified in the agreement text, contracts also

specify implicit on-ledger obligations, which result from consequences of the exercises on con-

tracts. For example, the PaintOffer contains an on-ledger obligation for A to transfer her IOU in case

she accepts the offer. Agreement texts are therefore only necessary to specify obligations that are

not already modeled as permissible actions on the ledger. For example, P’s obligation to paint the

house cannot be sensibly modeled on the ledger, and must thus be specified by the agreement text.

Second, every contract on a Daml ledger can simultaneously model both:

• a real-world offer, whose consequences (both on- and off-ledger) are specified by the Exercise

actions on the contract allowed by the contract model, and

• a real-world contract “proper”, specified through the contract’s (optional) agreement text.

Third, in Daml ledgers, as in the real world, one person’s rights are another person’s obligations. For

example, A’s right to accept the PaintOffer is P’s obligation to paint her house in case she accepts. In

1058 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Daml ledgers, a party’s rights according to a contract model are the exercise actions the party can

perform according to the authorization and conformance rules.

Finally, validity conditions ensure three important properties of the Daml ledger model, that mimic

the contract law.

1. Obligations need consent. Daml ledgers follow the offer-acceptance pattern of the contract

law, and thus ensures that all ledger contracts are formed voluntarily. For example, the follow-

ing ledger is not valid.

2. Consent is needed to take awayon-ledger rights. As onlyExerciseactions consumecontracts,

the rights cannot be taken away from the actors; the contract model specifies exactly who the

actors are, and the authorization rules require them to approve the contract consumption.

In the examples, Alice had the right to transfer her IOUs; painter’s attempt to take that right

away from her, by performing a transfer himself, was not valid.

Parties can still delegate their rights to other parties. For example, assume that Alice, instead

of accepting painter’s offer, decides to make him a counteroffer instead. The painter can then

accept this counteroffer, with the consequences as before:

Here, by creating the CounterOffer contract, Alice delegates her right to transfer the IOU contract

to the painter. In case of delegation, prior to submission, the requester must get informed

about the contracts that are part of the requested transaction, but where the requester is not

a signatory. In the example above, the painter must learn about the existence of the IOU for

Alice before he can request the acceptance of the CounterOffer. The concepts of observers and

5.2. Daml Ledger Model 1059

Daml SDK Documentation, 2.1.1

divulgence, introduced in the next section, enable such scenarios.

3. On-ledger obligations cannot be unilaterally escaped. Once an obligation is recorded on a

Daml ledger, it can only be removed in accordance with the contract model. For example, as-

suming the IOU contract model shown earlier, if the ledger records the creation of a MustPay

contract, the bank cannot later simply record an action that consumes this contract:

That is, this ledger is invalid, as the action above is not conformant to the contract model.

5.2.3 Privacy

The previous sections have addressed two out of three questions posed in the introduction: “what

the ledger looks like”, and “who may request which changes”. This section addresses the last one,

“who sees which changes and data”. That is, it explains the privacy model for Daml ledgers.

The privacy model of Daml Ledgers is based on a need-to-know basis, and provides privacy on the

level of subtransactions. Namely, a party learns only those parts of ledger changes that affect con-

tracts in which the party has a stake, and the consequences of those changes. And maintainers see

all changes to the contract keys they maintain.

To make this more precise, a stakeholder concept is needed.

5.2.3.1 Contract Observers and Stakeholders

Intuitively, as signatories are bound by a contract, they have a stake in it. Actorsmight not be bound

by the contract, but they still haveastake in their actions, as theseare theactor’s rights. Generalizing

this, observers are parties whomight not be bound by the contract, but still have the right to see the

contract. For example, Alice should be an observer of the PaintOffer, such that she ismade aware that

the offer exists.

Signatories are already determined by the contract model discussed so far. The full contract model

additionally specifies the contract observers on each contract. A stakeholder of a contract (accord-

ing to a given contract model) is then either a signatory or a contract observer on the contract. Note

that in Daml, as detailed later, controllers specified using simple syntax are automatically made

contract observers whenever possible.

In the graphical representation of the paint offer acceptance below, contract observers who are not

signatories are indicated by an underline.

1060 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.2.3.2 Choice Observers

In addition to contract observers, the contract model can also specify choice observers on individ-

ual Exercise actions. Choice observers get to see a specific exercise on a contract, and to view its

consequences. Choice observers are not considered stakeholders of the contract, they only affect

the set of informees on an action, for the purposes of projection (see below).

5.2.3.3 Projections

Stakeholders should see changes to contracts they hold a stake in, but that does notmean that they

have to see the entirety of any transaction that their contract is involved in. This is made precise

through projections of a transaction, which define the view that each party gets on a transaction. In-

tuitively, given a transaction within a commit, a party will see only the subtransaction consisting of

all actions on contracts where the party is a stakeholder. Thus, privacy is obtained on the subtrans-

action level.

An example is given below. The transaction that consists only of Alice’s acceptance of the PaintOffer

is projected for each of the three parties in the example: the painter, Alice, and the bank.

5.2. Daml Ledger Model 1061

Daml SDK Documentation, 2.1.1

Since both the painter and Alice are stakeholders of the PaintOffer contract, the exercise on this con-

tract is kept in the projection of both parties. Recall that consequences of an exercise action are a

part of the action. Thus, both parties also see the exercise on the Iou Bank A contract, and the cre-

ations of the Iou Bank P and PaintAgree contracts.

The bank is not a stakeholder on the PaintOffer contract (even though it ismentioned in the contract).

Thus, the projection for the bank is obtained by projecting the consequences of the exercise on the

PaintOffer. The bank is a stakeholder in the contract Iou Bank A, so the exercise on this contract is

kept in the bank’s projection. Lastly, as the bank is not a stakeholder of the PaintAgree contract, the

corresponding Create action is dropped from the bank’s projection.

Note the privacy implications of the bank’s projection. While the bank learns that a transfer has

occurred from A to P, the bank does not learn anything about why the transfer occurred. In practice,

thismeans that the bank does not learnwhat A is paying for, providing privacy to A and Pwith respect

to the bank.

As a design choice, Daml Ledgers show to contract observers only the state changing actions on the

contract. More precisely, Fetch and non-consuming Exercise actions are not shown to contract ob-

1062 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

servers - except when they are also actors or choice observers of these actions. This motivates the

following definition: a party p is an informee of an action A if one of the following holds:

• A is a Create on a contract c and p is a stakeholder of c.

• A is a consuming Exercise on a contract c, and p is a stakeholder of c or an actor on A. Note that

a Daml “flexible controller” can be an exercise actor without being a contract stakeholder.

• A is a non-consuming Exercise on a contract c, and p is a signatory of c or an actor on A.

• A is an Exercise action and p is a choice observer on A.

• A is a Fetch on a contract c, and p is a signatory of c or an actor on A.

• A is a NoSuchKey k assertion and p is a maintainer of k.

Then, we can formally define the projection of a transaction tx = act1, …, actn for a party p is the sub-

transaction obtained by doing the following for each action acti:

1. If p is an informee of acti, keep acti as-is.

2. Else, if acti has consequences, replace acti by the projection (for p) of its consequences, which

might be empty.

3. Else, drop acti.

Finally, the projection of a ledger l for a party p is a list of transactions obtained by first projecting

the transaction of each commit in l for p, and then removing all empty transactions from the result.

Note that the projection of a ledger is not a ledger, but a list of transactions. Projecting the ledger of

our complete paint offer example yields the following projections for each party:

5.2. Daml Ledger Model 1063

Daml SDK Documentation, 2.1.1

Examine each party’s projection in turn:

1. The painter does not see any part of the first commit, as he is not a stakeholder of the Iou Bank A

contract. Thus, this transaction is not present in the projection for the painter at all. However,

the painter is a stakeholder in the PaintOffer, so he sees both the creation and the exercise of

this contract (again, recall that all consequences of an exercise action are a part of the action

1064 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

itself).

2. Alice is a stakeholder in both the Iou Bank A and PaintOffer A B Bank contracts. As all top-level

actions in the ledger are performed on one of these two contracts, Alice’s projection includes

all the transactions from the ledger intact.

3. The Bank is only a stakeholder of the IOU contracts. Thus, the bank sees the first commit’s

transaction as-is. The second commit’s transaction is, however dropped from the bank’s pro-

jection. The projection of the last commit’s transaction is as described above.

Ledger projections do not always satisfy the definition of consistency, even if the ledger does. For

example, in P’s view, Iou Bank A is exercised without ever being created, and thus without beingmade

active. Furthermore, projections can in general be non-conformant. However, the projection for a

party p is always

• internally consistent for all contracts,

• consistent for all contracts on which p is a stakeholder, and

• consistent for the keys that p is a maintainer of.

In other words, p is never a stakeholder on any input contracts of its projection. Furthermore, if the

contract model is subaction-closed, which means that for every action act in the model, all subac-

tions of act are also in the model, then the projection is guaranteed to be conformant. As we will see

shortly, Daml-based contract models are conformant. Lastly, as projections carry no information

about the requesters, we cannot talk about authorization on the level of projections.

5.2.3.4 Privacy through authorization

Setting the maintainers as required authorizers for a NoSuchKey assertion ensures that parties

cannot learn about the existence of a contract without having a right to know about their existence.

So we use authorization to impose access controls that ensure confidentiality about the existence

of contracts. For example, suppose now that for a PaintAgreement contract, both signatories are key

maintainers, not only the painter. That is, we consider PaintAgreement @A@P&P123 instead of PaintA-

greement $A @P &P123. Then, when the painter’s competitor Q passes by A’s house and sees that

the house desperately needs painting, Q would like to know whether there is any point in spending

marketing efforts and making a paint offer to A. Without key authorization, Q could test whether a

ledger implementation accepts the action NoSuchKey (A, P, refNo) for different guesses of the refer-

ence number refNo. In particular, if the ledger does not accept the transaction for some refNo, then Q

knows that P has some business with A and his chances of A accepting his offer are lower. Key autho-

rization prevents this flow of information because the ledger always rejects Q‘s action for violating

the authorization rules.

For these access controls, it suffices if one maintainer authorizes a NoSuchKey assertion. However,

we demand that all maintainers must authorize it. This is to prevent spam in the projection of the

maintainers. If only one maintainer sufficed to authorize a key assertion, then a valid ledger could

contain NoSuchKey k assertions where the maintainers of k include, apart from the requester, arbi-

trary other parties. Unlike Create actions to contract observers, such assertions are of no value to

the other parties. Since processing such assertionsmay be expensive, they can be considered spam.

Requiring all maintainers to authorize a NoSuchKey assertion avoids the problem.

5.2. Daml Ledger Model 1065

Daml SDK Documentation, 2.1.1

5.2.3.5 Divulgence: When Non-Stakeholders See Contracts

The guiding principle for the privacy model of Daml ledgers is that contracts should only be shown

to their stakeholders. However, ledger projections can cause contracts to become visible to other

parties as well.

In the example of ledger projections of the paint offer, the exercise on the PaintOffer is visible to both the

painter and Alice. As a consequence, the exercise on the Iou Bank A is visible to the painter, and the

creation of Iou Bank P is visible to Alice. As actions also contain the contracts they act on, Iou Bank A

was thus shown to the painter and Iou Bank P was shown to Alice.

Showing contracts to non-stakeholders through ledger projections is called divulgence. Divulgence

is a deliberate choice in the design of Daml ledgers. In the paint offer example, the only proper way

to accept the offer is to transfer the money from Alice to the painter. Conceptually, at the instant

where the offer is accepted, its stakeholders also gain a temporary stake in the actions on the two

Iou contracts, even though they are never recorded as stakeholders in the contractmodel. Thus, they

are allowed to see these actions through the projections.

More precisely, every action act on c is shown to all informees of all ancestor actions of act. These

informees are called thewitnesses of act. If one of the witnessesW is not a stakeholder on c, then act

and c are said to be divulged toW. Note that only Exercise actions can be ancestors of other actions.

Divulgence can be used to enable delegation. For example, consider the scenario where Alice makes

a counteroffer to the painter. Painter’s acceptance entails transferring the IOU to him. To be able to

construct the acceptance transaction, the painter first needs to learn about the details of the IOU

that will be transferred to him. To give him these details, Alice can fetch the IOU in a context visible

to the painter:

1066 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

In the example, the context is provided by consuming a ShowIou contract on which the painter is a

stakeholder. This now requires an additional contract type, compared to the original paint offer ex-

ample. An alternative approach to enable this workflow, without increasing the number of contracts

required, is to replace the original Iou contract by one on which the painter is a contract observer.

This would require extending the contract model with a (consuming) exercise action on the Iou that

creates a new Iou, with observers of Alice’s choice. In addition to the different number of commits,

the two approaches differ in one more aspect. Unlike stakeholders, parties who see contracts only

through divulgence have no guarantees about the state of the contracts in question. For example,

consider what happens if we extend our (original) paint offer example such that the painter imme-

diately settles the IOU.

5.2. Daml Ledger Model 1067

Daml SDK Documentation, 2.1.1

While Alice sees the creation of the Iou Bank P contract, she does not see the settlement action. Thus,

she does not know whether the contract is still active at any point after its creation. Similarly, in the

previous example with the counteroffer, Alice could spend the IOU that she showed to the painter

by the time the painter attempts to accept her counteroffer. In this case, the painter’s transaction

could not be added to the ledger, as it would result in a double spend and violate validity. But the

painter has no way to predict whether his acceptance can be added to the ledger or not.

1068 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.2.4 Daml: Defining Contract Models Compactly

As described in preceding sections, both the integrity and privacy notions depend on a contract

model, and such a model must specify:

1. a set of allowed actions on the contracts, and

2. the signatories, contract observers, and

3. an optional agreement text associated with each contract, and

4. the optional key associated with each contract and its maintainers.

The sets of allowed actions can in general be infinite. For instance, the actions in the IOU contract

model considered earlier can be instantiated for an arbitrary obligor and an arbitrary owner. As enu-

merating all possible actions from an infinite set is infeasible, a more compact way of representing

models is needed.

Daml provides exactly that: a compact representation of a contract model. Intuitively, the allowed

actions are:

1. Create actions on all instances of templates such that the template arguments satisfy the

ensure clause of the template

2. Exercise actions on a contract corresponding to choices on that template, with given choice

arguments, such that:

1. The actors match the controllers of the choice. That is, the controllers define the required

authorizers of the choice.

2. The choice observers match the observers annotated in the choice.

3. The exercise kind matches.

4. All assertions in the update block hold for the given choice arguments.

5. Create, exercise, fetch and key statements in the update block are represented as create,

exercise and fetch actions and key assertions in the consequences of the exercise action.

3. Fetch actions on a contract corresponding to a fetch of that instance inside of an update block.

The actors must be a non-empty subset of the contract stakeholders. The actors are deter-

mined dynamically as follows: if the fetch appears in an update block of a choice ch on a con-

tract c1, and the fetched contract ID resolves to a contract c2, then the actors are defined as the

intersection of (1) the signatories of c1 union the controllers of ch with (2) the stakeholders of

c2.

A fetchByKey statement also produces a Fetch action with the actors determined in the same

way. A lookupByKey statement that finds a contract also translates into a Fetch action, but all

maintainers of the key are the actors.

4. NoSuchKey assertions corresponding to a lookupByKey update statement for the given key that

does not find a contract.

An instance of a Daml template, that is, a Daml contract, is a triple of:

1. a contract identifier

2. the template identifier

3. the template arguments

The signatories of a Daml contract are derived from the template arguments and the explicit signa-

tory annotations on the contract template. The contract observers are also derived from the template

arguments and include:

1. the observers as explicitly annotated on the template

2. all controllers c of every choice defined using the syntax controller c can... (as opposed

to the syntax choice ... controller c)

5.2. Daml Ledger Model 1069

Daml SDK Documentation, 2.1.1

For example, the following template exactly describes the contract model of a simple IOU with a unit

amount, shown earlier.

template MustPay with

obligor : Party

owner : Party

where

signatory obligor, owner

agreement

show obligor <> " must pay " <>

show owner <> " one unit of value"

template Iou with

obligor : Party

owner : Party

where

signatory obligor

observer owner

choice Transfer

: ContractId Iou

with newOwner : Party

controller owner

do create Iou with obligor; owner = newOwner

choice Settle

: ContractId MustPay

controller owner

do create MustPay with obligor; owner

In this example, the owner is specified as an observer, since it must be able to see the contract to

exercise the Transfer and Settle choices on it.

The template identifiers of contracts are created through a content-addressing scheme. Thismeans

every contract is self-describing in a sense: it constrains its stakeholder annotations and all

Daml-conformant actions on itself. As a consequence, one can talk about “the” Daml contract

model, as a single contract model encoding all possible instances of all possible templates. This

model is subaction-closed; all exercise and create actions done within an update block are also al-

ways permissible as top-level actions.

5.2.5 Exceptions

The introduction of exceptions, a newDaml feature, hasmany implications for the ledgermodel. This

page describes the changes to the ledger model introduced as part of this new feature.

1070 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.2.5.1 Structure

Under the new feature, Daml programs can raise and catch exceptions. When an exception is caught

in a catch block, the subtransaction starting at the corresponding try block is rolled back.

To support this in our ledger model, we need to modify the transaction structure to indicate which

subtransactions were rolled back. We do this by introducing rollback nodes in the transaction. Each

rollback node contains a rolled back subtransaction. Rollback nodes are not considered ledger ac-

tions.

Therefore we define transactions as a list of nodes, where each node is either a ledger action or a

rollback node. This is reflected in the updated EBNF grammar for the transaction structure:

Transaction ::= Node*

Node ::= Action | Rollback

Rollback ::=
Rollback
 Transaction

Action ::=
Create
 contract

|
Exercise
 party* contract Kind Transaction

|
Fetch
 party* contract

|
NoSuchKey
 key

Kind ::=
Consuming
 |
NonConsuming

Note that Action and Kind have the same definition as before, but since Transaction may now contain

rollback nodes, this means that an Exercise action may have a rollback node as one of its conse-

quences.

For example, the following transaction contains a rollback node inside an exercise. It represents

a paint offer involving multiple banks. The painter P is offering to paint A’s house as long as they

receive an Iou from Bank1 or, failing that, from Bank2. When A accepts, they confirm that transfer

of an Iou via Bank1 has failed for some reason, so they roll it back and proceed with a transfer via

Bank2:

Note also that rollbacknodesmaybenested, which represents a situationwheremultiple exceptions

are raised and caught within the same transaction.

For example, the following transaction contains the previous one under a rollback node. It represents

a case where the “accept” has failed at the last moment, for some reason, and a “cancel” exercise

has been issued in response.

5.2. Daml Ledger Model 1071

Daml SDK Documentation, 2.1.1

5.2.5.2 Consistency

In the previous section on consistency, we defined a “before-after” relation on ledger actions. This

notion needs to be revised in the presence of rollback nodes. It is no longer enough to perform a

preorder traversal of the transaction tree, because the actions under a rollback node cannot affect

actions that appear later in the transaction tree.

For example, a contract may be consumed by an exercise under a rollback node, and immediately

again after the rollback node. This is allowed because the exercise was rolled back, and this does

not represent a “double spend” of the same contract. You can see this in the nested example above,

where the PaintOffer contract is consumed by an “agree” exercise, which is rolled back, and then by

a “cancel” exercise.

So, we now define the “before-after” relation as a partial order, rather than a total order, on all the

actions of a transaction. This relation is defined as follows: act1 comes before act2 (equivalently, act2

comes after act1) if and only if act1 appears before act2 in a preorder traversal of the transaction tree,

and any rollback nodes that are ancestors of act1 are also ancestors of act2.

With this modified “before-after” relation, the notion of internal consistency remains the same.

Meaning that, for example, for any contract c, we still forbid the creation of c coming after any action

on c, and we forbid any action on c coming after a consuming exercise on c.

In the example above, neither consuming exercise comes “after” the other. They are part of separate

“continuities”, so they don’t introduce inconsistency. Here are three continuities implied by the

“before-after” relation. The first:

The second:

1072 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

And the third:

As you can see, in each of these continuities, no contract was consumed twice.

5.2.5.3 Transaction Normalization

The same “before-after” relation can be represented inmore than one way using rollback nodes. For

example, the following three transactions have the same “before-after” relation among their ledger

actions (act1, act2, and act3):

Because of this, these three transactions are equivalent. More generally, two transactions are equiv-

alent if:

• The transactions are the same when you ignore all rollback nodes. That is, if you remove ev-

ery rollback node and absorb its children into its parent, then two transactions are the same.

5.2. Daml Ledger Model 1073

Daml SDK Documentation, 2.1.1

Equivalently, the transactions have the same ledger actions with the same preorder traversal

and subaction relation.

• The transactions have the same “before-after” relation between their actions.

• The transactionshave the sameset of “rollback children”. A “rollback child” is anactionwhose

direct parent is a rollback node.

For all three transactions above, the “transaction tree ignoring rollbacks” consists only of top-level

actions (act1, act2, and act3), the “before-after” relation only says that act2 comes before act3, and all

three actions are rollback children. Thus all three transactions are equivalent.

Transaction normalization is the process by which equivalent transactions are converted into the

same transaction. In the case above, all three transactions become the transaction in the middle

when normalized.

To normalize a transaction, we apply three rules repeatedly across the whole transaction:

1. If a rollback node is empty, we drop it.

2. If a rollback node starts with another rollback node, for instance:

Rollback
 [
Rollback
 tx , node1, ..., nodeN]

Then we re-associate the rollback nodes, bringing the inner rollback node out:

Rollback
 tx,
Rollback
 [node1, ..., nodeN]

3. If a rollback node ends with another rollback node, for instance:

Rollback
 [node1, ..., nodeN,
Rollback
 [node1
, ..., nodeM
]]

Then we flatten the inner rollback node into its parent:

Rollback
 [node1, ..., nodeN, node1
, ..., nodeM
]

In the example above, using rule 3 we can turn the left transaction into the middle transaction, and

using rule 2 we can turn the right transaction into themiddle transaction. None of these rules apply

to the middle transaction, so it is already normalized.

In the end, a normalized transaction cannot contain any rollback node that starts or ends with an-

other rollback node, nor may it contain any empty rollback nodes. The normalization process mini-

mizes the number of rollback nodes and their depth needed to represent the transaction.

To reduce the potential for information leaks, the ledger model must only contain normalized trans-

actions. This also applies to projected transactions. An unnormalized transaction is always invalid.

1074 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.2.5.4 Authorization

Since they are not ledger actions, rollback nodes do not have authorizers directly. Instead, a ledger

is well-authorized exactly when the same ledger with rollback nodes removed (that is, replacing the

rollback nodes with their children) is well-authorized, according to the old definition.

This is captured in the following rules:

• Whena rollbacknode is authorizedby p, then all of its children are authorizedby p. In particular:

– Top-level rollback nodes share the authorization of the requestors of the commit with all

of its children.

– Rollback nodes that are a consequence of an exercise action act on a contract c share the

authorization of the signatories of c and the actors of act with all of its children.

– A nested rollback node shares the authorization it got from its parent with all of its chil-

dren.

• The required authorizers of a rollback node are the union of all the required authorizers of its

children.

5.2.5.5 Privacy

Rollback nodes also have an interesting effect on the notion of privacy in the ledger model. When

projecting a transaction for a party p, it’s necessary to preserve some of the rollback structure of the

transaction, even if p does not have the right to observe every action under it. For example, we need

p to be able to verify that a rolled back exercise (to which they are an informee) is conformant, but

we also need p to know that the exercise was rolled back.

We adjust the definition of projection as follows:

1. For a ledger action, the projection for p is the same as it was before. That is, if p is an informee

of the action, then the entire subtree is preserved. Otherwise the action is dropped, and the

action’s consequences are projected for p.

2. For a rollback node, the projection for p consists of the projection for p of its children, wrapped

up in a new rollback node. In other words, projection happens under the rollback node, but the

node is preserved.

After applying this process, the transaction must be normalized.

Consider the deeply nested example from before. To calculate the projection for Bank1, we note that

the only visible action is the bottom left exercise. Removing the actions that Bank1 isn’t an informee

of, this results in a transaction containing a rollback node, containing a rollback node, containing

an exercise. After normalization, this becomes a simple rollback node containing an exercise. See

below:

5.2. Daml Ledger Model 1075

Daml SDK Documentation, 2.1.1

The privacy section of the ledger model makes a point of saying that a contract model should be

subaction-closed to support projections. But this requirement is not necessarily true once we in-

troduce rollbacks. Rollback nodes may contain actions that are not valid as standalone actions,

since they may have been interrupted prematurely by an exception.

Instead, we require that the contract model be projection-closed, i.e. closed under projections for

any party ‘p’. This is a weaker requirement that matches what we actually need.

5.2.5.6 Relation to Daml Exceptions

Rollback nodes are created when an exception is thrown and caught within the same transaction. In

particular, any exception that is caught within a try-catch will generate a rollback node if there are

any ledger actions to roll back. For example:

try do

cid <- create MyContract { ... }

exercise cid MyChoice { ... }

throw MyException

catch

MyException ->

create MyOtherContract { ... }

This Daml code will try to create a contract, and exercise a choice on this contract, before throwing

an exception. That exception is caught immediately, and then another contract is created.

Thus a rollback node is created, to reset the ledger to the state it had at the start of the “try” block.

The rollback node contains the create and exercise nodes. After the rollback node, another contract

is created. Thus the final transaction looks like this:

1076 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Note that rollback nodes are only created if an exception is caught. An uncaught exception will result

in an error, not a transaction.

After execution of the Daml code, the generated transaction is normalized.

5.3 Identity and Package Management

Since Daml ledgers enable parties to automate the management of their rights and obligations

through smart contract code, they also have to provide party and code management functions.

Hence, this document addresses:

1. Management of parties’ digital identifiers in a Daml ledger.

2. Distribution of smart contract code between the parties connected to the same Daml ledger.

The access to this functionality is usuallymore restricted compared to the other Ledger API services,

as they are part of the administrative API. This document is intended for the users and implementers

of this API.

The administrative part of the Ledger API provides both a party management service and a package

service. Any implementation of the party and package services is guaranteed to accept inputs and

provide outputs of the format specified by these services. However, the services’ behavior – the rela-

tionship between the inputs andoutputs that the variousparties observe – is largely implementation

dependent. The remainder of the document will present:

1. The minimal behavioral guarantees for identity and package services across all ledger imple-

mentations. The service users can rely on these guarantees, and the implementers must en-

sure that they hold.

2. Guidelines for service users, explaining how different ledgers handle the unspecified part of

the behavior.

5.3. Identity and Package Management 1077

Daml SDK Documentation, 2.1.1

5.3.1 Identity Management

A Daml ledger may freely define its own format of party and participant node identifiers, with some

minor constraints on the identifiers’ serialized form. For example, a ledgermay use human-readable

strings as identifiers, such as “Alice” or “Alice’s Bank”. A different ledger might use public keys

as identifiers, or the keys’ fingerprints. The applications should thus not rely on the format of the

identifier – even a software upgrade of a Daml ledger may introduce a new format.

By definition, identifiers identify parties, and are thus unique for a ledger. They do not, however,

have to be unique across different ledgers. That is, two identical identifiers in two different ledgers

do not necessarily identify the same real-world party. Moreover, a real-world entity can havemultiple

identifiers (and thus parties) within the same ledger.

Since the identifiers might be difficult to interpret and manage for humans, the ledger may also

accompany each identifier with a user-friendly display name. Unlike the identifier, the display name

is not guaranteed to be unique, and two different participant nodes might return different display

names for the same party identifier. Furthermore, a display name is in general not guaranteed to

have any link to real world identities. For example, a party with a display name “Attorney of Nigerian

Prince”might well be controlled by a real-world entity without a bar exam. However, particular ledger

deployments might make stronger guarantees about this link. Finally, the association of identifiers

to display names may change over time. For example, a party might change its display name from

“Bruce” to “Caitlyn” – as long as the identifier remains the same, so does the party.

5.3.1.1 Provisioning Identifiers

The set of parties of anyDaml ledger is dynamic: newpartiesmay always be added to the system. The

first step in adding a new party to the ledger is to provision a new identifier for the party. The Ledger

API provides an AllocatePartymethod for this purpose. Themethod, if successful, returns an newparty

identifier. The AllocateParty call can take the desired identifier and display name as optional

parameters, but these aremerely hints and the ledger implementationmay completely ignore them.

If the call returns a new identifier, the participant node serving this call is ready to host the party with

this identifier. For some ledgers (Daml for VMware Blockchain in particular), the returned identifier

is guaranteed to be unique in the ledger; namely, no other call of the AllocateParty method at

this or any other ledger participant may return the same identifier. On Canton ledgers, the identifier

is also unique as long as the participant node is configured correctly (in particular, it does not share

its private key with other participant nodes).

After an identifier is returned, the ledger is set up in such a way that the participant node serving

the call is allowed to issue commands and receive transactions on behalf of the party. However, the

newly provisioned identifier need not be visible to the other participant nodes. For example, consider

the setupwith two participants P1 and P2, where the party Alice_123 is hosted on P1. Assume that

a new party Bob_456 is next successfully allocated on P2. As long as P1 and P2 are connected to the

same Canton domain or Daml ledger, Alice_123 can now submit a command with Bob_456 as an

informee.

For diagnostics, the ledger provides a ListKnownParties method which lists parties known to the par-

ticipant node. The parties can be local (i.e., hosted by the participant) or not.

1078 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.3.1.2 Identifiers and Authorization

To issue commands or receive transactions on behalf of a newly provisioned party, an application

must provide a proof to the party’s hosting participant that they are authorized to represent the

party. Before the newly provisioned party can be used, the application will have to obtain a token for

this party. The issuance of tokens is specific to each ledger and independent of the Ledger API. The

same is true for the policy which the participants use to decide whether to accept a token.

To learn more about Ledger API security model, please read the Authorization documentation.

5.3.1.3 Identifiers and the Real World

The “substrate” on which Daml workflows are built are the real-world obligations of the parties in

the workflow. To give value to these obligations, they must be connected to parties in the real world.

However, the process of linking party identifiers to real-world entities is left to the ledger implemen-

tation.

In centralized deployments, one can simplify the process by trusting the operator of the writer

node(s) with providing the link to the real world. For example, if the operator is a stock exchange, it

might guarantee that a real-world exchange participant whose legal name is “Bank Inc.” is repre-

sentedbya ledger partywith the identifier “Bank Inc.”. Alternatively, itmightusea random identifier,

but guarantee that the display name is “Bank Inc.”. In general, a ledgermight not have such a single

store of identities. The solutions for linking the identifiers to real-world identities could rely on cer-

tificate chains, verifiable credentials, or other mechanisms. The mechanisms can be implemented

off-ledger, using Daml workflows (for instance, a “know your customer” workflow), or a combination

of these.

5.3.2 Package Management

All Daml ledgers implement endpoints that allow for provisioning new Daml code to the ledger. The

vetting process for this code, however, depends on the particular ledger implementation and its

configuration. The remainder of this section describes the endpoints and general principles behind

the vetting process. The details of the process are ledger-dependent.

5.3.2.1 Package Formats and Identifiers

Any code – i.e., Daml templates – to be uploaded must compiled down to the Daml-LF language. The

unit of packaging for Daml-LF is the .dalf file. Each .dalf file is uniquely identified by its package

identifier, which is the hash of its contents. Templates in a .dalf file can reference templates from

other .dalf files, i.e., .dalf files can depend on other .dalf files. A .dar file is a simple archive

containing multiple .dalf files, and has no identifier of its own. The archive provides a convenient

way to package .dalf files together with their dependencies. The Ledger API supports only .dar file

uploads. Internally, the ledger implementation need not (and often will not) store the uploaded .dar

files, but only the contained .dalf files.

5.3. Identity and Package Management 1079

https://www.w3.org/TR/vc-data-model/

Daml SDK Documentation, 2.1.1

5.3.2.2 Package Management API

The package management API supports two methods:

• UploadDarFile for uploading .dar files. The ledger implementation is, however, free to reject

any and all packages and return an error. Furthermore, even if the method call succeeds, the

ledger’s vetting processmight restrict the usability of the template. For example, assume that

Alice successfully uploads a .dar file to her participant containing a NewTemplate template.

It may happen that she can now issue commands that create NewTemplate instances with

Bob as a stakeholder, but that all commands that create NewTemplate instances with Charlie

as a stakeholder fail.

• ListKnownPackages that lists the .dalf package vetted for usage at the participant node. Like

with the previousmethod, the usability of the listed templates depends on the ledger’s vetting

process.

5.3.2.3 Package Vetting

Using a Daml package entails running its Daml code. The Daml interpreter ensures that the Daml

code cannot interact with the environment of the system on which it is executing. However, the

operators of the ledger infrastructure nodes may still wish to review and vet any Daml code before

allowing it to execute. One reason for this is that the Daml interpreter currently lacks a notion of

reproducible resource limits, and executing a Daml contract might result in high memory or CPU

usage.

Thus, Daml ledgers generally allow some form of vetting a package before running its code on a

node. Not all nodes in a Daml ledger must vet all packages, as it is possible that some of them will

not execute the code. The exact vetting mechanism is ledger-dependent. For example, in the Daml

Sandbox, the vetting is implicit: uploadingapackage through the Ledger API already vets thepackage,

since it’s assumed that only the system administrator has access to these API facilities. The vetting

process can be manual, where an administrator inspects each package, or it can be automated, for

example, by accepting only packages with a digital signature from a trusted package issuer.

In Canton, participant nodes also only need to vet code for the contracts of the parties they host.

As only participants execute contract code, only they need to vet it. The vetting results may also

differ at different participants. For example, participants P1 and P2might vet a package containing

a NewTemplate template, whereas P3might reject it. In that case, if Alice is hosted at P1, she can

create NewTemplate instances with stakeholder Bob who is hosted at P2, but not with stakeholder

Charlie if he’s hosted at P3.

5.3.2.4 Package Upgrades

The Ledger API does not have any special support for package upgrades. A new version of an existing

package is treated the same as a completely new package, and undergoes the same vetting process.

Upgrades to active contracts can be done by the Daml code of the new package version, by archiving

the old contracts and creating new ones.

1080 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.4 Time

The Daml language contains a function getTime which returns the “current time”. However, the no-

tion of time comes with a lot of problems in a distributed setting.

This document describes the detailed semantics of time on Daml ledgers, centered around the two

timestamps assigned to each transaction: the ledger time lt_TX and the record time rt_TX.

5.4.1 Ledger time

The ledger time lt_TX is a property of a transaction. It is a timestamp that defines the value of all

getTime calls in the given transaction, and has microsecond resolution. The ledger time is assigned

by the submitting participant as part of the Daml command interpretation.

5.4.2 Record time

The record time rt_TX is another property of a transaction. It is timestamp with microsecond reso-

lution, and is assigned by the ledger when the transaction is recorded on the ledger.

The record time should be an intuitive representation of “real time”, but the Daml ledger model

does not prescribe how exactly the record time is assigned. Each ledger implementation might use

a different way of representing time in a distributed setting - for details, contact your ledger operator.

5.4.3 Guarantees

The ledger time of valid transaction TXmust fulfill the following rules:

1. Causal monotonicity: for any action (create, exercise, fetch, lookup) in TX on a contract C,

lt_TX >= lt_C, where lt_C is the ledger time of the transaction that created C.

2. Bounded skew: rt_TX - skew_min <= lt_TX <= rt_TX + skew_max, where skew_min

and skew_max are parameters defined by the ledger.

Apart from that, no other guarantees are given on the ledger time. In particular, neither the ledger

time nor the record time need to be monotonically increasing.

Time has therefore to be considered slightly fuzzy in Daml, with the fuzziness depending on the

skew parameters. Daml applications should not interpret the value returned by getTime as a precise

timestamp.

5.4.4 Ledger time model

The ledger time model is the set of parameters used in the assignment and validation of ledger time.

It consists of the following:

1. skew_min and skew_max, the bounds on the difference between lt_TX and rt_TX.

2. transaction_latency, the averageduration from the timea transaction is submitted froma

participant to the ledger until the transaction is recorded. This value is used by the participant

to account for latency when submitting transactions to the ledger: transactions are submitted

slightly ahead of their ledger time, with the intention that they arrive at lt_TX == rt_TX.

The ledger time model is part of the ledger configuration and can be changed by ledger operators

through the SetTimeModel config management API.

5.4. Time 1081

Daml SDK Documentation, 2.1.1

5.4.5 Assigning ledger time

The ledger time is assigned automatically by the participant. In most cases, Daml applications will

not need to worry about ledger time and record time at all.

For reference, this section describes the details of how the ledger time is currently assigned. The

algorithm is not part of the definition of time in Daml, and may change in the future.

1. When submitting commands over the ledger API, users can optionally specify a

min_ledger_time_rel or min_ledger_time_abs argument. This defines a lower bound

for the ledger time in relative and absolute terms, respectively.

2. The ledger time is set to the highest of the following values:

1. max(lt_C_1, ..., lt_C_n), the maximum ledger time of all contracts used by the

given transaction

2. t_p, the local time on the participant

3. t_p + min_ledger_time_rel, if min_ledger_time_rel is given

4. min_ledger_time_abs, if min_ledger_time_abs is given

3. Since the set of commands used by given transaction can depend on the chosen time, the

above process might need to be repeated until a suitable ledger time is found.

4. If no suitable ledger time is found after 3 iterations, the submission is rejected. This can hap-

pen if there is contention around a contract, or if the transaction uses a very fine-grained con-

trol flow based on time.

5. At this point, the ledger time may lie in the future (e.g., if a large value for

min_ledger_time_rel was given). The participant waits until lt_TX - transac-

tion_latency before it submits the transaction to the ledger - the intention is that the

transaction is record at lt_TX == rt_TX.

Use the parameters min_ledger_time_rel and min_ledger_time_abs if you expect that com-

mand interpretation will take a considerate amount of time, such that by the time the resulting

transaction is submitted to the ledger, its assigned ledger time is not valid anymore. Note that these

parameters can only make sure that the transaction arrives roughly at rt_TX at the ledger. If a sub-

sequent validation on the ledger takes longer than skew_max, the transaction will still be rejected

and you’ll have to ask your ledger operator to increase the skew_max time model parameter.

5.5 Causality and Local Ledgers

Daml ledgers do not totally order all transactions. So different partiesmay observe two transactions

on different Participant Nodes in different orders via the Ledger API. Moreover, different Participant

Nodes may output two transactions for the same party in different orders. This document explains

the ordering guarantees that Daml ledgers do provide, by example and formally via the concept of

causality graphs and local ledgers.

The presentation assumes that you are familiar with the following concepts:

• The Ledger API

• The Daml Ledger Model

1082 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.5.1 Causality examples

A Daml Ledger need not totally order all transaction, unlike ledgers in the Daml Ledger Model. The

following examples illustrate these ordering guarantees of the Ledger API. They are based on the

paint counteroffer workflow from the Daml Ledger Model’s privacy section, ignoring the total ordering

coming from the Daml Ledger Model. Recall that the party projections are as follows.

5.5. Causality and Local Ledgers 1083

Daml SDK Documentation, 2.1.1

5.5.1.1 Stakeholders of a contract see creation and archival in the same order.

Every Daml Ledger orders the creation of the CounterOffer A P Bank before the painter exercising the

consuming choice on the CounterOffer. (If the Create was ordered after the Exercise, the resulting

shared ledger would be inconsistent, which violates the validity guarantee of Daml ledgers.) Accord-

ingly, Alice will see the creation before the archival on her transaction stream and so will the painter.

This does not depend on whether they are hosted on the same Participant Node.

5.5.1.2 Signatories of a contract and stakeholder actors see usages after the creation and

before the archival.

The Fetch A (Iou Bank A) action comes after the creation of the Iou Bank A and before its archival, for

both Alice and the Bank, because the Bank is a signatory of the Iou Bank A contract and Alice is a

stakeholder of the Iou Bank A contract and an actor on the Fetch action.

5.5.1.3 Commits are atomic.

Alice sees the Create of her Iou before the creation of the CounterOffer, because the CounterOffer is

created in the same commit as the Fetch of the Iou and the Fetch commit comes after the Create of

the Iou.

5.5.1.4 Non-consuming usages in different commits may appear in different orders.

Suppose that the Bank exercises a non-consuming choice on the Iou Bank A without consequences

while Alice creates the CounterOffer. In the ledger shown below, the Bank’s commit comes before

Alice’s commit.

The Bank’s projection contains the nonconsuming Exercise and the Fetch action on the Iou. Yet, the

Fetchmay come before the non-consuming Exercise in the Bank’s transaction tree stream.

1084 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.5.1.5 Out-of-band causality is not respected.

The following examples assume that Alice splits up her commit into two as follows:

Fig. 10: Counteroffer workflow with four commits.

Alice can specify in the CounterOffer the Iou that she wants to pay the painter with. In a deployed

implementation, Alice’s application first observes the created Iou contract via the transaction service

or active contract service before she requests to create the CounterOffer. Such application logic does

not induce an ordering between commits. So the creation of the CounterOffer need not come after the

creation of the Iou.

If Alice is hosted on several Participant Nodes, the Participant Nodes can therefore output the two

creations in either order.

The rationale for this behaviour is that Alice could have learnt about the contract ID out of band or

made it up. The Participant Nodes therefore cannot know whether there will ever be a Create event

for the contract. So if Participant Nodes delayed outputting the Create action for the CounterOffer

until a Create event for the Iou contract was published, this delay might last forever and liveness is

lost. Daml ledgers therefore do not capture data flow through applications.

5.5.1.6 Divulged actions do not induce order.

The painter witnesses the fetching of Alice’s Iouwhen the ShowIou contract is consumed. The painter

also witnesses the Exercise of the Iou when Alice exercises the transfer choice as a consequence

of the painter accepting the CounterOffer. However, as the painter is not a stakeholder of Alice’s Iou

contract, hemay observe Alice’s ShowIou commit after the archival of the Iou as part of accepting the

CounterOffer.

In practice, this can happen in a setup where two Participant Nodes N1 and N2 host the painter. He

sees the divulged Iou and the created CounterOffer through N1‘s transaction tree streamand then sub-

mits the acceptance through N1. Like in the previous example, N2 does not know about the depen-

dence of the two commits. Accordingly, N2 may output the accepting transaction before the ShowIou

contract on the transaction stream.

Even though this may seem unexpected, it is in line with stakeholder-based ledgers: Since the

painter is not a stakeholder of the Iou contract, he should not care about the archivals or creates

of the contract. In fact, the divulged Iou contract shows up neither in the painter’s active contract

service nor in the flat transaction stream. Suchwitnessed events are included in the transaction tree

stream as a convenience: They relieve the painter from computing the consequences of the choice

and enable him to check that the action conforms to the Daml model.

5.5. Causality and Local Ledgers 1085

Daml SDK Documentation, 2.1.1

Similarly, being an actor of an Exercise action induces order with respect to other uses of the con-

tract only if the actor is a contract stakeholder. This is because non-stakeholder actors of an Exer-

cise action merely authorize the action, but they do not track whether the contract is active; this is

what signatories and contract observers are for. Analogously, choice observers of an Exercise action

benefit from the ordering guarantees only if they are contract stakeholders.

5.5.1.7 The ordering guarantees depend on the party.

By the previous example, for the painter, fetching the Iou is not ordered before transferring the Iou.

For Alice, however, the Fetchmust appear before the Exercise because Alice is a stakeholder on the

Iou contract. This shows that the ordering guarantees depend on the party.

5.5.2 Causality graphs

The above examples indicate that Daml ledgers order transactions only partially. Daml ledgers can

be represented as finite directed acyclic graphs (DAG) of transactions.

Definition »causality graph« A causality graph is a finite directed acyclic graph G of transactions

that is transitively closed. Transitively closedmeans thatwhenever v1 -> v2 and v2 -> v3 are edges

in G, then there is also an edge v1 -> v3 in G.

Definition »action order« For a causality graph G, the induced action order on the actions in the

transactions combines the graph-induced order between transactions with the execution or-

der of actions inside each transaction. It is the least partial order that includes the following

ordering relations between two actions act1 and act2:

• act1 and act2 belong to the same transaction and act1 precedes act2 in the transaction.

• act1 and act2 belong to different transactions in vertices tx1 and tx2 and there is a path in

G from tx1 to tx2.

Note: Checking for an edge instead of a path in G from tx1 to tx2 is equivalent because

causality graphs are transitively closed. The definition uses path because the figures be-

low omit transitive edges for readability.

The action order is a partial order on the actions in a causality graph. For example, the following

diagram shows such a causality graph for the ledger in the above Out-of-band causality example. Each

grey box represents one transaction and the graph edges are the solid arrows between the boxes.

Diagrams omit transitive edges for readability; in this graph the edge from tx1 to tx4 is not shown.

The Create action of Alice’s Iou is ordered before the Create action of the ShowIou contract because

there is an edge from the transaction tx1 with the Iou Create to the transaction tx3 with the ShowIou

Create. Moreover, the ShowIou Create action is ordered before the Fetch of Alice’s Iou because the

Create action precedes the Fetch action in the transaction. In contrast, the Create actions of the

CounterOffer andAlice’s Iou are unordered: neither precedes the other because they belong to different

transaction and there is no directed path between them.

1086 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Fig. 11: Causality graph for the counteroffer workflow with four commits.

5.5.2.1 Consistency

Consistency ensures that a causality graph sufficiently orders all the transactions. It generalizes

ledger consistency from the Daml Ledger Model as explained below.

Definition »Causal consistency for a contract« Let G be a causality graph and X be a set of actions

on a contract c that belong to transactions in G. The graph G is causally consistent for the

contract c on X if all of the following hold:

• If X is not empty, then X contains exactly one Create action. This action precedes all other

actions in X in G‘s action order.

• If X contains a consuming Exercise action act, then act follows all actions in X other than

act in G‘s action order.

Definition »Causal consistency for a key« Let G be a causality graph and X be a set of actions on a

key k that belong to transactions in G. The graph G is causally consistent for the key k on X if

all of the following hold:

• All Create and consuming Exercise actions in X are totally ordered in G‘s action order and

Creates and consuming Exercises alternate, starting with Create. Every consecutive Cre-

ate-Exercise pair acts on the same contract.

• All NoSuchKey actions in X are action-ordered with respect to all Create and consuming

Exercise actions in X. NoNoSuchKey action is action-ordered between aCreate action and

its subsequent consuming Exercise action in X.

Definition »Consistency for a causality graph« LetXbeasubset of the actions in a causality graph

G. Then G is consistent on X (or X-consistent) if G is causally consistent for all contracts c on

the set of actions on c in X and for all keys k on the set of actions on k in X. G is consistent if G

is consistent on all the actions in G.

When edges are added to an X-consistent causality graph such that it remains acyclic and tran-

sitively closed, the resulting graph is again X-consistent. So it makes sense to consider minimal

consistent causality graphs.

Definition »Minimal consistent causality graph« An X-consistent causality graph G is X-minimal

if no strict subgraph of G (same vertices, fewer edges) is an X-consistent causality graph. If X

is the set of all actions in G, then X is omitted.

For example, the above causality graph for the split counteroffer workflow is consistent. This causality

graph is minimal, as the following analysis shows:

5.5. Causality and Local Ledgers 1087

Daml SDK Documentation, 2.1.1

Edge Justification

tx1 -> tx3 Alice’s Iou Create action of must precede the Fetch action.

tx2 -> tx4 The CounterOffer Create action of must precede the Exercise action.

tx3 -> tx4 The consuming Exercise action on Alice’s Iou must follow the Fetch action.

We can focus on parts of the causality graph by restricting the set X. If X consists of the actions on

Iou contracts, this causality graph is X-consistent. Yet, it is not X-minimal since the edge tx2 -> tx4

can be removedwithout violating X-consistency: the edge is required only because of the CounterOffer

actions, which are excluded fromX. TheX-minimal consistent causality graph looks as follows, where

the actions in X are highlighted in red.

Fig. 12: Minimal consistent causality graph for the highlighted actions.

Another example of a minimal causality graph is shown below. At the top, the transactions tx1 to tx4

create an Iou for Alice, exercise two non-consuming choices on it, and transfer the Iou to the painter.

At the bottom, tx5asserts that there is nokey for anAccount contract for thepainter. Then, tx6 creates

an such account with balance 0 and tx7 deposits the painter’s Iou from tx4 into the account, updating

the balance to 1.

1088 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Unlike in a linearly ordered ledger, the causality graph relates the transactions of the Iou transfer

workflow with the Account creation workflow only at the end, when the Iou is deposited into the ac-

count. As will be formalized below, the Bank, Alice, and the painter therefore need not observe the

transactions tx1 to tx7 in the same order.

Moreover, transaction tx2 and tx3 are unordered in this causality graph even though they act on the

same Iou contract. However, as both actions are non-consuming, they do not interfere with each

other and could therefore be parallelized, too. Alice and the Bank accordingly may observe them in

different orders.

The NoSuchKey action in tx5 must be ordered with respect to the two Account Create actions in tx6

and tx7and the consumingExerciseon theAccount contract in tx7, by thekey consistency conditions.

For this set of transactions, consistency allows only one such order: tx5 comes before tx6 because

tx7 is atomic: tx5 cannot be interleaved with tx7, e.g., between the consuming Exercise of the Acc Bank

P P 0 and the Create of the updated account Acc Bank P P 1.

NoSuchKey actions are similar to non-consumingExercises and Fetches of contractswhen it comes

to causal ordering: If there were another transaction tx5’with aNoSuchKey (Acc, Bank, P) action, then

tx5 and tx5’ need not be ordered, just like tx2 and tx3 are unordered.

5.5. Causality and Local Ledgers 1089

Daml SDK Documentation, 2.1.1

5.5.2.2 From causality graphs to ledgers

Since causality graphs are acyclic, their vertices can be sorted topologically and the resulting list is

again a causality graph, where every vertex has an outgoing edge to all later vertices. If the original

causality graph is X-consistent, then so is the topological sort, as topological sorting merely adds

edges. For example, the transactions on the ledger in the out-of-band causality exampleare a topological

sort of the corresponding causality graph.

Conversely, we can reduce an X-consistent causality graph to only the causal dependencies that

X-consistency imposes. This gives a minimal X-consistent causality graph.

Definition »Reduction of a consistent causality graph« For an X-consistent causality graph G,

there exists a unique minimal X-consistent causality graph reduceX(G) with the same vertices

and the edges being a subset of G. reduceX(G) is called the X-reduction of G. As before, X is omit-

ted if it contains all actions in G.

The causality graph for the split CounterOffer workflow is minimal and therefore its own reduction. It

is also the reduction of the topological sort, i.e., the ledger in the out-of-band causality example.

Note: The reduction reduceX(G) of an X-consistent causality graph G can be computed as follows:

1. Set the vertices of G’ to the vertices of G.

2. The causal consistency conditions for contracts and keys demand that certain pairs of actions

act1 and act2 in X must be action-ordered. For each such pair, determine the actions’ ordering

in G and add an edge to G’ from the earlier action’s transaction to the later action’s transaction.

3. reduceX(G) is the transitive closure of G’.

Topological sort and reduction link causality graphs G to the ledgers L from the Daml Ledger Model.

Topological sort transformsa causality graphG into a sequence of transactions; extending themwith

the requesters gives a sequence of commits, i.e., a ledger in the Daml Ledger Model. Conversely, a

sequence of commits L yields a causality graph GL by taking the transactions as vertices and adding

an edge from tx1 to tx2 whenever tx1‘s commit precedes tx2‘s commit in the sequence.

There are now two consistency definitions:

• Ledger Consistency according to Daml Ledger Model

• Consistency of causality graph

Fortunately, the two definitions are equivalent: If G is a consistent causality graph, then the topolog-

ical sort is ledger consistent. Conversely, if the sequence of commits L is ledger consistent, GL is a

consistent causality graph, and so is the reduction reduce(GL).

5.5.3 Local ledgers

As explained in the Daml Ledger Model, parties see only a projection of the shared ledger for privacy

reasons. Like consistency, projection extends to causality graphs as follows.

Definition »Stakeholder informee« A party P is a stakeholder informee of an action act if all of the

following holds:

• P is an informee of act.

• If act is an action on a contract then P is a stakeholder of the contract.

1090 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

An Exercise and Fetch action acts on the input contract, a Create action on the created contract,

and a NoSuchKey action does not act on a contract. So for a NoSuchKey action, the stakeholder

informees are the key maintainers.

Definition »Causal consistency for a party« A causality graph G is consistent for a party P

(P-consistent) if G is consistent on all the actions that P is a stakeholder informee of.

The notions of X-minimality and X-reduction extend to parties accordingly.

For example, the split counteroffer causality graph without the edge tx2 -> tx4 is consistent for the Bank

because the Bank is a stakeholder informee of exactly the highlighted actions. It is also minimal

Bank-consistent and the Bank-reduction of the original split counteroffer causality graph.

Definition »Projection of a consistent causality graph« The projection projP(G) of a consistent

causality graph G to a party P is the P-reduction of the following causality graph G’:

• The vertices of G’ are the vertices of G projected to P, excluding empty projections.

• There is an edge between two vertices v1 and v2 in G’ if there is an edge from the G-vertex

corresponding to v1 to the G-vertex corresponding to v2.

For the split counteroffer causality graph, the projections to Alice, the Bank, and the painter are as fol-

lows.

Fig. 13: Projections of the split counteroffer causality graph.

Alice’s projection is the same as the originalminimal causality graph. The Bank sees only actions on

Iou contracts, so the causality graph projection does not contain tx2 anymore. Similarly, the painter

is not aware of tx1, where Alice’s Iou is created. Moreover, there is no longer an edge from tx3 to tx4 in

5.5. Causality and Local Ledgers 1091

Daml SDK Documentation, 2.1.1

the painter’s local ledger. This is because the edge is induced by the Fetch of Alice’s Iou preceding

the consuming Exercise. However, the painter is not an informee of those two actions; he merely

witnesses the Fetch and Exercise actions as part of divulgence. Therefore no ordering is required

from the painter’s point of view. This difference explains the divulgence causality example.

5.5.3.1 Ledger API ordering guarantees

The Transaction Service provides the updates as a stream of Daml transactions and the Active Con-

tract Service summarizes all the updates up to a given point by the contracts that are active at this

point. Conceptually, both services are derived from the local ledger that the Participant Node man-

ages for each hosted party. That is, the transaction tree stream for a party is a topological sort of

the party’s local ledger. The flat transaction stream contains precisely the CreatedEvents and

ArchivedEvents that correspond to Create and consuming Exercise actions in transaction trees

on the transaction tree stream where the party is a stakeholder of the affected contract.

Note: The transaction trees of the Transaction Service omit Fetch and NoSuchKey actions that are

part of the transactions in the local ledger. The Fetch and NoSuchKey actions are thus removed

before the Transaction Service outputs the transaction trees.

Similarly, the active contract service provides the set of contracts that are active at the returned

offset according to the Transaction Service streams. That is, the contract state changes of all events

from the transaction event stream are taken into account in the provided set of contracts. In par-

ticular, an application can process all subsequent events from the flat transaction stream or the

transaction tree stream without having to take events before the snapshot into account.

Since the topological sort of a local ledger is not unique, different Participant Nodes may pick dif-

ferent orders for the transaction streams of the same party. Similarly, the transaction streams for

different partiesmay order common transactions differently, as the party’s local ledgers impose dif-

ferent ordering constraints. Nevertheless, Daml ledgers ensure that all local ledgers are projections

of a virtual shared causality graph that connects to the Daml Ledger Model as described above. The

ledger validity guarantees therefore extend via the local ledgers to the Ledger API. These guarantees

are subject to the deployed Daml ledger’s trust assumptions.

Note: The virtual shared causality graph exists only as a concept, to reason about Daml ledger guar-

antees. A deployed Daml ledger in general does not store or even construct such a shared causality

graph. The Participant Nodes merely maintain the local ledgers for their parties. They synchronize

these local ledgers to the extent that they remain consistent. That is, all the local ledgers can in

theory be combined into a consistent single causality graph of which they are projections.

1092 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

5.5.3.2 Explaining the causality examples

The causality examples can be explained in terms of causality graphs and local ledgers as follows:

1. Stakeholders of a contract see creation and archival in the same order. Causal consistency for the

contract requires that theCreate comes before the consuming Exercise action on the contract.

As all stakeholders are informees onCreate and consumingExercise actions of their contracts,

the stakeholder’s local ledgers impose this order on the actions.

2. Signatories of a contract and stakeholder actors see usages after the creation and before the archival.

Causal consistency for the contract requires that the Create comes before the non-consuming

Exercise and Fetch actions of a contract and that consuming Exercises follow them. Since

signatories and stakeholder actors are informees of Create, Exercise, and Fetch actions, the

stakeholder’s local ledgers impose this order on the actions.

3. Commits are atomic. Local ledgers are DAGs of (projected) transactions. Topologically sorting

such a DAG cannot interleave one transaction with another, even if the transaction consists of

several top-level actions.

4. Non-consuming usages in different commitsmay appear in different orders. Causal consistency does

not require ordering between non-consuming usages of a contract. As there is no other action

in the transaction that would prescribe an ordering, the Participant Nodes can output them in

any order.

5. Out-of-band causality is not respected. Out-of-band data flow is not captured by causal consis-

tency and therefore does not induce ordering.

6. Divulged actions do not induce order. The painter is not an informee of the Fetch and Exercise

actions on Alice’s Iou; he merely witnesses them. The painter’s local ledger therefore does not

order tx3 before tx4. So the painter’s transaction stream can output tx4 before tx3.

7. The ordering guarantees depend on the party. Alice is an informee of the Fetch and Exercise actions

on her Iou. Unlike for the painter, her local ledger does order tx3 before tx4, so Alice is guaranteed

to observe tx3 before tx4 on all Participant Nodes through which she is connect to the Daml

ledger.

5.6 Daml Ecosystem Overview

5.6.1 Status Definitions

Throughout the documentation, we use labels to mark features of APIs not yet deemed stable. This

page gives meaning to those labels.

5.6.1.1 Early Access Features

Features or components covered by these docs are Stable by default. Stable features and components

constitute Daml’s “public API” in the sense of Semantic Versioning. Feature and components that are

not Stable are called “Early Access” and called out explicitly.

Early Access features are opt-in whenever possible, needing to be activated with special commands

or flags needing to be started up separately, or requiring the use of additional endpoints, for example.

Within the Early Access category, we distinguish three labels:

Labs

5.6. Daml Ecosystem Overview 1093

Daml SDK Documentation, 2.1.1

Labs components and features are experiments, introduced for evaluation, testing, or

project-internal use. There is no intent to develop them into a stable feature other than

to see whether they add value and find uptake. They can be changed or discontinued

without advance notice. They may be poorly documented and it is not recommended to

start relying on them.

Alpha

Alpha components and features are early preview versions of features being actively de-

veloped to become a stable part of the ecosystem. At the Alpha stage, they are not yet

feature complete, may have poor runtime characteristics, are still subject to frequent

change, and may not be fully documented. Alpha features can be evaluated, and used in

PoCs, but should not yet be relied upon for large projects or production use where break-

ages or changes to APIs would be costly.

Beta

Beta components and features are preview versions of features that are close tomaturity.

They are characterized by being considered feature complete, and the APIs close to the

final public APIs. It is relatively safe to build on Beta features as long as the documented

caveats to runtime characteristics are understood and bugs and minor API adjustments

are not too costly.

5.6.1.2 Deprecation

In addition to being labelled Early Access, features and components can also be labelled “Depre-

cated”. Deprecation follows a deprecation cycle laid out in the table below. The date of deprecation

is documented in Daml Ecosystem Overview.

Deprecated features can be relied upon during the deprecation cycle to the same degree as their

non-deprecated counterparts, but building on deprecated features may hinder an upgrade to new

Daml versions following the deprecation cycle.

5.6.1.3 Comparison of Statuses

The table below gives a concise overview of the labels used for Daml features and components.

1094 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Table 2: Feature Maturities

Stable Beta Alpha Labs

Func-

tional-

ity

Func-

tional

Com-

plete-

ness

Functionally com-

plete

Considered func-

tionally complete,

but subject to

change according

to usability testing

MVP-level function-

ality covering at

least a few core

use-cases

Functionality cov-

ering one specific

use-case it was

made for

Non-functional

Re-

quire-

ments

Perfor-

mance

Unless stated oth-

erwise, the feature

can be used with-

out concern about

system perfor-

mance.

Current perfor-

mance impacts

and expected per-

formance for the

stable release are

documented.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Using the fea-

ture may have

significant undoc-

umented impact

on overall system

performance.

Com-

patibil-

ity

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Compatibility is

covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

The feature may

only work against

specific Daml

integrations, or

specific API ver-

sions, including

Early Access ones.

The feature may

only work against

specific Daml

integrations, or

specific API ver-

sions, including

Early Access ones.

Stability

& Error

Recov-

ery

The feature is

long-term stable

and supports re-

covery fit for a

production system.

No known repro-

ducible crashes

which can’t be

recovered from.

There is still an

expectation that

new issues may be

discovered.

The featuremaynot

be stable and lack

error recovery.

The featuremaynot

be stable and lack

error recovery.

Re-

leases

and

Support

Distri-

bution

and Re-

leases

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Distributed as part

of regular releases.

Releases and dis-

tribution may be

separate.

Support Covered by stan-

dard commercial

support terms.

Hotfixes for critical

bugs and security

issues are avail-

able.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Receives bug- and

security fixes with

regular releases.

Not covered by

standard commer-

cial support terms.

Only receives fixes

with low priority.

Depre-

cation

May be removed

with any newmajor

version 12 months

after the date of

deprecation.

May be removed

with any newminor

version 1 month

after the date of

deprecation.

May be removed

without warning.

May be removed

without warning.

Covered

by Se-

mantic

Version-

ing

Yes, part of the

“public API”.

No, but breaking

changes will be

documented.

No, and changes

may be poorly doc-

umented.

No, and changes

may be poorly doc-

umented.

Docu-

menta-

tion

Basic

Use

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Basic documenta-

tion as part of main

docs.

Documentation

may be sparse and

separate from the

main docs.

API,

Func-

tional-

ity, and

Gaps

Fully documented

as part of main

docs.

Fully documented

as part of main

docs.

Rough indication of

targeted function-

ality and current

limitations.

May be undocu-

mented.

Com-

patibil-

ity

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Covered by Porta-

bility, Compatibility,

and Support Dura-

tions.

Current compati-

bility documented

as part of main

docs.

May be undocu-

mented.

5.6. Daml Ecosystem Overview 1095

Daml SDK Documentation, 2.1.1

5.6.2 Feature and Component Statuses

This page gives an overview of the statuses of released components and features according to Status

Definitions. Anything not listed here implicitly has status “Labs”, but it’s possible that something

accidentally slipped the list so if in doubt, please contact us.

5.6.2.1 Ledger API

Component/Feature Status Dep-

re-

cated

on

Ledger API specification including all semantics of >= Daml-LF 1.6 Stable

Numbered (ie non-dev) Versions of Proto definitions distributed via GitHub

Releases

Stable

Dev Versions of Proto definitions distributed via GitHub Releases Alpha

Use of divulged contracts in later transactions Stable,

Depre-

cated

2021-06-16

5.6.2.2 Runtime components

Component / Feature Status Dep-

re-

cated

on

Canton

Canton Application and Console Stable

Canton Administrative APIs for participant and domain nodes Stable

Canton Protocol Stable

Sequencer for PostgreSQL Stable

Sequencer for Oracle DB Stable

Sequencer for Hyperledger Fabric Beta

Sequencer for Hyperledger Besu Beta

Support for connecting a single participant to multiple domains Alpha

JSON API

HTTPendpointsunder/v1/ includingstatus codes, authentication, query lan-

guage and encoding.

Stable

daml json-api CLI for development. (as specified using daml json-api

--help)

Stable

Stand-alone distribution for production use, including CLI specified in

--help.

Stable

Triggers

Daml API of individual Triggers Stable

Development CLI to start individual triggers in dev environment (daml trigger) Stable

Trigger Service (daml trigger-service) Stable

Non-repudiation

Non-repudiation Alpha

1096 Chapter 5. Reference

https://github.com/digital-asset/daml/releases/download/v2.1.1/protobufs-2.1.1.zip
https://github.com/digital-asset/daml/releases/download/v2.1.1/protobufs-2.1.1.zip
https://github.com/digital-asset/daml/releases/download/v2.1.1/protobufs-2.1.1.zip

Daml SDK Documentation, 2.1.1

5.6.2.3 Libraries

Component / Feature Status Dep-

re-

cated

on

Java Ledger API Bindings

daml codegen java CLI and generated code Stable

bindings-java library and its public API. Stable

bindings-rxjava library and its public API. Stable

Maven artifact daml-lf-1.6-archive-java-proto Stable

Maven artifact daml-lf-1.7-archive-java-proto Stable

Maven artifact daml-lf-1.8-archive-java-proto Stable

Maven artifact daml-lf-dev-archive-java-proto Alpha

JavaScript Client Libraries

daml codegen js CLI and generated code Stable

@daml/types library and its public API Stable

@daml/ledger library and its public API Stable

@daml/react library and its public API Stable

Daml Libraries

The Daml Standard Library Stable

The Daml Script Library Stable

The Daml Trigger Library Stable

5.6.2.4 Developer Tools

Component / Feature Status Dep-

re-

cated

on

SDK

Windows SDK (installer) Stable

Mac SDK Stable

Linux SDK Stable

Daml Assistant (daml) with top level commands

• --help

• version

• install

• uninstall

Stable

daml start helper command and associated CLI (daml start --help) Stable

daml deploy helper command and associated CLI (daml deploy --help) Stable

Assistant commands to start Runtime Components: daml json-api, daml

trigger, and daml trigger-service.

See

Run-

time

compo-

nents.

continues on next page

5.6. Daml Ecosystem Overview 1097

https://github.com/digital-asset/daml/releases/download/v2.1.1/daml-sdk-2.1.1-windows.exe

Daml SDK Documentation, 2.1.1

Table 3 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

Daml Projects

daml.yaml project specification Stable

Assistant commands new, create-daml-app, and init. Note that the tem-

plates created by daml new and create-daml-app are considered example

code, and are not covered by semantic versioning.

Stable

Daml Studio

VSCode Extension Stable

daml studio assistant command Stable

Code Generation

daml codegen assistant commands See Li-

braries.

Sandbox Development Ledger

daml sandbox assistant command and documented CLI under daml sand-

box --help.

Stable

Daml Profiler in Sandbox Stable

Daml Compiler

daml build CLI Stable

daml damlc CLI Stable

Compilation and packaging (daml damlc build) Stable

Legacy packaging command (daml damlc package) Stable,

Depre-

cated

2020-10-14

In-memory Scenario/Script testing (daml damlc test) Stable

DAR File inspection (daml damlc inspect-dar). The exact output is only

covered by semantic versioning when used with the --json flag.

Stable

DAR File validation (daml damlc validate-dar) Stable

Daml Linter (daml damlc lint) Stable

Daml REPL (daml damlc repl) See

Daml

REPL

head-

ing

below

Daml Language Server CLI (daml damlc ide) Labs

Daml Documentation Generation (daml damlc docs) Labs

Daml Model Visualization (daml damlc visual and daml damlc

visual-web)

Labs

daml doctest Labs

Script

Script Daml API Stable

Daml Scenario IDE integration Stable

Daml Script IDE integration Stable

Daml Script Library See Li-

braries

continues on next page

1098 Chapter 5. Reference

Daml SDK Documentation, 2.1.1

Table 3 – continued from previous page

Component / Feature Status Dep-

re-

cated

on

daml test in-memory Script and Scenario test CLI Stable

daml script CLI to run Scripts against live ledgers. Stable

daml ledger export script CLI extract Daml Script from ledgers. Alpha

Navigator

Daml Navigator Development UI (daml navigator server) Stable

Navigator Config File Creation (daml navigator create-config) Stable

Navigator graphQL Schema (daml navigator dump-graphql-schema) Labs

Daml REPL Interactive Shell

daml repl CLI Stable

Daml and meta-APIs of the REPL Stable

Ledger Administration CLI

daml ledger CLI and all subcommands. Stable

This page is intended to give you an overview of the components that constitute theDaml Ecosystem,

what status they are in, and how they fit together. It lays out Daml’s “public API” in the sense of

Semantic Versioning, and is aprerequisite to understandingDaml’s Portability, Compatibility, andSupport

Durations.

The pages Status Definitions and Feature and Component Statuses give a fine-grained view of what labels

like “Alpha” and “Beta” mean, which components expose public APIs and what status they are in.

5.6.3 Architecture

A high level view of the architecture of a Daml application or solution is helpful tomake sense of how

individual components, APIs and features fit into the Daml Stack.

The stack is segmented into two parts. Daml drivers encompass those components which enable

an infrastructure to run Daml Smart Contracts, turning it into a Daml Network. Daml Components

consists of everything developers and users need to connect to a Daml Network: the tools to build,

deploy, integrate, and maintain a Daml Application.

Taking the diagram from left to right, the SDK acts on various components of the client application

and directly on the participant nodes: it aids in the development of user code, generates code of its

own, feeds into runtime components via runtime APIs, and creates participant nodes via the Ledger

API. The client application also acts on participant nodes via the Ledger API, and the user code for that

application can act on the various Daml components of the application (generated code, libraries,

and runtime components) via public API. Participant nodes, in turn, act via an internal API on the

Daml network, specifically with Daml drivers that in turn interact with infrastructure nodes. The

infrastructure nodes can also interact with each other. Each client application is linked to only one

participant node, but a participant node can potentially touch more than one Daml network.

5.6. Daml Ecosystem Overview 1099

Daml SDK Documentation, 2.1.1

5.6.4 Daml Networks

5.6.4.1 Daml Drivers

At the bottom of every Daml Application is a Daml network, a distributed, or possibly centralized per-

sistence infrastructure together with Daml drivers. Daml drivers enable the persistence infrastruc-

ture to act as a consensus, messaging, and in some cases persistence layer for Daml Applications.

Most Daml drivers will have a public API, but there are no uniform public APIs on Daml drivers. This

does not harm application portability since applications only interact with Daml networks through

the Participant Node. A good example of a public API of a Daml driver is the deployment interface of

Daml for VMware Blockchain. It’s a public interface, but specific to the WMware driver.

5.6.5 Participant Nodes

On top of, or integrated into the Daml drivers sits a Participant Node, that has the primary purpose

of exposing the Daml Ledger API. In the case of integrated Daml drivers, the Participant Node usually

interacts with the Daml drivers through solution-specific APIs. In this case, Participant Nodes can

only communicate with Daml drivers of one Daml Network. In the case of interoperable Daml drivers,

the Participant Node communicates with the Daml drivers through the uniform Canton Protocol.

The Canton Protocol is versioned and has some cross-version compatibility guarantees, but is not

a public API. So participant nodes may have public APIs like monitoring and logging, command line

interfaces or similar, but the only uniform public API exposed by all Participant Nodes is the Ledger

API.

1100 Chapter 5. Reference

https://www.digitalasset.com/daml-for-vmware-blockchain

Daml SDK Documentation, 2.1.1

5.6.6 Ledger API

The Ledger API is the primary interface that offers forward andbackward compatibility betweenDaml

Networks and Applications (including Daml components). As you can see in the diagram above,

all interaction between components above the Participant Node and the Participant Node or Daml

Network happen through the Ledger API. The Ledger API is a public API and offers the lowest level of

access to Daml Ledgers supported for application use.

5.6.7 Daml Components

5.6.7.1 Runtime Components

Runtime components are standalone components that run alongside Participant Nodes or Applica-

tions and expose additional services like query endpoints, automations, or integrations. Each Run-

time Component has public APIs, which are covered in Feature and Component Statuses. Typically there

is a command line interface, and one or more “Runtime APIs” as indicated in the above diagram.

5.6.7.2 Libraries

Libraries naturally provide public APIs in their target language, be it Daml, or secondary languages

like JavaScript or Java. For details on available libraries and their interfaces, see Feature and Compo-

nent Statuses.

5.6.7.3 Generated Code

The SDK allows the generation of code for some languages from a Daml Model. This generated code

has public APIs, which are not independently versioned, but depend on the Daml version and source

of the generated code, like a Daml package. In this case, the version of the Daml SDK used covers

changes to the public API of the generated code.

5.6.7.4 Developer Tools / SDK

The Daml SDK consists of the developer tools used to develop user code, both Daml and in secondary

languages, to generate code, and to interact with running applications via Runtime, and Ledger API.

The SDK has a broad public API covering the Daml Language, CLIs, IDE, and Developer tools, but few of

those APIs are intended for runtime use in a production environment. Exceptions to that are called

out on Feature and Component Statuses.

5.7 Releases and Versioning

5.7.1 Versioning

All Daml components follow Semantic Versioning. In short, this means that there is a well defined

“public API”, changes or breakages to which are indicated by the version number.

Stable releaseshave versionsMAJOR.MINOR.PATCH. Segments of the version are incrementedaccord-

ing to the following rules:

5.7. Releases and Versioning 1101

https://semver.org/

Daml SDK Documentation, 2.1.1

1. MAJOR version when there are incompatible API changes,

2. MINOR version when functionality is added in a backwards compatible manner, and

3. PATCH version when there are only backwards compatible bug fixes.

Daml’s “public API” is laid out in the Daml Ecosystem Overview.

5.7.2 Cadence

Regular snapshot releases are made every Wednesday, with additional snapshots released as

needed. These releases contain Daml Components, both from the daml repository as well as some

others.

Stable versions are released once a month. See Process below for the usual schedule. This schedule

is a guide, not a guarantee: additional releasesmay bemade, or releasesmay be delayed or skipped

entirely.

No more than one major version is released every six months, barring exceptional circumstances.

Individual Daml drivers follow their own release cadence, using already released Integration Compo-

nents as a dependency.

5.7.3 Support Duration

Major versions will be supported for a minimum of one year after a subsequent Major version is

release. Within a major version, only the latest minor version receives security and bug fixes.

5.7.4 Release Notes

Release notes for each release are published on the Release Notes section of the Daml Driven blog.

5.7.5 Roadmap

Once a month Digital Asset publishes a community update to accompany the announcement of the

release candidate for the next release. The community update contains a section outlining the next

priorities for development. You can find community updates on the Daml Driven Blog, or subscribe

to the mailing list or social media profiles on https://daml.com/ to stay up to date.

5.7.6 Process

Weekly snapshot andmonthly stable releases follow a regular process and schedule. The process is

documented in the Daml repository so only the schedule for monthly releases is covered here.

Selecting a Release Candidate

This is done by the Daml core engineering teams on the first Monday of every month.

The monthly releases are time-based, not scope-based. Furthermore, Daml development

is fully HEAD-based so both the repository and every snapshot are intended to be in a

fully releasable state at every point. The release process therefore starts with “selecting

a release candidate”. Typically the Snapshot from the preceding Wednesday is selected

as the release candidate.

1102 Chapter 5. Reference

https://github.com/digital-asset/daml
https://daml.com/release-notes/
https://daml.com/blog/engineering
https://daml.com/
https://github.com/digital-asset/daml/blob/main/release/RELEASE.md

Daml SDK Documentation, 2.1.1

Release Notes and Candidate Review

After selecting the release candidate, Release Notes are written and reviewed with a par-

ticular view towards unintended changes and violations of Semantic Versioning.

Release Candidate Refinement

If issues surface in the initial review, the issues are resolved and different Snapshot is

selected as the release candidate.

Release Candidate Announcement

Barring delays due to issues during initial review, the release candidate is announced

publicly with accompanying Release Notes on the Thursday following the first Monday

of every Month.

Communications, Testing and Feedback

In the days following the announcement, the release is presented and discussed with

both commercial and community users. It is also put through its paces by integrating it

in Daml Hub and several ledger integrations.

Release Candidate Refinement II

Depending on feedback and test results, new release candidates may be issued itera-

tively. Depending on the severity of changes from release candidate to release candidate,

the testing period is extended more or less.

Release

Assuming the release is not postponed due to extended test periods or newly discovered

issues in the release candidate, the release is declared stable and given a regular version

number on the second Wednesday after the first Monday of the Month.

Fig. 14: The release process timeline illustrated by example of September 2020.

5.7. Releases and Versioning 1103

https://hub.daml.com

Chapter 6

Early Access

6.1 Ledger Export

Export is currently an Early Access Feature in Alpha status.

6.1.1 Introduction

Daml ledger exports read the transaction history or active contract set (ACS) from the ledger and

write it to disk encoded as a Daml Script that will reproduce the ledger state when executed. This can

be useful to migrate the history or state of a ledger from one network to another, or to replicate the

ledger state locally for testing or debugging purposes.

6.1.2 Usage

The command to generate a Daml ledger export has the following form.

daml ledger export <format> <options>

Right now Daml script, specified as script, is the only supported export format. You can get an

overview of the available command-line options using the --help flag as follows.

daml ledger export script --help

A full example invocation looks like this:

daml ledger export script --host localhost --port 6865 --party Alice --party Bob -

↪→-output ../out --sdk-version 0.0.0

The flags --host and --port define the Daml ledger to connect to. You can omit these flags if you

are invoking the command from within a Daml project with a running ledger, e.g. with a running

daml start.

The --party flags define which contracts will be included in the export. In the above example only

contracts visible to the parties Alice and Bob will be included in the export. Alternatively, you can set

--all-parties to export contracts seen by all known parties. Lack of visibility of certain events

may cause references to unknown contract ids.

1104

Daml SDK Documentation, 2.1.1

The --output flag defines the directory prefix under which to generate the Daml project that con-

tains the Daml script that represents the ledger export. The flag --sdk-version defines which

Daml SDK version to configure in the generated daml.yaml configuration file.

By default an export will reproduce all transactions in the ledger history. The ledger offsets section

describes how to change this behavior.

6.1.3 Output

6.1.3.1 Daml Script

The generated Daml code in Export.daml contains the following top-level definitions:

type Parties A mapping from parties in the original ledger state to parties to be used in the new

reconstructed ledger state.

lookupParty : Text -> Parties -> Party A helper function to look up parties in the Par-

tiesmapping.

allocateParties : Script Parties A Daml script that allocates fresh parties on the ledger

and returns them in a Partiesmapping.

type Contracts Amapping from unknown contract ids to replacement contract ids, see unknown

contract ids.

lookupContract : Text -> Contracts -> ContractId a A helper function to look up un-

known contract ids in the Contractsmapping.

data Args A record that holds all arguments to the export script.

export : Args -> Script () The Daml ledger export encoded as a Daml script. Given the rel-

evant arguments this script will reproduce the ledger state when executed. You can read this

script to understand the exported ledger state or history, and you can modify this script for

debugging or testing purposes.

testExport : Script () A Daml script that will first invoke allocateParties and then ex-

port. It will use an empty Contractsmapping. This can be useful to test the export in Daml

studio. If your export references unknown contract ids then you may need to manually extend

the Contractsmapping.

In most simple cases the generated Daml script will use the functions submit or submitMulti

to issue ledger commands that reproduce a transaction or ACS. In some cases the generated Daml

script will fall back to the more general functions submitTree or submitTreeMulti.

For example, the following generated code issues a create-and-exercise command that creates

an instance of ContractA and exercises the choice ChoiceA. The function submitTree returns

a TransactionTree object that captures all contracts that are created in the transaction. The

fromTree function is then used to extract the contract ids of the ContractB contracts that were

created by ChoiceA.

tree <- submitTree alice_0 do

createAndExerciseCmd

Main.ContractA with

owner = alice_0

Main.ChoiceA

let contractB_1_1 = fromTree tree $

exercised @Main.ContractA "ChoiceA" $

created @Main.ContractB

let contractB_1_2 = fromTree tree $

(continues on next page)

6.1. Ledger Export 1105

Daml SDK Documentation, 2.1.1

(continued from previous page)

exercised @Main.ContractA "ChoiceA" $

createdN @Main.ContractB 1

6.1.3.2 Arguments

Daml export will generate a default arguments file in args.json, which configures the export to use

the sameparty namesas in the original ledger state and tomapunknowncontract ids to themselves.

For example:

{

"contracts": {

"001335..": "001335..."

},

"parties": {

"Alice": "Alice",

"Bob": "Bob"

}

}

6.1.4 Executing the Export

The generated Daml project is configured such that daml start will execute the Daml export with

the default arguments defined in args.json. Alternatively you can build and execute the generated

Daml script manually using commands of the following form:

daml build

daml script --ledger-host localhost --ledger-port 6865 --dar .daml/dist/export-1.

↪→0.0.dar --script-name Export:export --input-file args.json

The arguments --ledger-host and --ledger-port configure the address of the ledger and the

argument --input-file points to a JSON file that defines the export script’s arguments.

6.1.5 Ledger Offsets

By default daml ledger export will reproduce all transactions, as seen by the selected parties,

from the beginning of the ledger history to the current end. The command-line flags --start and

-end can be used to change this behavior. Both flags accept ledger offsets, either the special offsets

start and end, or an arbitrary ledger offset.

--start Transactions up to and including the start offset will be reproduced as a sequence of cre-

ate commands that reproduce the ACS as of the start offset. Later transactions will be repro-

duced as seen by the configured parties. In particular, --start endwill reproduce the current

ACS but no transaction history, --start start (the default) will reproduce the history of all

transactions as seen by the configured parties.

--end Export transactions up to and including this end offset.

1106 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.1.6 Unknown Contract Ids

Daml ledger export may encounter references to unknown contracts. This may occur if a contract

was divulged to one of the configured parties, but the event that initially created that contract is

not visible to any of the configured parties. This may also occur if a contract was archived before

the configured start offset, such that it is neither part of the recreated ACS nor created in any of the

exported transactions, and another live contract retains a reference to this archived contract.

In such cases Daml export will not generate commands to recreate these unknown contracts. In-

stead, it will generate a lookup in the Contracts mapping defined in the scripts arguments. You

can define amapping from unknown contract ids to replacement contract ids in the JSON input file.

The default args.json generated by Daml ledger export will map unknown contract ids to them-

selves.

Note that you may submit references to non-existing contract ids to the ledger using this feature. A

fetch on such a dangling contract id will fail.

6.1.7 Transaction Time

Daml ledger exports may fail to reproduce the ledger state or transaction history if contracts are

sensitive to ledger time. You can enable the --set-time option to issue setTime commands in

the generated Daml script. However, this is not supported by all ledgers.

6.1.8 Caveats

6.1.8.1 Contracts Created and Referenced in Same Transaction

Daml ledger exportmay fail in certain caseswhen it attempts to reproduce a transaction that creates

a contract and then references that contract within the same transaction.

The Daml ledger API allows only a few ways in which a contract that was created in a set of com-

mands can be referenced within the same set of commands. Namely, create-and-exercise and

exercise-by-key. Choice implementations, on the other hand, are not restricted in this way.

If the configured parties only see part of a given transaction tree, then events that were originally

emitted by a choicemay be lifted to the root of the transaction tree. This could produce a transaction

tree that cannot be replicated using the ledger API. In such cases Daml ledger export will fail.

6.2 Visualizing Daml Contracts

Visualizing Daml Contracts is currently an Early Access Feature in Labs status.

You can generate visual graphs for the contracts in your Daml project. To do this:

1. Install Graphviz.

2. Open a terminal and navigate to your project root directory.

3. Generate a DAR from your project by running daml build -o project.dar.

4. Generate a dot file from that DAR by running daml damlc visual project.dar --dot

project.dot

5. Generate the visual graph with Graphviz by running dot -Tpng project.dot > project.

png

6.2. Visualizing Daml Contracts 1107

http://www.graphviz.org/download/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)

Daml SDK Documentation, 2.1.1

You can of course choose different names for the files, as long as you’re consistent between file

creation and point of use.

6.2.1 Example: Visualizing the Quickstart project

Here’s an example visualization based on the quickstart. You’ll need to install Graphviz to try this out.

1. Generate the dar using daml build

2. Generate a dot file daml damlc visual dist/quickstart-0.0.1.dar --dot

quickstart.dot

3. Generate the visual graph with Graphviz by running dot -Tpng quickstart.dot -o

quickstart.png

Running the above should produce an image which looks something like this:

6.2.2 Visualizing Daml Contracts - Within IDE

You can generate visual graphs from VS Code IDE. Open the daml project in VS Code and use com-

mand palette. Should reveal a new window pane with dot image. Also visual generates only the

currently open daml file and its imports.

Note: You will need to install the Graphviz/dot packages as mentioned above.

6.2.3 Visualizing Daml Contracts - Interactive Graphs

This does not require any packages installed. You can generate D3 graphs for the contracts in your

Daml project. To do this

1. Generate a DAR from your project by running daml build

2. Generate HTML file daml damlc visual-web .daml/dist/quickstart-0.0.1.dar -o

quickstart.html

Running the above should produce an image which looks something like this:

1108 Chapter 6. Early Access

http://www.graphviz.org/download/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://code.visualstudio.com/docs/getstarted/tips-and-tricks#_command-palette/
https://d3js.org/

Daml SDK Documentation, 2.1.1

6.3 Ledger Interoperability

Certain Daml ledgers can interoperate with other Daml ledgers. That is, the contracts created on

one ledger can be used and archived in transactions on other ledgers. Some Participant Nodes can

connect to multiple ledgers and provide their parties unified access to those ledgers via the Ledger

API. For example, when an organization initially deploys two workflows to two Daml ledgers, it can

later compose those workflows into a larger workflow that spans both ledgers.

Interoperability may limit the visibility a Participant Node has into a party’s ledger projection, i.e., its

local ledger, when the party is hosted onmultiple Participant Nodes. These limitations influence what

parties can observe via the Ledger API of each Participant Node. In particular, interoperability affects

which events a party observes and their order. This document explains the visibility limitations due

to interoperability and their consequences for the Transaction Service, by example and formally by

introducing interoperable versions of causality graphs and projections.

The presentation assumes that you are familiar with the following concepts:

• The Ledger API

• The Daml Ledger Model

• Local ledgers and causality graphs

Note: Interoperability for Daml ledgers is under active development. This document describes the

vision for interoperability and gives an idea of how the Ledger API services may change and what

guarantees are provided. The described services and guarantees may change without notice as the

interoperability implementation proceeds.

6.3.1 Interoperability examples

6.3.1.1 Topology

Participant Nodes connect to Daml ledgers and parties access projections of these ledgers via the

Ledger API. The following picture shows such a setup.

The components in this diagram are the following:

• There is a set of interoperable Daml ledgers: Ledger 1 (green) and Ledger 2 (yellow).

• Each Participant Node is connected to a subset of the Daml ledgers.

– Participant Nodes 1 and 3 are connected to Ledger 1 and 2.

– Participant Node 2 is connected to Ledger 1 only.

• Participant Nodes host parties on a subset of the Daml ledgers they are connected to. A Partic-

ipant Node provides a party access to the Daml ledgers that it hosts the party on.

– Participant Node 1 hosts Alice on Ledger 1 and 2.

– Participant Node 2 hosts Alice on Ledger 1.

6.3. Ledger Interoperability 1109

Daml SDK Documentation, 2.1.1

Fig. 1: Example topology with three interoperable ledgers

– Participant Node 3 hosts the painter on Ledger 1 and 2.

6.3.1.2 Aggregation at the participant

The Participant Node assembles the updates from these ledgers and outputs them via the party’s

Transaction Service and Active Contract Service. When a Participant Node hosts a party only on a

subset of the interoperable Daml ledgers, then the transaction and active contract services of the

Participant Node are derived only from those ledgers.

For example, in the above topology, when a transaction creates a contract with stakeholder Alice on

Ledger 2, then P1‘s transaction stream for Alice will emit this transaction and report the contract as

active, but Alice’s stream at P2 will not.

6.3.1.3 Enter and Leave events

With interoperability, a transaction can use a contract whose creation was recorded on a different

ledger. In the above topology, e.g., one transaction creates a contract c1 with stakeholder Alice on

Ledger 1 and another archives the contract on Ledger 2. Then the Participant Node P2 outputs the

Create action as a CreatedEvent, but not the Exercise in form of an ArchiveEvent on the trans-

action service because Ledger 2 can not notify P2 as P2 does not host Alice on Ledger 2. Conversely,

when one transaction creates a contract c2 with stakeholder Alice on Ledger 2 and another archives

the contract on Ledger 1, then P2 outputs the ArchivedEvent, but not the CreatedEvent.

To keep the transaction stream consistent, P2 additionally outputs a Leave c1 action on Alice’s trans-

action stream. This action signals that the Participant Node no longer outputs events concerning

this contract; in particular not when the contract is archived. The contract is accordingly no longer

reported in the active contract service and cannot be used by command submissions.

1110 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

Conversely, P2 outputs an Enter c2 action some time before the ArchivedEvent on the transac-

tion stream. This action signals that the Participant Node starts outputting events concerning this

contract. The contract is reported in the Active Contract Service and can be used by command sub-

mission.

The actions Enter and Leave are similar to a Create and a consuming Exercise action, respectively,

except that Enter and Leavemay occur several times for the same contract whereas there should be

at most one Create action and at most one consuming Exercise action for each contract.

These Enter and Leave events are generated by the underlying interoperability protocol. This may

happen as part of command submission or for other reasons, e.g., load balancing. It is guaranteed

that the Enter action precedes contract usage, subject to the trust assumptions of the underlying

ledgers and the interoperability protocol.

A contract may enter and leave the visibility of a Participant Node several times. For example, sup-

pose that the painter submits the following commands and their commits end up on the given

ledgers.

1. Create a contract c with signatories Alice and the painter on Ledger 2

2. Exercise a non-consuming choice ch1 on c on Ledger 1.

3. Exercise a non-consuming choice ch2 on c on Ledger 2.

4. Exercise a consuming choice ch3 on c on Ledger 1.

Then, the transaction tree stream that P2 provides for A contains five actions involving contract c:

Enter, non-consuming Exercise, Leave, Enter, consuming Exercise. Importantly, P2 must not omit

the Leave action and the subsequent Enter, even though they seem to cancel out. This is because

their presence indicates that P2‘s event stream for Alice may miss some events in between; in this

example, exercising the choice ch2.

The flat transaction stream by P2 omits the non-consuming exercise choices. It nevertheless con-

tains the three actions Enter, Leave, Enter before the consuming Exercise. This is because the Par-

ticipant Node cannot know at the Leave action that there will be another Enter action coming.

In contrast, P1 need not output the Enter and Leave actions at all in this example because P1 hosts

Alice on both ledgers.

6.3.1.4 Cross-ledger transactions

With interoperability, a cross-ledger transaction can be committed on several interoperable Daml

ledgers simultaneously. Such a cross-ledger transaction avoids some of the synchronization over-

head of Enter and Leave actions. When a cross-ledger transaction uses contracts from several Daml

ledgers, stakeholders may witness actions on their contracts that are actually not visible on the

Participant Node.

For example, suppose that the split paint counteroffer workflow from the causality examples is com-

mitted as follows: The actions on CounterOffer and PaintAgree contracts are committed on Ledger 1.

All actions on Ious are committed on Ledger 2, assuming that some Participant Node hosts the Bank

on Ledger 2. The last transaction is a cross-ledger transaction because the archival of the CounterOf-

fer and the creation of the PaintAgreement commits on Ledger 1 simultaneously with the transfer of

Alice’s Iou to the painter on Ledger 2.

For the last transaction, Participant Node 1 notifies Alice of the transaction tree, the two archivals

and the PaintAgree creation via the Transaction Service as usual. Participant Node 2 also output’s the

whole transaction tree on Alice’s transaction tree stream, which contains the consuming Exercise of

Alice’s Iou. However, it has not output the Create of Alice’s Iou because Iou actions commit on Ledger

6.3. Ledger Interoperability 1111

Daml SDK Documentation, 2.1.1

2, onwhich Participant Node 2 does not host Alice. So Alicemerelywitnesses the archival even though

she is an informee of the exercise. The Exercise action is thereforemarked asmerely beingwitnessed

on Participant Node 2’s transaction tree stream.

In general, an action ismarked asmerely being witnessedwhen a party is an informee of the action,

but the action is not committed on a ledger on which the Participant Node hosts the party. Unlike

Enter and Leave, such witnessed actions do not affect causality from the participant’s point of view

and therefore provide weaker ordering guarantees. Such witnessed actions show up neither in the

flat transaction stream nor in the Active Contracts Service.

For example, suppose that the Create PaintAgree action commits on Ledger 2 instead of Ledger 1,

i.e., only the CounterOffer actions commit on Ledger 1. Then, Participant Node 2 marks the Create

PaintAgree action also asmerely being witnessed on the transaction tree stream. Accordingly, it does

not report the contract as active nor can Alice use the contract in her submissions via Participant

Node 2.

6.3.2 Multi-ledger causality graphs

This section generalizes causality graphs to the interoperability setting.

Every active Daml contract resides on at most one Daml ledger. Any use of a contract must be com-

mitted on the Daml ledger where it resides. Initially, when the contract is created, it takes up res-

idence on the Daml ledger on which the Create action is committed. To use contracts residing on

different Daml ledgers, cross-ledger transactions are committed on several Daml ledgers.

However, cross-ledger transactions incur overheads and if a contract is frequently used on a Daml

ledger that is not its residence, the interoperability protocol can migrate the contract to the other

Daml ledger. The process of the contract giving up residence on the origin Daml ledger and taking

up residence on the target Daml ledger is called a contract transfer. The Enter and Leave events on

the transaction stream originate from such contract transfers, as will be explained below. Moreover,

contract transfers are synchronization points between the origin and target Daml ledgers and there-

fore affect the ordering guarantees. We therefore generalize causality graphs for interoperability.

Definition »Transfer action« A transfer action on a contract c is written Transfer c. The informees

of the transfer actions are the stakeholders of c.

In the following, the term action refers to transaction actions (Create, Exercise, Fetch, and No-

SuchKey) as well as transfer actions. In particular, a transfer action on a contract c is an action

on c. Transfer actions do not appear in transactions though. So a transaction action cannot have a

transfer action as a consequence and transfer actions do not have consequences at all.

Definition »Multi-Ledger causality graph« A multi-ledger causality graph G for a set Y of Daml

ledgers is a finite, transitively closed, directed acyclic graph. The vertices are either transac-

tions or transfer actions. Every action is possibly annotated with an incoming ledger and an

outgoing ledger from Y according to the following table:

Action incoming ledger outgoing ledger

Create no yes

consuming Exercise yes no

non-consuming Exercise yes yes

Fetch yes yes

NoSuchKey no no

Transfer maybe maybe

1112 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

For non-consuming Exercise and Fetch actions, the incoming ledger must be the same as the

outgoing ledger. Transfer actions must have at least one of them. A transfer action with both

set represents a complete transfer. If only the incoming ledger is set, it represents the partial

information of an Enter event; if only outgoing is set, it is the partial information of a Leave

event. Transfer actions with missing incoming or outgoing ledger annotations referred to as

Enter or Leave actions, respectively.

The action order generalizes to multi-ledger causality graphs accordingly.

In the example for Enter and Leave events where the painter exercises three choices on contract c with

signatories Alice and the painter, the four transactions yield the following multi-ledger causality

graph. Incoming and outgoing ledgers are encoded as colors (green for Ledger 1 and yellow for Ledger

2). Transfer vertices are shown as circles, where the left half is colored with the incoming ledger and

the right half with the outgoing ledger.

Fig. 2: Multi-Ledger causality graph with transfer actions

Note: As for ordinary causality graphs, the diagrams for multi-ledger causality graphs omit transi-

tive edges for readability.

As an example for a cross-domain transaction, consider the split paint counteroffer workflow with the

cross-domain transaction. The corresponding multi-ledger causality graph is shown below. The last

transaction tx4 is a cross-ledger transaction because its actions have more than one color.

Fig. 3: Multi-Ledger causality graph for the split paint counteroffer workflow on two Daml ledgers

6.3. Ledger Interoperability 1113

Daml SDK Documentation, 2.1.1

6.3.2.1 Consistency

Definition »Ledger trace« A ledger trace is a finite list of pairs (ai, bi) such that bi - 1 = ai for all i >

0. Here ai and bi identify Daml ledgers or are the special value NONE, which is different from all

Daml ledger identifiers.

Definition »Multi-Ledger causal consistency for a contract« Let G be a multi-ledger causality

graph and X be a set of actions from G on a contract in c. The graph G is multi-ledger con-

sistent for the contract c on X if all of the following hold:

1. If X is not empty, then X contains a Create or Enter action. This action precedes all other

actions in X.

2. X contains at most one Create action. If so, this action precedes all other actions in X.

3. If X contains a consuming Exercise action act, then act follows all other actions in X in G‘s

action order.

4. All Transfer actions in X are ordered with all other actions in X.

5. For every maximal chain in X (i.e., maximal totally ordered subset of X), the sequence of

(incoming ledger, outgoing ledger) pairs is a ledger trace, using NONE if the action does

not have an incoming or outgoing ledger annotation.

The first three conditions mimic the conditions of causal consistency for ordinary causality graphs.

They ensure that Create actions come first and consuming Exercise actions last. An Enter action

takes the role of a Create if there is no Create. The fourth condition ensures that all transfer actions

are synchronization points for a contract. The last condition about ledger traces ensures that con-

tracts reside on only one Daml ledger and all usages happen on the ledger of residence. In particular,

the next contract action after a Leavemust be an Enter.

For example, the above multi-ledger causality graph with transfer actions is multi-ledger consistent for

c. In particular, there is only one maximal chain in the actions on c, namely

Create c -> tf1 -> ExeN B c ch1 -> tf2 -> ExeN B c ch2 -> tf3 -> ExeN B c ch3,

and for each edge act1 -> act2, the outgoing ledger color of act1 is the same as the incoming ledger

color of act2. The restriction to maximal chains ensures that no node is skipped. For example, the

(non-maximal) chain

Create c -> ExeN B c ch1 -> tf2 -> ExeN B c ch2 -> tf3 -> Exe B c ch3

is not a ledger trace because the outgoing ledger of the Create action (yellow) is not the same as the

incoming ledger of the non-consuming Exercise action for ch1 (green). Accordingly, the subgraph

without the tf1 vertex is not multi-ledger consistent for c even though it is a multi-ledger causality

graph.

Definition »Consistency for a multi-ledger causality graph« Let X be a subset of actions in a

multi-ledger causality graph G. Then G ismulti-ledger consistent for X (or X-multi-ledger con-

sistent) if G is multi-ledger consistent for all contracts c on the set of actions on c in X. G is

multi-ledger consistent if G is multi-ledger consistent on all the actions in G.

Note: There is no multi-ledger consistency requirement for contract keys yet. So interoperability

does not provide consistency guarantees beyond those that come from the contracts they reference.

In particular, contract keys need not be unique and NoSuchKey actions do not check that the con-

tract key is unassigned.

The multi-ledger causality graph for the split paint counteroffer workflow is multi-ledger consistent. In

particular all maximal chains of actions on a contract are ledger traces:

1114 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

contract maximal chains

Iou Bank A Create -> Fetch -> Exercise

ShowIou A P Bank Create -> Exercise

Counteroffer A P Bank Create -> Exercise

Iou Bank P Create

PaintAgree P A Create

6.3.2.2 Minimality and reduction

When edges are added to an X-multi-ledger consistent causality graph such that it remains acyclic

and transitively closed, the resulting graph is again X-multi-ledger consistent. The notionsminimally

consistent and reduction therefore generalize from ordinary causality graphs accordingly.

Definition »Minimal multi-ledger-consistent causality graph« An X-multi-ledger consistent

causality graph G is X-minimal if no strict subgraph of G (same vertices, fewer edges) is an

X-multi-ledger consistent causality graph. If X is the set of all actions in G, then X is omitted.

Definition »Reduction of a multi-ledger consistent causality graph« For an X-multi-ledger con-

sistent causality graph G, there exists a unique minimal X-multi-ledger consistent causality

graph reduceX(G) with the same vertices and the edges being a subset of G. reduceX(G) is called

the X-reduction of G. As before, X is omitted if it contains all actions in G.

Since multi-ledger causality graphs are acyclic, their vertices can be sorted topologically and the

resulting list is again a causality graph, where every vertex has an outgoing edge to all later vertices.

If the original causality graph is X-consistent, then so is the topological sort, as topological sorting

merely adds edges.

6.3.2.3 Frommulti-ledger causality graphs to ledgers

Multi-Ledger causality graphs G are linked to ledgers L in the Daml Ledger Model via topological sort

and reduction.

• Given amulti-ledger causality graph G, drop the incoming and outgoing ledger annotations and

all transfer vertices, topologically sort the transaction vertices, and extend the resulting list of

transactions with the requesters to obtain a sequence of commits L.

• Given a sequence of commits L, use the transactions as vertices and add an edge from tx1 to

tx2 whenever tx1‘s commit precedes tx2‘s commit in the sequence. Then add transfer vertices

and incoming and outgoing ledger annotations as needed and connect themwith edges to the

transaction vertices.

This link preserves consistency only to some extent. Namely, if a multi-ledger causality graph is

multi-ledger consistent for a contract c, then the corresponding ledger is consistent for the contract

c, too. However, amulti-ledger-consistent causality graph does not yield a consistent ledger because

key consistency may be violated. Conversely, a consistent ledger does not talk about the incoming

and outgoing ledger annotations and therefore cannot enforce that the annotations are consistent.

6.3. Ledger Interoperability 1115

Daml SDK Documentation, 2.1.1

6.3.3 Ledger-aware projection

A Participant Node maintains a local ledger for each party it hosts and the Transaction Service out-

puts a topological sort of this local ledger. When the Participant Node hosts the party on several

ledgers, this local ledger is an multi-ledger causality graph. This section defines the ledger-aware

projection of an multi-ledger causality graph, which yields such a local ledger.

Definition »Y-labelled action« An action with incoming and outgoing ledger annotations is

Y-labelled for a set Y if its incoming or outgoing ledger annotation is an element of Y.

Definition »Ledger-aware projection for transactions« Let Y be a set of Daml ledgers and tx a

transaction whose actions are annotated with incoming and outgoing ledgers. Let Act be the

set of Y-labelled subactions of tx that the party P is an informee of. The ledger-aware projec-

tion of tx for P on Y (P-projection on Y) consists of all the maximal elements of Act (w.r.t. the

subaction relation) in execution order.

Note: Every action contains all its subactions. So if act is included in the P-projection on Y of tx, then

all subactions of act are also part of the projection. Such a subaction act’may not be Y-labelled itself

though, i.e., belong to a different ledger. If P is an informee of act’, the Participant Node will mark act’

as merely being witnessed on P‘s transaction stream, as explained below.

The cross-domain transaction in the split paint counteroffer workflow, for example, has the following pro-

jections for Alice and the painter on the Iou ledger (yellow) and the painting ledger (green). Here, the

projections on the green ledger include the actions of the yellow ledger because a projection includes

the subactions.

1116 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

Definition »Projection for transfer actions« Let act be a transfer action annotated with an incom-

ing ledger and/or an outgoing ledger. The projection of act on a set of ledgers Y removes the

annotations from act that are not in Y. If the projection removes all annotations, it is empty.

The projection of act to a party P on Y (P-projection on Y) is the projection of act on Y if P is a

stakeholder of the contract, and empty otherwise.

Definition »Multi-Ledger consistency for a party« Anmulti-ledger causality graph G is consistent

for a party P on a set of ledgers Y (P-consistent on Y) if G is multi-ledger consistent on the set

of Y-labelled actions in G of which P is a stakeholder informee.

The notions of X-minimality and X-reduction extend to a party P on a set Y of ledgers accordingly.

Definition »Ledger-aware projection for multi-ledger causality graphs« Let G be a multi-ledger

consistent causality graph and Y be a set of Daml ledgers. The projection of G to party P

on Y (P-projection on Y) is the P-reduction on Y of the following causality graph G’, which is

P-consistent on Y:

6.3. Ledger Interoperability 1117

Daml SDK Documentation, 2.1.1

• The vertices of G’ are the vertices of G projected to P on Y, excluding empty projections.

• There is an edge between two vertices v1 and v2 in G’ if there is an edge from the G-vertex

corresponding to v1 to the G-vertex corresponding to v2.

If G is a multi-ledger consistent causality graph, then the P-projection on Y is P-consistent on Y, too.

For example, the multi-ledger causality graph for the split paint counteroffer workflow is projected as fol-

lows:

1118 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.3. Ledger Interoperability 1119

Daml SDK Documentation, 2.1.1

The following points are worth highlighting:

• In Alice’s projection on the green ledger, Alice witnesses the archival of her Iou. As explained

in the Ledger API ordering guarantees below, the Exercise action is marked as merely being wit-

nessed in the transaction stream of a Participant Node that hosts Alice on the green ledger but

not on the yellow ledger. Similarly, the Painter merely witnesses the Create of his Iou in the

Painter’s projection on the green ledger.

• In the Painter’s projections, the ShowIou transaction tx3 is unordered w.r.t. to the CounterOffer

acceptance in tx4 like in the case of ordinary causality graphs. The edge tx3 -> tx4 is removed by

the reduction step during projection.

The projection of transfer actions can be illustrated with the Multi-Ledger causality graph with transfer

actions. The A-projections on the yellow and green ledger look as follows. The white color indicates

that a transfer action has no incoming or outgoing ledger annotation. That is, a Leave action is white

on the right hand side and an Enter action is white on the left hand side.

6.3.4 Ledger API ordering guarantees

The Transaction Service and the Active Contract Service are derived from the local ledger that the

Participant Node maintains for the party. Let Y be the set of ledgers on which the Participant Node

hosts a party. The transaction tree stream outputs a topological sort of the party’s local ledger on Y,

with the following modifications:

1. Transfer actions with either an incoming or an outgoing ledger annotation are output as Enter

and Leave events. Transfer actions with both incoming and outgoing ledger annotations are

omitted.

2. The incoming and outgoing ledger annotations are not output. Transaction actions with an

incoming or outgoing ledger annotation that is not in Y are marked as merely being witnessed

if the party is an informee of the action.

3. Fetch nodes and NoSuchKey are omitted.

The flat transaction stream contains precisely the CreatedEvents, ArchivedEvents, and the En-

ter and Leave actions that correspond to Create, consuming Exercise, Enter and Leave actions in

transaction trees on the transaction tree stream where the party is a stakeholder of the affected

contract and that are not marked as merely being witnessed.

Similarly, the active contract service provides the set of contracts that are active at the returned

offset according to the flat transaction stream. That is, the contract state changes of all events from

the transaction event stream are taken into account in the provided set of contracts.

The ordering guarantees for single Daml ledgers extend accordingly. In particular, interoperability en-

sures that all local ledgers are projections of a virtual shared multi-ledger causality graph that con-

1120 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

nects to the Daml Ledger Model as described above. The ledger validity guarantees therefore extend

via the local ledgers to the Ledger API.

6.4 Non-repudiation

The non-repudiation middleware, API and client library are only available in Daml Enterprise and are

currently an Early Access Feature in Alpha status.

When you are issuing a command over the Ledger API, there is an implicit trust assumption between

the issuer of the command and the operator of the participant that the latter will not issue com-

mands on behalf of the former.

The non-repudiation middleware and its client library are a Daml Enterprise exclusive feature that

allows ledger operators to run participant nodes that will require each command to come with a

verifiable cryptographic signature, which will persisted by the operator. As the sole owner of the pri-

vate key used to sign the command, the authenticity of the command is thus verified and preserved,

ensuring that an operator cannot issue a command on behalf of the user and that the user cannot

repudiate the command.

Note that this is an early access feature: its status is currently under development and further feed-

back can change how certain details might work once the feature is declared a stable part of Daml

Enterprise. If you are interested in this feature, you are welcome to use it and give us feedback that

will shape how this feature will ultimately come to be.

6.4.1 Architecture

The non-repudiation system consists of three components:

• the non-repudiation middleware is a reverse proxy that sits in front of the Ledger API that veri-

fies command signatures and forwards the signed command to the actual participant node

• the non-repudiation API is a web server used by the operator to upload new certificates and

verify repudiation claims

• the non-repudiation client is a gRPC interceptor that can be used alongside any gRPC client on

the JVM, including the official Java bindings, that will ensure that commands are signed with

a given private key

6.4.2 Running the server-side components

The server-side components are the middleware and the API. Both can be run as a single process by

running the non-repudiation fat JAR provided as part of Daml Enterprise.

Note that at the current stage you need to also have a PostgreSQL server running where signed com-

mands will be persisted.

The following example shows how to run the non-repudiation server components by connecting to a

participant at localhost:6865 and proxying it to the 6866 port, using the given PostgreSQL instance

to persist signed commands and certificates.

java -jar /path/to/the/non-repudiation.jar --ledger-host localhost --ledger-port␣

↪→6865 --proxy-port 6866 --jdbc url=jdbc:postgresql:nr,user=nr,password=nr

For details on how to run them, please run the fat JAR with the --help command line option.

6.4. Non-repudiation 1121

https://www.digitalasset.com/products/daml-connect

Daml SDK Documentation, 2.1.1

6.4.3 Using the client

The client is a gRPC interceptor which is available to Daml Enterprise users (hence, it’s not available

on Maven Central).

The Maven coordinates for the library are com.daml:non-repudiation-client.

The following example shows how to use this interceptor with the official Java bindings

PrivateKey key = readYourPrivateKey();

X509Certificate certificate = readYourX509Certificate();

NettyChannelBuilder builder = NettyChannelBuilder.forAddress(hostname, port);

builder.intercept(SigningInterceptor.signCommands(key, certificate));

DamlLedgerClient client = DamlLedgerClient.newBuilder(builder).build();

client.connect();

6.4.4 Non-repudiation over the HTTP JSON API

The non-repudiationmiddleware acts exclusively as a reverse proxy in front of the Ledger API server: if

youwant to use the HTTP JSON API youwill need to run your ownHTTP JSON API server and start it with

a certificate that will be used to sign every command issued by the HTTP JSON API to the participant.

The HTTP JSON API bundled with Daml Enterprise has the following extra command line options that

must be used to run an HTTP JSON API server against the non-repudiation middleware:

• –non-repudiation-certificate-path: the path to the X.509 certificate containing the public counter-

part to the private key that will be used to sign the commands

• –non-repudiation-private-key-path: the path to the file containing the private key that will be used

to sign the commands

• –non-repudiation-private-key-algorithm: the name of the cryptographic algorithm of the private

key (for a list of names supported in the OpenJDK: https://docs.oracle.com/javase/8/docs/

technotes/guides/security/StandardNames.html#KeyFactory)

6.4.5 TLS support

At the current stage the non-repudiation feature does not support running against secure Ledger API

servers. This will be added as part of stabilizing this feature.

6.5 Daml Helm Chart

Note: This is an Early Access feature. Note that this feature does not currently work with Daml 2.0.

These docs refer to and use Daml 1.18. The feature is under active development and it will soon be

available for the 2.x major release series.

We provide an Early Access version of the Helm Chart for Daml Enterprise customers. This page

contains documentation for that Helm chart.

1122 Chapter 6. Early Access

https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyFactory
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html#KeyFactory

Daml SDK Documentation, 2.1.1

6.5.1 Credentials

Like all Daml Enterprise components, the Helm Chart is hosted on Artifactory. To get both the Helm

chart itself and the Docker images it relies on, you will need Artifactory credentials. In the rest of this

document, we assume that$ARTIFACTORY_USERNAME refers to your Artifactory user name, whereas

$ARTIFACTORY_PASSWORD refers to your Artifactory API key.

6.5.2 Installing the Helm Chart Repository

To let your local Helm installation know about the Daml Helm chart, you need to add the repository

with:

helm repo add daml \

https://digitalasset.jfrog.io/artifactory/connect-helm-chart \

--username $ARTIFACTORY_USERNAME \

--password $ARTIFACTORY_PASSWORD

This will install the repository as daml; you can then list the available versions with:

helm search repo --devel -l daml

The --devel flag lets Helm know that you want to list prerelease versions (in the Semver sense). To

avoid any confusion as to the production-readiness of the Helm chart, while the feature is in Early

Access, only prerelease versions of the Helm chart will be available.

Later on, you can update your local listing to match the Artifactory state with:

helm repo update

And you can deploy the latest prerelease version with:

helm install dm daml/daml-connect --devel --values values.yaml

where values.yaml is a YAML file that includes at least the imagePullSecret key. See the rest of

this page for other options in values.yaml, and the Helm documentation for related Helm usage.

6.5.3 Setting Up the imagePullSecret

The Helm chart relies on the production-ready Docker images for individual components that are

part of Daml Enterprise. Specifically, it expects a Kubernetes secret given as the imagePullSecret

argument with the relevant Docker credentials in it.

Here is an example script that would load said credentials in a secret named

daml-docker-credentials:

#!/usr/bin/env bash

set -euo pipefail

if [-z ${ARTIFACTORY_PASSWORD+x}] || [-z ${ARTIFACTORY_USERNAME+x}]; then

echo "Please input information from:"

echo "https://digitalasset.jfrog.io/ui/admin/artifactory/user_profile"

read -p "User Profile (first.last): " USERNAME

(continues on next page)

6.5. Daml Helm Chart 1123

Daml SDK Documentation, 2.1.1

(continued from previous page)

read -p "API Key: " -s PASSWORD

else

USERNAME="$ARTIFACTORY_USERNAME"

PASSWORD="$ARTIFACTORY_PASSWORD"

fi

temp=$(mktemp)

trap "rm -f $temp" EXIT

cred=$(echo -n "$USERNAME:$PASSWORD" | base64)

jq -n --arg cred "$cred"

["-daml-on-sql","-http-json","-oauth2-middleware","-trigger-service",""]

| map({("digitalasset" + . + "-docker.jfrog.io"):{"auth":$cred}})

| add

| {auths: .}

 > $temp

kubectl create secret generic daml-docker-credentials \

--from-file=.dockerconfigjson=$temp \

--type=kubernetes.io/dockerconfigjson

rm -f $temp

trap - EXIT

Running this script with the environment variables ARTIFACTORY_USERNAME and ARTIFAC-

TORY_PASSWORD set will result in a non-interactive deployment of the secret, which may be useful

for CI environments.

6.5.4 Quickstart

The Helm chart is designed to let you get started quickly, using a default configuration that is decid-

edly NOT MEANT FOR PRODUCTION USE.

To get started against a development cluster, you can just run:

helm install dm daml/daml-connect \

--devel \

--set imagePullSecret=daml-docker-credentials

This assumes you have used the above script to setup your credentials, or otherwise created the

secret daml-docker-credentials. It also assumes you run this command after having added

the Daml Helm chart repository as explained above.

This is going to start the following:

• For each of the state-keeping components (Daml driver for PostgreSQL, HTTP JSON API Service),

an “internal” PostgreSQL database server. These are decidedly not production-ready. For a

production setup, you’ll need to provide your own databases here.

• A fake, testing-only JWT minter to serve as the authentication server. This should be replaced

with a real authentication server for production use. See the Setting Up Auth0 section for an

example of using an external authentication infrastructure.

• A single instance of each of the following services: Daml driver for PostgreSQL, HTTP JSON API

Service.

1124 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

• Annginx server exposing the/v1 endpoints of theHTTP JSONAPI Service onaNodePort service

type, for easy access from outside the Kubernetes cluster.

If you set up the Trigger Service and/or the OAuth2 Middleware (without setting the production

flag), the reverse proxy will automatically proxy them too, and a separate PostgreSQL instance will

be started for the Trigger Service. See the end of this page for details.

6.5.5 Production Setup

There are many options you may want to set for a production setup. See the reference at the end of

this page for full details. At a minimum, though, you need to set the following:

• production=true: By default, the Helm chart starts a number of components that aremeant

to give you a quick idea of what the Helm chart enables, but are most definitely not meant for

production use. Specifically, this will disable the internal PostgreSQL instances, themock auth

server, and the reverse proxy.

• ledger.db: If you want the Helm char to start a Daml driver For PostgreSQL instance for you,

you need to set this. See reference section at the end of this page for details.

• ledger.host and ledger.port: If you do not want the Helm chart to setup a Daml driver

isntance for you, but insteadwant the components startedby it to connect to an existing Ledger

API server, fill in these options instead of the ledger.db object.

• jsonApi.db: If you want the Helm chart to start the HTTP JSON API Service for you, you need

to set this. See reference section at the end of this page for details.

• triggerService.db: If you want the Helm chart to start the Trigger Service for you, you need

to set this. See reference section at the end of this page for details.

• authUrl: If you want the Helm chart to provide either a Daml driver for PostgreSQL or a OAuth2

Middleware instance, you will need to set this to the JWKS URL of your token provider.

If you start the Trigger Service, you will need to configure it, as well as the OAuth2 Middleware. See

the required options for them in the reference section at the end of this page.

Finally, we also recommend looking at the resources option for each component and adjusting

them to fit your particular use-case.

6.5.6 Log Aggregation

All processes write their logs directly to stdout. This means that log aggregation can be addressed

at the Kubernetes level and does not require any specific support from the Helm chart itself. One

fairly easy way to achieve this is using Filebeat, which regulary collects the logs of your containers

and ingests them into Elasticsearch <https://www.elastic.co/elasticsearch/>, Logstash, Kafka, etc.

You can find external documentation on, how to setup ElasticSearch with Filebeat and Kibana for ana-

lyzing logs on your Kubernetes cluster here.

The HTTP JSON API component in the Helm chart produces JSON-encoded logs. Other components log

as unstructured text.

6.5. Daml Helm Chart 1125

https://www.elastic.co/beats/filebeat
https://www.elastic.co/logstash/
https://kafka.apache.org/
https://www.deepnetwork.com/blog/2020/01/27/ELK-stack-filebeat-k8s-deployment.html

Daml SDK Documentation, 2.1.1

6.5.7 Daml Metrics Options

The Daml driver for PostgreSQL instance and the HTTP JSON API instances started by the Helm chart

are configured to expose Prometheus metrics on a port named metrics, using the appropriate an-

notations. This means that, if you are running a cluster-wide Prometheus instance, the relevant

metrics should be collected automatically.

See each component’s documentation for details on the metrics exposed:

• Daml driver for PostgreSQL

• JSON API metrics

6.5.8 Upgrading

Note: This section only makes sense with the production flag set to true.

Upgrading the Daml version should be done by uninstalling the existing Helm chart, waiting for all of

the pods to stop, and then installing a higher version. Destroying all of the components is a safe op-

eration because all of the state is stored in the provided database coordinates. There is no additional

state within the components themselves.

The components are not designed for running concurrently with older versions, so it is imperative to

wait for the existing Helm chart components to be completely shut down before installing the new

one. Do not try to upgrade in place.

Assuming you do not change the database coordinates, you should have data continuity through the

upgrade.

6.5.9 Backing Up

Note: This section only makes sense with the production flag set to true.

For a production setup, you should be providing the Helm chart with external database coordinates.

The simplest approach here is to periodically back up those databases as awhole, just like youwould

any other database.

If you want to be more fine-grained, you may decide to not backup the database used by the HTTP

JSON API Service instances. Note that it is imperative that you still backup the databases for the

other components (Trigger Service and Daml driver for PostgreSQL) if you are running them.

If you are running the Helm chart solely for the HTTP JSON API Service (connected to an external

Ledger API server), then you can eschew backing up entirely, as the database for the HTTP JSON API

Service is an easy-to-reconstruct cache. This assume that, in this setup, the data store of the Ledger

API server is, itself, properly backed up.

1126 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.10 Securing Daml

The Helm chart assumes that the Kubernetes environment itself is trusted, and as such does not

encrypt connections between components. Full TLS encryption between every component is not sup-

ported by the Helm chart. Individual components do support it, so if that is a requirement for you

you can still set it up, though not through the Helm chart. Refer to the Secure Daml Infrastructure

repository for guidance on how to set that up.

When using the Helm chart, we recommend against exposing the Ledger API gRPC endpoint outside

of the cluster, and exposing the HTTP JSON API Service, Trigger Service, and OAuth2 Middleware end-

points only through an HTTP proxy. That is why the services started by the Helm chart are of type

ClusterIP.

That proxy should either do TLS termination, or be itself behind a proxy that does, in which case all

of the communications between the TLS termination endpoint must be happening on a fully trusted

network.

See the Setting Up Auth0 section for an example of setting up nginx to proxy external connections to

the JSON API, Trigger Service and OAuth2 Middleware.

6.5.11 Helm Chart Options Reference

These options have been extracted from the Helm chart version daml-connect-1.18.

0-20211110.main.84.c297baae.

6.5.11.1 authUrl

• Type: string

• Required: if either the ledger or the auth middleware is started

The JWKS endpoint used to get the public key to validate tokens. Used by the ledger and the OAuth2

Middleware.

6.5.11.2 imagePullSecret

• Type: string

• Required: true

The Kubernetes secret which is used for gaining access to the repository where the Daml Docker

images are located.

6.5.11.3 jsonApi.create

• Type: bool

• Default: true

• Required: false

Controls whether the HTTP JSON API Service is deployed.

6.5. Daml Helm Chart 1127

https://github.com/digital-asset/ex-secure-daml-infra

Daml SDK Documentation, 2.1.1

6.5.11.4 jsonApi.db.host

• Type: string

• Required: if enabled & production

The hostname of the database server for the HTTP JSON API Service, if one is started by the Helm

chart.

6.5.11.5 jsonApi.db.oracle.serviceName

• Type: string

• Required: if enabled & using Oracle

If the HTTP JSON API Service database is Oracle, this is used to set the Service Name.

6.5.11.6 jsonApi.db.port

• Type: integer

• Required: if enabled & production

The exposed port of the database server for the HTTP JSON API Service, if one is started by the Helm

chart.

6.5.11.7 jsonApi.db.postgres.database

• Type: string

• Required: if enabled & using an external PostgreSQL

The database the HTTP JSON API Service should use when connecting to the database server.

6.5.11.8 jsonApi.db.secret

• Type: string

• Required: if enabled & production

The Kubernetes secret which is used for gaining access to the database. The content should have

the following structure:

username: daml

password: s3cr3t

or as JSON:

{

"username": "daml",

"password": "s3cr3t"

}

1128 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.9 jsonApi.db.setupSecret

• Type: string

• Default: none

• Required: false

The HTTP JSON API Service supports a mode where the credentials used at startup (to create the

database structure) are not the same as the credentials used while the application is running. This

can be useful if you want to run with lower privileges, specifically without the privileges to alter table

structure.

If this option is given, a separate instance of the HTTP JSON API Service will be started

with start-mode=create-only using these credentials as a one-time job, while the reg-

ular, long-lived instances will be started with start-mode=start-only. If this option is

not given, then no separate one-time job is started and regular instances are started with

start-mode=create-if-needed-and-start.

The format of this option is the same as jsonApi.db.secret.

6.5.11.10 jsonApi.healthCheck

• Type: string

• Default: see below

• Required: false

Overrides the probes for the long-lived HTTP JSON API Service instances. The current default is:

readinessProbe:

httpGet:

path: /readyz

port: http

initialDelaySeconds: 10

periodSeconds: 5

startupProbe:

httpGet:

path: /livez

port: http

failureThreshold: 30

periodSeconds: 10

livenessProbe:

httpGet:

path: /livez

port: http

initialDelaySeconds: 10

failureThreshold: 1

periodSeconds: 5

6.5. Daml Helm Chart 1129

Daml SDK Documentation, 2.1.1

6.5.11.11 jsonApi.logLevel

• Type: string

• Default: info

• Required: false

Sets the log level for the HTTP JSON API Service instances. Valid values are error, warning, info,

debug and trace.

6.5.11.12 jsonApi.podAnnotations

• Type: object

• Default: {}

• Required: false

The annotations which should be attached to the metadata of the HTTP JSON API Service pods.

6.5.11.13 jsonApi.replicaCount

• Type: number

• Default: 1

• Required: false

Controls how many long-lived instance of the HTTP JSON API Service are started.

6.5.11.14 jsonApi.resources

• Type: object

• Default: see below

• Required: false

Overrides the resources field on the HTTP JSON API Service pods. Default:

limits:

cpu: "1"

memory: "2Gi"

requests:

cpu: "0.5"

memory: "1Gi"

6.5.11.15 jsonApi.serviceAccount

• Type: string

• Default: null

• Required: false

The service account which should be attached to the HTTP JSON API Service pods.

1130 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.16 ledger.create

• Type: bool

• Default: true

• Required: false

If true, the Helm chart will create a Daml driver for PostgreSQL instance. If false, you will need to

provide ledger.host and ledger.port (see below).

6.5.11.17 ledger.db.host

• Type: string

• Required: if enabled & production

The hostname of the database server for the Daml driver for PostgreSQL, if one is started by the Helm

chart.

6.5.11.18 ledger.db.port

• Type: integer

• Required: if enabled & production

The exposed port of the database server for the Daml driver for PostgreSQL, if one is started by the

Helm chart.

6.5.11.19 ledger.db.postgres.database

• Type: string

• Required: if enabled & production

The database the Daml driver for PostgreSQL should use when connecting to the database server.

Note that, unlike the Trigger Service andHTTP JSONAPI Service, theDamldriver for PostgreSQL started

by the Helm chart only supports PostgreSQL database servers.

6.5.11.20 ledger.db.secret

• Type: string

• Required: if enabled & production

The Kubernetes secret which is used for gaining access to the database. The content should have

the following structure:

username: daml

password: s3cr3t

or as JSON:

{

"username": "daml",

"password": "s3cr3t"

}

6.5. Daml Helm Chart 1131

Daml SDK Documentation, 2.1.1

6.5.11.21 ledger.db.setupSecret

• Type: string

• Default: none

• Required: false

The Daml driver for PostgreSQL supports two start modes: --migrate-only and

--migrate-and-start. The long-running instance always starts with --migrate-and-start,

but if you supply this option, the Helm chart will start a separate, one-time job with

--migrate-only.

This can be used to supply separate credentials with table alteration privileges to the one-time

job (this property), and restricted credentials with no table creation/alteration privileges to the

long-running one (ledger.db.secret).

The structure is the same as ledger.db.secret.

6.5.11.22 ledger.healthCheck

• Type: string

• Default: see below

• Required: false

Overrides the probes for the long-running Daml driver for PostgreSQL instance. Defaults:

readinessProbe:

exec:

command: ["./grpc-health-probe", "-addr=:6865"]

initialDelaySeconds: 5

failureThreshold: 30

periodSeconds: 5

livenessProbe:

exec:

command: ["./grpc-health-probe", "-addr=:6865"]

initialDelaySeconds: 10

failureThreshold: 30

periodSeconds: 5

6.5.11.23 ledger.host

• Type: string

• Required: if ledger.create is false

If the Helm chart should not create its own Daml driver for PostgreSQL instance (i.e. you want to

connect to other components to an existing gRPC Ledger API provider), this option should be set to

the hostname of the gRPC Ledger API Server to connect to.

1132 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.24 ledger.podAnnotations

• Type: object

• Default: {}

• Required: false

The annotations which should be attached to the metadata of the Daml driver for PostgreSQL pod.

6.5.11.25 ledger.port

• Type: number

• Default: 6865

• Required: false

The port on which the external gRPC Ledger API Server is exposed.

6.5.11.26 ledger.resources

• Type: object

• Default: see below

• Required: false

Overrides the resources field of the Daml driver for PostgreSQL pod. Defaults:

limits:

cpu: "1"

memory: "2Gi"

requests:

cpu: "0.5"

memory: "1Gi"

6.5.11.27 ledger.serviceAccount

• Type: string

• Default: null

• Required: false

The service account which should be attached to the Daml driver for PostgreSQL pod.

6.5.11.28 oauthMiddleware.callback

• Type: string

• Required: if oauthMiddleware.create

The --callback argument given to the OAuth 2.0 Auth Middleware instance.

6.5. Daml Helm Chart 1133

Daml SDK Documentation, 2.1.1

6.5.11.29 oauthMiddleware.clientId

• Type: string

• Required: if oauthMiddleware.create

The value of the DAML_CLIENT_ID environment variable needed by the OAuth 2.0 Auth Middleware

instance.

6.5.11.30 oauthMiddleware.clientSecret

• Type: string

• Required: if oauthMiddleware.create

The value of theDAML_CLIENT_SECRET environment variable neededby theOAuth2.0 AuthMiddleware

instance.

6.5.11.31 oauthMiddleware.create

• Type: bool

• Default: false

• Required: false

Controls whether the OAuth2 Middleware should be deployed.

6.5.11.32 oauthMiddleware.healthCheck

• Type: string

• Default: see below

• Required: false

Overrides the probes for the OAuth2 Auth Middleware instance. Defaults:

startupProbe:

httpGet:

path: /livez

port: http

failureThreshold: 30

periodSeconds: 10

livenessProbe:

httpGet:

path: /livez

port: http

initialDelaySeconds: 10

failureThreshold: 1

periodSeconds: 5

1134 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.33 oauthMiddleware.oauthAuth

• Type: string

• Required: true

The oauth-auth argument given to the OAuth 2.0 Auth Middleware instance.

6.5.11.34 oauthMiddleware.oauthToken

• Type: string

• Required: true

The oauth-token argument given to the OAuth 2.0 Auth Middleware instance.

6.5.11.35 oauthMiddleware.podAnnotations

• Type: object

• Default: {}

• Required: false

The annotations which should be attached to the metadata of the OAuth2 Auth Middleware pod.

6.5.11.36 oauthMiddleware.replicaCount

• Type: number

• Default: 1

• Required: false

Controls how many replicas of the OAuth2 Auth Middleware are started.

6.5.11.37 oauthMiddleware.resources

• Type: object

• Default: see below

• Required: false

Overrides the resources field on the OAuth2 Auth Middleware pods. Defaults:

limits:

cpu: "1"

memory: "2Gi"

requests:

cpu: "0.5"

memory: "1Gi"

6.5. Daml Helm Chart 1135

Daml SDK Documentation, 2.1.1

6.5.11.38 oauthMiddleware.serviceAccount

• Type: string

• Default: not used

• Required: false

The service account which should be attached to the OAuth2 Auth Middleware pods.

6.5.11.39 production

• Type: string

• Default: false

• Required: false

If true, disables the non-production components, and marks some important options as required.

6.5.11.40 triggerService.authCallback

• Type: string

• Required: true

The --auth-callback argument passed to the Trigger Service instance. Note that this should be

externally-reachable.

6.5.11.41 triggerService.authExternal

• Type: string

• Required: true

The --auth-external argument passed to the Trigger Service instance. Note that this should be

externally-reachable.

6.5.11.42 triggerService.create

• Type: bool

• Default: false

• Required: false

Controls whether a Trigger Service instance should be created.

6.5.11.43 triggerService.db.host

• Type: string

• Required: if enabled & production

The hostname of the database server for the Trigger Service, if one is started by the Helm chart.

1136 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.44 triggerService.db.oracle.serviceName

• Type: string

• Required: if enabled & using Oracle

If the Trigger Service database is Oracle, this is used to set the Service Name.

6.5.11.45 triggerService.db.port

• Type: integer

• Required: if enabled & production

The exposed port of the database server for the Trigger Service, if one is started by the Helm chart.

6.5.11.46 triggerService.db.postgres.database

• Type: string

• Required: if enabled & using an external PostgreSQL

The database the Trigger Service should use when connecting to the database server.

6.5.11.47 triggerService.db.secret

• Type: string

• Required: if enabled & production

The Kubernetes secret which is used for gaining access to the database. The content should have

the following structure:

username: daml

password: s3cr3t

or as JSON:

{

"username": "daml",

"password": "s3cr3t"

}

6.5.11.48 triggerService.db.setupSecret

• Type: string

• Default: null

• Required: false

The Trigger Service supports an optional argument init-db which, when supplied, causes the Trig-

ger Service to initialize its database structure and rthen immediately exit. If this field is set, the

Helm chart will start a separate instance of the Trigger Service in this mode, as a one-time job.

This can be used to supply separate credentials with table alteration privileges to the one-time

job (this property), and restricted credentials with no table creation/alteration privileges to the

long-running one (triggerService.db.secret).

6.5. Daml Helm Chart 1137

Daml SDK Documentation, 2.1.1

The format of this option is the same as triggerService.db.secret.

6.5.11.49 triggerService.healthCheck

• Type: string

• Default: see below

• Required: false

Overrides the probes for the long-running Trigger Service instance. Defaults:

startupProbe:

httpGet:

path: /livez

port: http

failureThreshold: 30

periodSeconds: 10

livenessProbe:

httpGet:

path: /livez

port: http

initialDelaySeconds: 10

failureThreshold: 1

periodSeconds: 5

6.5.11.50 triggerService.podAnnotations

• Type: object

• Default: {}

• Required: false

The annotations which should be attached to the metadata of the Trigger Service pod.

6.5.11.51 triggerService.resources

• Type: object

• Default: see below

• Required: false

Overrides the resources field of the Trigger Service pod. Defaults:

limits:

cpu: "1"

memory: "2Gi"

requests:

cpu: "0.5"

memory: "1Gi"

1138 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.5.11.52 triggerService.serviceAccount

• Type: string

• Default: not used

• Required: false

The service account which should be attached to the Trigger Service pod.

6.6 Setting Up Auth0

Note: This is an Early Access feature. Note that this feature does not currently work with Daml 2.0.

These docs refer to and use Daml 1.18. The feature is under active development and it will soon be

available for the 2.x major release series.

In this section, we will walk through a complete setup of an entire Daml system using Auth0 as its

authentication provider.

Note: These instructions include detailed steps to be performed through the Auth0 UI, which we do

not control. They have been tested on 2021-11-02. It is possible Auth0 has updated their UI since then

in ways that invalidate parts of the instructions here; if you notice any discrepancy, please report it

on the forum.

6.6.1 Authentication v. Authorization

In a complete Daml system, the Daml components only concern themselves with authorization: re-

quests are accompanied by a (signed) token that claims a number of rights (such as the right to act

as a given party). The Daml system will check the signature of the token, but will not perform any

further verification of the claims themselves.

On the other side of the fence, the authentication system needs to verify a client’s identity and, based

on the result, provide them with an appropriate token. It also needs to record the mapping of client

identity to Daml party (or parties), such that the same external identity keeps mapping to the same

on-ledger party over time.

Note that we need bidirectional communication between the Daml driver and the authentication

system: the authentication system needs to contact the Daml driver to allocate new parties when a

new user logs in, and the Daml driver needs to contact the authentication system to fetch the public

key used to verify token signatures.

In the context of this section, the authentication system is Auth0. Formore information on the Daml

side, see the Authorization page.

6.6. Setting Up Auth0 1139

https://discuss.daml.com

Daml SDK Documentation, 2.1.1

6.6.2 Prerequisites

In order to follow along this guide, you will need:

• An Auth0 tenant. See Auth0 documentation for how to create one if you don’t have one already.

You should get a free, dev-only one when you create an Auth0 account.

• A DNS (or IP address) that Auth0 can reach, and on which you (will) run a JSON API instance.

This will be used to create parties. Auth0 uses a known set of IP addresses that depends on the

location you chose for your tenant, so if your application is not meant to be public you can use

network rules to only let requests from these IPs through.

• To know the ledgerId your ledger self-identifies as. Refer to your specific driver’s documen-

tation for how to set the ledgerId value.

• An application you want to deploy on your Daml system. This is not, strictly speaking, required,

but the whole experience is going to be a lot less satisfying if you don’t end up with something

actually running on your Daml system. In this guide, we’ll use the create-daml-app template,

which supports Auth0 out-of-the-box on its UI side.

6.6.3 Generating Party Allocation Credentials

Since Auth0 will be in charge of requesting the allocation of parties, the first logical step is to make

it generate a token that can be used to allocate parties. This may seem recursive at first, but the

token used to allocate parties only needs to have the admin field set to true; it does not require any

preexisting party and does not need any actAs or readAs privileges.

In Auth0 concepts, we first need to register an API. To do so, from the Auth0 Dashboard, open up the

Applications -> APIs page from the menu on the left and click Create API in the top right.

You can choose any name for the API; for the purposes of this document, we’ll assume this API is

named API_NAME. The other parameters, however, are not free to set: the API identifier has to be

https://daml.com/ledger-api, and the signing algorithm has to be RS256 (which should be

selected by default). Creating the API should automatically create aMachine-to-Machine application

“API_NAME (Test Application)”, which we will be using to generate our tokens. You can change its

name to a more appropriate one; for the remainder of this document, we will assume it is called

ADMIN_TOKEN_APP.

Navigate to that application’s settings page (menuon the left: Applications > Applications page, then

click on the application’s name). This is where you can rename the application and find out about

its Client ID and Client Secret, which we’ll need later on.

Now that we have an API and an application, we can generate a token with the appropriate claims. In

order to do that, we need to make an Auth0 Action.

In themenu on the left, navigate to Actions > Library, then click on Build Custom in the top right. You

can choose an appropriate name for your action; we’ll call it ADMIN_TOKEN_ACTION. Set the Trigger

field to “M2M/Client-Credentials”, and leave the version of Node to the recommended one. (These

instructions have been tested with Node 16.)

This will open a text editor where you can add JavaScript code that will trigger on M2M (machine to

machine) connections. Replace the entire text box content with:

exports.onExecuteCredentialsExchange = async (event, api) => {

if (event.client.client_id === "%%ADMIN_TOKEN_ID%%") {

api.accessToken.setCustomClaim(

"https://daml.com/ledger-api",

(continues on next page)

1140 Chapter 6. Early Access

https://auth0.com/docs/get-started/create-tenants
https://auth0.com/docs/security/data-security/allowlist
https://auth0.com/docs/get-started/set-up-apis
https://manage.auth0.com/

Daml SDK Documentation, 2.1.1

(continued from previous page)

{

"ledgerId": "%%LEDGER_ID%%",

"participantId": null,

"applicationId": "party-creation",

"admin": true,

"actAs": []

}

);

}

};

You need to replace %%ADMIN_TOKEN_ID%%with the Client ID of the ADMIN_TOKEN_APP application,

and %%LEDGER_ID%% with your actual ledgerId value. You can freely choose the applicationId

value, and should set an appropriate participantId if your Daml driver requires it.

You then need to click on Deploy in the top right to save this Action. Despite the text on the button,

this does not (yet) deploy it anywhere.

In order to actually deploy it, we need tomake that Action part of a Flow. In themenu on the left, nav-

igate through Actions > Flows, then choose Machine to Machine. Drag the “ADMIN_TOKEN_ACTION”

(in the “Custom” tab) box on the right in-between the “Start” and “Complete” black circles in the

middle. Click Apply. Now your Action is “deployed” and, should you modify it, clicking on the Deploy

button would directly affect your live setup.

At this point you should be able to verify, using the curl command from the “Quick Start” tab of

the M2M application, that you get a token. You should also be able to check that the token has the

expected claims. You can do that by piping the result of the curl command through:

cat curl-result.json | jq -r
.access_token
 | sed
s/.*\.\(.*\)\..*/\1/
 |␣

↪→base64 -d

6.6.4 JWKS Endpoint

In order to verify the tokens it receives, theDaml driver needs to know thepublic key thatmatches the

secret key used to sign them. Daml drivers use a standard protocol for that called JWKS; in practice,

this means giving the Daml driver an HTTP URL it can query to get the keys. In the case of Auth0, that

URL is located at /.well-known/jwks.json on the tenant.

The full address is

https://%%AUTH0_DOMAIN%%/.well-known/jwks.json

You can find the value for %%AUTH0_DOMAIN%% in the Domain field of the settings page for the AD-

MIN_TOKEN_APP application (or any other application on the same tenant).

6.6. Setting Up Auth0 1141

Daml SDK Documentation, 2.1.1

6.6.5 Dynamic Party Allocation

At this point, we can generate an admin token, and the Daml driver can check its signature and thus

accept it. The next step is to actually allocate parties when people connect for the first time.

First, we need to create a new application, of type “Single Page Web Applications”. We’ll be calling

it LOGIN_APP. Open up the Settings tab and scroll down to “Allowed Callback URLs”. There, add your

application’s origin (scheme, domain or IP, and port) to all three of Allowed Callback URLs, Allowed

Logout URLs and Allowed Web Origins. Scroll all the way down and click “Save Changes”.

Create a new Action (left menu > Actions > Library, top-right Build Custom button). As usual, you can

choose the name; we’ll call it LOGIN_ACTION. Its type should be “Login / Post Login”.

Replace the default code with the following JavaScript:

const axios = require(
axios
);

// only required if JSON API is behind self-signed cert

// const https = require(
https
);

exports.onExecutePostLogin = async (event, api) => {

async function getParty() {

if (event.user.app_metadata.party !== undefined) {

return event.user.app_metadata.party;

} else {

const tokenResponse = await axios.request({

"url": "%%ADMIN_TOKEN_URL%%",

"method": "post",

"data": {

"client_id": "%%ADMIN_TOKEN_ID%%",

"client_secret": "%%ADMIN_TOKEN_SECRET%%",

"audience": "https://daml.com/ledger-api",

"grant_type": "client_credentials"

},

"headers": {

"Content-Type": "application/json",

"Accept": "application/json"

}

});

const token = tokenResponse.data.access_token;

const partyResponse = await axios.request({

"url": "%%ORIGIN%%/v1/parties/allocate",

"method": "post",

"headers": {

"Content-Type": "application/json",

"Accept": "application/json",

"Authorization": "Bearer " + token

},

"data": {}

// only required if JSON API is behind self-signed cert

//, httpsAgent: new https.Agent({ rejectUnauthorized: false })

});

const party = partyResponse.data.result.identifier;

api.user.setAppMetadata("party", party);

// optional one-time setup like creating contracts etc. here

return party;

(continues on next page)

1142 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

};

function setToken(party, actAs = [party], readAs = [party], applicationId =␣

↪→event.client.name) {

api.idToken.setCustomClaim("https://daml.com/ledger-api", party);

api.accessToken.setCustomClaim(

"https://daml.com/ledger-api",

{

"ledgerId": "%%LEDGER_ID%%",

"participantId": null,

"applicationId": applicationId,

"actAs": actAs,

"readAs": readAs,

});

};

if (event.client.client_id === "%%LOGIN_ID%%") {

const party = await getParty();

setToken(party);

}

};

where you need to replace %%LOGIN_ID%% with the Client ID of the LOGIN_APP application; %%AD-

MIN_TOKEN_URL%%, %%ADMIN_TOKEN_ID%% and %%ADMIN_TOKEN_SECRET%% with, respectively,

the URL, client_id and client_secret values that you can find on the curl example from the

Quick Start of the ADMIN_TOKEN_APP application; %%ORIGIN%% by the domain (or IP address) and

port where Auth0 can reach your JSON API instance; and %%LEDGER_ID%% by the ledgerId you’re

passing into your Daml driver.

Before we can click on Deploy to save (but not deploy) this snippet, we need to do one more thing.

This snippet is using a library called axios to make HTTP calls; we need to tell Auth0 about that, so

it can provision the library at runtime.

To do that, click on the little box icon to the left of code editor, then on the button Add Module that

just got revealed, and type in axios for the name and 0.21.1 for the version. Then, click the Create

button, and then the Deploy button.

Now you need to go to Actions > Flows, choose the Login flow, and drag the LOGIN_ACTION action

in-between the two black circles Start and Complete.

Click Apply. You now have a working Auth0 system that automatically allocates new parties upon

first login, and remembers the mapping for future logins (that happens by setting the party in the

“app metadata”, which Auth0 persists).

Note: If you are hosting your JSON API instance behind a self-signed certificate (Auth0 absolutely

requires TLS, but can be made to work with a self-signed cert), you’ll need to uncomment the https

import and the httpsAgent line above. The httpsmodule does not require extra setup (unlike the

axios one).

6.6. Setting Up Auth0 1143

Daml SDK Documentation, 2.1.1

6.6.6 Token Refresh for Trigger Service

If you want your users to be able to run triggers, you can run an instance of the Trigger Service and

expose it through the sameHTTP URL. Because the Trigger Service (via the AuthMiddleware) will need

“refreshable” tokens, though, we need a bit of extra setup for that to work.

The first step on that front is to actually allow our tokens to be refreshed. Go to the settings tab of

the API_NAME API (menu on the left > Applications > API > API_NAME) and scroll down. Towards the

bottom of the page there should be a “Allow Offline Access” toggle, which is off by default. Turn it

on, and save.

Next, we need to create a second “Machine-to-Machine Application”, which we’ll call OAUTH_APP,

to register the OAuth2 Middleware which will refresh tokens for the Trigger service. When creating

such an application, you’ll be asked for its authorized APIs; select API_NAME. Once the application

is created, go to its settings tab and add %%ORIGIN%%/auth/cb as a callback URL.

You also need to scroll all the way down to the Advanced Settings section, open the Grant Types tab,

and enable “Authorization Code”. Don’t forget to save your changes.

Finally, we need to extend our LOGIN_ACTION to respond to requests from the OAuth2 Middleware.

Navigate back to the Action code (left menu > Actions > Library > Custom > click on LOGIN_ACTION)

and add a second branch to themain if (new code starting on the line with CHANGES START HERE;

everything before that should remain unchanged).

const axios = require(
axios
);

// only required if JSON API is behind self-signed cert

// const https = require(
https
);

exports.onExecutePostLogin = async (event, api) => {

async function getParty() {

// unchanged

};

function setToken(party, actAs = [party], readAs = [party], applicationId =␣

↪→event.client.name) {

// unchanged

};

if (event.client.client_id === "%%LOGIN_ID%%") {

const party = await getParty();

setToken(party);

// CHANGES START HERE

} else if (event.client.client_id === "%%OAUTH_ID%%") {

const party = await getParty();

const readAs = [];

const actAs = [];

let appId = undefined;

event.transaction.requested_scopes.forEach(s => {

if (s === "admin") {

api.access.deny("Current user is not authorized for admin token.");

} else if (s.startsWith("readAs:")) {

const requested_read = s.slice(7);

if (requested_read === party) {

readAs.push(requested_read);

} else {

api.access.deny("Requested unauthorized readAs: " + requested_read);

}

} else if (s.startsWith("actAs:")) {

(continues on next page)

1144 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

(continued from previous page)

const requested_act = s.slice(6);

if (requested_act === party) {

actAs.push(requested_act);

} else {

api.access.deny("Requested unauthorized actAs: " + requested_act)

}

} else if (s.startsWith("applicationId:")) {

appId = s.slice(14);

}

});

setToken(party, actAs, readAs, appId);

}

};

Where %%OAUTH_ID%% is the Client ID of the OAUTH_APP. The OAuth2Middleware will send a request

with a number of requested scopes; the above code shows how to walk through them as well as a

simple approach to handling them. You can change this code to fit your application’s requirements.

Don’t forget to click on Deploy to save your changes. This time, as the Action is already part of a Flow,

clicking the Deploy button really deploys the Action and there is no further action needed.

6.6.7 Running Your App

6.6.7.1 Preparing Your Application

You may have an application already. In that case, use that. For the purposes of illustration, here

we’re going to work with a modified version of create-daml-app.

daml new --template=gsg-trigger my-project

The next step is to build the Daml code:

cd my-project

daml build

daml codegen js .daml/dist/my-project-0.1.0.dar -o ui/daml.js

Next, we’ll build our frontend code, but first we’re going tomake a small change to let us demonstrate

interactions with the Trigger Service.

We’ll need the package ID of the main DAR for the next step, so first collect it by running:

daml damlc inspect .daml/dist/my-project-0.1.0.dar | head -1

from the root of the project. In the following, we’ll refer to it as %%PACKAGE_ID%%.

Open up ui/src/components/MainView.tsx and add the Button component to the existing im-

ports from semantic-ui-react:

import { Container, Grid, Header, Icon, Segment, Divider, Button } from
semantic-

↪→ui-react
;

Scroll down a little bit, and add the following code after the USERS_END tag (around line 18):

6.6. Setting Up Auth0 1145

Daml SDK Documentation, 2.1.1

const trig = (url: string, req: object) => async () => {

const resp = await fetch(url, req);

if (resp.status === 401) {

const challenge = await resp.json();

console.log(CUnauthorized ${JSON.stringify(challenge)}C);

var loginUrl = new URL(challenge.login);

loginUrl.searchParams.append("redirect_uri", window.location.href);

window.location.replace(loginUrl.href);

} else {

const body = await resp.text();

console.log(C(${resp.status}) ${body}C);

}

}

const list = trig("/trigger/v1/triggers?party=" + username, {});

const start = trig("/trigger/v1/triggers", {

method: "POST",

body: JSON.stringify({

triggerName: "%%PACKAGE_ID%%:ChatBot:autoReply",

party: username,

applicationId: "frontend"

}),

headers: {

Content-Type
:
application/json

}});

where %%PACKAGE_ID%% is the package ID of the main DAR file, as explained above.

Finally, scroll down to the end of the Grid.Column tag, and add:

// ...

</Segment>

<Segment>

<Button primary fluid onClick={list}>List triggers</Button>

<Button primary fluid onClick={start}>Start autoReply</Button>

</Segment>

</Grid.Column>

Now, build your frontend with (starting at the root):

cd ui

npm install

REACT_APP_AUTH=auth0 \

REACT_APP_AUTH0_DOMAIN=%%AUTH0_DOMAIN%% \

REACT_APP_AUTH0_CLIENT_ID=%%LOGIN_ID%% \

npm run-script build

As before, %%AUTH0_DOMAIN%% and %%LOGIN_ID%% need to be replaced.

Now, we need to expose the JSON API and our static files. We’ll use nginx for that, but you can use

any HTTP server you (and your security team) are comfortable with, as long as it can serve static files

and proxy some paths.

First, create a file nginx/nginx.conf.sh with the following content next to your app folder, i.e. in

our example nginx is a sibling to my-project.

1146 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

#!/usr/bin/env bash

set -euo pipefail

openssl req -x509 \

-newkey rsa:4096 \

-keyout /etc/ssl/private/nginx-selfsigned.key \

-out /etc/ssl/certs/nginx-selfsigned.crt \

-days 365 \

-nodes \

-subj "/C=US/ST=Oregon/L=Portland/O=Company Name/OU=Org/CN=${FRONTEND_

↪→IP}"

openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048

cat <<NGINX_CONFIG > /etc/nginx/nginx.conf

worker_processes auto;

pid /run/nginx.pid;

events {

worker_connections 768;

}

http {

sendfile on;

tcp_nopush on;

tcp_nodelay on;

keepalive_timeout 65;

types_hash_max_size 2048;

include /etc/nginx/mime.types;

default_type application/octet-stream;

access_log /var/log/nginx/access.log;

error_log /var/log/nginx/error.log;

gzip on;

ssl_certificate /etc/ssl/certs/nginx-selfsigned.crt;

ssl_certificate_key /etc/ssl/private/nginx-selfsigned.key;

ssl_protocols TLSv1 TLSv1.1 TLSv1.2;

ssl_prefer_server_ciphers on;

ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:AES256+EECDH:AES256+EDH";

ssl_ecdh_curve secp384r1;

ssl_session_cache shared:SSL:10m;

ssl_session_tickets off;

ssl_stapling on;

ssl_stapling_verify on;

resolver 8.8.8.8 8.8.4.4 valid=300s;

resolver_timeout 5s;

add_header X-Frame-Options DENY;

add_header X-Content-Type-Options nosniff;

ssl_dhparam /etc/ssl/certs/dhparam.pem;

server {

listen 80;

return 302 https://${FRONTEND_IP}\$request_uri;

}

server {

listen 443 ssl http2;

location /v1/stream {

proxy_pass http://${JSON_IP};

(continues on next page)

6.6. Setting Up Auth0 1147

Daml SDK Documentation, 2.1.1

(continued from previous page)

proxy_http_version 1.1;

proxy_set_header Upgrade \$http_upgrade;

proxy_set_header Connection "Upgrade";

proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;

}

location /v1 {

proxy_pass http://${JSON_IP};

proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;

}

location /auth/ {

proxy_pass http://${AUTH_IP}/;

proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;

}

location /trigger/ {

proxy_pass http://${TRIGGER_IP}/;

proxy_set_header X-Forwarded-For \$proxy_add_x_forwarded_for;

}

root /app/ui;

index index.html;

location / {

for development, uncomment proxy_pass and comment the try_files line

#proxy_pass http://localhost:3000/;

try_files \$uri \$uri/ =404;

}

}

}

NGINX_CONFIG

Next, create a file nginx/Dockerfile with this content:

FROM nginx:1.21.0

COPY build /app/ui

COPY nginx.conf.sh /app/nginx.conf.sh

RUN chmod +x /app/nginx.conf.sh

CMD /app/nginx.conf.sh && exec nginx -g
daemon off;

Finally, we can build the Docker container with the following, starting in the folder that contains both

nginx and my-project:

cp -r my-project/ui/build nginx/build

cd nginx

docker build -t frontend .

And that’s it for building the application. We now have a DAR file that is ready to be deployed to a

ledger, as well as a Docker container ready to serve our frontend. All we need now is to get a Daml

system up and running. We document two paths forward here: one that relies on the Helm chart

included in Daml Enterprise, and a manual setup using only the Open Source SDK.

1148 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

6.6.7.2 Using the Daml Helm Chart

For simplicity, we assume that you have access to a server with a public IP address that both you

and Auth0 can reach. Furthermore, we assume that you have access to Daml Enterprise credentials

to download the Docker images. We also assume you can create a local cluster with minikube on

the remote machine. Finally, we assume that you have downloaded the Helm chart in a folder called

daml-connect.

First, start a new cluster:

minikube start

Next, loadup your credentials as explained in theDamlHelmChart section. Weassume they are loaded

under the secret named daml-docker-credentials.

Create a file called values.yaml with the following content:

imagePullSecret: daml-docker-credentials

authUrl: "https://%%AUTH0_DOMAIN%%/.well-known/jwks.json"

oauthMiddleware:

create: true

oauthAuth: "https://%%AUTH0_DOMAIN%%/authorize"

oauthToken: "https://%%AUTH0_DOMAIN%%/oauth/token"

callback: "https://%%DOMAIN%%/auth/cb"

clientId: "%%OAUTH_ID%%"

clientSecret: "%%OAUTH_SECRET%%"

triggerService:

create: true

authExternal: "https://%%DOMAIN%%/auth"

authCallback: "https://%%DOMAIN%%/trigger/cb"

where, as before:

• %%AUTH0_DOMAIN%% is the domain of your Auth0 tenant, displayed as the “Domain” property

of any app within the tenant.

• %%DOMAIN%% is the domain on which your frontend will be exposed, and in particular here the

domain to which Auth0 needs to redirect after the OAuth handshake.

• %%OAUTH_ID%% is, as before, the OAUTH_APP application’s Client ID.

• %%OAUTH_SECRET is the same application’s Client Secret.

Assuming that you have your Artifactory credentials in the environment variables ARTIFAC-

TORY_USERNAME (user name) and ARTIFACTORY_PASSWORD (API key), you can add the Helm repos-

itory with:

helm repo add daml \

https://digitalasset.jfrog.io/artifactory/connect-helm-chart \

--username $ARTIFACTORY_USERNAME \

--password $ARTIFACTORY_PASSWORD

And now, you can deploy your cluster:

helm install dm daml/daml-connect --devel --values values.yaml

which will start the demo, non-production mode of the Helm chart. You can now start your applica-

tion with:

6.6. Setting Up Auth0 1149

Daml SDK Documentation, 2.1.1

PROXY="$(minikube ip):$(kubectl get svc dm-daml-connect-reverse-proxy --

↪→output=json | jq
.spec.ports[0].nodePort
)"

docker run -e JSON_IP=$PROXY \

-e AUTH_IP=$PROXY/auth \

-e TRIGGER_IP=$PROXY/trigger \

-e FRONTEND_IP=$DOMAIN \

--network=host \

frontend

where $DOMAIN is assumed to be an environment variable set to the public domain on which your

server is exposed. And voilà! Your application is up and running. You should be able to log in

with Auth0, exchange messages, and set up an auto-reply trigger, all by connecting your browser

to https://$DOMAIN/.

6.6.7.3 Manually Setting Up the Daml Components

For simplicity, we assume that all of the Daml components will run on a single machine (they can

find each other on localhost) and that this machine has either a public IP or a public DNS that

Auth0 can reach (hereafter assumed to be set as the DOMAIN env var). Furthermore, we assume that

IP/DNS is what you’ve configured as the callback URL in the Auth0 configuration above.

Finally, we assume that you can SSH into that machine and run daml and docker commands on it.

The rest of this section happens on that remote server.

First, we need to start the Daml driver. For this example we’ll use the sandbox, but with

--implicit-party-allocation false it should behave like a production ledger (minus per-

sistence).

daml sandbox --ledgerid %%LEDGER_ID%% \

--auth-jwt-rs256-jwks https://%%AUTH0_DOMAIN%%/.well-known/jwks.json␣

↪→\

--implicit-party-allocation false \

--dar .daml/dist/my-project-0.1.0.dar

As before, you need to replace %%LEDGER_ID%%with a value of your choosing (the same one you used

when configuring Auth0), and %%AUTH0_DOMAIN%% with your Auth0 domain, which you can find as

the Domain field at the top of the Settings tab for any app in the tenant.

Next, you need to start a JSON API instance.

cd my-project

daml json-api --ledger-port 6865 \

--ledger-host localhost \

--http-port 4000

Then, we want to start the Trigger Service and OAuth2 middleware, which we will put respectively

under /trigger and /auth. First, the middleware:

DAML_CLIENT_ID=%%OAUTH_APP_ID%% \

DAML_CLIENT_SECRET=%%OAUTH_APP_SECRET%% \

daml oauth2-middleware \

--address localhost \

--http-port 5000 \

--oauth-auth "https://%%AUTH0_DOMAIN%%/authorize" \

(continues on next page)

1150 Chapter 6. Early Access

Daml SDK Documentation, 2.1.1

(continued from previous page)

--oauth-token "https://%%AUTH0_DOMAIN%%/oauth/token" \

--auth-jwt-rs256-jwks "https://%%AUTH0_DOMAIN%%/.well-known/jwks.json" \

--callback %%ORIGIN%%/auth/cb

where, as before, you need to replace:

• %%OAUTH_APP_ID%% with the Client ID value you can find at the top of the settings tab for the

OAUTH_APP we just created.

• %%OAUTH_APP_SECRET%% with the Client Secret value you can find at the top of the settings

tab for the OAUTH_APP we just created.

• %%AUTH0_DOMAIN%% with your tenant domain.

• %%ORIGIN%% with the full domain-name-or-ip & port, including scheme, under which you ex-

pose your server.

Now, the trigger service:

daml trigger-service \

--address localhost \

--http-port 6000 \

--ledger-host localhost \

--ledger-port 6865 \

--auth-internal http://localhost:5000 \

--auth-external %%ORIGIN%%/auth \

--auth-callback %%ORIGIN%%/trigger/cb \

--dar .daml/dist/my-project-0.1.0.dar

where %%ORIGIN%% is, as per the Auth0 configuration, https://$DOMAIN.

And that’s all the Daml components. You can now start your frontend application with:

docker run -e JSON_IP=localhost:4000 \

-e AUTH_IP=localhost:5000 \

-e TRIGGER_IP=localhost:6000 \

-e FRONTEND_IP=$DOMAIN \

--network=host frontend

This runs a “production build” of your frontend code. If instead you want to develop frontend code

against the rest of this setup, you can uncomment the last proxy_pass directive in nginx.conf.

sh, comment the try_files line after it, and start a reloading development server with:

cd ui

npm install

REACT_APP_AUTH=auth0 \

REACT_APP_AUTH0_DOMAIN=%%AUTH0_DOMAIN%% \

REACT_APP_AUTH0_CLIENT_ID=%%LOGIN_ID%% \

npm start

6.6. Setting Up Auth0 1151

	Table of contents
	Getting started
	Installing the SDK
	1. Installing the Dependencies
	2. Choosing Daml Enterprise or Daml Open Source
	3. Installing Daml Open Source SDK
	Windows 10
	Mac and Linux

	Installing Daml Enterprise
	Downloading Manually
	Next Steps
	Setting JAVA_HOME and PATH Variables
	Windows
	Setting the JAVA_HOME Variable
	Setting the PATH Variable

	Mac OS
	Linux
	Setting the JAVA_HOME Variable
	Setting the PATH Variable
	Verifying the Changes

	Manually Installing the SDK

	Getting Started with Daml
	Prerequisites
	Running the App

	App Architecture
	The Daml Model
	TypeScript Code Generation
	The UI

	Your First Feature
	Daml Changes
	Messaging UI
	MessageList Component
	MessageEdit Component
	MainView Component

	Running the Updated UI
	Next Steps

	Testing Your Web App
	Setting up our tests
	Example: Logging in and out
	Accessing UI elements
	Writing CSS Selectors
	The Full Test Suite

	Daml Guide
	Writing Daml
	An introduction to Daml
	1 Basic contracts
	Daml ledger basics
	Daml files and modules
	Templates
	Signatories
	Next up

	2 Testing templates using Daml Script
	Script basics
	Running scripts
	Testing for failure
	Archiving contracts
	Exploring the ledger
	Exercises
	Next up

	3 Data types
	Native types
	Assembling types
	Tuples
	Lists
	Records
	Variants and pattern matching

	Manipulating data
	Contract keys
	Next up

	4 Transforming data using choices
	Choices as methods
	Choices as delegation
	Choices in the Ledger Model
	The Archive choice

	A simple cash model
	Next up

	5 Adding constraints to a contract
	Template preconditions
	Assertions
	Time on Daml ledgers
	Time in test scripts
	Time on ledgers

	Actions and do blocks
	Pure expressions compared to Actions
	Actions and impurity
	Chaining up actions with do blocks
	Wrapping values in actions

	Failing actions
	A sample Action
	Errors
	Next up

	6 Parties and authority
	Preventing IOU revocation
	Use propose-accept workflows for one-off authorization
	Use role contracts for ongoing authorization
	Daml’s authorization model
	An authorization example

	Next up

	7 Composing choices
	Daml projects
	Project structure
	Project overview
	Composed choices and scripts
	Daml’s execution model
	Observers
	Privacy
	Divulgence

	Next up

	8 Exception Handling
	Next up

	9 Working with Dependencies
	DAR, DALF, Daml-LF, and the Engine
	Hashes and Identifiers
	Dependencies and Data Dependencies
	Structuring Projects
	Next up

	10 Functional Programming 101
	The Haskell Connection
	Functions
	Function Application
	Infix Functions
	Type Constraints
	Pattern Matching in Arguments
	Functions Everywhere
	Lambdas

	Control Flow
	Branching
	If..Else
	Control Flow as Expressions
	Branching in Actions
	Looping
	Folds
	Maps
	Recursion
	Folds and Maps in Action Contexts

	Next up

	11 Intro to the Daml Standard Library
	The Prelude
	Important Types from the Prelude
	Lists
	Tuples
	Optional
	Either

	Typeclasses
	Important Typeclasses from the Prelude
	Eq
	Ord
	Show
	Functor
	Applicative Functor
	Actions
	Semigroups and Monoids
	Additive and Multiplicative

	Important Modules in the Standard Library
	Searching the Standard Library
	Searching for functions by Name
	Searching for functions by Signature

	Next up

	12 Testing Daml Contracts
	Daml Test Tooling
	Debug, Trace, and Stacktraces
	Diagnosing Contention Errors
	Common Errors
	ContractId Not Found During Interpretation
	ContractId Not Found During Validation
	fetchByKey Error during Interpretation
	fetchByKey Dispute During Validation
	lookupByKey Dispute During Validation
	Avoiding Race Conditions and Stale References
	Collisions due to Ignorance

	Next up

	Language reference docs
	Overview: template structure
	Template outline structure
	Choice structure
	Choice body structure

	Reference: templates
	Template name
	Template parameters
	Template-local Definitions
	Signatory parties
	Observers
	Choices
	Agreements
	Preconditions
	Contract keys and maintainers

	Reference: choices
	choice first or controller first
	Choice name
	Controllers
	Contract consumption

	Preconsuming choices
	Postconsuming choices
	Non-consuming choices
	Return type

	Choice arguments
	Choice body

	Reference: updates
	Background
	Binding variables
	do
	create
	exercise
	exerciseByKey
	fetch
	fetchByKey
	lookupByKey
	abort
	assert
	getTime
	return
	let
	this

	Reference: data types
	Built-in types
	Table of built-in primitive types
	Escaping characters
	Time

	Lists
	Summing a list

	Records and record types
	Data constructors
	Accessing record fields
	Updating record fields
	Parameterized data types

	Type synonyms
	Function types

	Algebraic data types
	Product types
	Sum types
	Pattern matching

	Reference: built-in functions
	Working with time
	Working with numbers
	Working with text
	Working with lists
	Folding

	Reference: expressions
	Definitions
	Values
	Functions

	Arithmetic operators
	Comparison operators
	Logical operators
	If-then-else
	Let

	Reference: functions
	Defining functions
	Partial application
	Functions are values
	Generic functions

	Reference: Daml file structure
	File structure
	Imports
	Libraries
	Comments
	Contract identifiers

	Reference: Daml packages
	Building Daml archives
	Inspecting DARs
	Importing Daml packages
	Importing a Daml package via dependencies
	Importing a Daml archive via data-dependencies
	Referencing Daml packages already on the ledger

	Handling module name collisions

	Reference: Contract keys
	What can be a contract key
	Specifying maintainers
	Contract Lookups
	fetchByKey
	visibleByKey
	lookupByKey

	exerciseByKey
	Example

	Reference: Exceptions
	Builtin Errors
	User-Defined Exceptions
	Throwing Exceptions
	Catching Exceptions

	Reference: Interfaces
	Interface declaration
	Interface name
	Interface methods
	Interface precondition
	Interface choices
	Empty interfaces
	Required interfaces

	Interface implementation
	Implements clause
	Empty implements clause

	Interface functions

	The standard library
	Module Prelude
	Typeclasses
	Data Types
	Functions

	Module DA.Action
	Functions

	Module DA.Action.State
	Data Types
	Functions

	Module DA.Action.State.Class
	Typeclasses

	Module DA.Assert
	Functions

	Module DA.Bifunctor
	Typeclasses

	Module DA.BigNumeric
	Functions

	Module DA.Date
	Data Types
	Functions

	Module DA.Either
	Functions

	Module DA.Exception
	Typeclasses
	Data Types

	Module DA.Foldable
	Typeclasses
	Functions

	Module DA.Functor
	Functions

	Module DA.List
	Functions

	Module DA.List.BuiltinOrder
	Functions

	Module DA.List.Total
	Functions

	Module DA.Logic
	Data Types
	Functions

	Module DA.Map
	Functions

	Module DA.Math
	Functions

	Module DA.Monoid
	Data Types

	Module DA.NonEmpty
	Functions

	Module DA.NonEmpty.Types
	Data Types

	Module DA.Numeric
	Functions

	Module DA.Optional
	Functions

	Module DA.Record
	Typeclasses

	Module DA.Semigroup
	Data Types

	Module DA.Set
	Data Types
	Functions

	Module DA.Stack
	Data Types
	Functions

	Module DA.Text
	Functions

	Module DA.TextMap
	Functions

	Module DA.Time
	Data Types
	Functions

	Module DA.Traversable
	Typeclasses
	Functions

	Module DA.Tuple
	Functions

	Module DA.Validation
	Data Types
	Functions

	Good design patterns
	Initiate and Accept
	Motivation
	Implementation
	Trade-offs

	Multiple party agreement
	Motivation
	Implementation

	Delegation
	Motivation
	Implementation

	Authorization
	Motivation
	Authorization

	Locking
	Motivation
	Implementation
	Locking by archiving
	Consuming choice
	Archiving contract
	Trade-offs
	Locking by state
	Trade-offs
	Locking by safekeeping
	Trade-offs

	Diagram legends

	Building Applications
	Application architecture
	Backend
	Frontend
	Authorization
	Developer workflow
	Command deduplication
	Dealing with failures
	Crash recovery
	Failing over between Ledger API endpoints

	Dealing with time

	JavaScript Client Libraries
	JavaScript Code Generator
	Usage
	Primitive Daml types: @daml/types
	Daml to TypeScript mappings
	Records
	Variants
	Sum-of-products
	Enums
	Templates and choices

	@daml/react
	@daml/ledger
	@daml/types

	HTTP JSON API Service
	Daml-LF JSON Encoding
	ContractId
	Decimal
	Input
	Output

	Int64
	Input
	Output

	Timestamp
	Input
	Output

	Party
	Unit
	Date
	Text
	Bool
	Record
	Input
	Output

	List
	TextMap
	GenMap
	Optional
	Input
	Output

	Variant
	Enum

	Query language
	Fallback rule
	Simple equality
	Comparison query
	Appendix: Type-aware queries
	Appendix: Known issues
	When using Oracle, queries fail if a token is too large

	Production Setup
	Query store
	Data continuity

	Security and privacy
	Architecture
	Components

	Scaling and Redundancy
	Set up the HTTP JSON API Service to work with Highly Available Participants

	Logging
	Metrics
	Enable and configure reporting
	Types of metrics
	Counter
	Meter
	Timers
	List of metrics
	daml.http_json_api.command_submission_timing
	daml.http_json_api.query_all_timing
	daml.http_json_api.query_matching_timing
	daml.http_json_api.fetch_timing
	daml.http_json_api.get_party_timing
	daml.http_json_api.allocate_party_timing
	daml.http_json_api.download_package_timing
	daml.http_json_api.upload_package_timing
	daml.http_json_api.incoming_json_parsing_and_validation_timing
	daml.http_json_api.response_creation_timing
	daml.http_json_api.db_find_by_contract_key_timing
	daml.http_json_api.db_find_by_contract_id_timing
	daml.http_json_api.command_submission_ledger_timing
	daml.http_json_api.http_request_throughput
	daml.http_json_api.websocket_request_count
	daml.http_json_api.command_submission_throughput
	daml.http_json_api.upload_packages_throughput
	daml.http_json_api.allocation_party_throughput

	Running the JSON API
	Start a Daml Ledger
	Start the HTTP JSON API Service
	Basic
	Standalone JAR
	With Query Store

	Access Tokens
	Party-specific Requests
	Using User Tokens
	Using Claim Tokens
	Auth via HTTP
	Auth via WebSockets

	HTTP Status Codes
	Successful response, HTTP status: 200 OK
	Successful response with a warning, HTTP status: 200 OK
	Failure, HTTP status: 400 | 401 | 404 | 500
	Examples

	Create a new Contract
	HTTP Request
	HTTP Response

	Creating a Contract with a Command ID
	Exercise by Contract ID
	HTTP Request
	HTTP Response

	Exercise by Contract Key
	HTTP Request
	HTTP Response

	Create and Exercise in the Same Transaction
	HTTP Request
	HTTP Response

	Fetch Contract by Contract ID
	HTTP Request
	Contract Not Found HTTP Response
	Contract Found HTTP Response

	Fetch Contract by Key
	HTTP Request
	Contract Not Found HTTP Response
	Contract Found HTTP Response

	Get all Active Contracts
	HTTP Request
	HTTP Response

	Get all Active Contracts Matching a Given Query
	HTTP Request
	Empty HTTP Response
	Nonempty HTTP Response
	Nonempty HTTP Response with Unknown Template IDs Warning

	Fetch Parties by Identifiers
	HTTP Response
	Response with Unknown Parties Warning

	Fetch All Known Parties
	HTTP Response

	Allocate a New Party
	HTTP Request
	HTTP Response

	Creating a New User
	HTTP Request
	HTTP Response

	Get Authenticated User Information
	HTTP Request
	HTTP Response

	Get Specific User Information
	HTTP Request
	HTTP Response

	Delete Specific User
	HTTP Request
	HTTP Response

	List Users
	HTTP Request
	HTTP Response

	Grant User Rights
	HTTP Request
	HTTP Response

	Revoke User Rights
	HTTP Request
	HTTP Response

	List Authenticated User Rights
	HTTP Request
	HTTP Response

	List Specific User Rights
	HTTP Request
	HTTP Response

	List All DALF Packages
	HTTP Request
	HTTP Response

	Download a DALF Package
	HTTP Request
	HTTP Response, status: 200 OK
	HTTP Response with Error, any status different from 200 OK

	Upload a DAR File
	HTTP Request
	HTTP Response, status: 200 OK
	HTTP Response with Error

	Metering Report
	HTTP Response

	Streaming API
	Error and Warning Reporting
	Error and Warning Examples

	Contracts Query Stream
	Fetch by Key Contracts Stream

	Healthcheck Endpoints
	Liveness check
	Readiness check

	Daml Script
	Daml Script Library
	Module Daml.Script
	Data Types
	Functions

	Usage
	Party management
	Queries
	Running a Script

	Using Daml Script for Ledger Initialization
	Migrating from Scenarios

	Using Daml Script in Distributed Topologies
	Running Daml Script against Ledgers with Authorization
	Running Daml Script against the HTTP JSON API

	Daml REPL
	Usage
	What is in scope at the prompt?
	Using Daml REPL without a Ledger
	Connecting via TLS
	Connection to a Ledger with Authorization
	Using Daml REPL to convert to JSON

	Upgrading and Extending Daml applications
	Extending Daml applications
	Upgrading Daml applications
	Daml upgrade overview
	Structuring upgrade contracts
	Building and deploying carbon-1.0.0
	Create some carbon-1.0.0 certificates
	Building and deploying carbon-2.0.0
	Building and deploying carbon-upgrade
	Upgrade existing certificates from carbon-1.0.0 to carbon-2.0.0
	Further Steps

	Automating the Upgrade Process
	Structuring the Upgrade
	Implementation of the Daml Script
	Implementation of the Daml Trigger
	Deploying and Executing the Upgrade

	Authorization
	Introduction
	Acquiring and using access tokens
	Access tokens and rights
	Access token formats
	User access tokens
	Custom Daml claims access tokens

	The Ledger API
	The Ledger API services
	Overview
	Glossary

	Submitting commands to the ledger
	Command submission service
	Change ID
	Application-specific IDs
	Command deduplication
	Command completion service
	Command service

	Reading from the ledger
	Transaction service
	Transaction and transaction trees
	Verbosity
	Active contracts service
	Verbosity

	Utility services
	Party management service
	User management service
	Package service
	Ledger identity service (DEPRECATED)
	Ledger configuration service
	Version service
	Pruning service
	Metering Report service

	Testing services
	Time service

	gRPC
	Getting started
	Protobuf reference documentation
	Example project
	About the example project

	Daml types and protobuf
	Error handling

	Error Codes
	Overview
	Glossary
	Anatomy of an Error
	Error Description
	Additional Machine Readable Information
	Preventing Security Leaks in Error Codes

	Working with Error Codes
	Error Categories Inventory
	TransientServerFailure
	ContentionOnSharedResources
	DeadlineExceededRequestStateUnknown
	SystemInternalAssumptionViolated
	MaliciousOrFaultyBehaviour
	AuthInterceptorInvalidAuthenticationCredentials
	InsufficientPermission
	InvalidIndependentOfSystemState
	InvalidGivenCurrentSystemStateOther
	InvalidGivenCurrentSystemStateResourceExists
	InvalidGivenCurrentSystemStateResourceMissing
	InvalidGivenCurrentSystemStateSeekAfterEnd
	BackgroundProcessDegradationWarning
	InternalUnsupportedOperation

	Error Codes Inventory
	1. KVErrors
	1.1. KVErrors / Consistency
	VALIDATION_FAILURE
	1.2. KVErrors / Internal
	INVALID_PARTICIPANT_STATE
	MISSING_INPUT_STATE
	REJECTION_REASON_NOT_SET
	SUBMISSION_FAILED
	1.3. KVErrors / Resources
	RESOURCE_EXHAUSTED
	1.4. KVErrors / Time
	CAUSAL_MONOTONICITY_VIOLATED
	INVALID_RECORD_TIME
	RECORD_TIME_OUT_OF_RANGE
	2. ParticipantErrorGroup
	2.1. ParticipantErrorGroup / IndexErrors
	2.1.1. ParticipantErrorGroup / IndexErrors / DatabaseErrors
	INDEX_DB_INVALID_RESULT_SET
	INDEX_DB_SQL_NON_TRANSIENT_ERROR
	INDEX_DB_SQL_TRANSIENT_ERROR
	2.2. ParticipantErrorGroup / LedgerApiErrors
	LEDGER_API_INTERNAL_ERROR
	PARTICIPANT_BACKPRESSURE
	REQUEST_TIME_OUT
	SERVER_IS_SHUTTING_DOWN
	SERVICE_NOT_RUNNING
	UNSUPPORTED_OPERATION
	2.2.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices
	CONFIGURATION_ENTRY_REJECTED
	PACKAGE_UPLOAD_REJECTED
	2.2.1.1. ParticipantErrorGroup / LedgerApiErrors / AdminServices / UserManagementServiceErrors
	TOO_MANY_USER_RIGHTS
	USER_ALREADY_EXISTS
	USER_NOT_FOUND
	2.2.2. ParticipantErrorGroup / LedgerApiErrors / AuthorizationChecks
	INTERNAL_AUTHORIZATION_ERROR
	PERMISSION_DENIED
	STALE_STREAM_AUTHORIZATION
	UNAUTHENTICATED
	2.2.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution
	FAILED_TO_DETERMINE_LEDGER_TIME
	2.2.3.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter
	CONTRACT_NOT_ACTIVE
	DAML_AUTHORIZATION_ERROR
	DAML_INTERPRETATION_ERROR
	DAML_INTERPRETER_INVALID_ARGUMENT
	2.2.3.1.1. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Interpreter / LookupErrors
	CONTRACT_KEY_NOT_FOUND
	2.2.3.2. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Package
	ALLOWED_LANGUAGE_VERSIONS
	PACKAGE_VALIDATION_FAILED
	2.2.3.3. ParticipantErrorGroup / LedgerApiErrors / CommandExecution / Preprocessing
	COMMAND_PREPROCESSING_FAILED
	2.2.4. ParticipantErrorGroup / LedgerApiErrors / ConsistencyErrors
	CONTRACT_NOT_FOUND
	DUPLICATE_COMMAND
	DUPLICATE_CONTRACT_KEY
	INCONSISTENT
	INCONSISTENT_CONTRACTS
	INCONSISTENT_CONTRACT_KEY
	INVALID_LEDGER_TIME
	SUBMISSION_ALREADY_IN_FLIGHT
	2.2.5. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError
	DAR_NOT_SELF_CONSISTENT
	DAR_VALIDATION_ERROR
	PACKAGE_SERVICE_INTERNAL_ERROR
	2.2.5.1. ParticipantErrorGroup / LedgerApiErrors / PackageServiceError / Reading
	DAR_PARSE_ERROR
	INVALID_DAR
	INVALID_DAR_FILE_NAME
	INVALID_LEGACY_DAR
	INVALID_ZIP_ENTRY
	ZIP_BOMB
	2.2.6. ParticipantErrorGroup / LedgerApiErrors / RequestValidation
	INVALID_ARGUMENT
	INVALID_DEDUPLICATION_PERIOD
	INVALID_FIELD
	LEDGER_ID_MISMATCH
	MISSING_FIELD
	NON_HEXADECIMAL_OFFSET
	OFFSET_AFTER_LEDGER_END
	OFFSET_OUT_OF_RANGE
	PARTICIPANT_PRUNED_DATA_ACCESSED
	2.2.6.1. ParticipantErrorGroup / LedgerApiErrors / RequestValidation / NotFound
	LEDGER_CONFIGURATION_NOT_FOUND
	PACKAGE_NOT_FOUND
	TRANSACTION_NOT_FOUND
	2.2.7. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections
	DISPUTED
	OUT_OF_QUOTA
	PARTY_NOT_KNOWN_ON_LEDGER
	SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT
	SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER
	2.2.7.1. ParticipantErrorGroup / LedgerApiErrors / WriteServiceRejections / Internal
	INTERNALLY_DUPLICATE_KEYS
	INTERNALLY_INCONSISTENT_KEYS

	Ledger API Reference
	com/daml/ledger/api/v1/active_contracts_service.proto
	GetActiveContractsRequest
	GetActiveContractsResponse
	ActiveContractsService

	com/daml/ledger/api/v1/admin/config_management_service.proto
	GetTimeModelRequest
	GetTimeModelResponse
	SetTimeModelRequest
	SetTimeModelResponse
	TimeModel
	ConfigManagementService

	com/daml/ledger/api/v1/admin/metering_report_service.proto
	ApplicationMeteringReport
	GetMeteringReportRequest
	GetMeteringReportResponse
	ParticipantMeteringReport
	MeteringReportService

	com/daml/ledger/api/v1/admin/package_management_service.proto
	ListKnownPackagesRequest
	ListKnownPackagesResponse
	PackageDetails
	UploadDarFileRequest
	UploadDarFileResponse
	PackageManagementService

	com/daml/ledger/api/v1/admin/participant_pruning_service.proto
	PruneRequest
	PruneResponse
	ParticipantPruningService

	com/daml/ledger/api/v1/admin/party_management_service.proto
	AllocatePartyRequest
	AllocatePartyResponse
	GetParticipantIdRequest
	GetParticipantIdResponse
	GetPartiesRequest
	GetPartiesResponse
	ListKnownPartiesRequest
	ListKnownPartiesResponse
	PartyDetails
	PartyManagementService

	com/daml/ledger/api/v1/admin/user_management_service.proto
	CreateUserRequest
	CreateUserResponse
	DeleteUserRequest
	DeleteUserResponse
	GetUserRequest
	GetUserResponse
	GrantUserRightsRequest
	GrantUserRightsResponse
	ListUserRightsRequest
	ListUserRightsResponse
	ListUsersRequest
	ListUsersResponse
	RevokeUserRightsRequest
	RevokeUserRightsResponse
	Right
	Right.CanActAs
	Right.CanReadAs
	Right.ParticipantAdmin
	User
	UserManagementService

	com/daml/ledger/api/v1/command_completion_service.proto
	Checkpoint
	CompletionEndRequest
	CompletionEndResponse
	CompletionStreamRequest
	CompletionStreamResponse
	CommandCompletionService

	com/daml/ledger/api/v1/command_service.proto
	SubmitAndWaitForTransactionIdResponse
	SubmitAndWaitForTransactionResponse
	SubmitAndWaitForTransactionTreeResponse
	SubmitAndWaitRequest
	CommandService

	com/daml/ledger/api/v1/command_submission_service.proto
	SubmitRequest
	CommandSubmissionService

	com/daml/ledger/api/v1/commands.proto
	Command
	Commands
	CreateAndExerciseCommand
	CreateCommand
	ExerciseByKeyCommand
	ExerciseCommand

	com/daml/ledger/api/v1/completion.proto
	Completion

	com/daml/ledger/api/v1/event.proto
	ArchivedEvent
	CreatedEvent
	Event
	ExercisedEvent

	com/daml/ledger/api/v1/experimental_features.proto
	CommandDeduplicationFeatures
	CommandDeduplicationPeriodSupport
	ExperimentalCommitterEventLog
	ExperimentalContractIds
	ExperimentalFeatures
	ExperimentalOptionalLedgerId
	ExperimentalSelfServiceErrorCodes
	ExperimentalStaticTime
	CommandDeduplicationPeriodSupport.DurationSupport
	CommandDeduplicationPeriodSupport.OffsetSupport
	CommandDeduplicationType
	ExperimentalCommitterEventLog.CommitterEventLogType
	ExperimentalContractIds.ContractIdV1Support

	com/daml/ledger/api/v1/ledger_configuration_service.proto
	GetLedgerConfigurationRequest
	GetLedgerConfigurationResponse
	LedgerConfiguration
	LedgerConfigurationService

	com/daml/ledger/api/v1/ledger_identity_service.proto
	GetLedgerIdentityRequest
	GetLedgerIdentityResponse
	LedgerIdentityService

	com/daml/ledger/api/v1/ledger_offset.proto
	LedgerOffset
	LedgerOffset.LedgerBoundary

	com/daml/ledger/api/v1/package_service.proto
	GetPackageRequest
	GetPackageResponse
	GetPackageStatusRequest
	GetPackageStatusResponse
	ListPackagesRequest
	ListPackagesResponse
	HashFunction
	PackageStatus
	PackageService

	com/daml/ledger/api/v1/testing/time_service.proto
	GetTimeRequest
	GetTimeResponse
	SetTimeRequest
	TimeService

	com/daml/ledger/api/v1/transaction.proto
	Transaction
	TransactionTree
	TransactionTree.EventsByIdEntry
	TreeEvent

	com/daml/ledger/api/v1/transaction_filter.proto
	Filters
	InclusiveFilters
	TransactionFilter
	TransactionFilter.FiltersByPartyEntry

	com/daml/ledger/api/v1/transaction_service.proto
	GetFlatTransactionResponse
	GetLedgerEndRequest
	GetLedgerEndResponse
	GetTransactionByEventIdRequest
	GetTransactionByIdRequest
	GetTransactionResponse
	GetTransactionTreesResponse
	GetTransactionsRequest
	GetTransactionsResponse
	TransactionService

	com/daml/ledger/api/v1/value.proto
	Enum
	GenMap
	GenMap.Entry
	Identifier
	List
	Map
	Map.Entry
	Optional
	Record
	RecordField
	Value
	Variant

	com/daml/ledger/api/v1/version_service.proto
	FeaturesDescriptor
	GetLedgerApiVersionRequest
	GetLedgerApiVersionResponse
	UserManagementFeature
	VersionService

	Scalar Value Types

	How Daml types are translated to protobuf
	Notation
	Records and primitive types
	Variants
	Contract templates
	Creating a contract
	Receiving a contract
	Exercising a choice

	How Daml types are translated to Daml-LF
	Primitive types
	Tuple types
	Data types
	Record declarations
	Variant declarations
	Enum declarations
	Banned declarations

	Type synonyms
	Template types
	Template data types
	Choice data types

	Names with special characters

	Java bindings
	Generate Java code from Daml
	Introduction
	Understand the generated Java model
	Map Daml primitives to Java types
	Understand escaping rules
	Understand the generated classes
	Records (a.k.a product types)
	Templates
	Variants (a.k.a sum types)
	Parameterized types
	Enums
	Convert a value of a generated type to a Java Bindings value
	Create a value of a generated type from a Java Bindings value
	Non-exposed parameterized types
	Convert Optional values
	Convert Collection values
	Daml Interfaces

	Example project
	Setting up the example projects
	Example project
	PingPongMain.java
	PingPongProcessor.runIndefinitely()
	Output

	IOU Quickstart Tutorial
	Download the quickstart application
	Folder structure
	Overview of what an IOU is
	Run the application using prototyping tools
	Try out the application
	Get started with Daml
	Develop with Daml Studio
	Test using Daml Script
	Integrate with the ledger
	Next steps

	Overview
	Code generation
	Connecting to the ledger: LedgerClient

	Reference documentation
	Getting started
	Set up a Maven project
	Connecting to the ledger
	Authorizing
	Connecting securely
	Advanced connection settings
	Reactive Components
	Accessing data on the ledger: LedgerView
	Writing automations: Bot

	Example project

	Creating your own bindings
	Building Ledger Commands
	Create Command
	Exercise Command

	Summary
	Links

	What’s in the Ledger API
	How to Access the Ledger API
	Daml-LF
	When you need to know about Daml-LF

	Command deduplication
	How command deduplication works
	How to use command deduplication
	Known processing time bounds
	Error handling
	Failure scenarios

	Unknown processing time bounds
	Error handling
	Failure scenarios

	Daml Triggers - Off-Ledger Automation in Daml
	Daml Trigger Library
	Module Daml.Trigger
	Typeclasses
	Data Types
	Functions

	Module Daml.Trigger.Assert
	Data Types
	Functions

	Module Daml.Trigger.LowLevel
	Typeclasses
	Data Types
	Functions

	How To Think About Triggers
	Sample Trigger
	Daml Trigger Basics
	Running a No-Op Trigger
	Diversion: Updating Message
	AutoReply
	Command Deduplication
	Authorization
	When not to use Daml triggers

	Trigger Service
	Authorization
	Enable Authorization
	Obtain Authorization
	Example Usage
	Login via Redirect
	Login via Popup

	Auth0 Example Configuration
	Configure Auth0
	Create an API
	Create an Application
	Create a Rule
	Create a User

	Start Daml
	Sandbox
	OAuth 2.0 Middleware
	Trigger Service

	Configure Web Server
	Test the Setup

	Starting the Trigger Service
	Endpoints
	Start a trigger
	HTTP Request
	HTTP Response

	Stop a trigger
	HTTP Request
	HTTP Response

	List running triggers
	HTTP Request
	HTTP Response

	Status of a trigger
	HTTP Request
	HTTP Response

	Upload a new DAR
	HTTP Request
	HTTP Response

	Liveness check
	HTTP Request
	HTTP Response

	Auth Middleware
	OAuth 2.0 Auth Middleware
	OAuth 2.0 Configuration
	Request Templates
	Authorization Request
	Arguments
	Returns
	Example
	Token Request
	Arguments
	Returns
	Example
	Refresh Request
	Arguments
	Returns
	Example

	Deployment Notes

	Features
	Auth Middleware API
	Obtain Access Token
	HTTP Request
	HTTP Response

	Request Authorization
	HTTP Request

	Refresh Access Token
	HTTP Request
	HTTP Response

	Daml Ledger Claims

	Overview of Daml ledgers
	Deploying to a generic Daml ledger
	Connecting via TLS
	Configuring Request Timeouts

	Operating Daml
	Participant Pruning
	Impacts on Daml applications
	How the Daml Ledger API is affected
	Other limitations
	How Pruning affects Index DB administration
	Determining a suitable pruning offset

	Participant Metering
	Generating a Metering Report
	Example
	Output

	System Requirements
	Feature/Component System Requirements

	Developer Tools
	Daml Assistant (daml)
	Full help for commands
	Configuration files
	Global config file (daml-config.yaml)
	Project config file (daml.yaml)
	Recommended build-options

	Building Daml projects
	Managing releases
	Terminal Command Completion
	Running Commands outside of the Project Directory

	Daml Studio
	Installing
	Creating your first Daml file
	Supported features
	Symbols and problem reporting
	Hover tooltips
	Daml Script results
	Daml snippets

	Common script errors
	Abort, assert, and debug
	Missing authorization on create
	Missing authorization on exercise
	Contract not visible

	Working with multiple packages

	Daml Sandbox
	Running with authorization
	Generating JSON Web Tokens (JWT)
	Generating RSA keys
	Generating EC keys

	Running with TLS
	Command-line reference
	Metrics
	Enable and configure reporting
	Types of metrics
	Gauge
	Counter
	Meter
	Histogram
	Timers
	Database Metrics

	List of metrics
	daml.commands.deduplicated_commands
	daml.commands.delayed_submissions
	daml.commands.failed_command_interpretation
	daml.commands.submissions
	daml.commands.valid_submissions
	daml.commands.validation
	daml.commands.input_buffer_capacity
	daml.commands.input_buffer_length
	daml.commands.input_buffer_delay
	daml.commands.max_in_flight_capacity
	daml.commands.max_in_flight_length
	daml.execution.get_lf_package
	daml.execution.lookup_active_contract_count_per_execution
	daml.execution.lookup_active_contract_per_execution
	daml.execution.lookup_active_contract
	daml.execution.lookup_contract_key_count_per_execution
	daml.execution.lookup_contract_key_per_execution
	daml.execution.lookup_contract_key
	daml.execution.retry
	daml.execution.total
	daml.index.db.connection.sandbox.pool
	daml.index.db.deduplicate_command
	daml.index.db.get_active_contracts
	daml.index.db.get_completions
	daml.index.db.get_flat_transactions
	daml.index.db.get_ledger_end
	daml.index.db.get_ledger_id
	daml.index.db.get_transaction_trees
	daml.index.db.load_all_parties
	daml.index.db.load_archive
	daml.index.db.load_configuration_entries
	daml.index.db.load_package_entries
	daml.index.db.load_packages
	daml.index.db.load_parties
	daml.index.db.load_party_entries
	daml.index.db.lookup_active_contract
	daml.index.db.lookup_configuration
	daml.index.db.lookup_contract_by_key
	daml.index.db.lookup_flat_transaction_by_id
	daml.index.db.lookup_maximum_ledger_time
	daml.index.db.lookup_transaction_tree_by_id
	daml.index.db.remove_expired_deduplication_data
	daml.index.db.stop_deduplicating_command
	daml.index.db.store_configuration_entry
	daml.index.db.store_ledger_entry
	daml.index.db.store_package_entry
	daml.index.db.store_party_entry
	daml.index.db.store_rejection
	daml.lapi
	jvm

	Navigator
	Navigator functionality
	Starting Navigator
	Logging in
	Logging in as a Party

	Viewing templates or contracts
	Listing templates
	Listing contracts
	Viewing contracts based on a template
	Viewing template and contract details

	Using Navigator
	Creating contracts
	Exercising choices
	Advancing time

	Authorizing Navigator
	Advanced usage
	Customizable table views
	Using Navigator with a Daml Ledger

	Daml codegen
	Introduction
	Running the Daml codegen
	Command line configuration
	Project file configuration (Java)

	Daml Profiler
	Usage
	Caveats

	Canton Guide
	Introduction to Canton
	Tutorials
	Canton Demo
	Getting Started
	Installation
	Starting Canton
	The Example Topology
	Connecting The Nodes
	Canton Identities and Provisioning Parties
	Provisioning Smart Contract Code
	Executing Smart Contracts
	Privacy
	Your Development Choices
	Automation using bootstrap scripts
	What Next?

	Daml SDK and Canton
	Starting Canton
	Running the Create Daml App Example
	Connecting to participant2

	What Next?

	Composability
	Part 1: A multi-domain workflow
	Setting up the topology
	Creating the IOU and the paint offer
	Transferring a contract
	Atomic acceptance
	Completing the workflow
	Performing transfers automatically
	Details of the automatic-transfer transactions

	Take aways

	Part 2: Composing existing workflows
	Existing workflows
	Required changes
	Preparation using the existing workflows
	The paint offer-accept workflow
	Making the offer
	Transfers are not atomic
	Accepting the paint offer
	Automatic transfer-in

	Continuing the existing workflows
	Take aways

	User Manual
	Obtaining Canton
	Choosing Open-Source or Enterprise Edition
	Downloading the Open Source Edition
	Downloading the Enterprise Edition

	Installing Canton
	Downloading Canton
	Your Topology
	Environment Variables
	Selecting your Storage Layer
	Persistence using Postgres
	Persistence using Oracle

	Setting up a Participant
	Secure the APIs
	Configure Applications, Users and Connection

	Setting up a Domain
	Secure the APIs
	Next Steps

	Multi-Node Setup

	Running in Docker
	Obtaining the Docker Images
	Starting Canton
	Configuring Logging
	Supplying custom configuration and DARs
	Exposing the ledger-api to the host machine
	Running Postgres in Docker

	Static Configuration
	Configuration reference
	Configuration Compatibility
	Advanced Configurations
	Configuration Mixin
	Multiple Domains
	Fail Fast Mode
	Persistence
	Postgres
	Max Connection Settings
	Queue Size

	Api Configuration
	Default Ports
	Administration API
	TLS Configuration
	Keep Alive
	Max Inbound Message Size

	Participant Configuration
	Ledger Api
	JWT Authorization

	Domain Configurations
	Public Api
	Domain Rules

	Limiting concurrent GRPC requests (preview feature)

	Canton Administration APIs
	Participant Admin APIs
	Package Service
	Participant Status Service
	Ping Pong Service
	Domain Connectivity Service
	Party Name Management Service
	Inspection Service
	Transfer Service
	Pruning Service

	Domain Admin APIs
	Domain Status Service

	Identity Admin APIs
	Vault Management Service
	Initialization Service
	Topology Aggregation Service
	Topology Manager Read Service
	Topology Manager Write Service

	Mediator Admin APIs
	Mediator Initialization Service
	Enterprise Mediator Administration Service

	Sequencer Admin APIs
	Sequencer Administration Service
	Enterprise Sequencer Administration Service

	Command-line Arguments
	Selecting a Configuration
	Run Modes
	Interactive Console
	Remote Console Mode
	Headless Script Mode
	Daemon

	Flush Log Files Immediately
	Java Virtual Machine Arguments

	Canton Console
	Remote Administration
	Node References
	Help
	Lifecycle Operations
	Timeouts
	Other Top-level Commands
	Participant Commands
	Database
	Health
	Domain Connectivity
	Packages
	DAR Management
	DAR Sharing
	Party Management
	Key Administration
	Topology Administration
	Ledger API Access
	Transaction Service
	Command Service
	Command Completion Service
	Active Contract Service
	Package Service
	Party Management Service
	Ledger Configuration Service
	Ledger Api User Management Service
	Ledger Api Metering Service

	Composability
	Ledger Pruning
	Bilateral Commitments
	Participant Repair
	Resource Management
	Replication

	Multiple Participants
	Domain Administration Commands
	Health
	Database
	Participants
	Sequencer
	Mediator
	Key Administration
	Parties
	Service
	Topology Administration

	Domain Manager Administration Commands
	Setup
	Health
	Database
	Key Administration
	Parties
	Service
	Topology Administration

	Sequencer Administration Commands
	Sequencer
	Health
	Database

	Mediator Administration Commands
	Mediator
	Health
	Database

	Code-Generation in Console

	Contract Keys in Canton
	Domains with Uniqueness Guarantees
	Non Unique Contract Keys Mode
	Examples of Semantic Differences
	Double Key Creation
	False lookupByKey Negatives
	Semantics of fetchByKey and Positive lookupByKey

	Canton’s Implementation of Keys
	Workarounds for Recovering Uniqueness
	Setting: Single Maintainer, Single Participant Node
	Command ID Deduplication
	Generator Contract
	Setting: Single Maintainer, Multiple Participants
	Setting: Multiple Maintainers

	Formal Semantics of Keys in Canton

	Enterprise Drivers
	Trusted Enclave Domain (CCF)
	Getting Started
	Run the Demo Deployment
	Customization of the Demo Configuration
	Security Considerations

	Fabric Domain
	Tutorial
	User Manual
	Run with Docker Compose
	Cleanup
	Using the Canton Binary instead of docker
	Blockchain Explorer

	Fabric Setup
	Block Cutting Parameters and Performance
	Authorization

	Ethereum Domain
	Introduction
	The Ethereum Demo
	Prerequisites
	Introduction
	Simple Scenario
	Advanced Scenario
	Running a scenario
	Generating a Clean Testnet
	Customization of the Besu network
	Customization of the Demo Configuration

	Smart contract Sequencer.sol
	Error codes
	TLS configuration
	Ethereum accounts and wallets
	Deployment of the sequencer contract
	Single sequencer
	Multiple sequencers
	Manual deployment

	Authorization
	Requirements for the Ethereum Network
	Throughput
	Latency

	Trust Properties of the Ethereum Sequencer Integration

	Error codes
	Error Categories
	Machine Readable Information
	List of error codes
	1. ParticipantErrorGroup
	1.1. Errors
	ACS_COMMITMENT_INTERNAL_ERROR

	1.1.1. MismatchError
	ACS_COMMITMENT_MISMATCH
	ACS_MISMATCH_NO_SHARED_CONTRACTS

	1.2. LedgerApiErrors
	LEDGER_API_INTERNAL_ERROR
	PARTICIPANT_BACKPRESSURE
	REQUEST_TIME_OUT
	SERVER_IS_SHUTTING_DOWN
	SERVICE_NOT_RUNNING
	UNSUPPORTED_OPERATION

	1.2.1. CommandExecution
	FAILED_TO_DETERMINE_LEDGER_TIME

	1.2.1.1. Package
	ALLOWED_LANGUAGE_VERSIONS
	PACKAGE_VALIDATION_FAILED

	1.2.1.2. Preprocessing
	COMMAND_PREPROCESSING_FAILED

	1.2.1.3. Interpreter
	CONTRACT_NOT_ACTIVE
	DAML_AUTHORIZATION_ERROR
	DAML_INTERPRETATION_ERROR
	DAML_INTERPRETER_INVALID_ARGUMENT

	1.2.1.3.1. LookupErrors
	CONTRACT_KEY_NOT_FOUND

	1.2.2. AdminServices
	CONFIGURATION_ENTRY_REJECTED
	PACKAGE_UPLOAD_REJECTED

	1.2.2.1. UserManagementServiceErrors
	TOO_MANY_USER_RIGHTS
	USER_ALREADY_EXISTS
	USER_NOT_FOUND

	1.2.3. ConsistencyErrors
	CONTRACT_NOT_FOUND
	DUPLICATE_COMMAND
	DUPLICATE_CONTRACT_KEY
	INCONSISTENT
	INCONSISTENT_CONTRACTS
	INCONSISTENT_CONTRACT_KEY
	INVALID_LEDGER_TIME
	SUBMISSION_ALREADY_IN_FLIGHT

	1.2.4. PackageServiceError
	DAR_NOT_SELF_CONSISTENT
	DAR_VALIDATION_ERROR
	PACKAGE_SERVICE_INTERNAL_ERROR

	1.2.4.1. Reading
	DAR_PARSE_ERROR
	INVALID_DAR
	INVALID_DAR_FILE_NAME
	INVALID_LEGACY_DAR
	INVALID_ZIP_ENTRY
	ZIP_BOMB

	1.2.5. WriteServiceRejections
	DISPUTED
	OUT_OF_QUOTA
	PARTY_NOT_KNOWN_ON_LEDGER
	SUBMITTER_CANNOT_ACT_VIA_PARTICIPANT
	SUBMITTING_PARTY_NOT_KNOWN_ON_LEDGER

	1.2.5.1. Internal
	INTERNALLY_DUPLICATE_KEYS
	INTERNALLY_INCONSISTENT_KEYS

	1.2.6. AuthorizationChecks
	INTERNAL_AUTHORIZATION_ERROR
	PERMISSION_DENIED
	STALE_STREAM_AUTHORIZATION
	UNAUTHENTICATED

	1.2.7. RequestValidation
	INVALID_ARGUMENT
	INVALID_DEDUPLICATION_PERIOD
	INVALID_FIELD
	LEDGER_ID_MISMATCH
	MISSING_FIELD
	NON_HEXADECIMAL_OFFSET
	OFFSET_AFTER_LEDGER_END
	OFFSET_OUT_OF_RANGE
	PARTICIPANT_PRUNED_DATA_ACCESSED

	1.2.7.1. NotFound
	LEDGER_CONFIGURATION_NOT_FOUND
	PACKAGE_NOT_FOUND
	TRANSACTION_NOT_FOUND

	1.3. TransactionErrorGroup
	1.3.1. TransactionRoutingError
	AUTOMATIC_TRANSFER_FOR_TRANSACTION_FAILED
	ROUTING_INTERNAL_ERROR

	1.3.1.1. TopologyErrors
	INFORMEES_NOT_ACTIVE
	NOT_CONNECTED_TO_ALL_CONTRACT_DOMAINS
	NO_COMMON_DOMAIN
	NO_DOMAIN_ON_WHICH_ALL_SUBMITTERS_CAN_SUBMIT
	SUBMITTER_ALWAYS_STAKEHOLDER
	UNKNOWN_CONTRACT_DOMAINS
	UNKNOWN_INFORMEES

	1.3.1.2. MalformedInputErrors
	INVALID_DOMAIN_ALIAS
	INVALID_PARTY_IDENTIFIER
	INVALID_SUBMITTER

	1.3.1.3. ConfigurationErrors
	MULTI_DOMAIN_SUPPORT_NOT_ENABLED
	SUBMISSION_DOMAIN_NOT_READY

	1.3.2. SubmissionErrors
	CHOSEN_MEDIATOR_IS_INACTIVE
	DOMAIN_BACKPRESSURE
	DOMAIN_WITHOUT_MEDIATOR
	MALFORMED_REQUEST
	NOT_SEQUENCED_TIMEOUT
	PACKAGE_NO_VETTED_BY_RECIPIENTS
	SEQUENCER_DELIVER_ERROR
	SEQUENCER_REQUEST_FAILED
	SUBMISSION_DURING_SHUTDOWN

	1.3.3. SyncServiceInjectionError
	COMMAND_INJECTION_FAILURE
	NODE_IS_PASSIVE_REPLICA
	NOT_CONNECTED_TO_ANY_DOMAIN

	1.3.4. LocalReject
	1.3.4.1. MalformedRejects
	LOCAL_VERDICT_BAD_ROOT_HASH_MESSAGES
	LOCAL_VERDICT_DETECTED_MULTIPLE_CONFIRMATION_POLICIES
	LOCAL_VERDICT_EMPTY_REJECTION
	LOCAL_VERDICT_FAILED_MODEL_CONFORMANCE_CHECK
	LOCAL_VERDICT_MALFORMED_PAYLOAD

	1.3.4.2. ConsistencyRejections
	LOCAL_VERDICT_CREATES_EXISTING_CONTRACTS
	LOCAL_VERDICT_DUPLICATE_KEY
	LOCAL_VERDICT_INACTIVE_CONTRACTS
	LOCAL_VERDICT_INCONSISTENT_KEY
	LOCAL_VERDICT_LOCKED_CONTRACTS
	LOCAL_VERDICT_LOCKED_KEYS

	1.3.4.3. TimeRejects
	LOCAL_VERDICT_LEDGER_TIME_OUT_OF_BOUND
	LOCAL_VERDICT_SUBMISSION_TIME_OUT_OF_BOUND
	LOCAL_VERDICT_TIMEOUT

	1.3.4.4. TransferInRejects
	TRANSFER_IN_ALREADY_COMPLETED
	TRANSFER_IN_CONTRACT_ALREADY_ACTIVE
	TRANSFER_IN_CONTRACT_ALREADY_ARCHIVED
	TRANSFER_IN_CONTRACT_IS_LOCKED

	1.3.4.5. TransferOutRejects
	TRANSFER_OUT_ACTIVENESS_CHECK_FAILED

	1.3.5. CommandDeduplicationError
	MALFORMED_DEDUPLICATION_OFFSET

	1.3.6. MediatorReject
	MEDIATOR_SAYS_TX_TIMED_OUT

	1.3.6.1. MaliciousSubmitter
	MEDIATOR_SAYS_DECLARED_MEDIATOR_IS_WRONG
	MEDIATOR_SAYS_NOT_ENOUGH_CONFIRMING_PARTIES
	MEDIATOR_SAYS_VIEW_THRESHOLD_BELOW_MINIMUM_THRESHOLD

	1.3.6.2. Topology
	MEDIATOR_SAYS_INFORMEES_NOT_HOSTED_ON_ACTIVE_PARTICIPANTS
	MEDIATOR_SAYS_INVALID_ROOT_HASH_MESSAGES

	1.4. SyncServiceError
	PARTY_ALLOCATION_WITHOUT_CONNECTED_DOMAIN
	SYNC_SERVICE_ALREADY_ADDED
	SYNC_SERVICE_DOMAIN_BECAME_PASSIVE
	SYNC_SERVICE_DOMAIN_DISABLED_US
	SYNC_SERVICE_DOMAIN_DISCONNECTED
	SYNC_SERVICE_INTERNAL_ERROR
	SYNC_SERVICE_UNKNOWN_DOMAIN

	1.4.1. DomainRegistryError
	DOMAIN_REGISTRY_INTERNAL_ERROR

	1.4.1.1. ConfigurationErrors
	CANNOT_ISSUE_DOMAIN_TRUST_CERTIFICATE
	DOMAIN_PARAMETERS_CHANGED
	INCOMPATIBLE_UNIQUE_CONTRACT_KEYS_MODE
	INVALID_DOMAIN_CONNECTION

	1.4.1.2. HandshakeErrors
	DOMAIN_ALIAS_DUPLICATION
	DOMAIN_CRYPTO_HANDSHAKE_FAILED
	DOMAIN_HANDSHAKE_FAILED
	DOMAIN_ID_MISMATCH
	SERVICE_AGREEMENT_ACCEPTANCE_FAILED

	1.4.1.3. ConnectionErrors
	DOMAIN_IS_NOT_AVAILABLE
	FAILED_TO_CONNECT_TO_SEQUENCER
	GRPC_CONNECTION_FAILURE
	PARTICIPANT_IS_NOT_ACTIVE

	1.5. AdminWorkflowServices
	CAN_NOT_AUTOMATICALLY_VET_ADMIN_WORKFLOW_PACKAGE

	1.6. IndexErrors
	1.6.1. DatabaseErrors
	INDEX_DB_INVALID_RESULT_SET
	INDEX_DB_SQL_NON_TRANSIENT_ERROR
	INDEX_DB_SQL_TRANSIENT_ERROR

	1.7. PruningServiceError
	INTERNAL_PRUNING_ERROR
	NON_CANTON_OFFSET
	PRUNING_NOT_SUPPORTED_IN_COMMUNITY_EDITION
	UNSAFE_TO_PRUNE

	1.8. CantonPackageServiceError
	PACKAGE_OR_DAR_REMOVAL_ERROR

	1.9. ParticipantReplicationServiceError
	PARTICIPANT_REPLICATION_INTERNAL_ERROR
	PARTICIPANT_REPLICATION_NOT_SUPPORTED_BY_STORAGE

	2. EthereumErrors
	2.1. ConfigurationErrors
	AHEAD_OF_HEAD
	ATTEMPT_TO_CHANGE_IMMUTABLE_VALUE
	AUTHORIZATION_ENABLEMENT_MISMATCH
	MANY_BLOCKS_BEHIND_HEAD
	NOT_FREE_GAS_NETWORK
	UNAUTHORIZED
	WRONG_EVM_BYTECODE

	2.2. TransactionErrors
	ETHEREUM_TRANSACTION_SUBMISSION_FAILED

	3. TopologyManagementErrorGroup
	3.1. TopologyManagerError
	CERTIFICATE_GENERATION_ERROR
	DUPLICATE_TOPOLOGY_TRANSACTION
	INVALID_TOPOLOGY_TX_SIGNATURE_ERROR
	NO_APPROPRIATE_SIGNING_KEY_IN_STORE
	NO_CORRESPONDING_ACTIVE_TX_TO_REVOKE
	PUBLIC_KEY_NOT_IN_STORE
	REMOVING_LAST_KEY_MUST_BE_FORCED
	SECRET_KEY_NOT_IN_STORE
	TOPOLOGY_MANAGER_INTERNAL_ERROR
	TOPOLOGY_MAPPING_ALREADY_EXISTS
	UNAUTHORIZED_TOPOLOGY_TRANSACTION

	3.1.1. DomainTopologyManagerError
	ALIEN_DOMAIN_ENTITIES
	FAILED_TO_ADD_MEMBER
	PARTICIPANT_NOT_INITIALIZED
	WRONG_DOMAIN

	3.1.2. ParticipantTopologyManagerError
	CANNOT_VET_DUE_TO_MISSING_PACKAGES
	DANGEROUS_KEY_USE_COMMAND_REQUIRES_FORCE
	DANGEROUS_VETTING_COMMANDS_REQUIRE_FORCE
	DEPENDENCIES_NOT_VETTED
	UNINITIALIZED_PARTICIPANT

	3.1.3. Domain
	3.1.3.1. GrpcSequencerAuthenticationService
	CLIENT_AUTHENTICATION_FAULTY
	CLIENT_AUTHENTICATION_REJECTED

	3.2. DomainTopologySender
	TOPOLOGY_DISPATCHING_DEGRADATION
	TOPOLOGY_DISPATCHING_INTERNAL_ERROR

	4. ConfigErrors
	CANNOT_PARSE_CONFIG_FILES
	CANNOT_READ_CONFIG_FILES
	CONFIG_SUBSTITUTION_ERROR
	CONFIG_VALIDATION_ERROR
	GENERIC_CONFIG_ERROR
	NO_CONFIG_FILES

	5. CommandErrors
	CONSOLE_COMMAND_INTERNAL_ERROR
	CONSOLE_COMMAND_TIMED_OUT
	NODE_NOT_STARTED

	6. DatabaseStorageError
	DB_STORAGE_DEGRADATION

	7. ProtoDeserializationError
	PROTO_DESERIALIZATION_FAILURE

	8. ResilientSequencerSubscription
	SEQUENCER_SUBSCRIPTION_LOST

	9. Clock
	SYSTEM_CLOCK_RUNNING_BACKWARDS

	High Availability Usage
	Overview
	Domain Manager
	HA Setup on Oracle
	Mediator
	Running a Stand-Alone Mediator Node
	HA Configuration

	Sequencer
	Total Node Count
	External load balancer
	Client-side load balancing

	Participant
	Domain Connectivity during Fail-over
	Manual Trigger of a Fail-over
	Load Balancer Configuration

	Identity Management
	Introduction
	What is a Canton Identity?
	Unique Identifier
	Topology Transactions
	Legal Identities
	Life of a Party
	Participant Onboarding
	Default Initialization
	Identity Setup Guide

	User Identity Management
	Cookbook
	Adding a new Party to a Participant
	Manually Initializing a Node
	Domain Initialization
	Participant Initialization

	Party on two Nodes

	Monitoring
	Logging
	Viewing Logs
	Detailed Logging

	Tracing
	Sampling
	Known Limitations

	Status
	Health Dumps
	Health Check
	Metrics
	Participant Metrics
	canton.<domain>.conflict-detection.sequencer-counter-queue
	canton.<domain>.conflict-detection.task-queue
	canton.<domain>.protocol-messages.confirmation-request-creation
	canton.<domain>.protocol-messages.confirmation-request-size
	canton.<domain>.protocol-messages.transaction-message-receipt
	canton.<domain>.request-tracker.sequencer-counter-queue
	canton.<domain>.request-tracker.task-queue
	canton.<domain>.sequencer-client.application-handle
	canton.<domain>.sequencer-client.delay
	canton.<domain>.sequencer-client.event-handle
	canton.<domain>.sequencer-client.load
	canton.<domain>.sequencer-client.submissions.dropped
	canton.<domain>.sequencer-client.submissions.in-flight
	canton.<domain>.sequencer-client.submissions.overloaded
	canton.<domain>.sequencer-client.submissions.sends
	canton.<domain>.sequencer-client.submissions.sequencing
	canton.commitments.compute
	canton.db-storage.<storage>
	canton.db-storage.<storage>.load
	canton.db-storage.alerts.multi-domain-event-log
	canton.db-storage.alerts.single-dimension-event-log
	canton.db-storage.general.executor.queued
	canton.db-storage.general.executor.running
	canton.db-storage.general.executor.waittime
	canton.db-storage.write.executor.queued
	canton.db-storage.write.executor.running
	canton.db-storage.write.executor.waittime
	canton.prune
	canton.updates-published

	Domain Metrics
	canton.db-storage.<storage>
	canton.db-storage.<storage>.load
	canton.db-storage.alerts.multi-domain-event-log
	canton.db-storage.alerts.single-dimension-event-log
	canton.db-storage.general.executor.queued
	canton.db-storage.general.executor.running
	canton.db-storage.general.executor.waittime
	canton.db-storage.write.executor.queued
	canton.db-storage.write.executor.running
	canton.db-storage.write.executor.waittime
	canton.mediator.outstanding-requests
	canton.mediator.requests
	canton.mediator.sequencer-client.application-handle
	canton.mediator.sequencer-client.delay
	canton.mediator.sequencer-client.event-handle
	canton.mediator.sequencer-client.load
	canton.mediator.sequencer-client.submissions.dropped
	canton.mediator.sequencer-client.submissions.in-flight
	canton.mediator.sequencer-client.submissions.overloaded
	canton.mediator.sequencer-client.submissions.sends
	canton.mediator.sequencer-client.submissions.sequencing
	canton.sequencer.db-storage.<storage>
	canton.sequencer.db-storage.<storage>.load
	canton.sequencer.db-storage.alerts.multi-domain-event-log
	canton.sequencer.db-storage.alerts.single-dimension-event-log
	canton.sequencer.db-storage.general.executor.queued
	canton.sequencer.db-storage.general.executor.running
	canton.sequencer.db-storage.general.executor.waittime
	canton.sequencer.db-storage.write.executor.queued
	canton.sequencer.db-storage.write.executor.running
	canton.sequencer.db-storage.write.executor.waittime
	canton.sequencer.processed
	canton.sequencer.processed-bytes
	canton.sequencer.sequencer-client.application-handle
	canton.sequencer.sequencer-client.delay
	canton.sequencer.sequencer-client.event-handle
	canton.sequencer.sequencer-client.load
	canton.sequencer.sequencer-client.submissions.dropped
	canton.sequencer.sequencer-client.submissions.in-flight
	canton.sequencer.sequencer-client.submissions.overloaded
	canton.sequencer.sequencer-client.submissions.sends
	canton.sequencer.sequencer-client.submissions.sequencing
	canton.sequencer.subscriptions
	canton.sequencer.time-requests
	canton.topology-manager.sequencer-client.application-handle
	canton.topology-manager.sequencer-client.delay
	canton.topology-manager.sequencer-client.event-handle
	canton.topology-manager.sequencer-client.load
	canton.topology-manager.sequencer-client.submissions.dropped
	canton.topology-manager.sequencer-client.submissions.in-flight
	canton.topology-manager.sequencer-client.submissions.overloaded
	canton.topology-manager.sequencer-client.submissions.sends
	canton.topology-manager.sequencer-client.submissions.sequencing

	Operational Processes
	Managing domain entities
	Domain bootstrapping
	Distributed domain bootstrapping with separate consoles

	Dynamic domain parameters
	Importing existing Contracts
	Preparation
	Importing an actual Ledger

	Backup and Restore
	Postgres Example

	Database Failover
	Ledger Pruning
	Pruning Ledgers in Test Environments

	Repairing Participants
	Recovering from a Lost Domain
	Repairing an actual Topology

	Security
	Cryptographic Key Usage
	Supported Cryptographic Schemes in Canton
	Key Generation and storage
	Public Key Distribution using Topology Management
	Common Node Keys
	Participant Node Keys
	Participant Namespace Signing Key
	Signing Key
	Participant Encryption Key
	View Encryption Key
	HMAC Secret
	Ledger API TLS Key

	Domain Topology Manager Keys
	Domain Namespace Signing Key
	Signing Key

	Sequencer Node Keys
	Signing Key
	Ethereum Sequencer
	Fabric Sequencer
	Public API TLS Key

	Mediator Node Keys
	Signing Key

	Domain Node Keys
	Canton Console Keys

	Cryptographic Key Management
	Rotating Canton Node Keys
	Namespace Intermediate Key Management
	Moving the Namespace Secret Key to Offline Storage
	Identifier Delegation Key Management
	Rotating Participant HMAC Secret

	Ledger-API Authorization

	Versioning
	Canton release version
	For application developers and operators
	For Canton participant and domain operators
	Canton protocol version
	Configuring the protocol version
	Minimum protocol version
	Support and bug fixes

	Frequently Asked Questions
	Log Messages
	Database task queue full

	Console Commands
	I received an error saying that the DomainAlias I used was too long. Where I can see the limits of String types in Canton?

	Bootstrap Scripts
	Why do you have an additional new line between each line in your example scripts?
	How can I use nested import statements to split my script into multiple files?
	How do I write data to a file and how do I read it back?

	How to Setup Canton to Get Best Performance?
	System Design / Architecture
	Hardware and Database
	Configuration

	Why is Canton complaining about my database version?
	Postgres
	Oracle
	Using non-standard database versions

	Architecture In-Depth
	High-Level Requirements
	Functional requirements
	Resource limits
	Non-functional requirements
	Known limitations
	Limitations that apply always
	Missing Key features
	Reliability
	Manageability
	Security

	Limitations that apply only sometimes
	Reliability
	Manageability
	Performance

	Requirement Exceptions: Notes
	Ledger consistency
	No unnecessary rejections
	Privacy

	Overview and Assumptions
	Canton 101
	A Basic Example
	Transaction Processing in Canton
	Conflict Detection
	Time in Canton
	Subtransaction privacy

	Domain Entities
	Sequencer
	Mediator
	Topology Manager

	Participant-internal Canton Components
	Transactions
	Sequencer Client
	Identity Client

	System Model And Trust Assumptions
	System Model
	General Trust Assumptions
	Assumptions Relevant for Privacy
	Assumptions Relevant for Liveness

	Scaling and Performance
	Network Scaling
	Node Scaling
	Performance and Sizing
	Batching
	Storage Estimation

	Domain Architecture and Integrations
	Domain-specific Requirements
	Functional Requirements
	Non-Functional Requirements
	Performance
	Reliability
	Scalability
	Security
	Manageability

	Domain-Internal Components
	Drivers
	Canton Domain on Ethereum
	Canton Domain on Fabric
	Introduction to Hyperledger Fabric
	Components of the Fabric Blockchain Network
	Architecture
	Fabric-based Sequencer
	Sequencer Chaincode
	Analysis and Limitations
	Functional Requirements
	Performance
	Reliability
	Scalability
	Security
	Manageability

	High Availability
	Canton High Availability: Overview and Principles
	Replicated Participant Node Architecture
	High-Level System Design
	Why a Shared Database?

	Participant Node Replica Monitoring and Fail-Over
	Leader Election through Exclusive Lock Acquisition
	Lock ID Allocation

	Enforce Passive Replica
	Lock Loss and Fail-Over

	Ledger API Client Fail-Over via Load Balancer

	Domain HA
	Sequencer HA
	Database Sequencer HA

	Mediator HA

	Identity Management
	Identity Providing Service
	Requirements

	Identity Management Design
	Design Principles
	Formalism for a Global Composeable Topology System
	Definitions
	Incremental Changes
	Topology Transactions
	Delegation
	Mapping Updates
	Participant State Updates
	Some Considerations
	Removal Authorizations
	Revocations
	Domain Topology State
	Bootstrapping
	Default Party
	Submission vs Confirmation
	Topology State Accumulation
	Privacy by Design
	Cross-Domain Delegations
	Multi-Domain Transaction
	Validation

	Implementation
	Domain Id
	Identity Providing Service API
	Sync Crypto Api
	High-Level Picture
	Transaction Flow

	Research Publications

	Help
	Troubleshooting
	Error: “<X> is not authorized to commit an update”
	Error “Argument is not of serializable type”
	Modeling questions
	How to model an agreement with another party
	How to model rights
	How to void a contract
	How to represent off-ledger parties
	How to limit a choice by time
	How to model a mandatory action
	When to use Optional

	Testing questions
	How to test that a contract is visible to a party
	How to test that an update action cannot be committed

	Getting Help
	Support expectations

	Portability, Compatibility, and Support Durations
	Ledger API Compatibility: Application Portability
	List of Ledger API Versions supported by Daml
	Summary of Ledger API Changes

	Driver and Participant Compatibility: Network Upgradeability
	SDK, Runtime Component, and Library Compatibility: Daml Upgradeability
	Ledger API Support Duration

	Reference
	Glossary of concepts
	Key Concepts
	Daml
	Daml Language
	Daml Ledger
	Canton Ledger

	Canton Protocol
	Synchronization Technology
	Daml Drivers

	Daml Language Concepts
	Contract
	Active contract, archived contract

	Template
	Choice
	Consuming choice
	Preconsuming choice
	Postconsuming choice

	Nonconsuming choice
	Disjunction choice, flexible controllers

	Party
	Signatory
	Observer
	Controller
	Choice Observer
	Stakeholder
	Maintainer

	Authorization, signing
	Standard library
	Agreement
	Create
	Exercise
	Daml Script
	Contract key
	DAR file, DALF file

	Developer tools
	Assistant
	Studio
	Sandbox
	Navigator
	Navigator GUI

	Building applications
	Application, ledger client, integration
	Ledger API
	Command submission service
	Command completion service
	Command service
	Transaction service
	Active contract service
	Package service
	Ledger identity service
	Ledger configuration service

	Ledger API libraries
	Java bindings

	Reading from the ledger
	Submitting commands, writing to the ledger
	Commands

	Participant Node
	Sub-Transaction Privacy
	Daml-LF
	Composability
	Trust domain

	Canton Concepts
	Domain
	Private Contract Store
	Virtual Global Ledger
	Mediator
	Sequencer
	Domain Identity Manager
	Consensus

	Daml Ledger Model
	Structure
	Actions and Transactions
	Ledgers

	Integrity
	Valid Ledgers
	Consistency
	Contract consistency
	Key consistency
	Ledger consistency
	Internal consistency

	Conformance
	Authorization
	Signatories, Agreements, and Maintainers
	Authorization Rules
	Examples

	Valid Ledgers, Obligations, Offers and Rights

	Privacy
	Contract Observers and Stakeholders
	Choice Observers
	Projections
	Privacy through authorization
	Divulgence: When Non-Stakeholders See Contracts

	Daml: Defining Contract Models Compactly
	Exceptions
	Structure
	Consistency
	Transaction Normalization
	Authorization
	Privacy
	Relation to Daml Exceptions

	Identity and Package Management
	Identity Management
	Provisioning Identifiers
	Identifiers and Authorization
	Identifiers and the Real World

	Package Management
	Package Formats and Identifiers
	Package Management API
	Package Vetting
	Package Upgrades

	Time
	Ledger time
	Record time
	Guarantees
	Ledger time model
	Assigning ledger time

	Causality and Local Ledgers
	Causality examples
	Stakeholders of a contract see creation and archival in the same order.
	Signatories of a contract and stakeholder actors see usages after the creation and before the archival.
	Commits are atomic.
	Non-consuming usages in different commits may appear in different orders.
	Out-of-band causality is not respected.
	Divulged actions do not induce order.
	The ordering guarantees depend on the party.

	Causality graphs
	Consistency
	From causality graphs to ledgers

	Local ledgers
	Ledger API ordering guarantees
	Explaining the causality examples

	Daml Ecosystem Overview
	Status Definitions
	Early Access Features
	Deprecation
	Comparison of Statuses

	Feature and Component Statuses
	Ledger API
	Runtime components
	Libraries
	Developer Tools

	Architecture
	Daml Networks
	Daml Drivers

	Participant Nodes
	Ledger API
	Daml Components
	Runtime Components
	Libraries
	Generated Code
	Developer Tools / SDK

	Releases and Versioning
	Versioning
	Cadence
	Support Duration
	Release Notes
	Roadmap
	Process

	Early Access
	Ledger Export
	Introduction
	Usage
	Output
	Daml Script
	Arguments

	Executing the Export
	Ledger Offsets
	Unknown Contract Ids
	Transaction Time
	Caveats
	Contracts Created and Referenced in Same Transaction

	Visualizing Daml Contracts
	Example: Visualizing the Quickstart project
	Visualizing Daml Contracts - Within IDE
	Visualizing Daml Contracts - Interactive Graphs

	Ledger Interoperability
	Interoperability examples
	Topology
	Aggregation at the participant
	Enter and Leave events
	Cross-ledger transactions

	Multi-ledger causality graphs
	Consistency
	Minimality and reduction
	From multi-ledger causality graphs to ledgers

	Ledger-aware projection
	Ledger API ordering guarantees

	Non-repudiation
	Architecture
	Running the server-side components
	Using the client
	Non-repudiation over the HTTP JSON API
	TLS support

	Daml Helm Chart
	Credentials
	Installing the Helm Chart Repository
	Setting Up the imagePullSecret
	Quickstart
	Production Setup
	Log Aggregation
	Daml Metrics Options
	Upgrading
	Backing Up
	Securing Daml
	Helm Chart Options Reference
	authUrl
	imagePullSecret
	jsonApi.create
	jsonApi.db.host
	jsonApi.db.oracle.serviceName
	jsonApi.db.port
	jsonApi.db.postgres.database
	jsonApi.db.secret
	jsonApi.db.setupSecret
	jsonApi.healthCheck
	jsonApi.logLevel
	jsonApi.podAnnotations
	jsonApi.replicaCount
	jsonApi.resources
	jsonApi.serviceAccount
	ledger.create
	ledger.db.host
	ledger.db.port
	ledger.db.postgres.database
	ledger.db.secret
	ledger.db.setupSecret
	ledger.healthCheck
	ledger.host
	ledger.podAnnotations
	ledger.port
	ledger.resources
	ledger.serviceAccount
	oauthMiddleware.callback
	oauthMiddleware.clientId
	oauthMiddleware.clientSecret
	oauthMiddleware.create
	oauthMiddleware.healthCheck
	oauthMiddleware.oauthAuth
	oauthMiddleware.oauthToken
	oauthMiddleware.podAnnotations
	oauthMiddleware.replicaCount
	oauthMiddleware.resources
	oauthMiddleware.serviceAccount
	production
	triggerService.authCallback
	triggerService.authExternal
	triggerService.create
	triggerService.db.host
	triggerService.db.oracle.serviceName
	triggerService.db.port
	triggerService.db.postgres.database
	triggerService.db.secret
	triggerService.db.setupSecret
	triggerService.healthCheck
	triggerService.podAnnotations
	triggerService.resources
	triggerService.serviceAccount

	Setting Up Auth0
	Authentication v. Authorization
	Prerequisites
	Generating Party Allocation Credentials
	JWKS Endpoint
	Dynamic Party Allocation
	Token Refresh for Trigger Service
	Running Your App
	Preparing Your Application
	Using the Daml Helm Chart
	Manually Setting Up the Daml Components

