Daml SDK Documentation

DAML

Digital Asset

Version: 2.1.1

Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. Any unauthorized use,
duplication or distribution is strictly prohibited.

Table of contents

Table of contents i
1 Getting started 1
11 Installingthe SDK o e 1
111 1. Installing the Dependencies 1

112 2. Choosing Daml Enterprise or Daml Open Source 1

11.3 3. Installing Daml Open Source SDK 2

114 Installing Daml Enterprise i e 2

11,5 Downloading Manually 2

116 NexXt StepsS . . .« o oo e e 3

1.2 Getting Started withDaml e 8
121 Prerequisites e 8

122 Runningthe App o i e 9

1.3 AppArchitecture. e 12
1.31 TheDamlModel e 13

1.3.2 TypeScriptCode Generation i 16

133 TheUl .. e e e 16

14 Your First Feature e 18
141 DamlChanges i i e e e e e 19

142 Messaging Ul o e e 20

143 RunningtheUpdated Ul e 23

144 NexXt StepsS o o i e e e e e e 25

1.5 Testing Your Web App . . . o o o it i e e e e e e 25
151 Settingupourtests e 26

1.5.2 Example: Logginginandout, e 26

1.5.3 AccessingUlelements e 27

1.54 WritingCSS Selectors. o e 28

1.55 TheFullTestSuite e e 29

2 Daml Guide 38
21 Writing Daml e e e 38
211 AnintroductiontoDaml e 38

2.12 Languagereference doCs 123

213 Thestandard library. e 174

214 Gooddesignpatterns 249

2.2 Building Applications e e 266
2.2.1 Application architecture L e 266
2.2.2 JavaScriptClientLibraries. e 273
223 HTTPJSON APISEerviCeo i e e e e e e e e e e e e e e 278
224 DamlScript e 335

225 DamlREPL e e e e e 348

2.2.6 Upgrading and Extending Daml applications 351
2.27 Authorization 361
2.2.8 Theledger APl e e 365
2.2.9 Commanddeduplication e 503
2.2.10 Daml Triggers - Off-Ledger AutomationinDaml 510
22101 TrigEEer SEIVICE . . o i vt i it et e e e e e e e e e e e 530
2.2.12 Auth Middleware e 544
2.3 Overviewof Damlledgers i e e e e 552
2.3.1 DeployingtoagenericDamlledger 552
24 Operating Daml e e e e e e 553
241 ParticipantPruning o e e 554
24.2 ParticipantMetering e 557
24.3 System Requirements 558
2.5 DeveloperTools e e e e e 559
251 DamlAssistant(daml) e e 559
252 DamlStudio 564
2.5.3 DamlSandbox 574
254 Navigator. e 586
2.5.5 Damlcodegen e e 597
2.5.6 Daml Profiler e 599
Canton Guide 601
3.1 IntroductiontoCanton. e 601
3.2 TUorials . . o e e e e e 601
321 CantonDemo e e 603
322 Getting Started 603
323 DamlSDKandCanton e 622
324 Composability e e 625
3.3 UserManual e e e e 641
3.3.1 ObtainingCanton e e 641
3.32 InstallingCanton. e 642
3.33 RunninginDocKer e e e e e 648
3.34 StaticConfiguration e 650
3.3.5 Canton Administration APIs. 664
3.3.6 Command-line Arguments e 702
3.37 CantonConsole. e 704
3.3.8 ContractKeysinCanton i 795
3.3.9 Enterprise Drivers e 805
3300 Errorcodes. e e e 821
3.3.11 HighAvailabilityUsage e 870
3.3.12 Identity Management L e e 876
33103 MoNItoring o o e e e e 886
3.3.14 Operational ProCesses ittt it e e e e 908
3305 SeCUNItY . . v ot e e 926
3306 Versioning ot it e e e e e e e e e e e 934
3.317 Frequently Asked Questions 936
34 ArchitectureIn-Depth e e 942
3.4.1 High-Level Requirements 942
3.4.2 Overviewand Assumptions o e 959

3.4.3 Domain Architecture and Integrations L L. 977

344 HighAvailability e 989

3.4.5 ldentity Management e 996
3.4.6 Research Publications e 1018

4 Help 1020
41 Troubleshooting e 1020
411 Error: <X>is not authorized to commitanupdate 1020
412 Error Argumentis notof serializabletype 1020

413 Modeling questions e e 1021
414 Testing qUESTIONS i e e 1023
42 Getting Help oo e e e 1023
421 Supportexpectations e e 1024
4.3 Portability, Compatibility, and Support Durations 1024
4.3.1 Ledger API Compatibility: Application Portability 1025
4.3.2 Driver and Participant Compatibility: Network Upgradeability 1026
4.3.3 SDK, Runtime Component, and Library Compatibility: Daml Upgradeability ... 1026
434 Ledger APl SupportDuration i 1027

5 Reference 1028
5.1 Glossaryofconcepts e e e 1028
5.1 Key Concepts i e 1028
512 DamlLanguage Concepts o it it it it i e e e e 1029
513 Developertools e e 1034
514 Building applications e 1035
51,5 Canton Concepts o o it i e e e e e 1038
52 DamlledgerModel e 1040
5.21 Structure e 1041
522 Integrity e 1048
523 PrivaCy . . .o it e e e e e e e e e e 1060
524 Daml: Defining Contract Models Compactly 1069

525 EXCEPLioNs i e e e e 1070

5.3 Identity and Package Management o e 1077
5.3.1 Identity Management e 1078
5.3.2 Package Management 1079

54 TIME . .o e e 1081
541 Ledgertime e 1081

542 Recordtime e 1081

543 GuUArantees e 1081

544 Lledgertimemodel e 1081
545 Assigningledgertime 1082
5.5 Causalityand Localledgers e 1082
551 Causalityexamples e 1083
552 Causalitygraphs e 1086
553 Localledgers e 1090
56 DamlECOSYyStemM OVEIVIEW oottt e et e e e e e e e e e 1093
5.6.1 StatusDefinitions L e 1093
5.6.2 Featureand ComponentStatuses. e, 1096
56.3 Architecture e e 1099

564 DamlNetworks e 1100

5.6.5 ParticipantNodes 1100

56.6 Ledger APl e 1101

567 DamlComponents. e 1101

57 Releasesand Versioning i e 101
571 Versioning oo e e e e e e e e e e 1101

572 Cadence e 1102

573 SupportDuration 1102

574 Release Notes e 1102

575 Roadmap oot e e e 1102

57.6 ProCeSS o i i e 1102

6 Early Access 1104
6.1 Ledger EXport oL e e e 1104
6.11 Introduction e 104

B.1.2 USABe i e e 1104

B.1.3 OULPUL . e e e 1105

6.1.4 Executing the EXport i 1106

6.1.5 LedgerOffsets. 1106

6.1.6 UnknownContractlds e 1no7

6.17 TransactionTime. i e 1107

6.1.8 Caveats e e 1no7

6.2 VisualizingDamlContracts. 107
6.21 Example: Visualizing the Quickstartproject 1108
6.2.2 Visualizing Daml Contracts-WithinIDE 1108
6.2.3 Visualizing Daml Contracts - Interactive Graphs 1108

6.3 LedgerInteroperability L 1109
6.3.1 Interoperabilityexamples e 1109
6.3.2 Multi-ledger causality graphs ma
6.3.3 Ledger-awareprojection e 16
6.3.4 Ledger APlordering guaranteest 1120

6.4 Non-repudiation e e e e 1121
6.4.1 Architecture e na21
6.4.2 Runningthe server-sidecomponents 121
6.43 Usingtheclient. e 122
6.44 Non-repudiation overthe HTTPJSON APl 122
B.45 TLS SUPPOIrt . . v i e e e e 1122

6.5 DamlHelm Chart e n22
6.5.1 Credentials e n23
6.5.2 Installing the Helm ChartRepository n23
6.5.3 Setting Up the imagePullSecret i, 123
6.5.4 Quickstart e e e 1124
6.5.5 ProductionSetup e 125
6.5.6 LogAggregation e n25
6.57 DamlMetricsOptions. e 1126
B6.5.8 Upgradingo it i e e e e e e 1126
6.5.9 BackingUp. e 1126
6.5.10 SecuringDaml e e e e 127
6.5.11 Helm Chart Options Reference i na27

6.6 Setting Up AuthO e e e 1139
6.6.1 Authenticationv. Authorization 139
6.6.2 PrereqUisites e e e e 1140
6.6.3 Generating Party AllocationCredentials 1140
6.6.4 JWKS ENndpoint e e e 14

6.6.5 Dynamic Party Allocation e N4z

6.6.6 Token Refresh for Trigger Service

6.6.7 RunningYourApp

Chapter1

Getting started

1.1 Installing the SDK

111 1. Installing the Dependencies

The Daml SDK currently runs on Windows, macOS and Linux.
You need to install:

1. Visual Studio Code.

2. JDK 11 or greater. If you don’t already have a JDK installed, try Eclipse Adoptium.
As part of the installation process you may need to set up the JAVA HOME variable. You can
find instructions for this process on Windows,macOS, and Linux here.

1.1.2 2. Choosing Daml Enterprise or Daml Open Source

Daml comes in two variants: Daml Enterprise or Daml Open Source. Both include the best in class
SDK, Canton and all of the components that you need to write and deploy multi-party applications
in production, but they differ in terms of enterprise and non-functional capabilities:

Capability Enterprise Open Source
Sub-Transaction Privacy Yes Yes
Transaction Processing Parallel (fast) Sequential (slow)
High Availability Yes No

Horizontal scalability Yes No

Ledger Pruning Yes No

Local contract store in PostgreSQL Yes Yes

Local contract store in Oracle Yes No
PostgreSQL driver Yes Yes

Oracle driver Yes No

Besu driver Yes No

Fabric driver Yes No

Profiler Yes No
Non-repudiation Middleware Yes (early access) No

https://code.visualstudio.com/download
https://adoptium.net
https://docs.daml.com/concepts/ledger-model/ledger-privacy.html
https://docs.daml.com/canton/architecture/overview.html#node-scaling
https://docs.daml.com/canton/usermanual/ha.html
https://docs.daml.com/canton/usermanual/ha.html#sequencer
https://docs.daml.com/canton/usermanual/operational_processes.html#ledger-pruning
https://docs.daml.com/tools/profiler.html
https://docs.daml.com/tools/non-repudiation.html

Daml SDK Documentation, 2.1.1

1.1.3 3. Installing Daml Open Source SDK
1.1.3.1 Windows 10

Download and run the installer, which will install Daml and set up the PATH variable for you.

1.1.3.2 Mac and Linux

Open a terminal and run:

curl -sSL https://get.daml.com/ | sh

The installer will setup the PATH variable for you. In order for it to take effect, you will have to log out
and log in again.

If the daml command is not available in your terminal after logging out and logging in again, you need to
manually. You can find instructions on how to do this here.

1.1.4 Installing Daml Enterprise

If you have a license for Daml Enterprise, you can install it as follows:

Canton can be downloaded from this repository, or you can use our Canton Enterprise Docker
images as described in our Docker instructions.

On Windows, download the installer from Artifactory instead of Github releases.

On Linux and MacOS, download the corresponding tarball, extract it and run ./install.sh.
Afterwards, modify the global daml-config.yaml and add an entry with your Artifactory API key.
The API key can be found in your Artifactory user profile.

artifactory-api-key: YOUR API KEY

This will be used by the assistant to download other versions automatically from artifactory.

If you already have an existing installation, you only need to add this entry to daml-config. yaml.
To overwrite a previously installed version with the corresponding Daml Enterprise version, use daml
install --force VERSION.

1.1.5 Downloading Manually

If you want to verify the SDK download for security purposes before installing, you can look at our
detailed instructions for manual download and installation.

2 Chapter 1. Getting started

https://github.com/digital-asset/daml/releases/download/v2.1.1/daml-sdk-2.1.1-windows.exe
https://digitalasset.jfrog.io/artifactory/canton-enterprise/
https://www.canton.io/docs/dev/user-manual/usermanual/docker.html#docker-instructions
https://digitalasset.jfrog.io/ui/repos/tree/General/sdk-ee

Daml SDK Documentation, 2.1.1

1.1.6 Next Steps

Follow the getting started guide.
Use daml --help to see all the commands that the Daml assistant (daml) provides.
If you run into any other problems, you can use the support page to get in touch with us.

1.1.6.1 Setting JAVA_HOME and PATH Variables

Windows

To set up JAVA HOME and PATH variables on Windows:

Setting the JAVA_HOME Variable

1. Search for Advanced System Settings (open Search, type advanced system settings and hit

Enter).

Find the Advanced tab and click Environment Variables.

3. Click Newinthe System variables section (if you want to set JAVA HOME system wide) or in
the User variables section (if you want to set JAVA HOME for a single user). This will open
a modal window for Variable name.

4. Inthe Variable name window type JAVA HOME, and forthe Variable value setthe path to

the JDK installation.

Click OKin the Variable name window.

6. Click OK in the tab and click Apply to apply the changes.

n

9

Setting the PATH Variable

The PATH variable is automatically set by the Windows installer.

Mac OS

First, determine whether you are running Bash or zsh. Open a Terminal and run:

echo $SHELL

This should return either /bin/bash, in which case you are running Bash, or /bin/zsh, in which
case you are running zsh.

If you get any other output, you have a non-standard setup. If you’re not sure how to set up environ-
ment variables in your setup, ask on the Dam| forum and we will be happy to help.

Open a terminal and run the following commands. Copy/paste one line at a time if possible. None of
these should produce any output on success.

To set the variables in bash:

echo 'export JAVA HOME="$ (/usr/libexec/java home)"' >> ~/.bash profile
echo 'export PATH="SHOME/.daml/bin:SPATH"' >> ~/.bash profile

To set the variables in zsh:

1.1. Installing the SDK 3

https://github.com/digital-asset/daml/releases/latest
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

echo 'export JAVA HOME="$ (/usr/libexec/java home)"' >> ~/.zprofile
echo 'export PATH="$HOME/.daml/bin:S$SPATH"' >> ~/.zprofile

For both shells, the above will update the configuration for future, newly opened terminals, but will
not affect any exsting one.

To test the configuration of JAVA HOME (on either shell), open a new terminal and run:

echo $JAVA HOME

You should see the path to the JDK installation, which is something like /Library/Java/
JavaVirtualMachines/jdk version number/Contents/Home.

Next, please verify the PATH variable by running (again, on either shell):

daml version

You should see the header SDK versions: followed by a list of installed (or available) SDK versions
(possibly a list of just one if you just installed).

If you do not see the expected outputs, contact us on the Daml forum and we will be happy to help.

Linux

To set up JAVA HOME and PATH variables on Linux for bash:

Setting the JAVA_HOME Variable

Javaistypically installed in a folder like /usr/1ib/jvm/java-version. Before runningthe follow-
ing command make sure to change the java-version with the actual folder found on your com-
puter:

echo "export JAVA HOME=/usr/lib/jvm/java-version" >> ~/.bash profile

Setting the PATH Variable

The installer will ask to set the PATH variable for you. If you want to set the PATH variable manually
instead, run the following command:

echo 'export PATH="SHOME/.daml/bin:$SPATH"' >> ~/.bash profile

4 Chapter 1. Getting started

https://discuss.daml.com

Daml SDK Documentation, 2.1.1

Verifying the Changes

In order for the changes to take effect you will need to restart your computer. After the restart, verify
that everything was set up correctly using the following steps:

Verify the JAVA_HOME variable by running:

echo $JAVA HOME

You should see the path you gave for the JDK installation, which is something like /usr/1ib/jvm/
java-version.

Then verify the PATH variable by running:

echo S$PATH

You should see a series of paths which includes the path to the SDK, which is something like /home/
your username/.daml/bin.

1.1.6.2 Manually Installing the SDK

If you require a higher level of security, you can instead install the Dam| SDK by manually download-
ing the compressed tarball, verifying its signature, extracting it and manually running the install
script.

Note that the Windows installer is already signed (within the binary itself), and that signature is
checked by Windows before starting it. Nevertheless, you can still follow the steps below to check its
external signature file.

To do that:

1. Go to https://github.com/digital-asset/daml/releases. Confirm your browser sees a valid cer-
tificate for the github.com domain.

2. Download the artifact (Assets section, after the release notes) for your platform as well as the
corresponding signature file. For example, if you are on macOS and want to install the latest
release (2.0.0 at the time of writing), you would download the files daml1-sdk-2.0.0-macos.
tar.gz and daml-sdk-2.0.0-macos.tar.gz.asc. Note that for Windows you can choose
between the tarball (ends in .tar.gz), which follows the same instructions as the Linux and
macOS ones (but assumes you have a number of typical Unix tools installed), or the installer,
which ends with . exe. Regardless, the steps to verify the signature are the same.

3. To verify the signature, you need to have gpg installed (see https://gnupg.org for more infor-
mation on that) and the Digital Asset Security Public Key imported into your keychain. Once
you have gpg installed, you can import the key by running:

gpg —-keyserver hkp://pgp.mit.edu --search!|
—F26D8A0AADF666CCB28F2AB1650EC3253B6ABEFEDS

This should come back with a key belonging to Digital Asset Holdings, LLC
<security@digitalasset.com>, created on 2023-01-10 and expiring on 2025-01-09. If any
of those details are different, something is wrong. In that case please contact Digital Asset
immediately.

Alternatively, if keyservers do not work for you (we are having a bit of trouble getting them to
work reliably for us), you can find the full public key at the bottom of this page.

1.1. Installing the SDK 5

https://github.com/digital-asset/daml/releases
https://gnupg.org

Daml SDK Documentation, 2.1.1

4. Oncethekeyisimported, you can ask gpg to verify that the file you have downloaded has indeed
been signed by that key. Continuing with our example of 2.0.0 on macOS, you should have both
files in the current directory and run:

gpg --verify daml-sdk-2.0.0-macos.tar.gz.asc

and that should give you a result that looks like:

gpg: assuming signed data in 'daml-sdk-2.0.0-macos.tar.gz'
gpg: Signature made Wed Aug 12 13:30:49 2020 CEST

gpg: using RSA key CADC3D1E3B5C4C5F94A65D78A7TBF65AAADBRBC494
gpg: Good signature from "Digital Asset Holdings, LLC <security@digitalasset.
—com>" [unknown]

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.

Primary key fingerprint: F26D 8AOA ADF6 66CC B28F 2ABl1 650E C325 3B6A 8FF5
Subkey fingerprint: CADC 3D1E 3B5C 4C5F 94A6 5D78 A7BEF 65AA ADBB C494

Note: This warning means you have not told gnupg that you trust this key actually belongs to
Digital Asset. The [unknown] tag next to the key has the same meaning: gpg relies on a web
of trust, and you have not told it how far you trust this key. Nevertheless, at this point you have
verified that this is indeed the key that has been used to sign the archive.

5. The next step is to extract the tarball and run the install script (unless you chose the Windows
installer, in which case the next step is to double-click it):

tar xzf daml-sdk-2.0.0-macos.tar.gz
cd sdk-2.0.0
./install.sh

6. Just like for the more automated install procedure, you may want to add ~/ .daml/bin to your
SPATH.

To import the public key directly without relying on a keyserver, you can copy-paste the following
Bash command:

gpg ——-import < < (cat <<EOF

mMQINBGO9KhIBEAC/D5WTgMJIQGQsolJENSRTq6YiCBwI+L84YFKCPUolyW7/RQHNZ
+5rYUQPpGEf1K5KCIhHtJeQyANzPy9KWnhDX61Taoaub6Dg9JK3SwNv20jDyCzZOjNW
Gfajy7xVIWXmYM/us8/A5kIN4ApwEGIUL73n2u0t0OzhpI6TGLUjNKBSELGUOLIL2Jr
vIBGx2ghv+dbdR3kPX6SYuj7U+tDvoaqdB8729kL14grpBgYy2YhF5eoLyvBakE9x
brDydUCuSt2Xpr7yIl7xGOhUSn2ygoP3e9YSJOhowjS5USoFtTGxvgSf7xd9gkFazyY
uA58X3sulnxZ/9nbvb2RIPKt1Ue0JIS8pggXVSSGrHfWw3Bnu2G1lpQNO+MYCSOCu/
gMxQTnJ41tUNoFb3c9dSnB/VXWxsv1K3F+EAFg9HLN1 St IJVxPhPwgTol380hTI1H
4eGAXpRPZSKNXGRRtWdbEseYBSDBzROuUlANnSTDXEDEF]jJJ5u7KIfdN7p9YaXWkXpB
+hvsiWJuvUDxTG1QE02PQjyN5vzj1NaU7CRRLvOYSstsOyTmuYg/xxvgA9XbPdti
g9AtaeYSjRzg70Bq79FhcmKDOfh7Zc07RRXHy2xTdvw+IySHEJkOfYFz+1Gtp78U
0iTv8tdgyh8dPvmuF7UbGWMJEMMD5d2goEw2ZnkgmLPFK5jg8gAshaQwOwARAQAB
tDAdEaWdpdGEFsIEFzc2VOIEhvbGRpbmdz LCBMTEMgPHN1Y3VyaXR5QGRpZ210YWxh
c3N1dC59b20+1iQJOBBMBCAAAFiEESM2KCq32Zsyy] ygxZQ7DITtq] /UFAMO9kKhIC
GWMFCwkIBwIGFQoJCASCBBYCAWECHGECF4AACGkQZQ7DITtg) /WMbg/+KOMte y+
fCaWxFctfUbtd/JZBzpSCVMLNTPIZYZ50SwN/CqILUTFzzVLIx7uj/CyH/el1IV20
RR7TMWETSADmkdrM45RBCvDs2UEI13Rpsg/41RpCZo01YQLI9Y1XyUid8F3cQYmwPk
4YMY+tggEhObAgqOngrGWiEWMU1ixbbRVgl PvRZDMeUNGAvmSOCs 9LZLEnE9m4g2Kn
1INKddfLZ+sHag2bfOiB+mZECX6wTusjqQWeJPRAf1VWwMxZ7IkGOYoQHGL1g8fTMd
3NgPE9OHOQ1ZhN4MbY6QZ70WexUNab8Pzf1Co04sSGhywVI3JibcgCNIbHW21+1py
O0ItJvdMxeSscOde2Fm5Dgmhf8UE+xgvPXa5xA5Yf40AgqwuKt 7boGsMf09Lf7zitX

(continues on next page)

6 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

5Z2z181saIPVC40cM51t+sNDP6uJIynP5Dplfxallb8gcQDgyWB/RErOvY1pRE/61
M8+jfUP3RJIMbX/tUiCxEG+1uDSGTq)2Ac4TqiXfFKpg+TdEZNFjOVtrzTJIT/tIg]
QlrKM9P9iB/JrNtggeYrhaBZSpVKx4J7LNeIGAVIVRVZz1W3tvCsTIT/1p/1J1Y]JI
FCdb761eR/PgONdk4wyU4JLXOYueEPAbyiBgQwgmOoT8GpY1PP4dsFfu7MovV0Cq7
//g+uwegRr51LV6LwSBUuFd1hgQ97djAmmRi5Ag0EY 72 SEgEQAKP+D3bVJIPC6SxS]
q/3UH9hixNhcmG61w6X1uW0x5JMMYN721i1nDLbgsgA3gEyZ8G/134nUU4K/WZkWg
nJ5910PIVE05yzEnesS6hbHXUzd6ayeWhPUzwxLBPy3yJUw7IRKFFOPOAMBaraAp
27ZuWy40Ta8bVKc9DgEeWuesyFAqs74W7cREGMOSCAP8R3I+Syoj66+JpXYJ7sEt
eW4ITqrQcj64jBtGB8kQ0e8IvC4COUdXI1BpKjExxIQ1SK729tz0vsi+hzQfac/1
m33082sHB89ZU8y4GQpjWob6YyEzIxKBgoEogDOCvYOeJ9nK1Uv3pVFEKyClKdysQ+h
v+9V3zQ00aGF6115¢cIwQUlewISUkiCOHzMYkrEXsbBOJ1CmomuLnjMhsXht5tV4e
c8axn6QM7qRfSR/3RORZwdACa00ZBN4Z0okUuZnR7/FxyiOhKi1GW51X+0ml1VvKH
BImFM/VmCXwdhzcWZUZa5K6Ebpeg7zWN3alkXZ+Kb2glqWYT5Pg3d1lm+RtJOiuyn
uyrlBnX60v])TNWTmKPqO8x223dZpNGdK6sfUUeZ6700kI/12dALOUZRcuCLK32LB
uJmk/dLt4Bjem9ITFt2ECh1+RTalaWom8uS7BKUiDGedW6239h3HebdVeniplvoY
3EdwpiQxgsCD3g2Sbz IM5UGOsWZzABEBAAGIAJWEGAEIACYCGWWWIQTybYoKrfZm
zLKPKrF1DsM102gP9QUCY72SxAUJA8InsgAKCRB1DsM102gP9dfyD/9076RZYI 6w
8xIEO0K/cw//4IA0bbN/vC2tn511zUbab6TrXhCYKr96//YJISOFd239Gf4kCT7AEDLS
vE4ARLbezjtOVG33GlfrEFHfghMKhpjMQOgb68NEFw5U2eLMFc7BB/FudvSHQCMZ 3T
ajM/465kg+jLxTNiuIl4MFs10LGD5WbACOVEZzZBUb13mK/CB4xv2UEd2y6ZAZUuCX0O
P2+Pr2P7W94ECu/NOdhnitkAirgXrS3nZSduLpjK/SkUzvdY642GHwy0i3M20Ztr
p701U0u7zt1D9yDUbksMyhskG7I+k2NGLAwz /CG91GRrYdUpoWsP1lU5XLyxjHCMSC
gq97giRSK1GO3LbIiTRatrv+4£fcdntNOEM/nJdefdtKS8+qZgkPMGQURIDJIcPnIpHk
jGccrEJz4aGB0/4Kr9UDBNWDPsHI92E61Ra5Q1zD001EqgFHyyRP1JYJH3RGKV1YK
rcL11uADiRYXCadwtXvnkJIGxfg2DGICNS5bEINPtM+bERO3IfgriipvT/Qx3/N6T+
hiHy12Yyi0loUhbWsTuuSz+D07wj/4X1levuaaAc56RSwv0x6rLSjkYj1I7V3nMvc
e2fwNF1JvLAGEfMcIYyxrOwO24cFwzYMYOTDFmEf8MkN/H/khKZiksdnIxfcBFfyWu
PA8s503Zs90Ack3IvK7uAhRDz1PpR6Y+1bkCDQRJVZKEARAAUTGK6INJWBE z £ rDM
vM157ZGAM/ Tpyev])O0WCDhgqiCFdpH3MVt 7+wq0tmR8005Lt4AXgVtznlbwl sSMAKWK
UbyxLtS7cMiXOAPOtemTzWQkvkI0lFFygRQ80oyp4RUP4w)+W41YaDhY+tJRDr/sR
6grYt/1ZbfvEPuxL4jGW/dLSKHTLs8kh367XmlgxgaGlCltSLusTPb/8uNpOCANh
A2HAJRCGMoxT7£295+mEWXujif8yIfYtSQldgh+2bA6vaV3WKtHTPdLalzzB20rf9
Mguz4 ff3XDIJCHPWOKeBOfqVS9CL67TZe0x0nJ6u2IJnND1wlzX7R63v1D/tSTYZPL
mJeosIJpRQU4AELyyLSkJ01ANVY/AwlKeTPkvoc76UwsQRFgxx 677 JKObjA0k6TQK
HjszRNkeBWbbi8J+zvES6U3+1gY¥tvEiSEnpplv1CWEEKZMC68MgspNCzLSOpkoAfe
k2i1Q/XsjKXSsaUXY5A1D1jQTVbSs9G30kQA0Eyv4JPj2KEXPoF/0sIt20Rrayygk
11gN4k9a3zEZ2WpkQLIRK5DgGCE /ORHXkperEWrDiAfSvuvV1999jxr+Jqi8gvlPrm
aQdOX5Wc5gpb7X72FMsb2UHaWsUEs 6nwoAWNXgA3PGd0r9LihZMJIXfMc+LSF/dRK
fx+PizkTXQbfML8fi7I19JA1p4UAEQEAAYKECgQYAQAJThYhBPJtiggt 9mbMso8g
sWUOwyU7a0/1BQJjvZKEAhsCBQkDwmcAAKAJEGUOwyU7a0/1wXQgBBkBCAAJFiEE
vEtwIH tcTF+Upll4p791gg27xIJQFAMO9koQACgkOp791gg27xJQG2hAAPp4813NAU
AOg4C/YvgB8agnDRDHW/ISs5XsQTfVwbIssSiSTqddb4jX0rbKWlgzM6115EmESPV
SMCGEN8xfP5+UeeVIJaXLg3BMYJf1ANn8sun9f8Bp2Wdw6ID1r9VwEZ170J02xYvg
VJ+s/rxbCJ8K9neDPelzN/KXMyUV/uA5D1G92I1Itinw4ZzgD9e/CiPEfIBWENEMNZ
nYaku4VGJfzaMHezaUTB8UVYFVN6Zv2PGYEUBCWISM61IdnGKnJzaONMnEvGstXN
vtnWk7H/1204/rDpApy68Qbuo8gbzZIifjNY00u2iyx4BEv)i418NfTdF5HUPHR4m
gl0cz+FcWxol3PGTXHKprNCIY4M5nMAZW82z05/2geD87zmY9Yz3m0GSVE/0cD3pB
rQ/LX1irxgJ2prCuE7Ax8XTTBg7+cjggk0InKh2pF0sK+2UCbnN4hR+SQvR256hWI
F+TP/rDryaqdubgCOh7kytPnPgZtL8VgK7yDRhfmgxv3+bpvm+B2gmlokUCkH3bb
AkvowTBOcyTgLw7hYsREHKYVROYg57GGhMStkzaD+1lep9kEUgcaXZF41W02WJeS3
VYXwooxFBKMhzm+cluLV+ujC+FnRs1lh7q/u90+3N2V1jEjxA407j3RNAARzpOsOV2
BtuUsiPCTVvhRLBmdG3RH25jm2hUPexP2+pMyEw//V211M6+MT5a8kCybK5e9313+
eT2bfAfdlk0OkcQcfbocymxW5DIJUgHgB]+G9ZC5PIAeFk+Jf1d0y3M186NAVP8TI4+
ZNsJExdQyplCN53mSWtxAadgHNNhDKX0KwyCarCk04xbf0qgjlsriWNbsUIO4sMlzt
C46N/0JsCuG4uAztAfU%hibLmSxpjf04Qapc5ND1GLgZ2xQTVMXP1FglDgrF6fIg
WZwPa7zleihkrEERPjnisjuwMd4uO5BIkgh8F 7HAONARYXpftg9LReV9732718n9

(continues on next page)

1.1. Installing the SDK

7

Daml SDK Documentation, 2.1.1

(continued from previous page)

4rhpBedAHWVRqWo8owM8DOVTaHAQzMnnzB+6nCoOcZc7PzhWtKKhZupW2DYaLdIh
nlVCrmMSozkFn3shtOJ76XF2DMDpk0353w61i6rKghWC7TdpXPnWkHkExw4Pjnlse
INP2vdz183NKgEKros4631i+h0szQj7jb5DiFxxOnKUEfxBNEMJIXTqYzXdEzw7Sncw
NwTv4pFxnk3XFJID3TIIXMdaCDYmHIJYK5FwgcO0Cop3dRAMJIIB+0Q1 /p+urDXgZphg
AGroZ2271DXzv7rmlx2drZyOBohc+dgn3zjEx+1wZ6CY8XPiQgbWEzSzY8YT40UA
xRcs9cJ+0SK/HhW/EG51YNbr5IMDb3HvycHEreszEvwg2HdnsMIYdM8GCT7£17Zpp
0r+S1089BYMgKmhepps=

=srz3

1.2 Getting Started with Daml

The goal of this tutorial is to get you up and running with full-stack Daml development. Through the
example of a simple social networking application, you will learn:

1. How to build and run the application
2. The design of its different components (App Architecture)
3. How to write a new feature for the app (Your First Feature)

The goal is that by the end of this tutorial, you’ll have a good idea of the following:

What Daml contracts and ledgers are
How a user interface (Ul) interacts with a Daml ledger
How Daml helps you build a real-life application fast.

This is not a comprehensive guide to all Daml concepts and tools or all deployment options; these
are covered in-depth in the User Guide. For a quick overview of the most important Daml concepts
used in this tutorial you can refer to the Daml cheat-sheet.

With that, let’s get started!

1.2.1 Prerequisites

Make sure that you have the Daml SDK, Java 11 or higher, and Visual Studio Code (the only supported
IDE) installed as per the instructions in Installing the SDK.

You will also need some common software tools to build and interact with the template project:

Node and the associated package manager npm. You need node --version toreport at least
14.8.3;if you have an older version, see this link for additional installation options.
A terminal application for command line interaction.

8 Chapter 1. Getting started

https://docs.daml.com/cheat-sheet/
https://nodejs.org/en/
https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

Daml SDK Documentation, 2.1.1

1.2.2 Running the App

To get the app up and running:

1. Open a terminal, select a folder in which to create your first application, and instantiate the tem-
plate project.

daml new create-daml-app --template create-daml-app

This creates a new folder with contents from our template. To see a list of all available templates run
daml new --list.

2. Change to the new folder:

cd create-daml-app

3. Open two terminal windows.
4. In one terminal, at the root of the create-daml-app directory, run the command:

daml start

Any commands starting with daml are using the Daml Assistant, a command line tool in the SDK for
building and running Daml apps.

The command has started successfully when you see the INFO com.daml.http.Main$ -
Started server: ServerBinding(/127.0.0.1:7575) message in the terminal. The com-
mand does a few things:

1. Compiles the Daml code to a DAR (Daml Archive) file

2. Generates a JavaScript library in ui/daml.js to connect the Ul with your Daml code

3. Starts aninstance of the Sandbox, an in-memory ledger useful for development, loaded with our
DAR

4. Starts a server for the HTTP JSON API, a simple way to run commands against a Daml ledger (in
this case the running Sandbox)

We’ll leave these processes running to serve requests from our Ul.

5. In the second terminal, navigate to the create-daml-app/ui folder and use npm to install
the project dependencies:

cd create-daml-app/ui
npm install

This step may take a couple of moments. You should see success Saved lockfile. intheoutput
if everything worked as expected.

6. Start the Ul with:

npm start

This starts the web Ul connected to the running Sandbox and JSON API server. The command should
automatically open a window in your default browser at http://localhost:3000.

Once the web Ul has been compiled and started, you should see Compiled successfully! in
your terminal. If you don’t, open http://localhost:3000 in a web browser. Depending on your firewall
settings, you may be asked whether to allow the app to receive network connections. It is safe to
accept.

1.2. Getting Started with Daml 9

http://localhost:3000
http://localhost:3000

Daml SDK Documentation, 2.1.1

You should now see the login page for the social network. For simplicity, in this app there is no
password or sign-up required.

1. Enter auser name. Valid user names are bob, alice, or charlie (note that these are all lower-case,

although they are displayed in the social network Ul by their alias instead of their user id, with

the usual capitalization).
2. Click Log in.

Create ,\ daml App

You should see the main screen with two panels. The top panel displays the social network users you
are following; the bottom displays the aliases of the users who follow you. Initially these are both
empty as you are not following anyone and you don’t have any followers. To start following a user,
select their name in the drop-down list and click the Follow button in the top panel. At the moment,
you will notice that the drop-down shows only your own user because no other user has registered

yet.

Adaml You are logged in as bob. [C g

Welcome, Bob!

@ Bob

&l sersI'm following

Follow

&&» The Network
wr My followers and users they are following

Next, open a new browser window/tab at http://localhost:3000 and log in as a different user. (Having
separate windows/tabs allows you to see both your own screen and the screen of the user you are

following at the same time.)

Now that the other user (Alice in this example) has logged in, go back to the previous window/tab,
select them drop-down list and click the Follow button in the top panel.

The user you just started following appears in the Following panel. However, they do not yet appear

10 Chapter 1. Getting started

http://localhost:3000

Daml SDK Documentation, 2.1.1

in the Network panel. This is because they have not yet started following you. This social network is
similar to Twitter and Instagram, where by following someone, say Alice, you make yourself visible
to her but not vice versa. We will see how we encode this in Daml in the next section.

Adaml You are logged in as bob. ®
Welcome, Bob!

@ Bob

[T following

& Alice
Alice v

Follow

&& The Network

w My followers and users they are following

To make this relationship reciprocal, go back to the other window/tab where you logged in as the
second user (Alice in this example). You should now see your name in her network. In fact, Alice can
see the entire list of users you are following in the Network panel. This is because this list is part of
the user data that became visible when you started following her.

Adaml You are logged in as alice. ®

Welcome, Alice!

@ Alice

Users I'm following

Follow

&& The Network

w My followers and users they are following

8 Bob &+
& Alice o

When Alice starts following you, you can see her in your network as well. Switch to the window where
you are logged in as yourself - the network should update automatically.

Play around more with the app at your leisure: create new users and start following more users.
Observe when a user becomes visible to others - this will be important to understanding Daml’s
privacy model later. When you’re ready, let’s move on to the architecture of our app.

Tip: Congratulations on completing the first part of the Getting Started Guide! Join our forum and
share a screenshot of your accomplishment to get your first of 3 getting started badges! You can get

1.2. Getting Started with Daml n

https://discuss.daml.com
https://discuss.daml.com/badges/125/it-works

Daml SDK Documentation, 2.1.1

Adaml You are logged in as bob. ®
Welcome, Bob!

@ Bob
ab Users I'm following

& Alice
Alice v

Follow

& The Network

W My followers and users they are following

& Alice &
& Bob o

the next one by implementing your first feature.

1.3 App Architecture

Inthis section we’ll look at the different components of the social network app we created in Building
Your App. The goal is to familiarize yourself with the basics of Daml architecture enough to feel com-
fortable extending the code with a new feature in the next section. There are two main components:

the Daml| model
the React/TypeScript frontend

We generate TypeScript code to bridge the two.

Overall, the social networking app is following the recommended architecture of a fullstack Daml appli-
cation. Below you can see a simplified version of the architecture represented in the app.

12 Chapter 1. Getting started

https://docs.daml.com/getting-started/index.html
https://docs.daml.com/getting-started/index.html

Daml SDK Documentation, 2.1.1

User Code Application Front-end

React Application Code
Daml Component

L v

Generated code from Daml React Libraries
Daml
y
— Typescript Generated Code

'Application Back-end

\i
JSON API Server

| v B I

DAR Files

Daml Model

I Participant Node

There are three types of building blocks that go into our application: user code, Daml components,
and generated code from Daml. The Daml model determines the DAR files that underpin both the
front end and back end. The front-end includes React application code, Daml react libraries, and
Typescript generated code, while the back-end consists of a JSON API server and a participant node.

Let’s start by looking at the Daml model, which defines the core logic of the application. Have the
Daml cheat-sheet open in a separate tab for a quick overview of the most common Daml concepts.

1.3.1 The Daml Model

In your terminal, navigate to the root create-daml-app directory and run:

daml studio

This should open the Visual Studio Code editor at the root of the project. (You may get a new tab pop
up with release notes for the latest version of Daml - close this.) Using the file Explorer on the left
sidebar, navigate to the daml folder and double-click on the User.daml file.

The Daml code defines the data and workflow of the application. Both are described in the User con-
tract template. Let’s look at the data portion first:

1.3. App Architecture 13

https://docs.daml.com/cheat-sheet/
https://docs.daml.com/cheat-sheet/

Daml SDK Documentation, 2.1.1

template User with
username: Party
following: [Party]
where
signatory username
observer following

There are two important aspects here:

1. The data definition (a schema in database terms), describing the data stored with each user con-
tract. In this case it is an identifier for the user and the list of users they are following. Both fields
use the built-in Party type which lets us use them in the following clauses.

2. The signatories and observers of the contract. The signatories are the parties whose authorization
is required to create or archive contracts, in this case the user herself. The observers are the parties
who are able to view the contract on the ledger. In this case all users that a particular useris following
are able to see the user contract.

It’s also important to distinguish between parties, users, and aliases in terms of naming:
Parties are unique across the entire Daml network. These must be allocated before you can
use them to log in, and allocation results in a random-looking (but not actually random)
string that identifies the party and is used in your Daml code. Parties are a builtin concept.
On each participant node you can create users with human-readable user ids. Each user
can be associated with one or more parties allocated on that participant node, and refers
to that party only on that node. Users are a purely local concept, meaning you can never
address a user on another node by user id, and you never work with users in your Daml
code; party ids are always used for these purposes. Users are also a builtin concept.
Lastly we have user aliases. These are not a builtin concept, they are defined by an Alias
template (discussed below) within the specific model used in this guide. Aliases serve as
a way to address parties on all nodes via a human readable name.

The social network users discussed in this guide are really a combination of all three of these con-
cepts. Alice, Bob, and Charlie are all aliases that correspond to a single test user and a single party
id each. As part of running daml start, the init-script specified in daml.yaml is executed. This points
at the Setup:setup function which defines a Daml Script which creates 3 users alice, bob and charlie as
well as a corresponding party for each they can act as. In addition to that, we also create a separate
public party and allow the three users to read contracts for that party. This allows us to share the
alias contracts with that public party and have them be visible to all 3 users.

Now let’s see what the signatory and observer clauses mean in our app in more concrete terms.
The userwith the alias Alice can see another user, alias Bob, in the network only when Bob is following
Alice (only if Alice is in the following list in his user contract). For this to be true, Bob must have
previously started to follow Alice, as he is the sole signatory on his user contract. If not, Bob will be
invisible to Alice.

This illustrates two concepts that are central to Daml: authorization and privacy. Authorization is
about who can do what, and privacy is about who can see what. In Daml you must answer these
questions upfront, as they are fundamental to the design of the application.

The next part of the Daml model is the operation to follow users, called a choice in Daml:

nonconsuming choice Follow: ContractId User with
userToFollow: Party
controller username
do

(continues on next page)

14 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

assertMsg "You cannot follow yourself'" (userToFollow /= username)

assertMsg "You cannot follow the same user twice" (notElem userToFollow!!
—~following)

archive self

create this with following = userToFollow :: following

Daml contracts are immutable (can not be changed in place), so the only way to update one is to
archive it and create a new instance. That is what the Follow choice does: after checking some
preconditions, it archives the current user contract and creates a new one with the new user to follow
added to the list. Here is a quick explanation of the code:

The choice starts with the nonconsuming choice keyword followed by the choice name Fol-
low.

The return type of a choice is defined next. In this case it is ContractId User.

After that we declare choice parameters with the with keyword. Here this is the user we want
to start following.

The keyword controller defines the Party thatis allowed to execute the choice. In this case,
itis the username party associated with the User contract.

The do keyword marks the start of the choice body where its functionality will be written.
After passing some checks, the current contract is archived with archive self.

A new User contract with the new user we have started following is created (the new user is
added to the following list).

More detailed information on choices can be found in our docs.

Finally, the User.daml file contains the Alias template that manages the link between user ids and
their aliases. The alias template sets the public party we created in the setup script as the observer
of the contract. Because we allow all users to read contracts visible to the public party, this allows
e.g., Alice to see Bob’s Alias contract.

template Alias with
username: Party
alias: Text
public: Party
where
signatory username
observer public

key (username, public) : (Party, Party)
maintainer key. 1

nonconsuming choice Change: ContractId Alias with
newAlias: Text
controller username
do
archive self
create this with alias = newAlias

Let’s move on to how our Daml| model is reflected and used on the Ul side.

1.3. App Architecture 15

Daml SDK Documentation, 2.1.1

1.3.2 TypeScript Code Generation

The user interface for our app is written in TypeScript. TypeScript is a variant of JavaScript that
provides more support during development through its type system.

To build an application on top of Daml, we need a way to refer to our Daml templates and choices in
TypeScript. We do this using a Daml to TypeScript code generation tool in the SDK.

To run code generation, we first need to compile the Daml model to an archive format (a .dar file).
Thedaml codegen jscommand thentakes this file asargumentto produce a number of TypeScript
packages in the output folder.

daml build
daml codegen js .daml/dist/create-daml-app-0.1.0.dar -o daml.js

Now we have a TypeScript interface (types and companion objects) to our Daml model, which we’ll
use in our Ul code next.

1.3.3 The Ul

On top of TypeScript, we use the Ul framework React. React helps us write modular Ul components
using afunctional style-acomponentisrerendered wheneverone of its inputs changes - with careful
use of global state.

Let’s see an example of a React component. All components are in the ui/src/components folder.
You can navigate there within Visual Studio Code using the file explorer on the left sidebar. We’ll first
look at App. tsx, which is the entry point to our application.

const App: React.FC = () => {
const [credentials, setCredentials] = React.useState<
Credentials | undefined
>()
if (credentials) {
const PublicPartyledger: React.FC = ({ children }) => {

const publicToken = usePublicToken();
const publicParty = usePublicParty();
if (publicToken && publicParty) {
return (
<publicContext.DamlLedger
token={publicToken.token}
party={publicParty}>
{children}
</publicContext.DamlLedger>
) ;

} else {
return <hl>Loading ...</hl>;
}
bi
const Wrap: React.FC = ({ children }) =>
isRunningOnHub () 2 (

<DamlHub token={credentials.token}>
<PublicPartyLedger>{children}</PublicPartyLedger>
</DamlHub>
)
<div>{children}</div>

(continues on next page)

16 Chapter 1. Getting started

https://www.typescriptlang.org/
https://reactjs.org/

Daml SDK Documentation, 2.1.1

(continued from previous page)

) i
return (
<Wrap>
<userContext.DamlLedger
token={credentials.token}
party={credentials.party}
user={credentials.user}>

<MainScreen
getPublicParty={credentials.getPublicParty}
onLogout={ () => {
if (authConfig.provider === "daml-hub") {
damlHubLogout () ;

}
setCredentials (undefined) ;
+}
/>
</userContext.DamlLedger>
</Wrap>
)
} else {
return <LoginScreen onlLogin={setCredentials} />;
}
}i

An important tool in the design of our components is a React feature called Hooks. Hooks allow you
to share and update state across components, avoiding the need to thread it through manually. We
take advantage of hooks to share ledger state across components. Custom Daml React hooks query
the ledger for contracts, create new contracts, and exercise choices. This is the library you will use
most often when interacting with the ledger' .

The useState hook (not specific to Daml) here keeps track of the user’s credentials. If they are not
set, we render the LoginScreen with a callback to setCredentials. If they are set, we render the
MainScreen of the app. This is wrapped in the DamlLedger component, a React context with a
handle to the ledger.

Let’s move on to more advanced uses of our Daml React library. The MainScreen is a simple frame
around the MainvView component, which houses the main functionality of our app. It uses Daml
React hooks to query and update ledger state.

const MainView: React.FC = () => {
const username = userContext.useParty();
const myUserResult = userContext.useStreamFetchByKeys (User.User, () =>
— [username], [username]);
const aliases = publicContext.useStreamQueries (User.Alias, () => []1, [1):
const myUser = myUserResult.contracts[0]?.payload;
const allUsers = userContext.useStreamQueries (User.User) .contracts;

The useParty hook returns the current user as stored in the DamlLedger context. A more interest-
ing example isthe allUsers line. This uses the useStreamQueries hook to get all User contracts
on the ledger. (User.User here is an object generated by daml codegen js - it stores metadata
of the User template defined in User.daml.) Note however that this query preserves privacy: only
users that follow the current user have their contracts revealed. This behaviour is due to the ob-
servers on the User contract being exactly in the list of users that the current user is following.

' Behind the scenes the Daml React hooks library uses the Daml Ledger TypeScript library to communicate with a ledger
implementation via the HTTP JSON API.

1.3. App Architecture 17

https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/context.html

Daml SDK Documentation, 2.1.1

A final point on this is the streaming aspect of the query. Results are updated as they come in - there
is no need for periodic or manual reloading to see updates.

Another example, showing how to update ledger state, is how we exercise the Follow choice of the
User template.

const ledger = userContext.useledger();

const follow = async (userToFollow: Party): Promise<boolean> => {
try {
await ledger.exerciseByKey (User.User.Follow, username, {userToFollow});
return true;
} catch (error) {
alert (Unknown error:\nS${JSON.stringify (error) });
return false;

The useLedger hook returns an object with methods for exercising choices. The core of the follow
function here is the call to ledger.exerciseByKey. The key in this case is the username of the
current user, used to look up the corresponding User contract. The wrapper function follow is
then passed to the subcomponents of MainView. For example, follow is passed to the UserList
component as an argument (a prop in React terms). This is triggered when you click the icon next to
a user’s name in the Network panel.

<Userlist
users={followers}
partyToAlias={partyToAlias}
onFollow={follow}

/>

This should give you a taste of how the Ul works alongside a Daml ledger. You’ll see this more as you
develop your first feature for our social network.

1.4 Your First Feature

To get a better idea of how to develop Daml applications, let’s try implementing a new feature for our
social network app.

At the moment, our app lets us follow users in the network, but we have no way to communicate with
them. Let’s fix that by adding a direct messaging feature. This should let users that follow each other
send messages to each other, respecting authorization and privacy. This means:

You cannot send a message to someone unless they have given you the authority by following
you back.
You cannot see a message unless you sent it or it was sent to you.

Daml lets us implement these guarantees in a direct and intuitive way.
Creating a feature involves four steps:

1. Adding the necessary changes to the Daml model
2. Making the corresponding changes in the Ul
3. Running the app with the new feature

As usual, we must start with the Daml model and base our Ul changes on top of that.

18 Chapter 1. Getting started

https://reactjs.org/docs/components-and-props.html

Daml SDK Documentation, 2.1.1

1.4.1 Daml Changes

The Daml code defines the data and workflow of the application; you can read about this in more detail
in the architecture section. The workflow refers to the interactions between parties that are permitted
by the system. In the context of a messaging feature, these are essentially the authorization and
privacy concerns listed above.

For the authorization part, we take the following approach: a user Bob can message another user Al-
ice when Alice starts following Bob back. When Alice starts following Bob back, she gives permission
or authority to Bob to send her a message.

To implement this workflow, let’s start by adding the new data for messages. Navigate to the daml/
User.daml file and copy the following Message template to the bottom. Indentation is important:
it should be at the top level like the original User template.

template Message with
sender: Party
receiver: Party
content: Text
where
signatory sender, receiver

This template is very simple: it contains the data for a message and no choices. The interesting part
is the signatory clause: both the sender and receiver are signatories on the template. This
enforces that creation and archival of Message contracts must be authorized by both parties.

Now we can add messaging into the workflow by adding a new choice to the User template. Copy the
following choice tothe User template afterthe Followchoice. The indentation for the SendMessage
choice must match the one of Follow. Make sure you save the file after copying the code.

nonconsuming choice SendMessage: ContractId Message with

sender: Party
content: Text

controller sender

do
assertMsg "Designated user must follow you back to send a message" (elem]

—sender following)

create Message with sender, receiver = username, content

As with the Follow choice, there are a few aspects to note here.

By convention, the choice returns the ContractId of the resulting Message contract.

The parameters to the choice are the sender and content of this message; the receiver is the
party named on this User contract.

The controller clause states that it is the sender who can exercise the choice.

The body of the choice first ensures that the sender is a user that the receiver is following and
then creates the Message contractwith the receiver being the signatory of the User contract.

This completes the workflow for messaging in our app.
Navigate to the terminal window where the daml start process is running and press ‘r. This will

Compile our Daml code into a DAR file containing the new feature
Update the JavaScript library under ui/daml. js to connect the Ul with your Daml code
Upload the new DAR file to the sandbox

1.4. Your First Feature 19

Daml SDK Documentation, 2.1.1

As mentioned previously, Daml Sandbox uses an in-memory store, which means it loses its state -
which here includes all user data and follower relationships - when stopped or restarted.

Now let’s integrate the new functionality into the Ul

1.4.2 Messaging Ul
The Ul for messaging consists of a new Messages panel in addition to the Follow and Network panel.
This new panel has two parts:

1. Alist of messages you’ve received with their senders.
2. Aform with a dropdown menu for follower selection and a text field for composing the message.

We implement each part as a React component, named MessageList and MessageEdit respec-
tively. Let’s start with the simpler MessageList.

1.4.2.1 MessagelList Component

The goal of the MessageList component is to query all Message contracts where the receiveris
the current user, and display their contents and senders in a list. The entire component is shown
below. Copy this into a new MessageList.tsx fileinui/src/components and save it.

import React from 'react'

import { List, ListItem } from 'semantic-ui-react';
import { User } from '@daml.]js/create-daml-app';
import { userContext } from './Rpp';

type Props = {
partyToAlias: Map<string, string>
}
/**
* React component displaying the 1list of messages for the current user.
*/
const MessagelList: React.FC<Props> = ({partyToAlias}) => ({
const messagesResult = userContext.useStreamQueries (User.Message) ;

return (
<List relaxed>
{messagesResult.contracts.map (message => ({
const {sender, receiver, content} = message.payload;
return (
<ListItem
className='test-select-message-item’
key={message.contractId}>
{partyToAlias.get (sender) ?? sender} → {partyToAlias.
—get (receiver) ?? receiver}: {content}
</ListItem>
)
1)}
</List>
)
i

export default Messagelist;

20 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

In the component body, messagesResult gets the stream of all Message contracts visible to the
current user. The streaming aspect means that we don’t need to reload the page when new mes-
sages come in. For each contract in the stream, we destructure the payload (the data as opposed to
metadata like the contract ID) into the {sender, receiver, content} object pattern. Then we
construct a ListItem Ul element with the details of the message.

An important point about privacy: no matter how we write our Message query in the Ul code, it is
impossible to break the privacy rules given by the Daml model. Thatis, itis impossible to see a Mes-
sage contract of which you are not the sender or the receiver (the only parties that can observe
the contract). This is a major benefit of writing apps on Daml: the burden of ensuring privacy and
authorization is confined to the Daml model.

1.4.2.2 MessageEdit Component

Next we need the MessageEdit component to compose and send messages to our followers. Again
we show the entire component here; copy this into a new MessageEdit.tsx file in ui/src/
components and save it.

import React from 'react'

import { Form, Button } from 'semantic-ui-react';
import { Party } from '@daml/types';

import { User } from '@daml.]js/create-daml-app';
import { userContext } from './App';

type Props = {
followers: Partyl[];
partyToAlias: Map<string, string>;

/**
* React component to edit a message to send to a follower.
*/

const MessageEdit: React.FC<Props> = ({followers, partyToAlias}) => {
const sender = userContext.useParty();
const [receiver, setReceiver] = React.useState<string | undefined>();
const [content, setContent] = React.useState("");
const [isSubmitting, setIsSubmitting] = React.useState (false);

const ledger = userContext.useledger();

const submitMessage = async (event: React.FormEvent) => {

try {
event.preventDefault () ;
if (receiver === undefined) {
return;

}

setIsSubmitting (true) ;

await ledger.exerciseByKey (User.User.SendMessage, receiver, {sender,'!
—content});

setContent ("") ;
} catch (error) {

alert (Error sending message:\n&5{JSON.stringify(error)/);
} finally {

setIsSubmitting (false) ;

}i

(continues on next page)

1.4. Your First Feature 21

Daml SDK Documentation, 2.1.1

(continued from previous page)

return (
<Form onSubmit={submitMessage}>
<Form.Select

fluid

search

className='test-select-message-receiver'

placeholder={receiver ? partyToAlias.get (receiver) ?? receiver : "Selectl]

—a follower"}
value={receiver}
options={followers.map (follower => ({ key: follower, text: partyToAlias.
—get (follower) ?? follower, value: follower }))}
onChange={ (event, data) => setReceiver (data.value?.toString())}
/>
<Form.Input
className='test-select-message-content'’
placeholder="Write a message"
value={content}
onChange={event => setContent (event.currentTarget.value)}
/>
<Button
fluid
className='test-select-message-send-button'
type="submit"
disabled={isSubmitting || receiver === undefined || content === ""}
loading={isSubmitting}
content="Send"
/>
</Form>
) ;
}i

export default MessageEdit;

You will first notice a Props type near the top of the file with a single followers field. A prop in React
is an input to a component; in this case a list of users from which to select the message receiver.
The prop will be passed down from the MainView component, reusing the work required to query
users from the ledger. You can see this followers field bound at the start of the MessageEdit
component.

We use the React useState hook to get and set the current choices of message receiver and
content. The Daml-specific useLedger hook gives us an object we can use to perform ledger op-
erations. The call to ledger.exerciseByKey in submitMessage looks up the User contract with
the receiver’'s username and exercises the SendMessage choice with the appropriate arguments.
If the choice fails, the catch block reports the error in a dialog box. Additionally, submitMessage
setsthe isSubmitting state sothatthe Send button is disabled while the requestis processed. The
result of a successful call to submitMessage is a new Message contract created on the ledger.

The return value of this component is the React Form element. This contains a dropdown menu to
select a receiver from the followers, a text field for the message content, and a Send button which
triggers submitMessage.

Note how authorization is enforced here. Due to the logic of the SendMessage choice, itis impossible
to send a message to a user who is not following us (even if you could somehow access their User
contract). The assertion thatelem sender following in SendMessage ensures this: no mistake

22 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

or malice by the Ul programmer could breach this.

1.4.2.3 MainView Component

Finally we can see these components come together in the MainView component. We want to add a
new panel to house our messaging Ul.Opentheui/src/components/MainView. tsx file and start
by adding imports for the two new components.

import MessageEdit from './MessageEdit';
import Messagelist from './MessageList';

Next, find where the Network Segment closes, towards the end of the component. This is where we’ll
add a new Segment for Messages. Make sure you save the file after copying over the code.

<Segment>
<Header as='h2'>
<Icon name='pencil square' />
<Header.Content>
Messages
<Header.Subheader>Send a message to a follower</Header.
—Subheader>
</Header.Content>
</Header>
<MessageEdit
followers={followers.map (follower => follower.username) }
partyToAlias={partyToAlias}
/>
<Divider />
<MessageList partyToAlias={partyToAlias}/>
</Segment>

Following the formatting of the previous panels, we include the new messaging components: Mes-
sageEdit supplied with the usernames of all visible parties as props, and MessageList to display
all messages.

That is all for the implementation! Let’s give the new functionality a spin.

1.4.3 Running the Updated Ul

If you have the frontend Ul up and running you’re all set. If you don’t have the Ul running, open a
new terminal window and navigate to the create-daml-app/ui folder, then run the npm start
command to start the UL

You should see the same login page as before at http://localhost:3000.

Once you've logged in, you’ll see a familiar Ul but with our new Messages panel at the bottom!

Go ahead and follow more users, and log in as some of those users in separate browser windows
to follow yourself back. Then click on the dropdown menu in the Messages panel to see a choice of
followers to message!

1.4. Your First Feature 23

http://localhost:3000

Daml SDK Documentation, 2.1.1

Create ,\ daml App

DAML

Welcome, Bob!

@ Bob

& oersim following

Follow

&4 The Network
w My followers and users they are following

Messages

Send a message to a follower

Messages

Send a message to a follower

Alice

You are logged in as Bob. ®

24 Chapter1

. Getting started

Daml SDK Documentation, 2.1.1

Send some messages between users and make sure you can see each one from the other side. Notice
that each new message appears in the Ul as soon as it is sent (due to the streaming React hooks).

Messages

Send a message to a follower

Alice -

Bob - Alice: Hi Alice!

Tip: You completed the second part of the Getting Started Guide! Join our forum and share a screen-
shot of your accomplishment to get your second of 3 badges! Get the third badge by deploying to
Daml Hub

1.4.4 Next Steps

We’ve gone through the process of setting up a full-stack Daml app and implementing a useful fea-
ture end to end. As the next step we encourage you to really dig into the fundamentals of Daml and
understand its core concepts such as parties, signatories, observers, and controllers. You can do
that either by going through our docs or by taking an online course.

After you’ve got a good grip on these concepts learn how to conduct end-to-end testing of your app.

1.5 Testing Your Web App

When developing a Ul for your Daml application, you will want to test that user flows work from end
to end. This means that actions performed in the web Ul trigger updates to the ledger and give the
desired results on the page. In this section we show how you can do such testing automatically
in TypeScript (equally JavaScript). This will allow you to iterate on your app faster and with more
confidence!

There are two tools that we chose to write end to end tests for our app. Of course there are more to
choose from, but this is one combination that works.

Jestis ageneral-purpose testing framework forJavaScript that’s well integrated with both Type-
Script and React. Jest helps you structure your tests and express expectations of the app’s
behaviour.

Puppeteer is a library for controlling a Chrome browser from JavaScript/TypeScript. Puppeteer
allows you to simulate interactions with the app in place of a real user.

To install Puppeteer and some other testing utilities we are going to use, run the following command
in the ui directory:

1.5. Testing Your Web App 25

https://discuss.daml.com
https://discuss.daml.com/badges/126/hey-look-what-i-can-do
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/learn/getting-started/deploy-to-dabl/
https://daml.com/interactive-tutorials/fundamental-concepts
https://jestjs.io/
https://pptr.dev/

Daml SDK Documentation, 2.1.1

npm add --only=dev puppeteer wait-on @types/jest Q@types/node @types/puppeteer!]
—@types/wait-on

Because these things are easier to describe with concrete examples, this section will show how to set
up end-to-end tests for the application you would end with at the end of the Your First Feature section.

1.5.1 Setting up our tests

Let’s see how to use these tools to write some tests for our social network app. You can see the full
suite in section The Full Test Suite at the bottom of this page. Torun this test suite, create a new file ui/
src/index.test.ts, copy the code in this section into that file and run the following command in
the ui folder:

npm test

The actual tests are the clauses beginning with test. You can scroll down to the important ones
with the following descriptions (the first argument to each test):

‘log in as a new user, log out and log back in’

‘log in as three different users and start following each other’
‘error when following self’

‘error when adding a user that you are already following’

Before this, we need to set up the environment in which the tests run. At the top of the file we have
some global state that we use throughout. Specifically, we have child processes for the daml start
and npm start commands, which run for the duration of our tests. We also have a single Puppeteer
browser that we share among tests, opening new browser pages for each one.

The beforeAll () sectionis a function run once before any of the tests run. We use it to spawn the
daml startandnpm start processesandlaunch the browser. Onthe other handtheafterAll ()
section is used to shutdown these processes and close the browser. This step isimportant to prevent
child processes persisting in the background after our program has finished.

1.5.2 Example: Logging in and out

Now let’s get to a test! The idea is to control the browser in the same way we would expect a user to
in each scenario we want to test. This means we use Puppeteer to type text into input forms, click
buttons and search for particular elements on the page. In order to find those elements, we do need
to make some adjustments in our React components, which we’ll show later. Let’s start at a higher
level with a test.

test ("log in as a new user, log out and log back in", async () => {
const [user, party] = await getParty();

// Log 1in as a new user.
const page = await newUiPage();
await login (page, user);

// Check that the ledger contains the new User contract.
const token = authConfig.makeToken (user);

const ledger = new Ledger ({ token });

const users = await ledger.query(User.User);

(continues on next page)

26 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

expect (users) .toHavelLength (1) ;
expect (users[0] .payload.username) .toEqual (party) ;

// Log out and in again as the same user.
await logout (page) ;
await login (page, user);

// Check we have the same one user.

const usersFinal = await ledger.query (User.User);
expect (usersFinal) .toHavelLength (1) ;

expect (usersFinal [0] .payload.username) .toEqual (party) ;

await page.close();
}, 40_000);

Wwe’ll walk though this step by step.

The test syntax is provided by Jest to indicate a new test running the function given as an
argument (along with a description and time limit).

getParty () gives us a new party name. Right now it is just a string unique to this set of tests,
but in the future we will use the Party Management Service to allocate parties.

newUiPage () is a helper function that uses the Puppeteer browser to open a new page (we use
one page per party in these tests), navigate to the app URL and return a Page object.

Next we login () using the new page and party name. This should take the user to the main
screen. We’ll show how the 1ogin () function does this shortly.

We use the @daml/ledger library to check the ledger state. In this case, we want to ensure
there is a single User contract created for the new party. Hence we create a new connection to
the Ledger, query () it and state what we expect of the result. When we run the tests, Jest
will check these expectations and report any failures for us to fix.

The test also simulates the new user logging out and then logging back in. We again check the
state of the ledger and see that it’s the same as before.

Finally we must close () the browser page, which was opened in newUiPage (), to avoid run-
away Puppeteer processes after the tests finish.

You will likely use test, getParty (), newUiPage () and Browser.close () for all your tests. In
this case we use the @daml/ledger library to inspect the state of the ledger, but usually we just
check the contents of the web page match our expectations.

1.5.3 Accessing Ul elements

We showed how to write a simple test at a high level, but haven’t shown how to make individual
actions in the app using Puppeteer. This was hidden in the 1ogin () and logout () functions. Let’s
see how login () is implemented.

// Log in using a party name and wait for the main screen to load.
const login = async (page: Page, partyName: string) => ({

const usernamelnput = await page.waitForSelector (

".test-select-username-field",

)

await usernamelInput.click();

await usernamelnput.type (partyName) ;

await page.click(".test-select-login-button");

(continues on next page)

1.5. Testing Your Web App 27

Daml SDK Documentation, 2.1.1

(continued from previous page)

await page.waitForSelector (".test-select-main-menu");
}i

We first wait to receive a handle to the username input element. This is important to ensure the page
and relevant elements are loaded by the time we try to act on them. We then use the element handle
to click into the input and type the party name. Next we click the login button (this time assuming
the button has loaded along with the rest of the page). Finally, we wait until we find we’ve reached
the menu on the main page.

The strings used to find Ul elements, eg. '.test-select-username-field' and '.
test-select-login-button', are CSS Selectors. You may have seen them before in CSS styling
of web pages. In this case we use class selectors, which look for CSS classes we’ve given to elements
in our React components.

This means we must manually add classes to the components we want to test. For example, here is
a snippet of the LoginScreen React component with classes added to the Form elements.

<Form.Input
fluid
placeholder="Username"
value={username}
className="test-select-username-field"
onChange={ (e, { value }) => setUsername (value?.toString() 2?2 "")}
/>
<Button
primary
fluid
className="test-select-login-button"
onClick={handleLogin}>
Log in
</Button>

You can see the className attributes in the Input and Button, which we select in the 1ogin ()
function. Note that you can use other features of an element in your selector, such as its type and
attributes. We’ve only used class selectors in these tests.

1.5.4 Writing CSS Selectors

When writing CSS selectors for your tests, you will likely need to check the structure of the rendered
HTML in your app by running it manually and inspecting elements using your browser’s developer
tools. For example, the image below is from inspecting the username field using the developer tools
in Google Chrome.

There is a subtlety to explain here due to the Semantic Ul framework we use for our app. Semantic
Ul provides a convenient set of Ul elements which get translated to HTML. In the example of the
username field above, the original Semantic Ul Input is translated to nested div nodes with the
input inside. You can see this highlighted on the right side of the screenshot. While harmless in
this case, in general you may need to inspect the HTML translation of Ul elements and write your CSS
selectors accordingly.

28 Chapter 1. Getting started

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Selectors
https://semantic-ui.com/

Daml SDK Documentation, 2.1.1

Elements | Console Sources Network Performance >

ript>
t: 100vh;">

: rgb(34, 54, 104);">..

v eld test-select-username
v class="ui fluid left icon input"

Create D'\ M I_ App

lass="ui fluid primary button test-select-login-button

1.5.5 The Full Test Suite

// Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. Alll]
—rights reserved.
// SPDX-License-Identifier: Apache-2.0

// Keep in sync with compatibility/bazel tools/create-daml-app/index.test.ts

import { ChildProcess, spawn, spawnSync, SpawnOptions } from "child process";
import { promises as fs } from "fs";

import puppeteer, { Browser, Page } from "puppeteer";

import waitOn from "wait-on";

import Ledger, { UserRightHelper } from "@daml/ledger";
import { User } from "@daml.js/create-daml-app";

import { authConfig } from "./config";

const JSON_API PORT FILE NAME = "json-api.port";

const UI PORT = 3000;

// “daml start' process
let startProc: ChildProcess | undefined = undefined;

// ‘npm start' process
let uiProc: ChildProcess | undefined = undefined;

// Chrome browser that we run in headless mode
let browser: Browser | undefined = undefined;

let publicUser: string | undefined;
let publicParty: string | undefined;

const adminLedger = new Ledger ({
token: authConfig.makeToken ("participant admin"),
1)

(continues on next page)

1.5. Testing Your Web App 29

Daml SDK Documentation, 2.1.1

(continued from previous page)

const toAlias = (userId: string):
userId.charAt (0) .toUpperCase ()

string =>
+ userId.slice (1) ;

// Function to generate unique party names for us.

let nextPartylId = 1;

const getParty = async (): [string, string] => {
const allocResult = await adminlLedger.allocateParty({});
const user = "u${nextPartyId/ ;

allocResult.identifier;
[UserRightHelper.canActAs (party)] .concat (

const party =
const rights: UserRight[] =

publicParty !== undefined ? [UserRightHelper.canReadAs (publicParty)] [1,
) ;
await adminlLedger.createUser (user, rights, party):;
nextPartyId++;
return [user, partyl;
}i
test ("Party names are unique", async () => {
let r = [];
for (let 1 = 0; 1 < 10; ++1i) {
r = r.concat ((await getParty())[1]1);
}
const parties = new Set(r);
expect (parties.size) .toEqual (10) ;
}, 20 _000);
const removeFile = async (path: string) => {

try {
await fs.stat (path);
await fs.unlink (path);
} catch (_e) {
// Do nothing if the file does not exist.
}
}i

// Start the Daml and UI processes before the tests begin.
// To reduce test times, we reuse the same processes between all the tests.
// This means we need to use a different set of parties and a new browser pagell
—for each test.
beforeAll (async () => {
// If the JSON API server was previously shut down abruptly then the port file
// may not have been removed.
// Since we use this file to know when the server is up,
// (if it exists) to be sure.
const jsonApiPortFilePath = "../5{JSON API PORT FILE NAME/ ; // relative to uill
—folder
await removeFile (jsonApiPortFilePath);

we remove 1t first

// Run “daml start’
// The path should include '.daml/bin'
// which contains the “daml’ assistant
const startOpts: SpawnOptions = { cwd:

// Arguments for ‘daml start' (besides
// The JSON API "--port-file' gives us
// the sandbox and JSON API server are

from the project root (where the

‘daml.yaml® is located).
in the environment where this is run,
executable.
"..", stdio: "inherit" };
those in the ‘daml.yaml’).
a file we can check to know that both

up and running.

(continues on next page)

30

Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

// We use the default ports for the sandbox and JSON API as done in the
// Getting Started Guide.
const startArgs = [
"start",
‘--Json-api-option=--port-file=5{JSON_API PORT FILE NAME/ ,
1;

console.debug ("Starting daml start");

startProc = spawn("daml", startArgs, startOpts);

await waitOn ({ resources: [file:$/jsonApiPortFilePath/] });

console.debug ("daml start API are running");

[publicUser, publicParty] = await getParty();

// Run ‘npm start' in another shell.

// Disable automatically opening a browser using the env var described here:

// https://github.com/facebook/create-react-app/issues/873#issuecomment—
—266318338

const env = { ...process.env, BROWSER: "none" };
console.debug ("Starting npm start");
uiProc = spawn("npm-cli.js", ["run-script", "start"], {
env,
stdio: "inherit",

detached: true,
1)
// Note (kill-npm-start): The ‘detached’ flag starts the process in a new|
—process group.
// This allows us to kill the process with all its descendents after the testsl]
—~finish,
// following https://azimi.me/2014/12/31/kill-child process-node-js.html.

// Ensure the UI server 1is ready by checking that the port is available.
await waitOn({ resources: [tcp:localhost:5{UI _PORT}] });
console.debug ("npm start is running");

// Launch a single browser for all tests.
console.debug("Starting puppeteer");
browser = await puppeteer.launch();
console.debug ("Puppeteer is running");

}, 60_000);

afterAll (async () => {
// Kill the ‘daml start' process, allowing the sandbox and JSON API server to
// shut down gracefully.
// The latter process should also remove the JSON API port file.
// TODO: Test this on Windows.
if (startProc) {
startProc.kill ("SIGTERM") ;

// Kill the ‘npm start’ process including all its descendents.
// The - indicates to kill all processes in the process group.
// See Note (kill-npm-start).

(continues on next page)

1.5. Testing Your Web App 31

Daml SDK Documentation, 2.1.1

(continued from previous page)

// TODO: Test this on Windows.
if (uiProc) {
process.kill (-uiProc.pid);

if (browser) {
browser.close () ;
}
)

test ("create and look up user using ledger library", async () => {
const [user, party] = await getParty();
const token = authConfig.makeToken (user) ;
const ledger = new Ledger ({ token });

const usersO = await ledger.query (User.User);

expect (users0) .toEqual ([]);

const userPayload = { username: party, following: [], public: publicParty };
const userContractl = await ledger.create(User.User, userPayload);

const userContract2 = await ledger.fetchByKey (User.User, party);
expect (userContractl) .toEqual (userContract?);
const users = await ledger.query (User.User) ;
expect (users[0]) .toEqual (userContractl) ;
}, 20 _000);

// The tests following use the headless browser to interact with the app.

// We select the relevant DOM elements using CSS class names that we embedded
// specifically for testing.

// See https://developer.mozilla.org/en-US/docs/Web/CSS/CSS Selectors.

const newUiPage =
if (!browser) {
throw Error ("Puppeteer browser has not been launched");

async (): Promise<Page> => {

}
const page = await browser.newPage () ;
await page.setViewport ({ width: 1366, height: 1080 });
page.on("console", message =>
console.log(
" S{message.type () .substr (0, 3).toUpperCase ()} ${message.text() /),
)I
)
await page.goto(http://localhost:${UI PORT}); // ignore the Response
return page;

}i

// Note that Follow is a consuming choice on a contract
// with a contract key so it is crucial to wait between follows.
// Otherwise, you get errors due to contention.
// Those can manifest 1in puppeteer throwing "Target closed’
// but that is not the underlying error (the JSON API will
// output the contention errors as well so look through the log).
const waitForFollowers = async (page: Page, n: number) => ({
await page.waitForFunction (
n => document.querySelectorAll (".test-select-following") .length == n,
{},
nl

)7

(continues on next page)

32 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

}i

// LOGIN FUNCTION BEGIN
// Log 1in using a party name and wait for the main screen to load.
const login = async (page: Page, partyName: string) => ({
const usernamelnput = await page.waitForSelector (
".test-select-username-field",
) ;
await usernamelInput.click();
await usernamelnput.type (partyName) ;
await page.click(".test-select-login-button");
await page.waitForSelector (".test-select-main-menu");
}i
// LOGIN FUNCTION_ END

// Log out and wait to get back to the login screen.
const logout = async (page: Page) => ({
await page.click(".test-select-log-out");
await page.waitForSelector (".test-select-login-screen");

}s

// Follow a user using the text input in the follow panel.
const follow = async (page: Page, userToFollow: string) => ({
const followInput = await page.waitForSelector (".test-select-follow-input");
await followInput.click();
await followInput.type (userToFollow) ;
await followInput.press ("Enter");
await page.click(".test-select-follow-button");

// Wait for the request to complete, either successfully or after the error
// dialog has been handled.
// We check this by the absence of the 'loading’ class.
// (Both the ‘test-... and 'loading’ classes appear in 'div' s surrounding
// the “input', due to the translation of Semantic UI's 'Input’ element.)
await page.waitForSelector (".test-select-follow-input > :not(.loading)", {
timeout: 40_000,

1)

}i

// LOGIN TEST BEGIN
test ("log in as a new user, log out and log back in", async () => {
const [user, party] = await getParty();

// Log in as a new user.
const page = await newUiPage () ;
await login (page, user);

// Check that the ledger contains the new User contract.
const token = authConfig.makeToken (user) ;

const ledger = new Ledger ({ token });

const users = await ledger.query(User.User);

expect (users) .toHaveLength (1) ;

expect (users[0] .payload.username) .toEqual (party) ;

// Log out and in again as the same user.
await logout (page) ;

(continues on next page)

1.5. Testing Your Web App 33

Daml SDK Documentation, 2.1.1

(continued from previous page)

await login (page, user);

// Check we have the same one user.

const usersFinal = await ledger.query (User.User);
expect (usersFinal) .toHavelLength (1) ;

expect (usersFinal [0] .payload.username) .toEqual (party) ;

await page.close();

}, 40 000);
// LOGIN TEST END

// This tests following users in a few different ways:
// - using the text box in the Follow panel

// - using the icon in the Network panel

// - while the user that is followed is logged in

// - while the user that is followed is logged out

// These are all successful cases.

test ("log in as three different users and start following each other", async () =>
= {

const [userl, partyl] = await getParty();

const [user2, party2] = await getParty();

const [user3, party3] = await getParty();

// Log in as Party 1.
const pagel = await newUiPage () ;
await login (pagel, userl);

// Log in as Party 2.
const page2 = await newUiPage();
await login(page2, user2);

// Log in as Party 3.
const page3 = await newUiPage();
await login (page3, user3);

// Party 1 should initially follow no one.
const noFollowingl = await pagel.$$(".test-select-following");
expect (noFollowingl) .toEqual ([]) ;

// Follow Party 2 using the text input.

// This should work even though Party 2 has not logged in yet.

// Check Party 1 follows exactly Party 2.

await follow(pagel, party2);

await waitForFollowers (pagel, 1);

const followingListl = await pagel.S$$Seval (
".test-select-following",
following => following.map(e => e.innerHTML),

)

expect (followingListl) .toEqual ([toAlias (user2)]);

// Add Party 3 as well and check both are in the 1list.

await follow (pagel, party3);

await waitForFollowers (pagel, 2);

const followingListll = await pagel.S$Seval (
".test-select-following",

(continues on next page)

34

Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

following => following.map (e => e.innerHTML),
)7
expect (followingListll) .toHaveLength (2) ;
expect (followingListll) .toContain (toAlias (user?2));
expect (followingListll) .toContain (toAlias (user3));

// Party 2 should initially follow no one.
const noFollowing?2 = await page2.$$(".test-select-following");
expect (noFollowing2) .toEqual ([]) ;

// However, Party 2 should see Party 1 in the network.

await page2.waitForSelector (".test-select-user-in-network");

const network2 = await page2.$$eval (".test-select-user-in-network", users =>
users.map (e => e.innerHTML),

) ;

expect (network?2) .toEqual ([toAlias (userl)]);

// Follow Party 1 using the 'add user' icon on the right.

await page2.waitForSelector (".test-select-add-user-icon");
const userIcons = await page2.$$(".test-select-add-user-icon");
expect (userIcons) .toHaveLength (1) ;

await userIcons([0].click();

await waitForFollowers (page2, 1);

// Also follow Party 3 using the text input.

// Note that we can also use the icon to follow Party 3 as they appear in the
// Party 1's Network panel, but that's harder to test at the

// moment because there is no loading indicator to tell when it's done.

await follow(page2, party3);

// Check the following list 1is updated correctly.
await waitForFollowers (page2, 2);
const followingList2 = await page2.$Seval (
".test-select-following",
following => following.map(e => e.innerHTML),
) ;
expect (followingList?2) .toHaveLength (2) ;
expect (followingList2) .toContain (toAlias (userl));
expect (followingList2) .toContain(toAlias (user3));

// Party 1 should now also see Party 2 in the network (but not Party 3 as they
// didn't yet started following Party 1).
await pagel.waitForSelector (".test-select-user-in-network");
const networkl = await pagel.$Seval (
".test-select-user-in-network",
following => following.map(e => e.innerHTML),
)
expect (networkl) .toEqual ([toAlias (user2)]);

// Party 3 should follow no one.
const noFollowing3 = await page3.$$(".test-select-following");
expect (noFollowing3) .toEqual ([]) ;

// However, Party 3 should see both Party 1 and Party 2 in the network.
await page3.waitForSelector (".test-select-user-in-network");
const network3 = await page3.$Seval (

(continues on next page)

1.5. Testing Your Web App 35

Daml SDK Documentation, 2.1.1

(continued from previous page)

".test-select-user-in-network",

following => following.map(e => e.innerHTML),
)7
expect (network3) .toHaveLength (2) ;
expect (network3) .toContain (toAlias (userl));
expect (network3) .toContain (toAlias (user2));

await pagel.close();
await page2.close();
await page3.close();

}, 60_000);
test ("error when following self", async () => {
const [user, party] = await getParty():

const page = await newUiPage();

const dismissError = Jjest.fn(dialog => dialog.dismiss()):;
page.on("dialog", dismissError);

await login (page, user);
await follow (page, party):;

expect (dismissError) .toHaveBeenCalled () ;

await page.close();

});

test ("error when adding a user that you are already following", async () => {
const [userl, partyl] = await getParty();
const [user2, party2] = await getParty();

const page = await newUiPage();

const dismissError = Jjest.fn(dialog => dialog.dismiss()):;
page.on("dialog", dismissError);

await login (page, userl);

// First attempt should succeed

await follow (page, party?2);

// Second attempt should result in an error
await follow (page, party2);

expect (dismissError) .toHaveBeenCalled() ;

await page.close();
}, 10000);

const failedLogin = async (page: Page, partyName: string) => ({

let error: string | undefined = undefined;

await page.exposeFunction ("getError", () => error);

const dismissError = jest.fn(async dialog => {
error = dialog.message();
await dialog.dismiss();

1)

page.on("dialog", dismissError);

const usernamelnput = await page.waitForSelector (
".test-select-username-field",

(continues on next page)

36 Chapter 1. Getting started

Daml SDK Documentation, 2.1.1

(continued from previous page)

) ;
await usernameInput.click();
await usernamelnput.type (partyName) ;
await page.click(".test-select-login-button");
await page.waitForFunction (
async () => (await window.getError()) !== undefined,
)
expect (dismissError) .toHaveBeenCalled () ;
return error;

}i

test ("error on user id with invalid format", async () => {
// user ids must be lowercase
const invalidUser = "Alice";
const page = await newUiPage();
const error = await failedLogin (page, invalidUser);
expect (error) .toMatch (/User ID \\"Alice\\" does not match regex/);
await page.close();

}, 40 _000);
test ("error on non-existent user id", async () => {
const invalidUser = "nonexistent";

const page = await newUiPage () ;
const error = await failedLogin(page, invalidUser);
expect (error) .toMatch (
/getting user failed for unknown user \\"nonexistent\\"/,
)

await page.close();

}, 40 _000);

test ("error on user with no primary party", async () => {
const invalidUser = '"noprimary";
await adminLedger.createUser (invalidUser, [1]);

const page = await newUiPage () ;
const error = await failedLogin(page, invalidUser);
expect (error) .toMatch (/User 'noprimary' has no primary party/);
await page.close();
}, 40_000);

1.5. Testing Your Web App

37

Chapter 2

Daml Guide

2.1 Writing Daml

Daml is a smart contract language designed to build composable applications on the Daml Ledger
Model.

The Writing Daml section will teach you how to write Daml applications that run on any Daml Ledger
implementation, including key language features, how they relate to the Daml Ledger Model and how
touse Daml’s developer tools. It also covers the structure of a Daml Ledger as it pertains to designing
your application.

You can find the Daml code for the example application and features in each section here or download
itusing the Daml assistant. For example, to load the sources for section1into a folder called introl,
run daml new introl --template daml-intro-1.

To run the examples, you will first need to install the Daml SDK.

2.1.1 An introduction to Daml

Daml is a smart contract language designed to build composable applications on an abstract Daml!
Ledger Model.

In this introduction, you will learn about the structure of a Daml Ledger, and how to write Daml ap-
plications that run on any Daml Ledger implementation, by building an asset-holding and -trading
application. You will gain an overview over most important language features, how they relate to the
Daml Ledger Model and how to use Daml’s developer tools to write, test, compile, package and ship
your application.

This introduction is structured such that each section presents a new self-contained application
with more functionality than that from the previous section. You can find the Daml code for each
section here ordownload them using the Daml assistant. Forexample, to load the sources for section
1into a folder called introl, rundaml new introl --template daml-intro-1.

Prerequisites:
You have installed the Dam| SDK

Next: 1 Basic contracts.

38

https://docs.daml.com/concepts/ledger-model/index.html#da-ledgers
https://docs.daml.com/concepts/ledger-model/index.html#da-ledgers
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html
https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml

Daml SDK Documentation, 2.1.1

2.1.1.1 1 Basic contracts

To begin with, you’re going to write a very small Daml template, which represents a self-issued,
non-transferable token. Because it’s a minimal template, it isn’t actually useful on its own - you’ll
make it more useful later - but it’'s enough that it can show you the most basic concepts:

Transactions

Daml Modules and Files
Templates

Contracts

Signatories

Hint: Remember that you can load all the code for this section into a folder 1 _Token by running
daml new introl --template daml-intro-1

Daml ledger basics

Like most structures called ledgers, a Daml Ledger is just a list of commits. When we say commit, we
mean the final result of when a party successfully submits a transaction to the ledger.

Transaction is a concept we’ll coverin more detail through this introduction. The most basic examples
are the creation and archival of a contract.

A contract is active from the point where there is a committed transaction that creates it, up to the
point where there is a committed transaction that archives it.

Individual contracts are immutable in the sense that an active contract can not be changed. You can
only change the active contract set by creating a new contract, or archiving an old one.

Daml specifies what transactions are legal on a Daml Ledger. The rules the Daml code specifies are
collectively called a Daml model or contract model.

Daml files and modules

Each .daml file defines a Daml Module at the top:

module Token where

Code comments in Daml are introduced with —-:

-— A Daml file defines a module.
module Token where

2.1. Writing Daml 39

Daml SDK Documentation, 2.1.1

Templates

A template defines a type of contract that can be created, and who has the right to do so. Contracts
are instances of templates.

Listing 1: A simple template

template Token
with
owner : Party
where
signatory owner

You declare a template starting with the template keyword, which takes a name as an argument.

Daml is whitespace-aware and uses layout to structure blocks. Everything that’s below the first line
is indented, and thus part of the template’s body.

Contracts contain data, referred to as the create arguments or simply arguments. The with block defines
the data type of the create arguments by listing field names and their types. The single colon :
means of type , soyou can read this as template Token with a field owner of type Party .

Token contracts have a single field owner of type Party. The fields declared in a template’s with
block are in scope in the rest of the template body, which is contained in a where block.

Signatories

The signatory keyword specifies the signatories of a contract. These are the parties whose authority
is required to create the contract or archive it - just like a real contract. Every contract must have at
least one signatory.

Furthermore, Daml ledgers guarantee that parties see all transactions where their authority is used.
This means that signatories of a contract are guaranteed to see the creation and archival of that
contract.

Next up

In 2 Testing templates using Daml Script, you’ll learn about how to try out the Token contract template
in Daml’s inbuilt Daml Script testing language.

2.1.1.2 2 Testing templates using Daml Script

In this section you will test the Token model from 1 Basic contracts using the Daml Script integration
in Daml Studio. You’ll learn about the basic features of :

Allocating parties

Submitting transactions

Creating contracts

Testing for failure

Archiving contracts

Viewing ledger and final ledger state

40 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Hint: Remember that you can load all the code for this section into a folder called daml-intro-2
by running daml new intro2 --template daml-intro-2

Script basics

A Script is like a recipe for a test, where you can script different parties submitting a series of
transactions, to check that your templates behave as you’d expect. You can also script some external
information like party identities, and ledger time.

Below is a basic script that creates a Token for a party called Alice .

token test 1 = script do
alice <- allocateParty "Alice"
submit alice do
createCmd Token with owner = alice

You declare a Script as a top-level variable and introduce it using script do. do always starts a
block, so the rest of the script is indented.

Before you can create any Token contracts, you need some parties on the test ledger. The above
script uses the function allocateParty to puta partycalled Alice inavariablealice. There are
two things of note there:

Use of <- instead of =.

The reason for that is allocateParty is an Action that can only be performed once the
Script is run in the context of a ledger. <- means run the action and bind the result . It
can only be run in that context because, depending on the ledger state the script is running
on,allocateParty will either give you back a party with the name you specified or append a
suffix to that name if such a party has already been allocated.

More on Actions and do blocks in 5Adding constraints to a contract.

If that doesn’t quite make sense yet, for the time being you can think of this arrow as extracting
the right-hand-side value from the ledger and storing it into the variable on the left.

The argument "Alice" to allocateParty does not have to be enclosed in brackets. Func-
tions in Daml are called using the syntax fn argl arg2 arg3.

With a variable alice of type Party in hand, you can submit your first transaction. Unsurprisingly,
you do this using the submit function. submit takes two arguments: the Party and the Commands.

Just like Script is a recipe for a test, Commands is a recipe for a transaction. createCmd Token
with owner = aliceisaCommands,which translatestoalistof commands thatwill be submitted
to the ledger creating a transaction which creates a Token with owner Alice.

You’ll learn all about the syntax Token with owner = alicein 3 Data types.

You could write this as submit alice (createCmd Token with owner = alice),butjustlike
scripts, you can assemble commands using do blocks. A do block always takes the value of the last
statement within it so the syntax shown in the commands above gives the same result, whilst being
easier to read. Note however, that the commands submitted as part of a transaction are not allowed
to depend on each other.

2.1. Writing Daml 4]

Daml SDK Documentation, 2.1.1

Running scripts

There are a few ways to run Daml Scripts:

In Daml Studio against a test ledger, providing visualizations of the resulting ledger.

Using the command line daml test also against a test ledger, useful for continuous integra-
tion.

Against a real ledger, take a look at the documentation for Dam/ Script for more information.
Interactively using Dam/ REPL.

In Daml Studio, you should see the text Script results just above the line token test 1 = do.
Click on it to display the outcome of the script.

Scripk resulkts
token test 1 = script do
alice <- allocateParty

'‘Alice

submit alice do
createCmd Token owner = alice

This opens the script view in a separate column in VS Code. The default view is a tabular represen-
tation of the final state of the ledger:

= Script: token_test 1 X

B show archived I show detailed disclosure
Token_Test:Token

What this display means:

The big title reading Token Test:Token is the identifier of the type of contract that’s listed
below. Token Test is the module name, Token the template name.

The first column shows the ID of the contract. This will be explained later.

The second column shows the status of the contract, either active or archived.

The next section of columns show the contract arguments, with one column per field. As ex-
pected, field owner is 'Alice'. The single quotation marks indicate that Alice is a party.
The remaining columns, labelled vertically, show which parties know about which contracts. In
this simple script, the sole party Alice knows about the contract she created.

To run the same test from the command line, save your module in a file Token Test.daml and run
daml damlc -- test --files Token Test.daml. If your file contains more than one script,
all of them will be run.

42 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Testing for failure

In 1 Basic contracts you learned that creating a Token requires the authority of its owner. In other
words, it should not be possible for Alice to create a Token for another party and vice versa. A reason-
able attempt to test that would be:

failing test 1 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
submit alice do

createCmd Token with owner = bob
submit bob do
createCmd Token with owner = alice

However, if you open the script view for that script, you see the following message:

create of
failed due to a missing authorization from 'Bob’

Ledger time: 1970-01-01T00:00:00Z
Partial transaction:
Sub-transactions:

L

owner = 'Bob'’
The script failed, as expected, but scripts abort at the first failure. This means that it only tested that
Alice can’t create a token for Bob, and the second submit statement was never reached.

To test for failing submits and keep the script running thereafter, or fail if the submission succeeds,
you can use the submitMustFail function:

token test 2 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

submitMustFail alice do
createCmd Token with owner = bob
submitMustFail bob do

createCmd Token with owner = alice
submit alice do
createCmd Token with owner = alice

submit bob do
createCmd Token with owner = bob

submitMustFail never has animpacton the ledger so the resulting tabular script view just shows
the two Tokens resulting from the successful submit statements. Note the new column for Bob as
well as the visibilities. Alice and Bob cannot see each others’ Tokens.

2.1. Writing Daml 43

Daml SDK Documentation, 2.1.1

Archiving contracts

Archiving contracts works just like creating them, but using archiveCmd instead of createCmd.
Where createCmd takes an instance of a template, archiveCmd takes a reference to a contract.

References to contracts have the type ContractId a,where a is a type parameter representing the
type of contract that the ID refers to. For example, a reference to a Token would be a ContractId
Token.

To archiveCmd the Token Alice has created, you need to get a handle on its contract ID. In scripts,
you do this using <- notation. That’s because the contract ID needs to be retrieved from the ledger.
How this works is discussed in 5 Adding constraints to a contract.

This script first checks that Bob cannot archive Alice’s Token and then Alice successfully archives it:

token test 3 = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

alice token <- submit alice do
createCmd Token with owner = alice

submitMustFail bob do
archiveCmd alice token

submit alice do
archiveCmd alice token

Exploring the ledger

The resulting script view is empty, because there are no contracts left on the ledger. However, if you
want to see the history of the ledger, e.g. to see how you got to that state, tick the Show archived
box at the top of the ledger view:

= Script: token test 3 X

¥ Show archived M Show detailed disclosure
Token_Test:Token

You can see that there was a Token contract, which is now archived, indicated both by the archived
value in the status column as well as by a strikethrough.

Click on the adjacent Show transaction view button to see the entire transaction graph:

44 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

= Script: token_test 3 X

Show table view

Transactions:
1970-01-01T00:00:00Z |

)

owner = 'Alice'’

1970-01-01T00:00:00Z
actAs: {'Bob'} readAs: {} (

1970-01-01T00:00:00Z (
L_ '‘Alice' (2)
> 'Alice'’ Archive
Active contracts:

Return value: {}

2.1. Writing Daml 45

Daml SDK Documentation, 2.1.1

In the Daml Studio script runner, committed transactions are numbered sequentially. The lines
starting with TX indicate that there are three committed transactions, with ids #0, #1, and #2. These
correspond to the three submit and submitMustFail statements in the script.

Transaction #0 has one sub-transaction #0:0, which the arrow indicates is a create of a Token.
Identifiers #X:Y mean commit X, sub-transaction Y.Alltransactions have this formatin the
script runner. However, this format is a testing feature. In general, you should consider Transaction
and Contract IDs to be opaque.

The lines above and below create Token Test:Token give additional information:

consumed by: #2:0 tells you that the contract is archived in sub-transaction 0 of commit

2.

referenced by #2:0 tells you that the contract was used in other transactions, and lists
their IDs.

known to (since): 'Alice' (#0) tells you who knows about the contract. The fact that

'Alice' appears in the list is equivalent to a x in the tabular view. The (#0) gives you the
additional information that Alice learned about the contract in commit #0.
Everything following with shows the create arguments.

Exercises

To get a better understanding of script, try the following exercises:

1. Write a template for a second type of Token.

2. Write a script with two parties and two types of tokens, creating one token of each type for each
party and archiving one token for each party, leaving one token of each type in the final ledger
view.

3. In Archiving contracts you tested that Bob cannot archive Alice’s token. Can you guess why the
submit fails? How can you find out why the submit fails?

Hint: Remember that in Testing for failure we saw a proper error message for a failing
submit.

Next up

In 3 Data types you will learn about Daml’s type system, and how you can think of templates as tables
and contracts as database rows.

2.1.1.3 3 Data types

In 1Basic contracts, you learnt about contract templates, which specify the types of contracts that can
be created on the ledger, and what data those contracts hold in their arguments.

In 2 Testing templates using Daml| Script, you learnt about the script view in Daml Studio, which displays
the current ledger state. It shows one table per template, with one row per contract of that type and
one column per field in the arguments.

This actually provides a useful way of thinking about templates: like tables in databases. Templates
specify a data schema for the ledger:

46 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

each template corresponds to a table
each field in the with block of a template corresponds to a column in that table
each contract of that type corresponds to a table row

In this section, you’ll learn how to create rich data schemas for your ledger. Specifically you’ll learn
about:

Daml’s built-in and native data types
Record types

Derivation of standard properties
Variants

Manipulating immutable data
Contract keys

After this section, you should be able to use a Daml ledger as a simple database where individual
parties can write, read and delete complex data.

Hint: Rememberthatyoucanload all the code for this sectioninto a folder called intro3 by running
daml new intro3 --template daml-intro-3

Native types

You have already encountered a few native Daml types: Party in 1 Basic contracts, and Text and
ContractIdin 2 Testing templates using Daml Script. Here are those native types and more:

Party Stores the identity of an entity that is able to act on the ledger, in the sense that they
can sign contracts and submit transactions. In general, Party is opaque.

Text Stores a unicode character string like "Alice".

ContractId a Stores areference to a contract of type a.

Int Stores signed 64-bit integers. For example, -123.

Decimal Stores fixed-point number with 28 digits before and 10 digits after the decimal point.
For example, 0.0000000001 0r =9999999999999999999999999999.9999999999.

Bool Stores True or False.

Date Stores a date.

Time Stores absolute UTC time.

RelTime Stores a difference in time.

The below script instantiates each one of these types, manipulates it where appropriate, and tests
the result.

import Daml.Script
import DA.Time
import DA.Date

native test = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

let
my int = -123
my dec = 0.001 : Decimal
my text = "Alice"

my bool = False

(continues on next page)

2.1. Writing Daml 47

Daml SDK Documentation, 2.1.1

(continued from previous page)

my date = date 2020 Jan 01
my time = time my date 00 00 00
my rel time = hours 24

assert (alice /= bob)

assert (-my_int == 123)

assert (1000.0 * my dec == 1.0)

assert (my text == "Alice")

assert (not my bool)

assert (addDays my date 1 == date 2020 Jan 02)

assert (addRelTime my time my rel time == time (addDays my date 1) 00 00 00)

Despite its simplicity, there are quite a few things to note in this script:

The import statements at the top import two packages from the Daml Standard Library, which
contain all the date and time related functions we use here as well as the functions used in
Daml Scripts. More on packages, imports and the standard library later.

Most of the variables are declared inside a 1et block.

That’s because the script do block expects script actions like submit or Party. An integer
like 123 is not an action, it’s a pure expression, something we can evaluate without any ledger.
You can think of the 1let as turning variable declaration into an action.

Most variables do not have annotations to say what type they are.

That’s because Daml is very good at inferring types. The compiler knows that 123 is an Int, so
if you declaremy int = 123, itcan inferthatmy int is also an Int. This means you don’t
have to write the type annotationmy int Int = 123.

However, if the type is ambiguous so that the compiler can’t infer it, you do have to add a type
annotation. Thisis the case for 0. 001 which could be any Numeric n. Here we specify 0.001
Decimal which is a synonym for Numeric 10. You can always choose to add type annotations
to aid readability.

The assert function is an action that takes a boolean value and succeeds with True and fails
with False.

Try putting assert False somewhere in a script and see what happens to the script result.

With templates and these native types, it’s already possible to write a schema akin to a table in a
relational database. Below, Token is extended into a simple CashBalance, administered by a party
in the role of an accountant.

template CashBalance
with

accountant : Party
currency : Text

amount Decimal
owner : Party
account number : Text

bank : Party
bank address : Text
bank telephone : Text

where

signatory accountant

cash balance test = script do

accountant <- allocateParty "Bob"
alice <- allocateParty "Alice"
bob <- allocateParty "Bank of Bob"

(continues on next page)

48

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

submit accountant do
createCmd CashBalance with
accountant
currency = "USD"
amount = 100.0
owner = alice
account number = "ABC123"
bank = bob
bank address = "High Street"
bank telephone = "012 3456 789"

Assembling types

There’s quite a lot of information on the CashBalance above and it would be nice to be able to give
that data more structure. Fortunately, Daml’s type system has a number of ways to assemble these
native types into much more expressive structures.

Tuples

A common task is to group values in a generic way. Take, for example, a key-value pair with a Text
key and an Int value. In Daml, you could use a two-tuple of type (Text, Int) to do so. If you
wanted to express a coordinate in three dimensions, you could group three Decimal values using a
three-tuple (Decimal, Decimal, Decimal).

import DA.Tuple
import Daml.Script

tuple test = script do

let
my key value = ("Key", 1)
my coordinate = (1.0 : Decimal, 2.0 : Decimal, 3.0 : Decimal)
assert (fst my key value == "Key'")
assert (snd my key value == 1)
assert (my key value. 1 == "Key")
assert (my key value. 2 == 1)
assert (my coordinate == (fst3 my coordinate, snd3 my coordinate, thd3 my
—scoordinate))
assert (my coordinate == (my coordinate. 1, my coordinate. 2, my coordinate. 3))

You can access the data in the tuples using:

functions fst, snd, £st3, snd3, thd3
a dot-syntax with field names 1, 2, 3,etc.

Daml supports tuples with up to 20 elements, but accessor functions like £st are only included for
2- and 3-tuples.

2.1. Writing Daml 49

Daml SDK Documentation, 2.1.1

Lists

Lists in Daml take a single type parameter defining the type of thing in the list. So you can have a
list of integers [Int] or alist of strings [Text], but not a list mixing integers and strings.

That’s because Daml is statically and strongly typed. When you get an element out of a list, the
compiler needs to know what type that element has.

The below script instantiates a few lists of integers and demonstrates the most important list func-
tions.

import DA.List
import Daml.Script

list test = script do

let
empty : [Int] = []
one = [1]
two = [2]
many = [3, 4, 5]

-— ‘head’ gets the first element of a 1list
assert (head one == 1)
assert (head many == 3)

-— ‘tail’ gets the remainder after head
assert (tail one == empty)
assert (tail many == [4, 5])

-— '++ concatenates lists
assert (one ++ two ++ many == [1, 2, 3, 4, 5])
assert (empty ++ many ++ empty == many)

-— '::° adds an element to the beginning of a list.
assert (1 :: 2 :: 3 :: 4 :: 5 1 empty == :: 2 :: many)

Note the type annotation on empty : [Int] = []. It’s necessary because [] is ambiguous. It
could be a list of integers or of strings, but the compiler needs to know which it is.

Records

You can think of records as named tuples with named fields. Declare them using the data keyword:
data T = C with,where T is the type name and C is the data constructor. In practice, it’s a good
idea to always use the same name for type and data constructor.

data MyRecord = MyRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]

-— Fields of same type can be declared in one line
data Coordinate = Coordinate with
X, y, z : Decimal

(continues on next page)

50 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-- Custom data types can also have variables
data KeyValue k v = KeyValue with

my key : k

my val : v

data Nested = Nested with
my coord : Coordinate
my record : MyRecord
my kv : KeyValue Text Int

record test = script do
let
my record = MyRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my coord = Coordinate with
= 1.

N
o O O

2.
= 3.

-- ‘my text int’ has type 'KeyValue Text Int’
my text int = KeyValue with

my key = "Key"

my val =1

-- 'my int decimal’ has type ‘KeyValue Int Decimal’
my int decimal = KeyValue with

my key = 2

my val = 2.0 : Decimal

-- If variables are in scope that match field names, we can pick them up
-- implicitly, writing just "my coord’' instead of 'my coord = my coord .
my nested = Nested with

my coord

my record

my kv = my text int

-— Fields can be accessed with dot syntax

assert (my coord.x == 1.0)
assert (my text int.my key == "Key")
assert (my nested.my record.my dec == 2.5)

You’ll notice that the syntax to declare records is very similar to the syntax used to declare templates.
That’s no accident because a template is really just a special record. When you write template
Token with, one of the things that happens in the background is that this becomes adata Token
= Token with.

In the assert statements above, we always compared values of in-built types. If you wrote assert
(my record == my record) inthe script, you may be surprised to get an error message No in-
stance for (Eq MyRecord) arising from a use of ‘==’. Equality in Daml is always
value equality and we haven’t written a function to check value equality for MyRecord values. But
don’tworry, you don’t have to implement this rather obvious function yourself. The compileris smart
enough to do it for you, if you use deriving (Eq):

2.1. Writing Daml 51

Daml SDK Documentation, 2.1.1

data EgRecord = EgqRecord with
my txt : Text
my int : Int
my dec : Decimal
my list : [Text]
deriving (Eq)

data MyContainer a = MyContainer with
contents : a

deriving (Eq)

eq test = script do

let
eq _record = EqRecord with
my txt = "Text"
my int = 2
my dec = 2.5
my list = ["One", "Two", "Three"]

my container = MyContainer with
contents = eq record

other container = MyContainer with
contents = eq record

assert (my container.contents == eq record)
assert (my container == other container)

Eqg is what is called a typeclass. You can think of a typeclass as being like an interface in other lan-
guages: it is the mechanism by which you can define a set of functions (for example, == and /=
in the case of Eq) to work on multiple types, with a specific implementation for each type they can
apply to.

There are some other typeclasses that the compiler can derive automatically. Most prominently,
Show to get access to the function show (equivalentto toStringin manylanguages) and Ord, which
gives access to comparison operators <, >, <=, >=.

It’s a good idea to always derive Egand Showusingderiving (Eq, Show).Therecord typescreated
using template T with do this automatically, and the native types have appropriate typeclass
instances. Eg Int derives Eq, Show and Ord, and ContractId a derives Eqand Show.

Records can give the data on CashBalance a bit more structure:

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
owner : Party
number : Text
bank : Bank
deriving (Eq, Show)

data Cash = Cash with
currency : Text

(continues on next page)

52 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : Account
where
signatory accountant

cash balance test = script do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
owner
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
cash
account
pure ()

If you look at the resulting script view, you’ll see that this still gives rise to one table. The records are
expanded out into columns using dot notation.

Variants and pattern matching

Suppose now that you also wanted to keep track of cash in hand. Cash in hand doesn’t have a bank,
but you can’t just leave bank empty. Daml doesn’t have an equivalent to null. Variants can express
that cash can either be in hand or at a bank.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data Account = Account with
number : Text
bank : Bank
deriving (Eq, Show)

(continues on next page)

2.1. Writing Daml 53

Daml SDK Documentation, 2.1.1

(continued from previous page)

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

data Location
= InHand
| InAccount Account
deriving (Eq, Show)

template CashBalance
with
accountant : Party
owner : Party
cash : Cash
location : Location
where
signatory accountant

cash balance test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"
telephone = "012 3456 789"
account = Account with
bank
number = "ABC123"
cash = Cash with
currency = "USD"

amount = 100.0

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InHand

submit accountant do
createCmd CashBalance with
accountant
owner
cash
location = InAccount account

The way to read the declaration of Location is A Location either has value InHand OR has a value
InAccount a where a is of type Account . This is quite an explicit way to say that there may or may
not be an Account associated with a CashBalance and gives both cases suggestive names.

Another option is to use the built-in Optional type. The None value of type Optional a is the
closest Daml has to a null value:

54 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data Optional a
= None
| Some a
deriving (Eq, Show)

Variant types where none of the data constructors take a parameter are called enums:

data DayOfWeek
= Monday

| Tuesday

| Wednesday

| Thursday

| Friday

| Saturday

| Sunday

deriving (Eq, Show)

To access the data in variants, you need to distinguish the different possible cases. For example, you
can no longer access the account number of a Location directly, because if it is InHand, there may
be no account number.

To do this, you can use pattern matching and either throw errors or return compatible types for all
cases:

{_
-—- Commented out as ‘Either' 1is defined in the standard library.
data Either a b

= Left a
| Right b
—}
variant access test = script do
let
1 : Either Int Text = Left 1
r : Either Int Text = Right "r"

-- If we know that '1° is a 'Left', we can error on the ‘Right case.
1 value = case 1 of
Left i -> 1
Right i -> error "Expecting Left"
-- Comment out at your own peril
{_
r value = case r of
Left i -> 1
Right i -> error "Expecting Left"
-}

-- If we are unsure, we can return an "Optional’ in both cases
ol value = case 1 of

Left i -> Some i

Right i -> None
or value = case r of

Left i -> Some i

Right i -> None

-— If we don't care about values or even constructors, we can use wildcards

(continues on next page)

2.1. Writing Daml 55

Daml SDK Documentation, 2.1.1

(continued from previous page)

1 value2 = case 1 of
Left i -> i

Right _ -> error "Expecting Left"

1 value3 = case 1 of
Left i -> 1
_ —> error "Expecting Left"

day = Sunday

weekend = case day of
Saturday -> True
Sunday -> True

_ —> False
assert (1 value == 1)
assert (1 value2Z == 1)
assert (1 value3 == 1)
assert (ol value == Some 1)
assert (or value == None)

assert weekend

Manipulating data

You’ve got all the ingredients to build rich types expressing the data you want to be able to write to
the ledger, and you have seen how to create new values and read fields from values. But how do you

manipulate values once created?

All data in Daml is immutable, meaning once a value is created, it will never change. Rather than
changing values, you create new values based on old ones with some changes applied:

manipulation demo = script do
let
eq _record = EqRecord with
my txt = "Text"
my int = 2

my dec = 2.5

my list = ["One", "Two'", "Three"]

-—- A verbose way to change "eq record’

changed record = EqRecord with
my txt = eq record.my txt
my int 3
my dec = eqg_record.my dec
my list = eqg record.my list

-—- A better way

better changed record = eq record with

my int = 3

record with changed list = eq record with
my list = "Zero" :: eq record.my list

assert (eq record.my int == 2)

assert (changed record == better changed record)

(continues on next page)

56

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-— The list on "eq record can't be changed.

assert (eq record.my list == ["One", "Two", "Three"])
-— The list on ‘record with changed list’ is a new one.
assert (record with changed list.my list == ["Zero", "One", "Two", "Three"])

changed record and better changed record are each a copy of eq record with the field
my int changed. better changed record shows the recommended way to change fields on a
record. The syntax is almost the same as for a new record, but the record name is replaced with the
old value: eq record with instead of EqRecord with. The with block no longer needs to give
values to all fields of EqRecord. Any missing fields are taken from eq_record.

Throughout the script, eq record never changes. The expression "Zero" :: eq record.
my list doesn’t change the list in-place, but creates a new list, which is eq record.my list
with an extra element in the beginning.

Contract keys

Daml’s type system lets you store richly structured data on Daml templates, but just like most
database schemas have more than one table, Daml contract models often have multiple templates
thatreference each other. For example, you may not want to store your bank and accountinformation
on each individual cash balance contract, but instead store those on separate contracts.

You have already metthetype ContractId a,whichreferencesacontractoftypea. The below shows
a contract model where Account is split out into a separate template and referenced by Contrac-
tId, but it also highlights a big problem with that kind of reference: just like data, contracts are
immutable. They can only be created and archived, so if you want to change the data on a contract,
you end up archiving the original contract and creating a new one with the changed data. That makes
contract IDs very unstable, and can cause stale references.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text
bank : Bank

where
signatory accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash

(continues on next page)

2.1. Writing Daml 57

Daml SDK Documentation, 2.1.1

(continued from previous page)

account : ContractId Account
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = accountCid

-—- Now the accountant updates the telephone number for the bank on the account
Some account <- queryContractId accountant accountCid
new_account <- submit accountant do

archiveCmd accountCid

createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure ()

-— The ‘account’ field on the balance now refers to the archived
-—- contract, so this will fail.

Some balance <- queryContractId accountant balanceCid

optAccount <- queryContractId accountant balance.account
OoptAccount === None

The script above uses the queryContractId function, which retrieves the arguments of an active
contractusingits contractID.If thereis no active contract with the given identifiervisible to the given
party, queryContractId returns None. Here, we use a pattern match on Some which will abort the
script if queryContractIdreturns None.

Note that, for the first time, the party submitting a transaction is doing more than one thing as part
of that transaction. To create new _account, the accountant archives the old account and creates a
new account, all in one transaction. More on building transactions in 7 Composing choices.

You can define stable keys for contracts using the key and maintainer keywords. key defines the
primary key of a template, with the ability to look up contracts by key, and a uniqueness constraint

58 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

in the sense that only one contract of a given template and with a given key value can be active at a
time.

data Bank = Bank with
party : Party
address: Text
telephone : Text
deriving (Eq, Show)

data AccountKey = AccountKey with
accountant : Party
number : Text
bank party : Party
deriving (Eq, Show)

template Account

with
accountant : Party
owner : Party
number : Text
bank : Bank

where
signatory accountant

key AccountKey with
accountant
number
bank party = bank.party
: AccountKey
maintainer key.accountant

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template CashBalance
with
accountant : Party
cash : Cash
account : AccountKey
where
signatory accountant

id ref test = do
accountant <- allocateParty "Bob"
owner <- allocateParty "Alice"
bank party <- allocateParty "Bank"
let
bank = Bank with
party = bank party

address = "High Street"

telephone = "012 3456 789"
cash = Cash with

currency = "USD"

amount = 100.0

(continues on next page)

2.1. Writing Daml 59

Daml SDK Documentation, 2.1.1

(continued from previous page)

accountCid <- submit accountant do
createCmd Account with
accountant
owner
bank
number = "ABC123"

Some account <- queryContractId accountant accountCid
balanceCid <- submit accountant do
createCmd CashBalance with
accountant
cash
account = key account

-—- Now the accountant updates the telephone number for the bank on the account
Some account <- queryContractId accountant accountCid
new_accountCid <- submit accountant do

archiveCmd accountCid

cid <- createCmd account with

bank = account.bank with
telephone = "098 7654 321"
pure cid

-—- Thanks to contract keys, the current account contract is fetched
Some balance <- queryContractId accountant balanceCid
(cid, account) <- submit accountant do
createAndExerciseCmd (Helper accountant) (FetchAccountByKey balance.account)
assert (cid == new_accountCid)

-— Helper template to call "~ fetchByKey .
template Helper
with
p : Party
where
signatory p
choice FetchAccountByKey : (ContractId Account, Account)
with
accountKey : AccountKey
controller p
do fetchByKey (@Account accountKey

Since Daml is designed to run on distributed systems, you have to assume that there is no global
entity that can guarantee uniqueness, which is why each key expression must come with amain-
tainer expression. maintainer takes one or several parties, all of which have to be signatories of
the contract and be part of the key. That way the index can be partitioned amongst sets of main-
tainers, and each set of maintainers can independently ensure the uniqueness constraint on their
piece of the index. The constraint that maintainers are part of the key is ensured by only having the
variable key in each maintainer expression.

Instead of calling queryContractIdtogetthecontractarguments associated with a given contract
identifier, we use fetchByKey @Account. fetchByKey Q@Account takes avalue of type Accoun-
tKey and returns atuple (ContractId Account, Account) ifthelookup was successful or fails
the transaction otherwise. fetchByKey cannot be used directly in the list of commands sent to the
ledger. Therefore we create a Helper template with a FetchAccountByKey choice and call that via
createAndExerciseCmd. We will learn more about choices in the next section.

60 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Since a single type could be used as the key for multiple templates, you need to tell the compiler
what type of contract is being fetched by using the @Account notation.

Next up

You can now define data schemas for the ledger, read, write and delete data from the ledger, and use
keys to reference and look up data in a stable fashion.

In 4 Transforming data using choices you’ll learn how to define data transformations and give other
parties the right to manipulate data in restricted ways.

2.1.1.4 4 Transforming data using choices

Inthe example in Contract keys the accountant party wanted to change some data on a contract. They
did so by archiving the contract and re-creating it with the updated data. That works because the
accountant is the sole signatory on the Account contract defined there.

But what if the accountant wanted to allow the bank to change their own telephone number? Or what
if the owner of a CashBalance should be able to transfer ownership to someone else?

In this section you will learn about how to define simple data transformations using choices and how
to delegate the right to exercise these choices to other parties.

Hint: Rememberthatyou canload all the code for this section into a folder called intro4 by running
daml new intro4 --template daml-intro-4

Choices as methods

If you think of templates as classes and contracts as objects, where are the methods?

Take as an example a Contact contract on which the contact owner wants to be able to change the
telephone number, just like on the Account in Contract keys. Rather than requiring them to manually
look up the contract, archive the old one and create a new one, you can provide them a convenience
method on Contact:

template Contact
with
owner : Party
party : Party
address : Text
telephone : Text
where
signatory owner
observer party

choice UpdateTelephone
ContractId Contact
with
newTelephone : Text
controller owner

(continues on next page)

2.1. Writing Daml 61

Daml SDK Documentation, 2.1.1

(continued from previous page)

do
create this with
telephone = newTelephone

The above defines a choicecalled UpdateTelephone. Choices are part of a contract template. They're
permissioned functions that result in an Update. Using choices, authority can be passed around,
allowing the construction of complex transactions.

Let’s unpack the code snippet above:

The firstline, choice UpdateTelephone indicates a choice definition, UpdateTelephone is
the name of the choice. It starts a new block in which that choice is defined.

ContractId Contact is the return type of the choice.
This particular choice archives the current Contact, and creates a new one. What it returns is
a reference to the new contract, in the form of a ContractId Contact
The following with block is that of a record. Just like with templates, in the background, a new
record type is declared: data UpdateTelephone = UpdateTelephone with
The line controller owner says that this choice is controlled by owner, meaning owner is
the only party that is allowed to exercise them.
The do starts a block defining the action the choice should perform when exercised. In this
case a new Contact is created.
The new Contact is created using this with. this is a special value available within the
where block of templates and takes the value of the current contract’s arguments.

There is nothing here explicitly saying that the current Contact should be archived. That’s because
choices are consuming by default. That means when the above choice is exercised on a contract, that
contract is archived.

As mentioned in 3 Data types, within a choice we use create instead of createCmd. Whereas cre-
ateCmd builds up a list of commands to be sent to the ledger, create builds up a more flexible
Update thatis executed directly by the ledger. You might have noticed that create returns an Up-
date (ContractId Contact), nota ContractId Contact. As a do block always returns the
value of the last statement within it, the whole do block returns an Update, but the return type on
the choice is just a ContractId Contact. Thisis a convenience. Choices always return an Update
so for readability it’s omitted on the type declaration of a choice.

Now to exercise the new choice in a script:

choice test = do
owner <- allocateParty "Alice"
party <- allocateParty "Bob"

contactCid <- submit owner do
createCmd Contact with

owner

party

address = "1 Bobstreet"”
telephone = "012 345 6789"

-- Bob can't change his own telephone number as Alice controls
-—- that choice.
submitMustFail party do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

(continues on next page)

62 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

newContactCid <- submit owner do
exerciseCmd contactCid UpdateTelephone with
newTelephone = "098 7654 321"

Some newContact <- queryContractId owner newContactCid

assert (newContact.telephone == "098 7654 321")

You exercise choices using the exercise function, which takes a ContractId a, and a value of
type c, where c is a choice on template a. Since c is just a record, you can also just fill in the choice
parameters using the with syntax you are already familiar with.

exerciseCmdreturns a Commands r where ris thereturn type specified on the choice, allowing the
new ContractId Contact to be stored in the variable newContactCid. Just like for createCmd
and create, there is also exerciseCmd and exercise. The versions with the cmd suffix is always
used on the client side to build up the list of commands on the ledger. The versions without the
suffix are used within choices and are executed directly on the server.

There is also createAndExerciseCmd and createAndExercise which we have seen in the pre-
vious section. This allows you to create a new contract with the given arguments and immediately
exercise a choice on it. For a consuming choice, this archives the contract so the contract is created
and archived within the same transaction.

Choices as delegation

Up to this point all the contracts only involved one party. party may have been stored as Party
field in the above, which suggests they are actors on the ledger, but they couldn’t see the contracts,
nor change them in any way. It would be reasonable for the party for which a Contact is stored to
be able to update their own address and telephone number. In other words, the owner of a Contact
should be able to delegate the right to perform a certain kind of data transformation to party.

The below demonstrates this using an UpdateAddress choice and corresponding extension of the
script:

choice UpdateAddress
ContractId Contact
with
newAddress : Text
controller party
do
create this with
address = newAddress

newContactCid <- submit party do
exerciseCmd newContactCid UpdateAddress with
newAddress = "1-10 Bobstreet"

Some newContact <- queryContractId owner newContactCid

assert (newContact.address == "1-10 Bobstreet")

If you open the script view in the IDE, you will notice that Bob sees the Contact. This is because

2.1. Writing Daml 63

Daml SDK Documentation, 2.1.1

party is specified as an observer in the template, and in this case Bob is the party. More on
observers later, but in short, they get to see any changes to the contract.

Choices in the Ledger Model

In 1Basic contracts you learned about the high-level structure of a Daml ledger. With choices and the
exercise function, you have the next important ingredient to understand the structure of the ledger
and transactions.

A transaction is a list of actions, and there are just four kinds of action: create, exercise, fetch
and key assertion.

A create action creates a new contract with the given arguments and sets its status to active.
A fetch action checks the existence and activeness of a contract.

An exercise action exercises a choice on a contract resulting in a transaction (list of
sub-actions) called the consequences. Exercises come in two kinds called consuming and non-
consuming. consuming is the default kind and changes the contract’s status from active to
archived.

A key assertion records the assertion that the given contract key (see Contract keys) is not
assigned to any active contract on the ledger.

Each action can be visualized as a tree, where the action is the root node, and its children are its
consequences. Every consequence may have further consequences. As fetch, create and key
assertion actions have no consequences, they are always leaf nodes. You can see the actions and
their consequences in the transaction view of the above script:

Transactions:
TX #0 1970-01-01T00:00:00Z (Contact:43:17)
#0:0
| consumed by: #2:0
| referenced by #2:0

| known to (since): 'Alice' (#0), 'Bob' (#0)
L> create Contact:Contact
with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone = "012
—345 6789"

TX #1 1970-01-01T00:00:007Z
mustFailAt 'Bob' (Contact:52:3)

TX #2 1970-01-01T00:00:00Z (Contact:56:22)

#2:0
| known to (since): 'Alice' (#2), 'Bob' (#2)
L> 'Alice' exercises UpdateTelephone on #0:0 (Contact:Contact)
with
newTelephone = "098 7654 321"

children:

#2:1

| consumed by: #4:0

| referenced by #3:0, #4:0

| known to (since): 'Alice' (#2), 'Bob' (#2)

L > create Contact:Contact

with
owner = 'Alice'; party = 'Bob'; address = "1 Bobstreet"; telephone =

—"098 7654 321"

(continues on next page)

64 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

TX #3 1970-01-01T00:00:00Z (Contact:60:3)
#3:0
L> fetch #2:1 (Contact:Contact)

TX #4 1970-01-01T00:00:00Z (Contact:66:22)

#4:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L> 'Bob' exercises UpdateAddress on #2:1 (Contact:Contact)
with
newAddress = "1-10 Bobstreet"
children:
#4:1

| referenced by #5:0
| known to (since): 'Alice' (#4), 'Bob' (#4)
L > create Contact:Contact

with
owner = 'Alice';
party = 'Bob';
address = "1-10 Bobstreet";
telephone = "098 7654 321"

TX #5 1970-01-01T00:00:00Z (Contact:70:3)
#5:0
L> fetch #4:1 (Contact:Contact)

Active contracts: #4:1

Return value: {}

There are four commits corresponding to the four submit statements in the script. Within each com-
mit, we see that it’s actually actions that have IDs of the form #commit number:action number.
Contract IDs are just the ID of their create action.

So commits #2 and #4 contain exercise actions with IDs #2:0 and #4:0. The create actions
of the updated, Contact contracts, #2:1 and #4:1, are indented and found below a line reading
children:, making the tree structure apparent.

The Archive choice

You may have noticed that there is no archive action. That’s because archive cidis justshorthand
for exercise cid Archive, where Archive is a choice implicitly added to every template, with
the signatories as controllers.

2.1. Writing Daml 65

Daml SDK Documentation, 2.1.1

A simple cash model

With the power of choices, you can build your first interesting model: issuance of cash I0Us (I owe
you). The model presented here is simpler than the one in 3 Data types as it’s not concerned with the
location of the physical cash, but merely with liabilities:

-—- Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. Alll
—rights reserved.
-- SPDX-License-Identifier: Apache-2.0

module SimpleIou where
import Daml.Script

data Cash = Cash with
currency : Text
amount : Decimal
deriving (Eq, Show)

template Simplelou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer
observer owner

choice Transfer
ContractlId Simplelou
with
newOwner : Party
controller owner
do
create this with owner = newOwner

test iou = script do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
charlie <- allocateParty "Charlie"
dora <- allocateParty "Dora"

-— Dora issues an Iou for $100 to Alice.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Alice transfers it to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

(continues on next page)

66 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-— Bob transfers it to Charlie.
submit bob do
exerciseCmd iou2 Transfer with
newOwner = charlie

The above model is fine as long as everyone trusts Dora. Dora could revoke the Simplelou at any point
by archiving it. However, the provenance of all transactions would be on the ledger so the owner
could prove that Dora was dishonest and cancelled her debt.

Next up

You can now store and transform data on the ledger, even giving other parties specific write access
through choices.

In 5 Adding constraints to a contract, you will learn how to restrict data and transformations further. In
that context, you will also learn about time on Daml ledgers, do blocks and <- notation within those.

2.1.1.5 5 Adding constraints to a contract
You will often want to constrain the data stored or the allowed data transformations in your contract
models. In this section, you will learn about the two main mechanisms provided in Daml:

The ensure keyword.
The assert, abort and error keywords.

To make sense of the latter, you’ll also learn more about the Update and Script types and do blocks,
which will be good preparation for 7 Composing choices, where you will use do blocks to compose
choices into complex transactions.

Lastly, you will learn about time on the ledger and in Daml Script.

Hint: Rememberthatyou canload all the code for this section into a foldercalled intro5 byrunning
daml new intro5 --template daml-intro-5

Template preconditions

The first kind of restriction you may want to put on the contract model are called template
pre-conditions. These are simply restrictions on the data that can be stored on a contract from that
template.

Suppose, for example, that the SimpleIou contract from A simple cash model should only be able to
store positive amounts. You can enforce this using the ensure keyword:

template Simplelou
with
issuer : Party
owner : Party
cash : Cash

(continues on next page)

2.1. Writing Daml 67

Daml SDK Documentation, 2.1.1

(continued from previous page)

where
signatory issuer
observer owner

ensure cash.amount > 0.0

The ensure keyword takes a single expression of type Bool. If you want to add more restrictions, use
logical operators &&, | | and not to build up expressions. The below shows the additional restriction
that currencies are three capital letters:

&& T.length cash.currency == 3
&& T.isUpper cash.currency

Hint: The T here stands for the DA. Text standard library which has been imported using import
DA.Text as T.

test restrictions = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"
dora <- allocateParty "Dora"

-- Dora can't issue negative Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = -100.0
currency = "USD"

-- Or even zero Ious.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 0.0
currency = "USD"

-— Nor positive Ious with invalid currencies.
submitMustFail dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "Swiss Francs"

-- But positive Ious still work, of course.
iou <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice

(continues on next page)

68 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

cash = Cash with
amount = 100.0
currency = "USD"

Assertions

A second common kind of restriction is one on data transformations.

For example, the simple lou in A simple cash model allowed the no-op where the owner transfers to
themselves. You can prevent that using an assert statement, which you have already encountered
in the context of scripts.

assert does not return an informative error so often it’s better to use the function assertMsgqg,
which takes a custom error message:

choice Transfer
ContractId SimpleIou

with
newOwner : Party
controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)

create this with owner = newOwner

-—- Alice can't transfer to herself...
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = alice

-— ... but can transfer to Bob.
iou2 <- submit alice do
exerciseCmd iou Transfer with
newOwner = bob

Similarly, you can write a Redeem choice, which allows the owner to redeem an Iou during busi-
ness hours on weekdays. The choice doesn’t do anything other than archiving the SimpleIou. (This
assumes that actual cash changes hands off-ledger.)

choice Redeem
()
controller owner
do
now <- getTime
let
today = toDateUTC now
dow = dayOfWeek today
timeofday = now “subTime’ time today 0 0 O
hrs = convertRelTimeToMicroseconds timeofday / 3600000000
assertMsg
("Cannot redeem outside business hours. Current time: " <> showl]
—timeofday)
(hrs >= 8 && hrs <= 18)
case dow of

(continues on next page)

2.1. Writing Daml 69

Daml SDK Documentation, 2.1.1

(continued from previous page)

Saturday -> abort "Cannot redeem on a Saturday."
Sunday -> abort "Cannot redeem on a Sunday."
_ —> return ()

-— June 1st 2019 is a Saturday.
setTime (time (date 2019 Jun 1) 0 0 0)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do

exerciseCmd iou2 Redeem

-— Not even at mid-day.
passTime (hours 12)
—-— Bob cannot redeem on a Saturday.
submitMustFail bob do
exerciseCmd iou2 Redeem

-— Bob also cannot redeem at 6am on a Monday.
passTime (hours 42)
submitMustFail bob do

exerciseCmd iou2 Redeem

-— Bob can redeem at 8am on Monday.
passTime (hours 2)
submit bob do

exerciseCmd iou2 Redeem

There are quite a few new time-related functions from the DA. Time and DA . Date libraries here. Their
names should be reasonably descriptive so how they work won’t be covered here, but given that Daml
assumes itisrunin a distributed setting, we will still discuss time in Daml.

There’s also quite a lot going on inside the do block of the Redeem choice, with several uses of the
<- operator. do blocks and <- deserve a proper explanation at this point.

Time on Daml ledgers

Each transaction on a Daml ledger has two timestamps called the ledger time (LT) and the record time
(RT). The ledger time is set by the participant, the record time is set by the ledger.

Each Daml ledger has a policy on the allowed difference between LT and RT called the skew. The
participant has to take a good guess at what the record time will be. If it’s too far off, the transaction
will be rejected.

getTime is an action that gets the LT from the ledger. In the above example, that time is taken apart
into day of week and hour of day using standard library functions from DA.Date and DA.Time. The
hour of the day is checked to be in the range from 8 to 18.

Consider the following example: Suppose that the ledger had a skew of 10 seconds. At 17:59:55, Alice
submits a transaction to redeem an lou. One second later, the transaction is assigned a LT of 17:59:56,
but then takes 10 seconds to commit and is recorded on the ledger at 18:00:06. Even though it was
committed after business hours, it would be a valid transaction and be committed successfully as
getTime will return17:59:56 so hrs == 17. Since the RTis18:00:06, LT - RT <= 10 seconds and
the transaction won’t be rejected.

70 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Time therefore has to be considered slightly fuzzy in Daml, with the fuzziness depending on the skew
parameter.

For details, see Background concepts - time.

Time in test scripts

For tests, you can set time using the following functions:

setTime, which sets the ledger time to the given time.
passTime, which takes a Re1Time (a relative time) and moves the ledger by that much.

Time on ledgers

On a distributed Daml ledger, there are no guarantees that ledger time or record time are strictly
increasing. The only guarantee is that ledger time is increasing with causality. That is, if a transac-
tion TX2 depends on a transaction TX1, then the ledger enforces that the LT of TX2 is greater than or
equal to that of TX1:

iou3 <- submit dora do
createCmd SimpleIou with
issuer = dora
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days (-3))
submitMustFail alice do
exerciseCmd iou3 Redeem

Actions and do blocks

You have come across do blocks and <- notations in two contexts by now: Script and Update.
Both of these are examples of an Action, also called a Monad in functional programming. You can
construct Actions conveniently using do notation.

Understanding Actions and do blocks is therefore crucial to being able to construct correct contract
models and test them, so this section will explain them in some detail.

Pure expressions compared to Actions

Expressionsin Damlare pureinthe sensethatthey have no side-effects: they neither read nor modify
any external state. If you know the value of all variables in scope and write an expression, you can
work out the value of that expression on pen and paper.

However, the expressions you’ve seen that used the <- notation are not like that. For example, take
getTime, which is an Action. Here’s the example we used earlier:

now <- getTime

2.1. Writing Daml 71

Daml SDK Documentation, 2.1.1

You cannot work out the value of now based on any variable in scope. To put it another way, there is
no expression expr that you could put on the right hand side of now = expzr. To get the ledger time,
you must be in the context of a submitted transaction, and then look at that context.

Similarly, you’ve come across fetch. If you have cid : ContractId Account in scope and you
come across the expression fetch cid, you can’t evaluate that to an Account so you can’t write
account = fetch cid. Todo so, you’d have to have a ledger you can look that contract ID up on.

Actions and impurity

Actions are a way to handle such impure expressions. Action a is a type class with a single
parameter a, and Update and Script are instances of Action. A value of such atypem a wherem
isaninstanceof Actioncanbeinterpretedas arecipeforan actionoftypem, which, when executed,
returns a value a .

You can always write a recipe using just pen and paper, but you can’t cook it up unless you are in
the context of a kitchen with the right ingredients and utensils. When cooking the recipe you have
an effect - you change the state of the kitchen - and a return value - the thing you leave the kitchen
with.

An Update ais arecipe toupdate a Daml ledger, which, when committed, has the effect of
changing the ledger, and returns a value of type a . Anupdate to a Daml ledger is a transaction
so equivalently, an Update ais arecipe to construct a transaction, which, when executed in
the context of a ledger, returns a value of type a .

A script ais arecipe for a test, which, when performed against a ledger, has the effect of
changing the ledger in ways analogous to those available via the API, and returns a value of

type a .

Expressions like getTime, allocateParty party,passTime time, submit party commands,
create contract and exercise choice should make more sense in that light. For example:

getTime : Update Time istherecipe for an empty transaction that also happens to return
a value of type Time.

passTime (days 10) : Script () is arecipe for atransaction that doesn’t submit any
transactions, but has the side-effect of changing the LT of the test ledger. It returns (), also
called Unit and can be thought of as a zero-tuple.

create iou : Update (ContractId Iou),whereiou : Iouisarecipe foratransaction
consisting of a single create action, and returns the contract id of the created contract if
successful.

submit alice (createCmd iou) : Script (ContractId Iou) isarecipefora scriptin
which Alice sends the command createCmd iou to the ledger which produces a transaction
and a return value of type ContractId Iou and returns that back to Alice.

Commands is a bit more restricted than Script and Update as it represents a list of independent
commands sent to the ledger. You can still use do blocks but if you have more than one command
in a single do block you need to enable the ApplicativeDo extension at the beginning of your file.
In addition to that, the last statement in such a do block must be of the form return expr or pure
expr. Applicative is a more restricted version of Action that enforces that there are no depen-
dencies between commands. If you do have dependencies between commands, you can always wrap
itin a choice in a helper template and call that via createAndExerciseCmd just like we did to call
fetchByKey. Alternatively, if you do not need them to be part of the same transaction, you can make
multiple calls to submit.

72 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{-# LANGUAGE ApplicativeDo #-}
module Restrictions where

Chaining up actions with do blocks

An action followed by another action, possibly depending on the result of the first action, is just
another action. Specifically:

A transaction is a list of actions. So a transaction followed by another transaction is again a
transaction.

A script is a list of interactions with the ledger (submit, allocateParty, passTime, etc). So
a script followed by another script is again a script.

This is where do blocks come in. do blocks allow you to build complex actions from simple ones,
using the results of earlier actions in later ones.

sub _scriptl (alice, dora) = do
submit dora do
createCmd SimpleIou with

issuer = dora

owner = alice

cash = Cash with
amount = 100.0
currency = "USD"

sub_script2 = do
passTime (days 1)
passTime (days (-1))
return 42

sub_script3 (bob, dora) = do
submit dora do
createCmd SimpleIou with
issuer = dora
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

main_ : Script () do
dora <- allocateParty "Dora"
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

ioul <- sub scriptl (alice, dora)
sub script2
iou2z <- sub script3 (bob, dora)

submit dora do
archiveCmd ioul
archiveCmd iou2
pure ()

Above, we see do blocks in action for both Script and Update.

2.1. Writing Daml 73

Daml SDK Documentation, 2.1.1

Wrapping values in actions

You may already have noticed the use of return in the redeem choice. return xis a no-op action
which returns value x so return 42 : Update Int. Since do blocks always return the value of
their last action, sub_script2 : Script Int.

Failing actions

Not only are Update and Script examples of Action, they are both examples of actions that can
fail, e.g. because a transaction is illegal or the party retrieved via allocateParty doesn’t exist on
the ledger.

Each has a special action abort txt thatrepresents failure, and that takes on type Update () or
Script () depending on context.

Transactions succeed or fail atomically as a whole. Scripts on the other hand do not fail atomically:
while each submit is atomic, if a submit succeeded and the script fails later, the effects of that
submit will still be applied to the ledger.

The last expression in the do block of the Redeem choice is a pattern matching expression on dow.
It has type Update () and is either an abort or return depending on the day of week. So during
the week, it’'s a no-op and on weekends, it’s the special failure action. Thanks to the atomicity of
transactions, no transaction can ever make use of the Redeem choice on weekends, because it fails
the entire transaction.

A sample Action

If the above didn’t make complete sense, here’s another example to explain what actions are more
generally, by creating a new type thatis also an action. CoinGame aisanAction ainwhichaCoin
is flipped. The Coin is a pseudo-random number generator and each flip has the effect of changing
the random number generator’s state. Based on the Heads and Tails results, a return value of type
a is calculated.

data Face = Heads | Tails
deriving (Eq, Show, Enum)

data CoinGame a = CoinGame with
play : Coin -> (Coin, a)

flipCoin : CoinGame Face
getCoin : Script Coin

A CoinGame a exposes a function play which takes a Coin and returns a new Coin and a result a.
More on the -> syntax for functions later.

Coin and play are deliberately left obscure in the above. All you have is an action getCoin to get
your hands on a Coinin a Script context and an action £1ipCoin which represents the simplest
possible game: a single coin flip resulting in a Face.

You can’t play any CoinGame game on pen and paper as you don’t have a coin, but you can write
down a script or recipe for a game:

74 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

coin test = do
-— The coin is pseudo-random on LT so change the parameter to change the game.
setTime (time (date 2019 Jun 1) 0 0 0)
passTime (seconds 2)
coin <- getCoin
let
game = do
flr <- flipCoin
f2r <- flipCoin
f3r <- flipCoin

if all (== Heads) [flr, f2r, f3r]
then return "Win"
else return "Loss"

(newCoin, result) = game.play coin

assert (result == "Win")

The game expression is a CoinGame in which a coin is flipped three times. If all three tosses return
Heads, the resultis "Win", or else "Loss".

Ina Script context you can get a Coin using the getCoin action, which uses the LT to calculate a
seed, and play the game.

Somehow the Coin is threaded through the various actions. If you want to look through the look-
ing glass and understand in-depth what’s going on, you can look at the source file to see how the
CoinGame action is implemented, though be warned that the implementation uses a lot of Daml
features we haven’t introduced yet in this introduction.

More generally, if you want to learn more about Actions (aka Monads), we recommend a general
course on functional programming, and Haskell in particular. See The Haskell Connection for some
suggestions.

Errors

Above, you’ve learnt about assertMsg and abort, which represent (potentially) failing actions. Ac-
tionsonly have an effect when they are performed, so the following script succeeds or fails depending
on the value of abortScript:

nonPerformedAbort do
let abortScript = False
let failingAction : Script () = abort "Foo"
let successfulAction : Script () = return ()
if abortScript then failingAction else successfulAction

However, what about errors in contexts other than actions? Suppose we wanted to implement a
function pow that takes an integer to the power of another positive integer. How do we handle that
the second parameter has to be positive?

One option is to make the function explicitly partial by returning an Optional:

optPow : Int -> Int -> Optional Int
optPow base exponent
| exponent == 0 = Some 1

(continues on next page)

2.1. Writing Daml 75

Daml SDK Documentation, 2.1.1

(continued from previous page)

| exponent > 0 =

let Some result = optPow base (exponent - 1)
in Some (base * result)
| otherwise = None

This is a useful pattern if we need to be able to handle the error case, but it also forces us to always
handle it as we need to extract the result from an Optional. We can see the impact on convenience
in the definition of the above function. In cases, like division by zero or the above function, it can
therefore be preferable to fail catastrophically instead:

errPow : Int -> Int -> Int
errPow base exponent

| exponent == =1
| exponent > 0 = base * errPow base (exponent - 1)
| otherwise = error "Negative exponent not supported"

The big downside to this is that even unused errors cause failures. The following script will fail,
because failingComputation is evaluated:

nonPerformedError = script do
let causeError = False
let failingComputation = errPow 1 (-1)

let successfulComputation = errPow 1 1
return if causeError then failingComputation else successfulComputation

error should therefore only be used in cases where the error case is unlikely to be encountered, and
where explicit partiality would unduly impact usability of the function.

Next up

You can now specify a precise data and data-transformation model for Daml ledgers. In 6 Parties and
authority, you will learn how to properly involve multiple parties in contracts, how authority works in
Daml, and how to build contract models with strong guarantees in contexts with mutually distrust-
ing entities.

2.1.1.6 6 Parties and authority

Daml is designed for distributed applications involving mutually distrusting parties. In a
well-constructed contract model, all parties have strong guarantees that nobody cheats or circum-
vents the rules laid out by templates and choices.

In this section you will learn about Daml’s authorization rules and how to develop contract models
that give all parties the required guarantees. In particular, you’ll learn how to:

Pass authority from one contract to another
Write advanced choices
Reason through Daml’s Authorization model

Hint: Rememberthatyou canload all the code for this section into a folder called intro6 by running
daml new intro6 --template daml-intro-6

76 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Preventing IOU revocation

The SimpleIou contract from 4 Transforming data using choices and 5 Adding constraints to a contract
has one major problem: The contract is only signed by the issuer. The signatories are the parties
with the power to create and archive contracts. If Alice gave Bob a SimpleIou for $100 in exchange
for some goods, she could just archive it after receiving the goods. Bob would have a record of such
actions, but would have to resort to off-ledger means to get his money back.

template SimpleIou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer

simple iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-—- Alice and Bob enter into a trade.
-—- Alice transfers the payment as a Simplelou.
iou <- submit alice do
createCmd SimpleIou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

passTime (days 1)
-— Bob delivers the goods.

passTime (minutes 10)
-- Alice just deletes the payment.
submit alice do

archiveCmd iou

For a party to have any guarantees that only those transformations specified in the choices are ac-
tually followed, they either need to be a signatory themselves, or trust one of the signatories to not
agree to transactions that archive and re-create contracts in unexpected ways. To make the Sim-
pleIou safe for Bob, you need to add him as a signatory.

template Iou
with
issuer : Party
owner : Party
cash : Cash
where
signatory issuer, owner

choice Transfer
ContractId Iou
with
newOwner : Party

(continues on next page)

2.1. Writing Daml 77

Daml SDK Documentation, 2.1.1

(continued from previous page)

controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create this with
owner = newOwner

There’s a new problem here: There is no way for Alice to issue or transfer this Tou to Bob. To get an
Iou with Bob’s signature as owner onto the ledger, his authority is needed.

iou test = do
alice <- allocateParty "Alice"
bob <- allocateParty "Bob"

-— Alice and Bob enter into a trade.
-—- Alice wants to give Bob an Iou, but she can't without Bob's authority.
submitMustFail alice do
createCmd Iou with
issuer = alice
owner = bob
cash = Cash with
amount = 100.0
currency = "USD"

-- She can issue herself an Iou.
iou <- submit alice do
createCmd Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-—- However, she can't transfer it to Bob.
submitMustFail alice do
exerciseCmd iou Transfer with
newOwner = bob

This may seem awkward, but notice that the ensure clause is gone from the Iou again. The above
TIou can contain negative values so Bob should be glad that A1ice cannot put his signature on any
Iou.

You’ll now learn a couple of common ways of building issuance and transfer workflows for the above
Iou, before diving into the authorization model in full.

Use propose-accept workflows for one-off authorization

If there is no standing relationship between Alice and Bob, Alice can propose the issuance of an lou to
Bob, giving him the choice to accept. You can do so by introducing a proposal contract IouProposal:

template IouProposal
with
iou : Iou
where

(continues on next page)

78 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

signatory iou.issuer
observer iou.owner

choice IouProposal Accept
ContractId Iou
controller iou.owner
do
create iou

Note how we have used the fact that templates are records here to store the Iou in a single field.

iouProposal <- submit alice do
createCmd IouProposal with
iou = Iou with

issuer = alice

owner = bob

cash = Cash with
amount = 100.0
currency = "USD"

submit bob do
exerciseCmd iouProposal IouProposal Accept

The ITouProposal contract carries the authority of iou. issuer by virtue of them being a signatory.
By exercising the TouProposal Accept choice, Bob adds his authority to that of Alice, which is why
an Iou with both signatories can be created in the context of that choice.

The choice is called TouProposal Accept, not Accept, because propose-accept patterns are very
common. In fact, you’ll see another one just below. As each choice defines a record type, you cannot

have two choices of the same name in scope. It’s a good idea to qualify choice names to ensure
uniqueness.

The above solves issuance, but not transfers. You can solve transfers exactly the same way, though,
by creating a TransferProposal:

template IouTransferProposal
with
iou : Iou
newOwner : Party

where
signatory (signatory iou)
observer (observer iou), newOwner

choice IouTransferProposal_ Cancel
ContractId Iou
controller iou.owner
do
create iou

choice IouTransferProposal Reject
ContractId Iou
controller newOwner
do
create iou

(continues on next page)

2.1. Writing Daml 79

Daml SDK Documentation, 2.1.1

(continued from previous page)

choice IouTransferProposal Accept
ContractId Iou
controller newOwner
do
create iou with
owner = newOwner

In addition to defining the signatories of a contract, signatory can also be used to extract the
signatories from another contract. Instead of writing signatory (signatory iou), you could
write signatory iou.issuer, iou.owner.

The IouProposal had a single signatory so it could be cancelled easily by archiving it. Without a
Cancel choice,the newOwner could abuse an open TransferProposal as an option. The triple Accept,
Reject, Cancel is common to most proposal templates.

To allow an iou.owner to create such a proposal, you need to give them the choice to propose a
transfer on the Iou contract. The choice looks just like the above Transfer choice, except that a
IouTransferProposal is created instead of an Tou:

choice ProposeTransfer
ContractIlId IouTransferProposal
with
newOwner : Party
controller owner
do
assertMsg "newOwner cannot be equal to owner." (owner /= newOwner)
create IouTransferProposal with
iou = this
newOwner

Bob can now transfer his ITou. The transfer workflow can even be used for issuance:

charlie <- allocateParty "Charlie"

-— Alice issues an Iou using a transfer proposal.
tpab <- submit alice do
createCmd IouTransferProposal with
newOwner = bob
iou = Iou with
issuer = alice
owner = alice
cash = Cash with
amount = 100.0
currency = "USD"

-— Bob accepts the transfer from Alice.
iou2 <- submit bob do
exerciseCmd tpab IouTransferProposal Accept

-— Bob offers Charlie a transfer.
tpbc <- submit bob do
exerciseCmd iou2 ProposeTransfer with
newOwner = charlie

-—- Charlie accepts the transfer from Bob.

(continues on next page)

80 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

submit charlie do
exerciseCmd tpbc IouTransferProposal Accept

Use role contracts for ongoing authorization

Many actions, like the issuance of assets or their transfer, can be pre-agreed. You can represent this
succinctly in Daml through relationship or role contracts.

Jointly, an owner and newOwner can transfer an asset, as demonstrated in the script above. In
7 Composing choices, you will see how to compose the ProposeTransfer and IouTransferPro-
posal Accept choices into a single new choice, but for now, here is a different way. You can give
them the joint right to transfer an |I0U:

choice Mutual Transfer
ContractId Iou
with
newOwner : Party
controller owner, newOwner
do
create this with
owner = newOwner

Up to now, the controllers of choices were known from the current contract. Here, the newOwner
variable is part of the choice arguments, not the Iou.

This is also the first time we have shown a choice with more than one controller. If multiple con-
trollers are specified, the authority of allthe controllers is needed. Here, neither owner, nor newOwner
can execute a transfer unilaterally, hence the name Mutual Transfer.

template IouSender
with
sender : Party
receiver : Party
where
signatory receiver
observer sender

nonconsuming choice Send Iou
ContractId Iou
with
iouCid : ContractId Iou
controller sender
do
iou <- fetch iouCid
assert (iou.cash.amount > 0.0)

assert (sender == iou.owner)
exercise iouCid Mutual Transfer with
newOwner = receiver

The above ITouSender contract now gives one party, the sender theright to send Iou contracts with
positive amounts to a receiver. The nonconsuming keyword on the choice Send Iouchanges the
behaviour of the choice so that the contract it’s exercised on does not get archived when the choice
is exercised. That way the sender can use the contract to send multiple lous.

2.1. Writing Daml 81

Daml SDK Documentation, 2.1.1

Here it is in action:

—-— Bob allows Alice to send him Ious.
sab <- submit bob do
createCmd IouSender with
sender = alice
receiver = bob

—-— Charlie allows Bob to send him Ious.
sbc <- submit charlie do
createCmd IouSender with
sender = bob
receiver = charlie

-— Alice can now send the Iou she issued herself earlier.
ioud4d <- submit alice do
exerciseCmd sab Send Iou with
iouCid = iou

-— Bob sends it on to Charlie.
submit bob do
exerciseCmd sbc Send Iou with
iouCid = iou4d

Daml’s authorization model

Hopefully, the above will have given you a good intuition for how authority is passed around in Daml.
In this section you’ll learn about the formal authorization model to allow you to reason through your
contract models. This will allow you to construct them in such a way that you don’t run into autho-
rization errors at runtime, or, worse still, allow malicious transactions.

In Choices in the Ledger Model you learned that a transaction is, equivalently, a tree of transactions, ora
forest of actions, where each transaction is a list of actions, and each action has a child-transaction
called its consequences.

Each action has a set of required authorizers - the parties that must authorize that action - and each
transaction has a set of authorizers - the parties that did actually authorize the transaction.

The authorization rule is that the required authorizers of every action are a subset of the authorizers
of the parent transaction.

The required authorizers of actions are:

The required authorizers of an exercise action are the controllers on the corresponding choice.
Remember that Archive and archive are just an implicit choice with the signatories as con-
trollers.

The required authorizers of a create action are the signatories of the contract.

The required authorizers of a fetch action (which also includes fetchByKey) are somewhat
dynamic and covered later.

The authorizers of transactions are:

The root transaction of a commit is authorized by the submitting party.
The consequences of an exercise action are authorized by the actors of that action plus the
signatories of the contract on which the action was taken.

82 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

An authorization example

Consider the transaction from the script above where Bob sends an Iouto Charlie using a Send Iou
contract. It is authorized as follows, ignoring fetches:

Bob submits the transaction so he’s the authorizer on the root transaction.

The root transaction has a single action, which is to exercise Send Iouon a IouSender con-
tract with Bob as sender and Charlie as receiver. Since the controller of that choice is the
sender, Bob is the required authorizer.

The consequences of the Send Iou action are authorized by its actors, Bob, as well as signa-
tories of the contract on which the action was taken. That’s Charlie in this case, so the conse-
quences are authorized by both Bob and Charlie.

The consequences contain a single action, which is a Mutual Transfer with Charlie as
newOwner on an Iou with issuer Alice and owner Bob. The required authorizers of the ac-
tion are the owner, Bob, and the newOwner, Charlie, which matches the parent’s authorizers.
The consequences of Mutual Transfer areauthorized by the actors (Bob and Charlie), as well
as the signatories on the lou (Alice and Bob).

The single action on the consequences, the creation of an lou with issuer Alice and owner

Charlie has required authorizers Alice and Charlie, which is a proper subset of the parent’s
authorizers.

You can see the graph of this transaction in the transaction view of the IDE:

TX #12 1970-01-01T00:00:00Z (Parties:269:3)

#12:0
| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> 'Bob' exercises Send Iou on #10:0 (Parties:IouSender)
with
iouCid = #11:3
children:
#12:1

| known to (since): 'Bob' (#12), 'Charlie' (#12)
L> fetch #11:3 (Parties:Iou)

#12:2
| known to (since): 'Bob' (#12), 'Alice' (#12), 'Charlie' (#12)
L> 'Bob', 'Charlie' exercises Mutual Transfer on #11:3 (Parties:Iou)
with
newOwner = 'Charlie'
children:
#12:3
| known to (since): 'Charlie' (#12), 'Alice' (#12), 'Bob' (#12)
L> create Parties:Iou
with
issuer = 'Alice';
owner = 'Charlie';
cash =
(Parties:Cash with
currency = "USD"; amount = 100.0)

Note that authority is not automatically transferred transitively.

template NonTransitive
with
partyA : Party

(continues on next page)

2.1. Writing Daml 83

Daml SDK Documentation, 2.1.1

(continued from previous page)

partyB : Party
where

signatory partyA

observer partyB

choice TryA
ContractId NonTransitive
controller partyA
do
create NonTransitive with
partyA = partyB
partyB = partyA

choice TryB
ContractId NonTransitive
with
other : ContractId NonTransitive
controller partyB
do
exercise other TryA

ntl <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob
nt2 <- submit alice do
createCmd NonTransitive with
partyA = alice
partyB = bob

submitMustFail bob do
exerciseCmd ntl TryB with
other = nt2

The consequences of TryB are authorized by both Alice and Bob, but the action Trya only has Alice

as an actor and Alice is the only signatory on the contract.

Therefore, the consequences of TryA are only authorized by Alice. Bob’s authority is now missing to

create the flipped NonTransitive so the transaction fails.

Next up

In 7 Composing choices you will put everything you have learned together to build a simple asset hold-
ing and trading model akin to that in the |OU Quickstart Tutorial. In that context you’ll learn a bit more
about the Update action and how to use it to compose transactions, as well as about privacy on

Daml ledgers.

84

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.1.7 7 Composing choices

It’s time to put everything you’ve learnt so far together into a complete and secure Daml model for
asset issuance, management, transfer, and trading. This application will have capabilities similar
to the one in IOU Quickstart Tutorial. In the process you will learn about a few more concepts:

Daml projects, packages and modules
Composition of transactions
Observers and stakeholders

Daml’s execution model

Privacy

The model in this section is not a single Daml file, but a Daml project consisting of several files that
depend on each other.

Hint: Rememberthatyou canload all the code for this section into a folder called intro7 by running
daml new intro7 --template daml-intro-7

Daml projects

Daml is organized in projects, packages and modules. A Daml project is specified using a single
daml.yaml file,and compiles into a package in Daml’s intermediate language, or bytecode equiva-
lent, Daml-LF. Each Daml file within a project becomes a Daml module, which is a bit like a names-
pace. Each Daml project has a source root specified in the source parameterin the project’s daml.
yaml file. The package will include all modules specified in * .daml files beneath that source direc-
tory.

You can start a new project with a skeleton structure using daml new project-name in the termi-
nal. A minimal project would contain just a daml.yaml file and an empty directory of source files.

Take a look at the daml.yaml for the chapter 7 project:

sdk-version: = VERSION
name: _ PROJECT NAME
source: daml
version: 1.0.0
dependencies:

- daml-prim

- daml-stdlib

- daml-script
sandbox-options:

- --wall-clock-time

You can generally set name and version freely to describe your project. dependencies does
what the name suggests: It includes dependencies. You should always include daml-prim and
daml-stdlib. The former contains internals of compiler and Daml Runtime, the latter gives ac-
cess to the Daml Standard Library. daml-script contains the types and standard library for Daml
Script.

You compile a Daml project by running daml build from the project root directory. This creates
a dar file in .daml/dist/dist/${project name}-${project version}.dar. A dar file is
Daml’s equivalent of a JAR file in Java: it’s the artifact that gets deployed to a ledger to load the

2.1. Writing Daml 85

Daml SDK Documentation, 2.1.1

package and its dependencies. dar files are fully self-contained in that they contain all dependen-
cies of the main package. More on all of this in 9 Working with Dependencies.

Project structure

This project contains an asset holding model for transferable, fungible assets and a separate trade
workflow. The templates are structured in three modules: Intro.Asset, Intro.Asset.Role, and
Intro.Asset.Trade.

In addition, there are tests in modules Test.Intro.Asset,Test.Intro.Asset.Role,and Test.
Intro.Asset.Trade.

All but the last .-separated segment in module names correspond to paths relative to the project
source directory, and the last one to a file name. The folder structure therefore looks like this:

— daml

— Intro
|— Asset

| F— Role.daml

| L — Trade.daml

L — Asset.daml

Test

L— Intro
|— Asset
| I— Role.daml
| L— Trade.daml
L — Asset.daml

—— daml.yaml

—

Each file contains a module header. For example, daml/Intro/Asset/Role.daml:

module Intro.Asset.Role where

You can import one module into another using the import keyword. The LibraryModules module
imports all six modules:

import Intro.Asset

Imports always have to appear just below the module declaration. You can optionally add a list of
names after the import to import only the selected names:

import DA.List (sortOn, groupOn)

If your module contains any Daml Scripts, you need to import the corresponding functionality:

import Daml.Script

86 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Project overview

The project both changes and adds to the Tou model presented in 6 Parties and authority:

Assets are fungible in the sense that they have Merge and Split choices that allow the owner
to manage their holdings.

Transfer proposals now need the authorities of both issuer and newOwner to accept. This
makes Asset safer than Iou from the issuer’s point of view.

With the Tou model, an issuer could end up owing cash to anyone as transfers were autho-
rized by just owner and newOwner. In this project, only parties having an AssetHolder con-
tract can end up owning assets. This allows the issuer to determine which parties may own
their assets.

The Trade template adds a swap of two assets to the model.

Composed choices and scripts

This project showcases how you can putthe Update and Script actions you learnt aboutin 6 Parties
and authority to good use. For example, the Merge and Split choices each perform several actions
in their consequences.

Two create actions in case of Split
One create and one archive action in case of Merge

choice Split
SplitResult
with
splitQuantity : Decimal
controller owner
do
splitAsset <- create this with
quantity = splitQuantity
remainder <- create this with
quantity = quantity - splitQuantity
return SplitResult with
splitAsset
remainder

choice Merge
ContractId Asset
with
otherCid : ContractId Asset
controller owner

do

other <- fetch otherCid

assertMsg
"Merge failed: issuer does not match"
(issuer == other.issuer)

assertMsg
"Merge failed: owner does not match"
(owner == other.owner)

assertMsg
"Merge failed: symbol does not match"
(symbol == other.symbol)

archive otherCid

(continues on next page)

2.1. Writing Daml 87

Daml SDK Documentation, 2.1.1

(continued from previous page)

create this with
quantity = quantity + other.quantity

The return function used in Split is available in any Action context. The result of return xisa
no-op containing the value x. It has an alias pure, indicating that it’s a pure value, as opposed to a
value with side-effects. The return name makes sense when it’s used as the last statementinado
block as its argument is indeed the return -value of the do block in that case.

Taking transaction composition a step further, the Trade Settle choice on Trade composes two
exercise actions:

choice Trade_Settle
(ContractId Asset, ContractId Asset)
with
quoteAssetCid : ContractId Asset

baseApprovalCid : ContractId TransferApproval
controller quoteAsset.owner
do

fetchedBaseAsset <- fetch baseAssetCid
assertMsg
"Base asset mismatch"
(baseAsset == fetchedBaseAsset with
observers = baseAsset.observers)

fetchedQuoteAsset <- fetch quoteAssetCid

assertMsg
"Quote asset mismatch"
(quoteAsset == fetchedQuoteAsset with
observers = quoteAsset.observers)

transferredBaseCid <- exercise

baseApprovalCid TransferApproval Transfer with
assetCid = baseAssetCid

transferredQuoteCid <- exercise

quoteApprovalCid TransferApproval Transfer with
assetCid = quoteAssetCid

return (transferredBaseCid, transferredQuoteCid)

The resulting transaction, with its two nested levels of consequences, can be seen in the
test trade scriptin Test.Intro.Asset.Trade:

TX #15 1970-01-01T00:00:00Z (Test.Intro.Asset.Trade:77:23)
#15:0
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> 'Bob' exercises Trade Settle on #13:1 (Intro.Asset.Trade:Trade)
with
quoteAssetCid = #10:1; baseBApprovalCid = #14:2
children:
#15:1
| known to (since): 'Alice' (#15), 'Bob' (#15)
L> fetch #11:1 (Intro.Asset:Asset)
#15:2

(continues on next page)

88 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

| known to (since): 'Alice' (#15), 'Bob' (#15)
L > fetch #10:1 (Intro.Asset:Asset)

#15:3
| known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)
L> 'Alice’,
'Bob' exercises TransferApproval Transfer on #14:2 (Intro.
—Asset:TransferApproval)

with
assetCid = #11:1
children:
#15:4
known to (since): 'USD Bank' (#15), 'Bob' (#15), 'Alice' (#15)

L—> fetch #11:1 (Intro.Asset:Asset)

#15:5
known to (since): 'Alice' (#15), 'USD Bank' (#15), 'Bob' (#15)
—> 'Alice', 'USD Bank' exercises Archive on #11:1 (Intro.Asset:Asset)

#15:6
referenced by #17:0
known to (since): 'Bob' (#15), 'USD Bank' (#15), 'Alice' (#15)
'—> create Intro.Asset:Asset
with
issuer = 'USD Bank'; owner = 'Bob'; symbol = "USD"; quantity = 100.

—0; observers = []

#15:7
| known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L> 'Bob’',
'Alice' exercises TransferApproval Transfer on #12:1 (Intro.
—Asset:TransferApproval)
with
assetCid = #10:1
children:
#15:8
known to (since): 'EUR Bank' (#15), 'Alice' (#15), 'Bob' (#15)
L—> fetch #10:1 (Intro.Asset:Asset)

#15:9
known to (since): 'Bob' (#15), 'EUR Bank' (#15), 'Alice' (#15)
—> 'Bob', 'EUR Bank' exercises Archive on #10:1 (Intro.Asset:Asset)

#15:10
referenced by #16:0
known to (since): 'Alice' (#15), 'EUR Bank' (#15), 'Bob' (#15)
'—> create Intro.Asset:Asset
with
issuer = 'EUR Bank'; owner = 'Alice'; symbol = "EUR"; quantity = 90.

—0; observers = []

Similar to choices, you can see how the scripts in this project are built up from each other:

test issuance = do
setupResultl (alice, bob, bank, aha, ahb) <- setupRoles

(continues on next page)

2.1. Writing Daml 89

Daml SDK Documentation, 2.1.1

(continued from previous page)

assetCid <- submit bank do
exerciseCmd aha Issue Asset
with
symbol = "USD"
quantity = 100.0

Some asset <- queryContractId bank assetCid
assert (asset == Asset with

issuer = bank

owner = alice

symbol = "USD"

quantity = 100.0

observers = []

)

return (setupResult, assetCid)

In the above, the test issuance scriptin Test.Intro.Asset.Role uses the output of the se-
tupRoles script in the same module.

The same line shows a new kind of pattern matching. Rather than writing setupResult <- se-
tupRoles and then accessing the components of setupResult using 1, 2, etc., you can give
them names. It’s equivalent to writing

setupResult <- setupRoles
case setupResult of
(alice, bob, bank, aha, ahb) -> ...

Just writing (alice, bob, bank, aha, ahb) <- setupRoles would also be legal, but se-
tupResult is used in the return value of test issuance so it makes sense to give it a name, too.
The notation with @ allows you to give both the whole value as well as its constituents names in one

go.
Daml’s execution model

Daml’s execution model is fairly easy to understand, but has some important consequences. You
can imagine the life of a transaction as follows:

Command Submission A user submits a list of Commands via the Ledger API of a Participant Node,
acting as a Party hosted on that Node. That party is called the requester.

Interpretation Each Command corresponds to one or more Actions. During this step, the Update
corresponding to each Action is evaluated in the context of the ledger to calculate all conse-
quences, including transitive ones (consequences of consequences, etc.). The result of this is
a complete Transaction. Together with its requestor, this is also known as a Commit.

Blinding On ledgers with strong privacy, projections (see Privacy) for all involved parties are created.
This is also called projecting.

Transaction Submission The Transaction/Commit is submitted to the network.

Validation The Transaction/Commit is validated by the network. Who exactly validates can differ
from implementation to implementation. Validation also involves scheduling and collision
detection, ensuring that the transaction has a well-defined place in the (partial) ordering of
Commits, and no double spends occur.

Commitment The Commitis actually committed according to the commit or consensus protocol of
the Ledger.

90 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Confirmation The network sends confirmations of the commitment back to all involved Participant
Nodes.

Completion The user gets back a confirmation through the Ledger API of the submitting Participant
Node.

The first important consequence of the above is that all transactions are committed atomically. Ei-
ther a transaction is committed as a whole and for all participants, or it fails.

That’s important in the context of the Trade Settle choice shown above. The choice transfers a
baseAsset one way and a quoteAsset the other way. Thanks to transaction atomicity, there is no
chance that either party is left out of pocket.

The second consequence is that the requester of a transaction knows all consequences of their sub-
mitted transaction - there are no surprises in Daml. However, it also means that the requester must
have all the information to interpret the transaction. We also refer to this as Principle 2 a bit later on
this page.

That’s also important in the context of Trade. In order to allow Bob to interpret a transaction that
transfers Alice’s cash to Bob, Bob needs to know both about Alice’s Asset contract, as well as about
some way for Alice to accept a transfer - remember, accepting a transfer needs the authority of
issuer in this example.

Observers

Observers are Daml’s mechanism to disclose contracts to other parties. They are declared just like
signatories, but using the ocbserver keyword, as shown in the Asset template:

template Asset
with
issuer : Party
owner : Party
symbol : Text
quantity : Decimal
observers : [Party]
where
signatory issuer, owner
ensure gquantity > 0.0

observer observers

The Asset template also gives the owner a choice to set the observers, and you can see how Alice
uses it to show her Asset to Bob just before proposing the trade. You can try out what happens if
she didn’t do that by removing that transaction.

usdCid <- submit alice do
exerciseCmd usdCid SetObservers with
newObservers = [bob]

Observers have guarantees in Daml. In particular, they are guaranteed to see actions that create and
archive the contract on which they are an observer.

Since observers are calculated from the arguments of the contract, they always know about each
other. That’s why, rather than adding Bob as an observer on Alice’s AssetHolder contract, and
using that to authorize the transfer in Trade Settle, Alice creates a one-time authorization in the

2.1. Writing Daml 91

Daml SDK Documentation, 2.1.1

form of a TransferAuthorization. If Alice had lots of counterparties, she would otherwise end up
leaking them to each other.

Controllers declared in the choice syntax are not automatically made observers, as they can only be
calculated at the point in time when the choice arguments are known. On the contrary, controllers
declared via the controller cs can syntax are automatically made observers, but this syntax is
deprecated and will be removed in a future version of Daml.

Privacy

Daml’s privacy model is based on two principles:

Principle 1. Parties see those actions that they have a stake in. Principle 2. Every party that sees an
action sees its (transitive) consequences.

Principle 2 is necessary to ensure that every party can independently verify the validity of every trans-
action they see.

A party has a stake in an action if

they are a required authorizer of it
they are a signatory of the contract on which the action is performed
they are an observer on the contract, and the action creates or archives it

What does that mean for the exercise tradeCid Trade Settle action from test trade?

Alice is the signatory of tradeCid and Bob a required authorizer of the Trade Settled action,
so both of them see it. According to rule 2. above, that means they get to see everything in the
transaction.

The consequences contain, nextto some fetch actions, two exercise actions of the choice Trans-
ferApproval Transfer.

Each of the two involved TransferApproval contracts is signed by a different issuer, which see
the action on their contract. So the EUR_Bank sees the TransferApproval Transfer action
for the EUR Asset and the USD_Bank sees the TransferApproval Transfer action for the USD
Asset.

Some Daml ledgers, like the script runner and the Sandbox, work on the principle of data minimiza-
tion , meaning nothing more than the above information is distributed. That is, the projection of
the overall transaction that gets distributed to EUR_Bank in step 4 of Dam/’s execution model would
consistonly of the TransferApproval Transfer and its consequences.

Other implementations, in particular those on public blockchains, may have weaker privacy con-
straints.

92 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Divulgence

Note that Principle 2 of the privacy model means that sometimes parties see contracts that they are
not signatories or observers on. If you look at the final ledger state of the test trade script, for
example, you may notice that both Alice and Bob now see both assets, as indicated by the Xs in their
respective columns:

Intro.Asset:Asset

st'-mls issuer |owner symhnl guantity (observers

EH-B #1

This is because the create action of these contracts are in the transitive consequences of the
Trade Settle action both of them have a stake in. This kind of disclosure is often called divul-
gence and needs to be considered when designing Daml models for privacy sensitive applications.

Next up

In 8 Exception Handling, we will learn about how errors in your model can be handled in Daml.

2.1.1.8 8 Exception Handling

The default behavior in Daml is to abort the transaction on any error and roll back all changes that
have happened until then. However, this is not always appropriate. In some cases, it makes sense
to recover from an error and continue the transaction instead of aborting it.

One option for doing that is to represent errors explicitly via Either or Option as shown in 3 Data
types. This approach has the advantage that it is very explicit about which operations are allowed to
fail without aborting the entire transaction. However, it also has two major downsides. First, it can be
invasive for operations where aborting the transaction is often the desired behavior, e.g., changing
division to return Either or an Option to handle division by zero would be a very invasive change
and many callsites might not want to handle the error case explicitly. Second, and more importantly,
this approach does not allow rolling back ledger actions that have happened before the point where
failure is detected; if a contract got created before we hit the error, there is no way to undo that except
for aborting the entire transaction (which is what we were trying to avoid in the first place).

By contrast, exceptions provide a way to handle certain types of errors in such a way that, on the one
hand, most of the code that is allowed to fail can be written just like normal code, and, on the other
hand, the programmer can clearly delimit which part of the current transaction should be rolled
back on failure. All of that still happens within the same transaction and is thereby atomic contrary
to handling the error outside of Daml.

Hint: Rememberthatyoucanload all the code for this sectioninto a folder called intro8 byrunning
daml new intro8 --template daml-intro-8

2.1. Writing Daml 93

Daml SDK Documentation, 2.1.1

Our example for the use of exceptions will be a simple shop template. Users can order items by
calling a choice and transfer money (in the form of an lou issued by their bank) from their account
to the owner in return.

First, we need to setup a template to represent the account of a user.

template Account with
issuer : Party
owner : Party
amount : Decimal

where

signatory issuer, owner
ensure amount > 0.0
key (issuer, owner) : (Party, Party)
maintainer key. 2

choice Transfer : () with
newOwner : Party
transferredAmount : Decimal
controller owner, newOwner

do create this with amount = amount - transferredAmount
create Iou with issuer = issuer, owner = newOwner, amount =
—transferredAmount
pure ()

Note that the template has an ensure clause that ensures that the amount is always positive so
Transfer cannot transfer more money than is available.

The shop is represented as a template signed by the owner. It has a field to represent the bank
accepted by the owner as well as a list of observers that can order items.

template Shop

with
owner : Party
bank : Party
observers : [Party]

where
signatory owner
observer observers
let price: Decimal = 100.0

The ordering process is then represented by a non-consuming choice on this template which calls
Transfer and creates an Order contract in return.

nonconsuming choice OrderItem : ContractId Order
with
shopper : Party
controller shopper
do exerciseByKey (@Account (bank, shopper) (Transfer owner price)
create Order
with
shopOwner = owner
shopper = shopper

However, the shop owner has realized that often orders fail because the account of their users is not
topped up. They have a small trusted userbase they know well so they decide that if the account
is not topped up, the shoppers can instead issue an lou to the owner and pay later. While it would

94 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

be possible to check the conditions under which Transfer will fail in OrderItem this can be quite
fragile: In this example, the condition is relatively simple but in larger projects replicating the con-
ditions outside the choice and keeping the two in sync can be challenging.

Exceptions allow us to handle this differently. Rather than replicating the checks in Transfer, we
can instead catch the exception thrown on failure. To do so we need to use a try-catch block. The
try block defines the scope within which we want to catch exceptions while the catch clauses
define which exceptions we want to catch and how we want to handle them. In this case, we want to
catch the exception thrown by a failed ensure clause. This exception is defined in daml-stdlib as
PreconditionFailed. Putting it together our order process for trusted users looks as follows:

nonconsuming choice OrderItemTrusted : ContractId Order
with
shopper : Party
controller shopper
do cid <- create Order

with
shopOwner = owner
shopper = shopper
try do
exerciseByKey (@Account (bank, shopper) (Transfer owner price)
catch
PreconditionFailed _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
pure cid

Let’s walk through this code. First, as mentioned, the shop owner is the trusting kind, so he wants to
start by creating the Order matter what. Next, we try to charge the customer for the order. We could,
at this point, check their balance against the cost of the order, but that would amount to duplicating
the logic already present in Account. This logic is pretty simple in this case, but duplicating invari-
ants is a bad habit to get into. So, instead, we just try to charge the account. If that succeeds, we
just merrily ignore the entire catch clause; if that fails, however, we do not want to destroy the Order
contract we had already created. Instead, we want to catch the error thrown by the ensure clause of
Account (in this case, it is of type PreconditionFailed) and try something else: create an Iou
contract to register the debt and move on.

Note that if the ITou creation still failed (unlikely with our definition of Tou here, but could happen
in more complex scenarios), because that one is not wrapped in a try block, we would revert to the
default Daml behaviour and the Order creation would be rolled back.

In addition to catching built-in exceptions like PreconditionFailed, you can also define your own
exception types which can be caught and thrown. As an example, let’s consider a variant of the
Transfer choice that only allows for transfers up to a given limit. If the amount is higher than the
limit, we throw an exception called TransferLimitExceeded.

We first have to define the exception and define a way to represent it as a string. In this case, our
exception should store the amount that someone tried to transfer as well as the limit.

exception TransferLimitExceeded
with
limit : Decimal

(continues on next page)

2.1. Writing Daml 95

Daml SDK Documentation, 2.1.1

(continued from previous page)

attempted : Decimal
where
message "Transfer of " <> show attempted <> " exceeds limit of " <> show limit

To throw our own exception, you can use throw in Update and Script or throwPure in other con-
texts.

choice TransferLimited : () with
newOwner : Party
transferredAmount : Decimal
controller owner, newOwner
do let limit = 50.0
when (transferredAmount > limit) $
throw TransferLimitExceeded with

limit = limit
attempted = transferredAmount
create this with amount = amount - transferredAmount
create Iou with issuer = issuer, owner = newOwner, amount =[|
—transferredAmount
pure ()

Finally, we can adapt our choice to catch this exception as well:

nonconsuming choice OrderItemTrustedLimited : ContractId Order
with
shopper : Party
controller shopper

do try do
exerciseByKey (@Account (bank, shopper) (Transfer owner price)
pure ()
catch
PreconditionFailed _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
TransferLimitExceeded _ _ -> do
create Iou with
issuer = shopper
owner = owner
amount = price
pure ()
create Order
with

shopOwner = owner
shopper = shopper

For more information on exceptions, take a look at the language reference.

96 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Next up

We have now seen how to develop safe models and how we can handle errors in those models in a
robust and simple way. But the journey doesn’t stop there. In 9 Working with Dependencies you will
learn how to extend an already running application to enhance it with new features. In that context
you’ll learn a bit more about the architecture of Daml, about dependencies, and about identifiers.

2.1.1.9 9 Working with Dependencies

The application from Chapter 7 is a complete and secure model for atomic swaps of assets, but
there is plenty of room for improvement. However, one can’t implement all feature before going live
with an application so it’s important to understand way to change already running code. There are
fundamentally two types of change one may want to make:

1. Upgrades, which change existing logic. For example, one might want the Asset template to
have multiple signatories.
2. Extensions, which merely add new functionality though additional templates.

Upgrades are covered in their own section outside this introduction to Daml: Upgrading and Extending
Damlapplications soin this section we will extend the chapter 7 model with a simple second workflow:
a multi-leg trade. In doing so, you’ll learn about:

The software architecture of the Daml Stack
Dependencies and Data Dependencies
Identifiers

Since we are extending chapter 7, the setup for this chapter is slightly more complex:

1. In a base directory, load the chapter 7 project using daml new intro7 --template
daml-intro-7. The directory intro7 here is important as it’ll be referenced by the other
project we are creating.

2. In the same directory, load the chapter 8 project using daml new intro9 --template
daml-intro-9.

8Dependencies contains a new module Intro.Asset.MultiTrade and a corresponding test
module Test.Intro.Asset.MultiTrade.

DAR, DALF, Daml-LF, and the Engine

In 7 Composing choices you already learnt a little about projects, Daml-LF, DAR files, and dependencies.
In this chapter we will actually need to have dependencies from the chapter 8 project to the chapter
7 project so it’s time to learn a little more about all this.

Let’s have a look inside the DAR file of chapter 7. DAR files, like Java JAR files are just ZIP archives,
but the SDK also has a utility to inspect DARs out of the box:

1. Navigate into the intro7 directory.
2. Build using daml build -o assets.dar
3. Rundaml damlc inspect-dar assets.dar

You’ll get a whole lot of output. Under the header DAR archive contains the following files: you’ll
see that the DAR contains

1. *.dalf files for the project and all its dependencies

2.1. Writing Daml 97

Daml SDK Documentation, 2.1.1

2. The original Daml source code
3. *.hiand *.hie files for each *.daml file
4. Some meta-inf and config files

Thefirstfileis somethinglike intro7-1.0.0-887056cbb313b%4ab%a6cafl34f7fedfbfel9cb0c861e50d1
dalf which is the actual compiled package for the project. *.dalf files contain Daml-LF, which is

Daml’s intermediate language. The file contents are a binary encoded protobuf message from the

daml-If schema. Daml-LF is evaluated on the Ledger by the Daml Engine, which is a JVM component

thatis part of tools like the IDE’s Script runner, the Sandbox, or proper production ledgers. If Daml-LF

is to Daml what Java Bytecode is to Java, the Daml Engine is to Daml what the JVM is to Java.

Hashes and Identifiers

Under the heading DAR archive contains the following packages: you get a similar looking list
of package names, paired with only the long random string repeated. That hexadecimal string,
887056cbb313b9%4ab9%abcafl34f7fedfbfel9chb0c861e50d1594c665567ab7625 in this case, is
the package hash and the primary and only identifier for a package that’s guaranteed to be avail-
able and preserved. Meta information like name (intro7) and version (1.0.0) help make it human
readable but should not be relied upon. You may not always get DAR files from your compiler, but be
loading them from a running Ledger, or get them from an artifact repository.

We can see this in action. When a DAR file gets deployed to a ledger, not all meta information is
preserved.

1. Note down your main package hash from running inspect-dar above
2. Start the project using daml start

3. 0Open a second terminal and run daml ledger fetch-dar
--host localhost --port 6865 --main-package-id
"887056cbb313b%4ab%6catf34f7fedfbfel9cb0c861e50d1594c665567ab7625" -0

assets ledger.dar, making sure to replace the hash with the appropriate one.
4. Rundaml damlc inspect-dar assets ledger.dar

You’ll notice two things. Firstly, a lot of the dependencies have lost their names, they are now only
identifiable by hash. We could of course also create a second project intro7-1.0.0 with com-
pletely different contents so even when name and version are available, package hash is the only
safe identifier.

That’s why over the Ledger API, all types, like templates and records are identified by the triple (en-
tity name, module name, package hash). Your client application should know the package
hashes it wants to interact with. To aid that, inspect-dar also provides a machine-readable for-
mat for the information it emits: daml damlc inspect-dar --json assets ledger.dar. The
main package idfield in the resulting JSON payload is the package hash of our project.

Secondly, you’ll notice that all the *.daml, *.hi and *.hie files are gone. This leads us to data
dependencies.

98 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/tree/main/daml-lf/archive

Daml SDK Documentation, 2.1.1

Dependencies and Data Dependencies

Dependencies under the daml.yaml dependencies group rely on the * . hi files. The information
in these files is crucial for dependencies like the Standard Library, which provide functions, types
and typeclasses.

However, as you can see above, this information isn’t preserved. Furthermore, preserving this infor-
mation may not even be desirable. Imagine we had built intro7 with SDK 1.100.0, and are building
intro8 with SDK 1.101.0. All the typeclasses and instances on the inbuilt types may have changed
and are now present twice - once from the current SDK and once from the dependency. This gets
messy fast, which is why the SDK does not support dependencies across SDK versions. For depen-
dencies on contract models that were fetched from a ledger, or come from an older SDK version, there
is a simpler kind of dependency called data-dependencies. The syntax for data-dependencies
is the same, but they only rely on the binary *.dalf files. The name tries to confer that the main
purpose of such dependencies is to handle data: Records, Choices, Templates. The stuff one needs
to use contract composability across projects.

For an extension model like this one, data-dependencies are appropriate so the chapter 8 project
includes the chapter 7 that way.

- daml-script
data-dependencies:
- ../intro7/assets.dar

You’ll notice a module Test.Intro.Asset.TradeSetup, which is almost a carbon copy of the
Chapter 7 trade setup Scripts. data-dependencies is designed to use existing contracts and data
types. Daml Script is not imported. In practice, we also shouldn’t expect that the DAR file we down-
load from the ledger using daml ledger fetch-dar contains test scripts. For larger projects it’s
good practice to keep them separate and only deploy templates to the ledger.

Structuring Projects

As you’ve seen here, identifiers depend on the package as a whole and packages always bring all their
dependencies with them. Thus changing anything in a complex dependency graph can have signif-
icant repercussions. It is therefore advisable to keep dependency graphs simple, and to separate
concerns which are likely to change at different rates into separate packages.

Forexample,inallour projectsinthisintro,including this chapter,our scripts are in the same project
as our templates. In practice, that means changing a test changes all identifiers, which is not de-
sirable. It’s better for maintainability to separate tests from main templates. If we had done that in
chapter 7, that would also have saved us from copying the chapter 7

Similarly, we included Trade in the same project as Asset inchapter7,even though Trade is a pure
extension to the core Asset model. If we expect Trade to need more frequent changes, it may be a
good idea to split it out into a separate project from the start.

2.1. Writing Daml 929

Daml SDK Documentation, 2.1.1

Next up

The MultiTrade model has more complex control flow and data handling than previous models.
In 10 Functional Programming 101 you’ll learn how to write more advanced logic: control flow, folds,
common typeclasses, custom functions, and the Standard Library. We’ll be using the same projects
so don’t delete your chapter 7 and 8 folders just yet.

2.1.1.10 10 Functional Programming 101
In this chapter, you will learn more about expressing complex logic in a functional language like
Daml. Specifically, you’ll learn about

Function signatures and functions
Advanced control flow (i f. . .else, folds, recursion, when)

If you no longer have your chapter 7 and 8 projects set up, and want to look back at the code, please
follow the setup instructions in 9 Working with Dependencies to get hold of the code for this chapter.

Note: There is a project template daml-intro-10 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

The Haskell Connection

The previous chapters of this introduction to Daml have mostly covered the structure of templates,
and their connection to the Daml Ledger Model. The logic of what happens within the do blocks of
choices has been kept relatively simple. In this chapter, we will dive deeper into Daml’s expression
language, the part that allows you to write logic inside those do blocks. But we can only scratch
the surface here. Daml borrows a lot of its language from Haskell. If you want to dive deeper, or
learn about specific aspects of the language you can refer to standard literature on Haskell. Some
recommendations:

Finding Success and Failure in Haskell (Julie Maronuki, Chris Martin)

Haskell Programming from first principles (Christopher Allen, Julie Moronuki)
Learn You a Haskell for Great Good! (Miran Lipova a)

Programming in Haskell (Graham Hutton)

Real World Haskell (Bryan O’Sullivan, Don Stewart, John Goerzen)

When comparing Daml to Haskell it's worth noting:

Haskell is a lazy language, which allows you to write things like head [1..], meaning take
the first element of an infinite list . Daml by contrast is strict. Expressions are fully evaluated,
which means it is not possible to work with infinite data structures.

Daml has a with syntax for records, and dot syntax for record field access, neither of which
present in Haskell. But Daml supports Haskell’s curly brace record notation.

Daml has a number of Haskell compiler extensions active by default.

Daml doesn’t support all features of Haskell’s type system. For example, there are no existential
types or GADTs.

Actions are called Monads in Haskell.

100 Chapter 2. Daml Guide

https://www.haskell.org
https://joyofhaskell.com/
http://haskellbook.com/
http://learnyouahaskell.com/
http://www.cs.nott.ac.uk/~pszgmh/pih.html
http://book.realworldhaskell.org/

Daml SDK Documentation, 2.1.1

Functions

In 3 Data types you learnt about one half of Daml’s type system: Data types. It’s now time to learn
about the other, which are Function types. Function types in Daml can be spotted by looking for ->
which can be read as mapsto .

Forexample, the function signature Int -> Int mapsanintegertoanotherinteger. There are many
such functions, but one would be:

increment : Int -> Int
increment n = n + 1

You can see here that the function declaration and the function definitions are separate. The dec-
laration can be omitted in cases where the type can be inferred by the compiler, but for top-level
functions (ie ones at the same level as templates, directly under a module), it’s often a good idea to
include them for readability.

In the case of increment it could have been omitted. Similarly, we could define a function add
without a declaration:

add nm=n + m

If you do this, and wonder what type the compiler has inferred, you can hover over the function name
in the IDE:

Defined at /tmp/daml-intro-9,

add nm=n +m

What you see here is a slightly more complex signature:

add : Additive a => a -> a -> a

There are two interesting things going on here:

1. We have more than one ->.
2. We have a type parameter a with a constraint Additive a.

Function Application

Let’s start by looking at the right hand parta -> a -> a.The ->isright associative, meaninga ->
a -> alisequivalenttoa -> (a -> a).Usingthe mapsto wayofreading ->we get a mapsto
a function that mapsatoa .

And this is indeed what happens. We can define a different version of increment by partially applying
add:

increment2 = add 1

2.1. Writing Daml 101

Daml SDK Documentation, 2.1.1

If you try this out in your IDE, you’ll see that the compiler infers type Int -> Int again.Itcandoso
because of the literal 1 : Int.

Soifwe haveafunctionf : a -> b -> ¢ -> dandavaluevalA : a,wegetf valA : b -> ¢
-> d, ie we can apply the function argument by argument. If we also had valB : b, we would have
f valA valB : c¢ -> d. Whatthis tells you is that function application is left associative: £ valA
valB == (f valA) wvalB.

Infix Functions

Now add is clearly just an alias for +, but what is +? + is just a function. It’s only special because it
starts with a symbol. Functions that start with a symbol are infix by default which means they can
be written between two arguments. That’s why we can write 1 + 2 ratherthan + 1 2. The rules for
converting between normal and infix functions are simple. Wrap an infix function in parentheses to
use it as a normal function, and wrap a normal function in backticks to make it infix:

three = 1 “add’ 2

With that knowledge, we could have defined add more succinctly as the alias that it is:

add?2 : Additive a => a -> a -> a
add2 = (+)

If we want to partially apply an infix operation we can also do that as follows:

increment3 = (1 +)
decrement = (- 1)

Note: While function application is left associative by default, infix operators can be declared left
or right associative and given a precedence. Good examples are the boolean operations && and | |,
which are declared right associative with precedences 3, and 2, respectively. This allows you to write
True || True && False and getvalue True. See section 4.4.2 of the Haskell 98 report for more
on fixities.

Type Constraints

The Additive a => part of the signature of add is a type constraint on the type parameter a.
Additive here is a typeclass. You already met typeclasses like Eq and Show in 3 Data types. The
Additive typeclass says that you can add a thing. le thereis a function (+) : a -> a -> a. Now
the way to read the full signature of add is Given that a has an instance for the Additive typeclass,
a maps to a function which mapsatoa .

Typeclasses in Daml are a bit like interfaces in other languages. To be able to add two things using
the + function, those things need to expose the + interface.

Unlike interfaces, typeclasses can have multiple type parameters. A good example, which also
demonstrates the use of multiple constraints at the same time, is the signature of the exercise
function:

102 Chapter 2. Daml Guide

https://www.haskell.org/onlinereport/decls.html

Daml SDK Documentation, 2.1.1

exercise : (Template t, Choice t ¢ r) => ContractId t -> c -> Update r

Let’s turn this into prose: Given that t is the type of a template, and that t has a choice c with return
type r, map a ContractId for a contract of type t to a function that takes the choice arguments of
type c and returns an Update resulting in type r.

That’s quite a mouthful, and does require one to know what meaning the typeclass Choice gives to
parameters t c and r, but in many cases, that’s obvious from the context or names of typeclasses
and variables.

Pattern Matching in Arguments

You met pattern matchingin 3 Data types, using case statements which is one way of pattern match-
ing. However, it can also be convenient to do the pattern matching at the level of function arguments.
Think about implementing the function uncurry:

uncurry : (a -> b ->c) -> (a, b) -> ¢

uncurry takes a function with two arguments (or more, since c could be a function), and turns it
into a function from a 2-tuple to c. Here are three ways of implementing it, using tuple accessors,
case pattern matching, and function pattern matching:

uncurryl £ t ft. 1 t. 2

uncurry?2 f t = case t of
(x, yv) => £ x vy

uncurry £ (x, y) = f x vy

Using function pattern matchingis clearly the most elegant here. We never need the tuple as awhole,
just its members. Any pattern matching you can do in case you can also do at the function level,
and the compiler helpfully warns you if you did not cover all cases, which is called non-exhaustive .

fromSome : Optional a -> a
fromSome (Some x) = X

The above will give you a warning:

warning:
Pattern match(es) are non-exhaustive
In an equation for ‘fromSome’: Patterns not matched: None

This means fromSome is a partial function. fromSome None will cause a runtime error.

We can use function level pattern matching together with a feature called Record Wildcards to write
the function issueAsset in chapter 8:

issueAsset : Asset -> Script (ContractId Asset)

issueAsset asset((Asset with ..) = do
assetHolders <- queryFilter (@AssetHolder issuer
(\ah -> (ah.issuer == issuer) && (ah.owner == owner))

case assetHolders of

(continues on next page)

2.1. Writing Daml 103

Daml SDK Documentation, 2.1.1

(continued from previous page)

(ahCid, _)::_ -> submit asset.issuer do
exerciseCmd ahCid Issue Asset with
[T -> abort ("No AssetHolder found for " <> show asset)

The .. in the pattern match here means bind all fields from the given record to local variables, so
we have local variables issuer, owner, etc.

The .. in the second to last line means fill all fields of the new record using local variables of the
matching name. So the function succinctly transfers all fields except for owner, which is set explic-
itly, from the V1 Asset to the V2 Asset.

Functions Everywhere

You have probably already guessed it: Anywhere you can put a value in Daml you can also put a
function. Even inside data types:

data Predicate a = Predicate with
test : a -> Bool

More commonly, it makes sense to define functions locally, inside a 1et clause or similar. A good
example of this are the validate and transfer functions defined locally in the Trade Settle
choice of the model from chapter 8:

let
validate (asset, assetCid) = do
fetchedAsset <- fetch assetCid
assertMsg
"Asset mismatch"
(asset == fetchedAsset with
observers = asset.observers)

mapA validate (zip baseAssets baseAssetCids)
mapA validate (zip quoteAssets quoteAssetCids)

let
transfer (assetCid, approvalCid) = do
exercise approvalCid TransferApproval Transfer with assetCid

transferredBaseCids <- mapA transfer (zip baseAssetCids baseApprovalCids)
transferredQuoteCids <- mapA transfer (zip quoteAssetCids
—quoteApprovalCids)

You can see that the function signature is inferred from the context here. If you look closely (or hover
over the function in the IDE), you’ll see that it has signature

validate : (HasFetch r, Egq r, HasField "observers" r a) => (r, ContractId r) ->lJ
—Update ()

Note: Bear in mind that functions are not serializable, so you can’t use them inside template ar-
guments, or as choice in- or outputs. They also don’t have instances of the Eq or Show typeclasses
which one would commonly want on data types.

104 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

You can probably guess what the mapA and mapA_s in the above choice do. They somehow loop
through the lists of assets, and approvals, and the functions validate and transfer to each, per-
forming the resulting Update action in the process. We’ll look at that more closely under Looping
below.

Lambdas

Like in most modern languages, Daml also supports inline functions called lambdas. They are de-
fined using (\x y z -> ...) syntax. Forexample, a lambda version of increment would be (\n
->n + 1).

Control Flow

In this section, we will cover branching and looping, and look at a few common patterns of how to
translate procedural code into functional code.

Branching

Until Chapter 7 the only real kind of control flow introduced has been case, which is a powerful tool
for branching.

If..Else

Chapter 5 also showed a seemingly self-explanatory 1f. .else statement, but didn’t explain it fur-
ther. And they are actually the same thing. Let’'s implement the function boolToInt : Bool ->
Int whichintypical fashion maps True to 1l and False to 0. Here is an implementation using case:

boolToInt b = case b of
True -> 1
False -> 0

If you write this function in the IDE, you’ll get a warning from the linter:

Suggestion: Use if
Found:
case b of
True -> 1
False -> 0
Perhaps:
if b then 1 else 0

The linter knows the equivalence and suggests a better implementation:

boolToInt2 b = if b
then 1
else 0

In short: 1. .else statements are equivalent to a case statement, but are easier to read.

2.1. Writing Daml 105

Daml SDK Documentation, 2.1.1

Control Flow as Expressions

case statements and 1 f. .else really are control flow in the sense that they short circuit:

doError t = case t of
"True" =-> True
"False" =-> False
_ —> error ("Not a Bool: " <> t)

This function behaves as you expect. The error only gets evaluated if an invalid text is passed in.

This is different to functions, where all arguments are evaluated immediately:

ifelse b t e = if b then t else e
boom = ifelse True 1 (error "Boom'")

In the above, boom is an error.

But while being proper control flow, case and if..else statements are also expressions in the
sense that they result in a value when evaluated. You can actually see that in the function defini-
tions above. Since each of the functions is defined just as a case or if statement, the value of the
evaluated function is just the value of the case/if statement. Things that have a value have a type.
Theif..elseexpressioninboolToInt2 hastype Int asthat’s whatthefunctionreturns,the case
expression in doError has type Bool. To be able to give such expressions an unambiguous type,
each branch needs to have the same type. The below function does not compile as one branch tries
toreturn an Int and the other a Text:

typeError b = if b
then 1
else "a"

If we need functions that can return two (or more) types of things we need to encode that in the return
type. For two possibilities, it’'s common to use the Either type:

intOrText : Bool -> Either Int Text
intOrText b = if b

then Left 1

else Right "a"

Branching in Actions

The most common case where this becomes important is inside do blocks. Say we want to create a
contract of one type in one case, and of another type in another case. Let’s say we have two template
types and want to write a function that creates an S if a condition is met, and a T otherwise.

template T
with
p : Party
where

signatory p

template S
with

(continues on next page)

106 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

p : Party
where
signatory p

It would be tempting to write a simple if. .else, but it won’t typecheck:

typeError b p = if b
then create T with p
else create S with p

We have two options:

1. Use the Either trick from above.
2. Getrid of the return types.

ifThenSElseTl b p = if b
then do
cid <- create S with p
return (Left cid)
else do
cid <- create T with p
return (Right cid)

ifThenSElseT2 b p = if b
then do
create S with p
return ()
else do
create T with p
return ()

The latter is so common that there is a utility function in DA.Action to get rid of the return type:
void : Functor £ => f a -> £ ().

ifThenSElseT3 b p = if b
then void (create S with p)
else void (create T with p)

void also helps express control flow of the type Create a T only if a condition is met.

conditionalS b p = if Db
then void (create S with p)
else return ()

Note that we still need the else clause of the same type (). This pattern is so common, it’s encap-
sulated in the standard library function DA.Action.when : (Applicative f) => Bool -> f
0 ->£ 0.

conditionalS2 b p = when b (void (create S with p))

Despite when looking like a simple function, the compiler does some magic so that is short circuits
evaluation just like 1f. .else. noop is a no-op, not an error as one might otherwise expect:

noop : Update () = when False (error "Foo'")

2.1. Writing Daml 107

Daml SDK Documentation, 2.1.1

With case, 1f. .else, void and when, you can express all branching. However, one additional fea-
ture you may want to learn is guards. They are not covered here, but can help avoid deeply nested
if..else blocks. Here’s just one example. The Haskell sources at the beginning of the chapter cover
this topic in more depth.

tellSize : Int -> Text

tellSize d

| d < 0 = "Negative"

| d == 0 = "Zero"

| d == = "Non-Zero"

| d < 10 = "Small"

| d < 100 = "Big"

| d < 1000 = "Huge"

| otherwise = "Enormous"
Looping

Other than branching, the most common form of control flow is looping. Looping is usually used to
iteratively modify some state. We’ll use JavaScript in this section to illustrate the procedural way of
doing things.

function sum(intArr) {
var result = 0;
intarr.forEach (i => {
result += 1i;
s
return result;

A more general loop looks like this:

function whileFunction (arr) {

var rev = initialize (input);

while (doContinue (state)) {
state = process (state);

}

return finalize (state);

The only real difference is that the iterator is explicit in the former, and implicit in the latter.

In both cases, state is being mutated: result in the former, state in the latter. Values in Daml are
immutable, so it needs to work differently. In Daml we will do this with folds and recursion.

108 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Folds

Folds correspond to looping with an explicit iterator: for and forEach loops in procedural lan-
guages. The most common iterator is alist, as is the case in the sum function above. For such cases,
Daml has the foldl function. The 1 stands for left and means the list is processed from the left.
There is also a corresponding foldr which processes from the right.

foldl : (b -> a ->b) -> b -> [a] -> Db

Let’s give the type parameters semantic names. b is the state, a is an item. foldls first argument
is a function which takes a state and an item and returns a new state. That’s the equivalent of the
inner block of the forEach. It then takes a state, which is the initial state, and a list of items, which
is the iterator. The result is again a state. The sum function above can be translated to Daml almost
instantly with those correspondences in mind:

sum ints = foldl (+) 0 ints

If we wanted to be more verbose, we could replace (+) with alambda (\result i -> result +
i) which makes the correspondence to result += i from the JavaScript clearer.

Almost all loops with explicit iterators can be translated to folds, though we have to take a bit of care
with performance when it comes to translating for loops:

function sumArrs(arrl, arr2) {
var 1 = min (arrl.length, arr2.length);
var result = new int[1l];
for(var i = 0; i < 1; i++) {
result[i] = arrl[i] + arr2[i];
}

return result;

Translating the for into a forEach is easy if you can get your hands on an array containing values
[0..(1-1)].And that's literally how you do it in Daml, using ranges. [0.. (1-1)] is shorthand for
enumFromTo 0 (1-1),which returns the list you’d expect.

Daml also has anoperator (!!) : [a] -> Int -> awhichreturnsanelementin alist. You may
now be tempted to write sumArrs like this:

sumArrs : [Int] -> [Int] -> [Int]
sumArrs arrl arr2 =
let 1 = min (length arrl) (length arr2)

sumAtI i = (arrl !! i) + (arr2 !! 1)
in foldl (\state i => (sumAtI 1) :: state) [] [1..(1-1)]
But you should immediately forget again that you just learnt about (!!). Lists in Daml are linked
lists, which makes access using (!!) slow and idiosyncratic. The way to do this in Daml is to get rid

of the i altogether and instead merge the lists first, and then iterate over the zipped up lists:

sumArrs2 arrl arr2 = foldl (\state (x, y) -> (x + y) :: state) [] (zip arrl arr2)

zip : [al -> [b] -> [(a, Db)] takestwo lists, and merges them into a single list where the
first element is the 2-tuple containing the first elements to the two input lists, and so on. It drops
any left-over elements of the longer list, thus making the min logic unnecessary.

2.1. Writing Daml 109

Daml SDK Documentation, 2.1.1

Maps

You’ve probably noticed that what we’ve done in this second version of sumArr is pretty standard,
we have taken a list zip arrl arr2 applied a function \ (x, y) -> x + ytoeachelement, and
returned the list of results. This operationis calledmap : (a -> b) -> [a] -> [b].Wecan
now write sumArr even more nicely:

sumArrs3 arrl arr2 = map (\(x, y) -> (x + y)) (zip arrl arr2)

As arule of thumb: Usemap if the result has the same shape as the input and you don’t need to carry
state from one iteration to the next. Use folds if you need to accumulate state in any way.

Recursion

If there is no explicit iterator, you can use recursion. Let’s try to write a function that reverses a list,
for example. We want to avoid (!!) sothere is no sensible iterator here. Instead, we use recursion:

reverseWorker rev rem = case rem of
[1 =-> rev
X::xXs —-> reverseWorker (x::rev) xs
reverse xXs = reverseWorker [] xs

You may be tempted to make reverseWorker a local definition inside reverse, but Daml only
supports recursion for top-level functions so the recursive part recurseWorker has to be its own
top-level function.

Folds and Maps in Action Contexts

The folds and map function above are pure in the sense introduced in 5 Adding constraints to a contract:
The functions used to map or process items have no side-effects. In day-to-day Daml that’s the
exception rather than the rule. If you have looked at the chapter 8 models, you’ll have noticed mapa,
mapA ,and forA all over the place. A good example are the mapA in the testMultiTrade script:

let rels =
[Relationship chfbank alice
, Relationship chfbank bob
, Relationship gbpbank alice
, Relationship gbpbank bob

]
[chfha, chfhb, gbpha, gbphb] <- mapA setupRelationship rels

Here we have a list of relationships (type [Relationship] and a function setupRelationship

Relationship -> Script (ContractId AssetHolder). We wantthe AssetHolder con-
tracts for those relationships, ie something of type [ContractId AssetHolder]. Using the map
function almost gets us there. map setupRelationship rels : [Update (ContractId
AssetHolder)]. This is a list of Update actions, each resulting in a ContractId AssetHolder.
Whatwe need isan Update actionresultingina [ContractId AssetHolder].Thelistand Update
are the wrong way around for our purposes.

Intuitively, it's clear how to fix this: we want the compound action consisting of performing each of
the actions in the list in turn. There’s a function for that, of course. sequence : : Applicative
m => [m a] -> m [a] implements that intuition and allows us to take the Update out of the

1o Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

list. So we could write sequence (map setupRelationship rels).Thisis socommon thatit’'s
encapsulated in the mapA function, a possible implementation of which is

mapA f xs = sequence (map f xs)

The AinmapA stands for Action of course, and you’ll find that many functions that have something
todowith looping have an2equivalent. The most fundamental of all of theseis foldlA : Action
m=> (b -> a ->m b) -> b -> [a] -> m Db, a left fold with side effects. Here the inner
function has a side-effect indicated by the m so the end resultm b also has a side effect: the sum of
all the side effects of the inner function.

Have a go at implementing foldlA in terms of foldl and sequence and mapA in terms of foldA.
Here are some possible implementations:

foldlA2 fn init xs =
let
work accA x = do
acc <- accA
fn acc x
in foldl work (pure init) xs

mapA2 fn xs
let
work ys x = do
y <- fn x
return (y :: ys)
in foldlA2 work [] xs

sequence? actions =
let
work ys action = do
y <- action
return (y :: ys)
in foldlA2 work [] actions

forA is just mapA with its arguments reversed. This is useful for readability if the list of items is
already in a variable, but the function is a lengthy lambda.

[usdCid, chfCid] <- forA [usdCid, chfCid] (\cid -> submit alice do
exerciseCmd cid SetObservers with
newObservers = [bob]

Lastly, you’ll have noticed that in some cases we used mapA , not mapA. The underscore indicates
that the result is not used. mapA fn xs fn = void (mapA fn xs).The Daml Linter will alert
you if you could use mapA instead of mapA, and similarly for forA .

2.1. Writing Daml m

Daml SDK Documentation, 2.1.1

Next up

You now know the basics of functions and control flow, both in pure and Action contexts. The Chapter
8 example shows just how much can be done with just the tools you have encountered here, but
there are many more tools at your disposal in the Daml| Standard Library. It provides functions and
typeclasses for many common circumstances and in 17 Intro to the Daml Standard Library, you’ll get an
overview of the library and learn how to search and browse it.

2.1.1.11 11 Intro to the Daml Standard Library

In chapters 3 Data types and 10 Functional Programming 101 you learnt how to define your own data types
and functions. But of course you don’t have to implement everything from scratch. Daml comes with
the Daml Standard Library which contains types, functions, and typeclasses that cover a large range
of use-cases. In this chapter, you’ll get an overview of the essentials, but also learn how to browse
and search this library to find functions. Being proficient with the Standard Library will make you
considerably more efficient writing Daml code. Specifically, this chapter covers:

The Prelude

Important types from the Standard Library, and associated functions and typeclasses
Typeclasses

Important typeclasses like Functor, Foldable, and Traversable

How to search the Standard Library

To go in depth on some of these topics, the literature referenced in The Haskell Connection cov-
ers them in much greater detail. The Standard Library typeclasses like Applicative, Foldable,
Traversable,Action (called Monadin Haskell),and many more, are the bread and butter of Haskell
programmers.

Note: There is a project template daml-intro-11 for this chapter, but it only contains a single
source file with the code snippets embedded in this section.

The Prelude

You’ve already used a lot of functions, types, and typeclasses without importing anything. Functions
like create,exercise,and (==),typeslike [1, (,),Optional, and typeclasses like Eq, Show, and
Ord. These all come from the Prelude. The Prelude is module that gets implicitly imported into every
other Daml module and contains both Daml specific machinery as well as the essentials needed to
work with the inbuilt types and typeclasses.

12 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Important Types from the Prelude

In addition to the Native types, the Prelude defines a number of common types:

Lists

You’ve already met lists. Lists have two constructors [] and x :: xs, the latter of which is
prepend inthe sensethatl :: [2] == [1, 2]. Infact [1,2] is just syntactical sugar

forl1 :: 2 :: [].

Tuples

In addition to the 2-tuple you have already seen, the Prelude contains definitions for tuples of size
up to 15. Tuples allow you to store mixed data in an ad-hoc fashion. Common use-cases are return
values from functions consisting of several pieces or passing around data in folds, as you saw in
Folds. An example of a relatively wide Tuple can be found in the test modules of the chapter 8 project.
Test.Intro.Asset.TradeSetup.tradeSetup returnsthe allocated parties and active contracts
in along tuple. Test.Intro.Asset.MultiTrade.testMultiTrade puts them back into scope
using pattern matching.

return (alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid,
—eurCid)

(alice, bob, usdbank, eurbank, usdha, usdhb, eurha, eurhb, usdCid, eurCid) <-L|
—tradeSetup

Tuples, like lists have some syntactic magic. Both the types as well as the constructors for tuples are
(,,,) where the number of commas determines the arity of the tuple. Type and data constructor
can be applied with values inside the brackets, or outside, and partial application is possible:

tl (Int, Text) = (1, "a")
t2 (,) Int Text = (1, "a")
t3 : (Int, Text) = (1,) "a"
td : a -> (a, Text) = (,"a")

Note: While tuples of great lengths are available, it is often advisable to define custom records
with named fields for complex structures or long-lived values. Overuse of tuples can harm code
readability.

2.1. Writing Daml n3

Daml SDK Documentation, 2.1.1

Optional

The Optional type represents avalue that may be missing. It’s the closest thing Daml hastoa nul-
lable value. Optional has two constructors: Some, which takes a value, and None, which doesn’t
take a value. In many languages one would write code like this:

lookupResult = lookupByKey (k) ;

if(lookupResult == null) {
// Do something

} else {
// Do something else

}

In Daml the same thing would be expressed as

lookupResult <- lookupByKey (T k
case lookupResult of

None -> do -- Do Something
return ()
Some cid -> do -- Do Something
return ()
Either

Either is used in cases where a value should store one of two types. It has two constructors, Left
and Right, each of which take a value of one or the other of the two types. One typical use-case of
Either is as an extended Optional where Right takes the role of Some and Left the role of None,
but with the ability to store an error value. Either Text, for example behaves just like Optional,
except that values with constructor Left have a text associated to them.

Note: As with tuples, it's easy to overuse Either and harm readability. Consider writing your own
more explicit type instead. For example if you were returning South avs North b using your own
type over Either would make your code clearer.

Typeclasses

You’ve seen typeclasses in use all the way from 3 Data types. It’s now time to look under the hood.

Typeclasses are declared using the class keyword:

class HasQuantity a g where
getQuantity : a -> g
setQuantity : g =-> a -> a

This is akin to an interface declaration of an interface with a getter and setter for a quantity. To
implement this interface, you need to define instances of this typeclass:

N4 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data Foo = Foo with
amount : Decimal

instance HasQuantity Foo Decimal where
getQuantity foo = foo.amount
setQuantity amount foo = foo with amount

Typeclasses can have constraints like functions. For example: class Eg a => Ord a means
everything that is orderable can also be compared for equality . And that’s almost all there’s to it.

Important Typeclasses from the Prelude
Eq

The Eqg typeclass allows values of a type to be compared for (in)-equality. It makes available two
function: == and /=. Most data types from the Standard Library have an instance of Eq. As you
already learned in 3 Data types, you can let the compiler automatically derive instances of Eq for you
using the deriving keyword.

Templates always have an Eqg instance, and all types stored on a template need to have one.

Ord

The Ord typeclass allows values of a type to be compared for order. It makes available functions: <,
>, <=, and >=. Most of the inbuilt data types have an instance of Ord. Furthermore, types like List
and Optional get an instance of Ord if the type they contain has one. You can let the compiler
automatically derive instances of Ord for you using the deriving keyword.

Show

Show indicates that a type can be serialized to Text,ie shown in a shell. Its key function is show,
which takes a value and converts it to Text. All inbuilt data types have an instance for Show and
types like List and Optional get an instance if the type they contain has one. It also supports the
deriving keyword.

Functor

Functors are the closest thing to containers that Daml has. Whenever you see a type with a single
type parameter, you are probably looking ata Functor: [a],Optional a,Either Text a,Update
a. Functors are things that can be mapped over and as such, the key function of Functor is fmap,
which does generically what the map function does for lists.

Other classic examples of Functors are Sets, Maps, Trees, etc.

2.1. Writing Daml N5

Daml SDK Documentation, 2.1.1

Applicative Functor

Applicative Functors are a bit like Actions, which you metin 5Adding constraints to a contract, except that
you can’t use the result of one action as the input to another action. The only important Applicative
Functor that isn’t an action in Daml is the Commands type submitted in a submit block in Daml
Script. That’s why in order to use do notation in Daml Script, you have to enable the ApplicativeDo
language extension.

Actions

Actions were already covered in 5 Adding constraints to a contract. One way to think of them is as

recipes for a value, which need to be executed to get at that value. Actions are always Func-
tors (and Applicative Functors). The intuition for that is simply that fmap £ xistherecipein x with
the extra instruction to apply the pure function £ to the result.

The really important Actions in Daml are Update and Script, but there are many others, like [1,
Optional,and Either a.

Semigroups and Monoids

Semigroups and monoids are about binary operations, but in practice, their important use is for Text
and [1, where they allow concatenation using the {<>} operator.

Additive and Multiplicative

Additive and Multiplicative abstract out arithmetic operations, so that (+), (=), (*), and some other
functions can be used uniformly between Decimal and Int.

Important Modules in the Standard Library

For almost all the types and typeclasses presented above, the Standard Library contains a module:

Module DA.List for Lists

Module DA.Optional for Optional

Module DA.Tuple for Tuples

Module DA.Either for Either

Module DA.Functor for Functors

Module DA.Action for Actions

Module DA.Monoid and Module DA.Semigroup for Monoids and Semigroups
Module DA.Text for working with Text

Module DA.Time for working with Time

Module DA.Date for working with Date

You get the idea, the names are fairly descriptive.

Other than the typeclasses defined in Prelude, there are two modules generalizing concepts you’ve
already learnt about, which are worth knowing about: Foldable and Traversable. In Looping you
learned all about folds and their Action equivalents. All the examples there were based on lists, but
there are many other possible iterators. This is expressed in two additional typeclasses: Module

16 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

DA.Traversable, and Module DA.Foldable. For more detail on these concepts, please refer to the literature
in The Haskell Connection, or https://wiki.naskell.org/Foldable_and_Traversable.

Searching the Standard Library

Being able to browse the Standard Library starting from The standard library is a start, and the module
naming helps, but it’s not an efficient process for finding out what a function you’ve encountered
does, or even less so to find a function that does a thing you need to do.

Daml has it’s own version of the Hoogle search engine, which offers search both by name and by
signature. It’s fully integrated into the search bar on https://docs.daml.com/, but for those wanting
a pure Standard Library search, it’s also available on https://hoogle.daml.com.

Searching for functions by Name

Say you come across some functions you haven’t seen before, like the ones in the ensure clause of
the MultiTrade.

ensure (length baseAssetCids == length baseAssets) &&
(length quoteApprovalCids == length quoteAssets) &&
not (null baseAssets) &&
not (null gquoteAssets)

You may be able to guesswhatnot andnull do, buttry searching those names in the documentation
search. Search results from the Standard Library will show on top. not, for example, gives

not

: Bool -> Bool

Boolean “not”

Signature (including type constraints) and description usually give a pretty clear picture of what a
function does.

Searching for functions by Signature

The other very common use-case for the search is that you have some values that you want to do
something with, but don’t know the standard library function you need. On the MultiTrade tem-
plate we have a list baseAssets, and thanks to your ensure clause we know it’s non-empty. In the
original Trade we used baseAsset.owner as the signatory. How do you get the first element of
this list to extract the owner without going through the motions of a complete pattern match using
case?

The trick is to think about the signature of the function that’s needed, and then to search for that
signature. In this case, we want a single distinguished element from a list so the signature should
be [a] -> a. If you search for that, you’ll get a whole range of results, but again, Standard Library
results are shown at the top.

Scanning the descriptions, head is the obvious choice, as used in the 1let of the MultiTrade tem-
plate.

2.1. Writing Daml 17

https://wiki.haskell.org/Foldable_and_Traversable
https://hoogle.haskell.org/
https://docs.daml.com/
https://hoogle.daml.com

Daml SDK Documentation, 2.1.1

You may notice that in the search results you also get some hits that don’t mention [] explicitly. For
example:

The reason is that there is an instance for Foldable [a].

Let’s try another search. Suppose you didn’t want the first element, but the one atindexn. Remember

that (!!) operator from 10 Functional Programming 101? There are now two possible signatures we
could search for: [a] -> Int -> aand Int -> [a] -> a.Trysearching for both. You’ll see that
the search returns (!!) in both cases. You don’t have to worry about the order of arguments.

Next up

There’s little more to learn about writing Daml at this point that isn’t best learnt by practice and
consulting reference material for both Daml and Haskell. To finish off this course, you’ll learn a little
more about your options for testing and interacting with Daml code in 12 Testing Daml Contracts, and
about the operational semantics of some keywords and common associated failures.

2.1.1.12 12 Testing Daml Contracts

This chapter is all about testing and debugging the Daml contracts you’ve built using the tools from
chapters 1-10. You’ve already met Daml Script as a way of testing your code inside the IDE. In this
chapter you’ll learn about more ways to test with Daml Script and its other uses, as well as other
tools you can use for testing and debugging. You’ll also learn about a few error cases that are most
likely to crop up only in actual distributed testing, and which need some care to avoid. Specifically
we will cover:

Daml Test tooling - Script, REPL, and Navigator
The trace and debug functions
Contention

Note that this section only covers testing your Daml contracts. For more holistic application testing,
please refer to Testing Your Web App.

If you no longer have your projects set up, please follow the setup instructions in 9 Working with De-
pendencies to get hold of the code for this chapter. There is no code specific to this chapter.

Daml Test Tooling

There are three primary tools available in the SDK to test and interact with Daml contracts. Itis highly
recommended to explore the respective docs. The chapter 8 model lends itself well to being tested
using these tools.

Daml Script

Daml Script should be familiar by now. It's a way to script commands and queries from
multiple parties against a Daml Ledger. Unless you’ve browsed other sections of the doc-
umentation already, you have probably used it mostly in the IDE. However, Daml Script
can do much more than that. It has four different modes of operation:

1. Runon a special Script Service in the IDE, providing the Script Views.

2. Run the Script Service via the CLI, which is useful for quick regression testing.

3. Starta Sandbox and run against that for regression testing against an actual Ledger
API.

n8 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

4. Run against any other already running Ledger.
Daml Navigator

Daml Navigator is a Ul that runs against a Ledger APl and allows interaction with con-
tracts.

Daml REPL

If you want to do things interactively, Daml REPL is the tool to use. The best way to think
of Daml REPL is as an interactive version of Daml Script, but it doubles up as a language
REPL (Read-Evaluate-Print Loop), allowing you to evaluate pure expressions and inspect
the results.

Debug, Trace, and Stacktraces

The above demonstrates nicely how to test the happy path, but what if a function doesn’t behave as
you expected? Daml has two functions that allow you to do fine-grained printf debugging: debug and
trace. Both allow you to print something to StdOut if the code is reached. The difference between
debug and trace is similar to the relationship between abort and error:

debug : Text -> m () maps a text to an Action that has the side-effect of printing to
StdOut.
trace : Text -> a -> aprintsto StdOut when the expression is evaluated.
daml> let a : Script () = debug "foo"
daml> let b : Script () = trace "bar" (debug "baz")
[Daml.Script:378]: "bar"
daml> a
[DA.Internal.Prelude:532]: "foo"
daml> b
[DA.Internal.Prelude:532]: "baz"
daml>

If in doubt, use debug. It’s the easier of the two to interpret the results of.

The thing in the square brackets is the last location. It’ll tell you the Daml file and line number that
triggered the printing, but often no more than that because full stacktraces could violate subtrans-
action privacy quite easily. If you want to enable stacktraces for some purely functional code in your
modules, you can use the machinery in Module DA.Stack to do so, but we won’t cover that any further
here.

Diagnosing Contention Errors

The above tools and functions allow you to diagnose most problems with Daml code, but they are all
synchronous. The sequence of commands is determined by the sequence of inputs. That means one
of the main pitfalls of distributed applications doesn’t come into play: Contention.

Contention refers to conflicts over access to contracts. Daml guarantees that there can only be one
consuming choice exercised per contract so what if two parties simultaneously submit an exercise
command on the same contract? Only one can succeed. Contention canalsooccurduetoincomplete
or stale knowledge. Maybe a contract was archived a little while ago, but due to latencies, a client
hasn’t found out yet, or maybe due to the privacy model, they never will. What all these cases have

2.1. Writing Daml 19

Daml SDK Documentation, 2.1.1

in common is that someone has incomplete knowledge of the state the ledger will be in at the time
a transaction will be processed and/or committed.

If we look back at Daml’s execution model we’ll see there are three places where ledger state is con-
sumed:

1. Acommand is submitted by some client, probably looking at the state of the ledger to build that

command. Maybe the command includes references to Contractlds that the client believes are

active.

During interpretation, ledger state is used to look up active contracts.

3. During commit, ledger state is again used to look up contracts and validate the transaction by
reinterpreting it.

N

Collisions can occur both between 1and 2 and between 2 and 3. Only during the commit phase is the
complete relevant ledger state at the time of the transaction known, which means the ledger state
at commit time is king. As a Daml contract developer, you need to understand the different causes
of contention, be able to diagnose the root cause if errors of this type occur, and be able to avoid
collisions by designing contracts appropriately.

Common Errors

The most common error messages you’ll see are listed below. All of them can be due to one of three
reasons.

1. Race Conditions - knowledge of a state change is not yet known during command submission

2. Stale References - the state change is known, but contracts have stale references to keys or
Contractlds

3. Ignorance - due to privacy or operational semantics, the requester doesn’t know the current
state

Following the possible error messages, we’ll discuss a few possible causes and remedies.

Contractld Not Found During Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't findl!
—contractl]
—ContractId(004481eb78464f1ed3291b06504d5619db4£110df71cb5764717elc4d3aa096b9f) .

Contractld Not Found During Validation

Disputed: dependency error: couldn't find contract ContractId
— (00c06£a370£8858020£d100423d928b1d200d8e3c997560009c038307ed6e25d6f) .

120 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fetchByKey Error during Interpretation

Command interpretation error in LF-Damle: dependency error: couldn't find key com.
—daml.lf.transaction.GlobalKey@11£4913d.

fetchByKey Dispute During Validation

Disputed: dependency error: couldn't find key com.daml.lf.transaction.
—GlobalKey@11£4913d

lookupByKey Dispute During Validation

Disputed: recreated and original transaction mismatch VersionedTransaction(...)!l!
—expected, but VersionedTransaction(...) 1is recreated.

Avoiding Race Conditions and Stale References

The first thing to avoid is write-write or write-read contention on contracts. In other words, one re-
quester submitting a transaction with a consuming exercise on a contract while another requester
submits another exercise or fetch on the same contract. This type of contention cannot be elimi-
nated entirely, for there will always be some latency between a client submitting a command to a
participant, and other clients learning of the committed transaction.

Here are a few scenarios and measures you can take to reduce this type of collision:

1. Shard data. Imagine you want to store a user directory on the Ledger. At the core, this is of

type [(Text, Party)],where Text is a display name and Party the associated Party. If you
store this entire list on a single contract, any two users wanting to update their display name
at the same time will cause a collision. If you instead keep each (Text, Party) onaseparate
contract, these write operations become independent from each other.
The Analogy to keep in mind when structuring your data is that a template defines a table, and
a contract is a row in that table. Keeping large pieces of data on a contract is like storing big
blobs in a database row. If these blobs can change through different actions, you get write
conflicts.

2. Use nonconsuming choices if you can. Nonconsuming exercises have the same contention

properties as fetches: they don’t collide with each other.
Contract keys can seem like a way out, but they are not. Contract keys are resolved to Contract
IDs during the interpretation phase on the participant node. So it reduces latencies slightly by
moving resolution from the client layer to the participant layer, but it doesn’t remove the issue.
Going back to the auction example above, if Alice sentacommand exerciseByKey @Auction
auctionKey Bid with amount = 100, this would be resolved to an exercise cid Bid
with amount = 100 during interpretation, where cid is the participant’s best guess what
Contractld the key refers to.

3. Avoid workflows that encourage multiple parties to simultaneously try to exercise a consum-
ing choice on the same contract. For example, imagine an Auction contract containing a field
highestBid : (Party, Decimal). If Alice tries to bid $100 at the same time that Bob tries
to bid $90, it doesn’t matter that Alice’s bid is higher. The second transaction to be sequenced

2.1. Writing Daml 121

Daml SDK Documentation, 2.1.1

will be rejected as it has a write collision with the first. It's better to record the bids in sepa-
rate Bid contracts, which can be written to independently. Again, think about how you would
structure this data in a relational database to avoid data loss due to race conditions.

4. Think carefully about storing Contractlds. Imagine you had created a sharded user directory
according to 1. Each user has a User contract that store their display name and party. Now you
write a chat application where each Message contract refers to the sender by ContractId
User. If the user changes their display name, that reference goes stale. You either have to
modify all messages that user ever sent, or become unable to use the sender contract in Daml.
If you need to be able to make this link inside Daml, Contract Keys help here. If the only place
you need to link Party to User is the Ul, it might be best to not store contract references in
Daml at all.

Collisions due to Ignorance

The Daml Ledger Model specifies authorization rules, and privacy rules. le it specifies what makes a
transaction conformant, and who gets to see which parts of a committed transaction. It does not
specify how a command is translated to a transaction. This may seem strange at first since the
commands - create, exercise, exerciseByKey, createAndExercise - correspond so closely to actions in
the ledger model. But the subtlety comes in on the read side. What happens when the participant,
during interpretation, encounters a fetch, fetchByKey, or LlookupByKey?

To illustrate the problem, let’s assume there is a template T with a contract key, and Alice has wit-
nessed two Create nodes of a contract of type T with key k, but no corresponding archive nodes.
Alice may not be able to order these two nodes causally in the sense of one create came before the
other . See Causality and Local Ledgers for an in-depth treatment of causality on Daml Ledgers.

Sowhat should happen now if Alice’s participant encounters a fetchByKey QT kor lookupByKey
@T k during interpretation? What if it encounters a fetch node? These decisions are part of the
operational semantics, and the decision of what should happen is based on the consideration that
the chance of a participant submitting an invalid transaction should be minimized.

If a fetch or exercise is encountered, the participant resolves the contract as long as it has not
witnessed an archive node for that contract - ie as long as it can’t guarantee that the contract is no
longer active. The rationale behind this is that fetch and exercise use Contractlds, which need
to come from somewhere: Command arguments, Contract arguments, or key lookups. In all three
cases, someone believes the Contractld to be active still so it’s worth trying.

If a fetchByKey or LlookupByKey node is encountered, the contractis only resolved if the requester
is a stakeholder on an active contract with the given key. If that’s not the case, there is no reason
to believe that the key still resolves to some contract that was witnessed earlier. Thus, when using
contract keys, make sure you make the likely requesters of transactions observers on your contracts.
If you don’t, fetchByKey will always fail, and LookupByKey will always return None.

Let’s illustrate how collisions and operational semantics and interleave:

1. Bob creates T with key k. Alice is not a stakeholder.

2. Alice submits a command resulting in well-authorized lookupByKey QT k during interpre-

tation. Even if Alice witnessed 1, this will resolve to a None as Alice is not a stakeholder. This

transaction is invalid at the time of interpretation, but Alice doesn’t know that.

Bob submits an exerciseByKey @T k Archive.

4. Depending on which of the transactions from 2 and 3 gets sequenced first, either just 3, or both
2 and 3 get committed. If 3 is committed before 2, 2 becomes valid while in transit.

w

122 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

As you can see, the behaviorof fetch, fetchByKeyand lookupByKey atinterpretation time depend
on what information is available to the requester at that time. That’'s something to keep in mind
when writing Daml contracts, and something to think about when encountering frequent Disputed
errors.

Next up

You’ve reached the end of the Introduction to Daml. Congratulations. If you think you understand all
this material, you could test yourself by getting Daml certified at https://academy.daml.com. Or put
your skills to good use by developing a Daml application. There are plenty of examples to inspire you
on the Examples page.

2.1.2 Language reference docs

This section contains a reference to writing templates for Daml contracts. It includes:

2.1.2.1 Overview: template structure

This page covers what a template looks like: what parts of a template there are, and where they go.

For the structure of a Daml file outside a template, see Reference: Daml file structure.

Template outline structure

Here’s the structure of a Daml template:

template NameOfTemplate
with
exampleParty : Party
exampleParty2 : Party
exampleParty3 : Party
exampleParameter : Text
-—- more parameters here
where
signatory exampleParty
observer exampleParty?
agreement
—-— some text
ensure
-- boolean condition
True
key (exampleParty, exampleParameter) : (Party, Text)
maintainer (exampleFunction key)
-— a choice goes here; see next section

template name template keyword
parameters with followed by the names of parameters and their types
template body where keyword

Can include:

2.1. Writing Daml 123

https://academy.daml.com
https://daml.com/examples

Daml SDK Documentation, 2.1.1

template-local definitions let keyword
Lets you make definitions that have access to the contract arguments and are available
in the rest of the template definition.
signatories signatory keyword
Required. The parties (see the Party type) who must consent to the creation of this contract.
You won’t be able to create this contract until all of these parties have authorized it.
observers observer keyword
Optional. Parties that aren’t signatories but who you still want to be able to see this con-
tract.
an agreement agreement keyword
Optional. Text that describes the agreement that this contract represents.
a precondition ensure keyword
Only create the contract if the conditions after ensure evaluate to true.
a contract key key keyword
Optional. Lets you specify a combination of a party and other data that uniquely identifies
a contract of this template. See Reference: Contract keys.
maintainers maintainer keyword
Required if you have specified a key. Keys areonly unique to amaintainer. See Reference:
Contract keys.

choices choice NameOfChoice : ReturnType controller nameOfParty do
or
controller nameOfParty can NameOfChoice : ReturnType do

Defines choices that can be exercised. See Choice structure for what can go in a choice.
Note that controller-first syntax is deprecated and will be removed in a future version
of Daml.

Choice structure

Here’s the structure of a choice inside a template. There are two ways of specifying a choice:

start with the choice keyword
start with the controller keyword

-- option 1 for specifying choices: choice name first
choice NameOfChoice
() -—- replace () with the actual return type

with
party : Party -- parameters here
controller party
do
return () -- replace this line with the choice body

-— option 2 for specifying choices (deprecated syntax): controller first
controller exampleParty can
NameOfAnotherChoice
() -— replace () with the actual return type

with
party : Party -- parameters here
do
return () -- replace the line with the choice body

a controller (or controllers) controller keyword
Who can exercise the choice.

124 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

choice observers observer keyword
Optional. Additional parties that are guaranteed to be informed of an exercise of the choice.
To specify choice observers, you must start you choice with the choice keyword.
The optional observer keyword must precede the mandatory controller keyword.

consumption annotation Optionally one of preconsuming, postconsuming, nonconsuming, which
changes the behavior of the choice with respect to privacy and if and when the contract is
archived. See contract consumption in choices for more details.

aname Must begin with a capital letter. Must be unique - choices in different templates can’t have
the same name.

areturn type after a :, the return type of the choice

choice arguments with keyword
If you start your choice with choice and include a Party as a parameter, you can make that
Party the controller of the choice. This is a feature called flexible controllers , and it
means you don’t have to specify the controller when you create the contract - you can spec-
ify it when you exercise the choice. To exercise a choice, the party needs to be a signatory or an
observer of the contract and must be explicitly declared as such.

a choice body After do keyword
What happens when someone exercises the choice. A choice body can contain update state-
ments: see Choice body structure below.

Choice body structure

A choice body contains Update expressions, wrapped in a do block.
The update expressions are:

create Create a new contract of this template.
create NameOfContract with contractArgumentl = valuel; contractArgument?2
= value2;

exercise Exercise a choice on a particular contract.
exercise 1dOfContract NameOfChoiceOnContract with choiceArgumentl =
valuel; choiceArgument2 = value 2; .

fetch Fetch a contract using its ID. Often used with assert to check conditions on the contract’s
content.
fetchedContract <- fetch IdOfContract

fetchByKey Like fetch, but uses a contract key rather than an ID.
fetchedContract <- fetchByKey (@ContractType contractKey

lookupByKey Confirm that a contract with the given contract key exists.
fetchedContractId <- lookupByKey @ContractType contractKey

abort Stop execution of the choice, fail the update.
if False then abort

assert Fail the update unless the condition is true. Usually used to limit the arguments that can be
supplied to a contract choice.
assert (amount > 0)

getTime Gets the ledger time. Usually used to restrict when a choice can be exercised.
currentTime <- getTime

return Explicitly return a value. By default, a choice returns the result of its last update expression.
This means you only need to use return if you want to return something else.
return ContractlID ExampleTemplate

The choice body can also contain:

2.1. Writing Daml 125

Daml SDK Documentation, 2.1.1

let keyword Used to assign values or functions.

assign a value to the result of an update statement For example: contractFetched <- fetch
someContractId

2.1.2.2 Reference: templates

This page gives reference information on templates:

For the structure of a template, see Overview: template structure.

Template name

template NameOfTemplate

This is the name of the template. It’s preceded by template keyword. Must begin with a capital
letter.

This is the highest level of nesting.
The name is used when creating a contract of this template (usually, from within a choice).

Template parameters

with
exampleParty : Party
exampleParty2 : Party
exampleParty3 : Party
exampleParam : Text
-- more parameters here

with keyword. The parameters are in the form of a record type.

Passed in when creating a contract from this template. These are then in scope inside the tem-
plate body.

A template parameter can’t have the same name as any choice arguments inside the template.
For all parties involved in the contract (whether they're a signatory, observer, or con-

troller) you must pass them in as parameters to the contract, whether individually or as
alist([Party]).

Template-local Definitions

where
let
allParties = [exampleParty, exampleParty2, exampleParty3]

let keyword. Starts a block and is followed by any number of definitions, just like any other
let block.

Template parameters as well as this are in scope, but self is not.
Definitions from the 1let block can be used anywhere else in the template’s where block.

126 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Signatory parties

signatory exampleParty

signatory keyword. After where. Followed by at least one Party.

Signatories are the parties (see the Party type) who must consent to the creation of this con-
tract. They are the parties who would be put into an obligable position when this contract is
created.

Daml won’t let you put someone into an obligable position without their consent. So if the
contract will cause obligations for a party, they must be a signatory. If they haven’t authorized
it, you won’t be able to create the contract. In this situation, you may see errors like:
NameOfTemplate requires authorizers Partyl,Party2,Party, but only Partyl
were given.

When a signatory consents to the contract creation, this means they also authorize the conse-
quences of choices that can be exercised on this contract.

The contractis visible to all signatories (as well as the other stakeholders of the contract). That
is, the compiler automatically adds signatories as observers.

Each template must have at least one signatory. A signatory declaration consists of the signa-
tory keyword followed by a comma-separated list of one or more expressions, each expression
denoting a Party or collection thereof.

Observers

observer exampleParty?2

observer keyword. After where. Followed by at least one Party.

Observers are additional stakeholders, so the contractis visible to these parties (see the Party
type).

Optional. You can have many, either as a comma-separated list or reusing the keyword. You
could pass in alist (of type [Party]).

Use when a party needs visibility on a contract, or be informed or contract events, but is not a
signatory or controller.

If you start your choice with choice rather than controller (see Choices below), you must
make sure to add any potential controller as an observer. Otherwise, they will not be able to
exercise the choice, because they won’t be able to see the contract.

Choices

-—- option 1 for specifying choices: choice name first
choice NameOfChoicel
() -— replace () with the actual return type

with
exampleParameter : Text -- parameters here
controller exampleParty
do
return () -- replace this line with the choice body

-— option 2 for specifying choices (deprecated syntax): controller first
controller exampleParty can

(continues on next page)

21

Writing Daml 127

Daml SDK Documentation, 2.1.1

(continued from previous page)

NameOfChoice2
() -- replace () with the actual return type
with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body
nonconsuming NameOfChoice3
() -— replace () with the actual return type

with
exampleParameter : Text -- parameters here
do
return () -- replace this line with the choice body

A right that the contract gives the controlling party. Can be exercised.

This is essentially where all the logic of the template goes.

By default, choices are consuming: that is, exercising the choice archives the contract, so no
further choices can be exercised on it. You can make a choice non-consuming using the non-
consuming keyword.

There are two ways of specifying a choice: start with the choice keyword or start with the
controller keyword.

Starting with choice lets you pass in a Party to use as a controller. But you must make sure
to add that party as an observer.

See Reference: choices for full reference information.

Agreements

agreement
-- text representing the contract

wn

agreement keyword, followed by text.

Represents what the contract means in text. They’re usually the boundary between on-ledger
and off-ledger rights and obligations.

Usually, they look like agreement tx,where tx is of type Text.

You can use the built-in operator show to convert party names to a string, and concatenate with
<>

Preconditions

ensure
True -- a boolean condition goes here

ensure keyword, followed by a boolean condition.
Used on contract creation. ensure limits the values on parameters that can be passed to the
contract: the contract can only be created if the boolean condition is true.

128 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Contract keys and maintainers

key (exampleParty, exampleParam) : (Party, Text)
maintainer (exampleFunction key)

key and maintainer keywords

This feature lets you specify a key thatyou can use to uniquely identify this contract as an
instance of this template.

If you specify a key, you must also specify amaintainer. This is a Party that will ensure the
uniqueness of all the keys it is aware of.

Because of this, the key mustinclude themaintainer Party or parties (for example, as part
of a tuple or record), and the maintainer must be a signatory.

For a full explanation, see Reference: Contract keys.

2.1.2.3 Reference: choices

This page gives reference information on choices. For information on the high-level structure of a
choice, see Overview: template structure.

choice first or controller first

There are two ways you can start a choice:

start with the choice keyword
start with the controller keyword

-—- option 1 for specifying choices: choice name first
choice NameOfChoice
() -- replace () with the actual return type

with
party : Party -- parameters here
controller party
do
return () -- replace this line with the choice body

-- option 2 for specifying choices (deprecated syntax): controller first
controller exampleParty can
NameOfAnotherChoice
() -- replace () with the actual return type

with
party : Party -- parameters here
do
return () -- replace the line with the choice body

The main difference is that starting with choice means that you can pass in a Party to use as a
controller. If you do this, you must make sure that you add that party as an observer, otherwise
they won’t be able to see the contract (and therefore won’t be able to exercise the choice).

In contrast, if you start with controller, the controller is automatically added as an observer
when you compile your Daml files.

A secondary difference is that starting with choice allows choice observers to be attached to the
choice using the observer keyword. The choice observers are a list of parties that, in addition to

2.1. Writing Daml 129

Daml SDK Documentation, 2.1.1

the stakeholders, will see all consequences of the action.

—-— choice observers may be specified if option 1 1is used
choice NameOfChoiceWithObserver

0

-- replace () with the actual return type

with
party Party -- parameters here
observer party -- optional specification of choice observers

—only available in Daml-LF 1.11)

controller exampleParty
do

return () -- replace this line with the choice body

(currentlyl]

Choice name

Listing 2: Option 1for specifying choices: choice name first

choice ExampleChoicel

() -- replace () with the actual return type

Listing 3: Option 2 for specifying choices (deprecated syn-
tax): controller first

ExampleChoice2

() -- replace () with the actual return type

The name of the choice. Must begin with a capital letter.
If you’re using choice-first, preface with choice. Otherwise, this isn’t needed.
Must be unique in your project. Choices in different templates can’t have the

same name.

If you’re using controller-first, you can have multiple choices after one can, for tidiness. How-
ever, note that this syntax is deprecated and will be removed in a future version of Daml.

Controllers

Listing 4: Option 1for specifying choices: choice name first

controller exampleParty

130

Chapter 2.

Daml Guide

Daml SDK Documentation, 2.1.1

Listing 5: Option 2 for specifying choices (deprecated syn-
tax): controller first

controller exampleParty can

controller keyword
The controller is a comma-separated list of values, where each value is either a party or a col-

lection of parties.
The conjunction of all the parties are required to authorize when this choice is exercised.

Contract consumption

If no qualifier is present, choices are consuming: the contract is archived before the evaluation of
the choice body and both the controllers and all contract stakeholders see all consequences of the
action.

Preconsuming choices

Listing 6: Option 1for specifying choices: choice name first

preconsuming choice ExampleChoice5
() -- replace () with the actual return type

2.1. Writing Daml 131

Daml SDK Documentation, 2.1.1

Listing 7: Option 2 for specifying choices (deprecated syn-
tax): controller first

preconsuming ExampleChoice?7
() -- replace () with the actual return type

preconsuming keyword. Optional.

Makes a choice pre-consuming: the contract is archived before the body of the exercise is ex-
ecuted.

The create arguments of the contract can still be used in the body of the exercise, but cannot
be fetched by its contract id.

The archival behavior is analogous to the consuming default behavior.

Only the controllers and signatories of the contract see all consequences of the action. Other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract before any-
thing else happens

Postconsuming choices

Listing 8: Option 1for specifying choices: choice name first

postconsuming choice ExampleChoice6
() -- replace () with the actual return type

Listing 9: Option 2 for specifying choices (deprecated syn-
tax): controller first

postconsuming ExampleChoice8
() -- replace () with the actual return type

postconsuming keyword. Optional.

Makes a choice post-consuming: the contract is archived after the body of the exercise is exe-
cuted.

The create arguments of the contract can still be used in the body of the exercise as well as the
contract id for fetching it.

Only the controllers and signatories of the contract see all consequences of the action. Other
stakeholders merely see an archive action.

Can be thought as a non-consuming choice that implicitly archives the contract after the
choice has been exercised

Non-consuming choices

Listing 10: Option 1 for specifying choices: choice name
first

nonconsuming choice ExampleChoice3
() -- replace () with the actual return type

132 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Listing 11: Option 2 for specifying choices (deprecated syn-
tax): controller first

nonconsuming ExampleChoice4
() -- replace () with the actual return type

nonconsuming keyword. Optional.

Makes a choice non-consuming: that is, exercising the choice does not archive the contract.
Only the controllers and signatories of the contract see all consequences of the action.
Useful in the many situations when you want to be able to exercise a choice more than once.

Return type

Return type is written immediately after choice name.

All choices have a return type. A contract returning nothing should be marked as returning a
unit ,ie ().

If a contract is/contracts are created in the choice body, usually you would return the contract

ID(s) (which have the type ContractId <name of template>). This is returned when the

choice is exercised, and can be used in a variety of ways.

Choice arguments

with
exampleParameter : Text

with keyword.

Choice arguments are similar in structure to Template parameters: a record type.

A choice argument can’t have the same name as any parameter to the template the choice is in.
Optional - only if you need extra information passed in to exercise the choice.

Choice body

Introduced with do

The logic in this section is what is executed when the choice gets exercised.

The choice body contains Update expressions. For detail on this, see Reference: updates.

By default, the last expression in the choice is returned. You can return multiple updates in
tuple form or in a custom data type. To return something that isn’t of type Update, use the
return keyword.

2.1. Writing Daml 133

Daml SDK Documentation, 2.1.1

2.1.2.4 Reference: updates

This page gives reference information on Updates. For the structure around them, see Overview: tem-
plate structure.

Background

An Update is ledger update. There are many different kinds of these, and they’re listed below.
They are what can go in a choice body.

Binding variables

boundVariable <- UpdateExpressionl

Oneofthe things youcandoinachoice bodyis bind (assign) an Update expression to avariable.
This works for any of the Updates below.

do
do
updateExpressionl
updateExpression?2
do can be used to group Update expressions. You can only have one update expression in a
choice, so any choice beyond the very simple will use a do block.
Anything you can put into a choice body, you can put into a do block.
By default, do returns whatever is returned by the last expression in the block.
So if you want to return something else, you’ll need to use return explicitly - see return for an
example.
Create

create NameOfTemplate with exampleParameters

create function.

Creates a contract on the ledger. When a contract is committed to the ledger, it is given a
unique contract identifier of type ContractId <name of template>.

Creating the contract returns that ContractId.

Use with to specify the template parameters.

Requires authorization from the signatories of the contract being created. This is given by
being signatories of the contract from which the other contract is created, being the controller,
or explicitly creating the contract itself.

Ifthe required authorization is not given, the transaction fails. For more detail on authorization,
see Signatory parties.

134 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

exercise

exercise IdOfContract NameOfChoiceOnContract with choiceArgumentl = valuel

exercise function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice. If the authorization is not given,
the transaction fails.

exerciseByKey

exerciseByKey @ContractType contractKey NameOfChoiceOnContract withl]
—choiceArgumentl = valuel

exerciseByKey function.

Exercises the specified choice on the specified contract.

Use with to specify the choice parameters.

Requires authorization from the controller(s) of the choice and from at least one of the main-
tainers of the key. If the authorization is not given, the transaction fails.

fetch

fetchedContract <- fetch IdOfContract

fetch function.

Fetches the contract with that ID. Usually used with a bound variable, as in the example above.
Often used to check the details of a contract before exercising a choice on that contract. Also
used when referring to some reference data.

fetch cidfailsif cidis not the contract id of an active contract, and thus causes the entire
transaction to abort.

The submitting party must be an observer or signatory on the contract, otherwise fetch fails,
and similarly causes the entire transaction to abort.

fetchByKey

fetchedContract <- fetchByKey (@ContractType contractKey

fetchByKey function.

The same as fetch, but fetches the contract with that contract key, instead of the contract ID.
Like fetch, fetchByKey needs to be authorized by at least one stakeholder of the contract.
Fails if no contract can be found.

2.1. Writing Daml 135

Daml SDK Documentation, 2.1.1

lookupByKey

fetchedContractId <- lookupByKey (ContractType contractKey

lookupByKey function.

Use this to confirm that a contract with the given contract key exists.

If the submitting party is a stakeholder of a matching contract, LookupByKey returns the Con-
tractId of the contract; otherwise, it returns None. Transactions may fail due to contention
because the key changes between the lookup and committing the transaction, or becasue the
submitter didn’t know about the existence of a matching contract.

All of the maintainers of the key must authorize the lookup (by either being signatories or by
submitting the command to lookup).

abort

abort errorMessage

abort function.

Fails the transaction - nothing in it will be committed to the ledger.

errorMessage is of type Text. Use the error message to provide more context to an external
system (e.g., it gets displayed in Daml Studio script results).

You could use assert False as an alternative.

assert

assert (condition == True)

assert keyword.

Fails the transaction if the condition is false. So the choice can only be exercised if the boolean
expression evaluates to True.

Often used to restrict the arguments that can be supplied to a contract choice.

Here’s an example of using assert to prevent a choice being exercised if the Party passed as a
parameter is on a blacklist:

choice Transfer : ContractId RestrictedPayout
with newReceiver : Party
controller receiver
do
assert (newReceiver /= blacklisted)
create RestrictedPayout with receiver = newReceiver; giver; blacklisted;![!

—qty

136 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

getTime

currentTime <- getTime

getTime keyword.
Gets the ledger time. (You will usually want to immediately bind it to a variable in order to be

able to access the value.)
Used to restrict when a choice can be made. For example, with an assert thatthe timeis later

than a certain time.

Here’s an example of a choice that uses a check on the current time:

choice Complete : ()
controller party
do
-— bind the ledger effective time to the tchoose variable using getTime
tchoose <- getTime
-- assert that tchoose is no earlier than the begin time
assert (begin <= tchoose && tchoose < addRelTime begin period)

return

return ()

return keyword.
Used to return a value from do block that is not of type Update.

Here’s an example where two contracts are created in a choice and both their ids are returned as a
tuple:

do
firstContract <- create SomeContractTemplate with argl; arg2
secondContract <- create SomeContractTemplate with argl; arg2
return (firstContract, secondContract)

let

See the documentation on Let.

Let looks similar to binding variables, but it’s very different! This code example shows how:

do
-- defines a function, createdContract, taking a single arqgument that when
-— called will create the new contract using argument for issuer and owner

let createContract x = create NameOfContract with issuer = x; owner = X

createContract partyl
createContract party?2

2.1. Writing Daml 137

Daml SDK Documentation, 2.1.1

this

this lets you refer to the current contract from within the choice body. This refers to the contract,
not the contract ID.

It’s useful, for example, if you want to pass the current contract to a helper function outside the
template.

2.1.2.5 Reference: data types

This page gives reference information on Daml’s data types.

Built-in types

138 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Table of built-

in primitive types

Type

For

Example

Notes

Int

integers

1, 1000000,
1000 000

Int values are signed 64-bit integers which
represent numbers between -9,223, 372,
036,854,775,808 and 9,223,372,036,
854,775,807 inclusive. Arithmetic opera-
tions raise an error on overflows and divi-
sion by 0. To make long numbers more read-
able you can optionally add underscores.

Decimal

short for Numeric
10

Decimal values are rational numbers with
precision 38 and scale 10.

Numeric n

fixed point decimal
numbers

Numeric n values are rational numbers
with 38 decimal digits. The scale param-
eter n controls the number of digits after
the decimal point, so for example, Numeric
10 values have 10 digits after the decimal
point,and Numeric 20 values have 20 dig-
its after the decimal point. The value of n
must be between 0 and 37 inclusive.

BigNu-
meric

large fixed point
decimal numbers

BigNumeric values are rational numbers
with up to 2716 decimal digits. They can
have up to 2715 digits before the decimal
point, and up to 2715 digits after the deci-
mal point.

Text

strings

"hello"

Text values are strings of characters en-
closed by double quotes.

Bool

boolean values

True, False

Party

unicode string rep-
resenting a party

alice <-
getbParty
"Alice"

Every party in a Daml system has a unique
identifier of type Party. To create a value
of type Party, use binding on the result of
calling getParty. The party text can only
contain alphanumeric characters, -, and
spaces.

Date

models dates

date
Apr 5

2007

Permissible dates range from 0001-01-01
to 9999-12-31 (using a year-month-day
format). To create a value of type Date, use
the function date (to get this function, im-
port DA.Date).

Time

models absolute

time (UTC)

(date
Apr
30

time
2007
5)
05

14

Time values have microsecond precision
with allowed range from 0001-01-01 to
9999-12-31 (using a year-month-day for-
mat). To create a value of type Time, use
a Date and the function time (to get this
function, import DA. Time).

RelTime

models differences
between time values

seconds 1,
seconds
(=2)

RelTime values have microsec-
ond precision with allowed range
from -9,223,372,036,854,775,808ms to
9,223,372,036,854,775,807ms There are no
literals for Re1Time. Instead they are cre-
ated using one of days, hours, minutes,

2.1. Writing D

Seconds, miliseconds and microsec_:l—9
onds (to get these functions, impoé
DA.Time).

Daml SDK Documentation, 2.1.1

Escaping characters

Text literals support backslash escapes to include their delimiter (\") and a backslash itself (\\).

Time

Definition of time on the ledger is a property of the execution environment. Daml assumes there is
a shared understanding of what time is among the stakeholders of contracts.

Lists

[a] is the built-in data type for a list of elements of type a. The empty list is denoted by [] and [1,
3, 2] isanexample of alistof type [Int].

You can also construct lists using [] (the empty list) and : : (which is an operator that appends an
element to the front of a list). For example:

twoEquivalentListConstructions =
script do
assert ([1, 2, 3] == 1 :: 2 :: 3 :: 1[1)

Summing a list

To sum a list, use a fold (because there are no loops in Daml). See Folding for details.

Records and record types

You declare a new record type using the data and with keyword:

data MyRecord = MyRecord
with
labell : typel
label2 : type?2

labelN : typeN
deriving (Eq, Show)

where:

labell, label2, ,labelN are labels, which must be unique in the record type
typel, type2, ,typeN are the types of the fields

There’s an alternative way to write record types:

data MyRecord = MyRecord { labell : typel; label2 : type2; ...; labelN : typeN }
deriving (Eq, Show)

The formatusing with and the formatusing { } are exactly the same syntactically. The main differ-
enceis that when you use with, you can use newlines and properindentation to avoid the delimiting
semicolons.

140 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Thederiving (Eqg, Show) ensuresthe datatypecanbecompared (using==)and displayed (using
show). The line starting deriving is required for data types used in fields of a template.

In general, add the deriving unless the data type contains function types (e.g. Int -> Int), which
cannot be compared or shown.

For example:

-—- This is a record type with two fields, called first and second,
-— both of type "Int’
data MyRecord = MyRecord with first : Int; second : Int

deriving (Eq, Show)

-— An example value of this type 1is:
newRecord = MyRecord with first = 1; second = 2

-- You can also write:
newRecord = MyRecord 1 2

Data constructors

You can use data keyword to define a new data type, for example data Floor a = Floor a for
some type a.

The first Floor in the expression is the type constructor. The second Floor is a data constructor that
can be used to specify values of the Floor Int type: forexample, Floor 0,Floor 1.

In Daml, data constructors may take at most one argument.

An example of a data constructor with zero arguments is data Empty = Empty {}.Theonlyvalue
of the Empty type is Empty.

Note: Indata Confusing = Int,the Int is adataconstructor with no arguments. It has nothing
to do with the built-in Int type.

Accessing record fields

To access the fields of a record type, use dot notation. For example:

—-— Access the value of the field "first’
val.first

—-— Access the value of the field “second’
val.second

2.1. Writing Daml 141

Daml SDK Documentation, 2.1.1

Updating record fields

You can also use the with keyword to create a new record on the basis of an existing replacing select
fields.

For example:

myRecord = MyRecord with first = 1; second = 2

myRecord?2 = myRecord with second = 5

produces the new record value MyRecord with first = 1; second = 5.

If you have a variable with the same name as the label, Daml lets you use this without assigning it
to make things look nicer:

-- 1if you have a variable called 'second equal to 5
second = 5

-— you could construct the same value as before with
myRecord?2 = myRecord with second = second

-— or with
myRecord3 = MyRecord with first = 1; second = second

-— but Daml has a nicer way of putting this:
myRecord4 = MyRecord with first = 1; second

-- or even
myRecordb = r with second

Note: The with keyword binds more strongly than function application. So for a function, say re-
turn, either write return IntegerCoordinate with first = 1; second = 5or return
(IntegerCoordinate {first = 1; second = 5}),where the latter expressionis enclosed in
parentheses.

Parameterized data types

Daml supports parameterized data types.

For example, to express a more general type for 2D coordinates:

-—- Here, a and b are type parameters.
-— The Coordinate after the data keyword is a type constructor.
data Coordinate a b = Coordinate with first : a; second : b

An example of a type that can be constructed with Coordinate is Coordinate Int Int.

142 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Type synonyms

To declare a synonym for a type, use the type keyword.

For example:

type IntegerTuple = (Int, Int)

This makes IntegerTuple and (Int, Int) synonyms: they have the same type and can be used
interchangeably.

You can use the type keyword for any type, including Built-in types.

Function types

A function’s type includes its parameter and result types. A function foo with two parameters has
type ParamTypel -> ParamTypeZ -> ReturnType.

Note that this can be treated as any other type. You could for instance give it a synonym using type
FooType = ParamTypel -> ParamType2 -> ReturnType.

Algebraic data types

An algebraic data type is a composite type: a type formed by a combination of other types. The
enumeration data type is an example. This section introduces more powerful algebraic data types.

Product types

The following data constructor is not valid in Daml: data AlternativeCoordinate a b = Al-
ternativeCoordinate a b. This is because data constructors can only have one argument.

To get around this, wrap the values in a record: data Coordinate a b = Coordinate {first:
a; second: Db}.

These kinds of types are called product types.

Away of thinking about this is thatthe Coordinate Int Inttypehasafirstand second dimension
(that is, a 2D product space). By adding an extra type to the record, you get a third dimension, and
soon.

Sum types

Sum types capture the notion of being of one kind or another.

An exampleis the built-in data type Bool. This is defined by data Bool = True | False deriv-
ing (Eg, Show),where True and False are data constructors with zero arguments . This means
that a Bool value is either True or False and cannot be instantiated with any other value.

Please note that all types which you intend to use as template or choice arguments need to derive
at least from (Eq, Show).

2.1. Writing Daml 143

Daml SDK Documentation, 2.1.1

A very useful sum type isdata Optional a = None | Some a deriving (Eqg,Show). Itis part
of the Daml standard library.

Optional captures the concept of a box, which can be empty or contain a value of type a.

Optional is a sum type constructor taking a type a as parameter. It produces the sum type defined
by the data constructors None and Some.

The Some data constructor takes one argument, and it expects a value of type a as a parameter.

Pattern matching

You can match a value to a specific pattern using the case keyword.

The pattern is expressed with data constructors. For example, the Optional Int sum type:

import Daml.Script
import DA.Assert

optionalIntegerToText (x : Optional Int) : Text =
case x of
None -> "Box is empty"
Some val -> "The content of the box is " <> show val

optionalIntegerToTextTest =
script do

In the optionalIntegerToText function, the case construct first tries to match the x argument
against the None data constructor, and in case of a match, the "Box is empty" textis returned. In
case of no match, a match is attempted for x against the next pattern in the list, i.e.,, with the Some
data constructor. In case of a match, the content of the value attached to the Some label is bound to
the val variable, which is then used in the corresponding output text string.

Note that all patterns in the case construct need to be complete, i.e., for each x there must be at least
one pattern that matches. The patterns are tested from top to bottom, and the expression for the
first pattern that matches will be executed. Note that can be used as a catch-all pattern.

You could also case distinguish a Bool variable using the True and False data constructors and
achieve the same behavior as an if-then-else expression.

As an example, the following is an expression for a Text:

tmp =
let
1 =11, 2, 3]
in case 1 of

Notice the use of nested pattern matching above.

Note: An underscore was used in place of a variable name. The reason for this is that Dam/ Studio
produces a warning for all variables that are not being used. This is useful in detecting unused
variables. You can suppress the warning by naming the variable with an initial underscore.

144 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.6 Reference: built-in functions

This page gives reference information on functions for.

Working with time

Daml has these built-in functions for working with time:

datetime: creates a Time given year, month, day, hours, minutes, and seconds as argument.
subTime: subtracts one time from another. Returns the Re1Time difference between timel
and time?.

addRelTime: add times. Takes a Time and RelTime and adds the RelTime to the Time.
days, hours,minutes, seconds: constructs a Re1Time of the specified length.

pass: (in Daml Script tests only) use pass : RelTime -> Script Time to advance the
ledger time by the argument amount. Returns the new time.

Working with numbers

Daml has these built-in functions for working with numbers:

round: rounds a Decimal number to Int.
round disthe nearest Int to d. Tie-breaks are resolved by rounding away from zero, for exam-

ple:
round 2.5 == 3 round (-2.5) == -3
round 3.4 == 3 round (=3.7) == -4

truncate: converts a Decimal numberto Int, truncating the value towards zero, for example:

truncate (-2.2) == -2
v (-4.9) == -4

truncate 2.2 ==
truncate 4.9

intToDecimal: converts an Int to Decimal.

The set of numbers expressed by Decimal is not closed under division as the result may require
more than 10 decimal places to represent. For example, 1.0 / 3.0 == 0.3333... is arational
number, but not a Decimal.

Working with text

Daml has these built-in functions for working with text:

<> operator: concatenates two Text values.
show converts a value of the primitive types (Bool, Int, Decimal, Party, Time, RelTime) to
a Text.

To escape text in Daml strings, use \:

2.1. Writing Daml 145

Daml SDK Documentation, 2.1.1

Character How to escape it
\ A\
AL \ll
1 \ '
Newline \n
Tab \t
Carriage return \r

Unicode (using ! as an example .
(& ple) Decimal code: \33

Octal code: \o41
Hexadecimal code: \x21

Working with lists

Daml has these built-in functions for working with lists:

foldl and foldr: see Folding below.

Folding

A fold takes:

a binary operator
a first accumulator value
a list of values

The elements of the list are processed one-by-one (from the left in a foldl, or from the right in a
foldr).

Note: We’d usually recommend using foldl, as foldr is usually slower. This is because it needs
to traverse the whole list before starting to discharge its elements.

Processing goes like this:

1. The binary operator is applied to the first accumulator value and the first element in the list.
This produces a second accumulator value.

2. The binary operator is applied to the second accumulator value and the second element in the
list. This produces a third accumulator value.

3. This continues until there are no more elements in the list. Then, the last accumulator value is
returned.

As an example, to sum up a list of integers in Daml:

sumList =
script do
assert (foldl (+) 0 [1, 2, 3] == 6)

146 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.7 Reference: expressions
This page gives reference information for Daml expressions that are not updates.
Definitions

Use assignment to bind values or functions at the top level of a Daml file or in a contract template
body.

Values

For example:

pi = 3.1415926535

The fact that pi has type Decimal is inferred from the value. To explicitly annotate the type, mention
it after a colon following the variable name:

pi : Decimal = 3.1415926535

Functions

You can define functions. Here’s an example: a function for computing the surface area of a tube:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

Here you see:

the name of the function

the function’s type signature Decimal -> Decimal -> Decimal

This means it takes two Decimals and returns another Decimal.

the definition= 2.0 * pi * r * h(which uses the previously defined pi)

Arithmetic operators

Operator Works for

+ Int,Decimal,RelTime
- Int,Decimal,RelTime
* Int,Decimal

/ (integer division) Int

% (integer remainder opera- | Int

tion)

~ (integer exponentiation) Int

The result of the modulo operation has the same sign as the dividend:

2.1. Writing Daml 147

Daml SDK Documentation, 2.1.1

7 / 3and (-7) / (-3) evaluateto2

(=7) / 3and7 / (-3) evaluateto -2

7 % 3and7 % (-3) evaluatetol

(=7) % 3and (-7) % (-3) evaluateto -1

To write infix expressions in prefix form, wrap the operators in parentheses. For example, (+) 1 2
is another way of writing 1 + 2.

Comparison operators

Operator Works for

<, <=, >, >= Bool, Text, Int, Decimal, Party, Time

==, /= Bool, Text, Int, Decimal, Party, Time, and identifiers of con-
tracts stemming from the same contract template

Logical operators

The logical operators in Daml are:

not for negation, e.g, not True == False
&& for conjunction, wherea && b == and a b
| | fordisjunction,wherea || b == or a b

for Bool variables a and b.

If-then-else

You can use conditional if-then-else expressions, for example:

if owner == scroogeMcDuck then "sell" else "buy"

Let

To bind values or functions to be in scope beneath the expression, use the block keyword let:

doubled =
-- let binds values or functions to be in scope beneath the expression
let
double (x : Int) = 2 * x
up = 5
in double up

You can use let inside do blocks:

blah = script
do

(continues on next page)

148 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

y = 2
-- x and y are in scope for all subsequent expressions of the do block,
-— so can be used in expressionl and expressionZ.

expressionl

expression?2

Lastly, a template may contain a single let block.

template Iou

with
issuer : Party
owner : Party
where

signatory issuer

let updateOwner o = create this with owner = o
updateAmount a = create this with owner = a

-- Expressions bound in a template let block can be referenced
-- from any and all of the signatory, consuming, ensure and
-- agreement expressions and from within any choice do blocks.

choice Transfer : ContractId Iou
with newOwner : Party
controller owner
do
updateOwner newOwner

2.1.2.8 Reference: functions

This page gives reference information on functions in Daml.

Damlis a functional language. It lets you apply functions partially and also have functions that take
other functions as arguments. This page discusses these higher-order functions.

Defining functions

In Reference: expressions, the tubeSurfaceArea function was defined as:

tubeSurfaceArea : Decimal -> Decimal -> Decimal
tubeSurfaceArea r h =
2.0 * pi * r * h

You can define this function equivalently using lambdas, involving \, a sequence of parameters, and
an arrow —> as:

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

2.1. Writing Daml 149

Daml SDK Documentation, 2.1.1

Partial application

The type of the tubeSurfaceArea function described previously, is Decimal -> Decimal ->
Decimal. An equivalent, but more instructive, way to read its type is: Decimal -> (Decimal
-> Decimal): saying that tubeSurfaceArea is a function that takes one argument and returns
another function.

So tubeSurfaceArea expects one argument of type Decimal and returns a function of type Dec-
imal -> Decimal. In other words, this function returns another function. Only the last application of
an argument yields a non-function.

This is called currying: currying is the process of converting a function of multiple arguments to a
function that takes just a single argument and returns another function. In Daml, all functions are
curried.

This doesn’t affect things that much. If you use functions in the classical way (by applying them to
all parameters) then there is no difference.

If you only apply a few arguments to the function, this is called partial application. The result is a
function with partially defined arguments. For example:

import DA.Text
multiplyThreeNumbers : Int -> Int -> Int -> Int
multiplyThreeNumbers xx yy zz =

XX * yy * zz

multiplyTwoNumbersWith7 = multiplyThreeNumbers 7

multiplyWith21 = multiplyTwoNumbersWith7 3

You could also define equivalent lambda functions:

multiplyWithl8 = multiplyThreeNumbers 3 6

multiplyWithl8 v2 : Int -> Int

Functions are values

The function type can be explicitly added to the tubeSurfaceArea function (when it is written with
the lambda notation):

-- Type synonym for Decimal -> Decimal -> Decimal
type BinaryDecimalFunction = Decimal -> Decimal -> Decimal

pi : Decimal = 3.1415926535

tubeSurfaceArea : BinaryDecimalFunction =
\ (r : Decimal) (h : Decimal) -> 2.0 * pi * r * h

Note that tubeSurfaceArea : BinaryDecimalFunction = ... follows the same pattern as
when binding values,e.g.,pi : Decimal = 3.141592653509.

Functions have types, just like values. Which means they can be used just like normal variables. In
fact, in Daml, functions are values.

150 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

This means a function can take another function as an argument. For example, define a function
applyFilter: (Int -> Int -> Bool) -> Int -> Int -> Bool which applies the first
argument, a higher-order function, to the second and the third arguments to yield the result.

-— Higher order function
applyFilter (filter : Int -> Int -> Bool)

(x : Int)

(y : Int) = filter x y
compute = script do

applyFilter (<) 3 2 === False

applyFilter (/=) 3 2 === True

round (2.5 : Decimal) === 3

round (3.5 : Decimal) === 4

explode "me" === ["m", "e"]

The Folding section looks into two useful built-in functions, foldl and foldr, that also take a func-
tion as an argument.

Note: Daml does not allow functions as parameters of contract templates and contract choices.
However, a follow up of a choice can use built-in functions, defined at the top level or in the contract
template body.

Generic functions

A function is parametrically polymorphic if it behaves uniformly for all types, in at least one of its type
parameters. For example, you can define function composition as follows:

where a, b, and c are any data types. Both compose ((+) 4) ((*) 2) 3 == 10 and compose
not ((&&) True) False evaluateto True. Note that ((+) 4) hastype Int -> Int, whereas
not has type Bool -> Bool.

You can find many other generic functions including this one in the Dam/ standard library.

Note: Daml currently does not support generic functions for a specific set of types, such as Int and
Decimal numbers. For example, sum (x: a) (y: a) = x + yisundefinedwhen aequals the
type Party. Bounded polymorphism might be added to Daml in a later version.

2.1. Writing Daml 151

Daml SDK Documentation, 2.1.1

2.1.2.9 Reference: Daml file structure

This page gives reference information on the structure of Daml files outside of templates.

File structure

This file’s module name (module NameOfThisFile where).

Part of a hierarchical module system to facilitate code reuse. Must be the same as the Daml
file name, without the file extension.

For a file with path . /Scenarios/Demo.daml, use module Scenarios.Demo where.

Imports

You can import other modules (import OtherModuleName), including qualified imports
(import qualified AndYetOtherModuleName, import qualified AndYetOtherMod-
uleName as Signifier). Can’t have circular import references.

To import the Prelude module of . /Prelude.daml, use import Prelude.

To import a module of . /Scenarios/Demo.daml, use import Scenarios.Demo.

If you leave out qualified, and a module alias is specified, top-level declarations of the im-
ported module are imported into the module’s namespace as well as the namespace specified
by the given alias.

Libraries

A Daml library is a collection of related Dam| modules.

Define a Daml library using a LibraryModules.daml file: a normal Daml file that imports the root
modules of the library. The library consists of the LibraryModules.daml file and all its dependen-
cies, found by recursively following the imports of each module.

Errors are reported in Daml Studio on a per-library basis. This means that breaking changes on
shared Daml modules are displayed even when the files are not explicitly open.

Comments

Use —- for a single line comment. Use {- and -} for a comment extending over multiple lines.

Contract identifiers

When an instance of a template (that is, a contract) is added to the ledger, it’s assigned a unique
identifier, of type ContractId <name of template>.

The runtime representation of these identifiers depends on the execution environment: a contract
identifier from the Sandbox may look different to ones on other Daml Ledgers.

You can use == and /= on contract identifiers of the same type.

152 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.10 Reference: Daml packages

This page gives reference information on Daml package dependencies.

Building Daml archives

When a Daml project is compiled, the compiler produces a Daml archive. These are
platform-independent packages of compiled Daml code that can be uploaded to a Daml ledger or
imported in other Daml projects.

Daml archives have a .dar file ending. By default, when you run daml build, it will generate the
.dar file in the .daml/dist folder in the project root folder. For example, running daml buildin
project foo with project version 0.0.1 will resultin a Daml archive .daml/dist/foo-0.0.1.dar.

You can specify a different path for the Daml archive by using the -o flag:

daml build -o foo.dar

For details on how to upload a Daml archive to the ledger, see the deploy documentation. The rest of
this page will focus on how to import a Daml package in other Daml projects.

Inspecting DARs

To inspect a DAR and get information about the packages inside it, you can use the daml damlc
inspect-dar command. This is often useful to find the package id of the project you just built.

You canrundaml damlc inspect-dar /path/to/your.dar togetahuman-readable listing of
the files inside it and a list of packages and their package ids. Here is a (shortened) example output:

$ daml damlc inspect-dar .daml/dist/create-daml-app-0.1.0.dar
DAR archive contains the following files:

create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/create-daml -
—app-0.1.0-29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/daml-prim-
—75b070729p1£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-0.
—0.0-a535cbc3657b8df953a50aaef5a4cd224574549¢c83cad4377e8219%aadealdf2la.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-DA-
—Internal-Template-
—~d14e08374£c7197d6a0de468c968ae8bal3aadbf9315476£d39071831£5923662.dalf
create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad35e4b69966db5d/data/create-
—daml-app-0.1.0.conf

create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.daml
create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/User.hi
create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/User.hie

(continues on next page)

2.1. Writing Daml 153

Daml SDK Documentation, 2.1.1

(continued from previous page)

META-INF/MANIFEST.MF
DAR archive contains the following packages:

create-daml-app-0.1.0-
—~29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d
—"29p501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d"
daml-stdlib-DA-Internal-Template-
—-d14e08374£c7197d6a0de468c968ae8bal3aadbf9315476£d39071831£5923662
—"d14e08374£c7197d6a0de468c968ae8bal3aadbf9315476£d39071831£5923662"
daml-prim-75b070729p1fbd37a618493652121b0d6£5983b787e35179e52d048db70e9£15
—"75p07072901£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9£15"
daml-stdlib-0.0.0-
—ab35cbc3657b8df953a50aaef5ad4cd224574549¢c83cad4377e8219%aadealdf2la
—"a535cbc3657b8df953a50aaef5a4cd224574549¢c83ca4377e8219%aadealdf21a"

In addition to the human-readable output, you can also get the output as JSON. This is easier to
consume programmatically and it is more robust to changes across SDK versions:

$ daml damlc inspect-dar --json .daml/dist/create-daml-app-0.1.0.dar
{
"packages": {
"290501bcf541a40e9f75750246874e0a35de72e00616372dad35e4b69966db5d":
"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/create-daml-
—app-0.1.0-290501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d.dalf

n
-,

"name": "create-daml-app",
"version": "0.1.0"
}I
"d14e08374fc7197d6a0ded468c968ae8bal3aadbf9315476£d39071831£5923662": {
"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/daml-stdlib-DA-
—Internal-Template-
—~d14e08374£c7197d6a0de468c968ae8bal3aadbf9315476£d39071831£5923662.dalf",
"name": null,
"version": null
by
"75p070729p1fbd37a618493652121b0d6£59830b787e35179e52d048db70e9£15": {
"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/daml-prim-
—75b07072901£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.dalf",
"name": "daml-prim",
"version": "0.0.0"
}I
"a535cbc3657b8df953a50aaefb5adcd224574549¢c83cad4377e8219%aadealdf2la": |
"path": "create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/daml-stdlib-0.
—0.0-a535cbc365708df953a50aaef5a4cd224574549¢c83cad4377e821%aadealdf2la.dalf",
"name": "daml-stdlib",
"version": "0.0.0"

by
"main package id":
—"290501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d",

(continues on next page)

154 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"files": [
"create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/create-daml-
—app-0.1.0-290501bcf541a40e9f75750246874e0a35de72e00616372dad35e4b69966db5d.dalf

"
-,

"create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml-prim-
—75b07072901£fbd37a618493652121b0d6£5983b787e35179e52d048db70e9f15.dalf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372dad435e4b69966db5d/daml-stdlib-0.
—0.0-a535cbc3657b8df953a50aaef5a4cd224574549¢c83cad4377e8219%aadealdf2la.dalf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372dad435e4b69966db5d/daml-stdlib-DA-
—Internal-Template-
—~d14e08374£c7197d6a0ded468c968ae8bal3aadbf9315476£d39071831£5923662.dalf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/data/create-
—daml-app-0.1.0.conf",

"create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/User.daml",

"create-daml-app-0.1.0-
—29b501bcf541a40e9£75750246874e0a35de72e00616372da435e4b69966db5d/User.hi",

"create-daml-app-0.1.0-
—29b501bcf541a40e9f75750246874e0a35de72e00616372da435e4b69966db5d/User.hie",

"META-INF/MANIFEST.MEF"

Note that name and version will be null for packages in Daml-LF < 1.8.

Importing Daml packages

There are two ways to import a Daml package in a project: via dependencies, and via
data-dependencies. They each have certain advantages and disadvantages. To summarize:

dependencies allow you to import a Daml archive as a library. The definitions in the depen-
dency will all be made available to the importing project. However, the dependency must be
compiled with the same SDK version, so this method is only suitable for breaking up large
projects into smaller projects that depend on each other, or to reuse existing libraries.
data-dependencies allow you to import a Daml archive (.dar) or a Daml-LF package (.dalf),
including packages that have already been deployed to a ledger. These packages can be com-
piled with any previous SDK version. On the other hand, not all definitions can be carried over
perfectly, since the Daml interface needs to be reconstructed from the binary.

The following sections will cover these two approaches in more depth.

2.1. Writing Daml 155

Daml SDK Documentation, 2.1.1

Importing a Daml package via dependencies

A Daml project can declare a Daml archive as a dependency in the dependencies field of daml.
yaml. This lets you import modules and reuse definitions from another Daml project. The main
limitation of this method is that the dependency must be built for the same SDK version as the
importing project.

Let’s go through an example. Suppose you have an existing Daml project foo, located at /home/

user/foo, and you want to use it as a dependency in a project bar, located at /home/user/bar.

To do so, you first need to generate the Daml archive of foo. Go into /home/user/foo and run daml
build -o foo.dar. This will create the Daml archive, /home/user/foo/foo.dar.

Next, we will update the project config for bar to use the generated Daml archive as a dependency.
Gointo /home/user/bar and change the dependencies fieldindaml. yaml to point to the created
Daml archive:

dependencies:
- daml-prim
- daml-stdlib
- ../foo/foo.dar

The import path can also be absolute, for example, by changing the last line to:

- /home/user/foo/foo.dar

When you run daml build in the bar project, the compiler will make the definitions in foo.dar
available for importing. For example, if foo exports the module Foo, you can import it in the usual
way:

import Foo

By default, all modules of foo are made available when importing foo as a dependency. To limit
which modules of foo get exported, you may add an exposed-modules field in the daml . yaml file
for foo:

exposed-modules:
- Foo

Importing a Daml archive via data-dependencies

You can import a Daml archive (.dar) or Daml-LF package (.dalf) using data-dependencies. Unlike
dependencies, this can be used when the SDK versions do not match.

For example, you can import foo.dar as follows:

dependencies:

- daml-prim

- daml-stdlib
data-dependencies:
- ../foo/foo.dar

When importing packages this way, the Daml compiler will try to reconstruct the original Daml in-
terface from the compiled binaries. However, to allow data-dependencies to work across SDK

156 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

versions, the compiler has to abstract over some details which are not compatible across SDK
versions. This means that there are some Daml features that cannot be recovered when using
data-dependencies. In particular:

1. Export lists cannot be recovered, so imports via data-dependencies can access definitions
that were originally hidden. This means it is up to the importing module to respect the data
abstraction of the original module. Note that this is the same for all code that runs on the
ledger, since the ledger does not provide special support for data abstraction.

2. If you have a dependency that limits the modules that can be accessed via
exposed-modules, you can get an error if you also have a data-dependency that references
something from the hidden modules (even if it is only reexported). Since exposed-modules
are not available on the ledger in general, we recommend to not make use of them and instead
rely on naming conventions (e.g., suffix module names with .Internal) to make it clear
which modules are part of the public API.

3. Prior to Daml-LF version 1.8, typeclasses could not be reconstructed. This means if you have a
package thatis compiled with an olderversion of Daml-LF, typeclasses and typeclass instances
will not be carried over via data-dependencies, and you won’t be able to call functions that rely
on typeclass instances. This includes the template functions, such as create, signatory,
and exercise, as these rely on typeclass instances.

4. Starting from Daml-LF version 1.8, when possible, typeclass instances will be reconstructed
by re-using the typeclass definitions from dependencies, such as the typeclasses exported
in daml-stdlib. However, if the typeclass signature has changed, you will get an instance
for a reconstructed typeclass instead, which will not interoperate with code from dependen-
cies. Furthermore, if the typeclass definition uses the FunctionalDependencies language
extension, this may cause additional problems, since the functional dependencies cannot be
recovered. So this is something to keep in mind when redefining typeclasses and when using
FunctionalDependencies.

5. Certain advanced type system features cannot be reconstructed. In particular, DA.Generics
and DeriveGeneric cannot be reconstructed. This may result in certain definitions being
unavailable when importing a module that uses these advanced features.

Because of their flexibility, data-dependencies are a tool that is recommended for performing Daml
model upgrades. See the upgrade documentation for more details.

Referencing Daml packages already on the ledger

Daml packages that have been uploaded to a ledger can be imported as data dependencies, given
you have the necessary permissions to download these packages. To import such a package, add
the package name and version separated by a colon to the data-dependencies stanza as follows:

ledger:
host: localhost
port: 6865
dependencies:

- daml-prim

- daml-stdlib
data-dependencies:
- fo0:1.0.0

If your ledger runs at the default host and port (Localhost:6865),the ledger stanza can be omitted.
This will fetch and install the package foo-1.0.0. A daml.lock file is created at the root of your
project directory, pinning the resolved packages to their exact package ID:

2.1. Writing Daml 157

Daml SDK Documentation, 2.1.1

dependencies:

- pkgId: 51255efad65al751lbcee749d962a135a65d12b87eb81ac961142196d8bbcab535
name: foo
version: 1.0.0

The daml. lock file needs to be checked into version control of your project. This assures that pack-
age name/version tuples specified in your data dependencies are always resolved to the same pack-
age ID. To recreate or update your daml. lock file, delete it and run daml build again.

Handling module name collisions

Sometimes you will have multiple packages with the same module name. In that case, a simple
import will fail, since the compiler doesn’t know which version of the module to load. Fortunately,
there are a few tools you can use to approach this problem.

The first is to use package qualified imports. Supposing you have packages with different names,
foo and bar, which both expose a module X, you can select which one you want with a package
qualified import.

To get X from foo:

import "foo" X

To get X from bar:

import "bar" X

To get both, you need to rename the module as you perform the import:

import "foo" X as FooX
import "bar" X as BarX

Sometimes, package qualified imports will not help, because you are importing two packages with
the same name. Forexample, if you're loading different versions of the same package. To handle this
case, you need the —--package build option.

Suppose you are importing packages foo-1.0.0 and foo-2.0.0. Notice they have the same name
foo butdifferentversions. To get modules that are exposed in both packages, you will need to provide
module aliases. You can do this by passing the --package build option. Open daml. yaml and add
the following build-options:

build-options:
- '—--package'
- '"foo-1.0.0 with (X as Fool.X)'
- '—--package'
- '"f00-2.0.0 with (X as Foo2.X)'

This will aliasthe Xin foo-1.0.0asFool.X,and aliastheXin foo-2.0.0 as Foo2.X.Now you will
be able to import both X by using the new names:

import qualified Fool.X
import qualified Foo2.X

158 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

It is also possible to add a prefix to all modules in a package using the module-prefixes field in
your daml.yaml. This is particularly useful for upgrades where you can map all modules of version
v of your package under V$v. For the example above you can use the following:

module-prefixes:
fo0-1.0.0: Fool
foo-2.0.0: Foo2

That will allow you to import module X from package foo-1.0.0 as Fool.X and X from package
foo-2.0.0asFoo2.

You can also use more complex module prefixes, e.g., foo-1.0.0: Fool.Bar which will make
module X available under Fool.Bar.X.

2.1.2.11 Reference: Contract keys

Contract keys are an optional addition to templates. They let you specify a way of uniquely identifying
contracts, using the parameters to the template - similar to a primary key for a database.

You can use contract keys to stably refer to a contract, even through iterations of instances of it.

Here’s an example of setting up a contract key for a bank account, to act as a bank account ID:

type AccountKey = (Party, Text)

template Account with
bank : Party
number : Text
owner : Party
balance : Decimal
observers : [Party]
where
signatory [bank, owner]
observer observers

key (bank, number) : AccountKey
maintainer key. 1

2.1. Writing Daml 159

Daml SDK Documentation, 2.1.1

What can be a contract key

The key can be an arbitrary serializable expression that does not contain contract IDs. However, it
must include every party that you want to use as amaintainer (see Specifying maintainers below).

It’s best to use simple types for your keys like Text or Int, rather than a list or more complex type.

Specifying maintainers

If you specify a contract key for a template, you must also specify amaintainer or maintainers,in
a similar way to specifying signatories or observers. The maintainers own the keyinthe same way
the signatories own a contract. Just like signatories of contracts prevent double spends or use of
false contract data, maintainers of keys prevent double allocation orincorrect lookups. Since the key
is part of the contract, the maintainers must be signatories of the contract. However, maintainers
are computed from the key instead of the template arguments. In the example above, the bank is
ultimately the maintainer of the key.

Uniqueness of keys is guaranteed per template. Since multiple templates may use the same key
type, some key-related functions must be annotated using the @ContractType as shown in the
examples below.

When you are writing Daml models, the maintainers matter since they affect authorization - much
like signatories and observers. You don’t need to do anything to maintain the keys. In the above
example, it is guaranteed that there can only be one Account with a given number at a given bank.

Checking of the keys is done automatically at execution time, by the Daml execution engine: if some-
one tries to create a new contract that duplicates an existing contract key, the execution engine will
cause that creation to fail.

Contract Lookups

The primary purpose of contract keys is to provide a stable, and possibly meaningful, identifier that
can be used in Daml to fetch contracts. There are two functions to perform such lookups: fetchByKey
and lookupByKey. Both types of lookup are performed at interpretation time on the submitting Par-
ticipant Node, on a best-effort basis. Currently, that best-effort means lookups only return contracts
if the submitting Party is a stakeholder of that contract.

In particular, the above means that if multiple commands are submitted simultaneously, all us-
ing contract lookups to find and consume a given contract, there will be contention between these
commands, and at most one will succeed.

Limiting key usage to stakeholders also means that keys cannot be used to access a divulged con-
tract, i.e. there can be cases where fetch succeeds and fetchByKey does not. See the example at the
end of this section for details.

160 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fetchByKey

(fetchedContractId, fetchedContract) <- fetchByKey @ContractType contractKey

Use fetchByKey to fetch the ID and data of the contract with the specified key. It is an alternative
to fetch and behaves the same in most ways.

It returns a tuple of the ID and the contract object (containing all its data).
Like fetch, fetchByKey needs to be authorized by at least one stakeholder.
fetchByKey fails and aborts the transaction if:

The submitting Party is not a stakeholder on a contract with the given key, or
A contract was found, but the fetchByKey violates the authorization rule, meaning no stake-
holder authorized the fetch.

This means that if it fails, it doesn’t guarantee that a contract with that key doesn’t exist, just that
the submitting Party doesn’t know about it, or there are issues with authorization.

visibleByKey

boolean <- visibleByKey @ContractType contractKey

UsevisibleByKeytocheck whetheryoucan seeanactive contractforthe given key with the current
authorizations. If the contract exists and you have permission to see it, returns True, otherwise
returns False.

To clarify, ignoring contention:

1. visibleByKey will return True if all of these are true: there exists a contract for the given key,
the submitter is a stakeholder on that contract, and at the point of call we have the authoriza-
tion of all of the maintainers of the key.

2. visibleByKey will return False if all of those are true: there is no contract for the given key,
and at the point of call we have authorization from all the maintainers of the key.

3. visibleByKey will abort the transaction at interpretation time if, at the point of call, we are
missing the authorization from any one maintainer of the key.

4. visibleByKey will fail at validation time (after returning False at interpretation time) if all
of these are true: at the point of call, we have the authorization of all the maintainers, and a
valid contract exists for the given key, but the submitter is not a stakeholder on that contract.

While it may at first seem too restrictive to require all maintainers to authorize the call, this is actu-
allyrequiredinordertovalidate negative lookups. In the positive case, when you can see the contract,
it's easy for the transaction to mention which contract it found, and therefore for validators to check
that this contract does indeed exist, and is active as of the time of executing the transaction.

For the negative case, however, the transaction submitted for execution cannot say which contract it
has not found (as, by definition, it has not found it, and it may not even exist). Still, validators have
to be able to reproduce the result of not finding the contract, and therefore they need to be able to
look for it, which means having the authorization to ask the maintainers about it.

2.1. Writing Daml 161

Daml SDK Documentation, 2.1.1

lookupByKey

optionalContractId <- lookupByKey @ContractType contractKey

Use lookupByKey to check whether a contract with the specified key exists. If it does exist, Lookup-
ByKey returns the Some contractId, where contractId is the ID of the contract; otherwise, it
returns None.

lookupByKey is conceptually equivalent to

lookupByKey : forall c k. (HasFetchByKey c k) => k -> Update (Optionalll
— (ContractId c))
lookupByKey k = do
visible <- visibleByKey @c k
if visible then do
(contractId, ignoredContract) <- fetchByKey (c k
return $ Some contractId
else
return None

Therefore, lookupByKey needs all the same authorizations as visibleByKey, for the same reasons,
and fails in the same cases.

To get the data from the contract once you’ve confirmed it exists, you’ll still need to use fetch.

exerciseByKey

exerciseByKey @ContractType contractKey

Use exerciseByKey toexercise achoiceonacontractidentified by its key (comparedtoexercise,
which lets you exercise a contract identified by its ContractId). To run exerciseByKey you need
authorization from the controllers of the choice and at least one stakeholder. This is equivalent to
the authorization needed to do a fetchByKey followed by an exercise.

Example

A complete example of possible success and failure scenarios of fetchByKey and lookupByKey is shown
below.

-—- Copyright (c) 2022 Digital Asset (Switzerland) GmbH and/or its affiliates. All
—rights reserved.
-- SPDX-License-Identifier: Apache-2.0

module Keys where

import Daml.Script
import DA.Assert
import DA.Optional

template Keyed
with

sig : Party

obs : Party

(continues on next page)

162 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where
signatory sig
observer obs

key sig : Party
maintainer key

template Divulger

with
divulgee : Party
sig : Party

where
signatory divulgee
observer sig

nonconsuming choice DivulgeKeyed
Keyed
with
keyedCid : ContractId Keyed
controller sig
do
fetch keyedCid

template Delegation

with
sig : Party
delegees : [Party]
where

signatory sig
observer delegees

nonconsuming choice CreateKeyed

ContractId Keyed

with
delegee : Party
obs : Party

controller delegee

do
create Keyed with sig; obs

nonconsuming choice ArchiveKeyed
0
with
delegee : Party
keyedCid : ContractId Keyed
controller delegee
do
archive keyedCid

nonconsuming choice UnkeyedFetch
Keyed
with
cid : ContractId Keyed
delegee : Party
controller delegee
do

(continues on next page)

2.1. Writing Daml

163

Daml SDK Documentation, 2.1.1

(continued from previous page)

fetch cid

nonconsuming choice VisibleKeyed

Bool

with
key : Party
delegee : Party

controller delegee

do
visibleByKey (@Keyed key

nonconsuming choice LookupKeyed
Optional (ContractId Keyed)
with
lookupKey : Party
delegee : Party
controller delegee
do
lookupByKey (@Keyed lookupKey

nonconsuming choice FetchKeyed
(ContractId Keyed, Keyed)
with
lookupKey : Party
delegee : Party
controller delegee
do
fetchByKey (@Keyed lookupKey

template Helper
with
p : Party
where
signatory p

choice FetchByKey : (ContractId Keyed, Keyed)
with
keyedKey : Party
controller p
do fetchByKey (Keyed keyedKey

choice VisibleByKey : Bool
with
keyedKey : Party
controller p
do visibleByKey (@Keyed keyedKey

choice LookupByKey : (Optional (ContractId Keyed))
with
keyedKey : Party
controller p
do lookupByKey (@Keyed keyedKey

choice AssertNotVisibleKeyed : ()
with
delegationCid : ContractId Delegation

(continues on next page)

164

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

delegee : Party
key : Party
controller p
do
b <- exercise delegationCid VisibleKeyed with
delegee
key
assert $ not b

choice AssertLookupKeyedIsNone : ()
with
delegationCid : ContractId Delegation
delegee : Party
lookupKey : Party
controller p
do
b <- exercise delegationCid LookupKeyed with
delegee
lookupKey
assert $ isNone b

choice AssertFetchKeyedEgExpected : ()
with
delegationCid : ContractId Delegation
delegee : Party
lookupKey : Party
expectedCid : ContractId Keyed
controller p

do
(cid, keyed) <- exercise delegationCid FetchKeyed with
delegee
lookupKey
cid === expectedCid

lookupTest = script do

-- Put four parties in the four possible relationships with a "Keyed’

sig <- allocateParty "s" -- Signatory

obs <- allocateParty "o" -- Observer
divulgee <- allocateParty "d" -- Divulgee
blind <- allocateParty "b" -- Blind

keyedCid <- submit sig do createCmd Keyed with
divulgercid <- submit divulgee do createCmd Divulger with
submit sig do exerciseCmd divulgercid DivulgeKeyed with

-- Now the signatory and observer delegate their choices
sigDelegationCid <- submit sig do
createCmd Delegation with
sig
delegees = [obs, divulgee, blind]
obsDelegationCid <- submit obs do
createCmd Delegation with
sig = obs
delegees = [divulgee, blind]

(continues on next page)

2.1. Writing Daml 165

Daml SDK Documentation, 2.1.1

(continued from previous page)

—-— TESTING LOOKUPS AND FETCHES

-—- Maintainer can fetch
(cid, keyed) <- submit sig do

Helper sig ‘createAndExerciseCmd” FetchByKey sig
cid === keyedCid
-- Maintainer can see
b <- submit sig do

Helper sig “createAndExerciseCmd’ VisibleByKey sig
assert b
-- Maintainer can lookup
mcid <- submit sig do

Helper sig "createAndExerciseCmd’™ LookupByKey sig
mcid === Some keyedCid

-— Stakeholder can fetch
(cid, 1) <- submit obs do

Helper obs ‘createAndExerciseCmd” FetchByKey sig
keyedCid === cid
-- Stakeholder can't see without authorization
submitMustFail obs do

Helper obs ‘createAndExerciseCmd”™ VisibleByKey sig

-— Stakeholder can see with authorization
b <- submit obs do
exerciseCmd sigDelegationCid VisibleKeyed with
delegee = obs
key = sig
assert b
-- Stakeholder can't lookup without authorization
submitMustFail obs do
Helper obs ‘createAndExerciseCmd’ LookupByKey sig
-- Stakeholder can lookup with authorization
mcid <- submit obs do
exerciseCmd sigDelegationCid LookupKeyed with
delegee = obs
lookupKey = sig
mcid === Some keyedCid

-— Divulgee can fetch the contract directly
submit divulgee do
exerciseCmd obsDelegationCid UnkeyedFetch with
delegee = divulgee
cid = keyedCid
-—- Divulgee can't fetch through the key
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd’ FetchByKey sig
-- Divulgee can't see
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd’ VisibleByKey sig
-- Divulgee can't see with stakeholder authority
submitMustFail divulgee do
exerciseCmd obsDelegationCid VisibleKeyed with
delegee = divulgee

(continues on next page)

166 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

key = sig
-- Divulgee can't lookup
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd’ LookupByKey sig
-- Divulgee can't lookup with stakeholder authority
submitMustFail divulgee do
exerciseCmd obsDelegationCid LookupKeyed with
delegee = divulgee
lookupKey = sig
-- Divulgee can't do positive lookup with maintainer authority.
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd’ AssertNotVisibleKeyed with
delegationCid = sigDelegationCid
delegee = divulgee
key = sig
-- Divulgee can't do positive lookup with maintainer authority.
-—- Note that the lookup returns "None so the assertion passes.
-- If the assertion is changed to "isSome', the assertion fails,
-- which means the error message changes. The reason 1s that the
-—- assertion is checked at interpretation time, before the lookup
-- 1is checked at validation time.
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd’ AssertLookupKeyedIsNone with
delegationCid = sigDelegationCid
delegee = divulgee
lookupKey = sig
-- Divulgee can't fetch with stakeholder authority
submitMustFail divulgee do
Helper divulgee “createAndExerciseCmd” AssertFetchKeyedEqExpected with
delegationCid = obsDelegationCid
delegee = divulgee
lookupKey = sig
expectedCid = keyedCid

-—- Blind party can't fetch
submitMustFail blind do
Helper blind “createAndExerciseCmd’ FetchByKey sig
-- Blind party can't see
submitMustFail blind do
Helper blind “createAndExerciseCmd’ VisibleByKey sig
-— Blind party can't see with stakeholder authority
submitMustFail blind do
exerciseCmd obsDelegationCid VisibleKeyed with
delegee = blind
key = sig
-—- Blind party can't see with maintainer authority
submitMustFail blind do
Helper blind “createAndExerciseCmd’ AssertNotVisibleKeyed with
delegationCid = sigDelegationCid
delegee = blind
key = sig
-—- Blind party can't lookup
submitMustFail blind do
Helper blind “createAndExerciseCmd LookupByKey sig
-- Blind party can't lookup with stakeholder authority
submitMustFail blind do

(continues on next page)

2.1. Writing Daml 167

Daml SDK Documentation, 2.1.1

(continued from previous page)

exerciseCmd obsDelegationCid LookupKeyed with
delegee = blind
lookupKey = sig
-— Blind party can't lookup with maintainer authority.
-— The lookup initially returns "None', but is rejected at
-- validation time
submitMustFail blind do
Helper blind “createAndExerciseCmd AssertLookupKeyedIsNone with
delegationCid = sigDelegationCid
delegee = blind
lookupKey = sig
-- Blind party can't fetch with stakeholder authority as lookup 1is negative
submitMustFail blind do
exerciseCmd obsDelegationCid FetchKeyed with
delegee = blind
lookupKey = sig
-- Blind party can see nonexistence of a contract
submit blind do
Helper blind “createAndExerciseCmd’ AssertNotVisibleKeyed with
delegationCid = obsDelegationCid
delegee = blind
key = obs
-- Blind can do a negative lookup on a truly nonexistant contract
submit blind do
Helper blind "createAndExerciseCmd’ AssertLookupKeyedIsNone with
delegationCid = obsDelegationCid
delegee = blind
lookupKey = obs

—-— TESTING CREATES AND ARCHIVES

-- Divulgee can archive
submit divulgee do
exerciseCmd sigDelegationCid ArchiveKeyed with
delegee = divulgee
keyedCid
-- Divulgee can create
keyedCid2 <- submit divulgee do
exerciseCmd sigDelegationCid CreateKeyed with
delegee = divulgee
obs

-- Stakeholder can archive
submit obs do
exerciseCmd sigDelegationCid ArchiveKeyed with
delegee = obs
keyedCid = keyedCid2
-— Stakeholder can create
keyedCid3 <- submit obs do
exerciseCmd sigDelegationCid CreateKeyed with
delegee = obs
obs

return ()

168 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.2.12 Reference: Exceptions

Exceptions are a Daml feature which provides a way to handle certain errors that arise during in-
terpretation instead of aborting the transaction, and to roll back the state changes that lead to the
error.

There are two types of errors:

Builtin Errors

Exception type Thrown on

GeneralError Callstoerror and abort

ArithmeticError Arithmetic errors like overflows and division by zero
PreconditionFailed | ensure statements that return False
AssertionFailed Failed assert calls (or other functions from DA .Assert)

Note that other errors cannot be handled via exceptions, e.g., an exercise on an inactive contract will
still result in a transaction abort.

User-Defined Exceptions

Users can define their own exception types which can be thrown and caught. The definition looks
similar to templates, and just like with templates, the definition produces a record type of the given
name as well as instances to make that type throwable and catchable.

In addition to the record fields, exceptions also need to define a message function.

exception MyException
with
fieldl : Int
field2 : Text
where
message "MyException (" <> show fieldl <> ", " <> show field2 <> ")"

Throwing Exceptions

There are two ways to throw exceptions:

1. Inside of an Action like Update or Script you can use throw from DA.Exception. This
works for any Action thatis aninstance of ActionThrow.
2. Outside of ActionThrow you can throw exceptions using throwPure.

If both are an option, it is generally preferable to use throw since it is easier to reason about when
exactly the exception will get thrown.

2.1. Writing Daml 169

Daml SDK Documentation, 2.1.1

Catching Exceptions

Exceptions are caught in try-catch blocks similar to those found in languages like Java. The try
block defines the scope within which errors should be handled while the catch clauses defines
which types of errors are handled and how the program should continue. If an exception gets caught,
the subtransaction between the try and the the point where the exception is thrown is rolled back.
The actions under rollback nodes are still validated, so, e.g., you can never fetch a contract that is
inactive at that point or have two contracts with the same key active at the same time. However, all
ledger state changes (creates, consuming exercises) are rolled back to the state before the rollback
node.

Each try-catch block can have multiple catch clauses with the first one that applies taking prece-
dence.

In the example below the create of T will be rolled back and the first catch clause applies which
will create an Error contract.

try do
_ <- create (T p)
throw MyException with
fieldl = 0
field2 = "42"
catch
(MyException fieldl field2) ->
create Error with

p =P
msg = "MyException"
(ArithmeticError _) ->
create Error with
P =P
msg = "ArithmeticError"

2.1.2.13 Reference: Interfaces

Warning: This feature is under active development and not officially supported in production
environments.

In Daml, an interface defines an abstract type which specifies the behavior that a template must
implement. This allows decoupling such behavior from its implementation, so other developers can
write applications in terms of the interface instead of the concrete template.

170 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Interface declaration

An interface declaration is somewhat similar to a template declaration.

Interface name

interface MyInterface where

This is the name of the interface.
It’s preceded by the keyword interface and followed by the keyword where.
It must begin with a capital letter, like any other type name.

Interface methods

methodl : Party
method?2 : Int
method3 : Bool -> Int -> Int -> Int

An interface may define any number of methods.

Methods are in scope as functions at the top level, in the ensure clause, and in interface choices.
These functions always take an unstated first argument corresponding to a contract that im-
plements the interface:

funcl : Implements t MyInterface => t -> Party
funcl = methodl

func2 : Implements t MyInterface => t -> Int
func2 = method2

func3 : Implements t MyInterface => t -> Bool -> Int -> Int -> Int
func3 = method3

Methods are also in scope in interface choices (see Interface choices below).

Interface precondition

ensure myGuard (methodl this)

A precondition is introduced with the keyword ensure and must be a boolean expression.

It is possible to define interfaces without an ensure clause, but writing more than one is a
compilation error.

this isin scopein the method with the type of the interface. self, however, is not.

The interface methods can be used as part of the expression (e.g. method1).

It is evaluated and checked right after the implementing template’s precondition upon con-
tract creation

2.1. Writing Daml 171

Daml SDK Documentation, 2.1.1

Interface choices

choice MyChoice : (ContractId MyInterface, Int)
with
argumentl : Bool
argument2 : Int
controller methodl this
do
let nO method2 this
let nl = method3 this argumentl argument2 nO
pure (self, nl)

nonconsuming choice MyNonConsumingChoice : Int
controller methodl this
do

pure $ method2 this

Interface choices work in a very similar way to template choices. Any contract of an implement-
ing interface will grant the choice to the controlling party.

Interface methods can be used to define the controller of a choice (e.g. methodl) as well as the
actions that run when the choice is exercised (e.g. method2 and method3).

As for template choices, the choice keyword can be optionally prefixed with the nonconsum-
ing keyword to specify that the contract will not be consumed when the choice is exercised. If
not specified, the choice will be consuming. Note that the preconsuming and postconsum-
ing qualifiers are not supported on interface choices.

See Reference: choices for full reference information, but note that controller-first syntax is not
supported for interface choices.

Empty interfaces

interface YourInterface

It is possible (though not necessarily useful) to define an interface without methods, precon-
dition or choices. In such a case, the where keyword can be dropped.

Required interfaces

interface OurInterface requires MylInterface, YourInterface where

An interface can depend on other interfaces. These are specified with the requires keyword
after the interface name but before the where keyword, separated by commas.

For atemplate’s implementation of an interface to be valid, all its required interfaces must also
be implemented by the template.

If the interface doesn’t have any methods, precondition or choices, the where keyword after
the last required interface can be dropped:

interface TheirInterface requires MyInterface, YourInterface

172 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Interface implementation

For context, a simple template definition:

template MyTemplate
with
fieldl : Party
field2 : Int
where
signatory fieldl

Implements clause

implements MyInterface where
methodl = fieldl
method2 = field2
method3 False _ _ =0
method3 True x y
| x >0 =x +vy
| otherwise =y

To make a template implement an interface, an implements clause is added to the body of the
template.

The clause must start with the keyword implements, followed by the name of the interface,

followed by the keyword where, which introduces a block where all the methods of the interface
must be implemented.

Methods can be defined using the same syntax as for top level functions, including pattern
matches and guards (e.g. method3).

Empty implements clause

implements YourInterface

If the interface being implemented has no methods, the where keyword can be dropped.

2.1. Writing Daml 173

Daml SDK Documentation, 2.1.1

Interface functions

Function Type Instanti- Notes
ated type
inter- HasInterface- MyInter- The value of the resulting TemplateType-
faceType- | TypeRep 1 =>| face -> | Rep indicates what template was used to
Rep i -> Template- | Template- construct the interface value.
TypeRep TypeRep
toInter- forall i t. | MyTemplate | Converts a template value into an interface
face HasToInterface -> MyIn- | value. Can also be used to convert an inter-
ti=>t->1i terface face value to one of its required interfaces.
fromInter-| HasFromInter- MyInter- Attempts to convert an interface value back
face face t i => 1| face -> | into a template value. The result is None if
-> Optional t Optional the expected template type doesn’t match
MyTemplate | the underlying template type used to con-
struct the contract. Can also be used to con-
vert a value of an interface type to one of its
requiring interfaces.
toInter- forall i t. | ContractId | Convertatemplate contractid into aninter-
faceCon- HasToInterface | MyTemplate | facecontractid. Can also be used to convert
tractId t i => Con-|-> Con- | an interface contract id into a contract id of
tractId t -> | tractId one of its required interfaces.
ContractId 1 MyInter-
face
fromInter-| forall t i. | ContractId | Attempts to convert an interface contract id
faceCon- (HasFromInter- | MyInter-— into a template contract id. In order to ver-
tractId face t i, | face -> | ify that the underlying contract has the ex-
HasFetch i) | Update pected template type, this needs to perform
=> ContractId | (Optional a fetch. Can also be used to convert a con-
i -> Update | (Contrac-— tract id of an interface type to a contract id
(Optional (Con- | tId MyTem- | of one of its requiring interfaces.
tractId t)) plate))

2.1.3 The standard library

The Daml standard library is a collection of Daml modules that are bundled with the SDK, and can
be used to implement Daml applications.

The Prelude module is imported automatically in every Daml module. Other modules must be im-
ported manually, just like your own project’s modules. For example:

import DA.Optional
import DA.Time

Here is a complete list of modules in the standard library:

174

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.1 Module Prelude

The pieces that make up the Daml language.

Typeclasses

class Action m => CanAssert m where

Constraint that determines whether an assertion can be made in this context.

assertFail : Text->m t
Abort since an assertion has failed. In an Update, Scenario, Script, or Trigger context
this will throw an AssertionFailed exception. In an Either Text context, this will

return the message as an error.
instance CanAssert Scenario
instance CanAssert Update
instance CanAssert (Either Text)
class HaslInterfaceTypeRep i where
(1.dev only) Exposes the interfaceTypeRep function. Available only for interfaces.

class HasTolnterface t i where

(1.dev only) Exposes the toInterface and toInterfaceContractId functions.

class HasFrominterface t i where

(1.dev only) Exposes fromInterface and fromInterfaceContractId functions.

frominterface : i -> Optional t
(1.dev only) Attempt to convert an interface value back into a template value. ANone
indicates that the expected template type doesn’t match the underyling template

type for the interface value.
Forexample, fromInterface @MyTemplate value will trytoconverttheinterface

value value into the template type MyTemplate.
class HasTime m where

The HasTime class is for where the time is available: Scenario and Update.

getTime : HasCallStack => m Time
Get the current time.

instance HasTime Scenario
instance HasTime Update
class Action m => CanAbort m where
The CanAbort class is for Action s that can be aborted.

abort : Text->m a
Abort the current action with a message.

instance CanAbort Scenario

instance CanAbort Update

2.1. Writing Daml

175

Daml SDK Documentation, 2.1.1

instance CanAbort (Either Text)
class HasSubmit m cmds where

submit : HasCallStack => Party->cmds a->m a
submit p cmds submits the commands cmds as a single transaction from party p
and returns the value returned by cmds.
If the transaction fails, submit also fails.

submitMustFail : HasCallStack => Party ->cmds a ->m ()
submitMustFail p cmds submits the commands cmds as a single transaction
from party p.
It only succeeds if the submitting the transaction fails.

instance HasSubmit Scenario Update
class Functor f => Applicative f where

pure :a->fa
Lift a value.

(¢*>) :f(@a->b)->fa->fb
Sequentially apply the function.
A few functors support an implementation of <*> that is more efficient than the
default one.

liftA2 : (a->b->c)->fa->fb->fc
Lift a binary function to actions.
Some functors support an implementation of 11 ftA2 thatis more efficient than the
default one. In particular, if fmap is an expensive operation, it is likely better to use
1iftA2 than to fmap over the structure and then use <*>.

(*>) :fa->fb->fb
Sequence actions, discarding the value of the first argument.

(¢*) :fa->fb->fa
Sequence actions, discarding the value of the second argument.

instance Applicative ((->) r)
instance Applicative (State s)
instance Applicative Down
instance Applicative Scenario
instance Applicative Update
instance Applicative Optional
instance Applicative Formula
instance Applicative NonEmpty
instance Applicative (Validation err)
instance Applicative (Either e)
instance Applicative ([])

class Applicative m => Action m where

176 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(>><) :ma->@->mb)->mb
Sequentially compose two actions, passing any value produced by the first as an
argument to the second.

instance Action ((->) r)
instance Action (State s)
instance Action Down
instance Action Scenario
instance Action Update
instance Action Optional
instance Action Formula
instance Action NonEmpty
instance Action (Either e)
instance Action ([])

class Action m => ActionFail m where

This class exists to desugar pattern matches in do-notation. Polymorphic usage, or call-
ing fail directly, is not recommended. Instead consider using CanAbort.

fail : Text->m a
Fail with an error message.

instance ActionFail Scenario
instance ActionFail Update
instance ActionFail Optional
instance ActionFail (Either Text)
instance ActionFail ([])
class Semigroup a where
The class of semigroups (types with an associative binary operation).

(¢>) ra->a->a
An associative operation.

instance Ord k => Semigroup (Map k v)

instance Semigroup (TextMap b)

instance Semigroup All

instance Semigroup Any

instance Semigroup (Endo a)

instance Multiplicative a => Semigroup (Product a)
instance Additive a => Semigroup (Sum a)
instance Semigroup (NonEmpty a)

instance Ord a => Semigroup (Max a)

2.1. Writing Daml 177

Daml SDK Documentation, 2.1.1

instance Ord a => Semigroup (Min a)
instance Ord k => Semigroup (Set k)
instance Semigroup Ordering
instance Semigroup Text
instance Semigroup [a]
class Semigroup a => Monoid a where
The class of monoids (types with an associative binary operation that has an identity).

mempty : a
Identity of (<>)

mconcat : [a] -> a
Fold a list using the monoid. For example using mconcat on a list of strings would
concatenate all strings to one lone string,

instance Ord k => Monoid (Map k v)
instance Monoid (TextMap b)
instance Monoid All
instance Monoid Any
instance Monoid (Endo a)
instance Multiplicative a => Monoid (Product a)
instance Additive a => Monoid (Sum a)
instance Ord k => Monoid (Set k)
instance Monoid Ordering
instance Monoid Text
instance Monoid [a]
class HasSignatory t where
Exposes signatory function. Part of the Template constraint.

signatory : t -> [Party]
The signatories of a contract.

class HasObserver t where
Exposes observer function. Part of the Template constraint.

observer : t -> [Party]
The observers of a contract.

class HasEnsure t where
Exposes ensure function. Part of the Template constraint.

ensure : t-> Bool
A predicate that must be true, otherwise contract creation will fail.

class HasAgreement t where

178 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Exposes agreement function. Part of the Template constraint.

agreement : t-> Text
The agreement text of a contract.

class HasCreate t where
Exposes create function. Part of the Template constraint.

create : t -> Update (Contractid t)
Create a contract based on a template t.

class HasFetch t where
Exposes fetch function. Part of the Template constraint.

fetch : Contractld t -> Update t
Fetch the contract data associated with the given contract ID. If the ContractId t
supplied is not the contract ID of an active contract, this fails and aborts the entire
transaction.

class HasArchive t where
Exposes archive function. Part of the Template constraint.

archive : Contractld t -> Update ()
Archive the contract with the given contract ID.

class HasTemplateTypeRep t where

Exposes templateTypeRep function in Daml-LF 1.7 or later. Part of the Template con-
straint.

class HasToAnyTemplate t where

Exposes toAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-
straint.

class HasFromAnyTemplate t where

Exposes fromAnyTemplate function in Daml-LF 1.7 or later. Part of the Template con-
straint.

class HasExercise t c r where
Exposes exercise function. Part of the Choice constraint.

exercise : Contractld t -> ¢ -> Updater
Exercise a choice on the contract with the given contract ID.

class HasExerciseGuarded t c r where
(1.dev only) Exposes exerciseGuarded function. Only available for interface choices.

exerciseGuarded : (t -> Bool) -> Contractld t -> ¢ -> Update r
(1.dev only) Exercise a choice on the contract with the given contract ID, only if the
predicate returns True.

class HasToAnyChoice t ¢ r where
Exposes toAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.

class HasFromAnyChoice t ¢ r where

2.1. Writing Daml 179

Daml SDK Documentation, 2.1.1

Exposes fromAnyChoice function for Daml-LF 1.7 or later. Part of the Choice constraint.
class HasKey t k where
Exposes key function. Part of the TemplateKey constraint.

key :t->k
The key of a contract.

class HasLookupByKey t k where
Exposes lookupByKey function. Part of the TemplateKey constraint.

lookupByKey : k -> Update (Optional (Contractid t))
Look up the contract ID t associated with a given contract key k.
You must pass the t using an explicit type application. For instance, if you want to
look up a contract of template Account by its key k, you must call LookupByKey
@Account k.

class HasFetchByKey t k where
Exposes fetchByKey function. Part of the TemplateKey constraint.

fetchByKey : k -> Update (Contractid t, t)
Fetch the contract ID and contract data associated with a given contract key.
You must pass the t using an explicit type application. For instance, if you want
to fetch a contract of template Account by its key k, you must call fetchByKey
@Account k.

class HasMaintainer t k where
Exposes maintainer function. Part of the TemplateKey constraint.
class HasToAnyContractKey t k where

Exposes toAnyContractKey function in Daml-LF 1.7 or later. Part of the TemplateKey
constraint.

class HasFromAnyContractKey t k where

Exposes fromAnyContractKey functionin Daml-LF 1.7 or later. Part of the TemplateKey
constraint.

class HasExerciseByKey t k ¢ r where
Exposes exerciseByKey function.
class IsParties a where
Accepted ways to specify a list of parties: either a single party, or a list of parties.

toParties : a -> [Party]
Convert to list of parties.

instance IsParties Party

instance [sParties (Optional Party)
instance IsParties (NonEmpty Party)
instance IsParties (Set Party)

instance [sParties [Party]

180 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

class Functor f where

A Functor is a typeclass for things that can be mapped over (using its fmap function.
Examples include Optional, [] and Update).

fmap : (@a->b)->fa->fb
fmap takes a function of type a -> b, and turns itinto a functionoftype £ a -> £
b, where f is the type which is an instance of Functor.
For example, map is an fmap that only works on lists. It takes a functiona -> b and
a [a],andreturns a [b].

(<$) :a->fb->fa
Replace all locations in the input £ b with the same value a. The default definition
is fmap . const, butyou can override this with a more efficient version.

class Eq a where

The Eqg class defines equality (==) and inequality (/=). All the basic datatypes exported
by the "Prelude" are instances of Eqg, and Eq may be derived for any datatype whose con-
stituents are also instances of Eq.

Usually, == is expected to implement an equivalence relationship where two values com-
paring equal are indistinguishable by "public" functions, with a "public" function being
one not allowing to see implementation details. For example, for a type representing
non-normalised natural numbers modulo 100, a "public" function doesn’t make the dif-
ference between 1and 201. It is expected to have the following properties:

Reflexivity: x == x=True

Symmetry: x == y=y ==

Transitivity: ifx == y && y == z=True,thenx == z=True

Substitutivity: if x == y = True and £ is a "public" function whose return type is an
instance of Eq,then f x == f y=True

Negation: x /= y=not (x == y)

Minimal complete definition: either == or /=.
==) :a->a->Bool

(/=) :a->a->Bool

instance (Eq a, Eq b) => Eq (Either a b)
instance £q BigNumeric

instance £q Bool

instance £q Int

instance £q (Numeric n)

instance £q Ordering

instance £q RoundingMode

instance £q Text

instance £q a => £q [a]

instance £q ()

2.1. Writing Daml 181

Daml SDK Documentation, 2.1.1

instance (Eq a, Eq b) => Eq (a, b)

instance (Eqa, Eq b, Eqc) =>Eq(a, b, c)

instance (Eqa, Eqb, Eqc, Eqd) =>Eq(a, b, c, d)

instance (Eqa, Eq b, Eqc,Eqd,Eqe) =>Eq(a,b,c,d,e)

instance (Eq a, Eq b, Eqc,Eqd, Eqe, Eqf) =>Eq(a, b, c,d, e, f)

instance (Eqa,Eqb,Eqc,Eqd,Eqe, Eqf,Eqg) =>Eq(a,b,c,d, e, f, g)

instance (Eqa,Eqb, Eqc,Eqd,Eqe, Eqf,Eqg, Eqh) =>Eq(a, b, c,d, e, f, g h)

instance (Eqa,Eqb, Eqc,Eqd,Eqe, Eqf,Eqg, Eqh, Eqi) =>Eq(a,b,c,d, e, f, g h,i)
instance (Eqa,Eqb,Eqc, Eqd,Eqe, Eqf,Eqg, Eqh, Eqi, Eqj) =>Eq(a,b,c,d, e, f, g h,i,])

instance (Eqa,Eqb,Eqc, Eqd, Eqe, Eqf, Eqg, Eqh, Eqi, Eqj, Eq k) =>Eq(a,b,c,d, e, f, g h, i,
J> k)

instance (Eqa, Eqb,Eqc,Eqd, Eqe, Eqf, Eqg, Eq h, Eqi, Eqj, Eqk, Eql) =>Eq (a,b,c,d, e, f, &,
h,i,j. k1)

instance (Eqa,Eqb,Eqc, Eqd, Eqe, Eqf,Eqg, Eqh, Eqi, Eqj, Eq k, Eql, Egm) =>Eq(a, b, c, d,
e, f,g hij k1, m)

instance (Eqa, Eq b, Eqc, Eqd, Eqe, Eqf, Eq g, Eq h, Eqi, Eqj, Eq k, Eql, Eqgm, Eq n) => Eq (a,
b,c,d, e, f, g h,ij, kI m,n)

instance (Eqa, Eq b, Eqc, Eqd, Eqe, Eqf,Eqg, Eqh, Eqi, Eqj, Eqk, Eql, Egm, Eq n, Eq0) => Eq
(a,b,c,d,e, f, g h,ij, kI, mn,o)

class Eq a => 0rd a where
The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types
are in Ord. The declared order of the constructors in the data declaration determines the
ordering in derived Ord instances. The Ordering datatype allows a single comparison
to determine the precise ordering of two objects.

The Haskell Report defines no laws for Ord. However, <= is customarily expected to im-
plement a non-strict partial order and have the following properties:

Transitivity: ifx <= y && y <= z=True,thenx <= z=True
Reflexivity: x <= x=True
Antisymmetry: ifx <= y && y <= x=True,thenx == y=True

Note that the following operator interactions are expected to hold:

L. x > y=y <= x

2. x < y=x <=y && x /=y

3.x >y=y < X

4. x < y=compare x y == LT

5. x > y=compare x y == GT

6. x == y=compare x y == EQ

7. min x y == if x <= y then x else y="True
8. max x y == if x >= y then x else y=‘True’

182 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Minimal complete definition: either compare or <=. Using compare can be more efficient
for complex types.

compare : a->a ->Ordering

(<) : a->a->Bool

(¢=) :a->a->Bool

(>) :a->a->Bool

(>=) :a->a->Bool

max :a->a->a

min :a->a->a

instance (Ord a, Ord b) => Ord (Either a b)

instance Ord BigNumeric

instance Ord Bool

instance Ord Int

instance Ord (Numeric n)

instance Ord Ordering

instance Ord RoundingMode

instance Ord Text

instance Ord a => Ord [al

instance Ord ()

instance (Ord a, Ord b) => Ord (a, b)

instance (Ord a, Ord b, Ord ¢) => Ord (a, b, ¢)

instance (Ord a, Ord b, Ord ¢, Ord d) => Ord (a, b, ¢, d)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e) => Ord (a, b, ¢, d, e)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f)
instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, ¢, d, e, f, g)
instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, ¢, d, e, f, g, h)
instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, ¢, d, e, f, g, h, i)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, ¢, d, e, f,
g hij)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c,
d,ef.ghijk

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord 1) => Ord (a,
b,c,d, e, f, g h,ij k1)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord I, Ord m) =>
Ord (a) b) C’ d) e’ f’ g’ h’ i’j’ k’ |’ m)

2.1. Writing Daml 183

Daml SDK Documentation, 2.1.1

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord I, Ord m, Ord
n) =>0rd (a,b,c,d, e, f,g h,i,j, k,1,m,n)

instance (Ord a, Ord b, Ord ¢, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord I, Ord m, Ord
n, Ord o) => Ord (a, b, c,d,e, f, g h,i,j, k,I,m, n, 0)

class NumericScale n where

Is this a valid scale for the Numeric type?

This typeclass is used to prevent the creation of Numeric values with too large a scale.
The scale controls the number of digits available after the decimal point, and it must be
between 0 and 37 inclusive.

Thus the only available instances of this typeclass are NumericScale 0through Numer-
icScale 37.This cannot be extended without additional compiler and runtime support.
You cannot implement a custom instance of this typeclass.

If you have an error message in your code of the form "No instance for (NumericScale
n)" this is probably caused by having a numeric literal whose scale cannot be inferred
by the compiler. You can usually fix this by adding a type signature to the definition, or
annotating the numeric literal directly (for example, instead of writing 3.14159 you can
write (3.14159 : Numeric 5)).

numericScale : proxy n-> Int
Get the scale of a Numeric as an integer. For example, numericScale (3.14159
Numeric 5) equals 5.

instance NumericScale O

instance NumericScale 1

instance NumericScale 10
instance NumericScale 11

instance NumericScale 12
instance NumericScale 13
instance NumericScale 14
instance NumericScale 15
instance NumericScale 16
instance NumericScale 17
instance NumericScale 18
instance NumericScale 19
instance NumericScale 2

instance NumericScale 20
instance NumericScale 21
instance NumericScale 22
instance NumericScale 23

instance NumericScale 24

184

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance NumericScale 25
instance NumericScale 26
instance NumericScale 27
instance NumericScale 28
instance NumericScale 29
instance NumericScale 3
instance NumericScale 30
instance NumericScale 31
instance NumericScale 32
instance NumericScale 33
instance NumericScale 34
instance NumericScale 35
instance NumericScale 36
instance NumericScale 37
instance NumericScale 4
instance NumericScale 5
instance NumericScale 6
instance NumericScale 7
instance NumericScale 8
instance NumericScale 9
class [sNumeric t where
Types that can be represented by decimal literals in Daml.

fromNumeric : NumericScale m => Numeric m -> t
Convert from Numeric. Raises an error if the number can’t be represented exactly in
the target type.

fromBigNumeric : BigNumeric -> t
Convert from BigNumeric. Raises an error if the number can’t be represented ex-
actly in the target type.

instance [sNumeric BigNumeric
instance NumericScale n => [sNumeric (Numeric n)
class Bounded a where
Use the Bounded class to name the upper and lower limits of a type.

You can derive an instance of the Bounded class for any enumeration type. minBound is
the first constructor listed in the data declaration and maxBound is the last.

You can also derive an instance of Bounded for single-constructor data types whose con-
stituent types are in Bounded.

2.1. Writing Daml

185

Daml SDK Documentation, 2.1.1

Ord is not a superclass of Bounded because types that are not totally ordered can still
have upper and lower bounds.

minBound : a

maxBound : a

instance Bounded Bool

instance Bounded Int
class Enum a where

Use the Enum class to define operations on sequentially ordered types: that is, types that
can be enumerated. Enum members have defined successors and predecessors, which
you can get with the succ and pred functions.

Types that are an instance of class Bounded as well as Enum should respect the following
laws:

Both succ maxBound and pred minBound should resultin a runtime error.
fromEnum and toEnum should give a runtime error if the result value is not repre-
sentable in the result type. For example, toEnum 7 : Bool is an error.

enumFrom and enumFromThen should be defined with an implicit bound, like this:

enumFrom X = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBound

succ :a->a
Returns the successor of the given value. For example, for numeric types, succ adds
1.
Ifthe typeis alsoaninstance of Bounded, succ maxBound resultsinaruntimeerror.

pred :a->a
Returns the predecessor of the given value. For example, for numeric types, pred
subtracts 1.
Ifthe typeisalsoaninstance of Bounded, pred minBoundresultsinaruntimeerror.

toEnum : Int->a
Convert a value from an Int to an Enumvalue: ie, toEnum 1 returns the item at the
i th position of (the instance of) Enum

fromEnum : a->Int
Convert a value from an Enum value to an Int: ie, returns the Int position of the
element within the Enum.
If fromEnum is applied to a value that’s too large to fitin an Int, whatis returned is
up to your implementation.

enumFrom : a->[a]
Return a list of the Enum values starting at the Int position. For example:
enumFrom 6 : [Int] = [6,7,8,9,...,maxBound : Int]

enumFromThen : a->a->[a]
Returns a list of the Enum values with the first value at the first Int position, the
second value at the second Int position, and further values with the same distance
between them.

186 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

For example:
enumFromThen 4 6 : [Int] = [4,6,8,10...]
enumFromThen 6 2 : [Int] [6,2,-2,-6,...,minBound :: Int]

enumFromTo : a->a->[al
Returns a list of the Enum values with the first value at the first Int position, and the
last value at the last Int position.
This is what’s behind the language feature that lets you write [n,m. .].
For example:
enumFromTo 6 10 : [Int] = [6,7,8,9,10]

enumFromThenTo : a->a->a->[a]
Returns a list of the Enum values with the first value at the first Int position, the
second value at the second Int position, and further values with the same distance
between them, with the final value at the final Int position.
This is what’s behind the language feature that lets you write [n,n'..m].
For example:
enumFromThenTo 4 2 -6 : [Int] = [4,2,0,-2,-4,-6]
enumFromThenTo 6 8 2 : [Int] = []

instance Enum Bool
instance Enum Int
class Additive a where

Use the Additive class for types that can be added. Instances have to respect the fol-
lowing laws:

(+) must be associative,ie: (x + y) + z
(+) must be commutative,ie: x + y=y +
X + aunit=x

negate gives the additive inverse, ie: x + negate x=aunit

(+) :ra->a->a
Add the two arguments together.

aunit : a
The additive identity for the type. For example, for numbers, this is O.

(-) ra->a->a
Subtract the second argument from the first argument,ie. x - y=x + negate y

negate :a->a
Negate the argument: x + negate x=aunit

instance Additive BigNumeric

instance Additive Int

instance Additive (Numeric n)
class Multiplicative a where

Use the Multiplicative class for types that can be multiplied. Instances have to re-
spect the following laws:

(*) is associative,ie: (x * y) * z=x * (y * z)
(*) iscommutative,ie: x * y=y * x
X * munit=x

2.1. Writing Daml

187

Daml SDK Documentation, 2.1.1

(*) ra->a->a
Multipy the arguments together

munit : a
The multiplicative identity for the type. For example, for numbers, this is 1.

() ra->Int->a
x 7 nraises x to the power of n.

instance Multiplicative BigNumeric
instance Multiplicative Int
instance Multiplicative (Numeric n)
class (Additive a, Multiplicative a) => Number a where

Number is a class for numerical types. As well as the rules for Additive and Multi-
plicative,instances also have to respect the following law:

(*) is distributive with respectto (+). Thatis:ta * (b + ¢c) =(a * b) + (a *
c)yand (b + ¢) * a=(b * a) + (c * a)

instance Number BigNumeric
instance Number Int
instance Number (Numeric n)
class Signed a where
The Signed is for the sign of a number.

sighum :a->a
Sign of a number. For real numbers, the ‘signum’ is either -1 (negative), 0 (zero) or
1 (positive).

abs :a->a
The absolute value: that is, the value without the sign.

instance Signed BigNumeric
instance Signed Int
instance Signed (Numeric n)

class Multiplicative a => Divisible a where

Use the Divisible class for types that can be divided. Instances should respect that
division is the inverse of multiplication, ie. x * y / vy is equal to x whenever it is
defined.

(/) ra->a->a
x / ydivides x by y

instance Divisible Int
instance Divisible (Numeric n)
class Divisible a => Fractional a where

Use the Fractional class for types that can be divided and where the reciprocal is well
defined. Instances have to respect the following laws:

188 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

When recip xis defined, it must be the inverse of x with respect to multiplication:
X * recip x = munit
When recip yisdefined,thenx / yv = x * recip y

recip :a->a
Calculates the reciprocal: recip xis1/x.

instance Fractional (Numeric n)

class Show a where
Use the Show class for values that can be converted to a readable Text value.
Derived instances of Show have the following properties:

The result of show is a syntactically correct expression that only contains constants
(given the fixity declarations in force at the point where the type is declared). It only
contains the constructor names defined in the data type, parentheses, and spaces.
When labelled constructor fields are used, braces, commas, field names, and equal
signs are also used.

If the constructor is defined to be an infix operator, then showsPrec produces infix
applications of the constructor.

If the precedence of the top-level constructor in x is less than d (associativity is ig-
nored), the representation will be enclosed in parentheses. For example, if dis 0 then
the result is never surrounded in parentheses; if dis 11 it is always surrounded in
parentheses, unless it is an atomic expression.

If the constructor is defined using record syntax, then show will produce the
record-syntax form, with the fields given in the same order as the original decla-
ration.

showsPrec : Int->a-> ShowS
Convert a value to a readable Text value. Unlike show, showsPrec should satisfy
the rule showsPrec d x r ++ s == showsPrec d x (r ++ s)

show : a -> Text
Convert a value to a readable Text value.

showlist : [a] -> ShowS
Allows you to show lists of values.

instance (Show a, Show b) => Show (Either a b)
instance Show BigNumeric

instance Show Bool

instance Show Int

instance Show (Numeric n)

instance Show Ordering

instance Show RoundingMode

instance Show Text

instance Show a => Show [a]

instance Show ()

instance (Show a, Show b) => Show (a, b)

2.1. Writing Daml 189

Daml SDK Documentation, 2.1.1

instance (Show a, Show b, Show ¢) => Show (a, b, ¢)
instance (Show a, Show b, Show ¢, Show d) => Show (a, b, ¢, d)

instance (Show a, Show b, Show ¢, Show d, Show e) => Show (a, b, ¢, d, e)

Data Types

data AnyChoice

Existential choice type that can wrap an arbitrary choice.

AnyChoice
Field Type Description
getAnyChoice Any
getAnyChoiceTem- | Template-
plateTypeRep TypeRep

instance £q AnyChoice
instance Ord AnyChoice
data AnyContractKey

Existential contract key type that can wrap an arbitrary contract key.

AnyContractKey
Field Type Description
getAnyContrac- Any
tKey
getAnyContrac- Template-
tKeyTemplateType- | TypeRep
Rep

instance £q AnyContractKey
instance Ord AnyContractKey
data AnyTemplate
Existential template type that can wrap an arbitrary template.

AnyTemplate

Field Type Description

getAnyTemplate Any

instance £q AnyTemplate

instance Ord AnyTemplate

190 Chapter 2.

Daml Guide

Daml SDK Documentation, 2.1.1

data TemplateTypeRep

Unique textual representation of a template Id.

TemplateTypeRep

Field Type Description
getTemplateType- | TypeRep
Rep

instance £q TemplateTypeRep

instance Ord TemplateTypeRep

data Down a

The Down type can be used for reversing sorting order. For example, sortOn (\x
Down x.field) would sort by descending field.

Down a
instance Action Down
instance Applicative Down

instance Functor Down

instance £q a => £q (Down a)

instance Ord a => Ord (Down a)

instance Show a => Show (Down a)

type Implements t i = (HasInterfaceTypeRep i, HasTolnterface t i, HasFrominterface t i)
(1.dev only) Constraint that indicates that a template implements an interface.

data AnyException

A wrapper for all exception types.

instance HasFromAnyException AnyException

instance HasMessage AnyException

instance HasToAnyException AnyException

data Contractld a

->

The ContractId a type represents an ID for a contract created from a template a. You

can use the ID to fetch the contract, among other things.

instance £q (Contractid a)

instance Ord (Contractld a)

instance Show (Contractld a)

data Date

The Date type represents a date, for example date 2007 Apr 5.

instance £q Date

2.1. Writing Daml

191

Daml SDK Documentation, 2.1.1

instance Ord Date

instance Bounded Date

instance Enum Date

instance Show Date
data Mapab

TheMap a b typerepresents an associative array from keys of type a to values of type b.
It uses the built-in equality for keys. Import DA .Map to use it.

instance Ord k => Foldable (Map k)
instance Ord k => Monoid (Map k v)
instance Ord k => Semigroup (Map k v)
instance Ord k => Traversable (Map k)
instance Ord k => Functor (Map k)
instance (Ord k, Eq v) => Eq (Map k v)
instance (Ord k, Ord v) => Ord (Map k v)
instance (Show k, Show v) => Show (Map k v)
data Party
The Party type represents a party to a contract.
instance IsParties Party
instance IsParties (Optional Party)
instance IsParties (NonEmpty Party)
instance [sParties (Set Party)
instance IsParties [Party]
instance £q Party
instance Ord Party
instance Show Party
data Scenario a

The Scenario typeis for simulating ledger interactions. The type Scenario a describes
a set of actions taken by various parties during the simulated scenario, before returning
a value of type a.

instance CanAssert Scenario
instance ActionThrow Scenario
instance CanAbort Scenario
instance HasSubmit Scenario Update
instance HasTime Scenario

instance Action Scenario

192 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data

data

data

data

instance ActionFail Scenario
instance Applicative Scenario
instance Functor Scenario
TextMap a

The TextMap a type represents an associative array from keys of type Text to values of
type a.

instance Foldable TextMap

instance Monoid (TextMap b)
instance Semigroup (TextMap b)
instance Traversable TextMap
instance Functor TextMap

instance £q a => Eq (TextMap a)
instance Ord a => Ord (TextMap a)
instance Show a => Show (TextMap a)
Time

The Time type represents a specific datetime in UTC, forexample time (date 2007 Apr
5) 14 30 05.

instance £q Time
instance Ord Time
instance Show Time
Update a

The Update atype represents an Action toupdate or query the ledger, before returning
a value of type a. Examples include create and fetch.

instance CanAssert Update
instance ActionCatch Update
instance ActionThrow Update
instance CanAbort Update

instance HasSubmit Scenario Update
instance HasTime Update

instance Action Update

instance ActionFail Update
instance Applicative Update
instance Functor Update

Optional a

2.1. Writing Daml

193

Daml SDK Documentation, 2.1.1

data

The Optional type encapsulates an optional value. A value of type Optional a either
contains a value of type a (represented as Some a), or itis empty (represented as None).
Using Optional is a good way to deal with errors or exceptional cases without resorting
to drastic measures such as error.

The Optional typeisalsoanAction. Itisasimple kind of error Action, where all errors
are represented by None. A richer error Action could be built using the Data.Either.
Either type.

None

Some a

instance Foldable Optional

instance Action Optional

instance ActionFail Optional
instance Applicative Optional
instance IsParties (Optional Party)
instance Traversable Optional
instance Functor Optional

instance £q a => £q (Optional a)
instance Ord a => Ord (Optional a)
instance Show a => Show (Optional a)
Archive

The data type corresponding to the implicit Archive choice in every template.
Archive

instance £q Archive

instance Show Archive

type Choice t ¢ r = (TemplateOrinterface t, HasExercise t ¢ r, HasToAnyChoice t ¢ r, HasFromAnyChoice t ¢ r)

Constraint satisfied by choices.

type Template t = (HasSignatory t, HasObserver t, HasEnsure t, HasAgreement t, HasCreate t, HasFetch t,

HasArchive t, HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)
Constraint satisfied by templates.

type TemplateKey t k = (Template t, HasKey t k, HasLookupByKey t k, HasFetchByKey t k, HasMaintainer t k,

HasToAnyContractKey t k, HasFromAnyContractKey t k)
Constraint satisfied by template keys.

type TemplateOrinterface t = (HasTemplateTypeRep t, HasToAnyTemplate t, HasFromAnyTemplate t)

data

Eithera b

The Either type represents values with two possibilities: a value of type Either a bis
either Left aorRight b.

The Either type is sometimes used to represent a value which is either correct or an
error; by convention, the Left constructor is used to hold an error value and the Right
constructor is used to hold a correct value (mnemonic: "right" also means "correct").

194

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Lefta

Rightb

instance (Eq a, Eq b) => Eq (Either a b)
instance (Ord a, Ord b) => Ord (Either a b)
instance (Show a, Show b) => Show (Either a b)

type ShowS = Text -> Text
showS should represent some text, and applying it to some argument should prepend the ar-
gument to the represented text.

data BigNumeric
A big numeric type, capable of holding large decimal values with many digits.

BigNumeric represents any positive or negative decimal number with up to 2215 digits
before the decimal point, and up to 2215 digits after the decimal point.

BigNumeric is not serializable, it is only intended for intermediate computation. You
must round and convert BigNumeric to a fixed-width numeric (Numeric n) in order
to store it in a template. The rounding operations are round and div from the DA.
BigNumeric module. The casting operations are fromNumeric and fromBigNumeric
from the IsNumeric typeclass.

instance £q BigNumeric
instance IsNumeric BigNumeric
instance Ord BigNumeric
instance Additive BigNumeric
instance Multiplicative BigNumeric
instance Number BigNumeric
instance Signed BigNumeric
instance Show BigNumeric

data Bool
A type for Boolean values, ie True and False.
False
True
instance £q Bool
instance Ord Bool
instance Bounded Bool
instance £num Bool
instance Show Bool

type Decimal = Numeric 10

data Int

2.1. Writing Daml 195

Daml SDK Documentation, 2.1.1

A type representing a 64-bit integer.

instance £q Int

instance Ord Int

instance Bounded Int

instance Enum Int

instance Additive Int

instance Divisible Int

instance Multiplicative Int

instance Number Int

instance Signed Int

instance Show Int
data Nat

(Kind) This is the kind of type-level naturals.
data Numericn

A type for fixed-point decimal numbers, with the scale being passed as part of the type.

Numeric n represents a fixed-point decimal number with a fixed precision of 38 (i.e. 38
digits not including a leading zero) and a scale of n, i.e,, n digits after the decimal point.

n must be between 0 and 37 (bounds inclusive).

Examples:

0.01 : Numeric 2
0.0001 : Numeric 4

instance £q (Numeric n)
instance NumericScale n => IsNumeric (Numeric n)
instance Ord (Numeric n)
instance Additive (Numeric n)
instance Divisible (Numeric n)
instance Fractional (Numeric n)
instance Multiplicative (Numeric n)
instance Number (Numeric n)
instance Signed (Numeric n)
instance Show (Numeric n)

data Ordering

Atype for giving information about ordering: being less than (LT), equal to (EQ), or greater
than (GT) something.

LT

196 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

EQ
GT
instance £q Ordering
instance Ord Ordering
instance Show Ordering
data RoundingMode

Rounding modes for BigNumeric operations like div and round from DA.BigNumeric.
RoundingUp

Round away from zero.
RoundingDown

Round towards zero.
RoundingCeiling

Round towards positive infinity.
RoundingFloor

Round towards negative infinity.
RoundingHalfUp

Round towards the nearest neighbor unless both neighbors are equidistant, in
which case round away from zero.

RoundingHalfDown

Round towards the nearest neighbor unless both neighbors are equidistant, in
which case round towards zero.

RoundingHalfEven

Round towards the nearest neighbor unless both neighbors are equidistant, in
which case round towards the even neighbor.

RoundingUnnecessary

Do not round. Raises an error if the result cannot be represented without round-
ing at the targeted scale.

instance £q RoundingMode

instance Ord RoundingMode

instance Show RoundingMode
data Text

A type for text strings, that can represent any unicode code point. For example "Hello,
world".

instance £q Text
instance Ord Text

instance Show Text

2.1. Writing Daml 197

Daml SDK Documentation, 2.1.1

data /] a
A type for lists, forexample [1,2, 3].
(1)
¢)__

Functions

assert : CanAssert m => Bool->m ()
Check whether a condition is true. If it’s not, abort the transaction.

assertMsg : CanAssert m => Text -> Bool -> m ()
Check whether a condition is true. If it’s not, abort the transaction with a message.

assertAfter : (CanAssert m, HasTime m) => Time ->m ()
Check whether the given time is in the future. If it's not, abort the transaction.

assertBefore : (CanAssert m, HasTime m) => Time -> m ()
Check whether the given time is in the past. If it’s not, abort the transaction.

daysSinceEpochToDate : Int -> Date
Convert from number of days since epoch (i.e. the number of days since January 1, 1970) to a
date.

dateToDaysSinceEpoch : Date -> Int
Convert from a date to number of days from epoch (i.e. the number of days since January 1,
1970).

interfaceTypeRep : HasInterfaceTypeRep i => i -> TemplateTypeRep
(1.dev only) Obtain the TemplateTypeRep for the template given in the interface value.

tolnterface : HasToInterfaceti=>t->i
(1.dev only) Convert a template value into an interface value. For example toInterface @My-
Interface value converts atemplate value into a MyInterface type.

tolnterfaceContractld : HasTolnterface t i => Contractld t -> Contractld i
(1.dev only) Convert a template contract id into an interface contract id. For example, toInt-
erfaceContractId @MyInterface cid.

frominterfaceContractld : HasFrominterface t i => Contractld i -> Contractid t
(1.dev only) Convert an interface contract id into a template contract id. For example,
fromInterfaceContractId @MyTemplate cid.
This function does not verify that the interface contract id actually points to a template of the
given type. This means that a subsequent fetch, exercise, or archive may fail, if, for ex-
ample, the contract id points to a contract that implements the interface but is of a different
template type than expected.
Therefore, you should only use fromInterfaceContractId in situations where you already
know that the contract id points to a contract of the right template type. You can also use it in
situations where you will fetch, exercise, or archive the contract right away, when a transaction
failure is the appropriate response to the contract having the wrong template type.
In all other cases, consider using fetchFromInterface instead.

fetchFrominterface : (HasFrominterface t i, HasFetch i) => Contractld i -> Update (Optional (Contractid t, t))

198 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(1.dev only) Fetch an interface and convert it to a specific template type. If conversion is suc-
cesful, this function returns the converted contract and its converted contract id. Otherwise,
this function returns None.

Example:

do
fetchResult <- fetchFromInterface @MyTemplate ifaceCid
case fetchResult of
None -> abort "Failed to convert interface to appropriate template type"
Some (tplCid, tpl) -> do
do something with tpl and tplCid ...

partyToText : Party -> Text
Convert the Party to Text, giving back what you passed to getParty. In most cases, you
should use show instead. show wraps the party in 'ticks' making it clear it was a Party
originally.

partyFromText : Text -> Optional Party
Converts a Text to Party. It returns None if the provided text contains any forbidden charac-
ters. See Daml-LF spec for a specification on which characters are allowed in parties. Note that
this function accepts text without single quotes.
This function does not check on whether the provided text corresponds to a party that "exists"
on a given ledger: it merely converts the given Text toa Party. The only way to guarantee that
a given Party exists on a given ledger is to involve it in a contract.
This function, together with partyToText, forms an isomorphism between valid party strings
and parties. In other words, the following equations hold:

@ p. partyFromText (partyToText p) = Some p
B txt p. partyFromText txt = Some p ==> partyToText p = txt

This function will crash at runtime if you compile Daml to DamlI-LF < 1.2.

getParty : Text -> Scenario Party
Get the party with the given name. Party names must be non-empty and only contain alphanu-
meric charaters, space, - (dash) or _ (underscore).

scenario : Scenario a -> Scenario a
Declare you are building a scenario.

curry : ((a,b)->c)->a->b->c
Turn a function that takes a pair into a function that takes two arguments.

uncurry : (@->b->c)->(a, b) ->c¢
Turn a function that takes two arguments into a function that takes a pair.

(>>) s Actionm=>ma->mb->mb
Sequentially compose two actions, discarding any value produced by the first. This is like se-
quencing operators (such as the semicolon) in imperative languages.

ap : Applicativef=>f(a->b)->fa->fb
Synonym for <*>.
return : Applicativem=>a->m a

Inject a value into the monadic type. For example, for Update and a value of type a, return
would give you an Update a.

join : Actionm=>m (ma)->ma
Collapses nested actions into a single action.

2.1. Writing Daml 199

Daml SDK Documentation, 2.1.1

identity :a->a

The identity function.

guard : ActionFail m => Bool ->m ()

foldl : (b->a->b)->b->[a]l->b

This function is a left fold, which you can use to inspect/analyse/consume lists. foldl f i
xs performs a left fold over the list xs using the function £, using the starting value i.
Examples:

>>> foldl (+) 0 [1,2,3]
o

>>> foldl (*) 10 [2,3]
1000000

Note that foldl works from left-to-right over the list arguments.

find : (a->Bool) -> [a] -> Optional a

find p xs finds the first element of the list xs where the predicate p is true. There might not
be such an element, which is why this function returns an Optional a.

length : [a] -> Int

any

Gives the length of the list.

: (a -> Bool) -> [a] -> Bool

Are there any elements in the list where the predicate is true? any p xsis True if p holds for
at least one element of xs.

all : (a->Bool) ->[a] -> Bool

Is the predicate true for all of the elements in the list? all p xsis True if p holds for every
element of xs.

or : [Bool] -> Bool

and

Is at least one of elements in alist of Bool true? or bsis True if at least one element of bs is
True.

: [Booll -> Bool

Is every element in a list of Bool true? and bs is True if every element of bs is True.

elem : Eqa=>a->[a] -> Bool

Does this value existin this list? elem x xsis True if x is an element of the list xs.

notElem : Eqa=>a->[a] -> Bool

Negation of elem: elem x xsis True if x is not an element of the list xs.

(<$>) : Functorf=>(a->b)->fa->fb

Synonym for fmap.

optional : b->(a->b)->Optionala->b

The optional function takes a default value, a function, and a Optional value. If the Op-
tional valueis None, the function returns the default value. Otherwise, it applies the function
to the value inside the Some and returns the result.

Basic usage examples:

>>> optional False (> 2) (Some 3)
True

200

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

>>> optional False (> 2) None
False

>>> optional 0 (*2) (Some 5)
10

>>> optional 0 (*2) None

0

This example applies showtoaOptional Int.Ifyou have Some n,this shows the underlying
Int, n. Butif you have None, this returns the empty string instead of (for example) None:

>>> optional "" show (Some 5)
"5"
>>> optional "" show (None : Optional Int)

wn

either : (a->¢c)->(b->c) ->Eitherab->c¢
The either function provides case analysis for the Either type. If the value is Left a, it
applies the first function to a; if itis Right b, it applies the second function to b.
Examples:
This example has two values of type Either [Int] Int,oneusingthe Left constructorand
another using the Right constructor. Then it applies either the length function (if it has a
[Int]) or the "times-two" function (if it has an Int):

>>> let s = Left [1,2,3] : Either [Int] Int in either length (*2) s
3

>>> let n = Right 3 : Either [Int] Int in either length (*2) n

6

concat : [[a]] -> [a]
Take a list of lists and concatenate those lists into one list.

(++) : [a] -> [a] -> [a]
Concatenate two lists.
flip : (@a->b->c)->b->a->c
Flip the order of the arguments of a two argument function.

reverse : [a] -> [a]
Reverse a list.

mapA : Applicative m => (a ->m b) -> [a] -> m [b]
Apply an applicative function to each element of a list.

forA : Applicative m =>[a] -> (a -> m b) -> m [b]
forA is mapA with its arguments flipped.

sequence : Applicative m =>[m a] -> m [a]
Perform a list of actions in sequence and collect the results.

(=<<) : Actionm=>(a->mb)->ma->mb
=<< is >>= with its arguments flipped.

concatMap : (a->[b]) -> [a] -> [b]
Map a function over each element of a list, and concatenate all the results.

replicate : Int->a->[a]
replicate i xgivesthelist [x, x, x, ..., x] withi copiesofx.

2.1. Writing Daml 201

Daml SDK Documentation, 2.1.1

take : Int->[a] -> [a]
Take the first n elements of a list.

drop : Int->[a] -> [a]
Drop the first n elements of a list.

splitAt : Int ->[a] -> ([al, [a])
Split a list at a given index.

takeWhile : (a-> Bool) -> [a] -> [al
Take elements from a list while the predicate holds.

dropWhile : (a -> Bool) -> [a] -> [a]
Drop elements from a list while the predicate holds.

span : (a->Bool) -> [a] -> ([a], [a])
span p xsisequivalentto (takeWhile p xs, dropWhile p xs).

partition : (a-> Bool) -> [a] -> ([a], [a])
Thepartition functiontakes a predicate, a listand returns the pair of lists of elements which
do and do not satisfy the predicate, respectively; i.e.,
> partition p xs == (filter p xs, filter (not. p) xs)

>>> partition (<0) [1, -2, -3, 4, -5, 6]
([_2/ _3/ _5]/ [1/ 4/ 6])

break : (a-> Bool) -> [a] -> ([al, [a])
Break a list into two, just before the first element where the predicate holds. break p xsis
equivalentto span (not . p) xs.

lookup : Eqa=>a->[(a, b)] -> Optional b
Look up the first element with a matching key.

enumerate : (Enum a, Bounded a) => [al
Generate a list containing all values of a given enumeration.

zip : [a] -> [b] -> [(a, b)]
zip takes two lists and returns a list of corresponding pairs. If one list is shorter, the excess
elements of the longer list are discarded.

zip3 : [a] -> [b] -> [c] -> [(a, b,)]
zip3 takes three lists and returns a list of triples, analogous to zip.
zipWith : (a->b->c¢) -> [a] -> [b] -> [c]
zipWith takes a function and two lists. It generalises zip by combining elements using the

function, instead of forming pairs. If one list is shorter, the excess elements of the longer list
are discarded.

zipWith3 : (a->b->c->d) -> [a] -> [b] -> [c] -> [d]
zipWith3 generalises zip3 by combining elements using the function, instead of forming
triples.

unzip : [(a, b)] -> ([al, [b])
Turn a list of pairs into a pair of lists.

unzip3 : [(a, b,)] -> ([a], [b], [c])
Turn a list of triples into a triple of lists.

traceRaw : Text->a->a

202 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

traceRaw msg a printsmsg and returns a, for debugging purposes.
Note that on some ledgers, those messages are not displayed at the default log level. For Sand-
box, you can use --log-level=debug to include them.

trace : Showb=>b->a->a
trace b aprints b and returns a, for debugging purposes.
Note that on some ledgers, those messages are not displayed at the default log level. For Sand-
box, you can use --log-level=debug to include them.

traceld : Showb =>b->b
traceId a prints a and returns a, for debugging purposes.
Note that on some ledgers, those messages are not displayed at the default log level. For Sand-
box, you can use --log-level=debug to include them.

debug : (Show b, Actionm) =>b ->m ()
debug x prints x for debugging purposes.
Note that on some ledgers, those messages are not displayed at the default log level. For Sand-
box, you can use --1log-level=debug to include them.

debugRaw : Action m =>Text ->m ()
debugRaw msg prints msg for debugging purposes.
Note that on some ledgers, those messages are not displayed at the default log level. For Sand-
box, you can use --1log-level=debug to include them.

fst : (a,b)->a
Return the first element of a tuple.
snd : (a,b)->b

Return the second element of a tuple.

truncate : Numeric n -> Int
truncate x rounds x toward zero.

intToNumeric : Int-> Numeric n
Convert an Int to a Numeric.

intToDecimal : Int-> Decimal
Convert an Int toa Decimal.

roundBankers : Int-> Numeric n -> Numeric n
Bankers’Rounding: roundBankers dp x rounds x todp decimal places,wherea .5isrounded
to the nearest even digit.

roundCommercial : NumericScale n => Int -> Numeric n -> Numeric n
Commercial Rounding: roundCommercial dp x rounds x to dp decimal places, wherea .5
is rounded away from zero.

round : Numeric n -> Int
Round a Decimal to the nearest integer, where a . 5 is rounded away from zero.

floor : Numeric n -> Int
Round a Decimal down to the nearest integer.

ceiling : Numeric n -> Int
Round a Decimal up to the nearest integer.

null : [a] -> Bool
Is the listempty? null xs is true if xs is the empty list.

2.1. Writing Daml 203

Daml SDK Documentation, 2.1.1

filter : (a-> Bool) ->[a] -> [a]
Filters the list using the function: keep only the elements where the predicate holds.

sum : Additivea =>[a] ->a
Add together all the elements in the list.

product : Multiplicative a =>[a] -> a
Multiply all the elements in the list together.

undefined : a
A convenience function that can be used to mark something not implemented. Always throws
an error with "Not implemented.”

stakeholder : (HasSignatory t, HasObserver t) => t -> [Party]
The stakeholders of a contract: its signatories and observers.

maintainer : HasMaintainer t k => k -> [Party]
The list of maintainers of a contract key.

exerciseByKey : HasExerciseByKey t k c r => k->c -> Updater
Exercise a choice on the contract associated with the given key.
You must pass the t using an explicit type application. For instance, if you want to exercise a
choice Withdraw on a contract of template Account given by its key k, you must call exer-
ciseByKey @Account k Withdraw.

createAndExercise : (HasCreate t, HasExercise t c r) =>t-> ¢ -> Update r
Create a contract and exercise the choice on the newly created contract.

templateTypeRep : HasTemplateTypeRep t => TemplateTypeRep
Generate a unique textual representation of the template id.

toAnyTemplate : HasToAnyTemplate t => t -> AnyTemplate
Wrap the template in AnyTemplate.
Only available for Daml-LF 1.7 or later.

fromAnyTemplate : HasFromAnyTemplate t => AnyTemplate -> Optional t
Extract the underlying template from AnyTemplate if the type matches or return None.
Only available for Daml-LF 1.7 or later.

toAnyChoice : (HasTemplateTypeRep t, HasToAnyChoice t ¢ r) => ¢ -> AnyChoice
Wrap a choice in AnyChoice.
You must pass the template type t using an explicit type application. For example toAny-
Choice @Account Withdraw.
Only available for Daml-LF 1.7 or later.

fromAnyChoice : (HasTemplateTypeRep t, HasFromAnyChoice t ¢ r) => AnyChoice -> Optional ¢
Extract the underlying choice from AnyChoice if the template and choice types match, or re-
turn None.
You must pass the template type t using an explicit type application. For example fromAny-
Choice @Account choice.
Only available for Daml-LF 1.7 or later.

toAnyContractKey : (HasTemplateTypeRep t, HasToAnyContractKey t k) => k -> AnyContractKey
Wrap a contract key in AnyContractKey.
You must pass the template type t using an explicit type application. For example toAnyCon-
tractKey @Proposal k.
Only available for Daml-LF 1.7 or later.

204 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

fromAnyContractKey : (HasTemplateTypeRep t, HasFromAnyContractKey t k) => AnyContractKey -> Optional k
Extract the underlying key from AnyContractKey if the template and choice types match, or
return None.

You must pass the template type t using an explicit type application. For example fromAny-
ContractKey (@Proposal k.
Only available for Daml-LF 1.7 or later.

visibleByKey : HasLookupByKey t k => k -> Update Bool
True if contract exists, submitter is a stakeholder, and all maintainers authorize. False if con-
tract does not exist and all maintainers authorize. Fails otherwise.

otherwise : Bool
Used as an alternative in conditions.

map : (a->b) ->[a] -> [b]
map f xs applies the function £ to all elements of the list xs and returns the list of results (in
the same order as xs).

foldr : (a->b->b)->b->[a] ->b
This function is a right fold, which you can use to manipulate lists. foldr f i xs performs
a right fold over the list xs using the function £, using the starting value 1.
Note that foldr works from right-to-left over the list elements.

() :(b->c)->(a->b)->a->c
Composes two functions,ie, (f . g) x = £ (g x).

const :ta->b->a
const xisaunaryfunction which evaluates to x for all inputs.

>>> const 42 "hello"
42

>>> map (const 42) [0..3]
[42,42,42,42]

($) : (@a->b)->a->b
Take a function from a to b and a value of type a, and apply the function to the value of type a,
returning a value of type b. This function has a very low precedence, which is why you might
want to use it instead of regular function application.

(& &) : Bool -> Bool -> Bool
Boolean "and". This function has short-circuiting semantics, i.e., when both arguments are
present and the first arguments evaluates to ‘False’, the second argument is not evaluated
at all.

(Il) : Bool -> Bool -> Bool
Boolean "or". This function has short-circuiting semantics, i.e, when both arguments are
present and the first arguments evaluates to ‘True’, the second argument is not evaluated at
all.

not : Bool -> Bool
Boolean "not"

error : Text->a
error stops execution and displays the given error message.
If called within a transaction, it will abort the current transaction. Outside of a transaction
(scenarios, Daml Script or Daml Triggers) it will stop the whole scenario/script/trigger.

2.1. Writing Daml 205

Daml SDK Documentation, 2.1.1

Throws a GeneralError exception.

subtract : Additivea=>a->a->a
subtract x yisequivalenttoy - x.
This is useful for partial application, e.g., in subtract 1 since (- 1) is interpreted as the
number -1 and not a function that subtracts 1 from its argument.

(%) : Int->Int->Int
x % ycalculates the remainder of x by v

showParen : Bool -> ShowS -> ShowS
Utility function that surrounds the inner show function with parentheses when the ‘Bool’ pa-
rameter is ‘True’.

showString : Text -> ShowS
Utility function converting a ‘String’ to a show function that simply prepends the string un-
changed.

showSpace : ShowS
Prepends a single space to the front of the string.

showCommaSpace : Show$S
Prepends a comma and a single space to the front of the string.

2.1.3.2 Module DA.Action

Action

Functions

when : Applicative f => Bool ->f () -> f ()
Conditional execution of Action expressions. For example,

when final (archive contractId)

will archive the contract contractId if the Boolean value final is True, and otherwise do
nothing.

This function has short-circuiting semantics, i.e,, when both arguments are present and the
first arguments evaluates to False, the second argument is not evaluated at all.

unless : Applicative f => Bool ->f () ->f ()
The reverse of when.
This function has short-circuiting semantics, i.e,, when both arguments are present and the
first arguments evaluates to True, the second argument is not evaluated at all.

foldrA : Actionm =>(a->b->mb)->b->[a]->mb
The foldrA is analogous to foldr, except that its result is encapsulated in an action. Note
that foldrA works from right-to-left over the list arguments.

foldr1A : Actionm=>(a->a->ma)->[a]->m a
foldrlAislike foldrA but raises an error when presented with an empty list argument.

foldlA : Actionm=>(b->a->mb)->b->[a]->mb
foldlA is analogous to foldl, except that its result is encapsulated in an action. Note that
foldlA works from left-to-right over the list arguments.

206 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

foldl1A : Actionm=>(a->a->ma)->[a]l->m a
The foldl1lAis like foldlA butraises an errors when presented with an empty list argument.

filterA : Applicative m => (a -> m Bool) -> [a] -> m [a]
Filters the list using the applicative function: keeps only the elements where the predicate
holds. Example: given a collection of lou contract IDs one can find only the GBPs.

filterA (fmap (\iou -> iou.currency == "GBP") . fetch) iouCids

replicateA : Applicative m =>Int->m a->m [a]
replicateA n act performs the action n times, gathering the results.

replicateA_ : Applicativem =>Int->ma->m ()
Like replicateA, but discards the result.

(>=3) : Actionm=>(a->mb)->(b->mc)->a->mc
Left-to-right composition of Kleisli arrows.

(¢=<) : Actionm=>(b->mc)->(@a->mb)->a->mc
Right-to-left composition of Kleisli arrows. @(">=>")@, with the arguments flipped.

2.1.3.3 Module DA.Action.State

DA.Action.State

Data Types

data State s a

A value of type State s a represents a computation that has access to a state variable
of type s and produces a value of type a.

>>>runState (modify (+1)) 0>>>((), 1)

>>>evalState (modify (+1)) 0>>> ()

>> > execState (modify (+1)) 0>>>1

>>>runState (do x <- get; modify (+1); pure x) 0 >>> (0, 1)
>>>runState (put1) 0>>>(0,1)

>>>runState (modify (+1)) 0 >>>((), 1)

Note that values of type State s a are not serializable.

State

Field Type Description
runState s->(a,s)

instance ActionState s (State s)
instance Action (State s)

instance Applicative (State s)

2.1. Writing Daml 207

Daml SDK Documentation, 2.1.1

instance Functor (State s)

Functions

evalState : Statesa->s->a

Special case of runState that does not return the final state.

execState : Statesa->s->s

Special case of runState that does only retun the final state.

2.1.3.4 Module DA.Action.State.Class

DA.Action.State.Class

Typeclasses

class ActionState s m where
Action m has a state variable of type s.
Rules:

get *> ma = ma

ma <* get = ma

put a >>= get = put a $> a

put a *> put b = put b

(,) <$> get <*> get = get <&> \a -> (a, a)

Informally, these rules mean it behaves like an ordinary assignable variable: it doesn’t
magically change value by looking at it, if you put a value there that’s always the value
you’ll get if you read it, assigning a value but never reading that value has no effect, and

SO on.

get :ms
Fetch the current value of the state variable.

put :s->m()
Set the value of the state variable.

modify : (s->s)->m ()
Modify the state variable with the given function.

default modify
:Actionm =>(s->s)->m ()

instance ActionState s (State s)

208

Chapter 2. Daml Guide

Daml SDK Documentation,

2.1.1

2.1.3.5 Module DA.Assert

Functions

assertEq : (CanAssert m, Showa, Eqa) =>a->a->m ()
Check two values for equality. If they’re not equal, fail with a message.

(===) : (CanAssert m, Show a, Eqa) =>a->a->m ()
Infix version of assertEaq.

assertNotEq : (CanAssert m, Show a, Eqa) =>a->a->m ()
Check two values for inequality. If they’re equal, fail with a message.

(=/=) : (CanAssert m, Show a, Eqa)=>a->a->m ()
Infix version of assertNotEaq.

assertAfterMsg : (CanAssert m, HasTime m) => Text -> Time ->m ()
Check whether the given time is in the future. If it’s not, abort with a message.

assertBeforeMsg : (CanAssert m, HasTime m) => Text -> Time ->m ()
Check whether the given time is in the past. If it’s not, abort with a message.

2.1.3.6 Module DA.Bifunctor

Typeclasses

class Bifunctor p where

A bifunctor is a type constructor that takes two type arguments and is a functor in both
arguments. That is, unlike with Functor, a type constructor such as Either does not
need to be partially applied for a Bifunctor instance, and the methods in this class
permit mapping functions over the Left value or the Right value, or both at the same
time.

It is a bifunctor where both the first and second arguments are covariant.
You candefineaBifunctor byeitherdefining bimap or by defining both first and second.

If you supply bimap, you should ensure that:

"bimap identity identity’ = “identity’

If you supply first and second, ensure:

first identity = identity
second identity = identity

If you supply both, you should also ensure:

bimap £ g = first £ . second g

By parametricity, these will ensure that:

first (f . g9) first £ . first g

bimap (f . g) (h . 1) = bimap f h . bimap g i
second (f . g) = second £ . second g

2.1. Writing Daml

209

Daml SDK Documentation, 2.1.1

bimap : (a->b)->(c->d)>pac->pbd
Map over both arguments at the same time.

bimap £ g = first £ . second g

Examples:

>>> bimap not (+1) (True, 3)
(False, 4)

>>> bimap not (+1) (Left True)
Left False

>>> bimap not (+1) (Right 3)
Right 4

first : (@a->b)->pac->pbc
Map covariantly over the first argument.

first £ = bimap f identity

Examples:

>>> first not (True, 3)
(False, 3)

>>> first not (Left True : Either Bool Int)
Left False

second : (b->c)->pab->pac
Map covariantly over the second argument.

second = bimap identity

Examples:

>>> second (+1) (True, 3)
(True, 4)

>>> second (+1) (Right 3 : Either Bool Int)
Right 4

instance Bifunctor Either
instance Bifunctor ()

instance Bifunctor x1

instance Bifunctor (x1, x2)
instance Bifunctor (x1, x2, x3)
instance Bifunctor (x1, x2, x3, x4)

instance Bifunctor (x1, x2, x3, x4, x5)

210

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.7 Module DA.BigNumeric

This module exposes operations for working with the BigNumeric type.

Functions

scale : BigNumeric -> Int
Calculate the scale of a BigNumeric number. The BigNumeric number is represented asn *
10"-s where n is an integer with no trailing zeros, and s is the scale.
Thus, the scale represents the number of nonzero digits after the decimal point. Note that the
scale can be negative if the BigNumeric represents an integer with trailing zeros. In that case,
it represents the number of trailing zeros (negated).
The scale ranges between 2215 and -2215 + 1. The scale of 0 is 0 by convention.

>>> scale 1.1
1

>>> gscale (shiftLeft (2714) 1.0)
-2"14

precision : BigNumeric -> Int
Calculate the precision of a BigNumeric number. The BigNumeric number is represented as
n * 10”-swherenis aninteger with no trailing zeros, and s is the scale. The precision is the
number of digits in n.
Thus, the precision represents the number of significant digits in the BigNumeric.
The precision ranges between 0 and 2416 - 1.

>>> precision 1.10
2

div : Int-> RoundingMode -> BigNumeric -> BigNumeric -> BigNumeric
Calculate a division of BigNumeric numbers. The valueof div n r a b is the division of a
by b, rounded to n decimal places (i.e. scale), according to the rounding mode r.
This will fail when dividing by 0, and when using the RoundingUnnecessary mode for a num-
ber that cannot be represented exactly with at most n decimal places.

round : Int-> RoundingMode -> BigNumeric -> BigNumeric
Round aBigNumeric number. The value of round n r aisthevalueof aroundedton decimal
places (i.e. scale), according to the rounding mode r.
This will fail when using the RoundingUnnecessary mode for a number that cannot be rep-
resented exactly with at most n decimal places.

shiftRight : Int -> BigNumeric -> BigNumeric
Shift a BigNumeric number to the right by a power of 10. The value shiftRight n ais the
value of a times 10" (-n).
This will fail if the resulting BigNumeric is out of bounds.

>>> shiftRight 2 32.0
0.32

shiftLeft : Int-> BigNumeric -> BigNumeric
Shift a BigNumeric number to the left by a power of 10. The value shiftLeft n aisthevalue
of a times 10" n.

2.1. Writing Daml 21

Daml SDK Documentation, 2.1.1

This will fail if the resulting BigNumeric is out of bounds.

>>> shiftLeft 2 32.0
3200.0

roundToNumeric : NumericScale n => RoundingMode -> BigNumeric -> Numeric n

Round a BigNumeric and cast it to a Numeric. This function uses the scale of the resulting
numeric to determine the scale of the rounding.

This will fail when using the RoundingUnnecessary mode if the BigNumeric cannot be rep-
resented exactly in the requested Numeric n.

>>> (roundToNumeric RoundingHalfUp 1.23456789 : Numeric 5)
1.23457

2.1.3.8 Module DA.Date

Data Types

data

data

DayOfWeek

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

instance £q DayOfWeek
instance Ord DayOfWeek
instance Bounded DayOfweek
instance Enum DayOfWeek
instance Show DayOfWeek
Month

The Month type represents a month in the Gregorian calendar.

Note that, while Month has an Enum instance, the toEnum and fromEnum functions start
counting at 0, i.e. toEnum 1 :: Month is Feb.

Jan
Feb
Mar
Apr
May

212

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Jun

Jul

Aug

Sep

Oct

Nov

Dec

instance £q Month
instance Ord Month
instance Bounded Month
instance Enum Month

instance Show Month

Functions

addDays : Date -> Int -> Date
Add the given number of days to a date.

subtractDays : Date -> Int -> Date
Subtract the given number of days from a date.
subtractDays d risequivalenttoaddbDays d (- r).

subDate : Date -> Date -> Int
Returns the number of days between the two given dates.

dayOfWeek : Date -> DayOfWeek
Returns the day of week for the given date.

fromGregorian : (Int, Month, Int) -> Date
Constructs a Date from the triplet (year, month, days).

toGregorian : Date -> (Int, Month, Int)
Turn Date value intoa (year, month, day) triple, according to the Gregorian calendar.

date : Int-> Month -> Int -> Date
Given the three values (year, month, day), constructs a Date value. date y m d turns the
year y, month m, and day d into a Date value. Raises an error if d is outside the range 1
monthDayCount y m

isLeapYear : Int-> Bool
Returns True if the given year is a leap year.

fromMonth : Month -> Int
Get the number corresponding to given month. For example, Jan corresponds to 1, Feb corre-
sponds to 2, and so on.

monthDayCount : Int-> Month -> Int

2.1. Writing Daml 213

Daml SDK Documentation, 2.1.1

Get number of days in the given month in the given year, according to Gregorian calendar. This
does not take historical calendar changes into account (for example, the moves from Julian to
Gregorian calendar), but does count leap years.

datetime : Int-> Month -> Int => Int => Int => Int -> Time
Constructs an instant using year, month, day, hours, minutes, seconds.

toDateUTC : Time -> Date
Extracts UTC date from UTC time.
This function will truncate Time to Date, but in many cases it will not return the date you really
want. The reason for this is that usually the source of Time would be getTime, and getTime
returns UTC, and most likely the date you want is something local to a location or an exchange.
Consequently the date retrieved this way would be yesterday if retrieved when the market opens
in say Singapore.

passToDate : Date -> Scenario Time
Within a scenario, pass the simulated scenario to given date.

2.1.3.9 Module DA.Either

The Either type represents values with two possibilities.

Itis sometimes used to represent a value which is either correct or an error. By convention, the Left
constructor is used to hold an error value and the Right constructor is used to hold a correct value
(mnemonic: "right" also means correct).

Functions

lefts : [Either a b] -> [a]
Extracts all the Left elements from a list.

rights : [Either a b] -> [b]
Extracts all the Right elements from a list.

partitionEithers : [Either a b] -> ([a], [b])
Partitions a list of Either into two lists, the Left and Right elements respectively. Order is
maintained.

isLeft : Either a b -> Bool
Return True if the given value is a Left-value, False otherwise.

isRight : Either a b -> Bool
Return True if the given value is a Right-value, False otherwise.

fromLeft : a->Eitherab->a
Return the contents of a Left-value, or a default value in case of a Right-value.

fromRight : b->Eitherab->b
Return the contents of a Right-value, or a default value in case of a Left-value.

optionalToEither : a -> Optional b -> Eithera b
ConvertaOptionalvaluetoanEither value,usingthe supplied parameter as the Left value
if the Optional is None.

eitherToOptional : Either a b -> Optional b
Convert an Either value to a Optional, dropping any value in Left.

214 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

maybeToEither : a -> Optional b -> Eithera b
eitherToMaybe : Either a b -> Optional b

2.1.3.10 Module DA.Exception

Exception handling in Daml.

Typeclasses

class HasThrow e where
Part of the Exception constraint.

throwPure : e >t
Throw exception in a pure context.

instance HasThrow ArithmeticError

instance HasThrow AssertionFailed

instance HasThrow GeneralError

instance HasThrow PreconditionFailed
class HasMessage e where

Part of the Exception constraint.

message : e -> Text

Get the error message associated with an exception.

instance HasMessage AnyException

instance HasMessage ArithmeticError

instance HasMessage AssertionFailed

instance HasMessage GeneralError

instance HasMessage PreconditionFailed
class HasToAnyException e where

Part of the Exception constraint.

toAnyException : e -> AnyException

Convert an exception type to AnyException.

instance HasToAnyException AnyException
instance HasToAnyException ArithmeticError
instance HasToAnyException AssertionFailed

instance HasToAnyException GeneralError

instance HasToAnyException PreconditionFailed

class HasFromAnyException e where

Part of the Exception constraint.

2.1. Writing Daml

215

Daml SDK Documentation, 2.1.1

fromAnyException : AnyException -> Optional e
Convert an AnyException back to the underlying exception type, if possible.

instance HasFromAnyException AnyException
instance HasFromAnyException ArithmeticError
instance HasFromAnyException AssertionFailed
instance HasFromAnyException GeneralError
instance HasFromAnyException PreconditionFailed
class Action m => ActionThrow m where
Action type in which throw is supported.
throw : Exceptione=>e->mt
instance ActionThrow Scenario
instance ActionThrow Update
class ActionThrow m => ActionCatch m where
Action type inwhich try ... catch ... issupported.

_tryCatch : () -> mt) -> (AnyException -> Optional (m t)) ->m t
Handle an exception. Use the try ... catch ... syntaxinstead of calling this
method directly.

instance ActionCatch Update

Data Types

type Exception e = (HasThrow e, HasMessage e, HasToAnyException e, HasFromAnyException e)

Exception typeclass. This should not be implemented directly, instead, use the exception
syntax.

data ArithmeticError

Exception raised by an arithmetic operation, such as divide-by-zero or overflow.

ArithmeticError

Field Type Description
message Text

data AssertionFailed

Exception raised by assert functions in DA.Assert

AssertionFailed

Field Type Description
message Text

216 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

data GeneralError
Exception raised by error.

GeneralError

Field Type Description
message Text

data PreconditionFailed
Exception raised when a contract is invalid, i.e. fails the ensure clause.

PreconditionFailed

Field Type Description
message Text

2.1.3.11 Module DA.Foldable

Class of data structures that can be folded to a summary value. It’s a good idea to import this module

qualified to avoid clashes with functions defined in Prelude. le:

import DA.Foldable qualified as F

Typeclasses

class Foldable t where
Class of data structures that can be folded to a summary value.

fold : Monoid m=>tm->m
Combine the elements of a structure using a monoid.

foldMap : Monoidm =>(a->m)->ta->m
Combine the elements of a structure using a monoid.

foldr : (a->b->b)->b->ta->b
Right-associative fold of a structure.

foldl : (b->a->b)->b->ta->b
Left-associative fold of a structure.

foldrl : (@a->a->a)->ta->a
Avariantof foldrthat has no base case, and thus should only be applied to non-empty
structures.

foldll : (a->a->a)->ta->a
Avariant of foldl that has no base case, and thus should only be applied to non-empty
structures.

toList : ta->[a]
List of elements of a structure, from left to right.

2.1. Writing Daml

217

Daml SDK Documentation, 2.1.1

null : ta->Bool
Test whether the structure is empty. The default implementation is optimized for
structures that are similar to cons-lists, because there is no general way to do better.

length :ta->Int
Returns the size/length of a finite structure as an Int. The default implementation
is optimized for structures that are similar to cons-lists, because there is no general
way to do better.

elem : Eqa=>a->ta->Bool
Does the element occur in the structure?

sum : Additivea=>ta->a
The sum function computes the sum of the numbers of a structure.

product : Multiplicativea=>ta->a
The product function computes the product of the numbers of a structure.

minimum : Orda=>ta->a
The least element of a non-empty structure.

maximum : Orda=>ta->a
The largest element of a non-empty structure.

instance Ord k => Foldable (Map k)
instance Foldable TextMap
instance Foldable Optional
instance Foldable NonEmpty
instance Foldable Set

instance Foldable (Either a)
instance Foldable ([])

instance Foldable a

Functions

mapA_ : (Foldablet, Applicativef) =>(a->fb)->ta->f()
Map each element of a structure to an action, evaluate these actions from left to right, and
ignore the results. For a version that doesn’t ignore the results see ‘DA.Traversable.mapA’.

forA_ : (Foldablet, Applicative f) =>ta->(a->fb) ->f()
‘for_’ is ‘mapA_’ with its arguments flipped. For a version that doesn’t ignore the results see
‘DA.Traversable.forA.

forM_ : (Foldablet, Applicative f) =>ta->(a->fb)->f()

sequence_ : (Foldable t, Actionm) =>t(ma)->m ()
Evaluate each action in the structure from left to right, and ignore the results. For a version
that doesn’t ignore the results see ‘DA.Traversable.sequence’.

concat : Foldable t => t [a] -> [a]
The concatenation of all the elements of a container of lists.

218 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

and : Foldable t =>t Bool -> Bool
and returns the conjunction of a container of Bools. For the result to be True, the container
must be finite; False, however, results from a False value finitely far from the left end.

or : Foldable t =>t Bool -> Bool
or returns the disjunction of a container of Bools. For the result to be False, the container
must be finite; True, however, results from a True value finitely far from the left end.

any : Foldable t => (a -> Bool) ->t a -> Bool
Determines whether any element of the structure satisfies the predicate.

all : Foldable t => (a -> Bool) -> t a -> Bool
Determines whether all elements of the structure satisfy the predicate.

2.1.3.12 Module DA.Functor

The Functor class is used for types that can be mapped over.

Functions

($>) : Functorf=>fa->b->fb
Replace all locations in the input (on the left) with the given value (on the right).

(¢&>) : Functorf=>fa->(a->b)->fb
Map a function over a functor. Given a value as and a function f,as <&> fisf <$> as.That
is, <&>is like <$> but the arguments are in reverse order.

void : Functorf=>fa->f()
Replace all the locations in the input with ().

2.1.313 Module DA List

List

Functions

sort : Ord a =>[a] -> [a]
The sort function implements a stable sorting algorithm. It is a special case of sortBy, which
allows the programmer to supply their own comparison function.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared
in the input (a stable sort).

sortBy : (a->a->Ordering) -> [a] -> [a]
The sortBy function is the non-overloaded version of sort.

minimumBy : (a ->a->Ordering) ->[a] -> a
minimumBy f xs returns the first element x of xs for which £ x vy is either LT or EQ for all
other y in xs. xs must be non-empty.

maximumBy : (a->a-> Ordering) ->[a] -> a
maximumBy f xs returns the first element x of xs for which £ x vy is either GT or EQ for all
other y in xs. xs must be non-empty.

2.1. Writing Daml 219

Daml SDK Documentation, 2.1.1

sortOn : Ord k => (a -> k) -> [a] -> [a]
Sort a list by comparing the results of a key function applied to each element. sortOn fis
equivalentto sortBy (comparing f),buthasthe performance advantage of only evaluating
f once foreachelementintheinputlist. Thisis sometimes called the decorate-sort-undecorate
paradigm.
Elements are arranged from from lowest to highest, keeping duplicates in the order they ap-
peared in the input.

minimumOn : Ord k =>(a->k) ->[a] -> a
minimumOn f xs returns the first element x of xs for which £ x is smaller than or equal to
any other £ y for y in xs. xs must be non-empty.

maximumOn : Ord k =>(a->k)->[a]->a
maximumOn f xs returns the first element x of xs for which £ x is greater than or equal to
any other £ yfor yin xs. xs must be non-empty.

mergeBy : (a->a-> Ordering) -> [a] -> [a] -> [al
Merge two sorted lists using into a single, sorted whole, allowing the programmer to specify
the comparison function.

combinePairs : (a->a->a)->[a] ->[a]
Combine elements pairwise by means of a programmer supplied function from two list inputs
into a single list.

foldBalancedl : (a->a->a)->[a] ->a
Fold a non-empty listin a balanced way. Balanced means that each element has approximately
the same depth in the operator tree. Approximately the same depth means that the difference
between maximum and minimum depth is at most 1. The accumulation operation must be
associative and commutative in order to get the same result as foldll or foldrl.

group : Eqa =>[a] -> [[a]]
The ‘group’ function groups equal elements into sublists such that the concatenation of the
result is equal to the argument.

groupBy : (a->a->Bool) -> [a] -> [[al]
The ‘groupBYy’ function is the non-overloaded version of ‘group’.

groupOn : Eq k =>(a -> k) -> [a] -> [[a]]
Similar to ‘group’, except that the equality is done on an extracted value.

dedup : Ord a =>[a] -> [a]
dedup 1removesduplicateelements fromalist. In particular, it keeps only thefirstoccurrence
of each element. It is a special case of dedupBy, which allows the programmer to supply their
own equality test. dedup is called nub in Haskell.

dedupBy : (a->a->Ordering) -> [a] -> [al
A version of dedup with a custom predicate.

dedupOn : Ord k => (a -> k) -> [a] -> [a]
Aversion of dedup where deduplication is done after applyng function. Example use: dedupOn
(.employeeNo) employees

dedupSort : Ord a =>[a] -> [a]
The dedupSort function sorts and removes duplicate elements from a list. In particular, it
keeps only the first occurrence of each element.

dedupSortBy : (a->a->Ordering) -> [a] -> [a]
A version of dedupSort with a custom predicate.

220 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

unique : Ord a =>[a] -> Bool
Returns True if and only if there are no duplicate elements in the given list.

uniqueBy : (a->a-> Ordering) -> [a] -> Bool
A version of unique with a custom predicate.

uniqueOn : Ord k => (a -> k) -> [a] -> Bool
Returns True if and only if there are no duplicate elements in the given list after applyng func-
tion. Example use: assert $ uniqueOn (.employeeNo) employees

replace : Eq a =>[a] ->[a] -> [a] -> [a]
Given a list and a replacement list, replaces each occurance of the search list with the replace-
ment list in the operation list.

dropPrefix : Eqa =>[a] -> [a] -> [a]
Drops the given prefix from a list. It returns the original sequence if the sequence doesn’t start
with the given prefix.

dropSuffix : Eqa =>[a] -> [a] -> [a]
Drops the given suffix from a list. It returns the original sequence if the sequence doesn’t end
with the given suffix.

stripPrefix : Eqa =>[a] -> [a] -> Optional [al
The stripPrefix function drops the given prefix from a list. It returns None if the list did not
start with the prefix given, or Some the list after the prefix, if it does.

stripSuffix : Eqa =>[a] -> [a] -> Optional [a]
Return the prefix of the second list if its suffix matches the entire first list.

stripInfix : Eq a =>[a] -> [a] -> Optional ([al, [a])
Return the string before and after the search string or None if the search string is not found.

>>> stripInfix [0,0] [1,0,0,2,0,0,3]
Some ([1], [2,0,0,31)

>>> stripInfix [0,0] [1,2,0,4,5]
None

isPrefixOf : Eq a =>[a] -> [a] -> Bool
The isPrefixOf function takes two lists and returns True if and only if the first is a prefix of
the second.

isSuffixOf : Eqa =>[a] -> [a] -> Bool
The isSuffixOf function takes two lists and returns True if and only if the first list is a suffix
of the second.

isInfixOf : Eqa =>[a] ->[a] -> Bool
The isInfixOf functiontakestwolistsandreturns Trueifandonlyifthefirstlistis contained
anywhere within the second.

mapAccumlL : (acc ->x -> (acc, y)) -> acc -> [x] -> (acc, [y])
The mapAccumL function combines the behaviours of map and foldl; it applies a function to
each element of a list, passing an accumulating parameter from left to right, and returning a
final value of this accumulator together with the new list.

inits : [a] -> [[al]
The inits function returns all initial segments of the argument, shortest first.

2.1. Writing Daml 221

Daml SDK Documentation, 2.1.1

intersperse : a->[a] ->[a]
The intersperse function takes an element and a list and "intersperses" that element be-
tween the elements of the list.

intercalate : [a] -> [[a]] -> [a]
intercalate inserts the list xs in between the lists in xss and concatenates the result.

tails : [a] -> [[all
The tails function returns all final segments of the argument, longest first.

dropWhileEnd : (a -> Bool) -> [a] -> [a]
A version of dropWhile operating from the end.

takeWhileEnd : (a -> Bool) -> [a] -> [a]
A version of takeWhile operating from the end.

transpose : [[a]] -> [[a]]
The transpose function transposes the rows and columns of its argument.

breakEnd : (a-> Bool) -> [a] -> ([al, [a])
Break, but from the end.

breakOn : Eqa => [a] -> [a] -> ([a], [a])
Find the firstinstance ofneedleinhaystack. The firstelementofthereturned tupleis the pre-
fixof haystack before needle is matched. The second is the remainder of haystack, starting
with the match. If you want the remainder without the match, use stripInfix.

breakOnEnd : Eqa =>[a] -> [a] -> ([a], [a])
Similar to breakOn, but searches from the end of the string,
The first element of the returned tuple is the prefix of haystack up to and including the last
match of needle. The second is the remainder of haystack, following the match.

linesBy : (a -> Bool) -> [a] -> [[al]
A variant of 1ines with a custom test. In particular, if there is a trailing separator it will be
discarded.

wordsBy : (a->Bool) -> [a] -> [[a]]
A variant of words with a custom test. In particular, adjacent separators are discarded, as are
leading or trailing separators.

head :[a] ->a
Extract the first element of a list, which must be non-empty.

tail : [a] -> [a]
Extract the elements after the head of a list, which must be non-empty.

last : [a] -> a
Extract the last element of a list, which must be finite and non-empty.
init : [a] -> [al
Return all the elements of a list except the last one. The list must be non-empty.

foldll : (a->a->a)->[a]l->a
Left associative fold of a list that must be non-empty.

foldrl : (a->a->a)->[a] -> a
Right associative fold of a list that must be non-empty.

repeatedly : ([a] -> (b, [a])) -> [a] -> [b]
Apply some operation repeatedly, producing an element of output and the remainder of the list.

222 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

delete : Eqa=>a->[a] ->[al
delete xremoves the first occurrence of x from its list argument. For example,

> delete "a" ["b” " ","n","a","I’l","a"]
["b", "n"I "a", "1’1", "a"]

Itis a special case of ‘deleteBy’, which allows the programmer to supply their own equality test.

deleteBy : (a->a->Bool) ->a->[a] -> [al
The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

> deleteBy (<=) 4 [1..10]
(1,2,3,5,6,7,8,9,10]

(\\\V : Eqa=>[a]->[a] ->[a]
The \\ function is list difference (non-associative). In the result of xs \\ ys, the first occur-
rence of each element of ys in turn (if any) has been removed from xs. Thus

(xs ++ ys) \\ xs == ys

Note this function is 0O(n*m) given lists of size nand m.

singleton : a->[al
Produce a singleton list.

>>> singleton True
[True]

() :[a]->Int->a
Listindex (subscript) operator, starting from O. Forexample,xs !! 2 returnsthe third element
in xs. Raises an error if the index is not suitable for the given list. The function has complexity
O(n) where n is the index given, unlike in languages such as Java where array indexing is 0(1).

elemlndex : Eqa=>a->[a] -> Optional Int
Find index of element in given list. Will return None if not found.

findIndex : (a-> Bool) ->[a]l -> Optional Int
Find index, given predicate, of first matching element. Will return None if not found.

2.1.3.14 Module DA.List.BuiltinOrder

Note: This is only supported in Daml-LF 1.11 or later.

This module provides variants of other standard library functions that are based on the builtin
Daml-LF ordering rather than user-defined ordering. This is the same order also used by DA . Map.

These functions are usually much more efficient than their Ord-based counterparts.

Note that the functions in this module still require Ord constraints. This is purely to enforce that you
don’t passinvalues thatcannot be compared, e.g., functions. Theimplementation of those instances
is not used.

2.1. Writing Daml 223

Daml SDK Documentation, 2.1.1

Functions

dedup : Ord a =>[a] -> [a]
dedup 1removesduplicateelements fromalist. In particular, it keeps only thefirstoccurrence
of each element.
dedup is stable so the elements in the output are ordered by their first occurrence in the input.
If you do not need stability, consider using dedupSort which is more efficient.

>>> dedup [3, 1, 1, 3]
(3, 11

dedupOn : Ord k => (v -> k) -> [v] -> [v]
Aversion of dedup where deduplication is done after applying the given function. Example use:
dedupOn (.employeeNo) employees.
dedupOn is stable so the elements in the output are ordered by their first occurrence in the
input. If you do not need stability, consider using dedupOnSort which is more efficient.

>>> dedupOn fst [(3, "a"), (I, "b"), (1, "c"), (3, "d")]
[(3, "a"™), (1, "o")]

dedupSort : Ord a =>[a] -> [a]
dedupSort is a more efficient variant of dedup that does not preserve the order of the input
elements. Instead the output will be sorted acoording to the builtin DamlI-LF ordering.

>>> dedupSort [3, 1, 1, 3]
(1, 31

dedupOnSort : Ord k => (v -> k) -> [v] -> [V]
dedupOnSort is a more efficient variant of dedupOn that does not preserve the order of the
input elements. Instead the output will be sorted on the values returned by the function.
For duplicates, the first element in the list will be included in the output.

>>> dedupOnSort fst [(3, "a"), (1, "b"), (1, "c"), (3, "d")]
[(1, "b"), (3, "a")]

sort : Ord a =>[a] -> [a]
Sort the list according to the Daml-LF ordering.
Values that are identical according to the builtin Daml-LF ordering are indistinguishable so
stability is not relevant here.

>>> sort [3,1,2]
[1,2,3]

sortOn : Ord b => (a -> b) -> [a] -> [a]
sortOn f is aversion of sort that allows sorting on the result of the given function.
sortOn is stable so elements that map to the same sort key will be ordered by their position
in the input.

>>> sortOn fst [(3, "a"), (1, "b"), (3, "c"), (2, "d")]
[(1, "o™), (2, "d"), (3, "a"), (3, "c")]

unique : Ord a =>[a] -> Bool
Returns True if and only if there are no duplicate elements in the given list.

224 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

>>> unique [1, 2, 3]
True

uniqueOn : Ord k => (a -> k) -> [a] -> Bool
Returns True if and only if there are no duplicate elements in the given list after applyng func-
tion.

>>> uniqueOn fst [(1, 2), (2, 42), (1, 3)]
False

2.1.3.15 Module DA.List.Total

Functions

head : [a] -> Optional a
Return the first element of a list. Return None if list is empty.

tail : [a] -> Optional [a]
Return all but the first element of a list. Return None if list is empty.

last : [a] -> Optional a
Extract the last element of a list. Returns None if list is empty.

init : [a] -> Optional [a]
Return all the elements of a list except the last one. Returns None if list is empty.

(1) : [al -> Int-> Optional a
Return the nth element of a list. Return None if index is out of bounds.

foldl1 : (a->a->a)->[a] -> Optional a
Fold left starting with the head of the list. For example, foldll f [a,b,c] = £ (f a b) c.
Return None if list is empty.

foldr1 : (a->a->a)->[al -> Optional a
Fold right starting with the last element of the list. For example, foldrl f [a,b,c] = f a
(f b ¢)

foldBalanced1 : (a ->a->a)->[al -> Optional a
Fold a non-empty listin a balanced way. Balanced means that each element has approximately
the same depth in the operator tree. Approximately the same depth means that the difference
between maximum and minimum depth is at most 1. The accumulation operation must be
associative and commutative in order to get the same result as foldll or foldrl.
Return None if list is empty.

minimumBy : (a ->a-> Ordering) -> [a] -> Optional a
Return the least element of a list according to the given comparison function. Return None if
listis empty.

maximumBy : (a ->a-> Ordering) -> [a] -> Optional a
Return the greatest element of a list according to the given comparison function. Return None
if listis empty.

minimumOn : Ord k => (a -> k) -> [a] -> Optional a
Return the least element of a list when comparing by a key function. For example minimumOn
(\(x,y) -> x +vy) [(L,2), (2,0)] == Some (2,0).ReturnNone if listis empty.

2.1. Writing Daml 225

Daml SDK Documentation, 2.1.1

maximumoOn : Ord k => (a -> k) -> [a] -> Optional a
Return the greatest element of a list when comparing by a key function. For example maxi-
mumOn (\ (x,y) -> x + vy) [(1,2), (2,0)] == Some (1,2). Return None iflistis
empty.

2.1.3.16 Module DA.Logic

Logic - Propositional calculus.

Data Types

data Formula t
AFormula tisaformulain propositional calculus with propositions of type t.
Proposition t
Proposition pisthe formulap
Negation (Formula t)
For a formula f,Negation fis f
Conjunction [Formula t]
For formulas f1, .., fn, Conjunction [f1, ..., fn]isfl . fn
Disjunction [Formula t]
For formulas f1, .., fn, Disjunction [f1, ..., fn]lisfl . fn
instance Action Formula
instance Applicative Formula
instance Functor Formula
instance £qt => Eq (Formula t)
instance Ord t => Ord (Formula t)

instance Show t => Show (Formula t)

Functions

(&&&) : Formulat-> Formula t-> Formula t
&&& isthe operation of the boolean algebra of formulas, to be read as "and"

() : Formulat-> Formulat-> Formulat
| | | isthe operation of the boolean algebra of formulas, to be read as "or"

true : Formulat
true is the 1element of the boolean algebra of formulas, represented as an empty conjunction.

false : Formulat
false is the O element of the boolean algebra of formulas, represented as an empty disjunc-
tion.

226 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

neg : Formula t-> Formula t
negis the (negation) operation of the boolean algebra of formulas.

conj : [Formula t] -> Formula t
conj is alist version of &&&, enabled by the associativity of

disj : [Formula t] -> Formula t
disjis alistversionof | | |, enabled by the associativity of

fromBool : Bool -> Formula t
fromBool converts True to true and False to false.

toNNF : Formulat -> Formula t
toNNF transforms a formula to negation normal form (see https://en.wikipedia.org/wiki/Nega-
tion_normal_form).

toDNF : Formulat-> Formula t
toDNF turns a formula into disjunctive normal form. (see https://en.wikipedia.org/wiki/Dis-
junctive_normal_form).

traverse : Applicative f => (t->f's) -> Formula t -> f (Formula s)
An implementation of traverse in the usual sense.

zipFormulas : Formula t -> Formula s -> Formula (t, s)
zipFormulas takes to formulas of same shape, meaning only propositions are different and
zips them up.

substitute : (t -> Optional Bool) -> Formula t -> Formula t
substitute takes a truth assignment and substitutes True or False into the respective
places in a formula.

reduce : Formulat-> Formulat
reduce reduces a formula as far as possible by:
1. Removing any occurrences of true and false;
2. Removing directly nested Conjunctions and Disjunctions;
3. Going to negation normal form.

isBool : Formula t -> Optional Bool
isBool attempts to convert a formula to a bool. It satisfies isBool true == Right True
and toBool false == Right False. Otherwise,itreturns Left x,where xistheinput.

interpret : (t-> Optional Bool) -> Formula t -> Either (Formula t) Bool
interpret is a version of toBool that first substitutes using a truth function and then re-
duces as far as possible.

substituteA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Formula t)
substituteA is aversion of substitute that allows for truth values to be obtained from an
action.

interpretA : Applicative f => (t -> f (Optional Bool)) -> Formula t -> f (Either (Formula t) Bool)
interpretA is a version of interpret that allows for truth values to be obtained form an
action.

2.1. Writing Daml 227

Daml SDK Documentation, 2.1.1

2.1.3.17 Module DA.Map

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic map type Map k v and associated functions. This module should
be imported qualified, for example:

import DA.Map (Map)
import DA.Map qualified as M

This will give access to the Map type, and the various operations as M.lookup, M.insert, M.
fromList, etc.

Map k vinternally uses the built-in order for the type k. This means that keys that contain functions
are not comparable and will result in runtime errors. To prevent this, the Ord kinstanceis required
for most map operations. It is recommended to only use Map k v for key types that have an Ord k
instance that is derived automatically using deriving:

data K = ...
deriving (Eq, Ord)

This includes all built-in types that aren’t function types, such as Int, Text,Bool, (a, b) assuming
a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,
Map k v assuming k and v have default Ord instances, and Set k assuming k has a default Ord
instance.

Functions

fromList : Ord k => [(k, v)] -> Map k v
Create a map from a list of key/value pairs.

fromListWith : Ord k => (v->v->v) -> [(k, V)] -> Map k v
Create a map from a list of key/value pairs with a combining function. Examples:

>>> fromListWith (++) [("A", [11), ("&", [2]), ("B", [21), ("B", [11), ("A",O]
=[31)1

fromList [("A", [1, 2, 31), ("B", [2, 11)]

>>> fromListWith (++) [] == (empty : Map Text [Int])

True

keys : Map k v -> [K]
Get the list of keys in the map. Keys are sorted according to the built-in order for the type k,
which matches the Ord k instance when using deriving Ord.

>>> keys (fromList [("A", 1), ("c", 3), ("B", 2)1)
[HAH, HBH, HCH]

values : Map kv ->[v]
Get the list of values in the map. These will be in the same order as their respective keys from
M. keys.

>>> values (fromList [("A", 1), ("B", 2)1)
[1, 2]

228 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

toList : Map k v -> [(k, V)]
Convert the map to a list of key/value pairs. These will be ordered by key, as in M. keys.

empty : Map kv
The empty map.

size : Map kv -> Int
Number of elements in the map.

null : Map k v ->Bool
Is the map empty?

lookup : Ord k => k -> Map k v -> Optional v
Lookup the value at a key in the map.

member : Ord k => k -> Map k v -> Bool
Is the key a member of the map?

filter : Ord k => (v -> Bool) -> Map kv ->Map k v
Filter the Map using a predicate: keep only the entries where the value satisfies the predicate.

filterWithKey : Ord k => (k -> v -> Bool) -> Map k v ->Map k v
Filter the Map using a predicate: keep only the entries which satisfy the predicate.

delete : Ord k =>k ->Map kv ->Map kv
Delete a key and its value from the map. When the key is not a member of the map, the original
map is returned.

insert : Ord k =>k ->v->Map kv->Mapkv
Insert a new key/value pair in the map. If the key is already present in the map, the associated
value is replaced with the supplied value.

alter : Ord k => (Optional v -> Optional v) -> k -> Map k v -> Map k v
Update thevalueinmat k with £, inserting or deleting as required. £ will be called with either the
value at k, or None if absent; £ can return Some with a new value to be inserted inm (replacing
the old value if there was one), or None to remove any k association m may have.
Some implications of this behavior:
alter identity k = identity alter g k. alter f k = alter (g. f) k alter (_ -> Some v) k = insert k v alter
(_->None) = delete

union : Ord k => Map kv->Map kv ->Mapkv
The union of two maps, preferring the first map when equal keys are encountered.

merge : Ord k => (k ->a -> Optional ¢) -> (k -> b -> Optional ¢) -> (k ->a -> b -> Optional ¢) -> Map k a -> Map
kb->Mapkc
Combine two maps, using separate functions based on whether a key appears only in the first
map, only in the second map, or appears in both maps.

2.1. Writing Daml 229

Daml SDK Documentation, 2.1.1

2.1.3.18 Module DA.Math

Math - Utility Math functions for Decimal The this library is designed to give good precision, typi-
cally giving 9 correct decimal places. The numerical algorithms run with many iterations to achieve
that precision and are interpreted by the Daml runtime so they are not performant. Their use is not
advised in performance critical contexts.

Functions

(**) : Decimal -> Decimal -> Decimal
Take a power of a number Example: 2.0 ** 3.0 == 8.0.

sqrt : Decimal -> Decimal
Calculate the square root of a Decimal.

>>> sqrt 1.44
1.2

exp : Decimal -> Decimal
The exponential function. Example: exp 0.0 == 1.0

log : Decimal -> Decimal
The natural logarithm. Example: 1og 10.0 == 2.30258509299

logBase : Decimal -> Decimal -> Decimal
The logarithm of a number to a given base. Example: 1og 10.0 100.0 == 2.0

sin : Decimal -> Decimal
sin is the sine function

cos : Decimal -> Decimal
cos is the cosine function

tan : Decimal -> Decimal
tan is the tangent function

2.1.3.19 Module DA.Monoid

Data Types

data All
Boolean monoid under conjunction (& &)

All

Field Type Description
getAll Bool

instance Monoid All

instance Semigroup All

230 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

instance £q All
instance Ord All
instance Show All
data Any
Boolean Monoid under disjunction (||)

Any

Field Type Description
getAny Bool

instance Monoid Any
instance Semigroup Any
instance £q Any
instance Ord Any
instance Show Any
data Endo a
The monoid of endomorphisms under composition.

Endo

Field Type Description
appEndo a->a

instance Monoid (Endo a)
instance Semigroup (Endo a)
data Product a

Monoid under (*)

> Product 2 <> Product 3
Product ©

Product a

instance Multiplicative a => Monoid (Product a)
instance Multiplicative a => Semigroup (Product a)
instance £q a => Eq (Product a)

instance Ord a => Ord (Product a)

instance Additive a => Additive (Product a)

instance Multiplicative a => Multiplicative (Product a)

instance Show a => Show (Product a)

2.1. Writing Daml 23]

Daml SDK Documentation, 2.1.1

data Sum a

Monoid under (+)

> Sum 1 <> Sum 2
Sum 3

Sum a

instance Additive a => Monoid (Sum a)

instance Additive a => Semigroup (Sum a)
instance £qa =>£q (Sum a)

instance Ord a => Ord (Sum a)

instance Additive a => Additive (Sum a)

instance Multiplicative a => Multiplicative (Sum a)

instance Show a => Show (Sum a)

2.1.3.20 Module DA.NonEmpty

Type and functions for non-empty lists. This module re-exports many functions with the same name
as prelude list functions, so it is expected to import the module qualified. For example, with the
following import list you will have access to the NonEmpty type and any functions on non-empty
lists will be qualified, for example as NE.append, NE.map, NE.foldl:

import DA.NonEmpty (NonEmpty)
import qualified DA.NonEmpty as NE

Functions

cons : a->NonEmptya->NonEmpty a
Prepend an element to a non-empty list.

append : NonEmpty a -> NonEmpty a -> NonEmpty a
Append or concatenate two non-empty lists.

map : (a->b)->NonEmpty a->NonEmpty b
Apply a function over each element in the non-empty list.
nonEmpty : [a] -> Optional (NonEmpty a)
Turn a list into a non-empty list, if possible. Returns None if the input list is empty, and Some
otherwise.
singleton : a->NonEmpty a
A non-empty list with a single element.

tolist : NonEmpty a -> [a]
Turn a non-empty list into a list (by forgetting that it is not empty).

reverse : NonEmpty a -> NonEmpty a
Reverse a non-empty list.

232 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

find : (a->Bool) -> NonEmpty a -> Optional a
Find an element in a non-empty list.

deleteBy : (a->a->Bool) ->a-> NonEmpty a -> [a]
The ‘deleteBy’ function behaves like ‘delete’, but takes a user-supplied equality predicate.

delete : Eqa =>a->NonEmpty a->[a]
Remove the first occurence of x from the non-empty list, potentially removing all elements.

foldll : (a->a->a)->NonEmptya->a
Apply a function repeatedly to pairs of elements from a non-empty list, from the left. For exam-
ple, foldll (+) (NonEmpty 1 [2,3,41) = ((1 + 2) + 3) + 4.

foldrl : (a->a->a)->NonEmptya->a
Apply a function repeatedly to pairs of elements from a non-empty list, from the right. For
example, foldrl (+) (NonEmpty 1 [2,3,4]1) =1 + (2 + (3 + 4)).

foldr : (a->b->b)->b->NonEmptya->b
Apply a function repeatedly to pairs of elements from a non-empty list, from the right, with a
given initial value. For example, foldr (+) 0 (NonEmpty 1 [2,3,4]1) =1 + (2 + (3
+ (4 + 0))).

foldrA : Actionm =>(a->b->mb)->b->NonEmptya->mb
The same as foldr but running an action each time.

foldr1A : Action m=>(a->a->ma)->NonEmptya->ma
The same as foldrl but running an action each time.

foldl : (b->a->b)->b->NonEmptya->b
Apply a function repeatedly to pairs of elements from a non-empty list, from the left, with a
given initial value. For example, foldl (+) 0 (NonEmpty 1 [2,3,4]) = (((0 + 1) +
2) + 3) + 4.

foldlA : Actionm =>(b->a->mb) ->b-> NonEmptya->mb
The same as foldl but running an action each time.

foldllA : Actionm =>(a->a->ma)->NonEmptya->m a
The same as foldl1l but running an action each time.

2.1.3.21 Module DA.NonEmpty.Types

This module contains the type for non-empty lists so we can give it a stable package id. This is
reexported from DA.NonEmpty so you should never need to import this module.

Data Types

data NonEmpty a

NonEmpty is the type of non-empty lists. In other words, it is the type of lists that always
contain at leastone element. If x is a non-empty list, you can obtain the firstelement with
x.hd and the rest of the list with x. t1.

NonEmpty

2.1. Writing Daml 233

Daml SDK Documentation, 2.1.1

Field Type Description
hd a
tl [a]

instance Foldable NonEmpty

instance Action NonEmpty

instance Applicative NonEmpty

instance Semigroup (NonEmpty a)

instance |sParties (NonEmpty Party)

instance Traversable NonEmpty

instance Functor NonEmpty

instance £q a => £q (NonEmpty a)

instance Ord a => Ord (NonEmpty a)

instance Show a => Show (NonEmpty a)

2.1.3.22 Module DA.Numeric

Functions

mul : NumericScale n3 => Numeric n1-> Numeric n2 -> Numeric n3

Multiply two numerics. Both inputs and the output may have different scales, unlike (*) which
forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

div : NumericScale n3 => Numeric n1-> Numeric n2 -> Numeric n3

Divide two numerics. Both inputs and the output may have different scales, unlike (/) which
forces all numeric scales to be the same. Raises an error on overflow, rounds to chosen scale

otherwise.

cast : NumericScale n2 => Numeric n1-> Numeric n2

Cast a Numeric. Raises an error on overflow or loss of precision.

castAndRound : NumericScale n2 => Numeric n1-> Numeric n2
Cast a Numeric. Raises an error on overflow, rounds to chosen scale otherwise.

shift : NumericScale n2 => Numeric n1-> Numeric n2
Move the decimal point left or right by multiplying the numeric value by 10~(n1 - n2). Does not

overflow or underflow.

pi : NumericScale n => Numeric n
The number pi.

234

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.23 Module DA.Optional

The Optional type encapsulates an optional value. A value of type Optional a either contains a
value of type a (represented as Some a), or it is empty (represented as None). Using Optional is
a good way to deal with errors or exceptional cases without resorting to drastic measures such as
error.

The Optional type is also an action. It is a simple kind of error action, where all errors are represented
by None. A richer error action can be built using the Either type.

Functions

fromSome : Optionala->a
The fromSome function extracts the element out of a Some and throws an error if its argument
is None.
Note that in most cases you should prefer using fromSomeNote to get a bettererroron failures.

fromSomeNote : Text -> Optionala->a
Like fromSome but with a custom error message.

catOptionals : [Optional a] -> [al
The catOptionals function takes alistof Optionals andreturns alist of all the Some values.

listToOptional : [a] -> Optional a
The 1istToOptional function returns None on an empty list or Some a where a is the first
element of the list.

optionalToList : Optional a -> [a]
The optionalToList function returns an empty list when given None or a singleton list when
not given None.

fromOptional : a -> Optionala->a
The fromOptional function takes a default value and a Optional value. If the Optional is
None, it returns the default values otherwise, it returns the value contained in the Optional.

isSome : Optional a -> Bool
The isSome function returns True iff its argument is of the form Some

isNone : Optional a -> Bool
The isNone function returns True iff its argument is None.

mapOptional : (a->Optional b) -> [a] -> [b]
The mapOptional function is a version of map which can throw out elements. In particular,
the functional argument returns something of type Optional b. If thisis None, no elementis
added on to the result list. If it is Some b, then b is included in the result list.

whenSome : Applicative m => Optionala->(a->m () ->m ()
Perform some operation on Some, given the field inside the Some.

findOptional : (a -> Optional b) -> [a] -> Optional b
The findOptional returns the value of the predicate at the firstelement where it returns Some.
findOptional is similar to £ind but it allows you to return a value from the predicate. This
is useful both as a more type safe version if the predicate corresponds to a pattern match and
for performance to avoid duplicating work performed in the predicate.

2.1. Writing Daml 235

Daml SDK Documentation, 2.1.1

2.1.3.24 Module DA.Record

Exports the record machinery necessary to allow one to annotate code that is polymorphic in the
underlying record type.

Typeclasses

class HasField x r a where
HasField gives you getter and setter functions for each record field automatically.

In the vast majority of use-cases, plain Record syntax should be preferred:

daml> let a = MyRecord 1 "hello"
daml> a.foo

1

daml> a.bar

"hello"

daml> a { bar = "bye" }

MyRecord {foo = 1, bar = "bye"}
daml> a with foo = 3

MyRecord {foo = 3, bar = "hello"}
daml>

For more on Record syntax, see https://docs.daml.com/daml/intro/3_Data.html#record.

HasField x r ais atypeclass that takes three parameters. The first parameter x is
the field name, the second parameter r is the record type, and the last parameter a is the
type of the field in this record. For example, if we define a type:

data MyRecord = MyRecord with
foo : Int
bar : Text

Then we get, for free, the following HasField instances:

HasField "foo" MyRecord Int
HasField "bar" MyRecord Text

If we want to get a value using HasField, we can use the getField function:

getFoo : MyRecord -> Int
getFoo r = getField @"foo" r

getBar : MyRecord -> Text
getBar r = getField @"bar" r

Note that this uses the type application syntax (f @t) to specify the field name.

Likewise, if we want to set the value in the field, we can use the setField function:

setFoo : Int -> MyRecord -> MyRecord
setFoo a r = setField @"foo" a r

setBar : Text -> MyRecord -> MyRecord
setBar a r = setField @"bar" a r

236 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

getField : r->a

setField :a->r->r

2.1.3.25 Module DA.Semigroup

Data Types

data Max a

Semigroup under max

> Max 23 <> Max 42
Max 42

Max a

instance Ord a => Semigroup (Max a)

instance £q a => Eq (Max a)

instance Ord a => Ord (Max a)

instance Show a => Show (Max a)
data Min a

Semigroup undermin

> Min 23 <> Min 42
Min 23

Min a

instance Ord a => Semigroup (Min a)
instance £qa => Eq (Min a)
instance Ord a => Ord (Min a)

instance Show a => Show (Min a)

2.1.3.26 Module DA.Set

Note: This is only supported in Daml-LF 1.11 or later.

This module exports the generic set type Set k and associated functions. This module should be
imported qualified, for example:

import DA.Set (Set)
import DA.Set qualified as S

This will give access to the Set type, and the various operations as S.lookup, S.insert, S.
fromList, etc.

Set kinternally uses the built-in order for the type k. This means that keys that contain functions
are not comparable and will result in runtime errors. To prevent this, the Ord kinstance is required

2.1. Writing Daml 237

Daml SDK Documentation, 2.1.1

for most set operations. It is recommended to only use Set k for key types that have an Ord k
instance that is derived automatically using deriving:

data K = ...
deriving (Eq, Ord)

Thisincludes all built-in types that aren’t function types, such as Int, Text,Bool, (a, b) assuming
a and b have default Ord instances, Optional t and [t] assuming t has a default Ord instance,
Map k wvassuming k and v have default Ord instances, and Set k assuming k has a default Ord

instance.

Data Types

data Set k

The type of a set. This is a wrapper over the Map type.

Set

Field Type

Description

map Map k ()

instance Foldable Set

instance Ord k => Monoid (Set k)
instance Ord k => Semigroup (Set k)
instance IsParties (Set Party)

instance Ord k => Eq (Set k)

instance Ord k => Ord (Set k)

instance (Ord k, Show k) => Show (Set k)

Functions

empty : Set k
The empty set.

size : Setk -> Int
The number of elements in the set.

tolList : Set k -> [k]
Convert the set to a list of elements.

fromList : Ord k => [k] -> Set k
Create a set from a list of elements.

toMap : Set k->Map k ()
Convert a Set into a Map.

fromMap : Map k () -> Set k
Create a Set from a Map.

238

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

member : Ord k => k -> Set k -> Bool
Is the element in the set?

notMember : Ord k => k -> Set k -> Bool
Is the element not in the set? notMember k sisequivalenttonot (member k s).

null : Set k -> Bool
Is this the empty set?

insert : Ord k =>k -> Set k -> Set k
Insert an element in a set. If the set already contains the element, this returns the set un-
changed.

filter : Ord k => (k -> Bool) -> Set k -> Set k
Filter all elements that satisfy the predicate.

delete : Ord k => k -> Set k -> Set k
Delete an element from a set.

singleton : Ord k => k -> Set k
Create a singleton set.

union : Ord k => Set k -> Set k -> Set k
The union of two sets.

intersection : Ord k => Set k -> Set k -> Set k
The intersection of two sets.

difference : Ord k => Set k -> Set k -> Set k
difference x yreturns the setconsisting of all elements in x thatare notiny.
>>> fromlList [1, 2, 3] difference fromList [1, 4] > >> fromList [2, 3]

isSubsetOf : Ord k => Set k -> Set k -> Bool
isSubsetOf a breturnstrueifais asubsetofb,thatis,if every elementofaisinb.

isProperSubsetOf : Ord k => Set k -> Set k -> Bool
isProperSubsetOf a breturnstrueif ais a proper subset of b. That is, if a is a subset of b
but not equal to b.

2.1.3.27 Module DA.Stack

Data Types

data Srcloc
Location in the source code.
Line and column are O-based.

Srcloc

2.1. Writing Daml 239

Daml SDK Documentation, 2.1.1

Field Type Description
srcLocPackage Text

srcLocModule Text

srcLocFile Text

srcLocStartLine Int

srcLocStartCol Int

srcLocEndLine Int

srcLocEndCol Int

data CallStack

Type of callstacks constructed automatically from HasCallStack constraints.

Use callStack to get the current callstack, and use getCallStack to deconstruct the
Callstack.

type HasCallStack =IP "callStack" CallStack

Request a CallStack. Use this as a constraint in type signatures in order to get nicer call-
stacks for error and debug messages.
For example, instead of declaring the following type signature:

myFunction : Int -> Update ()

You can declare a type signature with the HasCallStack constraint:

myFunction : HasCallStack => Int -> Update ()

The function myFunction will still be called the same way, but it will also show up as an entry
in the current callstack, which you can obtain with callStack.

Note that only functions with the HasCallStack constraint will be added to the current call-
stack, and if any function does not have the HasCallStack constraint, the callstack will be
reset within that function.

Functions

prettyCallStack : CallStack -> Text

Pretty-printa CallStack.

getCallStack : CallStack -> [(Text, SrcLoc)]

Extract the list of call sites from the CallStack.
The most recent call comes first.

callStack : HasCallStack => CallStack

Access to the current CallStack.

240

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.3.28 Module DA.Text

Functions for working with Text.

Functions

explode : Text -> [Text]
implode : [Text] -> Text

isEmpty : Text -> Bool
Test for emptiness.

length : Text -> Int
Compute the number of symbols in the text.

trim : Text -> Text
Remove spaces from either side of the given text.

replace : Text -> Text -> Text -> Text
Replace a subsequence everywhere it occurs. The first argument must not be empty.

lines : Text -> [Text]
Breaks a Text value up into a list of Text’s at newline symbols. The resulting texts do not
contain newline symbols.

unlines : [Text] -> Text
Joins lines, after appending a terminating newline to each.

words : Text -> [Text]
Breaks a ‘Text’ up into a list of words, delimited by symbols representing white space.

unwords : [Text] -> Text
Joins words using single space symbols.

linesBy : (Text -> Bool) -> Text -> [Text]
A variant of 1ines with a custom test. In particular, if there is a trailing separator it will be
discarded.

wordsBy : (Text -> Bool) -> Text -> [Text]
Avariant of words with a custom test. In particular, adjacent separators are discarded, as are
leading or trailing separators.

intercalate : Text -> [Text] -> Text
intercalate inserts the text argument t in between the items in ts and concatenates the
result.

dropPrefix : Text -> Text -> Text
dropPrefix drops the given prefix from the argument. It returns the original text if the text
doesn’t start with the given prefix.

dropSuffix : Text -> Text -> Text
Drops the given suffix from the argument. It returns the original text if the text doesn’t end
with the given suffix. Examples:

2.1. Writing Daml 241

Daml SDK Documentation, 2.1.1

dropSuffix "!" "Hello World!" == "Hello World"
dropSuffix "!" "Hello World!!" == "Hello World!"
dropSuffix "!" "Hello World." == "Hello World."

stripSuffix : Text -> Text -> Optional Text
Return the prefix of the second text if its suffix matches the entire first text. Examples:

stripSuffix "bar" "foobar" == Some "foo"
stripSuffix "" "baz" == Some "baz"
stripSuffix "foo" "quux" == None

stripPrefix : Text -> Text -> Optional Text
The stripPrefix function drops the given prefix from the argument text. It returns None if
the text did not start with the prefix.

isPrefixOf : Text -> Text -> Bool
The isPrefixOf function takes two text arguments and returns True if and only if the first is
a prefix of the second.

isSuffixOf : Text -> Text -> Bool
The isSuffixOf function takes two text arguments and returns True if and only if the first is
a suffix of the second.

isInfixOf : Text -> Text -> Bool
The isInfixOf function takes two text arguments and returns True if and only if the first is
contained, wholly and intact, anywhere within the second.

takeWhile : (Text -> Bool) -> Text -> Text
The function takeWhile, applied to a predicate p and a text, returns the longest prefix (possi-
bly empty) of symbols that satisfy p.

takeWhileEnd : (Text -> Bool) -> Text -> Text
The function ‘takeWhileEnd’, applied to a predicate p and a ‘Text’, returns the longest suffix
(possibly empty) of elements that satisfy p.

dropWhile : (Text -> Bool) -> Text -> Text
dropWhile p t returns the suffix remaining after takeWhile p t.

dropWhileEnd : (Text -> Bool) -> Text -> Text
dropWhileEnd p treturnsthe prefixremaining after dropping symbols that satisfy the pred-
icate p from the end of t.

splitOn : Text -> Text -> [Text]
Break a text into pieces separated by the first text argument (which cannot be empty), con-
suming the delimiter.

splitAt : Int -> Text -> (Text, Text)
Split a text before a given position sothatfor0 <= n <= length t,length (fst (splitAt
nt)) ==

take : Int -> Text -> Text
take n, applied to a text t, returns the prefix of t of length n, or t itself if n is greater than the
length of t.

drop : Int-> Text -> Text
drop n, applied to a text t, returns the suffix of t after the first n characters, or the empty
Text if n is greater than the length of t.

242 Chapter 2. Daml Guide

Daml SDK Documentation,

2.1.1

substring : Int-> Int -> Text -> Text
Compute the sequence of symbols of length 1 in the argument text starting at s.

isPred : (Text -> Bool) -> Text -> Bool
isPred f treturns True if t is notempty and £ is True for all symbolsin t.

isSpace : Text -> Bool
isSpace tis Trueif tis notempty and consists only of spaces.

isNewLine : Text -> Bool
isSpace tis Trueif t is not empty and consists only of newlines.

isUpper : Text -> Bool
isUpper tis True if tis notempty and consists only of uppercase symbols.

isLower : Text -> Bool
isLower tis True if t is notempty and consists only of lowercase symbols.

isDigit : Text -> Bool
isDigit tis Trueif t is not empty and consists only of digit symbols.

isAlpha : Text -> Bool
isAlpha tis Trueif tis notempty and consists only of alphabet symbols.

isAlphaNum : Text -> Bool
isAlphaNum tis True if t is notempty and consists only of alphanumeric symbols.

parselnt : Text -> Optional Int
Attempt to parse an Int value from a given Text.

parseNumeric : Text -> Optional (Numeric n)

Attempt to parse a Numeric value from a given Text. To get Some value, the text must follow
the regex (= |\+)?2[0-91+(\.[0-91+) ? In particular, the shorthands ".12" and "12." do
not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however
spaces are not. Examples:

parseNumeric "3.14" == Some 3.14
parseNumeric "+12.0" == Some 12

parseDecimal : Text -> Optional Decimal

Attempt to parse a Decimal value from a given Text. To get Some value, the text must follow
the regex (- |\+)?2[0-91+(\.[0-9]1+) 2 In particular, the shorthands ".12" and "12." do
not work, but the value can be prefixed with +. Leading and trailing zeros are fine, however
spaces are not. Examples:

parseDecimal "3.14" == Some 3.14
parseDecimal "+12.0" == Some 12

sha256 : Text -> Text

Computes the SHA256 hash of the UTF8 bytes of the Text, and returns it in its hex-encoded
form. The hex encoding uses lowercase letters.
This function will crash at runtime if you compile Daml to Daml-LF < 1.2.

reverse : Text -> Text

Reverse some Text.

reverse "Daml" == "ImaD"

2.1. Writing Daml 243

Daml SDK Documentation, 2.1.1

toCodePoints : Text -> [Int]
Convert a Text into a sequence of unicode code points.

fromCodePoints : [Int] -> Text
Convert a sequence of unicode code points into a Text. Raises an exception if any of the code
points is invalid.

asciiToLower : Text -> Text
Convert the uppercase ASCIl characters of a Text to lowercase; all other characters remain
unchanged.

asciiToUpper : Text -> Text
Convert the lowercase ASCIl characters of a Text to uppercase; all other characters remain
unchanged.

2.1.3.29 Module DA.TextMap

TextMap - A map is an associative array data type composed of a collection of key/value pairs such
that, each possible key appears at most once in the collection.

Functions

fromlList : [(Text, a)] -> TextMap a
Create a map from a list of key/value pairs.

fromListWith : (a->a->a) -> [(Text, a)] -> TextMap a
Create a map from a list of key/value pairs with a combining function. Examples:

fromListWith (++) [("A", [1]), ("a", [2]), ("B", [2]), ("B", [11), ("A",O
—[31)] == fromList [("A", [1, 2, 31), ("B", [2, 1])]
fromListWith (++) [] == (empty : TextMap [Int])

tolList : TextMap a -> [(Text, a)]
Convert the map to a list of key/value pairs where the keys are in ascending order.

empty : TextMap a
The empty map.
size : TextMap a -> Int

Number of elements in the map.

null : TextMap v -> Bool
Is the map empty?

lookup : Text -> TextMap a -> Optional a
Lookup the value at a key in the map.

member : Text -> TextMap v -> Bool
Is the key a member of the map?

filter : (v -> Bool) -> TextMap v -> TextMap v
Filter the TextMap using a predicate: keep only the entries where the value satisfies the pred-
icate.

filterWithKey : (Text -> v -> Bool) -> TextMap v -> TextMap v
Filter the TextMap using a predicate: keep only the entries which satisfy the predicate.

244 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

delete : Text -> TextMap a -> TextMap a
Delete a key and its value from the map. When the key is not a member of the map, the original
map is returned.

insert : Text->a -> TextMap a -> TextMap a
Insert a new key/value pair in the map. If the key is already present in the map, the associated
value is replaced with the supplied value.

union : TextMap a -> TextMap a -> TextMap a
The union of two maps, preferring the first map when equal keys are encountered.

merge : (Text ->a -> Optional ¢) -> (Text -> b -> Optional ¢) -> (Text -> a -> b -> Optional ¢) -> TextMap a ->
TextMap b -> TextMap ¢
Merge two maps. merge £ g h x y applies £ to all key/value pairs whose key only appears
in x, g to all pairs whose key only appears in y and h to all pairs whose key appears in both x
and y. In the end, all pairs yielding Some are collected as the result.

2.1.3.30 Module DA.Time

Data Types

data RelTime
The RelTime type describes a time offset, i.e. relative time.
instance £q RelTime
instance Ord RelTime
instance Additive RelTime
instance Signed RelTime

instance Show RelTime

Functions

time : Date-> Int-> Int-> Int-> Time
time d h m s turns given UTC date d and the UTC time (given in hours, minutes, seconds)
into a UTC timestamp (Time). Does not handle leap seconds.

pass : RelTime -> Scenario Time
Pass simulated scenario time by argument

addRelTime : Time -> RelTime -> Time
Adjusts Time with given time offset.

subTime : Time -> Time -> RelTime
Returns time offset between two given instants.

wholeDays : RelTime -> Int
Returns the number of whole days in a time offset. Fraction of time is rounded towards zero.

days : Int-> RelTime
A number of days in relative time.

2.1. Writing Daml 245

Daml SDK Documentation, 2.1.1

hours : Int -> RelTime
A number of hours in relative time.

minutes : Int -> RelTime
A number of minutes in relative time.

seconds : Int-> RelTime
A number of seconds in relative time.

milliseconds : Int-> RelTime
A number of milliseconds in relative time.

microseconds : Int -> RelTime

A number of microseconds in relative time.

convertRelTimeToMicroseconds : RelTime -> Int

Convert RelTime to microseconds Use higher level functions instead of the internal microsec-

onds

convertMicrosecondsToRelTime : Int-> RelTime

Convert microseconds to RelTime Use higher level functions instead of the internal microsec-

onds

2.1.3.31 Module DA.Traversable

Class of data structures that can be traversed from left to right, performing an action on each el-
ement. You typically would want to import this module qualified to avoid clashes with functions

defined in Prelude. le.

import DA.Traversable qualified as F

Typeclasses

class (Functor t, Foldable t) => Traversable t where

Functors representing data structures that can be traversed from left to right.

mapA : Applicativef=>(a->fb)->ta->f(th)

Map each element of a structure to an action, evaluate these actions from left to

right, and collect the results.

sequence : Applicative f=>t (fa)->f (ta)

Evaluate each action in the structure from left to right, and collect the results.

instance Ord k => Traversable (Map k)
instance Traversable TextMap
instance Traversable Optional
instance Traversable NonEmpty
instance Traversable (Either a)
instance Traversable ([])

instance Traversable a

246

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Functions

forA : (Traversable t, Applicative f) =>ta->(a->fb) ->f (t b)
forA is mapA with its arguments flipped.

2.1.3.32 Module DA.Tuple

Tuple - Ubiquitous functions of tuples.

Functions

first : (a->a’) ->(a, b) -> (a’, b)
The pair obtained from a pair by application of a programmer supplied function to the argu-
ment pair’s first field.

second : (b->b’)->(a, b)->(a, b?)
The pair obtained from a pair by application of a programmer supplied function to the argu-
ment pair’s second field.

both : (a->b)->(a, a)-> (b, b)
The pair obtained from a pair by application of a programmer supplied function to both the
argument pair’s first and second fields.

swap : (a, b) -> (b, a)
The pair obtained from a pair by permuting the order of the argument pair’s first and second
fields.

dupe :a->(a, a)
Duplicate a single value into a pair.
>dupe 12 == (12,12)

fst3 : (a,b,c)->a
Extract the ‘fst’ of a triple.

snd3 : (a,b,c)->b
Extract the ‘snd’ of a triple.

thd3 : (a,b,c)->c
Extract the final element of a triple.

curry3 : ((a,b,c)->d)->a->b->c->d
Converts an uncurried function to a curried function.

uncurry3 : (@a->b->c->d)->(a, b,c)->d
Converts a curried function to a function on a triple.

2.1. Writing Daml 247

Daml SDK Documentation, 2.1.1

2.1.3.33 Module DA Validation

Validation type and associated functions.

Data Types

data Validation err a

A validation represents eithor a non-empty list of errors, or a successful value. This
generalizes Either to allow more than one error to be collected.

Errors (NonEmpty err)

Success a

instance Applicative (Validation err)
instance Functor (Validation err)

instance (Eqerr, Eq a) => £Eq (Validation err a)

instance (Show err, Show a) => Show (Validation err a)

Functions

invalid : err-> Validation err a
Fail for the given reason.

ok : a->Validation err a
Succeed with the given value.

validate : Eithererr a-> Validation err a
Turn an Either intoaVvalidation.

run : Validation erra-> Either (NonEmpty err) a
ConvertaValidation err avalueintoanEither,takingthe non-empty list of errors as the
left value.

runl : Validation err a -> Either err a
ConvertaValidation err avalueintoanEither,takingjustthe firsterror asthe left value.

runWithDefault : a-> Validation erra->a
Run avalidation err a with a defaultvalue in case of errors.

(<?>) : Optional b -> Text -> Validation Text b
Convert an Optional tintoaValidation Text t,or more generallyintoanm t forany
ActionFail typem.

248 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.1.4 Good design patterns

Patterns have been useful in the programming world, as both a source of design inspiration, and a
document of good design practices. This documentis a catalog of Daml patterns intended to provide
the same facility in the Daml application world.

You can checkout the examples locally via daml new daml-patterns --template
daml-patterns.

Initiate and Accept The Initiate and Accept pattern demonstrates how to start a bilateral workflow.
One party initiates by creating a proposal or an invite contract. This gives another party the
chance to accept, reject or renegotiate.

Multiple party agreement The Multiple Party Agreement pattern uses a Pending contract as a wrap-
per for the Agreement contract. Any one of the signatory parties can kick off the workflow by
creating a Pending contract on the ledger, filling in themselves in all the signatory fields. The
Agreement contract is not created on the ledger until all parties have agreed to the Pending
contract, and replaced the initiator’s signature with their own.

Delegation The Delegation pattern gives one party the right to exercise a choice on behalf of another
party. The agentcan control acontracton the ledger without the principal explicitly committing
the action.

Authorization The Authorization pattern demonstrates how to make sure a controlling party is au-
thorized before they take certain actions.

Locking The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the
specified locking party can lock the asset through an active and authorized action. When a
contract is locked, some or all choices specified on that contract may not be exercised.

2.1.4.1 Initiate and Accept

The Initiate and Accept pattern demonstrates how to start a bilateral workflow. One party initiates
by creating a proposal or an invite contract. This gives another party the chance to accept, reject or
renegotiate.

Motivation

It takes two to tango, but one party has to initiate. There is no difference in business world. The
contractual relationship between two businesses often starts with an invite, a business proposal, a
bid offering, etc.

Invite When a market operator wants to set up a market, they need to go through an on-boarding
process, in which they invite participants to sign master service agreements and fulfill differ-
entroles in the market. Receiving participants need to evaluate the rights and responsibilities
of each role and respond accordingly.

Propose When issuing an asset, an issuer is making a business proposal to potential buyers. The
proposal lays out what is expected from buyers, and what they can expect from the issuer. Buy-
ers need to evaluate all aspects of the offering, e.g. price, return, and tax implications, before
making a decision.

The Initiate and Accept pattern demonstrates how to write a Daml program to model the initiation
of an inter-company contractual relationship. Daml modelers often have to follow this pattern to
ensure no participants are forced into an obligation.

2.1. Writing Daml 249

Daml SDK Documentation, 2.1.1

Implementation

The Initiate and Accept pattern in general involves 2 contracts:

Initiate contract The Initiate contract can be created from a role contract or any other point in the
workflow. In this example, initiate contract is the proposal contract CoinlssueProposal the issuer
created from the master contract CoinMaster.

template CoinMaster
with
issuer: Party
where
signatory issuer

nonconsuming choice Invite : Contractld CoinIssueProposal
with owner: Party
controller issuer
do create CoinIssueProposal
with coinAgreement = CoinIssueAgreement with issuer; owner

The CoinlssueProposal contract has Issuer as the signatory, and Owner as the controller to the
Accept choice. In its complete form, the CoinlssueProposal contract should define all choices
available to the owner, i.e. Accept, Reject or Counter (e.g. re-negotiate terms).

template CoinIssueProposal
with
coinAgreement: CoinIssueAgreement
where
signatory coinAgreement.issuer
observer coinAgreement.owner

choice AcceptCoinProposal
ContractlId CoinIssueAgreement
controller coinAgreement.owner
do create coinAgreement

Result contract Once the owner exercises the AcceptCoinProposal choice on the initiate contract to
express their consent, it returns a result contract representing the agreement between the two
parties. In this example, the result contract is of type CoinlssueAgreement. Note, it has both
issuer and owner as the signatories, implying they both need to consent to the creation of this
contract. Both parties could be controller(s) on the result contract, depending on the business
case.

template CoinIssueAgreement
with
issuer: Party
owner: Party
where
signatory issuer, owner

nonconsuming choice Issue : ContractId Coin
with amount: Decimal
controller issuer
do create Coin with issuer; owner; amount; delegates = []

250 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

CoinlssueProposal

Issuer, owner CoinlssueAgreement

Issuer, Owner,
issuer

Fig. 1: Initiate and Accept pattern diagram
Trade-offs

Initiate and Accept can be quite verbose if signatures from more than two parties are required to
progress the workflow.

2.1.4.2 Multiple party agreement

The Multiple Party Agreement pattern uses a Pending contract as a wrapper for the Agreement con-
tract. Any one of the signatory parties can kick off the workflow by creating a Pending contract on
the ledger, filling in themselves in all the signatory fields. The Agreement contract is not created on
the ledger until all parties have agreed to the Pending contract, and replaced the initiator’s signature
with their own.

Motivation

The Initiate and Accept shows how to create bilateral agreements in Daml. However, a project or a
workflow often requires more than two parties to reach a consensus and put their signatures on
a multi-party contract. For example, in a large construction project, there are at least three major
stakeholders: Owner, Architect and Builder. All three parties need to establish agreement on key
responsibilities and project success criteria before starting the construction.

If such an agreement were modeled as three separate bilateral agreements, no party could be sure
if there are conflicts between their two contracts and the third contract between their partners. If
the Initiate and Accept were used to collect three signatures on a multi-party agreement, unnecessary
restrictions would be put on the order of consensus and a number of additional contract templates
would be needed as the intermediate steps. Both solution are suboptimal.

Following the Multiple Party Agreement pattern, it is easy to write an agreement contract with mul-
tiple signatories and have each party accept explicitly.

2.1. Writing Daml 251

Daml SDK Documentation, 2.1.1

Implementation

Agreement contract The Agreement contract represents the final agreement among a group of

stakeholders. Its content can vary per business case, but in this pattern, it always has mul-
tiple signatories.

template Agreement

with
signatories: [Party]
where
signatory signatories
ensure

unigque signatories
-— The rest of the template to be agreed to would follow here

Pending contract The Pending contract needs to contain the contents of the proposed Agreement

contract, as a parameter. This is so that parties know what they are agreeing to, and also so
that when all parties have signed, the Agreement contract can be created.

The Pending contract has a list of parties who have signed it, and a list of parties who have yet to
sign it. If you add these lists together, it has to be the same set of parties as the signatories
of the Agreement contract.

All of the toSign parties have the choice to Sign. This choice checks that the party isindeed a
member of toSign, then creates a new instance of the Pending contract where they have been
moved to the signed list.

template Pending
with
finalContract: Agreement
alreadySigned: [Party]
where
signatory alreadySigned
observer finalContract.signatories
ensure
-— Can't have duplicate signatories
unique alreadySigned

-- The parties who need to sign 1s the finalContract.signatories withl]
—alreadySigned filtered out
let toSign = filter (" notElem alreadySigned) finalContract.signatories

choice Sign : ContractId Pending with
signer : Party
controller signer

do

-— Check the controller is in the toSign list, and if they are,ll
—sign the Pending contract

assert (signer ‘elem’ toSign)
create this with alreadySigned = signer :: alreadySigned

Once all of the parties have signed, any of them can create the final Agreement contract using
the Finalize choice. This checks that all of the signatories for the Agreement have signed the
Pending contract.

choice Finalize : ContractId Agreement with
signer : Party
controller signer

(continues on next page)

252

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

do
-—- Check that all the required signatories have signed Pending
assert (sort alreadySigned == sort finalContract.signatories)
create finalContract

Collecting the signatures in practice Since the final Pending contract has multiple signatories, it

cannot be created in that state by any one stakeholder.
However, a party can create a pending contract, with all of the other parties in the toSign list.

parties@[personl, person2, person3, persond] <- makePartiesFrom ["Alice",
—"Bob", "Clare", "Dave"]
let finalContract = Agreement with signatories = parties

-—- Parties cannot create a contract already signed by someone else
initialFailTest <- personl ‘“submitMustFail® do
createCmd Pending with finalContract; alreadySigned = [personl, person2?]

-— Any party can create a Pending contract provided they list themselves asl]
—the only signatory
pending <- personl “submit’ do
createCmd Pending with finalContract; alreadySigned = [personl]

Once the Pending contract is created, the other parties can sign it. For simplicity, the example
code only has choices to express consensus (but you might want to add choices to Accept,
Reject, or Negotiate).

-- Each signatory of the finalContract can Sign the Pending contract
pending <- person?2 “submit’ do

exerciseCmd pending Sign with signer = person2
pending <- person3 “submit’ do

exerciseCmd pending Sign with signer = person3
pending <- persond “submit® do

exerciseCmd pending Sign with signer = personi

-- A party can't sign the Pending contract twice
pendingFailTest <- person3 " submitMustFail® do
exerciseCmd pending Sign with signer = person3
-- A party can't sign on behalf of someone else
pendingFailTest <- person3 submitMustFail® do
exerciseCmd pending Sign with signer = person4

Once all of the parties have signed the Pending contract, any of them can then exercise the
Finalize choice. This creates the Agreement contract on the ledger.

personl “submit® do
exerciseCmd pending Finalize with signer = personl

2.1. Writing Daml 253

Daml SDK Documentation, 2.1.1

Pending
personl, person2,
person3, person4
personl, personZ2,
person3, person4

l

Agreement

It recreates itself each
time when a party
agrees to the contract.

personl, person2,
person3, person4

Fig. 2: Multiple Party Agreement Diagram

2.1.4.3 Delegation

The Delegation pattern gives one party the right to exercise a choice on behalf of another party. The
agent can control a contract on the ledger without the principal explicitly committing the action.

Motivation

Delegation is prevalent in the business world. In fact, the entire custodian business is based on
delegation. When a company chooses a custodian bank, it is effectively giving the bank the rights to
hold their securities and settle transactions on their behalf. The securities are not legally possessed
by the custodian banks, but the banks should have full rights to perform actions in the client’s name,
such as making payments or changing investments.

The Delegation pattern enables Daml modelers to model the real-world business contractual agree-
ments between custodian banks and their customers. Ownership and administration rights can be
segregated easily and clearly.

Implementation

Pre-condition: There exists a contract, on which controller Party A has a choice and intends to del-
egate execution of the choice to Party B. In this example, the owner of a Coin contract intends to
delegate the Transfer choice.

template Coin
with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

(continues on next page)

254 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where
signatory issuer, owner
observer delegates

--a coin can only be archived by the issuer under the condition that thell
—issuer 1is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

Delegation Contract
Principal, the original coin owner, is the signatory of delegation contract CoinPoA. This sig-
natory is required to authorize the Transfer choice on coin.

template CoinPoA
with
attorney: Party
principal: Party
where
signatory principal
observer attorney

choice WithdrawPoA
()
controller principal
do return ()

Whetheror not the Attorney party should be a signatory of CoinPoAis subject to the business
agreements between Principal and Attorney. For simplicity, in this example, Attorney is not
a signatory.

Attorney is the controller of the Delegation choice on the contract. Within the choice, Prin-
cipal exercises the choice Transfer on the Coin contract.

nonconsuming choice TransferCoin

Contractld TransferProposal

with
coinId: ContractId Coin
newOwner: Party

controller attorney

do
exercise coinlId Transfer with newOwner

Coin contracts need to be disclosed to Attorney before they can be used in an exercise of
Transfer. This can be done by adding Attorney to Coin as an Observer. This can be done
dynamically, for any specific Coin, by making the observers a List, and adding a choice to
add a party to that List:

choice Disclose : ContractId Coin
with p : Party
controller owner
do create this with delegates = p :: delegates

Note: The technique is likely to change in the future. Daml is actively researching future language

2.1. Writing Daml 255

Daml SDK Documentation, 2.1.1

features for contract disclosure.

Coin -, CoinPoA
issuer, owner, o issuer, owner,
owner issuer

TransferProposal

coin.issuer,
coin.owner,
newOwner

Fig. 3: Delegation pattern diagram

2.1.4.4 Authorization

Coin

issuer, newOwner,
newOwner

The Authorization pattern demonstrates how to make sure a controlling party is authorized before

they take certain actions.

Motivation

Authorization is an universal conceptin the business world as access to most business resources is
a privilege, and not given freely. For example, security trading may seem to be a plain bilateral agree-
ment between the two trading counterparties, but this could not be further from truth. To be able to
trade, the trading parties need go through a series of authorization processes and gain permission
from a list of service providers such as exchanges, market data streaming services, clearing houses

and security registrars etc.

The Authorization pattern shows how to model these authorization checks prior to a business trans-

action.

Authorization

Here is an implementation of a Coin transfer without any authorization:

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

256

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

--a coin can only be archived by the issuer under the condition that thell
—1issuer 1s the owner of the coin.
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

This ensures the issuer cannot archive coinsl]

This is may be insufficient since the issuer has no means to ensure the newOwner is an accredited
company. The following changes fix this deficiency.

Authorization contract The below shows an authorization contract CoinOwnerAuthorization. In this

example, the issuer is the only signatory so it can be easily created on the ledger. Owner is an
observer on the contract to ensure they can see and use the authorization.

template CoinOwnerAuthorization
with
owner: Party
issuer: Party
where
signatory issuer
observer owner

choice WithdrawAuthorization
()
controller issuer
do return ()

Authorization contracts can have much more advanced business logic, butinits simplestform,
CoinOwnerAuthorization serves its main purpose, which is to prove the owner is a warranted coin
owner.

TransferProposal contract In the TransferProposal contract, the Accept choice checks that
newOwner has proper authorization. A CoinOwnerAuthorization for the new owner has to be sup-
plied and is checked by the two assert statements in the choice before a coin can be transferred.

choice AcceptTransfer
ContractId Coin

with token: ContractId CoinOwnerAuthorization
controller newOwner

do
t <- fetch token
assert (coin.issuer == t.issuer)
assert (newOwner == t.owner)
create coin with owner = newOwner

2.1.4.5 Locking

The Locking pattern exhibits how to achieve locking safely and efficiently in Daml. Only the specified
locking party can lock the asset through an active and authorized action. When a contract is locked,
some or all choices specified on that contract may not be exercised.

2.1. Writing Daml 257

Daml SDK Documentation, 2.1.1

Coin

issuer, owner,
issuer

Motivation

CoinOwnerAuthorization

issuer, owner, owner

4

TransferProposal

coin.issuer,
coin.owner,
newOwner

Fig. 4: Authorization Diagram

Coin

issuer, newOwner,
newQwner

Locking is a common real-life requirement in business transactions. During the clearing and set-
tlement process, once a trade is registered and novated to a central Clearing House, the trade is
considered locked-in. This means the securities under the ownership of seller need to be locked so
they cannot be used for other purposes, and so should be the funds on the buyer’s account. The
locked state should remain throughout the settlement Payment versus Delivery process. Once the
ownership is exchanged, the lock is lifted for the new owner to have full access.

Implementation

There are three ways to achieve locking:

Locking by archiving

Pre-condition: there exists a contract that needs to be locked and unlocked. In this section, Coin is

used as the original contract to demonstrate locking and unlocking.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

258

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

-—-a coin can only be archived by the issuer under the condition that thell
—~1issuer 1s the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

Archiving is a straightforward choice for locking because once a contract is archived, all choices
on the contract become unavailable. Archiving can be done either through consuming choice or
archiving contract.

Consuming choice

The steps below show how to use a consuming choice in the original contract to achieve locking:

Add a consuming choice, Lock, to the Coin template that creates a LockedCoin.

The controller party on the Lock may vary depending on business context. In this example, owner
is a good choice.

The parameters to this choice are also subject to business use case. Normally, it should have
at least locking terms (eg. lock expiry time) and a party authorized to unlock.

choice Lock : ContractId LockedCoin
with maturity: Time; locker: Party
controller owner
do create LockedCoin with coin=this; maturity; locker

Create a LockedCoin to represent Coin in the locked state. LockedCoin has the following charac-
teristics, all in order to be able to recreate the original Coin:
- The signatories are the same as the original contract.
- It has all data of Coin, either through having a Coin as a field, or by replicating all data of
Coin.
- It has an Unlock choice to lift the lock.

template LockedCoin

with
coin: Coin
maturity: Time
locker: Party

where
signatory coin.issuer, coin.owner
observer locker

choice Unlock
ContractId Coin

(continues on next page)

2.1. Writing Daml 259

Daml SDK Documentation, 2.1.1

(continued from previous page)

controller locker
do create coin

q Lock
Cain LockedCoin

issuer, owner,

issuer, owner,
owner

owner, unlocker

Fig. 5: Locking By Consuming Choice Diagram

Archiving contract

In the event that changing the original contract is not desirable and assuming the original contract
already has an Archive choice, you can introduce another contract, CoinCommitment, to archive Coin
and create LockedCoin.

Examine the controller party and archiving logic in the Archives choice on the Coin contract. A
coin can only be archived by the issuer under the condition that the issuer is the owner of the
coin. This ensures the issuer cannot archive any coin at will.

--a coin can only be archived by the issuer under the condition that the
—issuer is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

Since we need to call the Archives choice from CoinCommitment, its signatory has to be Issuer.

template CoinCommitment
with
owner: Party
issuer: Party
amount: Decimal
where
signatory issuer
observer owner

The controller party and parameters on the Lock choice are the same as described in locking by
consuming choice. The additional logic required is to transfer the asset to the issuer, and then
explicitly call the Archive choice on the Coin contract.

Once a Coinis archived, the Lock choice creates a LockedCoin that represents Coin in locked state.

nonconsuming choice LockCoin
ContractId LockedCoin

(continues on next page)

260 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

with coinCid: ContractId Coin
maturity: Time
locker: Party
controller owner
do
inputCoin <- fetch coinCid
assert (inputCoin.owner == owner && inputCoin.issuer == issuer &&
—inputCoin.amount == amount)
-—the original coin firstly transferred to issuer and then archivaed
prop <- exercise coinCid Transfer with newOwner = issuer
do
id <- exercise prop AcceptTransfer
exercise id Archives
-—-create a lockedCoin to represent the coin in locked state
create LockedCoin with
coin=inputCoin with owner; issuer; amount
maturity; locker

Coin

issuer, owner,
owner .. Archive

CoinCommitment)
LockedCoin

issuer, owner issuer, owner,
owner, unlocker

Fig. 6: Locking By Archiving Contract Diagram

Trade-offs

This pattern achieves locking in a fairly straightforward way. However, there are some tradeoffs.

Locking by archiving disables all choices on the original contract. Usually for consuming
choices this is exactly what is required. But if a party needs to selectively lock only some
choices, remaining active choices need to be replicated on the LockedCoin contract, which can
lead to code duplication.

The choices on the original contract need to be altered for the lock choice to be added. If this
contract is shared across multiple participants, it will require agreement from all involved.

2.1. Writing Daml 261

Daml SDK Documentation, 2.1.1

Locking by state

The original Coin template is shown below. This is the basis on which to implement locking by state

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that the
—issuer 1is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

In its original form, all choices are actionable as long as the contract is active. Locking by State
requires introducing fields to track state. This allows for the creation of an active contract in two
possible states: locked or unlocked. ADaml modeler can selectively make certain choices actionable
only if the contract is in unlocked state. This effectively makes the asset lockable.

The state can be stored in many ways. This example demonstrates how to create a LockableCoin
through a party. Alternatively, you can add a lock contract to the asset contract, use a boolean flag
or include lock activation and expiry terms as part of the template parameters.

Here are the changes we made to the original Coin contract to make it lockable.

Add a locker party to the template parameters.
Define the states.
- if owner == locker, the coin is unlocked
- if owner != locker, the coinis in a locked state
The contract state is checked on choices.
- Transfer choice is only actionable if the coin is unlocked
- Lock choice is only actionable if the coin is unlocked and a 3rd party locker is supplied
- Unlock is available to the locker party only if the coin is locked

template LockableCoin
with
owner: Party
issuer: Party
amount: Decimal
locker: Party

(continues on next page)

262 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

where
signatory issuer
signatory owner
observer locker

ensure amount > 0.0

--Transfer can happen only 1if it is not locked
choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
assert (locker == owner)
create TransferProposal
with coin=this; newOwner

--Lock can be done 1if owner decides to bring a locker on board
choice Lock : ContractId LockableCoin
with newlLocker: Party
controller owner
do
assert (newLocker /= owner)
create this with locker = newlLocker

--Unlock only makes sense 1if the coin is in locked state
choice Unlock
ContractId LockableCoin
controller locker
do
assert (locker /= owner)
create this with locker = owner

Locking By State Diagram

Transfer choice,

LockableCoin actionable only if it is
locked
issuer,
owner, locker
TransferProposal

coin.issuer,
coin.owner,
newOwner

2.1. Writing Daml 263

Daml SDK Documentation, 2.1.1

Trade-offs

It requires changes made to the original contract template. Furthermore you should need to
change all choices intended to be locked.

If locking and unlocking terms (e.g. lock triggering event, expiry time, etc) need to be added to
the template parameters to track the state change, the template can get overloaded.

Locking by safekeeping

Safekeepingis a realistic way to model locking as itis a common practice in many industries. For ex-
ample,during areal estate transaction, purchase funds are transferred to the sellers lawyer’s escrow
account after the contract is signed and before closing. To understand its implementation, review
the original Coin template first.

template Coin

with
owner: Party
issuer: Party
amount: Decimal
delegates : [Party]

where
signatory issuer, owner
observer delegates

choice Transfer : ContractId TransferProposal
with newOwner: Party
controller owner
do
create TransferProposal
with coin=this; newOwner

--a coin can only be archived by the issuer under the condition that thell
—issuer is the owner of the coin. This ensures the issuer cannot archive coinsl]
—at will.

choice Archives

()
controller issuer
do assert (issuer == owner)

There is no need to make a change to the original contract. With two additional contracts, we can
transfer the Coin ownership to a locker party.

Introduce a separate contract template LockRequest with the following features:
- LockRequest has a locker party as the single signatory, allowing the locker party to unilat-
erally initiate the process and specify locking terms.
- Once owner exercises Accept on the lock request, the ownership of coin is transferred to
the locker.
- The Accept choice also creates a LockedCoinV2 that represents Coin in locked state.

template LockRequest
with
locker: Party
maturity: Time

(continues on next page)

264 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

coin: Coin

where
signatory locker
observer coin.owner

choice Accept : LockResult
with coinCid : ContractId Coin
controller coin.owner

do
inputCoin <- fetch coinCid
assert (inputCoin == coin)
tpCid <- exercise coinCid Transfer with newOwner = locker

coinCid <- exercise tpCid AcceptTransfer
lockCid <- create LockedCoinV2 with locker; maturity; coin
return LockResult {coinCid; lockCid}

LockedCoinV2 represents Coin in the locked state. It is fairly similar to the LockedCoin described
in Consuming choice. The additional logic is to transfer ownership from the locker back to the
owner when Unlock or Clawback is called.

template LockedCoinV2
with
coin: Coin
maturity: Time
locker: Party
where
signatory locker, coin.owner

choice UnlockV2

ContractId Coin

with coinCid : ContractId Coin

controller locker

do
inputCoin <- fetch coinCid
assert (inputCoin.owner == locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner
exercise tpCid AcceptTransfer

choice ClawbackV2

ContractId Coin

with coinCid : ContractId Coin

controller coin.owner

do
currTime <- getTime
assert (currTime >= maturity)
inputCoin <- fetch coinCid
assert (inputCoin == coin with owner=locker)
tpCid <- exercise coinCid Transfer with newOwner = coin.owner
exercise tpCid AcceptTransfer

2.1. Writing Daml 265

Daml SDK Documentation, 2.1.1

Coin

issuer, owner,

owner . Transfer
LockRequest .
LockedCoin
Accep
locker, owner owner, locker

owner, locker

Fig.7: Locking By Safekeeping Diagram
Trade-offs

Ownership transfer may give the locking party too much access on the locked asset. A rogue lawyer
could run away with the funds. In a similar fashion, a malicious locker party could introduce code to
transfer assets away while they are under their ownership.

2.1.4.6 Diagram legends
2.2 Building Applications

The Building Applications section covers the elements that are used to create, extend, and test your
Daml full-stack application (including APIs and JavaScript client libraries) and the architectural best
practices for bringing those elements together.

As with the Writing Daml section, you can find the Daml code for the example application and fea-
tures here or download it using the Daml assistant. For example, to load the sources for section 1
into a folder called introl, run daml new introl -template daml-intro-1.

To run the examples, you will first need to install the Daml SDK.

2.2.1 Application architecture

This section describes our recommended design of a full-stack Daml application.

266 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/tree/main/docs/source/daml/intro/daml
https://docs.daml.com/getting-started/installation.html

Daml SDK Documentation, 2.1.1

Contract Active contract
Contract Archived contract
A B C

Signatories, Controllers, Observers

O Non-consuming choice
& Consuming choice
4] Consuming choice (but recreating itself with an updated state)

Create another contract from a choice

Reference to contractld

2.2. Building Applications 267

Daml SDK Documentation, 2.1.1

User Code Application Front-end

User Code (e.g. React Web Frontend)

Daml Component
Y
) Integration Libraries
Generated code from (e.g. React Libraries)
Daml ¥
Generated Code
External Component (e.g. Typescript)
Application Back-end
\
Daml Model Integration Components
(e.g. JSON API)]
* * Identity & Access Management System
DAR Files -
Participant Node l,I Token Issuer
Daml Network
]

| Daml driver

Y

| Synchronization Technology

The above image shows the recommended architecture. Here there are four types of building blocks
that go into our application: user code, Daml components, generated code from Daml, and exter-
nal components. In the recommended architecture the Daml| model determines the DAR files that
underpin both the front-end and back-end. The front-end includes user code such as a React Web
Frontend, Daml React libraries or other integration libraries, and generated code from the DAR files.
The back-end consists of Daml integration components (e.g. JSON API) and a participant node; the
participant node communicates with an external token issuer. The Daml network, meanwhile, in-
cludes Daml drivers paired with external synchronization technologies.

Of course there are many ways that the architecture and technology stack can be changed to fit your
needs, which we’ll mention in the corresponding sections.

To get started quickly with the recommended application architecture, generate a new project using
the create-daml-app template:

daml new --template=create-daml-app my-project-name

create-daml-app is a small, but fully functional demo application implementing the recom-
mended architecture, providing you with an excellent starting point for your own application. It
showcases

using Daml React libraries

quick iteration against the Dam/ Sandbox.

authorization

deploying your application in the cloud as a Docker container

268 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.1.1 Backend

The backend for your application can be any Daml ledger implementation running your DAR (Dam|
Archive) file.

We recommend using the Dam|JSON APl as an interface to your frontend. It is served by the HTTP JSON
API server connected to the ledger API server. It provides simple HTTP endpoints to interact with the
ledger via GET/POST requests. However, if you prefer, you can also use the gRPC Ledger API directly.

When you use the create-daml-app template application, you can start a Daml Sandbox together
with a JSON API server by running the following command in the root of the project.

daml start --start-navigator=no

Daml Sandbox exposes the same Daml Ledger APl a Participant Node would expose without requiring
a fully-fledged Daml network to back the application. Once your application matures and becomes
ready for production, the daml deploycommand helps you deploy your frontend and Daml artifacts
of your project to a production Daml network.

2.2.1.2 Frontend

We recommended building your frontend with the React framework. However, you can choose virtu-
ally any language for your frontend and interact with the ledger via HTTP JSON endpoints. In addition,
we provide support libraries for Java and you can also interact with the gRPC Ledger API directly.

We provide two libraries to build your React frontend for a Daml application.

Name Summary
@daml/react | React hooks to query/create/exercise Daml contracts
@daml/ledger | Daml ledger object to connect and directly submit commands to the ledger

You can install any of these libraries by running nom install <library> in the ui directory of
your project, e.g. npm install @daml/react. Please explore the create-daml-app example
project to see the usage of these libraries.

To make your life easy when interacting with the ledger, the Daml assistant can generate JavaScript
libraries with TypeScript typings from the data types declared in the deployed DAR.

daml codegen js .daml/dist/<your-project-name.dar> -o ui/daml.js

This command will generate a JavaScript library for each DALF in your DAR, containing metadata
about types and templates in the DALF and TypeScript typings them. In create-daml-app, ui/
package.json refers to these libraries via the "create-daml-app": "file:../daml.js/
create-daml-app-0.1.0" entry in the dependencies field.

If you choose a different JavaScript based frontend framework, the packages @daml/ledger,
@daml/types and the generated daml. js libraries provide you with the necessary code to connect
and issue commands against your ledger.

2.2. Building Applications 269

https://reactjs.org
https://www.npmjs.com/package/@daml/react
https://www.npmjs.com/package/@daml/ledger

Daml SDK Documentation, 2.1.1

2.2.1.3 Authorization

When you deploy your application to a production ledger, you need to authenticate the identities of
your users.

Daml ledgers support a unified interface for authorization of commands. Some Daml ledgers, like
for example https://hub.daml.com, offer integrated authentication and authorization, but you can
also use an external service provider like https://authO.com. The Daml react libraries support inter-
facing with a Daml ledger that validates authorization of incoming requests. Simply initialize your
DamlLedger object with the token obtained by the respective token issuer. How authorization works
and the form of the required tokens is described in the Authorization section.

2.2.1.4 Developer workflow

The SDK enables a local development environment with fast iteration cycles:

1.

2.

The integrated VSCode IDE (daml studio) runs your Scripts on any change to your Daml mod-
els. See Daml Script.

daml start will build all of your Daml code, generate the JavaScript bindings, and start the
required backend processes (sandbox and HTTP JSON API). It will also allow you to press r
(followed by Enter on Windows) to rebuild your code, regenerate the JavaScript bindings and
upload the new code to the running ledger.

. npm start willwatch yourJavaScript source files for change and recompile them immediately

when they are saved.

Together, these features can provide you with very tight feedback loops while developing your Daml
application, all the way from your Daml contracts up to your web Ul. Atypical Daml developer workflow

is to

abhown -~

Make a small change to your Daml data model

Optionally test your Daml code with Daml Script

Edit your React components to be aligned with changes made in Daml code

Extend the Ul to make use of the newly introduced feature

Make further changes either to your Daml and/or React code until you’re happy with what you’ve
developed

Iterate on the

DAML model Iterate on the Ul

See Your First Feature for a more detailed walkthrough of these steps.

270

Chapter 2. Daml Guide

https://hub.daml.com
https://auth0.com

Daml SDK Documentation, 2.1.1

Command deduplication

The interaction of a Daml application with the ledger is inherently asynchronous: applications send
commands to the ledger, and some time later they see the effect of that command on the ledger.

There are several things that can fail during this time window: the application can crash, the partici-
pant node can crash, messages can be lost on the network, or the ledger may be just slow to respond
due to a high load.

If you want to make sure that a command is not executed twice, your application needs to robustly
handle all failure scenarios. Daml ledgers provide a mechanism for command deduplication to help
deal with this problem.

Foreach command the application provides acommand ID and an optional parameter that specifies
the deduplication period. If the latter parameter is not specified in the command submission itself,
the ledger will use the configured maximum deduplication duration. The ledger will then guarantee
that commands with the same change ID will generate a rejection within the effective deduplication
period.

For details on how to use command deduplication, see the Command Deduplication Guide.

Dealing with failures
Crash recovery

In order to restart your application from a previously known ledger state, your application must keep
track of the last ledger offset received from the transaction service or the command completion service.

By persisting this offset alongside the relevant state as part of a single, atomic operation, your ap-
plication can resume from where it left off.

Failing over between Ledger APl endpoints

Some Daml Ledgers support exposing multiple eventually consistent Ledger APl endpoints where
command deduplication works across these Ledger APl endpoints. For example, these endpoints
might be hosted by separate Ledger APl servers that replicate the same data and host the same
parties. Contact your ledger operator to find out whether this applies to your ledger.

Below we describe how you can build your application such that it can switch between such eventu-
ally consistent Ledger API endpoints to tolerate server failures. You can do this using the following
two steps.

First, your application must keep track of the ledger offset as described in the paragraph about crash
recovery. When switching to a new Ledger APl endpoint, it must resume consumption of the transac-
tion (tree) and/or the command completion streams starting from this last received offset.

Second, your application mustretryon OUT OF RANGE errors (see gRPC status codes) received from
a stream subscription - using an appropriate backoff strategy to avoid overloading the server. Such
errors can be raised because of eventual consistency. The Ledger APl endpoint that the application
is newly subscribing to might be behind the endpoint that it subscribed to before the switch, and
needs time to catch up. Thanks to eventual consistency this is guaranteed to happen at some point
in the future.

2.2. Building Applications 271

https://grpc.github.io/grpc/core/md_doc_statuscodes.html

Daml SDK Documentation, 2.1.1

Once the application successfully subscribes to its required streams on the new endpoint, it will
resume normal operation.

Dealing with time

The Daml language contains a function getTime which returns a rough estimate of current time
called Ledger Time. The notion of time comes with a lot of problems in a distributed setting: differ-
ent participants might run different clocks, there may be latencies due to calculation and network,
clocks may drift against each other over time, etc.

In order to provide a useful notion of time in Daml without incurring severe performance or liveness
penalties, Daml has two notions of time: Ledger Time and Record Time:

As part of command interpretation, each transaction is automatically assigned a Ledger Time
by the participant server.

All calls to getTime within a transaction return the Ledger Time assigned to that transaction.
Ledger Time is chosen (and validated) to respect Causal Monotonicity: The Create action on a
contract ¢ always precedes all other actions on cin Ledger Time.

As part of the commit/synchronization protocol of the underlying infrastructure, every trans-
action is assigned a Record Time, which can be thought of as the infrastructures systemtime .
It’s the best available notion of real time , but the only guarantees on it are the guarantees
the underlying infrastructure can give. It is also not known at interpretation time.

Ledger Time is kept close to real time by bounding it against Record Time. Transactions where
Ledger and Record Time are too far apart are rejected.

Some commands might take a long time to process, and by the time the resulting transaction is
about to be committed to the ledger, it might violate the condition that Ledger Time should be rea-
sonably close to Record Time (even when considering the ledger’s tolerance interval). To avoid such
problems, applications can setthe optional parameters min_ledger_time_absor min_ledger_time_rel
that specify (in absolute or relative terms) the minimal Ledger Time for the transaction. The ledger
will then process the command, but wait with committing the resulting transaction until Ledger Time
fits within the ledger’s tolerance interval.

How is this used in practice?

Be aware that getTime is only reasonably close to real time, and not completely monotonic.
Avoid Daml workflows that rely on very accurate time measurements or high frequency time
changes.

Setmin ledger time absormin ledger time rel ifthe duration of command interpre-
tation and transmission is likely to take a long time relative to the tolerance interval set by the
ledger.

In some corner cases, the participant node may be unable to determine a suitable Ledger Time
by itself. If you get an error that no Ledger Time could be found, check whether you have con-
tention on any contract referenced by your command or whether the referenced contracts are
sensitive to small changes of getTime.

For more details, see Background concepts - time.

272 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.2 JavaScript Client Libraries

The JavaScript Client Libraries are the recommended way to build a frontend for a Daml application.
The JavaScript Code Generator can automatically generate JavaScript containing metadata about Daml
packages that is required to use these libraries. We provide an integration for the React framework
with the @daml/react library. However, you can choose any JavaScript/TypeScript based framework
and use the @daml/ledger library directly to connect and interact with a Daml ledger via its HTTP
JSON API.

The @daml/types library contains TypeScript data types corresponding to primitive Daml data types,
such as Party or Text. It is used by the @dam|/react and @daml/ledger libraries.

2.2.2.1 JavaScript Code Generator

The command daml codegen js generates JavaScript (and TypeScript) that can be used in con-
junction with the JavaScript Client Libraries for interacting with a Daml ledger via the HTTP JSON
API.

Inputs to the command are DAR files. Outputs are JavaScript packages with TypeScript typings con-
taining metadata and types for all Daml packages included in the DAR files.

The generated packages use the library @daml/types.

Usage

In outline, the command to generate JavaScript and TypeScript typings from Damlis daml codegen
js -o OUTDIR DARwhere DAR is the path to a DAR file (generated via daml build) and OUTDIRis
a directory where you want the artifacts to be written.

Here’s a complete example on a project built from the standard skeleton template.

daml new my-proj —--template skeleton # Create a new project based off thell
—skeleton template

cd my-proj # Enter the newly created project directory

daml build # Compile the project's Daml files into a DAR

daml codegen js -o daml.js .daml/dist/my-proj-0.0.1.dar # Generate JavaScript!]
—packages in the daml.js directory

On execution of these commands:

- The directory my-proj/daml.js contains generated JavaScript packages with Type-
Script typings;

- The files are arranged into directories;

- One of those directories will be named my-proj-0.0.1 and will contain the definitions cor-
responding to the Daml files in the project;

- For example, daml.js/my-proj-0.0.1/1ib/index.js provides access to the defini-
tions for daml/Main.daml;

- Theremaining directories correspond to modules of the Daml standard library;

- Those directories have numeric names (the names are hashes of the DamlI-LF package
they are derived from).

To getaquickstartidea of how to use what has been generated, you may wish to jump to the Templates
and choices section and return to the reference material that follows as needed.

2.2. Building Applications 273

https://reactjs.org
daml-react/index.html
daml-ledger/index.html
daml-types/index.html
daml-react/index.html
daml-ledger/index.html
../json-api/index.html
../json-api/index.html
https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-types

Daml SDK Documentation, 2.1.1

Primitive Daml types: @daml/types

To understand the TypeScript typings produced by the code generator, it is helpful to keep in mind
this quick review of the TypeScript equivalents of the primitive Daml types provided by @daml/types.

Interfaces:
Template<T extends object, K = unknown>
Choice<T extends object, C, R, K = unknown>

Types:

Daml TypeScript TypeScript definition

() Unit {}

Bool Bool boolean

Int Int string

Decimal Decimal string

Numeric v Numeric string

Text Text string

Time Time string

Party Party string

[t] List<t> T[]

Date Date string

ContractId | Contrac- string

T tId<t>

Optional =t Optional<t> null | (null extends 1 ?[] | [Exclude<t, null>]

:T)
TextMap T TextMap<t> { [key: string]: 1 }
(T, =Tb) Tuplell<tl], { 1: ==h; 2: =0}
>

Note: The types given in the TypeScript column are defined in @daml/types.

Note:
table).

For n-tuples where n

3, representation is analogous with the pair case (the last line of the

Note: The TypeScript types Time, Decimal, Numeric and Int all alias to string. These choices
relate to the avoidance of precision loss under serialization over the json-api.

Note: The TypeScript definition of type Optional<t> in the above table might look complicated. It
accounts for differences in the encoding of optional values when nested versus when they are not (i.e.

top-level). For example, null and "foo" are two possible values of Optional<Text> whereas,
[] and ["foo"] are two possible values of type Optional<Optional<Text>> (null is another
possible value, [null] is not).

274 Chapter 2. Daml Guide

../json-api/index.html

a A W o

a A W o

AWM o

B

A W MM o

Daml SDK Documentation, 2.1.1

Daml to TypeScript mappings

The mappings from Daml to TypeScript are best explained by example.

Records

In Daml, we might model a person like this.

data Person =
Person with
name: Text
party: Party
age: Int

Given the above definition, the generated TypeScript code will be as follows.

type Person = {
name: string;
party: daml.Party;
age: daml.Int;

}

Variants

This is a Daml type for a language of additive expressions.

data Expr a =
Lit a
| Var Text
| Add (Expr a, Expr a)

In TypeScript, itis represented as a discriminated union.

type Expr<a> =
\ { tag: 'Lit'; wvalue: a }
| { tag: 'Var'; value: string }
\ { tag: 'Add'; value: {_1: Expr<a>, 2: Expr<a>} }

Sum-of-products

Let’s slightly modify the Expr a type of the last section into the following.

data Expr a =
Lit a
| Var Text
| Add {lhs: Expr a, rhs: Expr a}

Compared to the earlier definition, the Add case is now in terms of a record with fields 1hs and rhs.
This renders in TypeScript like so.

2.2. Building Applications 275

https://www.typescriptlang.org/docs/handbook/advanced-types.html#discriminated-unions

AN

«

Daml SDK Documentation, 2.1.1

type Expr<a> =
\ { tag: 'Lit2'; wvalue: a }
| { tag: 'Var2'; value: string }
\ { tag: 'Add'; value: Expr.Add<a> }

namespace Expr {
type Add<a> = {
lhs: Expr<a>;
rhs: Expr<a>;

The thing to note is how the definition of the Add case has given rise to a record type definition
Expr.Add.

Enums

Given a Daml enumeration like this,

data Color = Red | Blue | Yellow

the generated TypeScript will consist of a type declaration and the definition of an associated com-
panion object.

type Color = 'Red' | 'Blue' | 'Yellow'
const Color = {
Red: 'Red',

Blue: 'Blue',

Yellow: 'Yellow',

keys: ['Red',6 'Blue', 'Yellow'],
} as const;

Templates and choices

Here is a Daml template of a basic ‘IOU’ contract.

template Iou
with
issuer: Party
owner: Party
currency: Text
amount: Decimal
where
signatory issuer
choice Transfer: ContractId Iou
with
newOwner: Party
controller owner
do
create this with owner = newOwner

276 Chapter 2. Daml Guide

A W N

A W N

o

Daml SDK Documentation, 2.1.1

The daml codegen js command generates types for each of the choices defined on the template
as well as the template itself.

type Transfer = {
newOwner: daml.Party;

type Iou = {
issuer: daml.Party;
owner: daml.Party;
currency: string;
amount: daml.Numeric;

Each template results in the generation of a companion object. Here, is a schematic of the one gen-
erated from the Tou template®.

const Iou: daml.Template<Iou, undefined> & {
Archive: daml.Choice<Iou, DA Internal Template.Archive, {}, undefined>;
Transfer: daml.Choice<Iou, Transfer, daml.ContractId<Iou>, undefined>;

VA 4

The exact details of these companion objects are not important - think of them as representing
metadata .

What is important is the use of the companion objects when creating contracts and exercising
choices using the @daml/ledger package. The following code snippet demonstrates their usage.

import Ledger from '@daml/ledger';
import {Iou, Transfer} from /* ... */;

const ledger = new Ledger (/* ... */);

// Contract creation,; Bank issues Alice a USD SIMM IOU.

const iouDetails: Iou = {
issuer: 'Chase',
owner: 'Alice',

currency: 'USD',

amount: 1000000.0,
bi
const aliceIouCreateEvent = await ledger.create(Iou, iouDetails);
const aliceIouContractId = alicelouCreateEvent.contractId;

// Choice execution; Alice transfers ownership of the IOU to Bob.

const transferDetails: Transfer = {
newOwner: 'Bob',
}
const [bobIouContractlId,] = await ledger.exercise (Transfer, aliceIouContractId,!]

—~transferDetails) ;

Observe online 14, the first argument to create is the Iou companion object and on line 22, the first
argument to exercise is the Transfer companion object.

2 The undefined type parameter captures the fact that Tou has no contract key.

2.2. Building Applications 277

https://github.com/digital-asset/daml/tree/main/language-support/ts/daml-ledger

Daml SDK Documentation, 2.1.1

2.2.2.2 @daml/react

@daml/react documentation

2.2.2.3 @daml/ledger

@daml/ledger documentation

2.2.2.4 @daml/types

@daml/types documentation

2.2.3 HTTP JSON API Service

The JSON API provides a significantly simpler way to interact with a ledger than the Ledger API by
providing basic active contract set functionality:

creating contracts,

exercising choices on contracts,

querying the current active contract set, and
retrieving all known parties.

The goal of this APl is to get your distributed ledger application up and running quickly, so we have
deliberately excluded complicating concerns including, but not limited to:

inspecting transactions,
asynchronous submit/completion workflows,
temporal queries (e.g. active contracts as of a certain time), and

For these and other features, use the Ledger APl instead.

We welcome feedback about the JSON APl on our issue tracker, or on our forum.

2.2.3.1 Daml-LF JSON Encoding

We describe how to decode and encode Daml-LF values as JSON. For each Daml-LF type we explain
what JSON inputs we accept (decoding), and what JSON output we produce (encoding).

The output format is parameterized by two flags:

encodeDecimalAsString: boolean
encodeInt64AsString: boolean

The suggested defaults for both of these flags is false. If the intended recipient is written in
JavaScript, however, note that the JavaScript data model will decode these as numbers, discard-
ing data in some cases; encode-as-String avoids this, as mentioned with respect to JSON.parse
below. For that reason, the HTTP JSON API Service uses true for both flags.

Note that throughout the document the decoding is type-directed. In other words, the same JSON
value can correspond to many Daml-LF values, and the expected Daml-LF type is needed to decide
which one.

278 Chapter 2. Daml Guide

daml-react/index.html
daml-ledger/index.html
daml-types/index.html
https://github.com/digital-asset/daml/issues/new/choose
https://discuss.daml.com

Daml SDK Documentation, 2.1.1

Contractld

Contract ids are expressed as their string representation:

Hl23"
HXYZ"
"foo:bar#baz"

Decimal
Input

Decimals can be expressed as JSON numbers or as JSON strings. JSON strings are accepted using
the same format that JSON accepts, and treated them as the equivalent JSON number:

=2(2:01[1-97\d*) (?:\.\d+) 2 (?: [eE] [+-]2\d+) ?

Note that JSON numbers would be enough to represent all Decimals. However, we also accept strings
because in many languages (most notably JavaScript) use IEEE Doubles to express JSON numbers,
and |IEEE Doubles cannot express Daml-LF Decimals correctly. Therefore, we also accept strings so
that JavaScript users can use them to specify Decimals that do not fit in IEEE Doubles.

Numbers must be within the bounds of Decimal, [-(10 -1) 10 , (10 -1) 10]. Numbers outside
those bounds will be rejected. Numbers inside the bounds will always be accepted, using banker’s
rounding to fit them within the precision supported by Decimal.

A few valid examples:

42 --> 42
42.0 --> 42
"42" --> 42

9999999999999999999999999999.9999999999 -->
9999999999999999999999999999.9999999999

-42 -=-> =42

"—42" —=> -42

0 -->0

-0 --> 0

0.30000000000000004 --> 0.3

2e3 --> 2000

A few invalid examples:

" 4 2 "

"blah"
99999999999999999999999999990
+42

2.2. Building Applications 279

Daml SDK Documentation, 2.1.1

Output

If encodeDecimalAsString is set, decimals are encoded as strings, using the format -2 [0-9]1 {1,
28} (\.[0-91{1,10}) 2. If encodeDecimalAsString is not set, they are encoded as JSON numbers,
also using the format -2 [0-91{1,28} (\.[0-9]{1,10}) ~.

Note that the flag encodeDecimalAsString is useful because it lets JavaScript consumers consume
Decimals safely with the standard JSON.parse.

Int64
Input

Inté4, much like Decimal, can be represented as JSON numbers and as strings, with the string
representation being [+-1?[0-9]1+. The numbers must fall within [-9223372036854775808,
9223372036854775807]. Moreover, if represented as JSON numbers, they must have no fractional
part.

A few valid examples:

42

"+42"

-42

0

-0

9223372036854775807
"9223372036854775807"
-9223372036854775808
"-9223372036854775808"

A few invalid examples:

42.3

+42
9223372036854775808
-9223372036854775809
"garbage"

" 4 2 "

Output

If encodelnt64AsString is set, Int64s are encoded as strings, using the format -2 [0-9]+. If en-
codelnt64AsString is not set, they are encoded as JSON numbers, also using the format -2 [0-9] +.

Note that the flag encodelnt64AsString is useful because it lets JavaScript consumers consume
Int64s safely with the standard JSON.parse.

280 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Timestamp

Input

Timestamps are represented as [ISO 8601 strings, rendered using the format
yyyy-mm-ddThh:mm:ss.ssssssZ:

1990-11-09T04:30:23.1234562
9999-12-31T23:59:59.999999%Z

Parsing is a little bit more flexible and uses the format yyyy-mm-ddThh:mm:ss (\.s+) ?Z, i.e. it’s
OK to omit the microsecond part partially or entirely, or have more than 6 decimals. Sub-second
data beyond microseconds will be dropped. The UTC timezone designator must be included. The
rationale behind the inclusion of the timezone designator is minimizing the risk that users pass in
local times. Valid examples:

1990-11-09T04:30:23.1234569Z
1990-11-09T04:30:23%
1990-11-09T04:30:23.123%
0001-01-01T00:00:00%Z
9999-12-31T23:59:59.99999972

The timestamp must be between the bounds specified by Daml-LF and I1SO 8601,
[0001-01-01T00:00:00Z, 9999-12-31T23:59:59.9999997].

JavaScript

> new Date () .toISOString()
'2019-06-18T08:59:34.19172"

Python

>>> datetime.datetime.utcnow () .isoformat() + 'Z'
'2019-06-18T08:59:08.3927647"'

Java

import java.time.Instant;
class Main {
public static void main(String[] args) {
Instant instant = Instant.now();
// prints 2019-06-18T09:02:16.6527
System.out.println(instant.toString());

2.2. Building Applications 281

Daml SDK Documentation, 2.1.1

Output

Timestamps are encoded as ISO 8601 strings, rendered using the format yyyy-mm-ddThh:mm:ss[.
ssssss]Z.

The sub-second part will be formatted as follows:

If no sub-second part is present in the timestamp (i.e. the timestamp represents whole sec-
onds), the sub-second part will be omitted entirely;

If the sub-second part does not go beyond milliseconds, the sub-second part will be up to mil-
liseconds, padding with trailing Os if necessary;

Otherwise, the sub-second part will be up to microseconds, padding with trailing Os if neces-
sary.

In other words, the encoded timestamp will either have no sub-second part, a sub-second part of
length 3, or a sub-second part of length 6.

Party

Represented using their string representation, without any additional quotes:

"Alice"
IIBObH

Unit

Represented as empty object { }. Note that in JavaScript {} !== {}; however, null would be am-
biguous; for the type Optional Unit,null decodes to None, but {} decodes to Some ().

Additionally, we think that this is the least confusing encoding for Unit since unit is conceptually
an empty record. We do not want to imply that Unit is used similarly to null in JavaScript or None in
Python.

Date

Represented as an ISO 8601 date rendered using the format yyyy-mm-dd:

2019-06-18
9999-12-31
0001-01-01

The dates must be between the bounds specified by Daml-LF and ISO 8601, [0001-01-01, 9999-12-31].

282 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Text

Represented as strings.

Bool

Represented as booleans.

Record

Input

Records can be represented in two ways. As objects:

{ £l v, ..., fl: vl }

And as arrays:

[v, ..., vl]

Note that Daml-LF record fields are ordered. So if we have

record Foo = {fl: Int64, f2: Bool}

when representing the record as an array the user must specify the fields in order:

[42, true]

The motivation for the array format for records is to allow specifying tuple types closer to what it
looks like in Daml. Note that a Daml tuple, i.e. (42, True), will be compiled to a Daml-LF record Tuple2

{ 1 =142, 2 = True }.

Output

Records are always encoded as objects.

List

Lists are represented as

(v, ..., vU]

2.2. Building Applications

283

Daml SDK Documentation, 2.1.1

TextMap

TextMaps are represented as objects:

{ kU: v, ..., kO: vl }

GenMap

GenMaps are represented as lists of pairs:

[[kd, vUl, [k&, vO]]

Order does not matter. However, any duplicate keys will cause the map to be treated as invalid.

Optional
Input

Optionals are encoded using null if the value is None, and with the value itself if it's Some. However,
this alone does not let us encode nested optionals unambiguously. Therefore, nested Optionals are
encoded using an empty list for None, and a list with one element for Some. Note that after the
top-level Optional, all the nested ones must be represented using the list notation.

A few examples, using the form

JSON --> Daml-LF Expected Daml-LF type

to make clear what the target Daml-LF type is:

null --> None Optional Int64

null --> None Optional (Optional Inté64)

42 --> Some 42 Optional Int64

[] --> Some None Optional (Optional Int64)

[42] --> Some (Some 42) Optional (Optional Int64)

[[1] --> Some (Some None) Optional (Optional (Optional Int64))
[[42]1] --> Some (Some (Some 42)) Optional (Optional (Optional Inté64))

Finally, if Optional values appear in records, they can be omitted to represent None. Given Daml-LF
types

record Depthl = { foo: Optional Int64 }
record Depth2 = { foo: Optional (Optional Int64) }
We have
{ } —--=> Depthl { foo: None } Depthl
{ } --> Depth2 { foo: None } Depth?
{ foo: 42 } --> Depthl { foo: Some 42 } Depthl
{ foo: [42] } --> Depth2 { foo: Some (Some 42) } Depth?2
{ foo: null } --> Depthl { foo: None } Depthl
(continues on next page)
284 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

-—>
-—>

Depth?
Depth?2

null }
(1}

Depth2 { foo: None }
Depth2 { foo: Some None }

{ foo:
{ foo:

Note that the shortcut for records and Optional fields does not apply to Map (which are also repre-
sented as objects), since Map relies on absence of key to determine what keys are present in the
Map to begin with. Nor does it apply to the [£[], ., f0] record form; Depthl None in the array
notation must be written as [null].

Type variables may appear in the Daml-LF language, but are always resolved before deciding on a
JSON encoding. So, for example, even though Oa doesn’t appear to contain a nested Optional, it
may contain a nested Optional by virtue of substituting the type variable a:

record Oa a = { foo: Optional a }

{ foo: 42 } --> Q0QOa { foo: Some 42 } Oa Int

{1} --> Oa { foo: None } Oa Int

{ foo: T[] } --> 0Oa { foo: Some None } Oa (Optional Int)
{ foo: [42] } --> Oa { foo: Some (Some 42) } Oa (Optional Int)

In otherwords, the correct JSON encoding for any LF value is the one you get when you have eliminated
all type variables.

Output

Encoded as described above, never applying the shortcut for None record fields; e.g. { foo: None

} will always encode as { foo: null }.

Variant

Variants are expressed as

{ tag: constructor, value: argument }

For example, if we have

Bar Int64 | Baz Unit | Quux (Optional Int64)

variant Foo

These are all valid JSON encodings for values of type Foo:

{"tag": "Bar", "value": 42}
{"tag": "Baz", "value": {}}
{"tag": "Quux", "value": null}
{"tag": "Quux", "value": 42}

Note that Daml data types with named fields are compiled by factoring out the record. So forexample
if we have

data Foo Bar {fl: Int64, f2: Bool} | Baz

we’ll get in Daml-LF

2.2. Building Applications 285

Daml SDK Documentation, 2.1.1

record Foo.Bar = {fl: Int64, f2: Bool}
variant Foo = Bar Foo.Bar | Baz Unit

and then, from JSON

{"tag": "Bar", "value": {"fl1": 42, "f2": true}}
{"tag": "Baz", "value": {}}

This can be encoded and used in TypeScript, including exhaustiveness checking; see a type refine-
ment example.

Enum

Enums are represented as strings. So if we have

enum Foo = Bar | Baz

There are exactly two valid JSON values for Foo, Bar and Baz .

2.2.3.2 Query language

The body of POST /v1/query looks like so:

{
"templateIds": [...template IDs...],
"query": {...query elements...}

The elements of that query are defined here.

Fallback rule

Unless otherwise required by one of the other rules below or to follow, values are interpreted accord-
ing to Daml-LF JSON Encoding, and compared for equality.

All types are supported by this simple equality comparison except:

lists
textmaps
genmaps

Simple equality

Match records having at least all the (potentially nested) keys expressed in the query. The result
record may contain additional properties.

Example: { person: { name: "Bob"™ }, city: "London" }

Match: { person: { name: "Bob", dob: "1956-06-21" }, city: "London",
createdAt: "2019-04-30T12:34:122" }
No match: { person: { name: "Bob"™ }, city: "Zurich" }

286 Chapter 2. Daml Guide

https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA
https://www.typescriptlang.org/play/#code/C4TwDgpgBAYg9nKBeAsAKCpqBvKwCGA5gFxQBEAQvgE5kA0UAbvgDYCuEpuAZgIykA7NgFsARhGoNuAJlKiELCPgFQAvmvSYAPjjxFSlfAC96TVhy5q1AbnTpubAQGNgASzgrgEAM7AAFIyk8HAAlDiaUN4A7q7ATgAWUAEAdASEYdgRmE743tCGtMRZWE4e3nCKySxwhCnM7BDJfAyMyfUcTdIhthhYmNQQwGzUAj19OXnkVCZFveNlFY3Vta3tEN3F-YPDo8UAJhDc+GwswLN92WXAUAD6ghCMEshMYxpoqkA

Daml SDK Documentation, 2.1.1

Typecheck failure: { person: { name: ["Bob", "Sue"] }, city: "London" }

A JSON object, when considered with a record type, is always interpreted as a field equality query. Its
type context is thus mutually exclusive with comparison queries.

Comparison query

Match values on comparison operators for int64, numeric, text, date, and time values. Instead of a
value, a key can be an object with one or more operators: { <op>: value } where <op> can be:

"$1t" forless than

"$gt" for greater than

"%1te" for less than or equal to
"$gte" for greater than or equal to

"$1t" and "$1lte" may not be used at the same time, and likewise with "$gt" and "%gte", but all
other combinations are allowed.

Example: { "person" { "dob": { "$1t": "2000-01-01", "%gte™: "1980-01-01" } }
}

Match: { person: { dob: "1986-06-21" } }
No match: { person: { dob: "1976-06-21" } }
No match: { person: { dob: "2006-06-21" } }

These operators cannot occur in objects interpreted in a record context, nor may other keys than
these four operators occur where they are legal, so there is no ambiguity with field equality.

Appendix: Type-aware queries

This section is non-normative.

Thisis not a JSON query language, itis a Daml-LF query language. So, while we could theoretically treat
queries (where not otherwise interpreted by the may contain additional properties rule above)
without concern for what LF type (i.e. template) we’re considering, we will not do so.

Consider the subquery {"foo": "bar"}. This query conforms to types, among an unbounded
number of others:

record A [J { foo : Text }
record B [I { foo : Optional Text }
variant C [J foo : Party | bar : Unit

// NB: LF does not require any particular case for VariantCon or Field;
// these are perfectly legal types in Daml-LF packages

In the cases of A and B, "foo" is part of the query language, and only "baxr" is treated as an LF
value; in the case of C, the whole query is treated as an LF value. The wide variety of ambiguous
interpretations about what elements are interpreted, and what elements treated as literal, and how
those elements are interpreted or compared, would preclude many techniques for efficient query
compilation and LF value representation that we might otherwise consider.

Additionally, it would be extremely easy to overlook unintended meanings of queries when writing
them, and impossible in many cases to suppress those unintended meanings within the query lan-
guage. For example, there is no way that the above query could be written to match A but never C.

2.2. Building Applications 287

Daml SDK Documentation, 2.1.1

For thesereasons, as with LF value input via JSON, queries written in JSON are also always interpreted
with respect to some specified LF types (e.g. template IDs). For example:

{
"templatelIds": ["Foo:A", "Foo:B", "Foo:C"],
"query": {"foo": ”barﬂ}

will treat "foo" as a field equality query for A and B, and (supposing templates’ associated data
types were permitted to be variants, which they are not, but for the sake of argument) as a whole
value equality query for C.

The above Typecheck failure happens because there is no LF type to which both "Bob" and
["Bob", "Sue"] conform; this would be caught when interpreting the query, before considering
any contracts.

Appendix: Known issues
When using Oracle, queries fail if a token is too large

This limitation is exclusive to users of the HTTP JSON APl using Daml| Enterprise support for Ora-
cle. Due to a known limitation in Oracle, the full-test JSON search index on the contract payloads
rejects query tokens larger than 256 bytes. This limitations shouldn’t impact most workloads, but
if this needs to be worked around, the HTTP JSON API server can be started passing the additional
disableContractPayloadIndexing=true (after wiping an existing query store database, if nec-
essary).

Issue on GitHub

2.2.3.3 Production Setup

The vast majority of the prior documentation focuses on ease of testing and running the service in
a dev environment. From a production perspective given the wide variety of use-cases there is far
less of an established framework for deploying the HTTP JSON API server. In this document we would
try to list some recommendations for production deployments.

The HTTP JSON API server is a JVM application that by default uses an in-memory backend. This
in-memory backend setup is inefficient for larger datasets as for every query it ends up fetching
the entire active contract set for the templates referenced in that query. For this reason for produc-
tion setups at a minimum we recommend to use a database as a query store, this will allow for more
efficient caching of the data to improve query performance. Details for enabling a query store are
highlighted below.

288 Chapter 2. Daml Guide

https://github.com/digital-asset/daml/issues/10780

Daml SDK Documentation, 2.1.1

Query store

Note: Daml Open Source only supports PostgreSQL backends for the HTTP JSON APl server, but Daml
Enterprise also supports Oracle backends.

The query store is a cached search index and is useful for use cases where the application needs to
query large active contract sets (ACS). The HTTPJSON API server can be configured with PostgreSQL/Or-
acle (Daml Enterprise only) as the query store backend.

The query store is built by saving the state of the ACS up to the current ledger offset. This allows the
HTTP JSON APl to only request the delta on subsequent queries, making it much faster than having to
request the entire ACS every time.

For example to enable the PostgreSQL backend you can add the query-store config block in your
application config file

query-store {
base-config {
user = "postgres"
password = "password"
driver = "org.postgresqgl.Driver"
url = "jdbc:postgresqgl://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default
table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.
min-idle = 4

//specifies the idle timeout for the database connection pool.
idle-timeout = 12s

//specifies the connection timeout for database connection pool.
connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and'l
—create—-and-start

start-mode = "start-only"

You can also use the -—-query-store-jdbc-config CLI flag (deprecated), as shown below.

daml json-api --ledger-host localhost --ledger-port 6865 —--http-port 7575 \
--query-store-jdbc-config "driver=org.postgresql.Driver,url=jdbc:postgresqgl://
—localhost:5432/test?&ssl=true,user=postgres, password=password, start-mode=start-
qonly"

Consultyour database vendor's JDBC driver documentation to learn how to specify a JDBC connection
string that suits your needs.

The start-mode is a custom parameter defined by the query store configuration itself which allows
to deal with the initialization and usage of the database which backs the query store.

Depending on how you prefer to operate it, you can either choose to:

2.2. Building Applications 289

Daml SDK Documentation, 2.1.1

run the HTTP JSON AP| server with start-mode=create-only and a user that has exclusive
rights to creating the tables needed for the query store to operate and then start it again
with start-mode=start-only with a user that can use those tables but not apply schema
changes, or

run the HTTP JSON API server with a user that can both create and use the query store tables by
passing start-mode=create-and-start

When restarting the HTTPJSON API server after the schema has been already created, it’s safe to always
use start-mode=start-only.

Note: The full list of query store configuration flags supported can be seen by running daml
json-api —--help.

Data continuity

The query store is a cache, which means that it’s perfectly fine to drop it as the data it contains it’s
a subset of what can be safely recovered from the ledger.

As such, the query store does not provide data continuity guarantees across versions and further-
more doesn’t guarantee that a query store initialized with a previous version of the HTTP JSON AP! will
be able to work with a newer version.

However, the HTTP JSON APl is able to tolerate working with query stores initialized by a previous ver-
sion of the software as long as the underlying schema did not change.

The query store keeps track of the schema version under which it was initialized and refuses to start
if a new schema is detected when running with a newer version.

To evolve, the operator of the HTTP JSON APl query store needs to drop the database used to hold
the HTTP JSON API query store and create a new one (consult your database vendor’s documenta-
tion as to how this ought to be done) and then proceed to create and start the server using either
start-mode=create-onlyand start-mode=start-onlyorstart-mode=create-and-start
as described above, depending on your preferred production setup.

Security and privacy

For an HTTP JSON API server, all data is maintained by the operator of the deployment. Thus, it is
their responsibility to ensure that the data abides by the necessary regulations and confidentiality
expectations.

It is recommended to use the tools documented by PostgreSQL to protect data at rest and using a
secure communication channel between the HTTP JSON API server and the PostgreSQL server.

To protect data in transit and over untrusted networks, the HTTPJSON APl server provides TLS support,
toenable TLS you need to specify the private key for your server and the certificate chain via the below
config block specifyingthe cert-chain-file,private-key-file,youcan alsosetacustom root
CA certificate used to validate client certificates via trust-collection-file parameter.

ledger-api {
address = "127.0.0.1"
port = 6400

(continues on next page)

290 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

tls {
enabled = "true"
// the certificate to be used by the server
cert-chain-file = "cert-chain.crt"
// private key of the server
private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will be
—verified using the trusted

// certificates in this store. if omitted, the JVM default trust store isl]
—used.

trust-collection-file = "root-ca.crt"

}

Using the cli options (deprecated), you can specify tls options using daml json-api -pem server.pem
-crt server.crt . Custom root CA certificate can be set via -—cacrt ca.crt

For more details on secure Daml infrastructure setup please refer to this reference implementation

Architecture
Components

A production setup of the HTTP JSON APl will involve the following components:

the HTTP JSON API server
the query store backend database server
the ledger

HTTP JSON APl server exposes an API to interact with the Ledger and it uses JDBC to interact with its
underlying query store for caching and serving data efficiently.

The HTTP JSON API server releases are regularly tested with OpenJDK 11 on a x86_64 architecture, with
Ubuntu 20.04, macOS 11.5.2 and Windows Server 2016.

In production, we recommend running on a x86_64 architecture in a Linux environment. This envi-
ronment should have a Java SE Runtime Environment such as OpenJDK JRE and must be compatible
with OpenJDK version 11.0.11 or later. We recommend using PostgreSQL server as query-store, most of
our tests have been done with servers running version > 10.

Scaling and Redundancy

Note: This section of the document only talks about scaling and redundancy setup for the HTTP
JSON APl server. In all of the recommendations suggested below we assume that the JSON APl always
interacts with a single participant on the ledger.

We advise that the HTTP JSON API server and query store components to have dedicated computation
and memory resources available to them. This can be achieved via containerization or setting them
up on independent physical servers. Ensure that the two components are physically co-located to

2.2. Building Applications 291

https://github.com/digital-asset/ex-secure-daml-infra

Daml SDK Documentation, 2.1.1

reduce network latency for communication. The scaling and availability aspects heavily rely on the
interactions between the core components listed above.

With respect to scaling we recommend to follow the general advice in trying to understand the bot-
tlenecks and see if adding additional processing power/memory is beneficial.

The HTTP JSON APl can be scaled independently of its query store. You can have any number of HTTP
JSON APl instances talking to the same query store (if, for example, your monitoring indicates that
the HTTP JSON API processing time is the bottleneck), or have each HTTP JSON APl instance talk to its
own independent query store (if the database response times are the bottleneck).

In the latter case, the Daml privacy model ensures that the HTTP JSON APl requests are made using
the user-provided token, thus the data stored in a given query store will be specific to the set of
parties that have made queries through that specific query store instance (for a given template).
Therefore, if you do run with separate query stores, it may be useful to route queries (using a reverse
proxy server) based on requesting party (and possibly queried template), which would minimize the
amount of data in each query store as well as the overall redundancy of said data.

Users may consider running PostgreSQL backend in a high availability configuration. The benefits
of this are use-case dependent as this may be more expensive for smaller active contract datasets,
where re-initializing the cache is cheap and fast.

Finally we recommend using orchestration systems or load balancers which monitor the health of
the service and perform subsequent operations to ensure availability. These systems can use the
healthcheck endpoints provided by the HTTPJSON API server. This can also be tied into supporting ar-
bitrary autoscaling implementation to ensure minimum number of HTTP JSON API servers on failures.

Set up the HTTP JSON API Service to work with Highly Available Participants

In case the participant node itself is configured to be highly available, depending on the setup you
might want to choose different approaches to connect to the participant nodes. In most setups,
including those based on Canton, you’ll likely have an active participant node whose role can be
taken over by a passive node in case the currently active one drops. Just as for the HTTPJSON APl itself,
you can use orchestration systems or load balancers to monitor the status of the participant nodes
and have those point your (possibly highly available) HTTP JSON API nodes to the active participant
node.

To learn how Canton can be run with high availability and how to monitor it refer to the Canton docu-
mentation.

Logging

HTTP JSON API server uses the industry-standard Logback for logging. You can read more about that
in the Logback documentation.

The logging infrastructure leverages structured logging as implemented by the Logstash Logbhack
Encoder.

Logged events should carry information about the request being served by the HTTP JSON API server.
This includes the details of the commands being submitted, the endpoints being hit and response
received highlighting details of failures if any. When using a traditional logging target (e.g. standard
output or rotating files) this information will be part of the log description. Using a logging target

292 Chapter 2. Daml Guide

https://www.postgresql.org/docs/current/high-availability.html
https://docs.daml.com/json-api/index.html#healthcheck-endpoints
http://logback.qos.ch/
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md
https://github.com/logstash/logstash-logback-encoder/blob/logstash-logback-encoder-6.3/README.md

Daml SDK Documentation, 2.1.1

compatible with the Logstash Logback Encoder allows to have rich logs with structured information
about the event being logged.

The default log encoder used is the plaintext one for traditional logging targets.

Metrics
Enable and configure reporting

To enable metrics and configure reporting, you can use the below config block in application config

metrics {
//Start a metrics reporter. Must be one of "console", "csv:///PATH", "graphite:/
«+/HOST [:PORT] [/METRIC_ PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"
//Set metric reporting interval , examples : 1s, 30s, 1m, 1h
reporting-interval = 30s

}

or the two following CLI options (deprecated):

--metrics-reporter: passing alegal value will enable reporting; the accepted values are as
follows:

- console: prints captured metrics on the standard output

- csv://</path/to/metrics.csv>: saves the captured metrics in CSV format at the
specified location

- graphite://<server host>[:<server port>]: sends captured metrics to a
Graphite server. If the port is omitted, the default value 2003 will be used.

- prometheus://<server host>[:<server port>]: renders captured metrics on a
http endpoint in accordance with the prometheus protocol. If the port is omitted, the de-
fault value 55001 will be used. The metrics will be available under the address http://
<server host>:<server port>/metrics.

--metrics-reporting-interval: metrics are pre-aggregated on the HTTPJSON APl and sent
to the reporter, this option allows the user to set the interval. The formats accepted are based
on the ISO 8601 duration format PnDTnHnMn .nS with days considered to be exactly 24 hours.
The default interval is 10 seconds.

2.2. Building Applications 293

Daml SDK Documentation, 2.1.1

Types of metrics

This is a list of type of metrics with all data points recorded for each. Use this as a reference when
reading the list of metrics.

Counter

Number of occurrences of some event.

Meter

A meter tracks the number of times a given event occurred (throughput). The following data points
are kept and reported by any meter.

<metric.qualified.name>.count: number of registered data points overall
<metric.qualified.name>.ml rate: number of registered data points per minute
<metric.qualified.name>.m5 rate: number of registered data points every 5 minutes
<metric.qualified.name>.ml5 rate: number of registered data points every 15 minutes
<metric.qualified.name>.mean rate: mean number of registered data points

Timers

A timer records all metrics registered by a meter and by a histogram, where the histogram records
the time necessary to execute a given operation (in fractional milliseconds).

List of metrics

The following is a list of selected metrics that can be particularly important to track.

daml.http json api.command submission timing

A timer. Measures latency (in milliseconds) for processing of a command submission request.

daml.http json api.query all timing

A timer. Measures latency (in milliseconds) for processing of a query GET request.

294 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

daml.http json api.query matching timing

A timer. Measures latency (in milliseconds) for processing of a query POST request.

daml.http json api.fetch timing

A timer. Measures latency (in milliseconds) for processing of a fetch request.

daml.http json api.get party timing

A timer. Measures latency (in milliseconds) for processing of a get party/parties request.

daml.http json api.allocate party timing

A timer. Measures latency (in milliseconds) for processing of a party management request.

daml.http json api.download package timing

A timer. Measures latency (in milliseconds) for processing of a package download request.

daml.http json api.upload package timing

A timer. Measures latency (in milliseconds) for processing of a package upload request.

daml.http json api.incoming json parsing and validation timing

A timer. Measures latency (in milliseconds) for parsing and decoding of an incoming json payload

daml.http json api.response creation timing

A timer. Measures latency (in milliseconds) for construction of the response json payload.

daml.http json api.db find by contract key timing

A timer. Measures latency (in milliseconds) of the find by contract key database operation.

2.2. Building Applications

295

Daml SDK Documentation, 2.1.1

daml.http json api.db find by contract id timing

A timer. Measures latency (in milliseconds) of the find by contract id database operation.

daml.http json api.command submission ledger timing

A timer. Measures latency (in milliseconds) for processing the command submission requests on
the ledger.

daml.http json api.http request throughput

A meter. Number of http requests

daml.http json api.websocket request count

A Counter. Count of active websocket connections

daml.http json api.command submission throughput

A meter. Number of command submissions

daml.http json api.upload packages throughput

A meter. Number of package uploads

daml.http json api.allocation party throughput
A meter. Number of party allocations

2.2.3.4 Running the JSON API

Start a Daml Ledger

You can run the JSON API alongside any ledger exposing the gRPC Ledger APl you want. If you don’t
have an existing ledger, you can start an in-memory sandbox:

daml new my-project --template quickstart-java

cd my-project

daml build

daml sandbox --wall-clock-time --ledgerid MyLedger --dar ./.daml/dist/quickstart-
—~0.0.1.dar

296 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Start the HTTP JSON API Service

Basic

The most basic way to start the JSON APl is with the command:

daml json-api --config json-api-app.conf

where a corresponding minimal config file is

{

server {
address = "localhost"
port = 7575

}

ledger-api {
address = "localhost"
port = 6865

}

This will start the JSON APl on port 7575 and connect it to a ledger running on localhost:6865.

Note: Your JSON API service should never be exposed to the internet. When running in production
the JSON API should be behind a reverse proxy, such as via NGINX.

The full set of configurable options that can be specified via config file is listed below

{

server {
//IP address that HTTP JSON API service listens on. Defaults to 127.0.0.1.
address = "127.0.0.1"

//HTTP JSON API service port number. A port number of 0 will let the systeml|
—pick an ephemeral port.
port = 7575

}
ledger-api {

address = "127.0.0.1"

port = 6865

tls |
enabled = "true"
// the certificate to be used by the server
cert-chain-file = "cert-chain.crt"
// private key of the server
private-key-file = "pvt-key.pem"

// trust collection, which means that all client certificates will bel]

—verified using the trusted
// certificates in this store. if omitted, the JVM default trust store is

—used.
trust-collection-file = "root-ca.crt"

query-store {

(continues on next page)

2.2. Building Applications 297

https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/

Daml SDK Documentation, 2.1.1

(continued from previous page)

base-config {
user = "postgres"
password = "password"
driver = "org.postgresqgl.Driver"
url = "Jjdbc:postgresqgl://localhost:5432/test?&ssl=true"

// prefix for table names to avoid collisions, empty by default
table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12

//specifies the min idle connections for database connection pool.
min-idle = 4

//specifies the idle timeout for the database connection pool.
idle-timeout = 12s

//specifies the connection timeout for database connection pool.
connection-timeout = 90s

}

// option setting how the schema should be handled.

// Valid options are start-only, create-only, create-if-needed-and-start and]
—create—-and-start

start-mode = "start-only"

// Optional interval to poll for package updates. Examples: 500ms, 5s, 10min,![]
—~1h, 1d. Defaults to 5 seconds

package-reload-interval = 5s
//Optional max inbound message size in bytes. Defaults to 4194304.
max-inbound-message-size = 4194304

//Optional max inbound message size in bytes used for uploading and downloading
—package updates. Defaults to the "max-inbound-message-size setting.

package-max-inbound-message-size = 4194304

//Optional max cache size in entries for storing surrogate template id mappings.
— Defaults to None

max-template-id-cache-entries = 1000
//health check timeout in seconds
health-timeout-seconds = 5

//Optional websocket configuration parameters
websocket-config {
//Maximum websocket session duration
max-duration = 120m
//Server-side heartbeat interval duration
heartbeat-period = 5s
//akka stream throttle-mode one of either “shaping’ or ‘enforcing’
mode = "shaping"

metrics {
//Start a metrics reporter. Must be one of "console", "csv:///PATH",
—"graphite://HOST[:PORT] [/METRIC PREFIX]", or "prometheus://HOST[:PORT]".

reporter = "console"
//Set metric reporting interval , examples : 1ls, 30s, 1m, 1h
reporting-interval = 30s

(continues on next page)

298 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

}

// DEV MODE ONLY (not recommended for production)
// Allow connections without a reverse proxy providing HTTPS.
allow-insecure-tokens = false
// Optional static content configuration string. Contains comma-separated key-
—value pairs, where:
// prefix -- URL prefix,
// directory -- local directory that will be mapped to the URL prefix.
// Example: "prefix=static,directory=./static-content"
static-content {
prefix = "static"
directory = "static-content-dir"

Note: You can also start JSON APl using CLI args (example below) however this is now deprecated

daml json-api --ledger-host localhost --ledger-port 6865 --http-port 7575

Standalone JAR

The daml json-api command is great during development since it is included with the SDK and
integrates with daml start and other commands. Once you are ready to deploy your application,
you can download the standalone JAR from Github releases. It is much smaller than the whole SDK
and easier to deploy since it only requires a JVM but no other dependencies and no installation pro-
cess. The JAR accepts exactly the same command line parameters as daml json-api, so to start
the standalone JAR, you can use the following command:

java -jar http-json-2.0.0.jar --config json-api-app.conf

Replace the version number 2. 0.0 by the version of the SDK you are using.

With Query Store

In production setups, you should configure the JSON API to use a PostgreSQL backend as a cache.
The in-memory backend will call the ledger to fetch the entire active contract set for the templates
in your query every time so it is generally not recommended to rely on this in production. Note that
the PostgreSQL backend acts purely as a cache. It is safe to reinitialize the database at any time.

To enable the PostgreSQL backend you can add the query-store config block in your application
config file

query-store {
base-config {
user = "postgres"
password = "password"
driver = "org.postgresgl.Driver"
url = "jdbc:postgresqgl://localhost:5432/test?&ssl=true"

(continues on next page)

2.2. Building Applications 299

https://github.com/digital-asset/daml/releases

Daml SDK Documentation, 2.1.1

(continued from previous page)

// prefix for table names to avoid collisions, empty by default
table-prefix = "foo"

// max pool size for the database connection pool

pool-size = 12
//specifies the min idle connections for database connection pool.
min-idle = 4

//specifies the idle timeout for the database connection pool.
idle-timeout = 12s
//specifies the connection timeout for database connection pool.
connection-timeout = 90s
}
// option setting how the schema should be handled.
// Valid options are start-only, create-only, create-if-needed-and-start and'|
—create-and-start
start-mode = "create-if-needed-and-start"

Note: Whenyou usethe Query Storeyou’llwanttouse start-mode=create-if-needed-and-start
so that all the necessary tables are created if they don’t exist.

you can also use the -—query-store-jdbc-config CLI flag (deprecated), an example of which is
below.

daml json-api —--ledger-host localhost --ledger-port 6865 --http-port 7575 \
--query-store-jdbc-config "driver=org.postgresql.Driver,url=jdbc:postgresqgl://
—localhost:5432/test?&ssl=true,user=postgres, password=password, start-mode=create-
—if-needed-and-start”

Note: The JSON API provides many other useful configuration flags, run daml json-api --help
to see all of them.

Access Tokens

Each request to the HTTP JSON API Service must come with an access token, regardless of whether
the underlying ledger requires it or not. This also includes development setups using an unsecured
sandbox. The HTTP JSON API Service does not hold on to the access token, which will be only used to
fulfill the request it came along with. The same token will be used to issue the request to the Ledger
API.

The HTTP JSON API Service does not validate the token but may need to decode it to extract informa-
tion that can be used to fill in request fields for party-specific request. How this happens depends
partially on the token format you are using.

300 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

Party-specific Requests

Party-specific requests, i.e, command submissions and queries, are subject to additional restric-
tions. For command submissions the token must provide a proof that the bearer can act on behalf
of at least one party (and possibly read on behalf of any number of parties). For queries the token
must provide a proof that the bearer can either act and/or read of at least one party. This happens
regardless of the used access token format. The following paragraphs provide guidance as to how
different token formats are used by the HTTP JSON API in this regard.

Using User Tokens

If the underlying ledger supports user management (this includes Canton and the sandbox), you are
recommended to use user tokens. For command submissions, the user of the bearer should have
actAs rights for at least one party and readAs rights for any number of parties. Queries require the
bearer’s user to have at least one actAs or readAs user right. The application id of the Ledger API
request will be the user id.

Using Claim Tokens

These tokens can be used if the underlying ledger does not support user management. For command
submissions, actAs must contain at least one party and readAs can contain any number of parties.
Queries require at least one party in either actAs or readAs. The application id is mandatory.

Note: While the JSON API receives the token it doesn’t validate it itself. Upon receiving a token it
will pass it, and all data contained within the request, on to the Ledger API’s AuthService which will
then determine if the token is valid and authorized. However, the JSON APl does decode the token
to extract the ledger id, application id and party so it requires that you use a valid Dam/| ledger access
token format.

For a ledger without authorization, e.g., the default configuration of Daml Sandbox, you can use
https://jwt.io (or the JWT library of your choice) to generate your token. You can use an arbitrary
secret here. The default header isfine. Under Payload ,fill in:

{
"https://daml.com/ledger-api": {
"ledgerId": "MyLedger'",
"applicationId": "foobar",
"actAs": ["Alice"]

The value of the 1edgerId field has to match the 1ledgerId of your underlying Daml Ledger. For the
Sandbox this corresponds to the --ledgerid MyLedger flag.

Note: The value of applicationId will be used for commands submitted using that token.

The value for actAs is specified as a list and you provide it with the party that you want to use, such
as in the example above which uses Alice for a party. actAs may include more than just one party

2.2. Building Applications 301

https://jwt.io/#debugger-io?token=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJodHRwczovL2RhbWwuY29tL2xlZGdlci1hcGkiOnsibGVkZ2VySWQiOiJNeUxlZGdlciIsImFwcGxpY2F0aW9uSWQiOiJmb29iYXIiLCJhY3RBcyI6WyJBbGljZSJdfX0.atGiYNc9HfBFbm8s9j5vvMv2sJUlVprFiRmLeoUpJeY

Daml SDK Documentation, 2.1.1

as the JSON API supports multi-party submissions.

The party should reference an already allocated party.

Note: As mentioned above the JSON API does not validate tokens so if your ledger runs without
authorization you can use an arbitrary secret.

Thenthe Encoded box should have your token, ready for passing to the service as described in the
following sections.

Alternatively, here are two tokens you can use for testing:

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":
"HTTP-JSON-API-Gateway", "actAs": ["Alice"]}}:

eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJII9.
—eyJodHRwczovL2RhbWwuY29tL2x12GdlcilhcGkiOnsibGVkZ2VySWQi1i01INeUx1ZGdlciIsImFweGxpY
—34zzF fbWv7p60r5slkKzwndvGdsJIDX-W4Xhm4oVdpk

PFO0awsus

{"https://daml.com/ledger-api": {"ledgerId": "MyLedger", "applicationId":
"HTTP-JSON-API-Gateway", "actAs": ["Bob"]}}:

eyJhbGci0iJIUzIINiIsInR5cCI6IkpXVCJII9.
—eyJodHRwczovL2RhbWwuY29tL2x1Z2GdlcilhcGkiOnsibGVkZ2VySWQi101INeUx1ZGdlciIsImFwcGxpY
—0uPPZtM1AmMKvNnGixt Qo53cMDcpnziCiKKiWLVvMX2VM

PF0aWous

Auth via HTTP

Set HTTP header Authorization: Bearer paste-jwt-here

Example:

Authorization: Bearer eyJhbGciOiJIUzI1INiIsInR5cCI6IkpXVCJ9.
—eyJodHRwczovL2RhbWwuY29tL2x1Z2Gd1lcilhcGkiOnsibGVkZ2VySWQi0iINeUx1Z2GdlciIsImFweGxpY
—34zzF fbWv7p60r5s1kKzwndvGdsJDX-W4Xhm4oVdpk

PEOaW9us

Auth via WebSockets

WebSocket clients supporta subprotocols argument (sometimes simply called protocols); this
is usually in a list form but occasionally in comma-separated form. Check documentation for your
WebSocket library of choice for details.

For HTTP JSON requests, you must pass two subprotocols:

daml.ws.auth
jwt.token.paste-jwt-here

Example:

jwt.token.eyJhbGciOiJIUzIINiIsInR5cCI6IkpXVCJ9.
—eyJodHRwczovL2RhbWwuY29tL2x1Z2GdlcilhcGkiOnsibGVkZ2VySWQi101INeUx1ZGdlciIsImFwcGxpY
—34zzF fbWv7p60r5slkKzwndvGdsJIDX-W4Xhm4oVdpk

PF0awWous

302 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.5 HTTP Status Codes

The JSON API reports errors using standard HTTP status codes. It divides HTTP status codes into 3
groups indicating:

1. success (200)
2. failure due to a client-side problem (400, 401, 403, 404, 409, 429)
3. failure due to a server-side problem (500, 503)

The JSON API can return one of the following HTTP status codes:

200-0K

400 - Bad Request (Client Error)

401 - Unauthorized, authentication required

403 - Forbidden, insufficient permissions

404 - Not Found

409 - Conflict, contract ID or key missing or duplicated

500 - Internal Server Error

503 - Service Unavailable, ledger server is not running yet or has been shut down

504 - Gateway Timeout, transaction failed to receive its completion within the predefined time-
out

When the Ledger APl returns an error code, the JSON APl maps it to one of the above codes according
to the official gRPC to HTTP code mapping.

If a client’s HTTP GET or POST request reaches an APl endpoint, the corresponding response will al-
ways contain a JSON object with a status field, either an errors or result field and an optional
warnings:

{
"status": <400 | 401 | 403 | 404 | 409 | 500 | 503 | 504>,
"errors": <JSON array of strings>, | "result": <JSON object or array>,
["warnings": <JSON object>]

Where:

status - a JSON number which matches the HTTP response status code returned in the HTTP
header,

errors - a JSON array of strings, each string represents one error,

result - a JSON object or JSON array, representing one or many results,

warnings - an optional field with a JSON object, representing one or many warnings.

See the following blog post for more details about error handling best practices: REST API Error Codes
101.

2.2. Building Applications 303

https://cloud.google.com/apis/design/errors#generating_errors
https://blog.restcase.com/rest-api-error-codes-101/
https://blog.restcase.com/rest-api-error-codes-101/

Daml SDK Documentation, 2.1.1

Successful response, HTTP status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>

Successful response with a warning, HTTP status: 200 OK

Content-Type: application/json
Content:

"status": 200,
"result": <JSON object>,
"warnings": <JSON object>

Failure, HTTP status: 400 | 401 | 404 | 500

Content-Type: application/json
Content:

"status": <400 | 401 | 404 | 500>,
"errors": <JSON array of strings>

Examples

Result with JSON Object without Warnings:

{"status": 200, "result": {...}}

Result with JSON Array and Warnings:

{"status": 200, "result": [...], "warnings": {"unknownTemplateIds": [
—"UnknownModule:UnknownEntity"]}}

Bad Request Error:

{"status": 400, "errors": ["JSON parser error: Unexpected character 'f' at inputl]
—index 27 (line 1, position 28)"]1}

Bad Request Error with Warnings:

304 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{"status":400, "errors":["Cannot resolve any template ID from request"], "warnings
—": {"unknownTemplateIds": ["XXX:YYY","AAA:BBB"]}}

Authentication Error:

{"status": 401, "errors": ["Authentication Required"]}

Not Found Error:

{"status": 404, "errors": ["HttpMethod(POST), uri: http://localhost:7575/vl/queryl

(_}H] }

Internal Server Error:

{"status": 500, "errors": ["Cannot initialize Ledger API"]}

2.2.3.6 Create a new Contract

To create an Iou contract from the Quickstart guide:

template Iou
with
issuer : Party
owner : Party
currency : Text
amount : Decimal
observers : [Party]

HTTP Request

URL: /v1l/create
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Iou:Iou'",
"payload": {
"issuer": "Alice",
"owner": "Alice",
"currency": "USD",
"amount": "999.99",
"observers": []
}
}
Where:

templateId is the contract template identifier, which can be formatted as either:
- "<package ID>:<module>:<entity>" or
- "<module>:<entity>"ifcontracttemplate can beuniquelyidentified by its module and
entity name.

2.2. Building Applications 305

Daml SDK Documentation, 2.1.1

payload field contains contract fields as defined in the Daml template and formatted accord-
ing to Daml-LF JSON Encoding.

HTTP Response

Content-Type: application/json
Content:

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"signatories": |
"Alice"

1y
"contractId": "#124:0",
"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9%9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"
}

Where:

status field matches the HTTP response status code returned in the HTTP header,
result field contains created contract details. Keep in mind that templateId in the JSON
APl response is always fully qualified (always contains package ID).

2.2.3.7 Creating a Contract with a Command ID

When creating a new contract you may specify an optional meta field. This allows you to control
the commandId, actAs, and readAs used when submitting a command to the ledger. Each of these
meta fields is optional.

Note: You cannot currently use commandIds anywhere else in the JSON API, but you can use it for
observing the results of its commands outside the JSON APl in logs or via the Ledger API’'s Command
Services

"templateId": "Iou:Iou'",

"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",

(continues on next page)

306 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"currency": "USD",
"owner": "Alice"
}I
"meta": {
"commandId": "a unique ID",
"actAs": ["Alice"],
"readAs": ["PublicParty"]
}
}
Where:

commandId - optional field, a unique string identifying the command.

2.2.3.8 Exercise by Contract ID

The JSON command below, demonstrates how to exercise an Tou Transfer choice on an Ioucon-
tract:

choice Iou Transfer : ContractId IouTransfer
with
newOwner : Party
controller owner
do create IouTransfer with iou = this; newOwner

HTTP Request

URL: /vl /exercise
Method: POST
Content-Type: application/json

Content:

{
"templateId": "Iou:Iou'",
"contractId": "#124:0",
"choice": "Iou Transfer",
"argument": {

"newOwner": "Alice"

}

}

Where:

templateId - contract template or interface identifier, same as in create request,
contractId - contract identifier, the value from the create response,

choice - Daml contract choice, that is being exercised,

argument - contract choice argument(s).

2.2. Building Applications 307

Daml SDK Documentation, 2.1.1

HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {

"exerciseResult": "#201:1",
"events": |
{
"archived": {
"contractId": "#124:0",
"templateId":

—"11c8f3ace75868d28136adcbcfclde?265a9ee5ad73fe8f2db97510e3631096a2:Iou:Iou"
}
}I
{
"created": {

"observers": [],
"agreementText": "",
"payload": {
"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
}I
"newOwner": "Alice"
by
"signatories": [
"Alice"

1y

"contractId": "#201:1",

"templateId":
—"11c8f3ace75868d28136adc5cfclde265a9ee5ad73fe8f2db97510e3631096a2:Iou:IouTransfer

"
—

Where:

status field matches the HTTP response status code returned in the HTTP header,
result field contains contract choice execution details:
- exerciseResult field contains the return value of the exercised contract choice,
- eventscontains an array of contracts that were archived and created as part of the choice

execution. The array may contain: zero or many {"archived": {...}} and zero or
many {"created": {...}} elements. The order of the contracts is the same as on the
ledger.

308 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.9 Exercise by Contract Key

The JSON command below, demonstrates how to exercise the Archive choice on the Account con-
tractwitha (Party, Text) contract key defined like this:

template Account with
owner : Party
number : Text
status : AccountStatus

where
signatory owner
key (owner, number) : (Party, Text)

maintainer key. 1

HTTP Request

URL: /vl/exercise
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Account:Account",
"key": {
" 1": "Alice",
"_2": "abcl23"
} r
"choice": "Archive",
"argument": {}
}
Where:

templateId - contract template identifier, same as in create request,

key - contract key, formatted according to the Daml-LF JSON Encoding,

choice - Daml contract choice, that is being exercised,

argument - contract choice argument(s), empty, because Archive does not take any.

2.2. Building Applications 309

Daml SDK Documentation, 2.1.1

HTTP Response

Formatted similar to Exercise by Contract ID response.

2.2.3.10 Create and Exercise in the Same Transaction

This command allows creating a contract and exercising a choice on the newly created contract in
the same transaction.

HTTP Request

URL: /vl/create-and-exercise
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Iou:Iou'",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 14
"choice": "Iou Transfer",
"argument": {
"newOwner": "Bob"
}
}
Where:

templateId - the initial contract template identifier, in the same format as in the create re-
quest,

payload - theinitial contract fields as defined in the Daml template and formatted according
to Daml-LF JSON Encoding,

choice - Daml contract choice, that is being exercised,

argument - contract choice argument(s).

HTTP Response

Please note that the response below is for a consuming choice, so it contains:

createdand archived events for the initial contract ("contractId": "#1:0"),whichwas
created and archived right away when a consuming choice was exercised on it,

a created event for the contract that is the result of exercising the choice ("contractId":
"#1:2m).

Content-Type: application/json

Content:

310

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

{

"result": {
"exerciseResult": "#1:2",
"events": [

{
"created": {
"observers": [],
"agreementText": "",
"payload": ({
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"signatories": |
"Alice"

1,

"contractId": "#1:0",

"templateId":

—"a3b788b4dcl18dc060bfb82366ae6dc055ble361d646d5cfdblb729607e344336:Iou:Iou"

}

by
{

"archived": {
"contractId": "#1:0",
"templateId":

—"a3b788b4dc18dc060bfb82366ae6dc055b1e361d646d5cfdblb729607e344336:Iou:Iou"

}

}I
{

"created": ({
"observers": |

"Bob"

1,
"agreementText": "",
"payload": {

"iou": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}I

"newOwner": "Bob"

}I
"signatories": |
"Alice"
]I
"contractId": "#1:2",
"templateId":
—"a3b788b4dcl18dc060bfb82366ae6dc055b1e361d646d5cfdblb729607e344336:Iou:IouTransfer

—

(continues on next page)

2.2. Building Applications 3N

Daml SDK Documentation, 2.1.1

(continued from previous page)

y
"status": 200

2.2.3.11 Fetch Contract by Contract ID

HTTP Request

URL: /v1/fetch

Method: POST

Content-Type: application/json
Content:

application/json body:

{
"contractId": "#201:1"

}

readers may be passed as with Query.

Contract Not Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": null

Contract Found HTTP Response

Content-Type: application/json
Content:

"status": 200,

"result": {

"observers": [],

"agreementText": "",

"payload": {

"iou": {

"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"

}y

(continues on next page)

312

Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"newOwner": "Alice"
}I
"signatories": [
"Alice"
1y
"contractId": "#201:1",
"templateId":

—"11c8f3ace’75868d28136adcbcfclde265a9%9ee5ad73£e8£2db97510e3631096a2:Iou:IouTransfer

"

2.2.3.12 Fetch Contract by Key

Show the currently active contract that matches a given key.

The websocket endpoint /vi/stream/fetch can be used to search multiple keys in the same request, or
in place of iteratively invoking this endpoint to respond to changes on the ledger.

HTTP Request

URL: /v1/fetch
Method: POST
Content-Type: application/json

Content:
{
"templateId": "Account:Account",
"key" H {
"—1" : "Alice",
"_2": "abcl23"

readers may be passed as with Query.

Contract Not Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": null

2.2. Building Applications 313

Daml SDK Documentation, 2.1.1

Contract Found HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": {

"observers": [],
"agreementText": ""
"payload": {
"owner": "Alice",
"number": "abcl23",
"status": {
"tag": "Enabled",
"value": "2020-01-01T00:00:012Z"
}
}I
"signatories": [
"Alice"
1,
"key": {
" 1": "Alice",
"_2": "abcl23"

b

"contractId": "#697:0",

"templateId":
—"11c8f3ace75868d28136adcbcfclde265a9ee5ad73£fe8f2db97510e3631096a2:Account:Account

”
—

2.2.3.13 Get all Active Contracts

List all currently active contracts for all known templates.

Note: Retrieved contracts do not get persisted into a query store database. Query store is a search
index and can be used to optimize search latency. See Start HTTP service for information on how to
start JSON API service with a query store enabled.

Note: You canonly query active contracts with the /v1/query endpoint. Archived contracts (those
that were archived or consumed during an exercise operation) will not be shown in the results.

314 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Request

URL: /v1l/query
Method: GET
Content: <EMPTY>

HTTP Response

The response is the same as for the POST method below.

2.2.3.14 Get all Active Contracts Matching a Given Query

List currently active contracts that match a given query.

The websocket endpoint /vi/stream/query can be used in place of iteratively invoking this endpoint
to respond to changes on the ledger.

HTTP Request

URL: /v1/query
Method: POST
Content-Type: application/json

Content:

{
"templateIds": ["Iou:Iou"],
"query": {"amount": 999.99},
"readers": ["Alice"]

}

Where:

templateIds - an array of contract template identifiers to search through,

query - search criteria to apply to the specified templateIds, formatted according to the
Query language.

readers - optional non-empty list of parties to query as; must be a subset of the actAs/readAs
parties in the JWT

Empty HTTP Response

Content-Type: application/json
Content:

"status": 200,
"result": []

2.2. Building Applications 315

Daml SDK Documentation, 2.1.1

Nonempty HTTP Response

Content-Type: application/json

Content:
{
"result": [
{
"observers": [],
"agreementText": "",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 14
"signatories": |
"Alice"

]I
"contractId": "#52:0",
"templateId":
—"p10d22d6c2f2faedl1b353315cf£893ed66996ecblabed424ea6a81576918f658a:Iou:Iou"
}
]I
"status": 200

Where

result contains an array of contracts, each contract formatted according to DamI-LF JSON En-
coding,
status matches the HTTP status code returned in the HTTP header.

Nonempty HTTP Response with Unknown Template IDs Warning

Content-Type: application/json

Content:
{
"warnings": {
"unknownTemplateIds": ["UnknownModule:UnknownEntity"]
} 14
"result": [
{
"observers": [],
"agreementText": "",
"payload": {
"observers": [],
"issuer": "Alice",
"amount": "999.99",
"currency": "USD",
"owner": "Alice"
} 4
"signatories": |

(continues on next page)

3lo Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"Alice"

]I

"contractId": "#52:0",

"templateId":

—"b10d22d6c2f2faed1b353315cf893ed66996echblabed424ea6a81576918f658a:Iou:Iou”
}

]I
"status": 200

2.2.3.15 Fetch Parties by Identifiers

URL: /v1l/parties

Method: POST

Content-Type: application/json
Content:

[”Alice", "BOb", "Dave"}

If an empty JSON array is passed: [], this endpoint returns BadRequest(400) error:

{
"status": 400,
"errors": [
"JsonReaderError. Cannot read JSON: <[]>. Cause: spray.json.
—DeserializationException: must be a list with at least 1 element"

]

HTTP Response

Content-Type: application/json
Content:

"status": 200,

"result": |
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",

"isLocal": true

"identifier": "Bob",
"displayName": "Bob & Co. LLC",
"isLocal": true

"identifier": "Dave",
"isLocal": true

(continues on next page)

2.2. Building Applications 317

Daml SDK Documentation, 2.1.1

(continued from previous page)

Please note that the order of the party objects in the response is not guaranteed to match the order
of the passed party identifiers.

Where

identifier - a stable unique identifier of a Daml party,
displayName -optional human readable name associated with the party. Might not be unique,
isLocal - true if party is hosted by the backing participant.

Response with Unknown Parties Warning

Content-Type: application/json
Content:

"result": [
{
"identifier": "Alice",
"displayName": "Alice & Co. LLC",
"isLocal": true
}
] r
"warnings": {
"unknownParties": ["Erin"]

b
"status": 200

The result might be an empty JSON array if none of the requested parties is known.

2.2.3.16 Fetch All Known Parties

URL: /v1l/parties
Method: GET
Content: <EMPTY>

HTTP Response

The response is the same as for the POST method above.

318 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.17 Allocate a New Party

This endpointis a JSON API proxy for the Ledger API’s AllocatePartyRequest. For more information about
party management, please refer to Provisioning Identifiers part of the Ledger APl documentation.

HTTP Request

URL: /vl/parties/allocate
Method: POST
Content-Type: application/json

Content:
{
"identifierHint": "Carol",
"displayName": "Carol & Co. LLC"

}

Please refer to AllocateParty documentation for information about the meaning of the fields.

All fields in the request are optional, this means that an empty JSON object is a valid request to
allocate a new party:

{}

HTTP Response

"result": {
"identifier": "Carol",
"displayName": "Carol & Co. LLC",
"isLocal": true

}I

"status": 200

2.2.3.18 Creating a New User

This endpoint exposes the Ledger API's CreateUser RPC.

HTTP Request

URL: /vl /user/create

Method: POST

Content-Type: application/json
Content:

2.2. Building Applications 319

Daml SDK Documentation, 2.1.1

"userId": "Carol",
"primaryParty": "Carol",
"rights": [
{
"type": "CanActAs",
"party": "Carol"
}I
{
"type": "CanReadAs",
"party": "Alice",
by
{
"type": "CanReadAs",

"party" : "BOb",

"type": "ParticipantAdmin"

Please refer to CreateUser RPC documentation for information about the meaning of the fields.

Only the userld fields in the request is required, this means that an JSON object containing only it is
avalid request to create a new user.

HTTP Response

"result": {},
"status": 200

2.2.3.19 Get Authenticated User Information

This endpoint exposes the Ledger API’s GetUser RPC.

The user ID will always be filled out with the user specified via the currently used user token.

HTTP Request

URL: /v1/user
Method: GET

320 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

HTTP Response

"result": {
"userId": "Carol",
"primaryParty": "Carol",
}I
"status": 200

2.2.3.20 Get Specific User Information

This endpoint exposes the Ledger API’s GetUser RPC.

HTTP Request

URL: /v1/user

Method: POST

Content-Type: application/json
Content:

{

"userId": "Carol"

}

Please refer to GetUser RPC documentation for information about the meaning of the fields.

HTTP Response

"result": {
"userId": "Carol",
"primaryParty": "Carol",
}I
"status": 200

2.2.3.21 Delete Specific User

This endpoint exposes the Ledger API’s DeleteUser RPC.

2.2. Building Applications

321

Daml SDK Documentation, 2.1.1

HTTP Request

URL: /v1/user/delete

Method: POST

Content-Type: application/json
Content:

"userId": "Carol"

Please refer to DeleteUser RPC documentation for information about the meaning of the fields.

HTTP Response

"result": {},
"status": 200

2.2.3.22 List Users

This endpoint exposes the Ledger API’s ListUsers RPC.

HTTP Request

URL: /v1/users
Method: GET

HTTP Response

"result": [

{
"userId": "Carol",
"primaryParty": "Carol",

by

{
"userId": "Bob",
"primaryParty": "Bob",

}

1,
"status": 200

322 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

2.2.3.23 Grant User Rights

This endpoint exposes the Ledger API’s GrantUserRights RPC.

HTTP Request

URL: /v1l/user/rights/grant
Method: POST
Content-Type: application/json

Content:
{
"userId": '"Carol",
"rights": |
{
"type": "CanActAs",
"party": "Carol"
} 14
{
"type": "CanReadAs",
"party": "Alice'",
} 14
{
"type": "CanReadAs",

"Party" . "Bob",

"type": "ParticipantAdmin"

Please refer to GrantUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

"result": [

{
"type": "CanActAs",
"party": "Carol"

by

{
"type": "CanReadAs",
"party": "Alice",

}I

{
"type": "CanReadAs",

"party" : "Bob”,

"type": "ParticipantAdmin"

(continues on next page)

2.2. Building Applications 323

Daml SDK Documentation, 2.1.1

(continued from previous page)

i
"status": 200

Returns the rights that were newly granted.

2.2.3.24 Revoke User Rights

This endpoint exposes the Ledger API’s RevokeUserRights RPC.

HTTP Request

URL: /v1l/user/rights/revoke
Method: POST
Content-Type: application/json

Content:
{
"userId": "Carol",
"rights": [
{
"type": "CanActAs",
"party": "Carol"
} 14
{
"type": "CanReadAs",
"party": "Alice",
} 14
{
"type": "CanReadAs",

"party" . "BOb",

"type": "ParticipantAdmin"

Please refer to RevokeUserRights RPC documentation for information about the meaning of the fields.

HTTP Response

"result": [
{
"type": "CanActAs'",
"party": "Carol"
}I
{
"type": "CanReadAs",
(continues on next page)
324 Chapter 2. Daml Guide

Daml SDK Documentation, 2.1.1

(continued from previous page)

"party":

1] type "e.

"pa